WO2021152688A1 - 電力変換装置 - Google Patents
電力変換装置 Download PDFInfo
- Publication number
- WO2021152688A1 WO2021152688A1 PCT/JP2020/002916 JP2020002916W WO2021152688A1 WO 2021152688 A1 WO2021152688 A1 WO 2021152688A1 JP 2020002916 W JP2020002916 W JP 2020002916W WO 2021152688 A1 WO2021152688 A1 WO 2021152688A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- converter
- dcdc
- power
- group
- dcdc converter
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims description 100
- HEZMWWAKWCSUCB-PHDIDXHHSA-N (3R,4R)-3,4-dihydroxycyclohexa-1,5-diene-1-carboxylic acid Chemical compound O[C@@H]1C=CC(C(O)=O)=C[C@H]1O HEZMWWAKWCSUCB-PHDIDXHHSA-N 0.000 claims description 362
- 230000007704 transition Effects 0.000 claims description 13
- 230000007423 decrease Effects 0.000 claims description 5
- 230000001174 ascending effect Effects 0.000 claims description 4
- 239000000969 carrier Substances 0.000 claims description 4
- 238000007562 laser obscuration time method Methods 0.000 claims 2
- 239000003990 capacitor Substances 0.000 description 23
- 238000010586 diagram Methods 0.000 description 20
- 238000000034 method Methods 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 8
- 238000005457 optimization Methods 0.000 description 6
- 102100037069 Doublecortin domain-containing protein 1 Human genes 0.000 description 4
- 101000954712 Homo sapiens Doublecortin domain-containing protein 1 Proteins 0.000 description 4
- 102100037070 Doublecortin domain-containing protein 2 Human genes 0.000 description 3
- 101000954709 Homo sapiens Doublecortin domain-containing protein 2 Proteins 0.000 description 3
- 101000885387 Homo sapiens Serine/threonine-protein kinase DCLK2 Proteins 0.000 description 3
- 102100039775 Serine/threonine-protein kinase DCLK2 Human genes 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/10—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
- H02M3/1584—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/10—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
- H02M3/1584—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
- H02M3/1586—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0095—Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
- H02M1/084—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters using a control circuit common to several phases of a multi-phase system
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
- H02M1/088—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/14—Arrangements for reducing ripples from DC input or output
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/06—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using resistors or capacitors, e.g. potential divider
- H02M3/07—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
- H02M7/4837—Flying capacitor converters
Definitions
- This application relates to a power conversion device.
- a multi-level chopper circuit is disclosed as an effective method as a technique for high efficiency and miniaturization of a DCDC converter (for example, Patent Document 1). Further, a technique for switching the number of operating units so as to achieve optimum power conversion efficiency is disclosed (for example, Patent Document 2).
- the multi-level chopper of Patent Document 1 optimizes the reactor by doubling the boost, has a flow rate of 50% during parallel operation of two units, and reverses the output phase of the two chopper circuits by 180 degrees to combine the output current. Can be smoothed and the high frequency current can be reduced.
- the technique of switching the number of operating units of Patent Document 2 is used for this multi-level chopper, it is not possible to handle an odd number of units.
- the present application discloses a technique for solving the above-mentioned problems, and is a power conversion device capable of optimizing power conversion efficiency and reducing output current ripple regardless of the number of DCDC converters operating in parallel.
- the purpose is to provide.
- the power converter disclosed in the present application controls N DCDC converters connected in parallel, the input side is connected to a DC source, the output side is connected to a load, and N is 3 or more, and a DCDC converter.
- the N DCDC converters are a first converter group in which PWM switching control is performed by the first carrier and a second carrier whose phase is different from that of the first carrier. It belongs to one of the second converter groups in which PWM switching control is performed, and at least one DCDC converter is assigned to the first converter group and the second converter group, and the control device is the number of DCDC converters in operation and the number of DCDC converters in operation.
- a plurality of operation modes in which the converter group is set are determined, the operation mode is switched by comparing the preset threshold value with the total output of N DCDC converters, and the total output of the first converter group and the second converter are used.
- the ratio to the total output of the group is within a predetermined range.
- FIG. It is a block diagram of the power conversion apparatus according to Embodiment 1.
- FIG. It is a circuit diagram of the non-insulated step-up chopper when a plurality of units are connected in parallel according to the power conversion device according to the first embodiment.
- It is a circuit diagram of the multi-level type chopper which concerns on the power conversion apparatus by Embodiment 1.
- FIG. It is explanatory drawing of the high frequency ripple current and the step-up ratio flowing through the reactor of the multi-level type chopper which concerns on the power conversion apparatus by Embodiment 1.
- FIG. It is explanatory drawing of the operation mode and output of three DCDC converters concerning the power conversion apparatus according to Embodiment 1.
- FIG. 5 is a configuration diagram of an example in which a plurality of parallel DCDC converters related to the power conversion device according to the first embodiment are mounted on an aircraft.
- It is a block diagram of the power conversion apparatus according to Embodiment 2. It is explanatory drawing of the operation mode and output of four DCDC converters concerning the power conversion apparatus according to Embodiment 2.
- FIG. It is a block diagram of the power conversion apparatus according to Embodiment 3. It is explanatory drawing of the operation mode of 7 DCDC converters and the state of a converter group which concerns on power conversion apparatus by Embodiment 3.
- FIG. It is explanatory drawing of the operation mode of 7 DCDC converters and the state of a converter group which concerns on power conversion apparatus by Embodiment 3.
- FIG. It is explanatory drawing of the operation mode of the DCDC converter and the state of the converter group at the time of failure of the power conversion apparatus which concerns on Embodiment 4.
- FIG. It is explanatory drawing of the operation mode and output of four DCDC converters concerning the power conversion apparatus according to Embodiment 6.
- the first embodiment includes three DCDC converters connected in parallel and a control device for controlling the DCDC converters, and performs PWM switching control by the first carrier, a first converter group, and a first carrier and a phase. It is equipped with a second converter group that performs PWM switching control with a second carrier that is different from each other, and one or more DCDC converters are assigned to each converter group, and a plurality of operation modes in which the number of operating units and the converter group are set are set.
- the control device switches the operation mode by comparing the preset threshold value with the total output of the three DCDC converters, and determines the ratio between the total output of the first converter group and the total output of the second converter group. It relates to a power conversion device within a predetermined range.
- FIG. 1 which is a configuration diagram of the power conversion device
- FIG. 2 which is a circuit diagram of a non-insulated booster chopper when a plurality of units are parallel
- FIG. 3 which is a circuit diagram
- FIG. 4 which is an explanatory diagram of a high frequency ripple current and a boost ratio flowing through a reactor of a multi-level chopper
- FIG. 5 which is an explanatory diagram of the operation mode and output of three DCDC converters, and a plurality of units.
- FIG. 6 which is a configuration diagram of an example in which a parallel DCDC converter is mounted on an aircraft.
- the power conversion device 100 of the first embodiment is centered on three DCDC converters (first DCDC converter 1, second DCDC converter 2, third DCDC converter 3) connected in parallel, and the first to third DCDC converters 1
- the first battery 12 as a DC source connected to the input side of the third
- the first capacitor 13 for the DC link connected to the output side of the first to third DCDC converters 1 to 3
- a load drive device 14 is provided in which the first capacitor 13 is used as a DC bus and a predetermined power is supplied to the load 15.
- the power conversion device 100 includes a control device 11 that controls the first to third DCDC converters 1 to 3 to perform a predetermined function of the power conversion device 100, as will be described later.
- the first DCDC converter 1 is referred to as DCDC1
- the second DCDC converter 2 is referred to as DCDC2
- the third DCDC converter 3 is referred to as DCDC3.
- DCDC converter input capacitors 16 for smoothing are provided on the input side of the first to third DCDC converters 1 to 3.
- the DCDC converter input capacitor 16 is connected in parallel to the first battery 12.
- the battery is used as the DC source in FIG. 1, other battery systems such as a DC power supply and a solar cell may be used.
- the load drive device 14 When the load 15 is a DC load, the load drive device 14 functions as a converter circuit that converts DC, which is the output of the first to third DCDC converters 1 to 3, into another DC voltage. When the load 15 is an AC load, the load drive device 14 functions as an inverter circuit that converts DC, which is the output of the first to third DCDC converters 1 to 3, into AC.
- the first to Nth DCDC converters 1 to N which are usually three or more, are connected in parallel between the first battery 12 as a DC source and the first capacitor 13 for a DC link.
- first battery 12 as a DC source
- first capacitor 13 for a DC link.
- FIG. 2 is a circuit diagram when three non-insulated step-up choppers are connected in parallel as a DCDC converter.
- the first to third DCDC converters 1 to 3 of the first embodiment are composed of two power semiconductor elements Q1 and Q2 and a reactor 21 shown in FIG. 2, respectively.
- the power semiconductor elements Q1 and Q2 are self-extinguishing types such as IGBTs (Insulated Gate Bipolar Transistors) and MOSFETs (Metal-Oxide-Semiconductor Field-Effective Transistors).
- each terminal is described as a drain terminal, a source terminal, and a gate terminal.
- a reactor 21 is connected between the connection point a of the drain terminal of the power semiconductor element Q1 and the source terminal of the power semiconductor element Q2 and the DCDC converter input capacitor 16.
- the control device 11 includes, for example, a CPU (Central Processing Unit) and an FPGA (Field Programmable Gate Array) as arithmetic function elements in order to control the first to third DCDC converters 1 to 3.
- the control device 11 outputs a gate signal for driving the power semiconductor elements Q1 and Q2 of the first to third DCDC converters 1 to 3.
- the gate signal is generated by using a triangular wave comparison method such as PWM (Pulse Width Modulation) control.
- the control device 11 has a first triangular wave carrier as a triangular wave carrier and a second triangular wave carrier that is approximately 180 degrees out of phase with the first triangular wave carrier in order to control the first to third DCDC converters 1 to 3. Use. In addition, about 180 degrees is, for example, 175 degrees or more and 185 degrees or less, preferably 179 degrees or more and 181 degrees or less.
- the triangular wave carrier is used for PWM switching control, but a sawtooth carrier other than the triangular wave carrier may be used.
- the control device 11 performs PWM switching control using the first triangular wave carrier for the first to third DCDC converters 1 to 3 according to the operation mode, or PWM switching control using the second triangular wave carrier. Decide whether to do or stop.
- the DCDC converter group controlled by using the first triangular wave carrier is referred to as a first converter group
- the DCDC converter group controlled by using the second triangular wave carrier is referred to as a second converter group.
- the control device 11 connects the first to third DCDC converters 1 to 3 so that the DC link voltage, which is the voltage across the first capacitor 13, is approximately twice the voltage value of the first battery 12. Power conversion is performed by switching the elements Q1 and Q2. In addition, about 2 times is, for example, 1.8 times or more and 2.2 times or less, preferably 1.95 times or more and 2.05 times or less.
- the flow rate of the double-boosting non-insulated boosting chopper described in FIG. 2 is 50%, and since the inverted current is output for each converter group, the combined output values of the first to third DCDC converters 1 to 3 are It becomes continuous, is greatly smoothed, and can suppress high-frequency current.
- FIG. 3 In order to distinguish it from the non-insulated booster chopper of FIG. 2, it is described as a multi-level chopper 1M.
- the multi-level chopper 1M is composed of four power semiconductor elements Q3, Q4, Q5, Q6 and a reactor 21. Further, the multi-level chopper 1M includes a capacitor 23 that functions as a flyback capacitor between the connection point b of the source of Q3 and the drain of Q4 and the connection point c of the source of Q5 and the drain of Q6.
- the multi-level chopper is an effective circuit system in the operation of boosting the voltage by about twice at a flow ratio of 50% as in the first embodiment.
- first to Nth DCDC converters 1 to N are composed of two or more types of converters having different power rated capacities.
- the rated power capacity of the first DCDC converter 1 is 1 [p. u. ]
- the rated power capacity of the second DCDC converter 2 is 2 [p. u. ]
- the power rated capacity of the third DCDC converter 3 is 3 [p. u. ] Will be described.
- FIG. 5 shows the output currents of the first and second triangular wave carriers, the first to third DCDC converters, and the total output currents at 33% load, 66% load, and 100% load.
- the step-up chopper boosts the voltage almost twice, so the flow rate of the chopper is 50%, and by passing the same current, each chopper is connected to the first capacitor 13 for the DC link.
- the combined value of the flowing output current is smoothed like a continuous DC current, and the high frequency component is suppressed.
- the operation of the power conversion device 100 when the load 15 rises from a low load will be described.
- the first DCDC converter 1 and the second DCDC converter 2 are operating.
- the third DCDC converter 3 is stopped.
- the output powers of the first converter group and the second converter group are substantially the same. Since the input / output voltages are the same, it means that the current values are the same.
- the state at 33% load corresponds to this first operation mode.
- the first DCDC converter 1 belongs to the first converter group and the second DCDC converter 2 belongs to the second converter group.
- the first DCDC converter 1 and the second DCDC converter 2 output the same power.
- the load is about 33% of the total load as shown in FIG. 5 2 [p. u. ] (Twice the power rated capacity of the first DCDC converter 1) can output a smoothed current.
- the power of the load 15 is increased and 2 [p. u. ], The power capacity is insufficient, and the mode shifts to the second operation mode.
- 2 [p. u. ] Is set as the first mode threshold value.
- the first mode threshold value is set to be twice or less the power value of the group having the lower total power capacity among the first converter group and the second converter group.
- the power rated capacity of the first DCDC converter 1 belonging to the first converter group is higher than the power rated capacity of the second DCDC converter 2 belonging to the second converter group. Is also low. Therefore, the first mode threshold value is 2 [p. u. ] Is set.
- the first mode threshold value can be further subdivided into a first mode threshold value A and a first mode threshold value B.
- the first mode threshold value A is larger than the first mode threshold value B, and the threshold value when transitioning from the first operation mode to the second operation mode is the first mode threshold value A from the second operation mode.
- the first mode threshold value B may be used as the threshold value when transitioning to the first operation mode. As a result, a hysteresis can be provided in the threshold value for the mode transition.
- the control device 11 changes the converter group to which the second DCDC converter 2 belongs to the first converter group at the transition from the first operation mode to the second operation mode, and the PWM switching control is performed by the first triangular wave carrier. Change to do with. Then, the third DCDC converter 3 is set as the second converter group, PWM switching control is performed using the second triangular wave carrier, and the operation is started.
- the power ratio in each converter group may be set by the ratio of the power rated capacity of each DCDC converter.
- the power ratio of the first DCDC converter 1 and the second DCDC converter 2 is set to 1: 2 from the power capacity ratio of each DCDC converter, and the first converter group is total. 3 [p. u. ] Can be output.
- This second operation mode corresponds to the 66% load and 100% load shown in FIG.
- the control device 11 stops the operation of the third DCDC converter 3 and stops the operation of the second DCDC converter.
- the converter group to which 2 belongs is changed to the second converter group, and PWM switching control is performed by the second triangular wave carrier.
- the control device 11 changes the number of DCDC converters in operation according to the state of the load 15, improves the utilization rate of the DCDC converters, and reduces the power loss at the time of low load. Further, since the high frequency current flowing through the first capacitor 13 can be reduced by the interleave operation, it is possible to improve the low load power conversion efficiency and reduce the size of the capacitor.
- the total output of each of the first converter group and the second converter group is increased. It is preferable to select the power capacities of the first to third DCDC converters 1 to 3 so as to have the same output.
- the first to Nth converters have the same total output so that the total outputs of the first converter group and the second converter group are the same. It is preferable to select the power capacity of the DCDC converters 1 to N.
- FIG. 6 a load typified by a passenger air compressor motor is assumed, and these loads are defined as loads 15A and 15B. It includes load drive devices 14A and 14B that function as driving inverters.
- the system of FIG. 6 includes a DCDC converter 10, a first battery 12 as a DC source, load drive devices 14A and 14B that function as inverters for driving loads 15A and 15B, and a control device 11.
- the DCDC converter 10 is, for example, three DCDC converters connected in parallel.
- the control device 11 controls the DCDC converter 10 with optimum efficiency according to the power of the loads 15A and 15B for the DC power supply from the first battery 12, and transfers the required power via the load driving devices 14A and 14B. And supplies to the loads 15A and 15B.
- the first to Nth DCDC converters 1 to N which are three or more units, are composed of two or more types of converters having different power rated capacities has been described.
- the first to third DCDC converters 1 to 3 are respectively 1 [p. u. ], 2 [p. u. ], 3 [p. u. ] Was explained.
- the control method of the power converter according to the first embodiment can be applied.
- the control device 11 operates the first DCDC converter 1 in the first converter group and the second DCDC converter 2 in the second converter group, and operates the third DCDC converter 3 and the fourth DCDC converter 3.
- the DCDC converter 4 is stopped.
- the first and second converter groups are 1 [p. u. ], A total of 2 [p. u. ] Power is output.
- the control device 11 operates the first DCDC converter 1 and the second DCDC converter 2 in the first converter group, the third DCDC converter 3 in the second converter group, and the fourth DCDC converter 4 is stopped.
- the first and second converter groups are 1 [p. u. ], A total of 2 [p. u. ] Power is output. In this case, the maximum output does not increase, so the transition to the third operation mode is immediately performed.
- the control device 11 readjusts the converter group, and makes the second DCDC converter 2 and the third DCDC converter 3 into the first converter group, the first DCDC converter 1 and the fourth.
- the DCDC converter 4 is operated by the second converter group.
- the first and second converter groups are each 2 [p. u. ], A total of 4 [p. u. ] Power is output.
- the readjustment of the converter group will also be described in the third embodiment.
- the power conversion device of the first embodiment includes three DCDC converters connected in parallel and a control device for controlling the DCDC converter, and the first carrier performs PWM switching control.
- a converter group and a second converter group that performs PWM switching control with a second carrier having a phase different from that of the first carrier are provided, and one or more DCDC converters are assigned to each converter group, and the number of operating units and converters are assigned. It has a plurality of operation modes in which a group is set, and the control device switches the operation mode by comparing a preset threshold value with the total output of three DCDC converters, and switches the operation mode between the total output of the first converter group and the second.
- the ratio to the total output of the converter group is within a predetermined range. Therefore, the power conversion device of the first embodiment can realize optimization of power conversion efficiency and reduction of output current regardless of the number of DCDC converters operating in parallel.
- Embodiment 2 In the power conversion device of the second embodiment, four DCDC converters, which were connected in parallel in the first embodiment, are connected in parallel.
- FIG. 7 which is a configuration diagram of the power conversion device
- FIG. 8 which is an explanatory diagram of the operation mode and output of the four DCDC converters. Will be mainly explained.
- the configuration diagram of the second embodiment the same or corresponding parts as those of the first embodiment are designated by the same reference numerals.
- the power conversion device 200 of the second embodiment is centered on four DCDC converters (first DCDC converter 1, second DCDC converter 2, third DCDC converter 3, fourth DCDC converter 4) connected in parallel.
- first battery 12 as a DC source connected to the input side of the fourth DCDC converters 1 to 4, and for the DC link connected to the output side of the first to fourth DCDC converters 1 to 4.
- a load drive device 14 is provided in which the first capacitor 13 and the first capacitor 13 are used as DC bus wires to supply a predetermined power to the load 15.
- the power conversion device 200 includes a control device 11 that controls the first to fourth DCDC converters 1 to 4 to perform a predetermined function of the power conversion device 200.
- the first DCDC converter 1 is referred to as DCDC1
- the second DCDC converter 2 is referred to as DCDC2
- the third DCDC converter 3 is referred to as DCDC3
- the fourth DCDC converter 4 is referred to as DCDC4.
- the rated power capacity of the first DCDC converter 1 is 1 [p. u. ]
- the rated power capacity of the second DCDC converter 2 is 1 [p. u. ]
- the rated power capacity of the third DCDC converter 3 is 2 [p. u. ]
- the rated power capacity of the fourth DCDC converter 4 is 4 [p. u. ] Will be described.
- the operation of the power conversion device 200 when the load 15 rises from a low load will be described.
- the first DCDC converter 1 and the second DCDC converter 2 are operating.
- the third DCDC converter 3 and the fourth DCDC converter 4 are stopped.
- the first DCDC converter 1 belongs to the first converter group and the second DCDC converter 2 belongs to the second converter group.
- the first DCDC converter 1 and the second DCDC converter 2 have the same power capacity, and in the first operation mode in the second embodiment, as shown in FIG. 8, the load is about 25% of the total load 2 [p. .. u. ], A smoothed current can be output as a DC current.
- the power of the load 15 increases and 2 [p. u. ], The power capacity is insufficient, and the mode shifts to the second operation mode.
- this 2 [p. u. ] Is set as the first mode threshold value.
- the first mode threshold value is set to be twice or less the power value of the group having the lower total power capacity of the first converter group and the second converter group.
- the first mode threshold value is further subdivided into a first mode threshold value A and a first mode threshold value B, the first mode threshold value A is larger than the first mode threshold value B, and the first operation mode to the second mode threshold value B.
- the first mode threshold value A may be used as the threshold value when transitioning to the operation mode
- the first mode threshold value B may be used as the threshold value when transitioning from the second operation mode to the first operation mode.
- the control device 11 changes the converter group to which the second DCDC converter 2 belongs to the first converter group at the transition from the first operation mode to the second operation mode, and the PWM switching control is performed by the first triangular wave carrier. Change to do with. Then, the third DCDC converter 3 is set as the second converter group, PWM switching control is performed using the second triangular wave carrier, and the operation is started.
- the ratio of the output power of the first converter group and the second converter group is the same. Therefore, the total power of the first DCDC converter 1 and the second DCDC converter 2 and the power of the third DCDC converter 3 have the same output, and the second operation mode in the second embodiment is as shown in FIG. 4 [p., Which is about 50% of the total load. u. ] Can be output.
- the power of the load 15 is further increased to 4 [p. u. ], The power capacity is insufficient, and the mode shifts to the third operation mode. In the second embodiment, this 4 [p. u. ] Is set as the second mode threshold value.
- the second mode threshold value is set to be twice or less the power value of the group having the lower total power capacity among the first converter group and the second converter group.
- the second mode threshold value can be further subdivided into a second mode threshold value A and a second mode threshold value B.
- the second mode threshold value A is larger than the second mode threshold value B, and the threshold value when transitioning from the second operation mode to the third operation mode is the second mode threshold value A, and the third operation mode to the third.
- the second mode threshold value B may be used as the threshold value when transitioning to the second operation mode. As a result, a hysteresis can be provided in the threshold value for the mode transition.
- the control device 11 Upon transition to the third operation mode, the control device 11 changes the converter group to which the third DCDC converter 3 belongs to the first converter group, and changes the PWM switching control so that it is performed by the first triangular wave carrier. .. Then, the fourth DCDC converter 4 belongs to the second converter group, PWM switching control is performed using the second triangular wave carrier, and the operation is started.
- the load is about 100% of the total load as shown in FIG. 8 [p. u. ] Can be output.
- the operation of the power conversion device 200 when the load 15 is reduced changes in the order of operation mode 3 ⁇ operation mode 2 ⁇ operation mode 1 as opposed to the case where the operation mode is increased. Since the mode change threshold value is described when the load 15 increases, the description of the operation of the power conversion device 200 is omitted.
- the control device operates the DCDC converter having the lowest power rated capacity as the first DCDC converter, then the DCDC converter having the lowest power rated capacity as the second DCDC converter, and operates the first DCDC.
- the converter is assigned to the first converter group, and the second DCDC converter is assigned to the second converter group.
- the control device shifts to the second operation mode, and operates with the DCDC converter having the next lowest power rated capacity as the third DCDC converter after the second DCDC converter. Start, change the assignment of the second DCDC converter to the first converter group, and assign the third DCDC converter to the second converter group.
- the control device repeats mode switching every time the load output increases, and when the total output of N DCDC converters exceeds the (N-1) threshold, it shifts to the (N-1) operation mode. Then, the DCDC converter having the largest power rated capacity is used as the Nth DCDC converter, the first (N-1) DCDC converter is assigned to the first converter group, and the Nth DCDC converter is assigned to the first converter group. Assign to 2 converter groups.
- the control device assigns the DCDC converter having the largest power rated capacity as the Nth DCDC converter to the second converter group and operates the controller, and operates the first (N-1) to the first.
- DCDC converter is assigned to the first converter group and operated.
- the control device shifts to the operation mode of the (N-2), stops the operation of the Nth DCDC converter, and performs the operation of the Nth (N-2).
- the allocation of the DCDC converter of N-1) is changed to the second converter group.
- the control device repeats mode switching every time the load output decreases, and when the load output falls below the first threshold value, it shifts to the first operation mode, and the power rated capacity next to the second DCDC converter.
- the operation of the large third DCDC converter is stopped, the second DCDC converter is reassigned to the second converter group, and the first DCDC converter continues to operate in the first converter group.
- the power rated capacity of the first DCDC converter 1 and the second DCDC converter 2 is the same power capacity S, and the power rated capacity of the third DCDC converter 3 is twice the power capacity S.
- the capacity T that is, 2S
- the power rated capacity of the fourth DCDC converter 4 is set to the power capacity U (that is, 2T or 4S) that is twice the power capacity T.
- each DCDC converter first to fourth DCDC converters 1 to 4
- each operation mode operation modes 1 to 3
- Efficiency at low load can be improved by changing the number of converters in operation and improving their power utilization.
- the power conversion device of the second embodiment is a DCDC converter in which four DCDC converters are connected in parallel. Therefore, the power conversion device of the second embodiment can realize optimization of power conversion efficiency and reduction of output current regardless of the number of DCDC converters operating in parallel.
- Embodiment 3 The power conversion device of the third embodiment has a function of connecting seven DCDC converters in parallel and further adjusting the converter group to which the DCDC converter belongs.
- FIG. 9 is a configuration diagram of the power conversion device
- FIGS. 10 and 11 which are explanatory views of the operation mode and the state of the converter group of the seven DCDC converters. The difference from the first form of the above will be mainly described.
- the same or corresponding parts as those of the first embodiment are designated by the same reference numerals.
- the power converter 300 includes seven DCDC converters (first DCDC converter 1, second DCDC converter 2, third DCDC converter 3, fourth DCDC converter 4, fifth DCDC converter 5) connected in parallel.
- the first battery 12 as a DC source connected to the input side of the first to seventh DCDC converters 1 to 7 centering on the sixth DCDC converter 6 and the seventh DCDC converter 7
- the first A load drive device 14 that supplies a predetermined power to the load 15 with the first capacitor 13 for the DC link connected to the output side of the seventh DCDC converters 1 to 7 and the first capacitor 13 as DC bus wires.
- the power conversion device 300 includes a control device 11 that controls the first to seventh DCDC converters 1 to 7 to perform a predetermined function of the power conversion device 300.
- the first DCDC converter 1 is DCDC1
- the second DCDC converter 2 is DCDC2
- the third DCDC converter 3 is DCDC3
- the fourth DCDC converter 4 is DCDC4
- the fifth DCDC converter 5 Is described as DCDC5
- the sixth DCDC converter 6 is referred to as DCDC6
- the seventh DCDC converter 7 is referred to as DCDC7.
- the control line in which the control device 11 controls the first to seventh DCDC converters 1 to 7 is omitted.
- FIGS. 10 and 11 show that in each operation mode (first operation mode to sixth operation mode), the first to seventh DCDC converters 1 to 7 are either the first converter group or the second converter group. Indicates whether it belongs to or stops. Further, FIGS. 10 and 11 show the power ratios of the first converter group and the second converter group in each operation mode (first operation mode to sixth operation mode). Note that FIG. 10 is a description of the first to third operation modes, and FIG. 11 is a description of the fourth to sixth operation modes.
- the operation serial number of the first DCDC converter 1 is 1
- the operation serial number of the second DCDC converter 2 is 2
- the operation serial number of the third DCDC converter 3 is 3, and the fourth DCDC.
- the operation serial number of the converter 4 is set to 4
- the operation serial number of the fifth DCDC converter 5 is set to 5
- the operation serial number of the sixth DCDC converter 6 is set to 6
- the operation serial number of the seventh DCDC converter 7 is set to 7.
- the order of the operation serial numbers is given by the initial setting on the control device 11 side.
- the operation serial number of the DCDC converter and the code number of each DCDC converter are the same, the operation serial number is omitted in FIGS. 10 and 11.
- the power rated capacity of the first DCDC converter 1 is set to 1 [p. u. ]
- the power rated capacity of the second DCDC converter 2 is set to 2 [p. u. ]
- the power rated capacity of the third DCDC converter 3 is set to 3 [p. u. ]
- the power rated capacity of the fourth DCDC converter 4 is set to 4 [p. u. ]
- the power rated capacity of the fifth DCDC converter 5 is set to 5 [p. u. ]
- the power rated capacity of the sixth DCDC converter 6 is set to 6 [p. u. ]
- the power rated capacity of the 7th DCDC converter 7 is 7 [p. u. ] Is set.
- the difference in the total power capacity which is the total value of the power rated capacities of the first converter group and the second converter group, is obtained.
- this difference in total power capacity exceeds a predetermined allowable power capacity difference, the converter group to which the operating DCDC converter belongs is readjusted.
- the allowable power capacity difference is set to the power rated capacity value of the DCDC converter given the operation serial number 1 in which the operation serial number having the lowest power rated capacity is set.
- the power rated capacity of the first DCDC converter 1 to which the operation serial number 1 is given is 1 [p. u. ] Is the allowable power capacity difference.
- the control device 11 compares the total power capacity of the first converter group with the total power capacity of the second converter group after the number of units to be operated is changed by the mode transition.
- the absolute value of the difference becomes larger than the allowable power capacity difference
- the first DCDC converter having the operation serial number 1 is changed from the first converter group to the second converter.
- the DCDC converters belonging to the first converter group are repeatedly changed to the second converter group in ascending order of serial number until the difference in total power capacity is within the allowable power capacity difference.
- the first DCDC converter 1 having the operation serial number 1 is changed from the second converter group to the first converter group, and the difference in the total power capacity is allowed.
- the DCDC converters belonging to the second converter group are repeatedly changed to the first converter group in ascending order of serial number until the power capacity difference is within the range.
- the power conversion device of the third embodiment has a function of connecting seven DCDC converters in parallel and further adjusting the converter group to which the DCDC converter belongs. Therefore, the power conversion device of the third embodiment can realize optimization of power conversion efficiency and reduction of output current regardless of the number of DCDC converters operating in parallel.
- Embodiment 4 describes the operation of the readjustment function of the converter group to which the DCDC converter belongs when a failure occurs in the DCDC converter in the power conversion device of the third embodiment.
- FIG. 12 is an explanatory diagram of the operation mode of the DCDC converter and the state of the converter group when a failure occurs. Since the configuration of the power conversion device of the fourth embodiment is the same as that of the power conversion device 300 of the third embodiment, FIG. 9 is referred to as appropriate. In the fourth embodiment, it is assumed that the third DCDC converter fails during the normal operation in the third operation mode described in the third embodiment.
- FIG. 12 shows the first to seventh DCDC converters 1 to 7 when the first to seventh DCDC converters 1 to 7 are operating normally and the third DCDC converter 3 fails while operating in the third operation mode. The operating state of 7 is shown.
- the operation serial number of the first DCDC converter 1 is 1, the operation serial number of the second DCDC converter 2 is 2, and the operation serial number of the third DCDC converter 3 is set.
- the operation serial number of the fourth DCDC converter 4 is 4, the operation serial number of the fifth DCDC converter 5 is 5, the operation serial number of the sixth DCDC converter 6 is 6, and the operation serial number of the seventh DCDC converter 7 is 7. It is set.
- the smaller the rated power capacity is, the smaller the operation serial number is set. However, the reverse is also possible.
- the control device 11 disconnects the third DCDC converter 3 from the parallel connection. At this time, the control device 11 changes the operation serial number setting, and sets the operation serial number of the fourth DCDC converter 4 to 3, the operation serial number of the fifth DCDC converter 5, and the operation serial number of the sixth DCDC converter 6.
- the operation serial number of the fifth and seventh DCDC converter 7 is set to 6. That is, the control device 11 sets the operation serial number of the DCDC converter, which has been given a higher operation serial number than the failed DCDC converter, to be moved down.
- the control device 11 when a failure occurs in the DCDC converter during normal operation, the control device 11 has the first converter group and the second converter group so that the total power capacity difference is within the allowable power capacity difference in the remaining normal DCDC converters. Make adjustments between the converter groups.
- the power converter of the fourth embodiment adjusts the converter group that maintains the power balance at the time of operation mode transition even if the failed device is eliminated by the readjustment function of the converter group to which the DCDC converter belongs. Is possible. Therefore, the power conversion device of the fourth embodiment can realize optimization of power conversion efficiency and reduction of output current regardless of the number of DCDC converters operating in parallel, and further, a failure occurs in the DCDC converter. Can also maintain the power balance between the converter groups.
- the power conversion device of the fifth embodiment has a function of storing the converter group setting and the stop setting of each DCDC converter in all the operation modes as operation information.
- the control device 11 is a first to Nth DCDC converter 1 connected between the first battery 12 as a DC source and the first capacitor 13 for a DC link. Each power capacity of ⁇ N is grasped respectively.
- the control device 11 can obtain the setting at the time of shipment of each power capacity and the connected device information by communication.
- the operation represented by the map is performed in all the operation modes at the time of starting the power converter and after disconnecting the failed DCDC converter. Save as information. That is, the converter group setting and stop setting of the DCDC converter to which the operation serial number is given are calculated in order for each operation mode, and the converter group setting and stop setting in all operation modes are the operation information as shown in FIGS. 10 and 11. Save as.
- the control device 11 starts the power conversion device, and after starting the output of the N DCDC converters, reads the operation information at the transition of the operation mode, and operates in the converter group of the first to Nth DCDC converters 1 to N. Alternatively, change the setting of the stopped operation state.
- the operation information is not calculated by the control device at startup, but the operation information can be received from the outside.
- the power conversion device of the fifth embodiment has a function of storing the converter group setting and the stop setting of each DCDC converter in all the operation modes as operation information. Therefore, the power conversion device of the fifth embodiment can realize optimization of power conversion efficiency and reduction of output current regardless of the number of DCDC converters operating in parallel. Further, it is possible to reduce the calculation load during the operation of the control device.
- Embodiment 6 The power conversion device of the sixth embodiment PWM-switches the DCDC converter with three triangular wave carriers having phases different by 120 degrees.
- the power conversion device of the sixth embodiment will be described focusing on the difference from the second embodiment based on FIG. 13 which is an explanatory diagram of the operation mode and output of the four DCDC converters.
- FIG. 7 and FIG. 8 of Embodiment 2 are referred to as appropriate.
- the first to fourth DCDC converters 1 to 4 connected between the first battery 12 as the DC source and the first capacitor 13 for the DC link will be described as an application example.
- the first converter group for PWM switching control by the first triangular wave carrier and the second converter group for PWM switching control by the second triangular wave carrier whose phase is 120 degrees different from that of the first triangular wave carrier. It also has a third converter group that performs PWM switching control with a third triangular wave carrier whose phase is 240 degrees different from that of the first triangular wave carrier.
- One or more of the first to fourth DCDC converters 1 to 4 are operated in each converter group. For example, when the boost ratio is 3 times, a current flows through the output of each DCDC converter at a time ratio of about 33%. By outputting the output currents of the three converter groups having different phases by 120 degrees equally, the currents become continuous and smoothed when the respective currents are combined. As a result, the effective value of the high frequency current can be suppressed.
- the rated power capacity of the first DCDC converter 1 is 1 [p. u. ]
- the rated power capacity of the second DCDC converter 2 is 1 [p. u. ]
- the rated power capacity of the third DCDC converter 3 is 2 [p. u. ]
- the rated power capacity of the fourth DCDC converter 4 is 2 [p. u. ].
- FIG. 13 illustrates the output currents of the triangular wave carrier and each DCDC converter. Since the step-up chopper boosts the voltage by about three times, the flow rate of the chopper is about 33%, and by passing the same current, the output current flowing from each chopper to the first capacitor 13 for the DC link is combined. The value is smoothed like a continuous DC current and the high frequency component is suppressed.
- the first DCDC converter 1 belongs to the first converter group
- the second DCDC converter 2 belongs to the second converter group
- the third DCDC converter 3 belongs to the third converter group.
- the first DCDC converter 1, the second DCDC converter 2, and the third DCDC converter 3 output the same power, and in the first operation mode, the load is about 50% of the total load as shown in FIG. 13 3 [ p. u. ] (Three times the rated capacity of the first DCDC converter 1) can output a smoothed current.
- the first mode threshold value can be further subdivided into a first mode threshold value A and a first mode threshold value B.
- the first mode threshold value A is larger than the first mode threshold value B, and the threshold value when transitioning from the first operation mode to the second operation mode is the first mode threshold value A and the second operation mode to the second.
- the first mode threshold value B may be used as the threshold value when transitioning to the operation mode of 1. As a result, a hysteresis can be provided in the threshold value for the mode transition.
- the control device 11 Upon transition from the first operation mode to the second operation mode, the control device 11 changes the converter group to which the second DCDC converter 2 belongs to the first converter group, and PWM switching control is performed by the first triangular wave carrier. Change to do. Then, the third DCDC converter 3 is changed to the second converter group, and PWM switching control is performed using the second triangular wave carrier. Further, the fourth DCDC converter 4 belongs to the third converter group, and PWM switching control is performed using the third triangular wave carrier.
- the load is 50% to 100% as shown in FIG. 6 [p. u. ] Can be output.
- X converter groups are prepared, and the total output current of the DCDC converter is smoothed by shifting the phase of the triangular wave carrier used for PWM switching control by (360 / X) degrees.
- the power conversion device of the sixth embodiment PWM-switches the DCDC converter with three triangular wave carriers having phases different by 120 degrees. Therefore, the power conversion device of the sixth embodiment can realize optimization of power conversion efficiency and reduction of output current regardless of the number of DCDC converters operating in parallel. Furthermore, it can be applied to choppers whose boost ratio is other than 2 times.
- This application can be widely applied to power conversion devices because it can optimize power conversion efficiency and reduce output current ripple regardless of the number of DCDC converters operating in parallel.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
- Inverter Devices (AREA)
Abstract
Nは3以上であるN台の並列接続されたDCDCコンバータ(1~N)は、第1のキャリアでPWMスイッチングを行う第1のコンバータ群と、第1のキャリアと位相が異なる第2のキャリアでPWMスイッチングを行う第2のコンバータ群を備え、各コンバータ群には1台以上のDCDCコンバータ(1~N)が割り当てられ、運転台数とコンバータ群が設定される複数の運転モードを有し、予め設定された閾値とN台のDCDCコンバータ(1~N)の総出力との比較により運転モードを切り替え、第1のコンバータ群の総出力と第2のコンバータ群の総出力の比率を予め定められた範囲内とする。
Description
本願は、電力変換装置に関するものである。
近年、電気自動車および船舶等、エンジン駆動からモータ駆動に変更する電動化システムの普及が進み、さらには航空機に関しても二酸化炭素削減の動きから電動化への研究が世界各国で進められている。
電動化システムの高効率化のためには、バッテリとインバータのDC(Direct Current)リンクを繋ぐDCDCコンバータの高効率化および小型化、軽量化が求められている。
電動化システムの高効率化のためには、バッテリとインバータのDC(Direct Current)リンクを繋ぐDCDCコンバータの高効率化および小型化、軽量化が求められている。
DCDCコンバータの高効率、小型化の技術として、マルチレベル型のチョッパ回路が有効な方式として開示されている(例えば、特許文献1)。また、最適な電力変換効率となるように運転台数を切り替える技術が開示されている(例えば、特許文献2)。
特許文献1のマルチレベルチョッパは2倍昇圧でリアクトルを最適化し、2台の並列運転動作時に通流率が50%で、2台のチョッパ回路の出力位相を180度反転させることで出力合成電流を平滑化し、高周波電流を小さくできる。しかし、このマルチレベルチョッパに特許文献2の運転台数を切り替える技術を用いた場合、奇数台数には対応できない。
本願は、上記のような課題を解決するための技術を開示するものであり、DCDCコンバータの並列運転台数にかかわらず、電力変換効率の最適化と出力電流の低リプル化を実現できる電力変換装置を提供することを目的とする。
本願に開示される電力変換装置は、入力側は直流源に接続され、出力側は負荷に接続されている、Nは3以上である並列接続されたN台のDCDCコンバータと、DCDCコンバータを制御する制御装置とを備えた電力変換装置において、N台のDCDCコンバータは、第1のキャリアでPWMスイッチング制御が行われる第1のコンバータ群と、第1のキャリアと位相が異なる第2のキャリアでPWMスイッチング制御が行われる第2のコンバータ群のいずれかに属し、第1のコンバータ群および第2のコンバータ群には少なくとも1台以上のDCDCコンバータが割り当てられ、制御装置は、DCDCコンバータ運転台数およびコンバータ群が設定される複数の運転モードを決定し、予め設定された閾値とN台のDCDCコンバータの総出力との比較により運転モードを切り替え、第1のコンバータ群の総出力と第2のコンバータ群の総出力との比率を予め定められた範囲内とするものである。
本願に開示される電力変換装置によれば、DCDCコンバータの並列運転台数にかかわらず、電力変換効率の最適化と出力電流の低リプル化を実現できる。
実施の形態1.
実施の形態1は、3台の並列接続されたDCDCコンバータとDCDCコンバータを制御する制御装置とを備え、第1のキャリアでPWMスイッチング制御を行う第1のコンバータ群と、第1のキャリアと位相が異なる第2のキャリアでPWMスイッチング制御を行う第2のコンバータ群とを備え、各コンバータ群には1台以上のDCDCコンバータが割り当てられ、運転台数およびコンバータ群が設定される複数の運転モードを有し、制御装置は予め設定された閾値と3台のDCDCコンバータの総出力との比較により運転モードを切り替え、第1のコンバータ群の総出力と第2のコンバータ群の総出力との比率を予め定められた範囲内とする電力変換装置に関するものである。
実施の形態1は、3台の並列接続されたDCDCコンバータとDCDCコンバータを制御する制御装置とを備え、第1のキャリアでPWMスイッチング制御を行う第1のコンバータ群と、第1のキャリアと位相が異なる第2のキャリアでPWMスイッチング制御を行う第2のコンバータ群とを備え、各コンバータ群には1台以上のDCDCコンバータが割り当てられ、運転台数およびコンバータ群が設定される複数の運転モードを有し、制御装置は予め設定された閾値と3台のDCDCコンバータの総出力との比較により運転モードを切り替え、第1のコンバータ群の総出力と第2のコンバータ群の総出力との比率を予め定められた範囲内とする電力変換装置に関するものである。
以下、実施の形態1に係る電力変換装置の構成および動作について、電力変換装置の構成図である図1、複数台並列時の非絶縁昇圧チョッパの回路図である図2、マルチレベル型チョッパの回路図である図3、マルチレベル型チョッパのリアクトルを流れる高周波リプル電流と昇圧比の説明図である図4、3台のDCDCコンバータの運転モード、出力の説明図である図5、および複数台並列DCDCコンバータを航空機に搭載した例の構成図である図6に基づいて説明する。
実施の形態1の電力変換装置100の全体の構成を図1に基づいて説明する。
電力変換装置100は、並列接続された3台のDCDCコンバータ(第1のDCDCコンバータ1、第2のDCDCコンバータ2、第3のDCDCコンバータ3)を中心として、第1~第3のDCDCコンバータ1~3の入力側に接続されている直流源としての第1のバッテリ12、第1~第3のDCDCコンバータ1~3の出力側に接続されているDCリンク用の第1のコンデンサ13、および第1のコンデンサ13をDC母線とし負荷15に所定の電力を供給する負荷駆動装置14を備える。さらに、電力変換装置100は、後で説明するように第1~第3のDCDCコンバータ1~3を制御して、電力変換装置100の所定の機能を果たす制御装置11を備える。
図1では、第1のDCDCコンバータ1をDCDC1と、第2のDCDCコンバータ2をDCDC2と、第3のDCDCコンバータ3をDCDC3と記載している。
電力変換装置100は、並列接続された3台のDCDCコンバータ(第1のDCDCコンバータ1、第2のDCDCコンバータ2、第3のDCDCコンバータ3)を中心として、第1~第3のDCDCコンバータ1~3の入力側に接続されている直流源としての第1のバッテリ12、第1~第3のDCDCコンバータ1~3の出力側に接続されているDCリンク用の第1のコンデンサ13、および第1のコンデンサ13をDC母線とし負荷15に所定の電力を供給する負荷駆動装置14を備える。さらに、電力変換装置100は、後で説明するように第1~第3のDCDCコンバータ1~3を制御して、電力変換装置100の所定の機能を果たす制御装置11を備える。
図1では、第1のDCDCコンバータ1をDCDC1と、第2のDCDCコンバータ2をDCDC2と、第3のDCDCコンバータ3をDCDC3と記載している。
なお、図1では省略しているが、図2に示しているように、第1~第3のDCDCコンバータ1~3の入力側には、平滑用のDCDCコンバータ入力コンデンサ16を備えており、このDCDCコンバータ入力コンデンサ16は第1のバッテリ12に並列に接続されている。
図1では、直流源としてバッテリを使用しているが、直流電源および太陽電池などの他の電池システムでもよい。
図1では、直流源としてバッテリを使用しているが、直流電源および太陽電池などの他の電池システムでもよい。
負荷駆動装置14は、負荷15が直流負荷の場合は、第1~第3のDCDCコンバータ1~3の出力である直流を他の直流電圧に変換するコンバータ回路として機能する。負荷15が交流負荷の場合は、負荷駆動装置14は第1~第3のDCDCコンバータ1~3の出力である直流を交流に変換するインバータ回路として機能する。
直流源としての第1のバッテリ12とDCリンク用の第1のコンデンサ13との間には、通常は3台以上である第1から第NのDCDCコンバータ1~Nが並列に接続されるが、実施の形態1では、3台のDCDCコンバータが並列に接続される場合について説明する。
次に、第1~第3のDCDCコンバータ1~3の回路構成について図2に基づいて説明する。
図2は、DCDCコンバータとして、3台の非絶縁昇圧チョッパを並列接続した場合の回路図である。
実施の形態1の第1~第3のDCDCコンバータ1~3は、それぞれ図2に示される2個のパワー半導体素子Q1、Q2とリアクトル21とで構成される。
パワー半導体素子Q1、Q2はIGBT(Insulated Gate Bipolar Transistоr)およびMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)などの自己消弧型である。
実施の形態1では、MOSFETを用いた場合を想定し、各端子をドレイン端子、ソース端子、ゲート端子と記載している。
図2ではパワー半導体素子Q1のドレイン端子とパワー半導体素子Q2のソース端子の接続点aとDCDCコンバータ入力コンデンサ16の間にはリアクトル21が接続されている。
図2は、DCDCコンバータとして、3台の非絶縁昇圧チョッパを並列接続した場合の回路図である。
実施の形態1の第1~第3のDCDCコンバータ1~3は、それぞれ図2に示される2個のパワー半導体素子Q1、Q2とリアクトル21とで構成される。
パワー半導体素子Q1、Q2はIGBT(Insulated Gate Bipolar Transistоr)およびMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)などの自己消弧型である。
実施の形態1では、MOSFETを用いた場合を想定し、各端子をドレイン端子、ソース端子、ゲート端子と記載している。
図2ではパワー半導体素子Q1のドレイン端子とパワー半導体素子Q2のソース端子の接続点aとDCDCコンバータ入力コンデンサ16の間にはリアクトル21が接続されている。
次に、制御装置11の構成および機能について説明する。
制御装置11は、第1~第3のDCDCコンバータ1~3を制御するために、演算機能素子として、例えばCPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)を備える。
制御装置11は、第1~第3のDCDCコンバータ1~3のパワー半導体素子Q1、Q2を駆動するためのゲート信号を出力する。ゲート信号はPWM(Pulse Width Modulation)制御のような三角波比較方式を用いて生成する。
制御装置11は、第1~第3のDCDCコンバータ1~3を制御するために、演算機能素子として、例えばCPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)を備える。
制御装置11は、第1~第3のDCDCコンバータ1~3のパワー半導体素子Q1、Q2を駆動するためのゲート信号を出力する。ゲート信号はPWM(Pulse Width Modulation)制御のような三角波比較方式を用いて生成する。
制御装置11は、第1~第3のDCDCコンバータ1~3を制御するため三角波キャリアとして第1の三角波キャリアと、第1の三角波キャリアから概ね180度位相をずらした第2の三角波キャリアとを用いる。
尚、概ね180度とは、例えば175度以上185度以下であり、好ましくは179度以上181度以下である。
なお、実施の形態1では、PWMスイッチング制御のために三角波キャリアを用いているが、三角波キャリア以外の例えば、鋸波キャリアでもよい。
尚、概ね180度とは、例えば175度以上185度以下であり、好ましくは179度以上181度以下である。
なお、実施の形態1では、PWMスイッチング制御のために三角波キャリアを用いているが、三角波キャリア以外の例えば、鋸波キャリアでもよい。
制御装置11は、第1~第3のDCDCコンバータ1~3を運転モードに応じて、第1の三角波キャリアを用いたPWMスイッチング制御を行うか、第2の三角波キャリアを用いたPWMスイッチング制御を行うか、または停止するかを決定する。第1の三角波キャリアを用いて制御するDCDCコンバータ群を第1のコンバータ群、第2の三角波キャリアを用いて制御するDCDCコンバータ群を第2のコンバータ群と称する。
制御装置11は、第1~第3のDCDCコンバータ1~3を第1のコンデンサ13の両端電圧であるDCリンク電圧が第1のバッテリ12の電圧値の概ね2倍となるように各パワー半導体素子Q1、Q2のスイッチング動作を行い電力変換する。
なお、概ね2倍とは、例えば1.8倍以上2.2倍以下であり、好ましくは1.95倍以上2.05倍以下である。
なお、概ね2倍とは、例えば1.8倍以上2.2倍以下であり、好ましくは1.95倍以上2.05倍以下である。
図2で説明した2倍昇圧の非絶縁昇圧チョッパの通流率は50%であり、コンバータ群ごとに反転した電流を出力するため第1~第3のDCDCコンバータ1~3の出力合成値は連続的となり、大幅に平滑化され高周波電流を抑制することができる。
次に、図2の非絶縁昇圧チョッパの代わりに、図3のマルチレベル型チョッパを使用する場合について、その効果について図4を用いて説明する。
なお、図3では、図面を分かり易くするために、第1のDCDCコンバータ1に対応したマルチレベル型チョッパ1Mのみを記載し、第2、第3のDCDCコンバータ2、3については省略している。図3では、図2の非絶縁昇圧チョッパと区別するため、マルチレベル型チョッパ1Mと記載している。
マルチレベル型チョッパ1Mは、4個のパワー半導体素子Q3、Q4、Q5、Q6とリアクトル21とで構成される。さらに、マルチレベル型チョッパ1Mは、Q3のソースとQ4のドレインの接続点bと、Q5のソースとQ6のドレインの接続点cとの間にフライバックキャパシタとして機能するコンデンサ23を備える。
なお、図3では、図面を分かり易くするために、第1のDCDCコンバータ1に対応したマルチレベル型チョッパ1Mのみを記載し、第2、第3のDCDCコンバータ2、3については省略している。図3では、図2の非絶縁昇圧チョッパと区別するため、マルチレベル型チョッパ1Mと記載している。
マルチレベル型チョッパ1Mは、4個のパワー半導体素子Q3、Q4、Q5、Q6とリアクトル21とで構成される。さらに、マルチレベル型チョッパ1Mは、Q3のソースとQ4のドレインの接続点bと、Q5のソースとQ6のドレインの接続点cとの間にフライバックキャパシタとして機能するコンデンサ23を備える。
このマルチレベル型チョッパを適用すれば、リアクトル21を流れる高周波リプル電流は図4に示すように昇圧比が2倍程度で大幅に抑制され、リアクトル21を小型化できる。
このため、実施の形態1のように通流比率50%で概ね2倍に昇圧する動作では、マルチレベル型チョッパは有効な回路方式である。
このため、実施の形態1のように通流比率50%で概ね2倍に昇圧する動作では、マルチレベル型チョッパは有効な回路方式である。
次に、電力変換装置100の動作について、図5に基づいて説明する。
通常、3台以上である第1から第NのDCDCコンバータ1~Nは、電力定格容量が異なる2種類以上の変換器で構成される。実施の形態1では、第1のDCDCコンバータ1の電力定格容量は1[p.u.]とし、第2のDCDCコンバータ2の電力定格容量は2[p.u.]、第3のDCDCコンバータ3の電力定格容量は3[p.u.]とする場合について説明する。
通常、3台以上である第1から第NのDCDCコンバータ1~Nは、電力定格容量が異なる2種類以上の変換器で構成される。実施の形態1では、第1のDCDCコンバータ1の電力定格容量は1[p.u.]とし、第2のDCDCコンバータ2の電力定格容量は2[p.u.]、第3のDCDCコンバータ3の電力定格容量は3[p.u.]とする場合について説明する。
図5は、33%負荷、66%負荷、100%負荷時の第1、第2の三角波キャリア、第1~第3のDCDCコンバータの出力電流および全体の出力電流を表している。
先に説明したように昇圧チョッパは電圧を概ね2倍に昇圧しているため、チョッパの通流率は50%となり、同じ電流を流すことで各チョッパからDCリンク用の第1のコンデンサ13に流れる出力電流の合成値は連続的なDC電流のように平滑化され高周波成分が抑制される。
先に説明したように昇圧チョッパは電圧を概ね2倍に昇圧しているため、チョッパの通流率は50%となり、同じ電流を流すことで各チョッパからDCリンク用の第1のコンデンサ13に流れる出力電流の合成値は連続的なDC電流のように平滑化され高周波成分が抑制される。
まず、負荷15が低負荷から上昇する場合の電力変換装置100の動作について説明する。
負荷15の電力が最も低い領域として設定した第1の運転モードでは、第1のDCDCコンバータ1および第2のDCDCコンバータ2が動作している。このとき、第3のDCDCコンバータ3は停止している。
ここで、第1のコンバータ群と第2のコンバータ群の出力電力は概ね同等である。入出力電圧はそれぞれ同じであるため、電流値が同等であることを意味する。
図5では33%負荷時の状態が、この第1の運転モードに対応している。
負荷15の電力が最も低い領域として設定した第1の運転モードでは、第1のDCDCコンバータ1および第2のDCDCコンバータ2が動作している。このとき、第3のDCDCコンバータ3は停止している。
ここで、第1のコンバータ群と第2のコンバータ群の出力電力は概ね同等である。入出力電圧はそれぞれ同じであるため、電流値が同等であることを意味する。
図5では33%負荷時の状態が、この第1の運転モードに対応している。
第1の運転モードでは第1のDCDCコンバータ1は第1のコンバータ群、第2のDCDCコンバータ2は第2のコンバータ群に属して動作している。第1のDCDCコンバータ1と第2のDCDCコンバータ2は同電力を出力している。
実施の形態1における第1の運転モードでは図5に示すような全負荷の約33%負荷である2[p.u.](第1のDCDCコンバータ1の電力定格容量の2倍)まで平滑化された電流を出力できる。
負荷15の電力が増加し、2[p.u.]を超えた場合、電力容量が不足するため第2の運転モードに遷移する。実施の形態1では2[p.u.]となる電力値を第1のモード閾値とする。
実施の形態1における第1の運転モードでは図5に示すような全負荷の約33%負荷である2[p.u.](第1のDCDCコンバータ1の電力定格容量の2倍)まで平滑化された電流を出力できる。
負荷15の電力が増加し、2[p.u.]を超えた場合、電力容量が不足するため第2の運転モードに遷移する。実施の形態1では2[p.u.]となる電力値を第1のモード閾値とする。
第1のモード閾値は、第1のコンバータ群と第2のコンバータ群のうち合計電力容量の低い群の電力値の2倍以下に設定する。
実施の形態1では、第1の運転モードにおいて、第1のコンバータ群に属する第1のDCDCコンバータ1の電力定格容量が、第2のコンバータ群に属する第2のDCDCコンバータ2の電力定格容量よりも低い。そこで、第1のモード閾値は、第1のDCDCコンバータ1の電力定格容量の2倍である2[p.u.]に設定される。
実施の形態1では、第1の運転モードにおいて、第1のコンバータ群に属する第1のDCDCコンバータ1の電力定格容量が、第2のコンバータ群に属する第2のDCDCコンバータ2の電力定格容量よりも低い。そこで、第1のモード閾値は、第1のDCDCコンバータ1の電力定格容量の2倍である2[p.u.]に設定される。
第1のモード閾値は、更に第1のモード閾値A、第1のモード閾値Bに細分化することができる。
第1のモード閾値Aは、第1のモード閾値Bよりも大きく、第1の運転モードから第2の運転モードに遷移する場合の閾値は第1のモード閾値Aを、第2の運転モードから第1の運転モードへ遷移する場合の閾値は第1のモード閾値Bを用いてもよい。これによりモード遷移に関して閾値にヒステリシスを設けることができる。
第1のモード閾値Aは、第1のモード閾値Bよりも大きく、第1の運転モードから第2の運転モードに遷移する場合の閾値は第1のモード閾値Aを、第2の運転モードから第1の運転モードへ遷移する場合の閾値は第1のモード閾値Bを用いてもよい。これによりモード遷移に関して閾値にヒステリシスを設けることができる。
制御装置11は、第1の運転モードから第2の運転モードへの遷移にあたり、第2のDCDCコンバータ2が属するコンバータ群を第1のコンバータ群に変更し、PWMスイッチング制御は第1の三角波キャリアで行うように変更する。そして第3のDCDCコンバータ3を第2のコンバータ群とし、第2の三角波キャリアを用いてPWMスイッチング制御を行い、動作を開始する。
この時、各コンバータ群内の電力比率は各DCDCコンバータの電力定格容量の比率で設定すればよい。実施の形態1における第2の運転モードでは、第1のDCDCコンバータ1と第2のDCDCコンバータ2の電力比率を各DCDCコンバータの電力容量の比率から1対2とし、第1のコンバータ群は合計となる3[p.u.]まで出力できる。
この第2の運転モードは、図5の66%負荷、100%負荷に対応する。
この第2の運転モードは、図5の66%負荷、100%負荷に対応する。
次に、負荷15が減少する場合の電力変換装置100の動作について説明する。
制御装置11は、第2の運転モードで動作中に負荷15が減少し、その電力が第1のモード閾値を下回った場合、第3のDCDCコンバータ3の運転を停止し、第2のDCDCコンバータ2が属するコンバータ群を第2のコンバータ群に変更し、PWMスイッチング制御を第2の三角波キャリアで行う。
制御装置11は、第2の運転モードで動作中に負荷15が減少し、その電力が第1のモード閾値を下回った場合、第3のDCDCコンバータ3の運転を停止し、第2のDCDCコンバータ2が属するコンバータ群を第2のコンバータ群に変更し、PWMスイッチング制御を第2の三角波キャリアで行う。
制御装置11は、負荷15の状態に応じてDCDCコンバータの運転台数を変更し、DCDCコンバータの利用率を向上させ、低負荷時の電力損失を低減する。またインターリーブ動作による第1のコンデンサ13へ流れる高周波電流の低電流化を実現できるため、低負荷電力変換効率の向上とコンデンサの小型化とを実現できる。
最大限に機器の能力を活用するためには、実施の形態1のように並列接続されたすべてのDCDCコンバータが動作するとき、第1のコンバータ群と第2のコンバータ群のそれぞれの総出力が同出力になるように第1~第3のDCDCコンバータ1~3の電力容量を選定することが好ましい。
並列接続された第1~第NのDCDCコンバータ1~Nがすべて動作するとき、第1のコンバータ群と第2のコンバータ群のそれぞれの総出力が同出力になるように第1~第NのDCDCコンバータ1~Nの電力容量を選定することが好ましい。
並列接続された第1~第NのDCDCコンバータ1~Nがすべて動作するとき、第1のコンバータ群と第2のコンバータ群のそれぞれの総出力が同出力になるように第1~第NのDCDCコンバータ1~Nの電力容量を選定することが好ましい。
次に、実施の形態1の電力変換装置を航空機に搭載する構成例を図6に基づいて説明する。
なお、図6では、客室用エアーコンプレッサー用モータに代表される負荷を想定し、この負荷を負荷15A、15Bとしている。駆動するインバータとして機能する負荷駆動装置14A、14Bを備えている。
図6のシステムは、DCDCコンバータ10を中心として、直流源としての第1のバッテリ12、負荷15A、15Bを駆動するインバータとして機能する負荷駆動装置14A、14B、制御装置11を備える。
ここで、DCDCコンバータ10は、例えば3台のDCDCコンバータを並列接続したものである。
制御装置11は、第1のバッテリ12からの直流電源を負荷15A、15Bの電力に応じて、DCDCコンバータ10を最適な効率で制御して、必要な電力を負荷駆動装置14A、14Bを経由して負荷15A、15Bに供給する。
なお、図6では、客室用エアーコンプレッサー用モータに代表される負荷を想定し、この負荷を負荷15A、15Bとしている。駆動するインバータとして機能する負荷駆動装置14A、14Bを備えている。
図6のシステムは、DCDCコンバータ10を中心として、直流源としての第1のバッテリ12、負荷15A、15Bを駆動するインバータとして機能する負荷駆動装置14A、14B、制御装置11を備える。
ここで、DCDCコンバータ10は、例えば3台のDCDCコンバータを並列接続したものである。
制御装置11は、第1のバッテリ12からの直流電源を負荷15A、15Bの電力に応じて、DCDCコンバータ10を最適な効率で制御して、必要な電力を負荷駆動装置14A、14Bを経由して負荷15A、15Bに供給する。
実施の形態1では、3台以上である第1から第NのDCDCコンバータ1~Nは、電力定格容量が異なる2種類以上の変換器で構成される場合を説明した。具体的には、第1~第3のDCDCコンバータ1~3をそれぞれ1[p.u.]、2[p.u.]、3[p.u.]とした例を説明した。
しかし、N台のDCDCコンバータの電力定格容量がすべて同じであっても実施の形態1の電力変換装置の制御方法を適用できる。
例えば、4台のDCDCコンバータがあり、第1~第4のDCDCコンバータ1~4のすべての電力容量が1[p.u.]であるとする。
第1の運転モードでは、制御装置11は第1のDCDCコンバータ1を第1のコンバータ群、第2のDCDCコンバータ2を第2のコンバータ群で動作させ、第3のDCDCコンバータ3と第4のDCDCコンバータ4を停止させる。第1、第2コンバータ群は各1[p.u.]ずつ、合計2[p.u.]の電力を出力する。
例えば、4台のDCDCコンバータがあり、第1~第4のDCDCコンバータ1~4のすべての電力容量が1[p.u.]であるとする。
第1の運転モードでは、制御装置11は第1のDCDCコンバータ1を第1のコンバータ群、第2のDCDCコンバータ2を第2のコンバータ群で動作させ、第3のDCDCコンバータ3と第4のDCDCコンバータ4を停止させる。第1、第2コンバータ群は各1[p.u.]ずつ、合計2[p.u.]の電力を出力する。
第2の運転モードでは、制御装置11は第1のDCDCコンバータ1と第2のDCDCコンバータ2とを第1のコンバータ群、第3のDCDCコンバータ3を第2のコンバータ群で動作させ、第4のDCDCコンバータ4を停止させる。第1、第2コンバータ群が1[p.u.]ずつ、合計2[p.u.]の電力を出力する。
このケースでは最大出力が増加しないため、すぐに第3の運転モードに遷移する。
このケースでは最大出力が増加しないため、すぐに第3の運転モードに遷移する。
第3の運転モードでは、制御装置11は、コンバータ群の再調整を行い、第2のDCDCコンバータ2と第3のDCDCコンバータ3を第1のコンバータ群、第1のDCDCコンバータ1と第4のDCDCコンバータ4を第2のコンバータ群で動作させる。
この状態では、第1、第2コンバータ群が各2[p.u.]ずつ、合計4[p.u.]の電力を出力する。
なお、コンバータ群の再調整については、実施の形態3でも説明する。
この状態では、第1、第2コンバータ群が各2[p.u.]ずつ、合計4[p.u.]の電力を出力する。
なお、コンバータ群の再調整については、実施の形態3でも説明する。
以上説明したように、実施の形態1の電力変換装置は、3台の並列接続されたDCDCコンバータとDCDCコンバータを制御する制御装置とを備え、第1のキャリアでPWMスイッチング制御を行う第1のコンバータ群と、第1のキャリアと位相が異なる第2のキャリアでPWMスイッチング制御を行う第2のコンバータ群とを備え、各コンバータ群には1台以上のDCDCコンバータが割り当てられ、運転台数およびコンバータ群が設定される複数の運転モードを有し、制御装置は予め設定された閾値と3台のDCDCコンバータの総出力との比較により運転モードを切り替え、第1のコンバータ群の総出力と第2のコンバータ群の総出力との比率を予め定められた範囲内とするものである。
したがって、実施の形態1の電力変換装置は、DCDCコンバータの並列運転台数にかかわらず、電力変換効率の最適化と出力電流の低リプル化を実現できる。
したがって、実施の形態1の電力変換装置は、DCDCコンバータの並列運転台数にかかわらず、電力変換効率の最適化と出力電流の低リプル化を実現できる。
実施の形態2.
実施の形態2の電力変換装置は、実施の形態1では3台並列接続であったDCDCコンバータを4台並列接続にしたものである。
実施の形態2の電力変換装置は、実施の形態1では3台並列接続であったDCDCコンバータを4台並列接続にしたものである。
実施の形態2の電力変換装置について、電力変換装置の構成図である図7、および4台のDCDCコンバータの運転モード、出力の説明図である図8に基づいて、実施の形態1との差異を中心に説明する。
実施の形態2の構成図において、実施の形態1と同一あるいは相当部分は、同一の符号を付している。
実施の形態2の構成図において、実施の形態1と同一あるいは相当部分は、同一の符号を付している。
実施の形態2の電力変換装置200の全体の構成を図7に基づいて説明する。
電力変換装置200は、並列接続された4台のDCDCコンバータ(第1のDCDCコンバータ1、第2のDCDCコンバータ2、第3のDCDCコンバータ3、第4のDCDCコンバータ4)を中心として、第1~第4のDCDCコンバータ1~4の入力側に接続されている直流源としての第1のバッテリ12、第1~第4のDCDCコンバータ1~4の出力側に接続されているDCリンク用の第1のコンデンサ13、および第1のコンデンサ13をDC母線とし負荷15に所定の電力を供給する負荷駆動装置14を備える。さらに、電力変換装置200は、第1~第4のDCDCコンバータ1~4を制御して、電力変換装置200の所定の機能を果たす制御装置11を備える。
図7では、第1のDCDCコンバータ1をDCDC1と、第2のDCDCコンバータ2をDCDC2と、第3のDCDCコンバータ3をDCDC3と、第4のDCDCコンバータ4をDCDC4と記載している。
電力変換装置200は、並列接続された4台のDCDCコンバータ(第1のDCDCコンバータ1、第2のDCDCコンバータ2、第3のDCDCコンバータ3、第4のDCDCコンバータ4)を中心として、第1~第4のDCDCコンバータ1~4の入力側に接続されている直流源としての第1のバッテリ12、第1~第4のDCDCコンバータ1~4の出力側に接続されているDCリンク用の第1のコンデンサ13、および第1のコンデンサ13をDC母線とし負荷15に所定の電力を供給する負荷駆動装置14を備える。さらに、電力変換装置200は、第1~第4のDCDCコンバータ1~4を制御して、電力変換装置200の所定の機能を果たす制御装置11を備える。
図7では、第1のDCDCコンバータ1をDCDC1と、第2のDCDCコンバータ2をDCDC2と、第3のDCDCコンバータ3をDCDC3と、第4のDCDCコンバータ4をDCDC4と記載している。
電力変換装置200の動作について、図8に基づいて説明する。
実施の形態2において、第1のDCDCコンバータ1の電力定格容量は1[p.u.]とし、第2のDCDCコンバータ2の電力定格容量は1[p.u.]、第3のDCDCコンバータ3の電力定格容量は2[p.u.]、第4のDCDCコンバータ4の電力定格容量は4[p.u.]とする場合を説明する。
実施の形態2において、第1のDCDCコンバータ1の電力定格容量は1[p.u.]とし、第2のDCDCコンバータ2の電力定格容量は1[p.u.]、第3のDCDCコンバータ3の電力定格容量は2[p.u.]、第4のDCDCコンバータ4の電力定格容量は4[p.u.]とする場合を説明する。
まず、負荷15が低負荷から上昇する場合の電力変換装置200の動作について説明する。
負荷15の電力が最も低い領域として設定した第1の運転モードでは、第1のDCDCコンバータ1及び第2のDCDCコンバータ2が動作している。第3のDCDCコンバータ3及び第4のDCDCコンバータ4は停止している。
負荷15の電力が最も低い領域として設定した第1の運転モードでは、第1のDCDCコンバータ1及び第2のDCDCコンバータ2が動作している。第3のDCDCコンバータ3及び第4のDCDCコンバータ4は停止している。
第1の運転モードでは、第1のDCDCコンバータ1は第1のコンバータ群、第2のDCDCコンバータ2は第2のコンバータ群に属して動作している。
第1のDCDCコンバータ1と第2のDCDCコンバータ2は同電力容量であり、実施の形態2における第1の運転モードでは、図8に示すように全負荷の約25%負荷である2[p.u.]までDC電流として平滑化された電流を出力できる。
第1のDCDCコンバータ1と第2のDCDCコンバータ2は同電力容量であり、実施の形態2における第1の運転モードでは、図8に示すように全負荷の約25%負荷である2[p.u.]までDC電流として平滑化された電流を出力できる。
負荷15の電力が増加し2[p.u.]を超えた場合、電力容量が不足するため第2の運転モードに遷移する。実施の形態2では、この2[p.u.]をとなる電力値を第1のモード閾値とする。
第1のモード閾値は第1のコンバータ群と第2のコンバータ群の内合計電力容量の低い群の電力値の2倍以下に設定する。
第1のモード閾値は第1のコンバータ群と第2のコンバータ群の内合計電力容量の低い群の電力値の2倍以下に設定する。
第1のモード閾値は更に第1のモード閾値A、第1のモード閾値Bに細分化し、第1のモード閾値Aは第1のモード閾値Bよりも大きく、第1の運転モードから第2の運転モードに遷移する場合の閾値は第1のモード閾値Aを、第2の運転モードから第1の運転モードへ遷移する場合の閾値は第1のモード閾値Bを用いてもよい。これによりモード遷移に関して閾値にヒステリシスを設けることができる。
制御装置11は、第1の運転モードから第2の運転モードへの遷移にあたり、第2のDCDCコンバータ2が属するコンバータ群を第1のコンバータ群に変更し、PWMスイッチング制御は第1の三角波キャリアで行うように変更する。そして第3のDCDCコンバータ3を第2のコンバータ群とし、第2の三角波キャリアを用いてPWMスイッチング制御を行い、動作を開始する。
先に説明した通り、第1のコンバータ群と第2のコンバータ群の出力電力の比率は同等である。このため、第1のDCDCコンバータ1と第2のDCDCコンバータ2の合計電力と第3のDCDCコンバータ3の電力を同出力とし、実施の形態2における第2の運転モードでは図8に示すような全負荷の約50%負荷である4[p.u.]まで出力できる。
負荷15の電力がさらに増加し4[p.u.]を超えた場合、電力容量が不足するため第3の運転モードに遷移する。実施の形態2では、この4[p.u.]をとなる電力値を第2のモード閾値とする。
負荷15の電力がさらに増加し4[p.u.]を超えた場合、電力容量が不足するため第3の運転モードに遷移する。実施の形態2では、この4[p.u.]をとなる電力値を第2のモード閾値とする。
第2のモード閾値は、第1のコンバータ群と第2のコンバータ群のうち合計電力容量の低い群の電力値の2倍以下に設定する。第2のモード閾値は、更に第2のモード閾値A、第2のモード閾値Bに細分化することができる。
第2のモード閾値Aは第2のモード閾値Bよりも大きく、第2の運転モードから第3の運転モードに遷移する場合の閾値は第2のモード閾値Aを、第3の運転モードから第2の運転モードへ遷移する場合の閾値は第2のモード閾値Bを用いてもよい。これによりモード遷移に関して閾値にヒステリシスを設けることができる。
第2のモード閾値Aは第2のモード閾値Bよりも大きく、第2の運転モードから第3の運転モードに遷移する場合の閾値は第2のモード閾値Aを、第3の運転モードから第2の運転モードへ遷移する場合の閾値は第2のモード閾値Bを用いてもよい。これによりモード遷移に関して閾値にヒステリシスを設けることができる。
制御装置11は、第3の運転モードへの遷移にあたり、第3のDCDCコンバータ3が属するコンバータ群を第1のコンバータ群に変更し、PWMスイッチング制御は第1の三角波キャリアで行うように変更する。そして、第4のDCDCコンバータ4を第2のコンバータ群に属し、第2の三角波キャリアを用いてPWMスイッチング制御を行い、動作を開始する。
第1のコンバータ群と第2のコンバータ群の出力電力の比率は同等であるため、第1のコンバータ群に属する第1のDCDCコンバータ1、第2のDCDCコンバータ2、および第3のDCDCコンバータ3の合計電力と、第2のコンバータ群に属する第4のDCDCコンバータ4の電力は同出力となる。このため、実施の形態2における第3の運転モードでは図8に示すような全負荷の約100%負荷である8[p.u.]まで出力できる。
負荷15が減少する場合の電力変換装置200の動作については、運転モードが上昇する場合とは、逆に運転モード3→運転モード2→運転モード1と変化する。モード変化の閾値については、負荷15が増加する場合で説明しているため、電力変換装置200の動作の説明は省略している。
実施の形態2は、4台のDCDCコンバータを並列接続した構成の場合を説明した。これをN台のDCDCコンバータを並列接続した構成の場合について説明する。
まず負荷15が増加する場合について説明する。なお、一般化して説明するため、符番号は省略する。
制御装置は、第1の運転モードでは、電力定格容量の最も低いDCDCコンバータを第1のDCDCコンバータとして、次に電力定格容量の低いDCDCコンバータを第2のDCDCコンバータとして動作させ、第1のDCDCコンバータを第1のコンバータ群に割り当て、第2のDCDCコンバータを第2のコンバータ群に割り当てる。
制御装置は、負荷の出力が第1の閾値を超えた場合、第2の運転モードに遷移し、第2のDCDCコンバータの次に電力定格容量の低いDCDCコンバータを第3のDCDCコンバータとして動作を開始し、第2のDCDCコンバータを第1のコンバータ群に割り当てを変更し、第3のDCDCコンバータを第2のコンバータ群に割り当てる。
制御装置は、負荷の出力が増加するごとにモード切り替えを繰り返し、N台のDCDCコンバータの総出力が第(N-1)の閾値を超えた場合、第(N-1)の運転モードに遷移し、最も電力定格容量の大きいDCDCコンバータを第NのDCDCコンバータとして動作を開始し、第(N-1)のDCDCコンバータを第1のコンバータ群に割り当てを変更し、第NのDCDCコンバータを第2のコンバータ群に割り当てる。
まず負荷15が増加する場合について説明する。なお、一般化して説明するため、符番号は省略する。
制御装置は、第1の運転モードでは、電力定格容量の最も低いDCDCコンバータを第1のDCDCコンバータとして、次に電力定格容量の低いDCDCコンバータを第2のDCDCコンバータとして動作させ、第1のDCDCコンバータを第1のコンバータ群に割り当て、第2のDCDCコンバータを第2のコンバータ群に割り当てる。
制御装置は、負荷の出力が第1の閾値を超えた場合、第2の運転モードに遷移し、第2のDCDCコンバータの次に電力定格容量の低いDCDCコンバータを第3のDCDCコンバータとして動作を開始し、第2のDCDCコンバータを第1のコンバータ群に割り当てを変更し、第3のDCDCコンバータを第2のコンバータ群に割り当てる。
制御装置は、負荷の出力が増加するごとにモード切り替えを繰り返し、N台のDCDCコンバータの総出力が第(N-1)の閾値を超えた場合、第(N-1)の運転モードに遷移し、最も電力定格容量の大きいDCDCコンバータを第NのDCDCコンバータとして動作を開始し、第(N-1)のDCDCコンバータを第1のコンバータ群に割り当てを変更し、第NのDCDCコンバータを第2のコンバータ群に割り当てる。
次に負荷15が減少する場合について説明する。
制御装置は、第(N-1)の運転モードでは、電力定格容量の最も大きいDCDCコンバータを第NのDCDCコンバータとして、第2のコンバータ群に割り当て動作させ、第(N-1)~第1のDCDCコンバータを第1のコンバータ群に割り当て動作させる。
制御装置は、負荷の出力が減少し、第(N-2)の閾値を下回った場合、第(N-2)の運転モードに遷移し、第NのDCDCコンバータの動作を停止し、第(N-1)のDCDCコンバータを第2のコンバータ群に割り当てを変更する。
制御装置は、負荷の出力が減少するごとにモード切り替えを繰り返し、負荷の出力が第1の閾値を下回った場合、第1の運転モードに遷移し、第2のDCDCコンバータの次に電力定格容量の大きい第3のDCDCコンバータの動作を停止し、第2のDCDCコンバータを第2のコンバータ群に割り当てを変更し、第1のDCDCコンバータを第1のコンバータ群での動作を継続する。
制御装置は、第(N-1)の運転モードでは、電力定格容量の最も大きいDCDCコンバータを第NのDCDCコンバータとして、第2のコンバータ群に割り当て動作させ、第(N-1)~第1のDCDCコンバータを第1のコンバータ群に割り当て動作させる。
制御装置は、負荷の出力が減少し、第(N-2)の閾値を下回った場合、第(N-2)の運転モードに遷移し、第NのDCDCコンバータの動作を停止し、第(N-1)のDCDCコンバータを第2のコンバータ群に割り当てを変更する。
制御装置は、負荷の出力が減少するごとにモード切り替えを繰り返し、負荷の出力が第1の閾値を下回った場合、第1の運転モードに遷移し、第2のDCDCコンバータの次に電力定格容量の大きい第3のDCDCコンバータの動作を停止し、第2のDCDCコンバータを第2のコンバータ群に割り当てを変更し、第1のDCDCコンバータを第1のコンバータ群での動作を継続する。
実施の形態2では、第1のDCDCコンバータ1と第2のDCDCコンバータ2の電力定格容量を同じ電力容量Sとし、第3のDCDCコンバータ3の電力定格容量を電力容量Sの2倍である電力容量T(すなわち、2S)とし、第4のDCDCコンバータ4の電力定格容量を電力容量Tの2倍である電力容量U(すなわち、2T、あるいは4S)と設定している。
実施の形態2の電力変換装置では、各運転モード(運転モード1~3)で各DCDCコンバータ(第1~第4のDCDCコンバータ1~4)が利用できる電力容量をフルに活用できるため、電力変換器の運転台数の変更とその電力利用率の向上により低負荷時の効率を改善ができる。
以上説明したように、実施の形態2の電力変換装置は、DCDCコンバータを4台並列接続にしたものである。
したがって、実施の形態2の電力変換装置は、DCDCコンバータの並列運転台数にかかわらず、電力変換効率の最適化と出力電流の低リプル化を実現できる。
したがって、実施の形態2の電力変換装置は、DCDCコンバータの並列運転台数にかかわらず、電力変換効率の最適化と出力電流の低リプル化を実現できる。
実施の形態3.
実施の形態3の電力変換装置は、DCDCコンバータを7台並列接続にし、さらにDCDCコンバータが属するコンバータ群の再調整を行う機能を備えたものである。
実施の形態3の電力変換装置は、DCDCコンバータを7台並列接続にし、さらにDCDCコンバータが属するコンバータ群の再調整を行う機能を備えたものである。
実施の形態3の電力変換装置について、電力変換装置の構成図である図9、および7台のDCDCコンバータの運転モードとコンバータ群の状態の説明図である図10、図11に基づいて、実施の形態1との差異を中心に説明する。
実施の形態3の構成図において、実施の形態1と同一あるいは相当部分は、同一の符号を付している。
実施の形態3の構成図において、実施の形態1と同一あるいは相当部分は、同一の符号を付している。
実施の形態3の電力変換装置300の全体の構成を図9に基づいて説明する。
電力変換装置300は、並列接続された7台のDCDCコンバータ(第1のDCDCコンバータ1、第2のDCDCコンバータ2、第3のDCDCコンバータ3、第4のDCDCコンバータ4、第5のDCDCコンバータ5、第6のDCDCコンバータ6、第7のDCDCコンバータ7)を中心として、第1~第7のDCDCコンバータ1~7の入力側に接続されている直流源としての第1のバッテリ12、第1~第7のDCDCコンバータ1~7の出力側に接続されているDCリンク用の第1のコンデンサ13、および第1のコンデンサ13をDC母線とし負荷15に所定の電力を供給する負荷駆動装置14を備える。
さらに、電力変換装置300は、第1~第7のDCDCコンバータ1~7を制御して、電力変換装置300の所定の機能を果たす制御装置11を備える。
電力変換装置300は、並列接続された7台のDCDCコンバータ(第1のDCDCコンバータ1、第2のDCDCコンバータ2、第3のDCDCコンバータ3、第4のDCDCコンバータ4、第5のDCDCコンバータ5、第6のDCDCコンバータ6、第7のDCDCコンバータ7)を中心として、第1~第7のDCDCコンバータ1~7の入力側に接続されている直流源としての第1のバッテリ12、第1~第7のDCDCコンバータ1~7の出力側に接続されているDCリンク用の第1のコンデンサ13、および第1のコンデンサ13をDC母線とし負荷15に所定の電力を供給する負荷駆動装置14を備える。
さらに、電力変換装置300は、第1~第7のDCDCコンバータ1~7を制御して、電力変換装置300の所定の機能を果たす制御装置11を備える。
図9では、第1のDCDCコンバータ1をDCDC1と、第2のDCDCコンバータ2をDCDC2と、第3のDCDCコンバータ3をDCDC3と、第4のDCDCコンバータ4をDCDC4と、第5のDCDCコンバータ5をDCDC5と、第6のDCDCコンバータ6をDCDC6と、第7のDCDCコンバータ7をDCDC7と記載している。
また、図9では、制御装置11が第1~第7のDCDCコンバータ1~7を制御する制御ラインを省略している。
また、図9では、制御装置11が第1~第7のDCDCコンバータ1~7を制御する制御ラインを省略している。
電力変換装置300の動作について、図10、図11に基づいて説明する。
図10、図11は、各運転モード(第1の運転モード~第6の運転モード)において、第1~第7のDCDCコンバータ1~7は第1のコンバータ群または第2のコンバータ群のいずれに属するか、または停止するかを表している。また、図10、図11は、各運転モード(第1の運転モード~第6の運転モード)における第1のコンバータ群と第2のコンバータ群の電力比を表している。
なお、図10は第1~第3の運転モードの説明であり、図11は第4~第6の運転モードの説明である。
図10、図11は、各運転モード(第1の運転モード~第6の運転モード)において、第1~第7のDCDCコンバータ1~7は第1のコンバータ群または第2のコンバータ群のいずれに属するか、または停止するかを表している。また、図10、図11は、各運転モード(第1の運転モード~第6の運転モード)における第1のコンバータ群と第2のコンバータ群の電力比を表している。
なお、図10は第1~第3の運転モードの説明であり、図11は第4~第6の運転モードの説明である。
電力変換装置300では、初期設定において、第1のDCDCコンバータ1の運転通し番号を1、第2のDCDCコンバータ2の運転通し番号を2、第3のDCDCコンバータ3の運転通し番号を3、第4のDCDCコンバータ4の運転通し番号を4、第5のDCDCコンバータ5の運転通し番号を5、第6のDCDCコンバータ6の運転通し番号を6、第7のDCDCコンバータ7の運転通し番号を7と設定する。
電力定格容量が小さいほど運転通し番号は小さく設定される。同容量のDCDCコンバータの場合は、制御装置11側での初期設定で運転通し番号の順位が与える。
なお、実施の形態3では、DCDCコンバータの運転通し番号と各DCDCコンバータの符番号は一致しているため、図10、図11では、運転通し番号を省略している。
電力定格容量が小さいほど運転通し番号は小さく設定される。同容量のDCDCコンバータの場合は、制御装置11側での初期設定で運転通し番号の順位が与える。
なお、実施の形態3では、DCDCコンバータの運転通し番号と各DCDCコンバータの符番号は一致しているため、図10、図11では、運転通し番号を省略している。
実施の形態3では、第1のDCDCコンバータ1の電力定格容量を1[p.u.]、第2のDCDCコンバータ2の電力定格容量を2[p.u.]、第3のDCDCコンバータ3の電力定格容量を3[p.u.]、第4のDCDCコンバータ4の電力定格容量を4[p.u.]、第5のDCDCコンバータ5の電力定格容量を5[p.u.]、第6のDCDCコンバータ6の電力定格容量を6[p.u.]、第7のDCDCコンバータ7の電力定格容量を7[p.u.]と設定する。
実施の形態3では、第1のコンバータ群と第2のコンバータ群の電力定格容量の合計値である総電力容量の差異を求める。この総電力容量の差異が、あらかじめ定める許容電力容量差を超えた場合、運転するDCDCコンバータが属するコンバータ群の再調整を行う。
許容電力容量差は、最も電力定格容量の低い運転通し番号が設定されている運転通し番号1が与えられたDCDCコンバータの電力定格容量値に設定する。
実施の形態3では運転通し番号1が与えられている第1のDCDCコンバータ1の電力定格容量である1[p.u.]を許容電力容量差とする。
実施の形態3では運転通し番号1が与えられている第1のDCDCコンバータ1の電力定格容量である1[p.u.]を許容電力容量差とする。
制御装置11は、モード遷移により運転する台数が変更された後、第1のコンバータ群の総電力容量と第2のコンバータ群の総電力容量を比較する。
その差の絶対値が許容電力容量差より大きくなった場合、第1のコンバータ群の総電力容量が大きいとき、運転通し番号1である第1のDCDCコンバータを第1のコンバータ群から第2のコンバータ群に変更し、総電力容量の差異が許容電力容量差以内に収まるまで第1のコンバータ群に属するDCDCコンバータを運転通し番号の低い順に第2のコンバータ群への変更を繰り返す。
その差の絶対値が許容電力容量差より大きくなった場合、第1のコンバータ群の総電力容量が大きいとき、運転通し番号1である第1のDCDCコンバータを第1のコンバータ群から第2のコンバータ群に変更し、総電力容量の差異が許容電力容量差以内に収まるまで第1のコンバータ群に属するDCDCコンバータを運転通し番号の低い順に第2のコンバータ群への変更を繰り返す。
逆に、第2のコンバータ群の総電力容量が大きいとき、運転通し番号1である第1のDCDCコンバータ1を第2のコンバータ群から第1のコンバータ群に変更し、総電力容量の差異が許容電力容量差以内に収まるまで第2のコンバータ群に属するDCDCコンバータを運転通し番号の低い順に第1のコンバータ群への変更を繰り返す。
以上の操作を制御装置11が行うことで、第1のコンバータ群と第2のコンバータ群の総電力容量が可能な限りバランスされ、電力変換装置300は、各運転モードにおいて、最大限の出力が可能となる。
以上の操作を制御装置11が行うことで、第1のコンバータ群と第2のコンバータ群の総電力容量が可能な限りバランスされ、電力変換装置300は、各運転モードにおいて、最大限の出力が可能となる。
以上説明したように、実施の形態3の電力変換装置は、DCDCコンバータを7台並列接続にし、さらにDCDCコンバータが属するコンバータ群の再調整を行う機能を備えたものである。
したがって、実施の形態3の電力変換装置は、DCDCコンバータの並列運転台数にかかわらず、電力変換効率の最適化と出力電流の低リプル化を実現できる。
したがって、実施の形態3の電力変換装置は、DCDCコンバータの並列運転台数にかかわらず、電力変換効率の最適化と出力電流の低リプル化を実現できる。
実施の形態4.
実施の形態4は、実施の形態3の電力変換装置において、DCDCコンバータに故障発生した場合、DCDCコンバータが属するコンバータ群の再調整機能の動作について説明するものである。
実施の形態4は、実施の形態3の電力変換装置において、DCDCコンバータに故障発生した場合、DCDCコンバータが属するコンバータ群の再調整機能の動作について説明するものである。
実施の形態4の電力変換装置の動作を故障発生時のDCDCコンバータの運転モードとコンバータ群の状態の説明図である図12に基づいて説明する。
実施の形態4の電力変換装置の構成は、実施の形態3の電力変換装置300と同じであるため、適宜図9を参照する。
なお、実施の形態4では、実施の形態3において説明した第3の運転モードで正常運転中に第3のDCDCコンバータが故障した場合を想定している。
実施の形態4の電力変換装置の構成は、実施の形態3の電力変換装置300と同じであるため、適宜図9を参照する。
なお、実施の形態4では、実施の形態3において説明した第3の運転モードで正常運転中に第3のDCDCコンバータが故障した場合を想定している。
図12に第1~第7のDCDCコンバータ1~7が正常動作時に、第3の運転モードで動作中に、第3のDCDCコンバータ3が故障した場合の第1~第7のDCDCコンバータ1~7の動作状態を示す。
まず、実施の形態3で説明したように、初期設定において、第1のDCDCコンバータ1の運転通し番号を1、第2のDCDCコンバータ2の運転通し番号を2、第3のDCDCコンバータ3の運転通し番号を3、第4のDCDCコンバータ4の運転通し番号を4、第5のDCDCコンバータ5の運転通し番号を5、第6のDCDCコンバータ6の運転通し番号を6、第7のDCDCコンバータ7の運転通し番号を7と設定されている。
実施の形態4では、電力定格容量が小さいほど運転通し番号は小さく設定されることで説明するが、逆でもよい。
実施の形態4では、電力定格容量が小さいほど運転通し番号は小さく設定されることで説明するが、逆でもよい。
第3のDCDCコンバータ3が故障した場合、制御装置11は、第3のDCDCコンバータ3を並列接続から切り離す。この時、制御装置11は、運転通し番号の設定を変更し、第4のDCDCコンバータ4の運転通し番号を3、第5のDCDCコンバータ5の運転通し番号を4、第6のDCDCコンバータ6の運転通し番号を5、第7のDCDCコンバータ7の運転通し番号を6とする。
すなわち、制御装置11は、故障したDCDCコンバータより高い運転通し番号が与えられていたDCDCコンバータの運転通し番号を繰り下げる設定をする。
すなわち、制御装置11は、故障したDCDCコンバータより高い運転通し番号が与えられていたDCDCコンバータの運転通し番号を繰り下げる設定をする。
すなわち、制御装置11は,正常運転中のDCDCコンバータに故障が発生した場合、残りの正常なDCDCコンバータで、総電力容量差が許容電力容量差以内に収まるように第1のコンバータ群と第2のコンバータ群間の調整を行う。
以上説明したように、実施の形態4の電力変換装置は、DCDCコンバータが属するコンバータ群の再調整機能により、故障した機器を排除しても、運転モード遷移時の電力バランスを保つコンバータ群の調整が可能である。
したがって、実施の形態4の電力変換装置は、DCDCコンバータの並列運転台数にかかわらず、電力変換効率の最適化と出力電流の低リプル化を実現できるとともに、さらに、DCDCコンバータに故障が発生してもコンバータ群間の電力バランスを保つことができる。
したがって、実施の形態4の電力変換装置は、DCDCコンバータの並列運転台数にかかわらず、電力変換効率の最適化と出力電流の低リプル化を実現できるとともに、さらに、DCDCコンバータに故障が発生してもコンバータ群間の電力バランスを保つことができる。
実施の形態5.
実施の形態5の電力変換装置は、すべての運転モードでの各DCDCコンバータのコンバータ群設定、および停止設定について運転情報として保存する機能を備えたものである。
実施の形態5の電力変換装置は、すべての運転モードでの各DCDCコンバータのコンバータ群設定、および停止設定について運転情報として保存する機能を備えたものである。
実施の形態5の電力変換装置について、適宜実施の形態3の図9、図10、図11を参照して説明する。
実施の形態5の電力変換装置では、制御装置11は、直流源としての第1のバッテリ12とDCリンク用の第1のコンデンサ13との間に接続された第1~第NのDCDCコンバータ1~Nの各電力容量をそれぞれ把握している。
制御装置11は、その各電力容量を出荷時の設定および接続されている機器情報を通信により入手することができる。
実施の形態5の電力変換装置では、制御装置11は、直流源としての第1のバッテリ12とDCリンク用の第1のコンデンサ13との間に接続された第1~第NのDCDCコンバータ1~Nの各電力容量をそれぞれ把握している。
制御装置11は、その各電力容量を出荷時の設定および接続されている機器情報を通信により入手することができる。
実施の形態5では、実施の形態3および実施の形態4におけるコンバータ群の設定方法について、電力変換装置の起動時および故障したDCDCコンバータの切り離し後におけるすべての運転モードにおいて、マップで表された運転情報として保存する。
すなわち、運転通し番号が与えられているDCDCコンバータのコンバータ群設定、停止設定について運転モード毎に順に演算し、すべての運転モードでのコンバータ群設定、停止設定について図10、図11のような運転情報として保存する。
すなわち、運転通し番号が与えられているDCDCコンバータのコンバータ群設定、停止設定について運転モード毎に順に演算し、すべての運転モードでのコンバータ群設定、停止設定について図10、図11のような運転情報として保存する。
制御装置11は、電力変換装置を起動し、N台のDCDCコンバータの出力開始後は、運転モードの遷移時に運転情報を読み込み、第1から第NのDCDCコンバータ1~Nのコンバータ群での動作もしくは停止の運転状態の設定をそれぞれ変更する。
運転情報は、起動時に制御装置が演算するのではなく、外部から運転情報を受信することもできる。
以上説明したように、実施の形態5の電力変換装置は、すべての運転モードでの各DCDCコンバータのコンバータ群設定、および停止設定について運転情報として保存する機能を備えたものである。
したがって、実施の形態5の電力変換装置は、DCDCコンバータの並列運転台数にかかわらず、電力変換効率の最適化と出力電流の低リプル化を実現できる。さらに、制御装置の運転中における演算負担を軽減することができる。
したがって、実施の形態5の電力変換装置は、DCDCコンバータの並列運転台数にかかわらず、電力変換効率の最適化と出力電流の低リプル化を実現できる。さらに、制御装置の運転中における演算負担を軽減することができる。
実施の形態6.
実施の形態6の電力変換装置は、位相が120度異なる3つの三角波キャリアでDCDCコンバータをPWMスイッチング制御するものである。
実施の形態6の電力変換装置は、位相が120度異なる3つの三角波キャリアでDCDCコンバータをPWMスイッチング制御するものである。
実施の形態6の電力変換装置について、4台のDCDCコンバータの運転モード、出力の説明図である図13に基づいて、実施の形態2との差異を中心に説明する。
なお、適宜、実施の形態2の図7、図8を参照する。
実施の形態6では、直流源としての第1のバッテリ12とDCリンク用の第1のコンデンサ13との間に接続された第1~第4のDCDCコンバータ1~4を適用例として説明する。
なお、適宜、実施の形態2の図7、図8を参照する。
実施の形態6では、直流源としての第1のバッテリ12とDCリンク用の第1のコンデンサ13との間に接続された第1~第4のDCDCコンバータ1~4を適用例として説明する。
実施の形態6では、第1の三角波キャリアでPWMスイッチング制御する第1のコンバータ群と、第1の三角波キャリアとは位相が120度異なる第2の三角波キャリアでPWMスイッチング制御する第2のコンバータ群と、第1の三角波キャリアと位相が240度異なる第3の三角波キャリアでPWMスイッチング制御する第3のコンバータ群を有する。
第1~第4のDCDCコンバータ1~4は、各コンバータ群で1台ずつ以上運転する。
例えば、昇圧比3倍のとき、各DCDCコンバータの出力には約33%の時間比率で電流が流れる。120度ずつ位相が異なる3つのコンバータ群の出力電流をそれぞれ等しく出力することで、各電流が合成されると電流は連続的になり平滑化される。その結果、高周波電流の実効値を抑制することができる。
第1~第4のDCDCコンバータ1~4は、各コンバータ群で1台ずつ以上運転する。
例えば、昇圧比3倍のとき、各DCDCコンバータの出力には約33%の時間比率で電流が流れる。120度ずつ位相が異なる3つのコンバータ群の出力電流をそれぞれ等しく出力することで、各電流が合成されると電流は連続的になり平滑化される。その結果、高周波電流の実効値を抑制することができる。
例えば、第1のDCDCコンバータ1の電力定格容量は1[p.u.]とし、第2のDCDCコンバータ2の電力定格容量は1[p.u.]、第3のDCDCコンバータ3の電力定格容量は2[p.u.]、第4のDCDCコンバータ4の電力定格容量は2[p.u.]とする。
図13は三角波キャリアと各DCDCコンバータの出力電流を図示している。昇圧チョッパが電圧を概ね3倍に昇圧しているため、チョッパの通流率は約33%となり、同じ電流を流すことで各チョッパからDCリンク用の第1のコンデンサ13に流れる出力電流の合成値は連続的なDC電流のように平滑化され高周波成分が抑制される。
第1の運転モードでは第1のDCDCコンバータ1は第1のコンバータ群、第2のDCDCコンバータ2は第2のコンバータ群、第3のDCDCコンバータ3は第3のコンバータ群に属して動作している。第1のDCDCコンバータ1と第2のDCDCコンバータ2および第3のDCDCコンバータ3は同電力を出力し、第1の運転モードでは図13に示すような全負荷の約50%負荷である3[p.u.](第1のDCDCコンバータ1の定格容量の3倍)まで平滑化された電流を出力できる。
負荷15の電力が増加し、3[p.u.]を超えた場合、電力容量が不足するため第2の運転モードに遷移する。実施の形態6ではこの3[p.u.]となる電力値を第1のモード閾値とする。
第1のモード閾値は、更に第1のモード閾値A、第1のモード閾値Bに細分化することができる。
第1のモード閾値Aは第1のモード閾値Bよりも大きく、第1の運転モードから第2の運転モードに遷移する場合の閾値は第1のモード閾値Aを、第2の運転モードから第1の運転モードへ遷移する場合の閾値は第1のモード閾値Bを用いてもよい。これによりモード遷移に関して閾値にヒステリシスを設けることができる。
第1のモード閾値Aは第1のモード閾値Bよりも大きく、第1の運転モードから第2の運転モードに遷移する場合の閾値は第1のモード閾値Aを、第2の運転モードから第1の運転モードへ遷移する場合の閾値は第1のモード閾値Bを用いてもよい。これによりモード遷移に関して閾値にヒステリシスを設けることができる。
制御装置11は、第1の運転モードから第2の運転モードへの遷移にあたり、第2のDCDCコンバータ2の属するコンバータ群を第1のコンバータ群に変更し、第1の三角波キャリアでPWMスイッチング制御を行うように変更する。そして第3のDCDCコンバータ3を第2のコンバータ群に変更し、第2の三角波キャリアを用いてPWMスイッチング制御する。また第4のDCDCコンバータ4を第3のコンバータ群に属し、第3の三角波キャリアを用いてPWMスイッチング制御する。
第1のコンバータ群、第2のコンバータ群、および第3のコンバータ群の出力電力の比率は同等であるため、第1のDCDCコンバータ1と第2のDCDCコンバータ2の合計電力と、第3のDCDCコンバータ3の電力と、第4のDCDCコンバータ4の電力は同出力となり、実施の形態6における第2の運転モードでは図13に示すように50%から100%負荷である6[p.u.]まで出力できる。
一般化するとX個のコンバータ群を用意し、PWMスイッチング制御に用いる三角波キャリアの位相を(360/X)度ずつずらすことでDCDCコンバータの総出力電流は平滑化される。
このように実施の形態6の電力変換装置を適用することで、2倍以外の昇圧比においても第1のコンデンサへ流れる高周波電流の低電流化を実現でき、低負荷電力変換効率の向上とコンデンサの小型化が実現できる。
以上説明したように、実施の形態6の電力変換装置は、位相が120度異なる3つの三角波キャリアでDCDCコンバータをPWMスイッチング制御するものである。
したがって、実施の形態6の電力変換装置は、DCDCコンバータの並列運転台数にかかわらず、電力変換効率の最適化と出力電流の低リプル化を実現できる。さらに、昇圧比が2倍以外のチョッパに対しても適用できる。
したがって、実施の形態6の電力変換装置は、DCDCコンバータの並列運転台数にかかわらず、電力変換効率の最適化と出力電流の低リプル化を実現できる。さらに、昇圧比が2倍以外のチョッパに対しても適用できる。
本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるものではなく、単独で、または様々な組合せで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組合せる場合が含まれるものとする。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組合せる場合が含まれるものとする。
本願は、DCDCコンバータの並列運転台数にかかわらず、電力変換効率の最適化と出力電流の低リプル化を実現できるため、電力変換装置に広く適用できる。
1 第1のDCDCコンバータ、2 第2のDCDCコンバータ、3 第3のDCDCコンバータ、4 第4のDCDCコンバータ、5 第1のDCDCコンバータ、6 第6のDCDCコンバータ、7 第7のDCDCコンバータ、10 DCDCコンバータ、11 制御装置、12 第1のバッテリ、13 第1のコンデンサ、14,14A,14B 負荷駆動装置、15,15A,15B 負荷、16 DCDCコンバータ入力コンデンサ、21 リアクトル、Q1,Q2,Q3,Q4,Q5,Q6 パワー半導体素子、100,200,300 電力変換装置。
Claims (17)
- 入力側は直流源に接続され、出力側は負荷に接続されている、Nは3以上である並列接続されたN台のDCDCコンバータと、前記DCDCコンバータを制御する制御装置とを備えた電力変換装置において、
前記N台のDCDCコンバータは、第1のキャリアでPWMスイッチング制御が行われる第1のコンバータ群と、第1のキャリアと位相が異なる第2のキャリアでPWMスイッチング制御が行われる第2のコンバータ群のいずれかに属し、
前記第1のコンバータ群および前記第2のコンバータ群には少なくとも1台以上の前記DCDCコンバータが割り当てられ、
前記制御装置は、前記DCDCコンバータの運転台数および前記コンバータ群が設定される複数の運転モードを決定し、予め設定された閾値と前記N台のDCDCコンバータの総出力との比較により前記運転モードを切り替え、前記第1のコンバータ群の総出力と前記第2のコンバータ群の総出力との比率を予め定められた範囲内とする電力変換装置。 - 前記N台のDCDCコンバータは、少なくとも2種類の電力定格容量を有する請求項1に記載の電力変換装置。
- 前記制御装置は、第1の運転モードでは、電力定格容量の最も低い前記DCDCコンバータを第1のDCDCコンバータとして、次に電力定格容量の低い前記DCDCコンバータを第2のDCDCコンバータとして動作させ、
前記第1のDCDCコンバータを前記第1のコンバータ群に割り当て、前記第2のDCDCコンバータを前記第2のコンバータ群に割り当て、
前記負荷の出力が第1の閾値を超えた場合、第2の運転モードに遷移し、前記第2のDCDCコンバータの次に電力定格容量の低い前記DCDCコンバータを第3のDCDCコンバータとして動作を開始し、前記第2のDCDCコンバータを前記第1のコンバータ群に割り当てを変更し、前記第3のDCDCコンバータを前記第2のコンバータ群に割り当て、
前記負荷の出力が増加するごとにモード切り替えを繰り返し、
前記N台のDCDCコンバータの総出力が第(N-1)の閾値を超えた場合、第(N-1)の運転モードに遷移し、最も電力定格容量の大きい前記DCDCコンバータを第NのDCDCコンバータとして動作を開始し、
前記第(N-1)のDCDCコンバータを前記第1のコンバータ群に割り当てを変更し、前記第NのDCDCコンバータを前記第2のコンバータ群に割り当てる請求項1または請求項2に記載の電力変換装置。 - 前記制御装置は、第(N-1)の運転モードでは、電力定格容量の最も大きい前記DCDCコンバータを第NのDCDCコンバータとして、前記第2のコンバータ群に割り当て動作させ、第(N-1)~第1のDCDCコンバータを前記第1のコンバータ群に割り当て動作させ、
前記負荷の出力が減少し、第(N-2)の閾値を下回った場合、第(N-2)の運転モードに遷移し、前記第NのDCDCコンバータの動作を停止し、前記第(N-1)のDCDCコンバータを前記第2のコンバータ群に割り当てを変更し、
前記負荷の出力が減少するごとにモード切り替えを繰り返し、
前記負荷の出力が第1の閾値を下回った場合、第1の運転モードに遷移し、第2のDCDCコンバータの次に電力定格容量の大きい第3のDCDCコンバータが動作を停止し、前記第2のDCDCコンバータを前記第2のコンバータ群に割り当てを変更し、前記第1のDCDCコンバータを前記第1のコンバータ群での動作を継続する請求項1または請求項2に記載の電力変換装置。 - 第NのDCDCコンバータの電力定格容量は、第(N-1)のDCDCコンバータ~第1のDCDCコンバータの電力定格容量の合計値以上である請求項1から請求項4のいずれか1項に記載の電力変換装置。
- 第NのDCDCコンバータの電力定格容量は、第(N-1)のDCDCコンバータの2倍である請求項1から請求項4のいずれか1項に記載の電力変換装置。
- 第1のDCDCコンバータの電力定格容量と第2のDCDCコンバータの電力定格容量は等しい請求項1から請求項4のいずれか1項に記載の電力変換装置。
- 2台以上の前記DCDCコンバータを有する前記コンバータ群の出力電力は、
前記DCDCコンバータの電力定格容量の比率で各前記DCDCコンバータに振り分けられる請求項1から請求項7のいずれか1項に記載の電力変換装置。 - 前記制御装置は、運転する前記DCDCコンバータの台数決定後、前記第1のコンバータ群の総電力容量と前記第2のコンバータ群の総電力容量とを比較し、その差異が予め設定した許容電力容量差よりも大きくなった場合、
前記第1のコンバータ群の総電力容量が前記第2のコンバータ群の総電力容量よりも大きいとき、第1のDCDCコンバータを前記第1のコンバータ群から前記第2のコンバータ群に変更し、
前記総電力容量の差異が前記許容電力容量差以内に収まるまで前記第1のコンバータ群に属する前記DCDCコンバータを電力容量の低い順に前記第2のコンバータ群への変更を繰り返し、
前記第2のコンバータ群の総電力容量が前記第1のコンバータ群の総電力容量よりも大きいとき、第1のDCDCコンバータを前記第2のコンバータ群から前記第1のコンバータ群に変更し、
前記総電力容量の差異が前記許容電力容量差以内に収まるまで前記第2のコンバータ群に属する前記DCDCコンバータを電力容量の低い順に前記第1のコンバータ群への変更を繰り返す請求項1または請求項2に記載の電力変換装置。 - 前記許容電力容量差は、運転可能且つ、最も低い電力定格容量を有する前記DCDCコンバータの電力定格容量以下である請求項9に記載の電力変換装置。
- 前記制御装置は、運転モード遷移時に、故障している前記DCDCコンバータを除外し、残りの各前記DCDCコンバータで、前記総電力容量の差異が前記許容電力容量差以内に収まるように第1のコンバータ群と第2のコンバータ群間の調整を行う請求項9または請求項10に記載の電力変換装置。
- 前記制御装置は、前記N台のDCDCコンバータのそれぞれについて各運転モードおいて、
第1のコンバータ群で運転、第2のコンバータ群で運転、あるいは停止の3つの動作のうちどの動作をするかの運転情報を起動時に作成し、
運転モード遷移時に各前記DCDCコンバータの動作を前記運転情報に従って決定する請求項1から請求項11のいずれか1項に記載の電力変換装置。 - 前記制御装置は、前記N台のDCDCコンバータのそれぞれについて各運転モードにおいて、
第1のコンバータ群で運転、第2のコンバータ群で運転、あるいは停止の3つの動作のうちどの動作をするかの運転情報を運転開始前に外部から受信し、
運転モード遷移時に各前記DCDCコンバータの動作を前記運転情報に従って決定する請求項1から請求項11のいずれか1項に記載の電力変換装置。 - 前記運転モードの数はN-1以上である請求項1から請求項13のいずれか1項に記載の電力変換装置。
- さらにコンバータ群を含み前記コンバータ群の数は3以上であり、
前記N台のDCDCコンバータは、前記3以上のコンバータ群のいずれかに属し、
前記制御装置は、各前記コンバータ群をそれぞれ位相の異なるキャリアでPWMスイッチング制御を行う請求項1から請求項14のいずれか1項に記載の電力変換装置。 - 前記DCDCコンバータはマルチレベル型チョッパ回路である請求項1から請求項15のいずれか1項に記載の電力変換装置。
- 航空機に搭載される請求項1から請求項16のいずれか1項に記載の電力変換装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20916367.4A EP4099552A4 (en) | 2020-01-28 | 2020-01-28 | POWER CONVERSION DEVICE |
PCT/JP2020/002916 WO2021152688A1 (ja) | 2020-01-28 | 2020-01-28 | 電力変換装置 |
JP2020522754A JP6771700B1 (ja) | 2020-01-28 | 2020-01-28 | 電力変換装置 |
US17/785,913 US12074522B2 (en) | 2020-01-28 | 2020-01-28 | Power conversion device with parallel DC-DC coverters and multiple driving modes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/002916 WO2021152688A1 (ja) | 2020-01-28 | 2020-01-28 | 電力変換装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021152688A1 true WO2021152688A1 (ja) | 2021-08-05 |
Family
ID=72829252
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/002916 WO2021152688A1 (ja) | 2020-01-28 | 2020-01-28 | 電力変換装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US12074522B2 (ja) |
EP (1) | EP4099552A4 (ja) |
JP (1) | JP6771700B1 (ja) |
WO (1) | WO2021152688A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20240106316A1 (en) * | 2021-02-26 | 2024-03-28 | Mitsubishi Electric Corporation | Dc power supply and distribution system |
JPWO2023139699A1 (ja) * | 2022-01-19 | 2023-07-27 | ||
CN118679670A (zh) * | 2023-01-16 | 2024-09-20 | 株式会社Tmeic | 直流电力转换装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6192162A (ja) | 1984-10-08 | 1986-05-10 | Sharp Corp | Dc/dcコンバ−タ |
JP2004507999A (ja) * | 2000-08-25 | 2004-03-11 | シンクォール・インコーポレーテッド | バング・バング制御を組み込んだインターリーブ方式電力変換器 |
JP2004357388A (ja) * | 2003-05-28 | 2004-12-16 | Denso Corp | 多相多重制御方式 |
JP2012210013A (ja) | 2011-03-29 | 2012-10-25 | Nec Commun Syst Ltd | 電源装置 |
JP2015164365A (ja) * | 2014-02-28 | 2015-09-10 | 株式会社三社電機製作所 | 電流共振型dc/dcコンバータ |
WO2018056343A1 (ja) * | 2016-09-21 | 2018-03-29 | 日本電産株式会社 | 受電装置、制御方法、及び非接触給電システム |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07264776A (ja) | 1994-03-18 | 1995-10-13 | Fujitsu Ltd | 複数コンバータの並列接続制御装置 |
US6600296B2 (en) * | 2001-11-13 | 2003-07-29 | Intel Corporation | Method and semiconductor die with multiple phase power converter |
US6801026B2 (en) * | 2002-12-20 | 2004-10-05 | Intel Corporation | Hysteretic DC-DC converters |
US6995548B2 (en) * | 2003-10-29 | 2006-02-07 | Intersil Americas Inc. | Asymmetrical multiphase DC-to-DC power converter |
JP2008022628A (ja) | 2006-07-12 | 2008-01-31 | Toyota Motor Corp | 電力変換装置 |
US7615982B1 (en) * | 2006-07-26 | 2009-11-10 | Fairchild Semiconductor Corporation | Power converter able to rapidly respond to fast changes in load current |
US7592787B2 (en) * | 2007-02-02 | 2009-09-22 | Intersil Americas Inc. | Adaptive firing order control for dynamic current balance of multiphase voltage regulators |
US8963521B2 (en) * | 2007-06-08 | 2015-02-24 | Intersil Americas LLC | Power supply with a magnetically uncoupled phase and an odd number of magnetically coupled phases, and control for a power supply with magnetically coupled and magnetically uncoupled phases |
US20080315982A1 (en) * | 2007-06-08 | 2008-12-25 | Intersil Americas Inc. | Coupled-inductor core for unbalanced phase currents |
JP2009044831A (ja) * | 2007-08-08 | 2009-02-26 | Renesas Technology Corp | 電源装置 |
US8330438B2 (en) * | 2007-08-30 | 2012-12-11 | International Rectifier Corporation | Method and apparatus for equalizing phase currents in multiphase switching power converters |
US8358115B2 (en) * | 2010-04-14 | 2013-01-22 | Dell Products, Lp | Voltage regulator with optimal efficiency selection and a master-slave zero cross detection configuration |
JP5314100B2 (ja) * | 2011-08-26 | 2013-10-16 | 三菱電機株式会社 | 電源装置 |
US9906128B2 (en) * | 2014-10-29 | 2018-02-27 | Infineon Technologies Austria Ag | Intermediate voltage bus converter with power saving modes |
US9509217B2 (en) * | 2015-04-20 | 2016-11-29 | Altera Corporation | Asymmetric power flow controller for a power converter and method of operating the same |
US9837906B1 (en) * | 2016-09-13 | 2017-12-05 | Dialog Semiconductor (Uk) Limited | Multiphase DCDC converter with asymmetric GM |
JP6593707B2 (ja) | 2016-11-15 | 2019-10-23 | オムロン株式会社 | 電圧変換装置 |
US10063149B2 (en) * | 2016-11-23 | 2018-08-28 | Apple Inc. | Multi-phase switching power converter module stack |
US10090765B1 (en) * | 2017-07-18 | 2018-10-02 | Infineon Technologies Ag | Multi-phase converter controller using dynamic hysteresis value |
US11424681B2 (en) * | 2018-04-27 | 2022-08-23 | Gs Yuasa Infrastructure Systems Co., Ltd. | Multiphase switching power supply device |
US20220321016A1 (en) * | 2021-03-29 | 2022-10-06 | University Of Maryland, College Park | Multi-port power converters and power conversion systems, and methods for design and operation thereof |
JP2024528571A (ja) * | 2021-07-07 | 2024-07-30 | ティーエーイー テクノロジーズ, インコーポレイテッド | 再生可能エネルギー源とインターフェースで接続するように構成されたモジュールベースのカスケード式エネルギーシステムのためのシステム、デバイス、および方法 |
US20230194625A1 (en) * | 2021-12-22 | 2023-06-22 | Semiconductor Components Industries, Llc | Multiphase trans-inductor voltage regulator fault diagnostic |
JP2023177026A (ja) * | 2022-06-01 | 2023-12-13 | キヤノン株式会社 | Dc/dcコンバータ、電子モジュールおよび電子機器 |
US20240063720A1 (en) * | 2022-08-21 | 2024-02-22 | Richtek Technology Corporation | Control circuit and method for use in stackable multiphase power converter |
-
2020
- 2020-01-28 WO PCT/JP2020/002916 patent/WO2021152688A1/ja unknown
- 2020-01-28 EP EP20916367.4A patent/EP4099552A4/en active Pending
- 2020-01-28 JP JP2020522754A patent/JP6771700B1/ja active Active
- 2020-01-28 US US17/785,913 patent/US12074522B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6192162A (ja) | 1984-10-08 | 1986-05-10 | Sharp Corp | Dc/dcコンバ−タ |
JP2004507999A (ja) * | 2000-08-25 | 2004-03-11 | シンクォール・インコーポレーテッド | バング・バング制御を組み込んだインターリーブ方式電力変換器 |
JP2004357388A (ja) * | 2003-05-28 | 2004-12-16 | Denso Corp | 多相多重制御方式 |
JP2012210013A (ja) | 2011-03-29 | 2012-10-25 | Nec Commun Syst Ltd | 電源装置 |
JP2015164365A (ja) * | 2014-02-28 | 2015-09-10 | 株式会社三社電機製作所 | 電流共振型dc/dcコンバータ |
WO2018056343A1 (ja) * | 2016-09-21 | 2018-03-29 | 日本電産株式会社 | 受電装置、制御方法、及び非接触給電システム |
Also Published As
Publication number | Publication date |
---|---|
US20230361680A1 (en) | 2023-11-09 |
EP4099552A1 (en) | 2022-12-07 |
JPWO2021152688A1 (ja) | 2021-08-05 |
EP4099552A4 (en) | 2023-01-25 |
US12074522B2 (en) | 2024-08-27 |
JP6771700B1 (ja) | 2020-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8138694B2 (en) | Bidirectional buck-boost power converters | |
EP2728724B1 (en) | Power source system | |
JP6771700B1 (ja) | 電力変換装置 | |
WO2012001828A1 (ja) | Dc/dc電力変換装置 | |
JP5400961B2 (ja) | 電力変換装置 | |
KR101875996B1 (ko) | 친환경 차량용 양방향 컨버터 제어 장치 및 방법 | |
WO2021033412A1 (ja) | Dc/dc変換装置 | |
US12046988B2 (en) | Power supply system and moving body | |
JP4626259B2 (ja) | 電力変換装置の制御方法 | |
US10418894B2 (en) | Inverter system and method of controlling the same | |
JP4304862B2 (ja) | 電力変換装置 | |
JPH1028378A (ja) | 電力変換装置の制御方法及び電力変換システムの制御方法 | |
JP2019129606A (ja) | 多相コンバータ | |
JP2022028124A (ja) | 電力変換装置および金属加工装置 | |
WO2007142009A1 (ja) | 電力変換装置及び圧縮機 | |
JP3177085B2 (ja) | 電力変換装置 | |
US20220393614A1 (en) | Power supply system and moving body | |
KR100463134B1 (ko) | 전력변환장치 | |
JP7274524B2 (ja) | 電源システム及び移動体 | |
JP2020156208A (ja) | モータシステム | |
JP7312088B2 (ja) | 電力変換装置、及び電力変換制御装置 | |
WO2023070829A1 (en) | A power converter apparatus and a method of modulating thereof | |
EP4213366A1 (en) | Method of clamping output current of three-phase power converter | |
WO2014030182A1 (ja) | 電力変換装置 | |
JPH10112979A (ja) | 電源装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020522754 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20916367 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020916367 Country of ref document: EP Effective date: 20220829 |