[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021140897A1 - Method for manufacturing solar cell and solar cell - Google Patents

Method for manufacturing solar cell and solar cell Download PDF

Info

Publication number
WO2021140897A1
WO2021140897A1 PCT/JP2020/047682 JP2020047682W WO2021140897A1 WO 2021140897 A1 WO2021140897 A1 WO 2021140897A1 JP 2020047682 W JP2020047682 W JP 2020047682W WO 2021140897 A1 WO2021140897 A1 WO 2021140897A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
raised
laminated
base electrode
insulating portion
Prior art date
Application number
PCT/JP2020/047682
Other languages
French (fr)
Japanese (ja)
Inventor
正典 兼松
訓太 吉河
小西 克典
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2021569815A priority Critical patent/JP7539415B2/en
Publication of WO2021140897A1 publication Critical patent/WO2021140897A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell manufacturing method and a solar cell.
  • a back contact type solar cell including a first wiring material and a second wiring material arranged so as to bridge between a plurality of second raised electrodes is known.
  • the base electrode and the raised electrode can be formed relatively easily by screen-printing a material such as silver paste. Further, an insulating material for preventing a short circuit between the base electrode and the wiring material can also be arranged by screen printing. In order to efficiently collect current from the semiconductor layer, it is desirable to increase the width of the base electrode.
  • the silver paste is relatively expensive, forming a wide base electrode with the silver paste has the disadvantage of increasing the cost of the solar cell. Therefore, it is an object of the present invention to provide a solar cell manufacturing method capable of manufacturing a highly efficient solar cell at a low cost and an inexpensive and highly efficient solar cell.
  • a first semiconductor layer and a second semiconductor layer extending in the first direction are alternately formed on the back surface of the semiconductor substrate in the second direction intersecting the first direction, respectively.
  • a first base electrode extending in the first direction is formed in a region laminated on the semiconductor layer, and a second base electrode extending in the first direction is formed in a region laminated on the second semiconductor layer of the transparent electrode.
  • the transparent electrode and the first base electrode are arranged so as to be included in the first semiconductor layer in a plan view, respectively, in the first direction and the second.
  • a plurality of first insulating portions arranged in a matrix in the direction are formed, and are arranged across the transparent electrode and the second base electrode so as to be included in the second semiconductor layer in a plan view, respectively, in the first direction.
  • the first base electrode is formed by forming a plurality of second insulating portions arranged in a matrix alternately arranged with the first insulating portion in the second direction and laminating the second conductive paste.
  • the transparent electrode is selectively removed by etching using the 1 base electrode, the second base electrode, the first insulating portion, the second insulating portion, the first raised electrode, and the second raised electrode as masks.
  • the step includes a step of connecting between the first raised electrodes and the second raised electrodes by the first wiring material and the second wiring material extending in the second direction, respectively.
  • the resin contained in the first base electrode, the second base electrode, the first insulating portion, and the second insulating portion is heated. May be further provided with a step of exuding.
  • the first conductive paste, the insulating paste, and the second conductive paste may be laminated by screen printing, respectively.
  • a solar cell has a plurality of first semiconductor layers alternately provided on a semiconductor substrate and the back surface of the semiconductor substrate in a second direction extending in the first direction and intersecting the first direction. And a plurality of second semiconductor layers, a plurality of first transparent electrodes laminated so as to extend in the first direction on each of the first semiconductor layers, and each of the second semiconductor layers so as to extend in the first direction.
  • a plurality of second base electrodes stacked so as to extend and a plurality of second base electrodes are arranged in a matrix at intervals in the first direction and the second direction so as to be laminated on a plurality of portions of the first base electrodes.
  • the first raised electrode and the first raised electrode are alternately spaced in the first direction and the second direction so as to be laminated on the plurality of first raised electrodes and a plurality of portions of the second base electrode.
  • the portion between the plurality of second raised electrodes arranged in a matrix and the first raised electrode of each of the first base electrodes is covered so as to be included in the first semiconductor layer in a plan view.
  • the first wiring material that electrically connects between the first raised electrodes, and the second raised electrode and the second raised electrode are arranged on the back surface side of the second insulating portion, and are electrically connected between the second raised electrodes.
  • a second wiring material to be connected to the object is provided.
  • the first insulating portion and the second insulating portion are separated from the first semiconductor layer and the second semiconductor layer, and the width of the first insulating portion in the second direction is
  • the width of the first transparent electrode may be larger than the width of the second direction
  • the width of the second insulating portion in the second direction may be larger than the width of the second transparent electrode in the second direction.
  • the width of the region where the first insulating portion of the first base electrode is laminated and the portion where the second insulating portion of the second base electrode is laminated is the width in the second direction.
  • the width of the region where the first raised electrode of the first base electrode is laminated and the portion of the second base electrode where the second raised electrode is laminated is smaller than the width in the second direction, and the first insulation is provided.
  • the width of the portion and the second insulating portion in the second direction is such that the region where the first raised electrode of the first base electrode is laminated and the second raised electrode of the second base electrode are laminated. It may be substantially equal to the width of the portion in the second direction.
  • the side surfaces of the first transparent electrode and the second transparent electrode may be at least partially covered with resin.
  • the present invention it is possible to provide a solar cell manufacturing method capable of manufacturing a highly efficient solar cell at low cost and an inexpensive and highly efficient solar cell.
  • FIG. 5 is a cross-sectional view taken along the line AA of the solar cell of FIG. It is a back view which shows the state which removed some components of the solar cell of FIG. It is a flowchart which shows the procedure of the solar cell manufacturing method which concerns on one Embodiment of this invention.
  • It is a schematic cross-sectional view which shows one process of the solar cell manufacturing method of FIG. It is a schematic cross-sectional view which shows the next process of FIG. 5 of the solar cell manufacturing method of FIG. It is a schematic cross-sectional view which shows the next process of FIG. 6 of the solar cell manufacturing method of FIG.
  • FIG. 1 is a schematic back view showing the configuration of the solar cell 1 according to the embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line AA of the solar cell 1 of FIG.
  • the hatching in FIG. 1 is attached to make it easier to distinguish each component, and does not mean a cross section.
  • hatching, member codes, and the like may be omitted, but in such cases, other drawings shall be referred to. Further, the dimensions of the various members in the drawings are adjusted for convenience so that they can be easily seen.
  • the solar cell 1 is a so-called heterojunction back contact type solar cell.
  • the solar cell 1 includes a semiconductor substrate 11, a first semiconductor layer 21 and a second semiconductor layer 22 arranged on the back surface of the semiconductor substrate 11 (a surface opposite to the incident surface of light), a first semiconductor layer 21, and the like.
  • the first transparent electrode 31 and the second transparent electrode 32 arranged on the back surface side of the second semiconductor layer 22, and the first base arranged on the back surface side of the first transparent electrode 31 and the second transparent electrode 32, respectively.
  • the first covering portion 81 and the first covering portion 81 and the second covering material 71 and the second wiring material 72 connecting between the two raised electrodes 52, respectively, and the side surfaces of the first transparent electrode 31 and the second transparent electrode 32 are partially covered.
  • the two covering portions 82 are provided.
  • the semiconductor substrate 11 is formed of a crystalline silicon material such as single crystal silicon or polycrystalline silicon.
  • the semiconductor substrate 11 is, for example, an n-type semiconductor substrate in which a crystalline silicon material is doped with an n-type dopant. Examples of the n-type dopant include phosphorus (P).
  • the semiconductor substrate 11 functions as a photoelectric conversion substrate that absorbs incident light from the light receiving surface side to generate optical carriers (electrons and holes). By using crystalline silicon as the material of the semiconductor substrate 11, a relatively high output (stable output regardless of the illuminance) can be obtained even when the dark current is relatively small and the intensity of the incident light is low.
  • the first semiconductor layer 21 and the second semiconductor layer 22 have different conductive types from each other.
  • the first semiconductor layer 21 is formed of a p-type semiconductor
  • the second semiconductor layer 22 is formed of an n-type semiconductor.
  • the first semiconductor layer 21 and the second semiconductor layer 22 can be formed of, for example, an amorphous silicon material containing a dopant that imparts a desired conductive type.
  • Examples of the p-type dopant include boron (B), and examples of the n-type dopant include phosphorus (P) described above.
  • the first semiconductor layer 21 and the second semiconductor layer 22 are each formed in a band shape extending in the first direction.
  • the plurality of first semiconductor layers 21 and the plurality of second semiconductor layers 22 are alternately provided in the second direction intersecting the first direction.
  • the first semiconductor layer 21 and the second semiconductor layer 22 are preferably arranged so as to cover substantially the entire surface of the semiconductor substrate 11.
  • the first transparent electrode 31 is laminated on each of the first semiconductor layers 21 so as to extend in the first direction
  • the second transparent electrode 32 is laminated on each of the second semiconductor layers 22 so as to extend in the first direction.
  • the first transparent electrode 31 and the second transparent electrode 32 are thin layers that collect current from the first semiconductor layer 21 and the second semiconductor layer 22 and connect to the first base electrode 41 and the second base electrode 42.
  • the first transparent electrode 31 and the second transparent electrode 32 have adhesiveness caused by a difference in material between the first semiconductor layer 21 and the second semiconductor layer 22 and the first base electrode 41 and the second base electrode 42. It functions as an intermediate layer that prevents a decrease and an increase in electrical resistance at the interface.
  • the first transparent electrode 31 and the second transparent electrode 32 have a width smaller than that of the first semiconductor layer 21 and the second semiconductor layer 22 in the second direction so as not to come into contact with each other, and the first semiconductor layer 21 and the first semiconductor layer 21 in the first direction.
  • the two semiconductor layers 22 are laminated over substantially the entire length.
  • the width of the first transparent electrode 31 and the second transparent electrode 32 changes in the second direction corresponding to the first base electrode 41 and the second base electrode 42, which will be described later, and the first insulating portion 61 and the second insulating portion 62. ..
  • the first transparent electrode 31 and the second transparent electrode 32 can be formed of the same material.
  • the material forming the first transparent electrode 31 and the second transparent electrode 32 include ITO (Indium Tin Oxide) and zinc oxide (ZnO).
  • the first transparent electrode 31 and the second transparent electrode 32 are laminated in a wider area than the first base electrode 41 and the second base electrode 42, which will be described later, so that the first base electrode 41 and the second base electrode 42 are laminated.
  • the current collecting capacity can be improved.
  • the first base electrode 41 is laminated on each of the first transparent electrodes 31 so as to extend in the first direction
  • the second base electrode 42 is laminated on each of the second transparent electrodes 32 so as to extend in the first direction.
  • the first base electrode 41 and the second base electrode 42 collect electric power via the first transparent electrode 31 and the second transparent electrode 32.
  • FIG. 3 shows the solar cell 1 in a state where the first raised electrode 51, the second raised electrode 52, the first wiring material 71, and the second wiring material 72 are removed.
  • the width of the portion in which the first raised electrode 51 and the second raised electrode 52 of the first base electrode 41 and the second base electrode 42 are laminated is the portion between them, that is, the first. It is larger than the width in the second direction at the portion where the first insulating portion 61 and the second insulating portion 62 of the base electrode 41 and the second base electrode 42 are laminated.
  • the width of the first base electrode 41 and the second base electrode 42 in the second direction in the portion where the first raised electrode 51 and the second raised electrode 52 are laminated is the width of the first raised electrode 51 and the second raised electrode 42. 2
  • the height of the raised electrode 52 and a sufficient connection area between the first wiring material 71 and the second wiring material 72 are set so as to be secured.
  • the width in the second direction in the region where the first raised electrode 51 and the second raised electrode 52 of the first base electrode 41 and the second base electrode 42 are laminated is the first transparent electrode 31 or the second transparent electrode. It may be slightly larger than the width of 32 in the second direction. That is, the first base electrode 41 and the second base electrode 42 are connected to the first semiconductor layer 21 and the second semiconductor layer 22 at the ends in the second direction without passing through the first transparent electrode 31 and the second transparent electrode 32. It may have regions facing each other with a gap.
  • the width of the portion in which the portion 61 and the second insulating portion 62 are laminated in the second direction is preferably the minimum necessary size that can ensure conductivity. Considering the misalignment of each component, the width of the first base electrode 41 and the second base electrode 42 is set at both ends of the region covered by the first insulating portion 61 and the second insulating portion 62 in the first direction. It is more preferable that the size is reduced only in the region to be excluded.
  • the first base electrode 41 and the second base electrode 42 can be formed from a conductive paste containing conductive particles and a resin binder.
  • a conductive paste a silver paste can be typically mentioned.
  • the first base electrode 41 and the second base electrode 42 having a sufficient thickness so that the electric resistance can be reduced can be formed at a relatively low cost.
  • the first raised electrodes 51 are arranged in a matrix at intervals in the first direction and the second direction so as to be laminated on a plurality of portions of the respective first base electrodes 41, and the second raised electrodes 52 are arranged in a matrix.
  • the first raised electrode 51 and the first raised electrode 51 are arranged in a matrix at intervals so as to be laminated on a plurality of portions of each second base electrode 42 in the first direction and the second direction.
  • the first raised electrode 51 is interposed between the first base electrode 41 and the first wiring material 71 to separate the first wiring material 71 from the second base electrode 42.
  • the second raised electrode 52 is interposed between the second base electrode 42 and the second wiring material 72 to separate the second wiring material 72 from the first base electrode 41.
  • the first raised electrode 51 and the second raised electrode 52 can be formed from a conductive paste such as silver paste, in order to improve the adhesiveness with the first base electrode 41 and the second base electrode 42.
  • it is preferably formed of the same material as the first base electrode 41 and the second base electrode 42.
  • the heights of the first raised electrode 51 and the second raised electrode 52 are set to the first insulating portion 61 and the second insulating portion 62 so that reliable contact with the first wiring material 71 and the second wiring material 72 can be obtained. It is preferably sufficiently larger than the height of.
  • the width of the first raised electrode 51 and the second raised electrode 52 in the second direction is substantially equal to the width of the laminated region of the first base electrode 41 and the second base electrode 42 in order to increase the height efficiently. Is preferable.
  • the length of the first raised electrode 51 and the second raised electrode 52 in the first direction is such that the first raised electrode 51 and the second wiring material 72 are short-circuited and the second raised electrode 52 and the first wiring material 71 are short-circuited. In order to prevent a short circuit with the above, it is preferable that the distance between the first raised electrode 51 and the second raised electrode 52 is smaller than the distance in the first direction so as not to overlap when viewed from the second direction.
  • the first insulating portion 61 covers the portion between the first raised electrodes 51 of each of the first base electrodes 41, and the first transparent electrode 31 and the first base are included in the first semiconductor layer 21 in a plan view. It is laminated across the electrodes 41.
  • the second insulating portion 62 covers the portion between the second raised electrodes 52 of each of the second base electrodes 42, and the second transparent electrode 32 and the second base are included in the second semiconductor layer 22 in a plan view. It is laminated over the electrodes 42.
  • the first insulating portion 61 and the second insulating portion 62 may be laminated on the ends of the first raised electrode 51 and the second raised electrode 52 in the first direction.
  • the first insulating portion 61 and the second insulating portion 62 ensure the insulation between the first wiring material 71 and the second base electrode 42 and the insulation between the second wiring material 72 and the first base electrode 41. Further, since the first insulating portion 61 and the second insulating portion 62 particularly cover the portions of the first base electrode 41 and the second base electrode 42 having a small cross-sectional area to prevent contact with moisture or the like, the first insulating portion 61 and the second insulating portion 62 are first. The portion of the base electrode 41 and the second base electrode 42 having a small cross-sectional area is corroded and the conductivity is greatly impaired, and the first transparent electrode 31 and the second transparent electrode of the first base electrode 41 and the second base electrode 42 are greatly impaired. It is possible to prevent peeling from 32.
  • the width of the first insulating portion 61 and the second insulating portion 62 in the second direction is the portion where the first raised electrode 51 and the second raised electrode 52 of the first base electrode 41 and the second base electrode 42 are laminated. It is preferable that the width is substantially equal to the width in the second direction. As a result, the widths of the first transparent electrode 31 and the second transparent electrode 32 in the second direction can be made substantially constant, so that the widths of the first transparent electrode 31 and the second transparent electrode 32 in the second direction are increased. Therefore, the current collecting resistance can be made smaller.
  • the lengths of the first insulating portion 61 and the second insulating portion 62 in the first direction are such that the first raised electrode 51 and the second wiring material 72 are short-circuited and the second raised electrode 52 and the first wiring material 71 are short-circuited.
  • the length of the first raised electrode 51 and the second raised electrode 52 is larger than the length in the first direction.
  • the first insulating portion 61 and the second insulating portion 62 can be formed from a paste-like material having insulating properties.
  • a material for forming the first insulating portion 61 and the second insulating portion 62 for example, a thermosetting resin composition containing an epoxy resin or the like as a main component can be used.
  • the first wiring material 71 is arranged on the back surface side of the first raised electrode 51 and the first insulating portion 61, electrically connects between the first raised electrodes 51, and the second wiring material 72 is the second. It is arranged on the back surface side of the raised electrode 52 and the second insulating portion 62, and electrically connects the second raised electrode 52.
  • the first wiring material 71 and the second wiring material 72 can be formed of, for example, a conductor such as a copper wire.
  • the first wiring material 71 and the second wiring material 72 and the first raised electrode 51 and the second raised electrode 52 can be connected by, for example, solder, a conductive adhesive, or the like.
  • As the first wiring material 71 and the second wiring material 72 a metal wire coated with solder for connecting the outer surface to the first raised electrode 51 and the second raised electrode 52 may be used.
  • the first covering portion 81 and the second covering portion 82 cover the end faces of the first transparent electrode 31 and the second transparent electrode 32 on both sides in the second direction.
  • the first coating portion 81 and the second coating portion 82 can be formed by exuding the resin components of the first base electrode 41 and the second base electrode 42, and the first insulating portion 61 and the second insulating portion 62. ..
  • the first transparent electrode 31 and the second transparent electrode 32 can be formed even when water has penetrated into the solar cell module formed by using the solar cell 1. It can be protected and the deterioration of the performance of the solar cell 1 can be suppressed.
  • the first base electrode 41, the second base electrode 42, the first raised electrode 51, and the second raised electrode 52 for collecting electricity are formed with a vacuum facility required. Since it can be formed by printing and firing a paste-like material without using technology, it can be manufactured at a relatively low cost.
  • the solar cell 1 includes a first transparent electrode 31 and a second transparent electrode 32 for extracting electric power from the first semiconductor layer 21 and the second semiconductor layer 22, so that the first base electrode 41 and the second base electrode 42 can be separated from each other. The width of the portion between the first raised electrode 51 and the second raised electrode 52 can be reduced. As a result, the amount of the relatively expensive conductive paste used is reduced, so that the solar cell 1 can be manufactured with high efficiency and at a relatively low cost.
  • the solar cell 1 can be manufactured by the solar cell manufacturing method shown in FIG.
  • the solar cell manufacturing method of FIG. 4 is an embodiment of the solar cell manufacturing method according to the present invention.
  • the solar cell manufacturing method of the present embodiment includes a step of forming the first semiconductor layer 21 and the second semiconductor layer 22 on the back surface of the semiconductor substrate 11 (step S01: semiconductor layer forming step), and the first semiconductor layer 21 and the second.
  • a step of laminating the transparent electrode 30 on the back surface side of the semiconductor substrate 11 so as to cover the semiconductor layer 22 step S02: transparent electrode laminating step
  • a step of forming the base electrode 42 step S03: base electrode forming step
  • a step of forming the first insulating portion 61 and the second insulating portion 62 by laminating the insulating paste step S04: insulating portion forming step).
  • step S05 raised electrode forming step
  • step S06 etching step
  • step S07 firing step
  • step S08 wiring material connecting step
  • the first semiconductor layer 21 and the second semiconductor layer 22 are formed so as to be alternately arranged in the second direction on the back surface of the semiconductor substrate 11.
  • the first semiconductor layer 21 and the second semiconductor layer 22 can be formed in order by forming a mask on the back surface of the semiconductor substrate 11 and laminating semiconductor materials by, for example, a film forming technique such as CVD. it can.
  • the entire back surface side of the semiconductor substrate 11 on which the first semiconductor layer 21 and the second semiconductor layer 22 are formed is covered with a film forming technique such as CVD or PVD. 1
  • a film forming technique such as CVD or PVD. 1
  • the materials forming the transparent electrode 31 and the second transparent electrode 32 are laminated.
  • the first base electrode 41 is formed in the region laminated on the first semiconductor layer 21 of the transparent electrode 30 by laminating the first conductive paste.
  • the second base electrode 42 is formed in the region laminated on the second semiconductor layer 22 of the transparent electrode 30.
  • the first conductive paste can be selectively laminated by screen printing.
  • the solvent contained in the first conductive paste may be volatilized, and the formed first base electrode 41 and the second base electrode 42 may be dried so as not to be easily deformed. preferable.
  • the drying conditions can be, for example, about 3 minutes at 150 ° C.
  • the first insulating portion 61 and the second insulating portion 62 are formed by laminating the insulating paste.
  • the first insulating portions 61 are arranged across the transparent electrode 30 and the first base electrode 41 so as to be included in the first semiconductor layer 21 in a plan view, and are arranged in a matrix in the first direction and the second direction, respectively. It is formed.
  • the second insulating portion 62 is arranged so as to be included in the second semiconductor layer 22 in a plan view so as to be included in the transparent electrode 30 and the second base electrode 42, respectively, and the second insulating portion 62 and the first insulating portion 61 in the first direction and the second direction.
  • the insulating paste can be selectively laminated by screen printing. Further, also in the insulating portion forming step, it is preferable to volatilize the solvent contained in the insulating paste and perform drying so that the formed first insulating portion 61 and the second insulating portion 62 are not easily deformed.
  • the drying conditions can be, for example, about 3 minutes at 150 ° C.
  • the first raised electrode is formed in a region where the first insulating portion 61 of the first base electrode 41 is not laminated.
  • the 51 is formed, and the second raised electrode 52 is formed in a region where the second insulating portion 62 of the second base electrode 42 is not laminated.
  • the first raised electrode 51 and the second raised electrode 52 are arranged in a matrix arranged in the first direction and the second direction, respectively, and are formed so as to be alternately arranged in the first direction and the second direction.
  • the second conductive paste can also be selectively laminated by screen printing.
  • the solvent contained in the second conductive paste is volatilized, and the formed first raised electrode 51 and the second raised electrode 52 are dried so as not to be easily deformed. It is preferable to do so.
  • the drying conditions can also be, for example, about 3 minutes at 150 ° C.
  • the first semiconductor layer 21 is included in the first semiconductor layer 21 in a plan view by selectively removing the region of the transparent electrode 30 straddling the first semiconductor layer 21 and the second semiconductor layer 22 by etching with the 52 as a mask.
  • the transparent electrode 31 and the second transparent electrode 32 included in the second semiconductor layer 22 are separated from each other in a plan view.
  • an etching solution capable of etching the transparent electrode 30 formed from ITO for example, hydrochloric acid or the like can be used.
  • the widths of the first transparent electrode 31 and the second transparent electrode 32 separated by the side etch effect in the second direction are the first base electrode 41, the second base electrode 42, and the second base electrode 42, which are masked in a plan view. It is slightly smaller than the width of the envelope shape of the 1 insulating portion 61, the 2nd insulating portion 62, the 1st raised electrode 51, and the 2nd raised electrode 52 in the second direction. Therefore, the position shift occurs for some reason, and the first insulating portion 61 or the second insulating portion 62 causes the first base electrode 41, the second base electrode 42, the first raised electrode 51, and the second raised electrode 52. Even when the portion is in contact with the portion adjacent to the second direction, the transparent electrode 30 immediately below the contact portion can be removed to separate the first transparent electrode 31 and the second transparent electrode 32.
  • the first base electrode 41, the second base electrode 42, the first insulating portion 61, the second insulating portion 62, the first raised electrode 51, and the second raised electrode 52 are cured by heating. .. Further, in the firing step, the first base electrode 41, the second base electrode 42, the first insulating portion 61, the second insulating portion 62, the first raised electrode 51, and the second raised electrode 52 are formed by heating.
  • the resin components of the conductive paste, the insulating paste, and the second conductive paste of No. 1 are exuded, and as shown in FIG. 11, the end faces of the first transparent electrode 31 and the second transparent electrode 32 on both sides in the second direction.
  • the first coating portion 81 and the second coating portion 82 that cover a part or all of the above can be formed.
  • the firing conditions can be, for example, 180 ° C. for about 60 minutes.
  • step S08 In the wiring material connecting step of step S08, between the first raised electrode 51 and the second raised electrode 52 arranged in the second direction by the first wiring material 71 and the second wiring material 72 extending in the second direction, respectively. Connecting. As a result, the solar cell 1 as shown in FIG. 2 can be obtained.
  • the transparent electrode 30 is formed on the front surface in the transparent electrode laminating step, and the first base electrode 41, the second base electrode 42, the first insulating portion 61, and the second insulating portion are formed in the transparent electrode selective removal step. Since etching is performed using 62, the first raised electrode 51 and the second raised electrode 52 as masks, it is not necessary to form a dedicated mask for forming the first transparent electrode 31 and the second transparent electrode 32. A highly efficient solar cell 1 can be manufactured at a relatively low cost.
  • the solar cell according to the present invention has additional components such as an intrinsic semiconductor layer that insulates between each component, an antireflection film that suppresses light reflection, and a resin film that protects electrodes and the like, in addition to the above-mentioned components. May be provided.
  • the covering portion may not be provided. That is, the first conductive paste forming the first base electrode and the second base electrode, the insulating paste forming the first insulating portion and the second insulating portion, and the first raised electrode and the second raised electrode are formed.
  • the second conductive paste one in which the resin component does not easily exude during firing may be used.
  • firing may be performed before the etching step.
  • the covering portion since the covering portion is not formed, it is preferable to use as the first conductive paste, the insulating paste and the second conductive paste, which are hard to exude the resin component at the time of firing.
  • the order of the insulating portion forming step and the raised electrode forming step may be changed.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

To provide a method for manufacturing a solar cell that can manufacture a highly efficient solar cell at low cost. A method for manufacturing a solar cell according to an aspect of the present invention comprises the steps of: forming a first semiconductor layer and a second semiconductor layer on the rear surface of a semiconductor substrate; laminating a transparent electrode on the rear surface side of the semiconductor substrate to cover the first semiconductor layer and the second semiconductor layer; forming a first base electrode and a second base electrode by laminating a first conductive paste; forming a first insulating part and a second insulating part arranged in matrix form by laminating an insulating paste; forming a first high electrode and a second high electrode by laminating a second conductive paste; selectively removing the transparent electrode by etching using, as masks, the first base electrode, the second base electrode, the first insulating part, the second insulating part, the first high electrode, and the second high electrode; and connecting the first high electrode and the second high electrode via a first wiring material and a second wiring material.

Description

太陽電池製造方法及び太陽電池Solar cell manufacturing method and solar cells
 本発明は、太陽電池製造方法及び太陽電池に関する。 The present invention relates to a solar cell manufacturing method and a solar cell.
 半導体基板の裏面に交互に形成される複数の帯状の第1半導体層及び第2半導体層と、第1半導体層及び第2半導体層にそれぞれ積層される複数の帯状の第1ベース電極及び第2ベース電極と、第1ベース電極及び第2ベース電極に互い違いに積層される複数の第1嵩上電極及び第2嵩上電極と、複数の第1嵩上電極の間に架け渡すよう配置される第1配線材と、複数の第2嵩上電極の間に架け渡すよう配置される第2配線材と、を備えるバックコンタクト型の太陽電池が知られている。 A plurality of strip-shaped first semiconductor layers and second semiconductor layers alternately formed on the back surface of the semiconductor substrate, and a plurality of strip-shaped first base electrodes and second layers laminated on the first semiconductor layer and the second semiconductor layer, respectively. It is arranged so as to bridge between the base electrode, the plurality of first raised electrodes and the second raised electrodes stacked alternately on the first base electrode and the second base electrode, and the plurality of first raised electrodes. A back contact type solar cell including a first wiring material and a second wiring material arranged so as to bridge between a plurality of second raised electrodes is known.
 このような太陽電池において、第1ベース電極と第2配線材との短絡、及び第2ベース電極と第1配線材との短絡を防止するために、第1ベース電極の第2配線材と交差する領域及び第2ベース電極の第1配線材と交差する領域に絶縁材を積層する構成も知られている(例えば特許文献1参照)。 In such a solar cell, in order to prevent a short circuit between the first base electrode and the second wiring material and a short circuit between the second base electrode and the first wiring material, it intersects with the second wiring material of the first base electrode. There is also known a configuration in which an insulating material is laminated in a region to be formed and a region intersecting the first wiring material of the second base electrode (see, for example, Patent Document 1).
特開2011-3724号公報Japanese Unexamined Patent Publication No. 2011-3724
 上記のような太陽電池において、ベース電極及び嵩上電極は、銀ペースト等の材料をスクリーン印刷することで比較的容易に形成することができる。また、ベース電極と配線材との短絡を防止する絶縁材も、スクリーン印刷によって配設することができる。半導体層から効率よく集電するためには、ベース電極の幅を大きくすることが望ましい。しかしながら、銀ペーストは比較的高価であるため、銀ペーストによって幅が大きいベース電極を形成すると、太陽電池のコストを押し上げるという不都合が生じる。そこで、本発明は、安価に高効率な太陽電池を製造できる太陽電池製造方法及び安価で高効率な太陽電池を提供することを課題とする。 In the above-mentioned solar cell, the base electrode and the raised electrode can be formed relatively easily by screen-printing a material such as silver paste. Further, an insulating material for preventing a short circuit between the base electrode and the wiring material can also be arranged by screen printing. In order to efficiently collect current from the semiconductor layer, it is desirable to increase the width of the base electrode. However, since the silver paste is relatively expensive, forming a wide base electrode with the silver paste has the disadvantage of increasing the cost of the solar cell. Therefore, it is an object of the present invention to provide a solar cell manufacturing method capable of manufacturing a highly efficient solar cell at a low cost and an inexpensive and highly efficient solar cell.
 本発明の一態様に係る太陽電池製造方法は、半導体基板の裏面に、それぞれ第1方向に延びる第1半導体層及び第2半導体層を前記第1方向と交差する第2方向に交互に形成する工程と、前記第1半導体層及び第2半導体層を覆うよう前記半導体基板の裏面側に透明電極を積層する工程と、第1の導電性ペーストを積層することにより、前記透明電極の前記第1半導体層に積層した領域にそれぞれ前記第1方向に延びる第1ベース電極を形成すると共に、前記透明電極の前記第2半導体層に積層した領域にそれぞれ前記第1方向に延びる第2ベース電極を形成する工程と、絶縁性ペーストを積層することにより、それぞれ平面視で前記第1半導体層に内包されるよう前記透明電極及び前記第1ベース電極に跨って配置され、前記第1方向及び前記第2方向に行列状に並ぶ複数の第1絶縁部を形成すると共に、それぞれ平面視で前記第2半導体層に内包されるよう前記透明電極及び前記第2ベース電極に跨って配置され、前記第1方向及び前記第2方向に前記第1絶縁部と交互に配置される行列状に並ぶ複数の第2絶縁部を形成する工程と、第2の導電性ペーストを積層することにより、前記第1ベース電極の前記第1絶縁部が積層されない領域に第1嵩上電極を形成すると共に、前記第2ベース電極の前記第2絶縁部が積層されない領域に第2嵩上電極を形成する工程と、前記第1ベース電極、前記第2ベース電極、前記第1絶縁部、前記第2絶縁部、第1嵩上電極及び前記第2嵩上電極をマスクとするエッチングにより、前記透明電極を選択的に除去する工程と、前記第2方向に延びる第1配線材及び第2配線材によって前記第1嵩上電極の間及び前記第2嵩上電極の間をそれぞれ接続する工程と、を備える。 In the solar cell manufacturing method according to one aspect of the present invention, a first semiconductor layer and a second semiconductor layer extending in the first direction are alternately formed on the back surface of the semiconductor substrate in the second direction intersecting the first direction, respectively. The step, the step of laminating a transparent electrode on the back surface side of the semiconductor substrate so as to cover the first semiconductor layer and the second semiconductor layer, and the step of laminating the first conductive paste, the first of the transparent electrodes. A first base electrode extending in the first direction is formed in a region laminated on the semiconductor layer, and a second base electrode extending in the first direction is formed in a region laminated on the second semiconductor layer of the transparent electrode. By laminating the insulating paste, the transparent electrode and the first base electrode are arranged so as to be included in the first semiconductor layer in a plan view, respectively, in the first direction and the second. A plurality of first insulating portions arranged in a matrix in the direction are formed, and are arranged across the transparent electrode and the second base electrode so as to be included in the second semiconductor layer in a plan view, respectively, in the first direction. The first base electrode is formed by forming a plurality of second insulating portions arranged in a matrix alternately arranged with the first insulating portion in the second direction and laminating the second conductive paste. The step of forming the first raised electrode in the region where the first insulating portion is not laminated and forming the second raised electrode in the region where the second insulating portion of the second base electrode is not laminated, and the first step. The transparent electrode is selectively removed by etching using the 1 base electrode, the second base electrode, the first insulating portion, the second insulating portion, the first raised electrode, and the second raised electrode as masks. The step includes a step of connecting between the first raised electrodes and the second raised electrodes by the first wiring material and the second wiring material extending in the second direction, respectively.
 前記態様に係る太陽電池製造方法は、前記透明電極を選択的に除去した後に、加熱により前記第1ベース電極及び前記第2ベース電極並びに前記第1絶縁部及び前記第2絶縁部に含まれる樹脂を染み出させる工程をさらに備えてもよい。 In the solar cell manufacturing method according to the above aspect, after the transparent electrode is selectively removed, the resin contained in the first base electrode, the second base electrode, the first insulating portion, and the second insulating portion is heated. May be further provided with a step of exuding.
 前記態様に係る太陽電池製造方法において、前記第1の導電性ペーストの積層、前記絶縁性ペーストの積層及び前記第2の導電性ペーストの積層をそれぞれスクリーン印刷により行ってもよい。 In the solar cell manufacturing method according to the above aspect, the first conductive paste, the insulating paste, and the second conductive paste may be laminated by screen printing, respectively.
 本発明の別の態様に係る太陽電池は、半導体基板と、前記半導体基板の裏面に、それぞれ第1方向に延び、第1方向と交差する第2方向に交互に設けられる複数の第1半導体層及び複数の第2半導体層と、それぞれの前記第1半導体層に前記第1方向に延びるよう積層される複数の第1透明電極、及びそれぞれの前記第2半導体層に前記第1方向に延びるよう積層される複数の第2透明電極と、それぞれの前記第1透明電極に前記第1方向に延びるよう積層される複数の第1ベース電極、及びそれぞれの前記第2透明電極に前記第1方向に延びるよう積層される複数の第2ベース電極と、それぞれの前記第1ベース電極の複数の部分に積層されるよう、前記第1方向及び前記第2方向に間隔を空けて行列状に配設される複数の第1嵩上電極、及びそれぞれの前記第2ベース電極の複数の部分に積層されるよう、前記第1方向及び前記第2方向に前記第1嵩上電極と互い違いに間隔を空けて行列状に配設される複数の第2嵩上電極と、それぞれの前記第1ベース電極の前記第1嵩上電極の間の部分を覆い、平面視で前記第1半導体層に内包されるよう前記第1透明電極及び前記第1ベース電極に跨って積層される第1絶縁部、及びそれぞれの前記第2ベース電極の前記第2嵩上電極の間の部分を覆い、それぞれが平面視で前記第2半導体層に内包されるよう前記第2透明電極及び前記第2ベース電極に跨って積層される第2絶縁部と、前記第1嵩上電極及び前記第1絶縁部の裏面側に配置され、前記第1嵩上電極の間を電気的に接続する第1配線材、及び前記第2嵩上電極及び前記第2絶縁部の裏面側に配置され、前記第2嵩上電極の間を電気的に接続する第2配線材と、を備える。 A solar cell according to another aspect of the present invention has a plurality of first semiconductor layers alternately provided on a semiconductor substrate and the back surface of the semiconductor substrate in a second direction extending in the first direction and intersecting the first direction. And a plurality of second semiconductor layers, a plurality of first transparent electrodes laminated so as to extend in the first direction on each of the first semiconductor layers, and each of the second semiconductor layers so as to extend in the first direction. A plurality of second transparent electrodes to be laminated, a plurality of first base electrodes laminated so as to extend in the first direction on each of the first transparent electrodes, and each of the second transparent electrodes in the first direction. A plurality of second base electrodes stacked so as to extend and a plurality of second base electrodes are arranged in a matrix at intervals in the first direction and the second direction so as to be laminated on a plurality of portions of the first base electrodes. The first raised electrode and the first raised electrode are alternately spaced in the first direction and the second direction so as to be laminated on the plurality of first raised electrodes and a plurality of portions of the second base electrode. The portion between the plurality of second raised electrodes arranged in a matrix and the first raised electrode of each of the first base electrodes is covered so as to be included in the first semiconductor layer in a plan view. It covers a portion between the first transparent electrode, the first insulating portion laminated over the first base electrode, and the second raised electrode of each of the second base electrodes, and each covers the portion between the first transparent electrode and the second raised electrode in a plan view. A second insulating portion laminated over the second transparent electrode and the second base electrode so as to be included in the second semiconductor layer, and arranged on the back surface side of the first raised electrode and the first insulating portion. , The first wiring material that electrically connects between the first raised electrodes, and the second raised electrode and the second raised electrode are arranged on the back surface side of the second insulating portion, and are electrically connected between the second raised electrodes. A second wiring material to be connected to the object is provided.
 前記態様に係る太陽電池において、前記第1絶縁部及び前記第2絶縁部は前記第1半導体層及び前記第2半導体層から離間しており、前記第1絶縁部の前記第2方向の幅は前記第1透明電極の前記第2方向の幅よりも大きく、前記第2絶縁部の前記第2方向の幅は前記第2透明電極の前記第2方向の幅よりも大きくてもよい。 In the solar cell according to the above aspect, the first insulating portion and the second insulating portion are separated from the first semiconductor layer and the second semiconductor layer, and the width of the first insulating portion in the second direction is The width of the first transparent electrode may be larger than the width of the second direction, and the width of the second insulating portion in the second direction may be larger than the width of the second transparent electrode in the second direction.
 前記態様に係る太陽電池において、前記第1ベース電極の前記第1絶縁部が積層される領域及び前記第2ベース電極の前記第2絶縁部が積層される部分の前記第2方向の幅は、前記第1ベース電極の前記第1嵩上電極が積層される領域及び前記第2ベース電極の前記第2嵩上電極が積層される部分の前記第2方向の幅よりも小さく、前記第1絶縁部及び前記第2絶縁部の前記第2方向の幅は、前記第1ベース電極の前記第1嵩上電極が積層される領域及び前記第2ベース電極の前記第2嵩上電極が積層される部分の前記第2方向の幅と略等しくてもよい。 In the solar cell according to the above aspect, the width of the region where the first insulating portion of the first base electrode is laminated and the portion where the second insulating portion of the second base electrode is laminated is the width in the second direction. The width of the region where the first raised electrode of the first base electrode is laminated and the portion of the second base electrode where the second raised electrode is laminated is smaller than the width in the second direction, and the first insulation is provided. The width of the portion and the second insulating portion in the second direction is such that the region where the first raised electrode of the first base electrode is laminated and the second raised electrode of the second base electrode are laminated. It may be substantially equal to the width of the portion in the second direction.
 前記態様に係る太陽電池において、前記第1透明電極及び前記第2透明電極の側面が少なくとも部分的に樹脂により被覆されていてもよい。 In the solar cell according to the above aspect, the side surfaces of the first transparent electrode and the second transparent electrode may be at least partially covered with resin.
 本発明によれば、安価に高効率な太陽電池を製造できる太陽電池製造方法及び安価で高効率な太陽電池を提供することができる。 According to the present invention, it is possible to provide a solar cell manufacturing method capable of manufacturing a highly efficient solar cell at low cost and an inexpensive and highly efficient solar cell.
本発明の一実施形態に係る太陽電池の構成を示す裏面図である。It is a back view which shows the structure of the solar cell which concerns on one Embodiment of this invention. 図1の太陽電池のA-A線断面図である。FIG. 5 is a cross-sectional view taken along the line AA of the solar cell of FIG. 図1の太陽電池の一部の構成要素を取り除いた状態を示す裏面図である。It is a back view which shows the state which removed some components of the solar cell of FIG. 本発明の一実施形態に係る太陽電池製造方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the solar cell manufacturing method which concerns on one Embodiment of this invention. 図4の太陽電池製造方法の一工程を示す模式断面図である。It is a schematic cross-sectional view which shows one process of the solar cell manufacturing method of FIG. 図4の太陽電池製造方法の図5の次の工程を示す模式断面図である。It is a schematic cross-sectional view which shows the next process of FIG. 5 of the solar cell manufacturing method of FIG. 図4の太陽電池製造方法の図6の次の工程を示す模式断面図である。It is a schematic cross-sectional view which shows the next process of FIG. 6 of the solar cell manufacturing method of FIG. 図4の太陽電池製造方法の図7の次の工程を示す模式断面図である。It is a schematic cross-sectional view which shows the next process of FIG. 7 of the solar cell manufacturing method of FIG. 図4の太陽電池製造方法の図8の次の工程を示す模式断面図である。It is a schematic cross-sectional view which shows the next process of FIG. 8 of the solar cell manufacturing method of FIG. 図4の太陽電池製造方法の図9の次の工程を示す模式断面図である。It is a schematic cross-sectional view which shows the next process of FIG. 9 of the solar cell manufacturing method of FIG. 図4の太陽電池製造方法の図10の次の工程を示す模式断面図である。It is a schematic cross-sectional view which shows the next process of FIG. 10 of the solar cell manufacturing method of FIG.
 以下、本発明の実施形態について、図面を参照しながら説明する。図1は、本発明の一実施形態に係る太陽電池1の構成を示す模式裏面図である。図2は、図1の太陽電池1のA-A線断面図である。なお、図1におけるハッチングは、各構成要素を区別しやすくするため付されるものであり、断面を意味するものではない。また、便宜上、ハッチングや部材符号等を省略する場合もあるが、かかる場合、他の図面を参照するものとする。また、図面における種々部材の寸法は、便宜上、見やすいように調整されている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic back view showing the configuration of the solar cell 1 according to the embodiment of the present invention. FIG. 2 is a cross-sectional view taken along the line AA of the solar cell 1 of FIG. The hatching in FIG. 1 is attached to make it easier to distinguish each component, and does not mean a cross section. In addition, for convenience, hatching, member codes, and the like may be omitted, but in such cases, other drawings shall be referred to. Further, the dimensions of the various members in the drawings are adjusted for convenience so that they can be easily seen.
 太陽電池1は、いわゆるヘテロ接合バックコンタクト型の太陽電池セルである。太陽電池1は、半導体基板11と、半導体基板11の裏面(光の入射面と反対側の面)に配設される第1半導体層21及び第2半導体層22と、第1半導体層21及び第2半導体層22の裏面側にそれぞれ配設される第1透明電極31及び第2透明電極32と、第1透明電極31及び第2透明電極32の裏面側にそれぞれ配設される第1ベース電極41及び第2ベース電極42と、第1ベース電極41及び第2ベース電極42にそれぞれ複数配設される第1嵩上電極51及び第2嵩上電極52と、第1ベース電極41及び第2ベース電極42の第1嵩上電極51及び第2嵩上電極52が配設されていない領域を被覆する第1絶縁部61及び第2絶縁部62と、第1嵩上電極51間及び第2嵩上電極52間をそれぞれ接続する第1配線材71及び第2配線材72と、第1透明電極31及び第2透明電極32の側面を少なくとも部分的に被覆する第1被覆部81及び第2被覆部82と、を備える。 The solar cell 1 is a so-called heterojunction back contact type solar cell. The solar cell 1 includes a semiconductor substrate 11, a first semiconductor layer 21 and a second semiconductor layer 22 arranged on the back surface of the semiconductor substrate 11 (a surface opposite to the incident surface of light), a first semiconductor layer 21, and the like. The first transparent electrode 31 and the second transparent electrode 32 arranged on the back surface side of the second semiconductor layer 22, and the first base arranged on the back surface side of the first transparent electrode 31 and the second transparent electrode 32, respectively. The electrodes 41 and the second base electrode 42, the first raised electrode 51 and the second raised electrode 52 arranged on the first base electrode 41 and the second base electrode 42, respectively, and the first base electrode 41 and the first Between the first insulating portion 61 and the second insulating portion 62 that cover the region where the first raised electrode 51 and the second raised electrode 52 of the two base electrodes 42 are not arranged, and between the first raised electrode 51 and the second. The first covering portion 81 and the first covering portion 81 and the second covering material 71 and the second wiring material 72 connecting between the two raised electrodes 52, respectively, and the side surfaces of the first transparent electrode 31 and the second transparent electrode 32 are partially covered. The two covering portions 82 are provided.
 半導体基板11は、単結晶シリコンまたは多結晶シリコン等の結晶シリコン材料で形成される。半導体基板11は、例えば結晶シリコン材料にn型ドーパントがドープされたn型の半導体基板である。n型ドーパントとしては、例えばリン(P)が挙げられる。半導体基板11は、受光面側からの入射光を吸収して光キャリア(電子および正孔)を生成する光電変換基板として機能する。半導体基板11の材料として結晶シリコンが用いられることにより、暗電流が比較的に小さく、入射光の強度が低い場合であっても比較的高出力(照度によらず安定した出力)が得られる。 The semiconductor substrate 11 is formed of a crystalline silicon material such as single crystal silicon or polycrystalline silicon. The semiconductor substrate 11 is, for example, an n-type semiconductor substrate in which a crystalline silicon material is doped with an n-type dopant. Examples of the n-type dopant include phosphorus (P). The semiconductor substrate 11 functions as a photoelectric conversion substrate that absorbs incident light from the light receiving surface side to generate optical carriers (electrons and holes). By using crystalline silicon as the material of the semiconductor substrate 11, a relatively high output (stable output regardless of the illuminance) can be obtained even when the dark current is relatively small and the intensity of the incident light is low.
 第1半導体層21及び第2半導体層22は、互いに異なる導電型を有する。例として、第1半導体層21はp型半導体から形成され、第2半導体層22はn型半導体から形成される。第1半導体層21及び第2半導体層22は、例えば所望の導電型を付与するドーパントを含有するアモルファスシリコン材料で形成することができる。p型ドーパントとしては、例えばホウ素(B)が挙げられ、n型ドーパントとしては、例えば上述したリン(P)が挙げられる。 The first semiconductor layer 21 and the second semiconductor layer 22 have different conductive types from each other. As an example, the first semiconductor layer 21 is formed of a p-type semiconductor, and the second semiconductor layer 22 is formed of an n-type semiconductor. The first semiconductor layer 21 and the second semiconductor layer 22 can be formed of, for example, an amorphous silicon material containing a dopant that imparts a desired conductive type. Examples of the p-type dopant include boron (B), and examples of the n-type dopant include phosphorus (P) described above.
 第1半導体層21及び第2半導体層22は、それぞれ第1方向に延びる帯状に形成される。太陽電池1では、複数の第1半導体層21及び複数の第2半導体層22が第1方向と交差する第2方向に交互に設けられる。第1半導体層21及び第2半導体層22は、半導体基板11の略全面を覆うように配設されることが好ましい。 The first semiconductor layer 21 and the second semiconductor layer 22 are each formed in a band shape extending in the first direction. In the solar cell 1, the plurality of first semiconductor layers 21 and the plurality of second semiconductor layers 22 are alternately provided in the second direction intersecting the first direction. The first semiconductor layer 21 and the second semiconductor layer 22 are preferably arranged so as to cover substantially the entire surface of the semiconductor substrate 11.
 第1透明電極31は、それぞれの第1半導体層21に第1方向に延びるよう積層され、第2透明電極32は、それぞれの第2半導体層22に第1方向に延びるよう積層される。第1透明電極31及び第2透明電極32は、第1半導体層21及び第2半導体層22から集電し、第1ベース電極41及び第2ベース電極42に接続する薄層である。また、第1透明電極31及び第2透明電極32は、第1半導体層21及び第2半導体層22と、第1ベース電極41及び第2ベース電極42との材質の違い等によって生じる密着性の低下や界面における電気抵抗の増大を防止する中間層として機能する。 The first transparent electrode 31 is laminated on each of the first semiconductor layers 21 so as to extend in the first direction, and the second transparent electrode 32 is laminated on each of the second semiconductor layers 22 so as to extend in the first direction. The first transparent electrode 31 and the second transparent electrode 32 are thin layers that collect current from the first semiconductor layer 21 and the second semiconductor layer 22 and connect to the first base electrode 41 and the second base electrode 42. Further, the first transparent electrode 31 and the second transparent electrode 32 have adhesiveness caused by a difference in material between the first semiconductor layer 21 and the second semiconductor layer 22 and the first base electrode 41 and the second base electrode 42. It functions as an intermediate layer that prevents a decrease and an increase in electrical resistance at the interface.
 第1透明電極31及び第2透明電極32は、互いに接触しないよう、第2方向に第1半導体層21及び第2半導体層22よりも小さい幅で、第1方向に第1半導体層21及び第2半導体層22の略全長に亘って積層されている。第1透明電極31及び第2透明電極32は、後述する第1ベース電極41及び第2ベース電極42並びに第1絶縁部61及び第2絶縁部62に対応して第2方向の幅が変化する。 The first transparent electrode 31 and the second transparent electrode 32 have a width smaller than that of the first semiconductor layer 21 and the second semiconductor layer 22 in the second direction so as not to come into contact with each other, and the first semiconductor layer 21 and the first semiconductor layer 21 in the first direction. The two semiconductor layers 22 are laminated over substantially the entire length. The width of the first transparent electrode 31 and the second transparent electrode 32 changes in the second direction corresponding to the first base electrode 41 and the second base electrode 42, which will be described later, and the first insulating portion 61 and the second insulating portion 62. ..
 第1透明電極31と第2透明電極32とは、同じ材料から形成することができる。第1透明電極31及び第2透明電極32を形成する材料としては、例えば、ITO(Indium Tin Oxide)、酸化亜鉛(ZnO)等を挙げることができる。また、第1透明電極31及び第2透明電極32は、後述する第1ベース電極41及び第2ベース電極42よりも広い面積に積層されることで、第1ベース電極41及び第2ベース電極42による集電能力を向上することができる。 The first transparent electrode 31 and the second transparent electrode 32 can be formed of the same material. Examples of the material forming the first transparent electrode 31 and the second transparent electrode 32 include ITO (Indium Tin Oxide) and zinc oxide (ZnO). Further, the first transparent electrode 31 and the second transparent electrode 32 are laminated in a wider area than the first base electrode 41 and the second base electrode 42, which will be described later, so that the first base electrode 41 and the second base electrode 42 are laminated. The current collecting capacity can be improved.
 第1ベース電極41は、それぞれの第1透明電極31に第1方向に延びるよう積層され、第2ベース電極42は、それぞれの第2透明電極32に第1方向に延びるよう積層される。第1ベース電極41及び第2ベース電極42は、第1透明電極31及び第2透明電極32を介して電力を収集する。 The first base electrode 41 is laminated on each of the first transparent electrodes 31 so as to extend in the first direction, and the second base electrode 42 is laminated on each of the second transparent electrodes 32 so as to extend in the first direction. The first base electrode 41 and the second base electrode 42 collect electric power via the first transparent electrode 31 and the second transparent electrode 32.
 図3に、第1嵩上電極51、第2嵩上電極52、第1配線材71及び第2配線材72を取り除いた状態の太陽電池1を示す。図示するように、第1ベース電極41及び第2ベース電極42の第1嵩上電極51及び第2嵩上電極52が積層される部分の第2方向の幅は、その間の部分、つまり第1ベース電極41及び第2ベース電極42の第1絶縁部61及び第2絶縁部62が積層される部分での第2方向の幅よりも大きい。 FIG. 3 shows the solar cell 1 in a state where the first raised electrode 51, the second raised electrode 52, the first wiring material 71, and the second wiring material 72 are removed. As shown in the figure, the width of the portion in which the first raised electrode 51 and the second raised electrode 52 of the first base electrode 41 and the second base electrode 42 are laminated is the portion between them, that is, the first. It is larger than the width in the second direction at the portion where the first insulating portion 61 and the second insulating portion 62 of the base electrode 41 and the second base electrode 42 are laminated.
 より詳しくは、第1嵩上電極51及び第2嵩上電極52が積層される部分における第1ベース電極41及び第2ベース電極42の第2方向の幅は、第1嵩上電極51及び第2嵩上電極52の必要な高さ及び第1配線材71及び第2配線材72との間の十分な接続面積を確保することができるように設定される。また、第1ベース電極41及び第2ベース電極42の第1嵩上電極51及び第2嵩上電極52が積層される領域における第2方向の幅は、第1透明電極31又は第2透明電極32の第2方向の幅よりも僅かに大きくてもよい。つまり、第1ベース電極41及び第2ベース電極42は、第2方向の端部に、第1透明電極31及び第2透明電極32を介さずに第1半導体層21及び第2半導体層22と隙間を空けて対向する領域を有してもよい。 More specifically, the width of the first base electrode 41 and the second base electrode 42 in the second direction in the portion where the first raised electrode 51 and the second raised electrode 52 are laminated is the width of the first raised electrode 51 and the second raised electrode 42. 2 The height of the raised electrode 52 and a sufficient connection area between the first wiring material 71 and the second wiring material 72 are set so as to be secured. Further, the width in the second direction in the region where the first raised electrode 51 and the second raised electrode 52 of the first base electrode 41 and the second base electrode 42 are laminated is the first transparent electrode 31 or the second transparent electrode. It may be slightly larger than the width of 32 in the second direction. That is, the first base electrode 41 and the second base electrode 42 are connected to the first semiconductor layer 21 and the second semiconductor layer 22 at the ends in the second direction without passing through the first transparent electrode 31 and the second transparent electrode 32. It may have regions facing each other with a gap.
 また、第1ベース電極41及び第2ベース電極42の第1嵩上電極51の間又は第2嵩上電極52の間の領域、つまり第1ベース電極41及び第2ベース電極42の第1絶縁部61及び第2絶縁部62が積層される部分の第2方向の幅は、導電性を担保できる必要最小限の大きさとすることが好ましい。各構成要素の位置ずれを考慮して、第1ベース電極41及び第2ベース電極42の幅は、第1絶縁部61及び第2絶縁部62に被覆される領域の第1方向の両端部を除く領域においてのみ小さくされることがより好ましい。 Further, a region between the first raised electrode 51 of the first base electrode 41 and the second base electrode 42 or between the second raised electrode 52, that is, the first insulation of the first base electrode 41 and the second base electrode 42. The width of the portion in which the portion 61 and the second insulating portion 62 are laminated in the second direction is preferably the minimum necessary size that can ensure conductivity. Considering the misalignment of each component, the width of the first base electrode 41 and the second base electrode 42 is set at both ends of the region covered by the first insulating portion 61 and the second insulating portion 62 in the first direction. It is more preferable that the size is reduced only in the region to be excluded.
 第1ベース電極41及び第2ベース電極42は、導電性粒子と樹脂バインダーとを含む導電性ペーストから形成することができる。具体的な導電性ペーストとしては、代表的には銀ペーストを挙げることができる。導電性ペーストを用いることによって、電気抵抗を小さくできるような十分な厚みを有する第1ベース電極41及び第2ベース電極42を比較的安価に形成することができる。 The first base electrode 41 and the second base electrode 42 can be formed from a conductive paste containing conductive particles and a resin binder. As a specific conductive paste, a silver paste can be typically mentioned. By using the conductive paste, the first base electrode 41 and the second base electrode 42 having a sufficient thickness so that the electric resistance can be reduced can be formed at a relatively low cost.
 第1嵩上電極51は、それぞれの第1ベース電極41の複数の部分に積層されるよう、第1方向及び第2方向に間隔を空けて行列状に配列され、第2嵩上電極52は、それぞれの第2ベース電極42の複数の部分に積層されるよう、第1方向及び第2方向に第1嵩上電極51と互い違いに間隔を空けて行列状に配列される。第1嵩上電極51は、第1ベース電極41と第1配線材71との間に介在して第1配線材71を第2ベース電極42から離間させる。第2嵩上電極52は、第2ベース電極42と第2配線材72との間に介在して第2配線材72を第1ベース電極41から離間させる。 The first raised electrodes 51 are arranged in a matrix at intervals in the first direction and the second direction so as to be laminated on a plurality of portions of the respective first base electrodes 41, and the second raised electrodes 52 are arranged in a matrix. , The first raised electrode 51 and the first raised electrode 51 are arranged in a matrix at intervals so as to be laminated on a plurality of portions of each second base electrode 42 in the first direction and the second direction. The first raised electrode 51 is interposed between the first base electrode 41 and the first wiring material 71 to separate the first wiring material 71 from the second base electrode 42. The second raised electrode 52 is interposed between the second base electrode 42 and the second wiring material 72 to separate the second wiring material 72 from the first base electrode 41.
 第1嵩上電極51及び第2嵩上電極52は、例えば銀ペースト等の導電性ペーストから形成されることができ、第1ベース電極41及び第2ベース電極42との接着性を向上するために、第1ベース電極41及び第2ベース電極42と同種の材料によって形成されることが好ましい。 The first raised electrode 51 and the second raised electrode 52 can be formed from a conductive paste such as silver paste, in order to improve the adhesiveness with the first base electrode 41 and the second base electrode 42. In addition, it is preferably formed of the same material as the first base electrode 41 and the second base electrode 42.
 第1嵩上電極51及び第2嵩上電極52の高さは、第1配線材71及び第2配線材72との確実な接触が得られるよう、第1絶縁部61及び第2絶縁部62の高さよりも十分に大きいことが好ましい。第1嵩上電極51及び第2嵩上電極52の第2方向の幅は、効率よく高さを大きくするために、第1ベース電極41及び第2ベース電極42の積層領域の幅と略等しいことが好ましい。第1嵩上電極51及び第2嵩上電極52の第1方向の長さは、第1嵩上電極51と第2配線材72との短絡及び第2嵩上電極52と第1配線材71との短絡を防止するために、第2方向から見て第1嵩上電極51と第2嵩上電極52とが重複しないよう第1方向の間隔よりも小さいことが好ましい。 The heights of the first raised electrode 51 and the second raised electrode 52 are set to the first insulating portion 61 and the second insulating portion 62 so that reliable contact with the first wiring material 71 and the second wiring material 72 can be obtained. It is preferably sufficiently larger than the height of. The width of the first raised electrode 51 and the second raised electrode 52 in the second direction is substantially equal to the width of the laminated region of the first base electrode 41 and the second base electrode 42 in order to increase the height efficiently. Is preferable. The length of the first raised electrode 51 and the second raised electrode 52 in the first direction is such that the first raised electrode 51 and the second wiring material 72 are short-circuited and the second raised electrode 52 and the first wiring material 71 are short-circuited. In order to prevent a short circuit with the above, it is preferable that the distance between the first raised electrode 51 and the second raised electrode 52 is smaller than the distance in the first direction so as not to overlap when viewed from the second direction.
 第1絶縁部61は、それぞれの第1ベース電極41の第1嵩上電極51の間の部分を覆い、平面視で第1半導体層21に内包されるよう第1透明電極31及び第1ベース電極41に跨って積層される。第2絶縁部62は、それぞれの第2ベース電極42の第2嵩上電極52の間の部分を覆い、平面視で第2半導体層22に内包されるよう第2透明電極32及び第2ベース電極42に跨って積層される。第1絶縁部61及び第2絶縁部62は第1嵩上電極51及び第2嵩上電極52の第1方向の端部に積層されてもよい。第1絶縁部61及び第2絶縁部62は、第1配線材71と第2ベース電極42との絶縁及び第2配線材72と第1ベース電極41との絶縁を確実にする。また、第1絶縁部61及び第2絶縁部62は、特に、第1ベース電極41及び第2ベース電極42の断面積が小さい部分を被覆して水分等との接触を防止するので、第1ベース電極41及び第2ベース電極42の断面積が小さい部分が腐食して導電性が大きく損なわれることや、第1ベース電極41及び第2ベース電極42の第1透明電極31及び第2透明電極32からの剥離を防止することができる。 The first insulating portion 61 covers the portion between the first raised electrodes 51 of each of the first base electrodes 41, and the first transparent electrode 31 and the first base are included in the first semiconductor layer 21 in a plan view. It is laminated across the electrodes 41. The second insulating portion 62 covers the portion between the second raised electrodes 52 of each of the second base electrodes 42, and the second transparent electrode 32 and the second base are included in the second semiconductor layer 22 in a plan view. It is laminated over the electrodes 42. The first insulating portion 61 and the second insulating portion 62 may be laminated on the ends of the first raised electrode 51 and the second raised electrode 52 in the first direction. The first insulating portion 61 and the second insulating portion 62 ensure the insulation between the first wiring material 71 and the second base electrode 42 and the insulation between the second wiring material 72 and the first base electrode 41. Further, since the first insulating portion 61 and the second insulating portion 62 particularly cover the portions of the first base electrode 41 and the second base electrode 42 having a small cross-sectional area to prevent contact with moisture or the like, the first insulating portion 61 and the second insulating portion 62 are first. The portion of the base electrode 41 and the second base electrode 42 having a small cross-sectional area is corroded and the conductivity is greatly impaired, and the first transparent electrode 31 and the second transparent electrode of the first base electrode 41 and the second base electrode 42 are greatly impaired. It is possible to prevent peeling from 32.
 第1絶縁部61及び第2絶縁部62の第2方向の幅は、第1ベース電極41及び第2ベース電極42の第1嵩上電極51及び第2嵩上電極52が積層される部分の第2方向の幅と略等しいことが好ましい。これにより、第1透明電極31及び第2透明電極32の第2方向の幅を略一定にすることができるので、第1透明電極31及び第2透明電極32の第2方向の幅を大きくして、集電抵抗をより小さくすることができる。また、第1絶縁部61及び第2絶縁部62の第1方向の長さは、第1嵩上電極51と第2配線材72との短絡及び第2嵩上電極52と第1配線材71との短絡を防止するために、第1嵩上電極51及び第2嵩上電極52の第1方向の長さよりも大きいことが好ましい。 The width of the first insulating portion 61 and the second insulating portion 62 in the second direction is the portion where the first raised electrode 51 and the second raised electrode 52 of the first base electrode 41 and the second base electrode 42 are laminated. It is preferable that the width is substantially equal to the width in the second direction. As a result, the widths of the first transparent electrode 31 and the second transparent electrode 32 in the second direction can be made substantially constant, so that the widths of the first transparent electrode 31 and the second transparent electrode 32 in the second direction are increased. Therefore, the current collecting resistance can be made smaller. Further, the lengths of the first insulating portion 61 and the second insulating portion 62 in the first direction are such that the first raised electrode 51 and the second wiring material 72 are short-circuited and the second raised electrode 52 and the first wiring material 71 are short-circuited. In order to prevent a short circuit with the first raised electrode 51, it is preferable that the length of the first raised electrode 51 and the second raised electrode 52 is larger than the length in the first direction.
 第1絶縁部61及び第2絶縁部62は、絶縁性を有するペースト状の材料から形成することができる。第1絶縁部61及び第2絶縁部62を形成する材料としては、例えばエポキシ樹脂等を主成分とする熱硬化性樹脂組成物を用いることができる。 The first insulating portion 61 and the second insulating portion 62 can be formed from a paste-like material having insulating properties. As a material for forming the first insulating portion 61 and the second insulating portion 62, for example, a thermosetting resin composition containing an epoxy resin or the like as a main component can be used.
 第1配線材71は、第1嵩上電極51及び第1絶縁部61の裏面側に配置され、第1嵩上電極51の間を電気的に接続し、第2配線材72は、第2嵩上電極52及び第2絶縁部62の裏面側に配置され、第2嵩上電極52間を電気的に接続する。 The first wiring material 71 is arranged on the back surface side of the first raised electrode 51 and the first insulating portion 61, electrically connects between the first raised electrodes 51, and the second wiring material 72 is the second. It is arranged on the back surface side of the raised electrode 52 and the second insulating portion 62, and electrically connects the second raised electrode 52.
 第1配線材71及び第2配線材72は、例えば銅線等の導体によって形成することができる。第1配線材71及び第2配線材72と第1嵩上電極51及び第2嵩上電極52とは、例えば半田、導電性接着材等によって接続することができる。第1配線材71及び第2配線材72として、外面を第1嵩上電極51及び第2嵩上電極52と接続するための半田で被覆した金属線を用いてもよい。 The first wiring material 71 and the second wiring material 72 can be formed of, for example, a conductor such as a copper wire. The first wiring material 71 and the second wiring material 72 and the first raised electrode 51 and the second raised electrode 52 can be connected by, for example, solder, a conductive adhesive, or the like. As the first wiring material 71 and the second wiring material 72, a metal wire coated with solder for connecting the outer surface to the first raised electrode 51 and the second raised electrode 52 may be used.
 第1被覆部81及び第2被覆部82は、第1透明電極31及び第2透明電極32の第2方向両側の端面を被覆する。第1被覆部81及び第2被覆部82は、第1ベース電極41及び第2ベース電極42並びに第1絶縁部61及び第2絶縁部62の樹脂成分を染み出させることで形成することができる。第1被覆部81及び第2被覆部82を形成することによって、太陽電池1を用いて形成した太陽電池モジュール内に水分が浸入した場合にも、第1透明電極31及び第2透明電極32を保護し、太陽電池1の性能低下を抑制することができる。 The first covering portion 81 and the second covering portion 82 cover the end faces of the first transparent electrode 31 and the second transparent electrode 32 on both sides in the second direction. The first coating portion 81 and the second coating portion 82 can be formed by exuding the resin components of the first base electrode 41 and the second base electrode 42, and the first insulating portion 61 and the second insulating portion 62. .. By forming the first coating portion 81 and the second coating portion 82, the first transparent electrode 31 and the second transparent electrode 32 can be formed even when water has penetrated into the solar cell module formed by using the solar cell 1. It can be protected and the deterioration of the performance of the solar cell 1 can be suppressed.
 以上のように、太陽電池1は、集電のための第1ベース電極41、第2ベース電極42、第1嵩上電極51及び第2嵩上電極52を真空設備が必要とされる成膜技術を利用せず、ペースト状の材料の印刷及び焼成によって形成することができるため、比較的安価に製造することができる。さらに、太陽電池1は、第1半導体層21及び第2半導体層22から電力を取り出す第1透明電極31及び第2透明電極32を備えることにより、第1ベース電極41、第2ベース電極42の第1嵩上電極51及び第2嵩上電極52の間の部分の幅を小さくすることができている。これにより、比較的高価な導電性ペーストの使用量が低減されているので、太陽電池1は、高効率でありながら比較的安価に製造することができる。 As described above, in the solar cell 1, the first base electrode 41, the second base electrode 42, the first raised electrode 51, and the second raised electrode 52 for collecting electricity are formed with a vacuum facility required. Since it can be formed by printing and firing a paste-like material without using technology, it can be manufactured at a relatively low cost. Further, the solar cell 1 includes a first transparent electrode 31 and a second transparent electrode 32 for extracting electric power from the first semiconductor layer 21 and the second semiconductor layer 22, so that the first base electrode 41 and the second base electrode 42 can be separated from each other. The width of the portion between the first raised electrode 51 and the second raised electrode 52 can be reduced. As a result, the amount of the relatively expensive conductive paste used is reduced, so that the solar cell 1 can be manufactured with high efficiency and at a relatively low cost.
 続いて、太陽電池1を製造する方法について説明する。太陽電池1は、図4に示す太陽電池製造方法によって製造することができる。図4の太陽電池製造方法は、本発明に係る太陽電池製造方法の一実施形態である。 Next, a method for manufacturing the solar cell 1 will be described. The solar cell 1 can be manufactured by the solar cell manufacturing method shown in FIG. The solar cell manufacturing method of FIG. 4 is an embodiment of the solar cell manufacturing method according to the present invention.
 本実施形態の太陽電池製造方法は、半導体基板11の裏面に第1半導体層21及び第2半導体層22を形成する工程(ステップS01:半導体層形成工程)と、第1半導体層21及び第2半導体層22を覆うよう半導体基板11の裏面側に透明電極30を積層する工程(ステップS02:透明電極積層工程)と、第1の導電性ペーストを積層することにより第1ベース電極41及び第2ベース電極42を形成する工程(ステップS03:ベース電極形成工程)と、絶縁性ペーストを積層することにより第1絶縁部61及び第2絶縁部62を形成する工程(ステップS04:絶縁部形成工程)と、第2の導電性ペーストを積層することにより、第1嵩上電極51及び第2嵩上電極52を形成する工程(ステップS05:嵩上電極形成工程)と、第1ベース電極41、第2ベース電極42、第1絶縁部61、第2絶縁部62、第1嵩上電極51及び第2嵩上電極52をマスクとして透明電極30のエッチングを行う工程(ステップS06:エッチング工程)と、第1ベース電極41、第2ベース電極42、第1絶縁部61、第2絶縁部62、第1嵩上電極51及び第2嵩上電極52を焼成する工程(ステップS07:焼成工程)と、第1嵩上電極51及び第2嵩上電極52に第1配線材71及び第2配線材72を接続する工程(ステップS08:配線材接続工程)と、を備える。 The solar cell manufacturing method of the present embodiment includes a step of forming the first semiconductor layer 21 and the second semiconductor layer 22 on the back surface of the semiconductor substrate 11 (step S01: semiconductor layer forming step), and the first semiconductor layer 21 and the second. A step of laminating the transparent electrode 30 on the back surface side of the semiconductor substrate 11 so as to cover the semiconductor layer 22 (step S02: transparent electrode laminating step) and a first base electrode 41 and a second by laminating the first conductive paste. A step of forming the base electrode 42 (step S03: base electrode forming step) and a step of forming the first insulating portion 61 and the second insulating portion 62 by laminating the insulating paste (step S04: insulating portion forming step). And the step of forming the first raised electrode 51 and the second raised electrode 52 by laminating the second conductive paste (step S05: raised electrode forming step), and the first base electrode 41, the first 2 A step of etching the transparent electrode 30 using the base electrode 42, the first insulating portion 61, the second insulating portion 62, the first raised electrode 51, and the second raised electrode 52 as masks (step S06: etching step). A step of firing the first base electrode 41, the second base electrode 42, the first insulating portion 61, the second insulating portion 62, the first raised electrode 51, and the second raised electrode 52 (step S07: firing step). A step of connecting the first wiring material 71 and the second wiring material 72 to the first raised electrode 51 and the second raised electrode 52 (step S08: wiring material connecting step) is provided.
 ステップS01の半導体層形成工程では、図5に示すように、半導体基板11の裏面に、第1半導体層21及び第2半導体層22を第2方向に交互に並ぶよう形成する。具体的には、第1半導体層21及び第2半導体層22は、半導体基板11の裏面にマスクを形成し、例えばCVD等の成膜技術によって半導体材料を積層することによって順番に形成することができる。 In the semiconductor layer forming step of step S01, as shown in FIG. 5, the first semiconductor layer 21 and the second semiconductor layer 22 are formed so as to be alternately arranged in the second direction on the back surface of the semiconductor substrate 11. Specifically, the first semiconductor layer 21 and the second semiconductor layer 22 can be formed in order by forming a mask on the back surface of the semiconductor substrate 11 and laminating semiconductor materials by, for example, a film forming technique such as CVD. it can.
 ステップS02の透明電極積層工程では、図6に示すように、第1半導体層21及び第2半導体層22を形成した半導体基板11の裏面側全体に、例えばCVDやPVD等の成膜技術によって第1透明電極31及び第2透明電極32を形成する材料を積層する。 In the transparent electrode laminating step of step S02, as shown in FIG. 6, the entire back surface side of the semiconductor substrate 11 on which the first semiconductor layer 21 and the second semiconductor layer 22 are formed is covered with a film forming technique such as CVD or PVD. 1 The materials forming the transparent electrode 31 and the second transparent electrode 32 are laminated.
 ステップS03のベース電極形成工程では、図7に示すように、第1の導電性ペーストを積層することにより、透明電極30の第1半導体層21に積層した領域に第1ベース電極41を形成すると共に、透明電極30の第2半導体層22に積層した領域に第2ベース電極42を形成する。第1の導電性ペーストは、スクリーン印刷によって選択的に積層することができる。また、ベース電極形成工程では、第1の導電性ペーストに含まれる溶剤を揮発させ、形成した第1ベース電極41及び第2ベース電極42が容易に変形しないようにするための乾燥を行うことが好ましい。この乾燥の条件は、例えば150℃で3分間程度とすることができる。 In the base electrode forming step of step S03, as shown in FIG. 7, the first base electrode 41 is formed in the region laminated on the first semiconductor layer 21 of the transparent electrode 30 by laminating the first conductive paste. At the same time, the second base electrode 42 is formed in the region laminated on the second semiconductor layer 22 of the transparent electrode 30. The first conductive paste can be selectively laminated by screen printing. Further, in the base electrode forming step, the solvent contained in the first conductive paste may be volatilized, and the formed first base electrode 41 and the second base electrode 42 may be dried so as not to be easily deformed. preferable. The drying conditions can be, for example, about 3 minutes at 150 ° C.
 ステップS04の絶縁部形成工程では、図8に示すように、絶縁性ペーストを積層することにより、第1絶縁部61及び第2絶縁部62を形成する。第1絶縁部61は、それぞれ平面視で前記第1半導体層21に内包されるよう透明電極30及び第1ベース電極41に跨って配置され、第1方向及び第2方向に行列状に並ぶよう形成される。第2絶縁部62は、それぞれ平面視で第2半導体層22に内包されるよう透明電極30及び第2ベース電極42に跨って配置され、第1方向及び第2方向に第1絶縁部61と交互に配置される行列状に並ぶよう形成される。絶縁性ペーストは、スクリーン印刷によって選択的に積層することができる。また、絶縁部形成工程においても、絶縁性ペーストに含まれる溶剤を揮発させ、形成した第1絶縁部61及び第2絶縁部62が容易に変形しないようにするための乾燥を行うことが好ましい。この乾燥の条件は、例えば150℃で3分間程度とすることができる。 In the insulating portion forming step of step S04, as shown in FIG. 8, the first insulating portion 61 and the second insulating portion 62 are formed by laminating the insulating paste. The first insulating portions 61 are arranged across the transparent electrode 30 and the first base electrode 41 so as to be included in the first semiconductor layer 21 in a plan view, and are arranged in a matrix in the first direction and the second direction, respectively. It is formed. The second insulating portion 62 is arranged so as to be included in the second semiconductor layer 22 in a plan view so as to be included in the transparent electrode 30 and the second base electrode 42, respectively, and the second insulating portion 62 and the first insulating portion 61 in the first direction and the second direction. It is formed so as to be arranged in a matrix arranged alternately. The insulating paste can be selectively laminated by screen printing. Further, also in the insulating portion forming step, it is preferable to volatilize the solvent contained in the insulating paste and perform drying so that the formed first insulating portion 61 and the second insulating portion 62 are not easily deformed. The drying conditions can be, for example, about 3 minutes at 150 ° C.
 ステップS05の嵩上電極形成工程では、図9に示すように、第2の導電性ペーストを積層することにより、第1ベース電極41の第1絶縁部61が積層されない領域に第1嵩上電極51を形成すると共に、第2ベース電極42の第2絶縁部62が積層されない領域に第2嵩上電極52を形成する。第1嵩上電極51及び第2嵩上電極52は、それぞれ第1方向及び第2方向に並ぶ行列状に配列され、且つ第1方向及び第2方向に交互に配置されるよう形成される。第2の導電性ペーストも、スクリーン印刷によって選択的に積層することができる。また、嵩上電極形成工程でも、第2の導電性ペーストに含まれる溶剤を揮発させ、形成した第1嵩上電極51及び第2嵩上電極52が容易に変形しないようにするための乾燥を行うことが好ましい。この乾燥の条件も、例えば150℃で3分間程度とすることができる。 In the step of forming the raised electrode in step S05, as shown in FIG. 9, by laminating the second conductive paste, the first raised electrode is formed in a region where the first insulating portion 61 of the first base electrode 41 is not laminated. The 51 is formed, and the second raised electrode 52 is formed in a region where the second insulating portion 62 of the second base electrode 42 is not laminated. The first raised electrode 51 and the second raised electrode 52 are arranged in a matrix arranged in the first direction and the second direction, respectively, and are formed so as to be alternately arranged in the first direction and the second direction. The second conductive paste can also be selectively laminated by screen printing. Further, also in the bulking electrode forming step, the solvent contained in the second conductive paste is volatilized, and the formed first raised electrode 51 and the second raised electrode 52 are dried so as not to be easily deformed. It is preferable to do so. The drying conditions can also be, for example, about 3 minutes at 150 ° C.
 ステップS06のエッチング工程では、図10に示すように、第1ベース電極41、第2ベース電極42、第1絶縁部61、第2絶縁部62、第1嵩上電極51及び第2嵩上電極52をマスクとするエッチングにより、透明電極30の第1半導体層21と第2半導体層22とに跨る領域を選択的に除去することによって、平面視で第1半導体層21に内包される第1透明電極31と、平面視で第2半導体層22に内包される第2透明電極32とを分離する。ITOから形成される透明電極30をエッチングすることができるエッチング液としては、例えば塩酸などを用いることができる。 In the etching step of step S06, as shown in FIG. 10, the first base electrode 41, the second base electrode 42, the first insulating portion 61, the second insulating portion 62, the first raised electrode 51, and the second raised electrode The first semiconductor layer 21 is included in the first semiconductor layer 21 in a plan view by selectively removing the region of the transparent electrode 30 straddling the first semiconductor layer 21 and the second semiconductor layer 22 by etching with the 52 as a mask. The transparent electrode 31 and the second transparent electrode 32 included in the second semiconductor layer 22 are separated from each other in a plan view. As an etching solution capable of etching the transparent electrode 30 formed from ITO, for example, hydrochloric acid or the like can be used.
 このとき、サイドエッチ効果により、分離された第1透明電極31及び第2透明電極32の第2方向の幅は、平面視でマスクとされた第1ベース電極41、第2ベース電極42、第1絶縁部61、第2絶縁部62、第1嵩上電極51及び第2嵩上電極52の包絡形状の第2方向の幅よりも僅かに小さくなる。このため、何らかの原因により位置ずれが生じて、第1絶縁部61又は第2絶縁部62が、第1ベース電極41、第2ベース電極42、第1嵩上電極51及び第2嵩上電極52の第2方向に隣接する部分と接触していた場合でも、接触部分の直下の透明電極30を除去して第1透明電極31と第2透明電極32とを分離することができる。 At this time, the widths of the first transparent electrode 31 and the second transparent electrode 32 separated by the side etch effect in the second direction are the first base electrode 41, the second base electrode 42, and the second base electrode 42, which are masked in a plan view. It is slightly smaller than the width of the envelope shape of the 1 insulating portion 61, the 2nd insulating portion 62, the 1st raised electrode 51, and the 2nd raised electrode 52 in the second direction. Therefore, the position shift occurs for some reason, and the first insulating portion 61 or the second insulating portion 62 causes the first base electrode 41, the second base electrode 42, the first raised electrode 51, and the second raised electrode 52. Even when the portion is in contact with the portion adjacent to the second direction, the transparent electrode 30 immediately below the contact portion can be removed to separate the first transparent electrode 31 and the second transparent electrode 32.
 ステップS07の焼成工程では、加熱により、第1ベース電極41、第2ベース電極42、第1絶縁部61、第2絶縁部62、第1嵩上電極51及び第2嵩上電極52を硬化させる。また、焼成工程では、加熱により、第1ベース電極41、第2ベース電極42、第1絶縁部61、第2絶縁部62、第1嵩上電極51及び第2嵩上電極52を形成する第1の導電性ペースト、絶縁性ペースト及び第2の導電性ペーストの樹脂成分を染み出させて、図11に示すように、第1透明電極31及び第2透明電極32の第2方向両側の端面の一部または全部を被覆する第1被覆部81及び第2被覆部82を形成することができる。この焼成の条件は、例えば180℃で60分間程度とすることができる。 In the firing step of step S07, the first base electrode 41, the second base electrode 42, the first insulating portion 61, the second insulating portion 62, the first raised electrode 51, and the second raised electrode 52 are cured by heating. .. Further, in the firing step, the first base electrode 41, the second base electrode 42, the first insulating portion 61, the second insulating portion 62, the first raised electrode 51, and the second raised electrode 52 are formed by heating. The resin components of the conductive paste, the insulating paste, and the second conductive paste of No. 1 are exuded, and as shown in FIG. 11, the end faces of the first transparent electrode 31 and the second transparent electrode 32 on both sides in the second direction. The first coating portion 81 and the second coating portion 82 that cover a part or all of the above can be formed. The firing conditions can be, for example, 180 ° C. for about 60 minutes.
 ステップS08の配線材接続工程では、第2方向に延びる第1配線材71及び第2配線材72によって第2方向に並ぶ第1嵩上電極51の間及び第2嵩上電極52の間をそれぞれ接続する。これによって、図2に示すような太陽電池1を得ることができる。 In the wiring material connecting step of step S08, between the first raised electrode 51 and the second raised electrode 52 arranged in the second direction by the first wiring material 71 and the second wiring material 72 extending in the second direction, respectively. Connecting. As a result, the solar cell 1 as shown in FIG. 2 can be obtained.
 以上の太陽電池製造方法では、透明電極積層工程で前面に透明電極30を形成し、透明電極選択除去工程で第1ベース電極41、第2ベース電極42、第1絶縁部61、第2絶縁部62、第1嵩上電極51及び第2嵩上電極52をマスクとするエッチングを行うので、第1透明電極31第2透明電極32を形成するための専用のマスクを形成する必要がないので、比較的安価に高効率な太陽電池1を製造することができる。 In the above solar cell manufacturing method, the transparent electrode 30 is formed on the front surface in the transparent electrode laminating step, and the first base electrode 41, the second base electrode 42, the first insulating portion 61, and the second insulating portion are formed in the transparent electrode selective removal step. Since etching is performed using 62, the first raised electrode 51 and the second raised electrode 52 as masks, it is not necessary to form a dedicated mask for forming the first transparent electrode 31 and the second transparent electrode 32. A highly efficient solar cell 1 can be manufactured at a relatively low cost.
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることなく、種々の変更および変形が可能である。例えば、本発明に係る太陽電池は、上述した構成要素以外に、各構成要素間を絶縁する真性半導体層、光の反射を抑制する反射防止膜、電極等を保護する樹脂フィルムなどのさらなる構成要素を備えてもよい。また、本発明に係る太陽電池において、被覆部はなくてもよい。つまり、第1ベース電極及び第2ベース電極を形成する第1導電性ペースト、第1絶縁部及び第2絶縁部を形成する絶縁性ペースト並びに第1嵩上電極及び第2嵩上電極を形成する第2導電性ペーストとして、焼成時に樹脂成分が染み出しにくいものを使用してもよい。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications and modifications can be made. For example, the solar cell according to the present invention has additional components such as an intrinsic semiconductor layer that insulates between each component, an antireflection film that suppresses light reflection, and a resin film that protects electrodes and the like, in addition to the above-mentioned components. May be provided. Further, in the solar cell according to the present invention, the covering portion may not be provided. That is, the first conductive paste forming the first base electrode and the second base electrode, the insulating paste forming the first insulating portion and the second insulating portion, and the first raised electrode and the second raised electrode are formed. As the second conductive paste, one in which the resin component does not easily exude during firing may be used.
 本発明に係る太陽電池製造方法において、エッチング工程の前に焼成を行ってもよい。この場合には、被覆部は形成されないので、第1導電性ペースト、絶縁性ペースト及び第2導電性ペーストとして、焼成時に樹脂成分が染み出しにくいものを使用することが好ましい。また、本発明に係る太陽電池製造方法において、絶縁部形成工程と嵩上電極形成工程との順番を入れ替えてもよい。 In the solar cell manufacturing method according to the present invention, firing may be performed before the etching step. In this case, since the covering portion is not formed, it is preferable to use as the first conductive paste, the insulating paste and the second conductive paste, which are hard to exude the resin component at the time of firing. Further, in the solar cell manufacturing method according to the present invention, the order of the insulating portion forming step and the raised electrode forming step may be changed.
 1 太陽電池
 11 半導体基板
 21 第1半導体層
 22 第2半導体層
 31 第1透明電極
 32 第2透明電極
 41 第1ベース電極
 42 第2ベース電極
 51 第1嵩上電極
 52 第2嵩上電極
 61 第1絶縁部
 62 第2絶縁部
 71 第1配線材
 72 第2配線材
 81 第1被覆部
 82 第2被覆部
1 Solar cell 11 Semiconductor substrate 21 1st semiconductor layer 22 2nd semiconductor layer 31 1st transparent electrode 32 2nd transparent electrode 41 1st base electrode 42 2nd base electrode 51 1st raised electrode 52 2nd raised electrode 61 1 Insulation part 62 Second insulation part 71 First wiring material 72 Second wiring material 81 First coating part 82 Second coating part

Claims (7)

  1.  半導体基板の裏面に、それぞれ第1方向に延びる第1半導体層及び第2半導体層を前記第1方向と交差する第2方向に交互に形成する工程と、
     前記第1半導体層及び第2半導体層を覆うよう前記半導体基板の裏面側に透明電極を積層する工程と、
     第1の導電性ペーストを積層することにより、前記透明電極の前記第1半導体層に積層した領域にそれぞれ前記第1方向に延びる第1ベース電極を形成すると共に、前記透明電極の前記第2半導体層に積層した領域にそれぞれ前記第1方向に延びる第2ベース電極を形成する工程と、
     絶縁性ペーストを積層することにより、それぞれ平面視で前記第1半導体層に内包されるよう前記透明電極及び前記第1ベース電極に跨って配置され、前記第1方向及び前記第2方向に行列状に並ぶ複数の第1絶縁部を形成すると共に、それぞれ平面視で前記第2半導体層に内包されるよう前記透明電極及び前記第2ベース電極に跨って配置され、前記第1方向及び前記第2方向に前記第1絶縁部と交互に配置される行列状に並ぶ複数の第2絶縁部を形成する工程と、
     第2の導電性ペーストを積層することにより、前記第1ベース電極の前記第1絶縁部が積層されない領域に第1嵩上電極を形成すると共に、前記第2ベース電極の前記第2絶縁部が積層されない領域に第2嵩上電極を形成する工程と、
     前記第1ベース電極、前記第2ベース電極、前記第1絶縁部、前記第2絶縁部、第1嵩上電極及び前記第2嵩上電極をマスクとするエッチングにより、前記透明電極を選択的に除去する工程と、
     前記第2方向に延びる第1配線材及び第2配線材によって前記第1嵩上電極の間及び前記第2嵩上電極の間をそれぞれ接続する工程と、
    を備える、太陽電池製造方法。
    A step of alternately forming a first semiconductor layer and a second semiconductor layer extending in the first direction on the back surface of the semiconductor substrate in the second direction intersecting the first direction, respectively.
    A step of laminating a transparent electrode on the back surface side of the semiconductor substrate so as to cover the first semiconductor layer and the second semiconductor layer, and
    By laminating the first conductive paste, the first base electrode extending in the first direction is formed in the region laminated with the first semiconductor layer of the transparent electrode, and the second semiconductor of the transparent electrode is formed. A step of forming a second base electrode extending in the first direction in each of the regions laminated in the layer, and a step of forming the second base electrode.
    By laminating the insulating paste, they are arranged across the transparent electrode and the first base electrode so as to be encapsulated in the first semiconductor layer in a plan view, respectively, and are arranged in a matrix in the first direction and the second direction. A plurality of first insulating portions arranged in line with each other are formed, and are arranged across the transparent electrode and the second base electrode so as to be included in the second semiconductor layer in a plan view, respectively, in the first direction and the second. A step of forming a plurality of second insulating portions arranged in a matrix alternately arranged with the first insulating portion in the direction, and
    By laminating the second conductive paste, the first raised electrode is formed in the region where the first insulating portion of the first base electrode is not laminated, and the second insulating portion of the second base electrode is formed. The step of forming the second raised electrode in the non-stacked region and
    The transparent electrode is selectively selected by etching using the first base electrode, the second base electrode, the first insulating portion, the second insulating portion, the first raised electrode, and the second raised electrode as masks. The process of removing and
    A step of connecting between the first raised electrodes and between the second raised electrodes by the first wiring material and the second wiring material extending in the second direction, respectively.
    A solar cell manufacturing method.
  2.  前記透明電極を選択的に除去した後に、加熱により前記第1ベース電極及び前記第2ベース電極並びに前記第1絶縁部及び前記第2絶縁部に含まれる樹脂を染み出させる工程をさらに備える、請求項1に記載の太陽電池製造方法。 A claim further comprising a step of selectively exuding the transparent electrode and then heating to exude the resin contained in the first base electrode, the second base electrode, and the first insulating portion and the second insulating portion. Item 2. The solar cell manufacturing method according to item 1.
  3.  前記第1の導電性ペーストの積層、前記絶縁性ペーストの積層及び前記第2の導電性ペーストの積層をそれぞれスクリーン印刷により行う、請求項1又は2に記載の太陽電池製造方法。 The solar cell manufacturing method according to claim 1 or 2, wherein the first conductive paste, the insulating paste, and the second conductive paste are laminated by screen printing, respectively.
  4.  半導体基板と、
     前記半導体基板の裏面に、それぞれ第1方向に延び、第1方向と交差する第2方向に交互に設けられる複数の第1半導体層及び複数の第2半導体層と、
     それぞれの前記第1半導体層に前記第1方向に延びるよう積層される複数の第1透明電極、及びそれぞれの前記第2半導体層に前記第1方向に延びるよう積層される複数の第2透明電極と、
     それぞれの前記第1透明電極に前記第1方向に延びるよう積層される複数の第1ベース電極、及びそれぞれの前記第2透明電極に前記第1方向に延びるよう積層される複数の第2ベース電極と、
     それぞれの前記第1ベース電極の複数の部分に積層されるよう、前記第1方向及び前記第2方向に間隔を空けて行列状に配設される複数の第1嵩上電極、及びそれぞれの前記第2ベース電極の複数の部分に積層されるよう、前記第1方向及び前記第2方向に前記第1嵩上電極と互い違いに間隔を空けて行列状に配設される複数の第2嵩上電極と、
     それぞれの前記第1ベース電極の前記第1嵩上電極の間の部分を覆い、平面視で前記第1半導体層に内包されるよう前記第1透明電極及び前記第1ベース電極に跨って積層される第1絶縁部、及びそれぞれの前記第2ベース電極の前記第2嵩上電極の間の部分を覆い、それぞれが平面視で前記第2半導体層に内包されるよう前記第2透明電極及び前記第2ベース電極に跨って積層される第2絶縁部と、
     前記第1嵩上電極及び前記第1絶縁部の裏面側に配置され、前記第1嵩上電極の間を電気的に接続する第1配線材、及び前記第2嵩上電極及び前記第2絶縁部の裏面側に配置され、前記第2嵩上電極の間を電気的に接続する第2配線材と、
    を備える、太陽電池。
    With a semiconductor substrate
    A plurality of first semiconductor layers and a plurality of second semiconductor layers extending in the first direction and alternately provided in the second direction intersecting the first direction on the back surface of the semiconductor substrate.
    A plurality of first transparent electrodes laminated on each of the first semiconductor layers so as to extend in the first direction, and a plurality of second transparent electrodes laminated on each of the second semiconductor layers so as to extend in the first direction. When,
    A plurality of first base electrodes laminated so as to extend in the first direction on each of the first transparent electrodes, and a plurality of second base electrodes laminated so as to extend in the first direction on each of the second transparent electrodes. When,
    A plurality of first raised electrodes arranged in a matrix at intervals in the first direction and the second direction so as to be laminated on a plurality of portions of each of the first base electrodes, and each of the above. A plurality of second raised electrodes arranged in a matrix in the first direction and the second direction at intervals alternately from the first raised electrode so as to be laminated on a plurality of portions of the second base electrode. With electrodes
    The portion of each of the first base electrodes between the first raised electrodes is covered, and the first transparent electrode and the first base electrode are laminated so as to be included in the first semiconductor layer in a plan view. The second transparent electrode and the said A second insulating part laminated over the second base electrode and
    A first wiring material arranged on the back surface side of the first raised electrode and the first insulating portion and electrically connecting between the first raised electrodes, and the second raised electrode and the second insulating. A second wiring material, which is arranged on the back surface side of the portion and electrically connects between the second raised electrodes,
    With a solar cell.
  5.  前記第1絶縁部及び前記第2絶縁部は前記第1半導体層及び前記第2半導体層から離間しており、
     前記第1絶縁部の前記第2方向の幅は前記第1透明電極の前記第2方向の幅よりも大きく、前記第2絶縁部の前記第2方向の幅は前記第2透明電極の前記第2方向の幅よりも大きい、請求項4に記載の太陽電池。
    The first insulating portion and the second insulating portion are separated from the first semiconductor layer and the second semiconductor layer.
    The width of the first insulating portion in the second direction is larger than the width of the first transparent electrode in the second direction, and the width of the second insulating portion in the second direction is the width of the second transparent electrode. The solar cell according to claim 4, which is larger than the width in two directions.
  6.  前記第1ベース電極の前記第1絶縁部が積層される領域及び前記第2ベース電極の前記第2絶縁部が積層される部分の前記第2方向の幅は、前記第1ベース電極の前記第1嵩上電極が積層される領域及び前記第2ベース電極の前記第2嵩上電極が積層される部分の前記第2方向の幅よりも小さく、
     前記第1絶縁部及び前記第2絶縁部の前記第2方向の幅は、前記第1ベース電極の前記第1嵩上電極が積層される領域及び前記第2ベース電極の前記第2嵩上電極が積層される部分の前記第2方向の幅と略等しい、請求項4又は5に記載の太陽電池。
    The width in the second direction of the region where the first insulating portion of the first base electrode is laminated and the portion where the second insulating portion of the second base electrode is laminated is the width of the first base electrode. 1 The width of the region where the raised electrodes are laminated and the portion of the second base electrode on which the second raised electrode is laminated is smaller than the width in the second direction.
    The width of the first insulating portion and the second insulating portion in the second direction is the region where the first raised electrode of the first base electrode is laminated and the second raised electrode of the second base electrode. The solar cell according to claim 4 or 5, wherein the width of the portion where is laminated is substantially equal to the width of the portion in the second direction.
  7.  前記第1透明電極及び前記第2透明電極の側面が少なくとも部分的に樹脂により被覆されている、請求項4から6のいずれかに記載の太陽電池。 The solar cell according to any one of claims 4 to 6, wherein the first transparent electrode and the side surface of the second transparent electrode are at least partially coated with a resin.
PCT/JP2020/047682 2020-01-08 2020-12-21 Method for manufacturing solar cell and solar cell WO2021140897A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021569815A JP7539415B2 (en) 2020-01-08 2020-12-21 Solar cell manufacturing method and solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-001243 2020-01-08
JP2020001243 2020-01-08

Publications (1)

Publication Number Publication Date
WO2021140897A1 true WO2021140897A1 (en) 2021-07-15

Family

ID=76788586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047682 WO2021140897A1 (en) 2020-01-08 2020-12-21 Method for manufacturing solar cell and solar cell

Country Status (2)

Country Link
JP (1) JP7539415B2 (en)
WO (1) WO2021140897A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158977A1 (en) * 2015-03-31 2016-10-06 株式会社カネカ Solar battery and solar battery module
JP2017055117A (en) * 2015-09-09 2017-03-16 エルジー エレクトロニクス インコーポレイティド Solar cell module and manufacturing method therefor
JP2017055113A (en) * 2015-09-08 2017-03-16 エルジー エレクトロニクス インコーポレイティド Solar cell module and manufacturing method therefor
WO2018037672A1 (en) * 2016-08-22 2018-03-01 株式会社カネカ Solar cell and solar cell module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158977A1 (en) * 2015-03-31 2016-10-06 株式会社カネカ Solar battery and solar battery module
JP2017055113A (en) * 2015-09-08 2017-03-16 エルジー エレクトロニクス インコーポレイティド Solar cell module and manufacturing method therefor
JP2017055117A (en) * 2015-09-09 2017-03-16 エルジー エレクトロニクス インコーポレイティド Solar cell module and manufacturing method therefor
WO2018037672A1 (en) * 2016-08-22 2018-03-01 株式会社カネカ Solar cell and solar cell module

Also Published As

Publication number Publication date
JPWO2021140897A1 (en) 2021-07-15
JP7539415B2 (en) 2024-08-23

Similar Documents

Publication Publication Date Title
CN107810561B (en) One-dimensional metallization of solar cells
JP7356445B2 (en) Method of manufacturing solar cells, solar cells, and solar cell modules
JP2019523564A (en) Back contact type solar cell string and manufacturing method, module and system thereof
JP5140132B2 (en) Back electrode type solar cell with wiring substrate, solar cell module, and method for manufacturing back electrode type solar cell with wiring substrate
JP6619273B2 (en) Photoelectric conversion device
WO2021140897A1 (en) Method for manufacturing solar cell and solar cell
JP2023520119A (en) Solar cell and solar cell panel and manufacturing method thereof
KR101550927B1 (en) Solar cell and method of fabircating the same
CN111448672A (en) Solar cell with junctions retracted from cut edges
JP7502873B2 (en) Solar cell and method for manufacturing solar cell
KR101788160B1 (en) Solar cell module
WO2021193413A1 (en) Solar cell and method for manufacturing solar cell
WO2021241425A1 (en) Solar cell and method for producing solar cell
US11588061B2 (en) Photoelectric conversion module and method for manufacturing photoelectric conversion module
WO2021171953A1 (en) Solar cell and method for producing solar cell
JP2021125603A (en) Solar cell string and manufacturing method of solar cell string
JP7330880B2 (en) SOLAR BATTERY STRING MANUFACTURING METHOD AND SOLAR BATTERY STRING
CN115136326B (en) Solar cell
JP2021174839A (en) Production method of solar battery and solar battery
CN115064612B (en) Manufacturing method of photoelectric detector
US20230074032A1 (en) Solar cell and method for manufacturing solar cell
TWI496303B (en) Solar cell, method for manufacturing the same and solar cell module
JP7576461B2 (en) Method for manufacturing solar cell and solar cell
JP2019054167A (en) Photoelectric conversion module
JP2021150506A (en) Manufacturing method for solar cell and solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911840

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021569815

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20911840

Country of ref document: EP

Kind code of ref document: A1