[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021039463A1 - ドーパントおよび導電性組成物ならびにその製造方法 - Google Patents

ドーパントおよび導電性組成物ならびにその製造方法 Download PDF

Info

Publication number
WO2021039463A1
WO2021039463A1 PCT/JP2020/030963 JP2020030963W WO2021039463A1 WO 2021039463 A1 WO2021039463 A1 WO 2021039463A1 JP 2020030963 W JP2020030963 W JP 2020030963W WO 2021039463 A1 WO2021039463 A1 WO 2021039463A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
dopant
represented
conductive
Prior art date
Application number
PCT/JP2020/030963
Other languages
English (en)
French (fr)
Inventor
岡本 敏宏
忠法 黒澤
純一 竹谷
大次 池田
泰之 赤井
Original Assignee
国立大学法人東京大学
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学, 株式会社ダイセル filed Critical 国立大学法人東京大学
Priority to JP2021542758A priority Critical patent/JPWO2021039463A1/ja
Priority to CN202080059299.1A priority patent/CN114341104B/zh
Priority to EP20856330.4A priority patent/EP4019492A4/en
Priority to US17/634,286 priority patent/US12046390B2/en
Priority to KR1020227009077A priority patent/KR20220051212A/ko
Publication of WO2021039463A1 publication Critical patent/WO2021039463A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/128Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • C07C211/56Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/48Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups having nitrogen atoms of sulfonamide groups further bound to another hetero atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/18Definition of the polymer structure conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/316Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain bridged by heteroatoms, e.g. N, P, Si or B
    • C08G2261/3162Arylamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/514Electron transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/92TFT applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes

Definitions

  • the present disclosure discloses a novel dopant capable of forming a conductive composition exhibiting high conductivity (electrical conductivity or conductivity), a conductive composition containing the dopant and a conductive organic compound, a method for producing the same, and the conductivity.
  • the present invention relates to an electronic device containing a composition, a novel ionic compound useful as a dopant, and a method for producing the same.
  • Organic electronic materials such as conductive polymer compounds (or ⁇ -conjugated polymer compounds) take advantage of their high lightness, flexibility, moldability (or productivity), etc. It is used as a material for various electronic devices.
  • Organic semiconductor materials can usually be doped (or doped) with a dopant to impart or develop high conductivity. Dopants include donors (electron donors or N-type dopants) that inject electrons as carriers, and acceptors (electron acceptors or P-type dopants) that extract electrons and inject holes (holes).
  • Donors include, for example, alkali metals, alkaline earth metals, quaternary ammoniums, quaternary phosphoniums, etc., and acceptors include halogens, Lewis acids, protonic acids, transition metal halides, organic compounds, etc. It has been known.
  • Typical acceptors include 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), which are widely used in the field of organic semiconductors.
  • F4TCNQ 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane
  • PBTTT-C16 poly [2,5-bis (3-hexadecylthiophene-2-yl) thieno [3,2-b] thiophene]
  • Non-Patent Document 1 holes are formed by oxidizing PBTTT-C16 to F4TCNQ to a radical cation state, while the reduced radical anion of F4TCNNQ is stored in PBTTT-C16. Since the radical anion of F4TCNQ is unstable, it is not only easily oxidized by the radical cation to return to the neutral state, but also F4TCNQ has a low oxidizing power itself and escapes (sublimates) due to the influence of heat or the like. Combined with this, the doping efficiency (ratio of carriers generated to the amount of doping) is low.
  • the doping efficiency is low, a large amount of dopant is required to increase the carrier concentration (or conductivity), but if the amount of dopant (impurity) is too large, the charge path (or conductive path) is hindered and conducted. Conductivity cannot be sufficiently improved because it causes a decrease in the degree.
  • conductive organic compounds such as PBTTT-C16 are regularly arranged due to high crystallinity, but probably because F4TCNQ is stored in an unstable state, after doping.
  • the crystallinity of PBTTT-C16 may decrease, and the crystal structure of PBTTT-C16 may be disturbed when F4TCNNQ escapes.
  • the crystallinity is lowered, it becomes difficult to maintain the aggregate structure (or crystal structure) of the polymer by suppressing the fluctuation of the molecule, so that the stability (durability in a high temperature environment) may be lowered.
  • an object of the present disclosure is to provide a novel dopant capable of forming a conductive composition exhibiting high conductivity, a conductive composition containing this dopant and a method for producing the same, and an electronic device containing the conductive composition. It is in.
  • Another object of the present disclosure is a dopant capable of suppressing (or maintaining or improving) the decrease in crystallinity of a doped conductive organic compound and forming a conductive composition exhibiting high stability.
  • An object of the present invention is to provide a conductive composition containing the same, a method for producing the same, and an electronic device containing the conductive composition.
  • Still another object of the present disclosure is to provide a dopant showing high doping efficiency, a conductive composition containing this dopant and a method for producing the same, and an electronic device containing this conductive composition.
  • Another object of the present disclosure is to provide a novel ionic compound useful as a dopant and a method for producing the same.
  • the present inventors have obtained conductivity in a conductive composition by using an ionic compound composed of a nitrogen anion having a predetermined chemical structure and a counter cation as a dopant.
  • the present invention has been completed by finding that it can be effectively improved.
  • the novel dopant of the present disclosure includes an anion represented by the following formula (1) and a counter cation.
  • R 1 and R 2 each independently exhibit an electron-withdrawing group, and R 1 and R 2 may be bonded to each other to form a heterocycle).
  • R 1 and R 2 are selected from a nitro group, a cyano group, an acyl group, a carboxyl group, an alkoxycarbonyl group, a haloalkyl group, a sulfo group, an alkylsulfonyl group, a halosulfonyl group and a haloalkylsulfonyl group. It may be at least one group, or a sulfonyl-haloalkylene-sulfonyl group (haloalkylene disulfonyl group or group [-SO 2- L-SO] formed by bonding R 1 and R 2 to each other. 2- ] (L represents a haloalkylene group in the formula)).
  • R 1 and R 2 may be a fluorosulfonyl group or a fluoroalkylsulfonyl group (for example, a perfluoroalkylsulfonyl group), or R 1 and R 2 are formed by bonding with each other.
  • R 1 and R 2 are formed by bonding with each other.
  • a sulfonyl-fluoroalkylene-sulfonyl group fluoroalkylene disulfonyl group or group [-SO 2- L-SO 2- ] (in the formula, L indicates a fluoroalkylene group (for example, a perfluoroalkyl group))).
  • L indicates a fluoroalkylene group (for example, a perfluoroalkyl group))
  • the counter cation may be a radical cation represented by the following formula (2).
  • R 3 to R 5 each independently represent a hydrogen atom, a hydrocarbon group which may have a substituent, or a heterocyclic group which may have a substituent).
  • R 3 to R 5 may be an aryl group which may have a substituent, and the substituents include a halogen atom, an alkyl group, a hydroxyl group, an alkoxy group and a nitro group. It may be a group selected from an amino group and a substituted amino group.
  • the present disclosure includes a conductive composition containing the dopant and a conductive organic compound.
  • the conductive organic compound may be a conductive polymer compound having a heterocycle (conductive heteropolymer compound or heterocyclic conductive polymer compound).
  • the conductive organic compound may be a conductive polymer compound having at least a structural unit represented by the following formula (3).
  • X 1 represents an oxygen atom or a sulfur atom
  • R 6 represents a substituent
  • n represents an integer of 0 to 2).
  • the present disclosure also includes a method of doping the conductive organic compound with the dopant to produce the conductive composition and an electronic device containing the conductive composition.
  • the present disclosure includes an ion pair (or an ionic compound) containing an anion represented by the following formula (1a) and a radical cation represented by the following formula (2a).
  • R 1a and R 2a each independently represent a fluorine atom or a fluoroalkyl group (for example, a perfluoroalkyl group), and R 1a and R 2a are bonded to each other to form a fluoroalkylene group (for example, perfluoro).
  • An alkylene group may be formed).
  • R 3a to R 5a independently indicate a substituent, and m3 to m5 independently indicate an integer of 0 to 5).
  • the present disclosure discloses an ionic compound containing an anion represented by the formula (1a) and a monovalent metal ion [particularly, an ionic compound composed of an anion represented by the formula (1a) and a monovalent metal ion].
  • the neutral compound corresponding to the radical cation represented by the formula (2a) are reacted in the presence of an oxidizing agent to react the anion represented by the formula (1a) and the radical represented by the formula (2a). It also includes a method of producing the ion pair (or ionic compound) containing a cation.
  • the "dopant” is an additive (oxidizer (acceptor) or reducing agent (donor) for forming an organic electronic material including not only an organic semiconductor but also an organic thermoelectric material and the like. )) Means.
  • the dopant of the present disclosure since an ionic compound containing a nitrogen anion having a predetermined chemical structure is used as a dopant, a conductive composition exhibiting high conductivity can be formed. Further, the dopant of the present disclosure has a conductive composition capable of suppressing a decrease in crystallinity (or maintaining or improving crystallinity) of a conductive organic compound even when doped, and exhibiting high stability (durability in a high temperature environment). Can form things. Furthermore, since the dopants of the present disclosure also exhibit high doping efficiency, they can efficiently dope even highly crystalline conductive organic compounds that are usually difficult to dope. The present disclosure can also provide novel ionic compounds useful as dopants.
  • FIG. 1 is an ultraviolet-visible-near-infrared (UV-Vis-NIR) absorption spectrum of PBTTT-C14 undoped with the conductive composition and dopant obtained in Example 2 and Comparative Example 1.
  • FIG. 2 shows the measurement results of the X-ray locking carp of PBTTT-C14 not doped with the conductive composition and the dopant obtained in Example 3 and Comparative Example 2.
  • UV-Vis-NIR ultraviolet-visible-near-infrared
  • the novel dopant (P-type dopant) of the present disclosure is also referred to as an ionic compound (salt, ion pair, ionic substance or heteropolar compound) containing an anion represented by the above formula (1) and a counter cation (counter cation). ), And may be a metal complex or a metal compound.
  • the dopant is preferably composed of an anion represented by the above formula (1) and a counter cation.
  • the monovalent anion represented by the formula (1) since the two electron-withdrawing groups R 1 and R 2 have a chemical structure in which the negative charge in the nitrogen anion is attracted and delocalized, the anion alone has a chemical structure. Even if there is, it is relatively stable.
  • the countercation is converted into a corresponding electrically neutral compound (or atom) by electrons received from the conductive organic compound and stabilized.
  • the anion represented by the formula (1) is released from the ionic bond with the counter cation, and exists in a state where the anion alone is stored or embedded in the conductive organic compound (for example, in the crystal).
  • the anion represented by the formula (1) is relatively stable even when used alone, so that it does not donate electrons to the conductive organic compound in the radical cation state. Can be stably present in the composition. Therefore, the doping efficiency is high and the conductivity can be effectively improved.
  • the anion represented by the formula (1) is stable, and surprisingly, the decrease in crystallinity of the conductive organic compound after doping is suppressed (or the crystallinity is maintained or maintained). (Improvement) can be achieved, the conductivity can be further improved, and a conductive composition showing high stability can be formed.
  • the dopant of the present disclosure is easier to change (or chemically modify) the types of electron-withdrawing groups R 1 and R 2 in the formula (1) and the type of counter cation as compared with the conventional dopant, and is doped. It is easy to control (or tune) the LUMO of the dopant according to the HOMO of the conductive organic compound to be combined.
  • the anion represented by the formula (1) seems to be preferable in that it becomes a closed-shell and soft base.
  • soft acids or bases, as well as hard acids or bases mean the definition (or classification) of acid-bases in HSAB (hard and soft acids and bases).
  • the anion represented by the formula (1) and the conductive organic compound having holes are conductive. It is considered desirable that ions of similar size and shape form a pair (in order for them to be stable in the sex composition). Therefore, the anion pairing with the doped conductive organic compound (particularly the conductive polymer compound) having delocalized holes preferably has a large size.
  • R 1 and R 2 each independently exhibit an electron-withdrawing group, and R 1 and R 2 may be bonded to each other to form a heterocycle).
  • examples of the electron-withdrawing group represented by R 1 and R 2 include a nitro group, a cyano group, an acyl group, a carboxyl group, and an alkoxycarbonyl group (C 1-6 such as a methoxycarbonyl group).
  • haloalkyl group perhaloalkyl group such as trifluoromethyl group, trichloromethyl group, etc.
  • sulfo group alkylsulfonyl group (C 1-6 alkylsulfonyl group such as methylsulfonyl group), halosulfonyl group
  • alkylsulfonyl group C 1-6 alkylsulfonyl group such as methylsulfonyl group
  • halosulfonyl group examples include a group and a haloalkylsulfonyl group.
  • R 1 and R 2 may be bonded to each other to form a heterocycle (or R 1 and R 2 may be bonded to each other to form a divalent group).
  • the two above-exemplified electron-withdrawing groups bonded to nitrogen are directly or divalently linked (alkylene group, haloalkylene group, ether group, ester group, group combining these, etc.).
  • a ring may be formed by bonding (or substituting) with, and examples of the divalent group formed by bonding R 1 and R 2 to each other include a sulfonyl-haloalkylene-sulfonyl group. (Haloalkylene disulfonyl group or group [-SO 2- L-SO 2- ] (in the formula, L indicates a haloalkylene group)) and the like.
  • halosulfonyl group or a haloalkylsulfonyl group or a group in which R 1 and R 2 are bonded to each other [-SO 2- L-SO 2- ] (in the formula).
  • L represents a haloalkylene group).
  • halosulfonyl group include a fluorosulfonyl group and a chlorosulfonyl group.
  • haloalkylsulfonyl group examples include a fluoroalkylsulfonyl group [for example, a fluoromethylsulfonyl group, a trifluoroethylsulfonyl group, a trifluoropropylsulfonyl group, a pentafluoropropylsulfonyl group, and a perfluoroalkylsulfonyl group (for example, a trifluoromethylsulfonyl group).
  • a fluoroalkylsulfonyl group for example, a fluoromethylsulfonyl group, a trifluoroethylsulfonyl group, a trifluoropropylsulfonyl group, a pentafluoropropylsulfonyl group
  • perfluoroalkylsulfonyl group for example, a trifluoromethylsulf
  • examples of the haloalkylene group represented by L include a fluoroalkylene group (for example, a perfluoroalkylene group, specifically, a tetrafluoroethylene group and a hexafluoro). propane-1,3-diyl group, a perfluoro C 2-4 alkylene group such as octafluoro-1,4-diyl group), such as perchlorethylene alkylene group such as chloro alkylene group (perchloro C 2-4 alkylene group ) And so on.
  • a fluoroalkylene group for example, a perfluoroalkylene group, specifically, a tetrafluoroethylene group and a hexafluoro
  • propane-1,3-diyl group a perfluoro C 2-4 alkylene group such as octafluoro-1,4-diyl group
  • perchlorethylene alkylene group such as chloro alkylene group (per
  • R 1 and R 2 fluorosulfonyl group, (perfluoroalkyl sulfonyl group) fluoroalkyl sulfonyl group, R 1 and R 2 are bonded to each other based on [-SO 2 -L-SO 2 - ]
  • L represents a fluoroalkylene group (perfluoroalkylene group such as perfluoro C 2-4 alkylene group)) and the like, and more preferably perfluoro such as perfluoro C 1-4 alkyl sulfonyl group.
  • Examples thereof include an alkylsulfonyl group, and among them, a perfluoroC 1-3 alkylsulfonyl group, particularly a perfluoroC 1-2 alkylsulfonyl group such as a trifluoromethylsulfonyl group is preferable.
  • radicals R 1 and R 2 may be different from each other, typically, it is preferably identical.
  • Typical examples of the anion represented by the formula (1) include an anion represented by the following formula (1a).
  • R 1a and R 2a independently represent a fluorine atom or a fluoroalkyl group, and R 1a and R 2a may be bonded to each other to form a fluoroalkylene group).
  • the fluoroalkyl groups represented by R 1a and R 2a include fluoroalkyl groups [for example, fluoromethyl group, trifluoroethyl group, trifluoropropyl group, pentafluoropropyl group, perfluoroalkyl group. group (e.g., trifluoromethyl group, pentafluoroethyl group, heptafluoropropyl group, etc. perfluoro C 1-6 alkyl groups such as nonafluorobutyl group) such as fluoro C 1-6 alkyl group such as, chloro alkyl group (For example, a chloro C 1-6 alkyl group such as a chloromethyl group) and the like.
  • fluoroalkyl groups for example, fluoromethyl group, trifluoroethyl group, trifluoropropyl group, pentafluoropropyl group, perfluoroalkyl group.
  • group e.g., triflu
  • R 1a and R 2a may be bonded to each other to form a heterocycle (or R 1a and R 2a may be bonded to each other to form a fluoroalkylene group).
  • fluoroalkylene group for example, a perfluoroalkylene group (e.g., tetrafluoroethylene group, hexafluoro-1,3-diyl group, a perfluoro C 2 such as octafluoro-1,4-diyl group -4- alkylene group and the like) and the like, fluoroC 2-4 alkylene group and the like.
  • R 1a and R 2a include a fluorine atom, a perfluoroalkyl group (perfluoro C 1-4 alkyl group, etc.), and a perfluoroalkylene group in which R 1a and R 2a are bonded to each other (perfluoro C 2-4).
  • a perfluoroalkyl group such as a perfluoroC 1-3 alkyl group is mentioned, and a perfluoroC 1-2 alkyl group such as a trifluoromethyl group is particularly preferable.
  • the types of the groups R 1a and R 2a may be different from each other, but it is usually preferable that they are the same.
  • bis R 1a and R 2a is a fluorine atom (fluorosulfonyl) imide anion [i.e., formula [(FSO 2) 2 N - in] represented anion (FSI - or FSA - also referred to);
  • anion R 1a and R 2a is a perfluoroalkyl group (such as a perfluoro C 1-4 alkyl group), more specifically, bis (trifluoromethane sulfonyl) imide anion [i.e., formula [(CF 3 SO 2) 2 N -] or the formula [Tf 2 N -] anion represented by (TFSI - or TFSA - also referred to)], N-trifluoromethanesulfonyl -N - nonafluorobutanesulfonyl imide anion [i.e., formula [CF 3 SO 2 -N - anion represented by -SO 2 C 4
  • R 1a and R 2a are fluorine atoms or perfluoroalkyl groups (perfluoroC 1-4 alkyl groups, etc.) are preferable, and R 1a and R 2a are perfluoroC 1-3 alkyl groups.
  • Anions are more preferred, especially anions such as TFSI ⁇ in which R 1a and R 2a are perfluoroC 1-2 alkyl groups.
  • the counter cation may be a divalent or higher (polyvalent) cation, but is usually a monovalent cation in many cases. Further, the counter cation is preferably a soft acid, corresponding to the fact that the anion represented by the formula (1) is a soft base. Further, the counter cation may be a non-radical cation, but is preferably a radical cation. When it is a radical cation, it is easy to receive electrons from the conductive organic compound with high oxidizing power when it is doped (it is easy to inject holes), the doping efficiency can be effectively improved, and it becomes a neutral state by receiving electrons. After that, it can often be stably present in the composition. Examples of such a counter cation include a radical cation represented by the following formula (2).
  • R 3 to R 5 each independently represent a hydrogen atom, a hydrocarbon group which may have a substituent, or a heterocyclic group which may have a substituent).
  • Examples of the hydrocarbon group represented by R 3 to R 5 in the above formula (2) include an alkyl group, a cycloalkyl group, an aryl group, and an aralkyl group.
  • Examples of the alkyl group include a linear or branched C 1-6 alkyl group such as a methyl group, an ethyl group, an n-butyl group and a t-butyl group.
  • Examples of the cycloalkyl group include a C 3-10 cycloalkyl group such as a cyclopentyl group and a cyclohexyl group.
  • aryl group examples include a C 6-14 aryl group such as a phenyl group, a 1-naphthyl group and a 2-naphthyl group, and a bi C 6-10 aryl group such as a biphenylyl group.
  • aralkyl group examples include a C 6-14 aryl-C 1-6 alkyl group such as a benzyl group and a phenethyl group. Of these hydrocarbon groups, an alkyl group and an aryl group are preferable, and an aryl group is more preferable.
  • the heterocyclic group represented by R 3 to R 5 may be aromatic or non-aromatic, and for example, at least one hetero atom selected from a nitrogen atom, an oxygen atom and a sulfur atom may be used. Examples thereof include heterocyclic groups. Further, the heterocyclic group may be a monocyclic heterocyclic group, and the monocyclic heterocycle and one or more heterocycles and / or hydrocarbon rings (aromatic hydrocarbon ring or non-aromatic hydrocarbon ring) may be used.
  • the ring) may be a polycyclic heterocyclic group fused (ortho-condensation, ortho-and-peri-condensation, etc.).
  • the rings forming the heterocyclic group (in the case of a polycyclic heterocyclic group, each ring condensing with each other) are often 5 to 7-membered rings, preferably 5 or 6-membered rings.
  • a heterocyclic group containing a nitrogen atom as a hetero atom for example, a 5- or 6-membered monocyclic heterocycle containing a nitrogen atom such as a pyrrolyl group, an imidazolyl group, a pyridyl group, a pyrazinyl group, etc. Group; Indrill group, quinolyl group, isoquinolyl group, quinazolyl group, carbazolyl group, carbolinyl group, phenanthridinyl group, acridinyl group, phenazinyl group, naphthyldinyl group and other heterocyclic rings containing nitrogen atoms.
  • a heterocyclic group containing a nitrogen atom as a hetero atom for example, a 5- or 6-membered monocyclic heterocycle containing a nitrogen atom such as a pyrrolyl group, an imidazolyl group, a pyridyl group, a pyrazinyl group,
  • Heterocyclic groups, etc. ; Heterocyclic groups containing oxygen atoms as heteroatoms [For example, 5- or 6-membered monocyclic heterocyclic groups containing oxygen atoms such as frills; Oxygen atoms such as isobenzofuranyl groups and chromenyl groups A polycyclic heterocyclic group having a 5- or 6-membered ring containing the above; a heterocyclic group containing a sulfur atom as a heteroatom [for example, a 5- or 6-membered monocyclic heterocyclic group containing a sulfur atom such as a thienyl group; Heterocyclic heterocyclic groups having a 5- or 6-membered ring containing sulfur atoms such as benzothienyl group, thianthrenyl group, thienothenyl group]; heterocyclic groups containing dissimilar heteroatoms [eg, morpholinyl group, isothiazolyl group, isooxazolyl A 5- or 6-membered
  • the hydrocarbon group or heterocyclic group represented by R 3 to R 5 may be aromatic, respectively.
  • the hydrocarbon group or heterocyclic group represented by R 3 to R 5 may have one or more substituents.
  • substituents include linear or branched halogen atoms (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.) and alkyl groups (methyl group, ethyl group, n-butyl group, t-butyl group, etc.).
  • substituents may be contained alone or in combination of two or more.
  • substituents halogen atoms, alkyl groups, alkoxy groups and the like are often used, and halogen atoms (particularly bromine atoms) are preferable.
  • the number of substitutions of the substituent can be selected according to the type of hydrocarbon group or heterocyclic group to be substituted, and may be selected from an integer range of, for example, about 0 to 6 (for example, 0 to 5). It may be preferably an integer of 0 to 4 (for example, 0 to 3), more preferably an integer of 1 to 2 (particularly 1).
  • the substitution position may be any position, but for example, when the substituent is substituted for the phenyl group as the hydrocarbon group, it is preferably substituted at least at the p ⁇ position.
  • R 3 to R 5 include a hydrocarbon group which may have a substituent, and more preferably an aryl group which may have a substituent (phenyl group, naphthyl group, biphenyl group and the like).
  • C 6-14 aryl group which may have a substituent, etc.) more preferably C 6-12 aryl group which may have a substituent, and C 6 which may have a substituent. It may be a -10 aryl group, particularly preferably a phenyl group.
  • the hydrocarbon group particularly an aryl group such as a phenyl group
  • the preferred substituents, the number of substitutions and the substitution positions for the hydrocarbon group are the same as those in the preferred embodiment.
  • R 3 to R 5 include haloaryl groups (mono or trihalo C 6-10 aryl groups such as p-chlorophenyl group, p-bromophenyl group, and p-iodophenyl group), alkylaryl groups (for example, for example).
  • haloaryl groups mono or trihalo C 6-10 aryl groups such as p-chlorophenyl group, p-bromophenyl group, and p-iodophenyl group
  • alkylaryl groups for example, for example.
  • Mono- or tri-C 1-4 alkyl C such as p-methylphenyl group and dimethylphenyl group, 6-10 aryl group, etc.
  • alkoxyaryl group for example, mono- or tri-C 1-4 alkoxyC such as p-methoxyphenyl group 6-10 aryl groups, etc.
  • a haloaryl group such as a mono or dihalo C 6-10 aryl group
  • a monohaloaryl group particularly, a p-halophenyl group such as a p-bromophenyl group
  • a haloaryl group such as a mono or dihalo C 6-10 aryl group
  • a monohaloaryl group particularly, a p-halophenyl group such as a p-bromophenyl group
  • R 3 to R 5 may be the same or different from each other, it is usually preferable that they are the same.
  • Typical radical cations represented by the above formula (2) include trialkylaminium radical cations, tricycloalkylaminium radical cations, triarylaminium radical cations, triaralkylaminium radical cations, and the like. Radical cations represented by the following formula (2a) are preferable.
  • R 3a to R 5a independently indicate a substituent, and m3 to m5 independently indicate an integer of 0 to 5).
  • the substituent represented by R 3a to R 5a may be a substituent represented by the hydrocarbon group or the heterocyclic group represented by R 3 to R 5 in the formula (2). It is the same as the group exemplified as a group including a preferable embodiment.
  • the number of substitutions represented by m3 to m5 may be, for example, an integer of 0 to 4 (for example, 0 to 3), preferably an integer of 1 to 2 (particularly 1), and is usually 1 or more. There are many.
  • the substitution numbers m3 to m5 may be different from each other, but are usually preferably the same.
  • m3 ⁇ m5 is 1 or more, the type of the substituent R 3a ⁇ R 5a substituting a different phenyl group, although each may be different from each other, typically, are preferably identical. Also, when m3 ⁇ m5 is 2 or more, kinds of two or more substituents R 3a ⁇ R 5a to replace the same phenyl group may each be the same or different from each other.
  • m3 ⁇ m5 is 1 or more, may be substituted positions of the corresponding substituents R 3a ⁇ R 5a is a any position, but is preferably substituted with at least p- position to the phenyl group.
  • tris (halophenyl) amine for example, tris (p-chlorophenyl) amine, tris (p-bromophenyl) amine, tris Tris (mono or dihalophenyl) amines such as (p-iodophenyl) amines, tris (m-bromophenyl) amines, tris (o-bromophenyl) amines]; tris (alkylphenyl) amines [eg, tris (p-) Tris (mono or diC 1-4 alkyl-phenyl) amines such as methylphenyl) amines, tris (pt-butylphenyl) amines]; tris (alkoxyphenyl) amines [eg, tris (p-methoxyphenyl) Examples include radical cations of corresponding neutral compounds (amine compounds)
  • tris (halophenyl) amines such as tris (monohalophenyl) amines are preferable, and tris (p-halophenyl) amines such as tris (p-bromophenyl) amines may be more preferable.
  • the dopant of the present disclosure may include an anion represented by the formula (1) and a counter cation, and the anion and the counter cation represented by the formula (1) [or the formula (1a)] (for example).
  • the radical cation represented by the formula (2) or the formula (2a), respectively, may be contained alone or in combination of two or more. Usually, it is composed of only the anion and the counter cation represented by the formula (1) [particularly, only the anion and the single counter cation represented by the formula (1) [or the formula (1a)]]. There are many.
  • a typical dopant of the present disclosure includes an ionic compound composed of a combination of an anion represented by the formula (1a) and a radical cation represented by the formula (2a) as a counter cation.
  • the ionic compound in which the anion represented by the formula (1a) and the radical cation represented by the formula (2a) are combined is a novel substance.
  • R 1a and R 2a are fluorine atoms or perfluoroalkyl radicals (perfluoroC 1-6 alkyl group, etc.), and R 1a and R 2a are bonded to each other.
  • perfluoro such as perfluoro C 2-4 alkylene group alkylene group anion
  • cyclic anion is, FSI -, TFSI -, hexafluoropropane-1,3-di (sulfonyl), such as imide anion
  • the radical cations to be specifically exemplified are triphenylamine, tris (halophenyl) amine, tris (alkylphenyl) amine, radical cation corresponding to an amine compound selected from tris (alkoxyphenyl) amine, etc.] Examples include ionic compounds.
  • anions in which R 1a and R 2a are perfluoroalkyl groups (perfluoroC 1-4 alkyl groups, etc.) and radical cations of tris (halophenyl) amines [for example, tris (monohalophenyl) amines, etc.] Is preferable, and more preferably, it may be an ionic compound in which TFSI ⁇ and a tris (p-halophenyl) amine such as tris (p-bromophenyl) amine are combined.
  • the method for producing the dopant (or ionic compound) of the present disclosure is not particularly limited, and for example, an ionic compound containing an anion represented by the formula (1) [particularly the formula (1a)] and a monovalent metal ion, and a predetermined compound.
  • an oxidizing agent with a neutral compound corresponding to a counter cation specifically, a neutral compound (or a corresponding amine compound) corresponding to a radical cation represented by the formula (2) [particularly the formula (2a)]. It may be produced by a method of reacting below.
  • the monovalent metal ion may be, for example, an alkali metal ion, but usually, a transition metal ion, for example, an ion of a metal element of Group 11 of the periodic table such as Cu + , Ag + , Au +, etc. Can be mentioned. These monovalent metal ions may be used alone or in combination of two or more. The preferred monovalent metal ion may be Ag + .
  • the ionic compound containing the anion represented by the formula (1) [particularly the formula (1a)] and the monovalent metal ion is the anion represented by the formula (1) [particularly the formula (1a)] and the monovalent. It may contain a metal ion, and the anion represented by the formula (1) [or the formula (1a)] and the monovalent metal ion may be contained alone or in combination of two or more, respectively. .. Usually, only the anion represented by the formula (1) and the monovalent metal ion [particularly, only the anion represented by the above formula (1) [or the formula (1a)] and the single monovalent metal ion]. ] Is often composed.
  • the ionic compound containing an anion represented by the formula (1) [particularly the formula (1a)] and a monovalent metal ion include an anion represented by the formula (1) or (1a).
  • examples thereof include monovalent metal salts of anions, and examples thereof include monovalent metal salts of TFSI ⁇ such as bis (trifluoromethanesulfonyl) imide silver (AgTFSI).
  • TFSI ⁇ such as bis (trifluoromethanesulfonyl) imide silver (AgTFSI).
  • the ionic compound containing an anion and a monovalent metal ion represented by the formula (1) [particularly the formula (1a)] can be used alone or in combination of two or more.
  • Examples of the neutral compound (or corresponding amine compound) corresponding to the radical cation represented by the formula (2) [particularly the formula (2a)] include tris (halophenyl) amine [for example, tris (p-bromophenyl)).
  • the radical cation represented by the formula (2) or (2a) such as [amine, etc.]
  • an amine compound corresponding to the radical cation specifically exemplified can be mentioned.
  • the proportion of the ionic compound composed of the anion represented by the formula (1) [particularly the formula (1a)] and the monovalent metal ion is the radical cation represented by the formula (2) [particularly the formula (2a)]. It may be, for example, about 1 to 5 mol (for example, 1.1 to 3 mol), preferably 1.2 to 2 mol (for example, 1.3 to 1.5 mol) with respect to 1 mol of the corresponding neutral compound. It may be about mol).
  • the oxidizing agent may be any oxidizing agent capable of forming a radical cation represented by the corresponding formula (2) [particularly formula (2a)] by oxidizing the neutral compound by one electron, and for example, halogen alone.
  • halogenates eg, hypohalogenates (eg, hypohydric acid alkali metal salts such as sodium hypochlorite NaClO), haloxates (For example, a chlorite alkali metal salt such as sodium chlorate NaClO 2 ), a halide (for example, a halogenate alkali metal salt such as potassium bromate KBrO 3 ), a perhalogenate (for example, meta-perhalogenate).
  • oxidizing agents can be used alone or in combination of two or more. Of these oxidizing agents, halogen alone (particularly iodine I 2 ) is preferable.
  • the ratio of the oxidizing agent is, for example, about 1 to 5 mol (for example, 1 to 3 mol) with respect to 1 mol of the neutral compound corresponding to the radical cation represented by the formula (2) [particularly the formula (2a)]. It may be 1 to 2 mol (for example, 1 to 1.5 mol), and more preferably about 1 mol.
  • the reaction may usually be carried out in the presence of a solvent.
  • a solvent include solvents that are inert to the reaction such as an aprotic solvent, for example, ethers (for example, chain ethers such as diethyl ether, cyclic ethers such as tetrahydrofuran and dioxane) and the like.
  • ethers for example, chain ethers such as diethyl ether, cyclic ethers such as tetrahydrofuran and dioxane
  • chain ethers such as diethyl ether are often used.
  • the reaction may usually be carried out in an inert gas atmosphere (nitrogen gas, rare gas, etc.) or with stirring.
  • the reaction temperature may be, for example, ⁇ 70 ° C. to + 60 ° C. (for example, ⁇ 50 ° C. to + 40 ° C.), preferably about ⁇ 40 ° C. to + 30 ° C.
  • the reaction time may be, for example, 1 minute to 1 hour (for example, 5 to 30 minutes), preferably about 10 to 20 minutes.
  • separation and purification may be performed by a conventional separation and purification means, for example, filtration, drying, extraction, recrystallization, reprecipitation, a method combining these, and the like.
  • the conductive composition of the present disclosure includes the dopant of the present disclosure and a conductive organic compound (or an organic semiconductor compound).
  • the dopant may contain another dopant (second dopant) different from the above-mentioned dopant (first dopant) of the present disclosure, but usually, a second dopant (F4TCNQ or the like) or the like. It is preferable that it contains substantially no conventional dopant (such as).
  • the first dopant may be used alone or in combination of two or more, and is usually used alone.
  • the conductive organic compound may be a conductive low molecular weight compound or a conductive high molecular weight compound.
  • conductive organic compounds are semiconductors and conductors in a state where the dopant of the present disclosure is doped. It means a compound [or a substance having a conductivity (electrical conductivity or conductivity) of, for example, 10-10 S / cm or more] exhibiting properties as (or a good conductor), and is in a state of a single compound containing no dopant (before doping). In the undoped state), it is also used to include a compound exhibiting properties as an insulator [for example, a substance having a conductivity of less than 10-10 S / cm].
  • Typical conductive low molecular weight compounds include, for example, anthracenes (eg, naphthalene, chrysene, pyrene, pentacene, picene, perylene, hexacene, heptacene, dibenzopentacene, coronene, tetrabenzopentacene, ovalene, etc.); For example, phthalocyanine (such as copper phthalocyanine), naphthalenenin, subphthalocyanine, etc.); carbazoles [eg, 1,3,5-tris [2,7- (N, N- (p-methoxyphenyl) amino) -9H- Carbazole-9-yl] benzene (SGT405), etc.]; Thiophenes [eg, 2,5-bis [4- (N, N-bis (p-methoxyphenyl) amino) phenyl] -3,4-ethylenedioxy Thiophen (H101), 2,3,
  • Typical examples of the conductive polymer compound (or conjugated polymer compound) are aliphatic conjugated polymer compounds (for example, polyacetylene such as trans-polyacetylene, polyphenylacetylene, etc.); aromatic conjugated polymer.
  • These conductive organic compounds may be prepared by a commercially available product or a conventional method. In addition, these conductive organic compounds may be used alone or in combination of two or more. Among them, a conductive polymer compound is preferable from the viewpoint of excellent moldability (productivity) and heat resistance in manufacturing electronic devices and the like.
  • the conductive polymer compound may be used alone or in combination of two or more, and usually, a single conductive polymer compound is often used.
  • the conductive organic compound (or conductive polymer compound) in the conductive composition of the present disclosure is usually capable of forming a P-type organic semiconductor, and among the conductive polymer compounds, a heterocyclic compound type is used.
  • a conductive polymer compound having at least a heterocycle such as a conjugated polymer compound is preferable.
  • the conductive polymer compound having a heterocycle may be a conjugated polymer compound containing at least a structural unit having a heterocycle in its molecular structure (particularly in the main chain).
  • the heterocycle may be a monocyclic heterocycle, and may be a monocyclic heterocycle and one or more rings [heterocycle and / or hydrocarbon ring (aromatic hydrocarbon ring or non-aromatic hydrocarbon ring). )] May be a polycyclic heterocycle fused (ortho-condensation, ortho-and-peri-condensation, etc.).
  • the rings forming the heterocycle (in the case of polycyclic heterocycles, each ring condensing with each other) are often 5 to 7-membered rings, preferably 5 or 6-membered rings.
  • heterocycle examples include a nitrogen atom, an oxygen atom, a sulfur atom and the like. These heteroatoms may be contained in the heterocycle alone or in combination of two or more. Of these heteroatoms, nitrogen atoms and sulfur atoms are preferable, and sulfur atoms are even more preferable.
  • the heterocycle may be a heterocycle containing an oxygen atom such as a furan ring, a heterocycle containing a nitrogen atom such as a pyrrole ring, or the like, but a thiophene ring, a benzothiophene ring, a thienothiophene ring, a benzothiazol ring, or the like.
  • the heterocycle is a heterocycle containing at least a sulfur atom [particularly, a heterocycle having a thiophene ring structure (encapsulated or contained) such as a thiophene ring, a benzothiophene ring, and a thienothiophene ring].
  • Typical examples of the structural unit having such a heterocycle include the structural unit represented by the following formula (3).
  • X 1 represents an oxygen atom or a sulfur atom
  • R 6 represents a substituent
  • n represents an integer of 0 to 2).
  • the preferred X 1 is a sulfur atom.
  • Examples of the substituent represented by R 6 include a linear or branched C such as an alkyl group (eg, hexyl group, octyl group, 2-ethylhexyl group, dodecyl group, tetradecyl group, hexadecyl group, octadecyl group).
  • a linear or branched C such as an alkyl group (eg, hexyl group, octyl group, 2-ethylhexyl group, dodecyl group, tetradecyl group, hexadecyl group, octadecyl group).
  • Linear or linear such as 1-20 alkyl group, alkoxy group (eg, hexyloxy group, octyloxy group, 2-ethylhexyloxy group, dodecyloxy group, tetradecyloxy group, hexadecyloxy group, octadecyloxy group) Branched chain C 1-20 alkoxy group, etc.) and the like.
  • alkyl groups such as linear or branched C 6-18 alkyl groups are preferred.
  • n is often 0 or 1, and 1 is preferable from the viewpoint of solubility.
  • n is 2, the type of two radicals R 6 may be the same or different from each other.
  • the structural unit (or divalent group) represented by the formula (3) is a thiophene-2,5-diyl group or a 3-alkylthiophene-2,5-diyl group (for example, 3-hexyl). 3-C 6-18 alkylthiophene-2,5-diyl group such as thiophene-2,5-diyl group) and the like.
  • the structural units represented by the above formula (3) may be used alone or in combination of two or more.
  • the conductive polymer compound having a heterocycle preferably contains at least the structural unit represented by the above formula (3), and is represented by the following formula (3A) from the viewpoint of high crystallinity and easy improvement in conductivity. It is more preferable to include the structural units to be formed.
  • the conductive organic compound has high crystallinity, it is difficult to dope (doping efficiency tends to decrease), so that it is difficult to improve the conductivity.
  • the dopant of the present disclosure also applies to the highly crystalline conductive organic compound. Since the doping efficiency is excellent, the conductivity can be effectively improved.
  • X 1a and X 1b indicate an oxygen atom or a sulfur atom
  • R 6a and R 6b indicate a substituent
  • n1 and n2 indicate an integer of 0 to 2
  • X 2a and X 2b indicate an oxygen atom or It indicates a sulfur atom
  • R 7a and R 7b indicate a hydrogen atom or a substituent
  • preferred X 1a and X 1b are sulfur atoms.
  • the types of X 1a and X 1b may be different from each other, but usually they are often the same.
  • R 6a and R 6b examples include groups similar to R 6 in the above formula (3), including a preferred embodiment.
  • the substitution numbers n1 and n2 are often 0 or 1, and 1 is preferable from the viewpoint of solubility. Although n1 and n2 may be different from each other, they are usually often the same.
  • the substitution positions of R 6a and R 6b may be either the 3rd position or the 4th position of the 5-membered heterocycle containing X 1a and X 1b, respectively. It is often the 3-position of the membered heterocycle (a position close to the fused heterocycle containing X 2a and X 2b in the center).
  • the types of R 6a and R 6b may be different from each other, but they are usually the same.
  • the types of the two R 6a and the two R 6b may be the same or different from each other.
  • Preferred X 2a and X 2b are sulfur atoms.
  • the types of X 2a and X 2b may be different from each other, but usually they are often the same.
  • R 7a and R 7b examples include a group similar to R 6 in the above formula (3), including a preferred embodiment.
  • Preferred R 7a and R 7b are hydrogen atoms.
  • the structural unit (or divalent group) represented by the formula (3A) is typically a structural unit (2,5-bis (3-alkylthiophen-2-yl) represented by the following formula (3a). ) A structural unit having thieno [3,2-b] thiophene, etc.) and the like.
  • R 6a and R 6b are the same as the above formula (3A) including the preferred embodiment).
  • R 6a and R 6b are dodecyl groups
  • R 6a and R 6b are tetradecyl groups
  • R 6a and R 6b are hexadecyl groups.
  • the structural units represented by the formulas (3A) or (3a) or the like may be used alone or in combination of two or more.
  • a structural unit having a heterocycle [preferably a heterocycle containing at least a sulfur atom as a heteroatom, particularly a heterocycle having a thiophene ring structure] (represented by the above formula (3)).
  • the ratio of the constituent units to be formed) may be, for example, about 10 mol% or more (for example, 30 mol% or more), preferably 50 mol% or more (for example, 70 mol% or more), with respect to the entire constituent units. More preferably, it may be about 90 mol% or more (for example, substantially 100 mol%).
  • the ratio of the structural unit (or divalent group) represented by the formula (3) is, for example, about 10 to 100 mol% (for example, 30 to 90 mol%) with respect to the entire structural unit. It may be, preferably about 50 to 80 mol% (for example, 60 to 70 mol%).
  • the ratio of the structural unit represented by the formula (3A) [particularly (3a)] may be, for example, about 10 mol% or more (for example, 30 mol% or more) with respect to the entire structural unit, and is preferably 50. It may be about mol% or more (for example, 70 mol% or more), more preferably 90 mol% or more (for example, substantially 100 mol%).
  • Typical examples of the conductive polymer compound having a heterocycle include the above-mentioned heterocyclic conjugated polymer compound, and among them, polythiophenes such as polythiophene, polyalkylthiophene, PQT, PBTTT, and PEDOT are preferable. ..
  • polythiophene examples include poly (thiophene-2,5-diyl) and the like.
  • examples of the polyalkylthiophene include poly (3-methylthiophene-2,5-diyl), poly (3-hexylthiophene-2,5-diyl) (or P3HT), and poly (3-octylthiophene-2,5).
  • -Diyl) (or P3OT) poly (3-C 1-18 alkylthiophene-2,5-diyl) such as poly (3-dodecylthiophene-2,5-diyl) (or P3DDT) and the like.
  • PQT examples include poly [5,5'-bis (3-dodecyl-2-thienyl) -2,2'-bithiophene] (or PQT-C12) and other poly [5,5'-bis (3-). C 1-18 alkyl-2-thienyl) -2,2'-bithiophene] and the like.
  • PBTTT examples include poly [2,5-bis (3-dodecylthiophene-2-yl) thieno [3,2-b] thiophene] (or PBTTT-C12) and poly [2,5-bis (3-).
  • Tetradecylthiophene-2-yl) thieno [3,2-b] thiophene] (or PBTTT-C14), poly [2,5-bis (3-hexadecylthiophene-2-yl) thieno [3,2-b] ] Thiophene] (or PBTTT-C16) and other poly [2,5-bis (3-C 1-18 alkylthiophene-2-yl) thieno [3,2-b] thiophene] and the like.
  • Conductive polymer compounds having a heterocycle may be used alone or in combination of two or more.
  • polythiophene, polyalkylthiophene, PQT, PBTTT and the like are preferable, and PBTTT is more preferable.
  • the molecular weight of the conductive polymer compound is not particularly limited, and for example, when measured by gel permeation chromatography (GPC), the number average molecular weight Mn in terms of polystyrene is 500 to 500000 (for example, 5000 to 100,000), preferably 5000 to 100,000. It may be about 10000 to 50000 (for example, 15000 to 40,000), more preferably about 20000 to 30000 (for example, 23000 to 27000), and the molecular weight distribution or PDI (Mw / Mn) is, for example, 1 to 20 (for example, 1.1). It may be about 10), preferably 1.2 to 5 (for example, 1.3 to 3), and more preferably about 1.5 to 2.5 (for example, 1.6 to 2). If Mn is too large, solubility and the like may be lowered and moldability may be lowered, and if Mn is too small, heat resistance and mechanical properties may be lowered.
  • GPC gel permeation chromatography
  • the ratio of the total amount of the dopant and the conductive organic compound of the present disclosure is, for example, about 50% by mass or more (for example, 80% by mass or more), preferably about 90% by mass or more (substantially 100% by mass). There may be. If the proportion of the dopant is too small, the carrier density cannot be improved and the conductivity may not be sufficiently improved, and if the proportion is too large, the crystallinity of the conductive organic compound may decrease and the conductivity may decrease. Since the dopants of the present disclosure have high doping efficiency, the carrier density and conductivity can be effectively improved even in a small amount.
  • the conductive composition may contain conventional additives and the like as long as the effects of the present disclosure are not impaired.
  • the additive include a leveling agent, an adhesion improver (silane coupling agent, etc.) and the like. These additives can also be used alone or in combination of two or more.
  • the ratio of the additive is, for example, 30 parts by mass or less (for example, 10 parts by mass or less), preferably 5 parts by mass or less (for example, 0 to 1 part by mass) with respect to 100 parts by mass of the total amount of the dopant and the conductive organic compound. There may be.
  • the conductive composition does not have to contain a solvent, but in order to form a thin film or film of an organic semiconductor by a simple method such as printing or coating, a solvent may be added as necessary. It may be included.
  • solvent examples include aromatic hydrocarbons (eg, benzene, toluene, xylene, anisole, etc.); halogenated hydrocarbons (eg, dichloromethane, chloroform, 1,2-dichloroethane, etc., halo C 1-6 alkanes, etc.
  • aromatic hydrocarbons eg, benzene, toluene, xylene, anisole, etc.
  • halogenated hydrocarbons eg, dichloromethane, chloroform, 1,2-dichloroethane, etc., halo C 1-6 alkanes, etc.
  • alcohols eg, C
  • Glycol ether acetates eg, cellosolve acetates (eg, C 1-4 alkyl cellosolve acetates such as methyl cellosolve acetate), carbitol acetates (eg, C 1 such as methyl carbitol acetate).
  • cellosolve acetates eg, C 1-4 alkyl cellosolve acetates such as methyl cellosolve acetate
  • carbitol acetates eg, C 1 such as methyl carbitol acetate.
  • propylene glycol monomethyl ether acetate dipropylene glycol monobutyl ether acetate, etc.
  • aromatic hydrocarbons, halogenated hydrocarbons (for example, o-dichlorobenzene, etc.) and the like are often used.
  • each component and the solvent may be mixed and then filtered if necessary.
  • the solid content concentration in the conductive composition can be selected depending on the coating method and the like, and is, for example, 0.001 to 20% by mass (for example, 0.01 to 10% by mass), preferably 0.1. It may be about 5% by mass (for example, 0.5 to 3% by mass), particularly about 0.6 to 2% by mass (for example, 0.7 to 1.3% by mass).
  • the method for producing a conductive composition containing the dopant and the conductive organic compound of the present disclosure includes at least a doping step of doping the conductive organic compound with the dopant.
  • the conductive organic compound to be subjected to the doping step does not necessarily have to be molded into a predetermined shape, and may be molded into a predetermined shape after the doping step or in the doping step, but usually, a predetermined shape (usually, before the doping step). For example, it is often molded into a film or film.
  • a conventional molding method can be used as the method for molding into a predetermined shape, and when forming into a thin film or a film, it may be formed by a dry process such as a vacuum deposition method or a sputtering method, or a wet process (coating or the like). ) May be formed.
  • the wet process is preferred in terms of moldability (or productivity).
  • composition solution or dispersion
  • solvent is removed from the coating film to form a film.
  • the base material is not particularly limited, and may be, for example, a glass plate, a silicon wafer, a plastic film (for example, a transparent resin film such as a polyethylene terephthalate film) or the like.
  • These substrates have one or more functional layers (eg, a conductive layer such as ITO, an insulating layer such as SiO 2 , and a self-assembled monolayer such as ⁇ -phenethyllimethoxysilane ( ⁇ -PTS)) on the surface.
  • a chemical monolayer (SAM) or the like may be formed.
  • the printing or coating method is not particularly limited, and conventional methods such as air knife coating method, roll coating method, gravure coating method, blade coating method, bar coating method, die coating method, dip coating method, spray coating method, and spin coating method are used. It may be a method, a casting method, an edge casting method, a drop casting method, a screen printing method, an inkjet printing method, a compression orientation method or the like. Usually, a spin coating method, an edge casting method, a drop casting method, an inkjet printing method and the like are often used, and the spin coating method and the like are preferable from the viewpoint of ease of film formation (or productivity).
  • a thin film or film can be formed by removing the solvent from the obtained coating film by a conventional method such as natural drying, heating and / or drying under reduced pressure, and spin drying (or spin drying). These drying methods may be used alone or in combination of two or more.
  • the heating temperature in the case of heating and drying may be, for example, about 30 to 100 ° C., preferably about 40 to 80 ° C.
  • the obtained thin film or film may be annealed.
  • the annealing treatment temperature can be selected from the range of, for example, about 50 to 400 ° C. (for example, 80 to 380 ° C.), for example, 100 to 360 ° C. (for example, 150 to 350 ° C.), preferably 200 to 340 ° C. (for example, 250 to 330 ° C.). , More preferably, it may be about 280 ° C to 320 ° C.
  • the annealing treatment time may be, for example, 10 minutes to 12 hours, preferably 30 minutes to 8 hours, and more preferably 1 to 6 hours (for example, 2 to 4 hours).
  • the annealing treatment may be performed in an atmosphere of an atmosphere, an atmosphere of an inert gas such as nitrogen gas or a rare gas (helium, argon, etc.), or an atmosphere of an inert gas (particularly argon). Is preferable.
  • an inert gas such as nitrogen gas or a rare gas (helium, argon, etc.), or an atmosphere of an inert gas (particularly argon). Is preferable.
  • the doping method is not particularly limited, and conventional methods can be used, for example, a vapor phase doping method, a liquid phase doping method in which a dopant solution is impregnated with a conductive organic compound (such as a film or a film-like conductive organic compound). , Electrochemical doping method, ion implantation method, induced doping method and the like in which a conductive organic compound is immersed in an electrolyte solution containing a dopant for electrolysis.
  • the solvent for preparing the dopant solution used in the liquid phase doping method is not particularly limited as long as the dopant can be dissolved or dispersed, and examples thereof include the solvents exemplified in the section of the conductive composition, which are usually used. Often a polar solvent of nitriles (acetonitrile, etc.) is used.
  • the concentration of the dopant solution may be selected from the range of, for example, about 0.01 to 100 mmol / L (for example, 0.1 to 10 mmol / L), and for example, 0.3 to 5 mmol / L (for example, 0.5 to 2 mmol / L).
  • the amount of dopant used in the dopant solution is usually large with respect to the conductive organic compound (or the repeating unit of the conductive polymer compound). Often there are.
  • the impregnation (or immersion) of the conductive organic compound (such as a film or film-like conductive organic compound) in the dopant solution may be performed while heating, if necessary.
  • the heating temperature may be equal to or lower than the boiling point of the dopant solution, and may be, for example, 20 to 60 ° C. (for example, 30 to 50 ° C.), preferably about 35 to 45 ° C.
  • the impregnation time may be, for example, 1 minute to 12 hours (for example, 5 to 30 minutes), preferably about 10 to 20 minutes.
  • the obtained conductive composition may be dried by the conventional method to remove the solvent.
  • the rotation speed in spin-drying may be, for example, about 500 to 5000 rpm (for example, 1000 to 2000 rpm), and the time may be about 1 second to 1 hour (for example, 5 to 60 seconds).
  • the temperature in heating and drying may be, for example, about 40 to 300 ° C. (for example, 60 to 100 ° C.), and the time may be, for example, about 1 minute to 12 hours (for example, 5 to 30 minutes).
  • the conductive composition contains the above-mentioned additives and the like, these additives may be mixed with the conductive organic compound before and after the doping step or during the doping step.
  • the thickness (average thickness) of the thin film or film thus obtained may be appropriately selected depending on the intended use, and may be, for example, 1 to 5000 nm, preferably 30 to 1000 nm, and more preferably about 50 to 500 nm. Good.
  • the conductive composition of the present disclosure exhibits high conductivity, for example, 10 to 10000 S / cm (for example, 100 to 5000 S / cm), preferably 300 to 3000 S / cm (for example, 500 to 2500 S / cm), and more preferably 1000 to 1000. It may be about 2000 S / cm (for example, 1200 to 1800 S / cm). In the present specification and claims, the conductivity can be measured by the method described in Examples described later.
  • the conductive composition of the present disclosure may usually be a P-type semiconductor, and since it has high conductivity as described above, electronic devices such as switching elements, rectifying elements (diodes), semiconductor elements such as transistors, and the like. It can be used as a material for forming a photoelectric conversion element (solar cell element, organic electroluminescence (EL) element, etc.), a thermoelectric conversion element, or the like.
  • a photoelectric conversion element solar cell element, organic electroluminescence (EL) element, etc.
  • thermoelectric conversion element thermoelectric conversion element
  • a measurement sample (conductive composition) subjected to liquid phase doping to 1.8) was prepared by the method described below.
  • R represents an n-tetradecyl group (group-C 14 H 29 )).
  • a spin-coated film of PBTTT-C14 having a concentration of 1% by mass was spin-coated on a glass substrate (500 rpm, 5 seconds, then 2000 rpm, 60 seconds) to prepare a spin-coated film having an average thickness of 40 to 100 nm. ..
  • the obtained spin-coated film was immersed in a dopant solution having a concentration of 1 mmol / L (acetonitrile solution of the ionic compound obtained in Example 1) at a temperature of 40 ° C. for 15 minutes. After immersion, spin drying (1500 rpm, 30 seconds) was performed, and then the sample (conductive composition) was prepared by drying at a temperature of 80 ° C. for 10 minutes.
  • the obtained measurement sample was subjected to an ultraviolet-visible-near-infrared (UV-Vis-NIR) absorption spectrum at intervals of 1 nm in the range of 200 to 2700 nm using an ultraviolet-visible-near-infrared spectrophotometer (manufactured by JASCO). It was measured.
  • UV-Vis-NIR ultraviolet-visible-near-infrared
  • FIG. 1 shows a spectrum using only PBTTT-C14, which is not doped with a dopant, as a measurement sample.
  • Example 2 Example 2 except that 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) is used instead of the ionic compound obtained in Example 1.
  • UV-Vis-NIR ultraviolet-visible-near-infrared
  • Example 2 the peak around 500 nm derived from neutral PBTTT-C14 was significantly reduced as compared with Comparative Example 1 doped with F4-TCNQ, and the PBTTT-C14 radical cation was obtained.
  • the absorption around 1200 to 2500 nm from which it is derived is greatly increased. Therefore, in Example 2, the doping efficiency was higher than that in the case of doping with F4-TCNQ of Comparative Example 1. It is considered that the sharp absorption near 400 nm in Comparative Example 1 indicates the absorption by neutral F4-TCNQ, and the absorption of two (doublet) around 700 to 1000 nm indicates the absorption of F4-TCNQ anion. ..
  • Example 3 [Measurement of X-ray locking curve] (Example 3) Using a measurement sample (conductive composition) prepared in the same manner as in Example 2 and using an X-ray diffractometer (“SmartLab” manufactured by Rigaku) and CuK ⁇ as an X-ray source, the X-ray locking curve is measured. did. The measurement results are shown in FIG. For reference, FIG. 2 also shows the measurement results when only PBTTT-C14, which is not doped with a dopant, is used as a sample.
  • Example 3 the full width at half maximum (FWHM) was reduced as compared with Comparative Example 2 doped with F4TCNQ, and it was found that the crystallinity after doping was high. Specifically, as compared with the case of PBTTT-C14 alone, the half width was reduced by about 2% in Comparative Example 2, while it was reduced by about 10% in Example 3. From this result, it is considered that the TFSI anion after doping greatly contributed to the improvement of crystallinity.
  • Example 4 In the same manner as in Example 2 except that a glass substrate having a gold electrode for 4-terminal measurement was used instead of the glass substrate, a dopant solution containing a film of PBTTT-C14 and an ionic compound of Example 1 was prepared. Liquid phase doping was performed to prepare a measurement sample.
  • the obtained measurement sample was measured for conductivity with a digital multimeter device (Keiythley's "Keiythley 2000 digital multimeter") under measurement conditions: current input 1 ⁇ A, and showed high conductivity of 1500 S / cm.
  • the conductive compositions containing the dopants of the present disclosure can be used in a variety of electronic devices such as rectifying elements (diodes), switching elements or transistors.
  • electronic devices such as rectifying elements (diodes), switching elements or transistors.
  • (Organic thin film) [For example, junction type transistor (bipolar transistor), electric field effect type transistor (unipolar transistor), etc.], photoelectric conversion element (solar cell element, organic EL element, etc.), effective as an organic semiconductor device such as thermoelectric conversion element Can be used for.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Conductive Materials (AREA)

Abstract

本開示の新規なドーパントは、下記式(1)で表されるアニオンと対カチオンとを含む。前記式(1)において、RおよびRはニトロ基、シアノ基、アシル基、カルボキシル基、アルコキシカルボニル基、ハロアルキル基、スルホ基、アルキルスルホニル基、ハロスルホニル基、ハロアルキルスルホニル基から選択される少なくとも1種の基であるか、またはRとRとが互いに結合して形成された基[-SO-L-SO-](式中、Lはハロアルキレン基を示す。)であってもよい。前記対カチオンは、下記式(2)で表されるラジカルカチオンであってもよい。(式中、RおよびRは互いに結合してヘテロ環を形成してもよい電子吸引性基、R~Rは水素原子、置換基を有していてもよい炭化水素基または置換基を有していてもよい複素環基を示す)。前記ドーパントは、高い伝導度を示す導電性組成物を形成可能である。

Description

ドーパントおよび導電性組成物ならびにその製造方法
 本開示は、高い伝導度(電気伝導度または導電率)を示す導電性組成物を形成可能な新規ドーパント、このドーパントと導電性有機化合物とを含む導電性組成物およびその製造方法、この導電性組成物を含む電子デバイス、ならびにドーパントとして有用な新規イオン化合物およびその製造方法に関する。
 導電性高分子化合物(またはπ共役系高分子化合物)などの有機電子材料(有機半導体材料または導電性有機化合物)は、軽量性や柔軟性、成形性(または生産性)などの高さを活かして様々な電子デバイスの材料として利用されている。有機半導体材料には、通常、ドーパントをドーピング(またはドープ)して、高い導電性を付与または発現できる。ドーパントには、キャリアとしての電子を注入するドナー(電子供与体またはN型ドーパント)、電子を引き抜きホール(正孔)を注入するアクセプター(電子受容体またはP型ドーパント)がある。ドナーとしては、例えば、アルカリ金属、アルカリ土類金属、四級アンモニウム類、四級ホスホニウム類などがあり、アクセプターとしては、ハロゲン類、ルイス酸類、プロトン酸類、遷移金属ハロゲン化物類、有機化合物類などが知られている。
 代表的なアクセプター(電子アクセプター性ドーパント)としては、2,3,5,6-テトラフルオロ-7,7,8,8-テトラシアノキノジメタン(F4TCNQ)が挙げられ、有機半導体分野で広く利用されている。例えば、非特許文献1には、F4TCNQをPBTTT-C16(ポリ[2,5-ビス(3-ヘキサデシルチオフェン-2-イル)チエノ[3,2-b]チオフェン])に対して分子インプランテーションドーピングしてP型有機半導体組成物を調製した例が記載されている。
R. Fujimoto et al. Org. Electron. 47(2017), 139-146
 非特許文献1では、PBTTT-C16がF4TCNQに酸化されてラジカルカチオン状態となることでホールが形成される一方で、還元されたF4TCNQのラジカルアニオンはPBTTT-C16中に格納されているが、このF4TCNQのラジカルアニオンは不安定であるため、前記ラジカルカチオンに酸化されて中性の状態に戻り易いのみならず、F4TCNQは酸化力自体も低いことや、熱などの影響で抜け出てしまう(昇華してしまう)こととも相まって、ドーピング効率(ドープ量に対する発生したキャリアの割合)が低い。ドーピング効率が低いと、キャリア濃度(または伝導度)を高めるためには多量のドーパントが必要となるが、ドーパント(不純物)の量が多すぎると電荷のパス(または導電パス)を阻害して伝導度を低下させる要因となるため、伝導度を十分に向上できない。
 また、伝導度の向上には、PBTTT-C16などの導電性有機化合物が高い結晶性により規則正しく配列されることが重要であるが、F4TCNQは不安定な状態で格納されるためか、ドーピング後におけるPBTTT-C16の結晶性が低下するおそれがあるとともに、F4TCNQが抜け出る際にPBTTT-C16の結晶構造が乱れるおそれがある。さらに、結晶性が低下すると、分子の揺らぎを抑えて高分子の集合体構造(または結晶構造)を維持し難くなるため、安定性(高温環境下における耐久性)が低下するおそれもある。
 従って、本開示の目的は、高い伝導度を示す導電性組成物を形成可能な新規ドーパント、このドーパントを含む導電性組成物およびその製造方法、この導電性組成物を含む電子デバイスを提供することにある。
 本開示の他の目的は、ドーピングした導電性有機化合物の結晶性の低下を抑制(または結晶性を維持もしくは向上)でき、高い安定性を示す導電性組成物を形成可能なドーパント、このドーパントを含む導電性組成物およびその製造方法、この導電性組成物を含む電子デバイスを提供することにある。
 本開示のさらに他の目的は、高いドーピング効率を示すドーパント、このドーパントを含む導電性組成物およびその製造方法、この導電性組成物を含む電子デバイスを提供することにある。
 本開示の別の目的は、ドーパントとして有用な新規イオン化合物およびその製造方法を提供することにある。
 本発明者らは、前記課題を達成するため鋭意検討した結果、所定の化学構造を有する窒素アニオンと、対カチオンとで構成されたイオン化合物をドーパントとして用いると、導電性組成物における伝導度を有効に向上できることを見いだし、本発明を完成した。
 すなわち、本開示の新規なドーパントは、下記式(1)で表されるアニオンと対カチオンとを含む。
Figure JPOXMLDOC01-appb-C000005
(式中、RおよびRはそれぞれ独立して電子吸引性基を示し、RとRとは互いに結合してヘテロ環を形成してもよい)。
 前記式(1)において、RおよびRは、ニトロ基、シアノ基、アシル基、カルボキシル基、アルコキシカルボニル基、ハロアルキル基、スルホ基、アルキルスルホニル基、ハロスルホニル基およびハロアルキルスルホニル基から選択される少なくとも1種の基であってもよく、またはRとRとが互いに結合して形成されたスルホニル-ハロアルキレン-スルホニル基(ハロアルキレンジスルホニル基または基[-SO-L-SO-](式中、Lはハロアルキレン基を示す。))であってもよい。
 前記式(1)において、RおよびRがフルオロスルホニル基もしくはフルオロアルキルスルホニル基(例えば、パーフルオロアルキルスルホニル基)であってもよく、またはRとRとが互いに結合して形成されたスルホニル-フルオロアルキレン-スルホニル基(フルオロアルキレンジスルホニル基または基[-SO-L-SO-](式中、Lはフルオロアルキレン基(例えば、パーフルオロアルキル基)を示す。))であってもよい。
 前記対カチオンは、下記式(2)で表されるラジカルカチオンであってもよい。
Figure JPOXMLDOC01-appb-C000006
(式中、R~Rはそれぞれ独立して水素原子、置換基を有していてもよい炭化水素基または置換基を有していてもよい複素環基を示す)。
 前記式(2)において、R~Rは置換基を有していてもよいアリール基であってもよく、前記置換基は、ハロゲン原子、アルキル基、ヒドロキシル基、アルコキシ基、ニトロ基、アミノ基および置換アミノ基から選択される基であってもよい。
 本開示は、前記ドーパントと、導電性有機化合物とを含む導電性組成物を包含する。前記導電性有機化合物は、複素環を有する導電性高分子化合物(導電性ヘテロ高分子化合物または複素環式導電性高分子化合物)であってもよい。前記導電性有機化合物は、少なくとも下記式(3)で表される構成単位を有する導電性高分子化合物であってもよい。
Figure JPOXMLDOC01-appb-C000007
(式中、Xは酸素原子または硫黄原子を示し、Rは置換基を示し、nは0~2の整数を示す)。
 また、本開示は、前記ドーパントを前記導電性有機化合物にドーピングし、前記導電性組成物を製造する方法および前記導電性組成物を含む電子デバイスも包含する。
 さらに、本開示は、下記式(1a)で表されるアニオンと、下記式(2a)で表されるラジカルカチオンとを含むイオン対(またはイオン化合物)を包含する。
Figure JPOXMLDOC01-appb-C000008
(式中、R1aおよびR2aはそれぞれ独立してフッ素原子もしくはフルオロアルキル基(例えば、パーフルオロアルキル基)を示し、R1aとR2aとは互いに結合してフルオロアルキレン基(例えば、パーフルオロアルキレン基)を形成してもよい)。
Figure JPOXMLDOC01-appb-C000009
(式中、R3a~R5aはそれぞれ独立して置換基を示し、m3~m5はそれぞれ独立して0~5の整数を示す)。
 また、本開示は、式(1a)で表されるアニオンおよび1価の金属イオンを含むイオン化合物[特に、式(1a)で表されるアニオンおよび1価の金属イオンで構成されるイオン化合物]と、式(2a)で表されるラジカルカチオンに対応する中性化合物とを酸化剤の存在下で反応させて、前記式(1a)で表されるアニオンおよび式(2a)で表されるラジカルカチオンを含む前記イオン対(またはイオン化合物)を製造する方法も包含する。
 なお、本明細書および請求の範囲において、「ドーパント」とは、有機半導体のみならず、有機熱電材料なども含む有機電子材料を形成するための添加剤(酸化剤(アクセプター)または還元剤(ドナー))を意味する。
 本開示では、所定の化学構造を有する窒素アニオンを含むイオン化合物をドーパントとして用いるため、高い伝導度を示す導電性組成物を形成できる。また、本開示のドーパントは、ドーピングしても導電性有機化合物の結晶性の低下を抑制(または結晶性を維持もしくは向上)でき、高い安定性(高温環境下における耐久性)を示す導電性組成物を形成できる。さらに、本開示のドーパントは、高いドーピング効率も示すため、通常、ドーピングし難い高結晶性の導電性有機化合物に対しても効率よくドーピングできる。また、本開示は、ドーパントとして有用な新規イオン化合物を提供できる。
図1は、実施例2、比較例1で得られた導電性組成物およびドーパントをドープしていないPBTTT-C14の紫外可視近赤外(UV-Vis-NIR)吸収スペクトルである。 図2は、実施例3、比較例2で得られた導電性組成物およびドーパントをドープしていないPBTTT-C14のX線ロッキングカープの測定結果である。
 [ドーパント]
 本開示の新規なドーパント(P型ドーパント)は、前記式(1)で表されるアニオンと対カチオン(カウンターカチオン)とを含むイオン化合物(塩、イオン対、イオン性物質または異極化合物ともいう)であり、金属錯体または金属化合物であってもよい。特に、ドーパントは、前記式(1)で表されるアニオンと、対カチオンとで構成されるのが好ましい。式(1)で表される1価のアニオンでは、2つの電子吸引性基RおよびRが窒素アニオンにおける負電荷を吸引して非局在化させた化学構造を有するため、アニオン単独であっても比較的安定性が高い。
 本開示のドーパントをP型ドーパントとして導電性有機化合物にドーピングすると、導電性有機化合物から受け取った電子により前記対カチオンが、対応する電気的に中性な化合物(または原子)に変換されて安定化する。そのため、式(1)で表されるアニオンは対カチオンとのイオン結合から開放され、アニオン単独で導電性有機化合物中(例えば、結晶中)に格納または埋設された状態で存在する。F4TCNQなどの従来のドーパントとは異なり、前述のように式(1)で表されるアニオンは単独であっても比較的安定なため、ラジカルカチオン状態の導電性有機化合物に電子を供与することなく組成物中で安定に存在できる。そのため、ドーピング効率が高く、伝導度を有効に向上できる。
 また、理由は定かではないが、式(1)で表されるアニオンが安定なためか、意外なことに、ドーピング後における導電性有機化合物の結晶性の低下を抑制(または結晶性を維持もしくは向上)でき、伝導度をより一層向上できるとともに、高い安定性を示す導電性組成物を形成できる。
 なお、本開示のドーパントは、式(1)における電子吸引性基RおよびRの種類や、対カチオンの種類などの変更(または化学修飾)が従来のドーパントと比べて容易であり、ドーピングにより組み合わせる導電性有機化合物のHOMOに応じて、ドーパントのLUMOを制御(またはチューニング)し易い。
 なお、式(1)で表されるアニオンは、閉殻でやわらかい塩基となる点で好ましいようである。本明細書および請求の範囲において、やわらかい酸または塩基、ならびに、かたい酸または塩基は、HSAB(hard and soft acids and bases)における酸塩基の定義(または分類)を意味する。また、電荷の効率的な遮蔽によってクーロン(Coulomb)相互作用に由来するエネルギー利得を得るためには(ドーピング後、式(1)で表されるアニオンと、ホールを有する導電性有機化合物とを導電性組成物中で安定に存在させるためには)、同じような大きさおよび形状のイオン同士が対をつくることが望ましいと考えられる。そのため、非局在化したホールを有するドープされた導電性有機化合物(特に導電性高分子化合物)と対を作るアニオンは、大きなサイズであるのが好ましい。
 (式(1)で表されるアニオン)
Figure JPOXMLDOC01-appb-C000010
(式中、RおよびRはそれぞれ独立して電子吸引性基を示し、RとRとは互いに結合してヘテロ環を形成してもよい)。
 前記式(1)において、RおよびRで表される電子吸引性基としては、例えば、ニトロ基、シアノ基、アシル基、カルボキシル基、アルコキシカルボニル基(メトキシカルボニル基などのC1-6アルキコキシ-カルボニル基など)、ハロアルキル基(トリフルオロメチル基、トリクロロメチル基などのパーハロアルキル基など)、スルホ基、アルキルスルホニル基(メチルスルホニル基などのC1-6アルキルスルホニル基など)、ハロスルホニル基、ハロアルキルスルホニル基などが挙げられる。
 RとRとは、互いに結合してヘテロ環を形成(またはRとRとが互いに結合した2価の基を形成)してもよい。ヘテロ環を形成する場合、窒素に結合する2つの前記例示の電子吸引性基を、直接または2価の連結基(アルキレン基、ハロアルキレン基、エーテル基、エステル基、これらを組み合わせた基など)で結合(または置換)することで環を形成してもよく、代表的なRとRとが互いに結合して形成された2価の基としては、例えば、スルホニル-ハロアルキレン-スルホニル基(ハロアルキレンジスルホニル基または基[-SO-L-SO-](式中、Lはハロアルキレン基を示す。))などが挙げられる。
 これらの電子吸引性基RおよびRのうち、ハロスルホニル基、ハロアルキルスルホニル基であるか、RとRとが互いに結合した基[-SO-L-SO-](式中、Lはハロアルキレン基を示す。)が好ましい。ハロスルホニル基としては、例えば、フルオロスルホニル基、クロロスルホニル基などが挙げられる。ハロアルキルスルホニル基としては、例えば、フルオロアルキルスルホニル基[例えば、フルオロメチルスルホニル基、トリフルオロエチルスルホニル基、トリフルオロプロピルスルホニル基、ペンタフルオロプロピルスルホニル基、パーフルオロアルキルスルホニル基(例えば、トリフルオロメチルスルホニル基、ペンタフルオロエチルスルホニル基、ヘプタフルオロプロピルスルホニル基、ノナフルオロブチルスルホニル基などのパーフルオロC1-6アルキルスルホニル基など)などのフルオロC1-6アルキルスルホニル基など];クロロアルキルスルホニル基(例えば、クロロメチルスルホニル基などのクロロC1-6アルキルスルホニル基など)などが挙げられる。
 基[-SO-L-SO-]において、Lで表されるハロアルキレン基としては、例えば、フルオロアルキレン基(例えば、パーフルオロアルキレン基、具体的には、テトラフルオロエチレン基、ヘキサフルオロプロパン-1,3-ジイル基、オクタフルオロブタン-1,4-ジイル基などのパーフルオロC2-4アルキレン基など)、クロロアルキレン基(パークロロC2-4アルキレン基などのパークロロアルキレン基など)などが挙げられる。
 より好ましいRおよびRとしては、フルオロスルホニル基、フルオロアルキルスルホニル基(パーフルオロアルキルスルホニル基など)、RとRとが互いに結合した基[-SO-L-SO-](式中、Lはフルオロアルキレン基(パーフルオロC2-4アルキレン基などのパーフルオロアルキレン基など)を示す。)などが挙げられ、さらに好ましくはパーフルオロC1-4アルキルスルホニル基などのパーフルオロアルキルスルホニル基などが挙げられ、なかでもパーフルオロC1-3アルキルスルホニル基、特にトリフルオロメチルスルホニル基などのパーフルオロC1-2アルキルスルホニル基などが好ましい。
 なお、ヘテロ環を形成しない場合、基RおよびRの種類は、互いに異なっていてもよいが、通常、同一であるのが好ましい。
 式(1)で表されるアニオンとして代表的には、例えば、下記式(1a)で表されるアニオンなどが挙げられる。
Figure JPOXMLDOC01-appb-C000011
(式中、R1aおよびR2aはそれぞれ独立してフッ素原子もしくはフルオロアルキル基を示し、R1aとR2aとは互いに結合してフルオロアルキレン基を形成してもよい)。
 前記式(1a)において、R1aおよびR2aで表されるフルオロアルキル基としては、フルオロアルキル基[例えば、フルオロメチル基、トリフルオロエチル基、トリフルオロプロピル基、ペンタフルオロプロピル基、パーフルオロアルキル基(例えば、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ノナフルオロブチル基などのパーフルオロC1-6アルキル基など)などのフルオロC1-6アルキル基など]、クロロアルキル基(例えば、クロロメチル基などのクロロC1-6アルキル基など)などが挙げられる。
 R1aとR2aとは、互いに結合してヘテロ環を形成(またはR1aとR2aとが互いに結合してフルオロアルキレン基を形成)してもよい。このようなフルオロアルキレン基としては、例えば、パーフルオロアルキレン基(例えば、テトラフルオロエチレン基、ヘキサフルオロプロパン-1,3-ジイル基、オクタフルオロブタン-1,4-ジイル基などのパーフルオロC2-4アルキレン基など)などのフルオロC2-4アルキレン基などが挙げられる。
 好ましい基R1aおよびR2aとしては、フッ素原子、パーフルオロアルキル基(パーフルオロC1-4アルキル基など)、R1aとR2aとが互いに結合したパーフルオロアルキレン基(パーフルオロC2-4アルキレン基など)などが挙げられ、さらに好ましくはパーフルオロC1-3アルキル基などのパーフルオロアルキル基などが挙げられ、特にトリフルオロメチル基などのパーフルオロC1-2アルキル基などが好ましい。
 なお、環を形成しない場合、基R1aおよびR2aの種類は、互いに異なっていてもよいが、通常、同一であるのが好ましい。
 式(1)または(1a)で表されるアニオンの具体例としては、R1aおよびR2aがフッ素原子であるビス(フルオロスルホニル)イミドアニオン[すなわち、式[(FSO]で表されるアニオン(FSIまたはFSAともいう)];R1aおよびR2aがパーフルオロアルキル基(パーフルオロC1-4アルキル基など)であるアニオン、より具体的には、ビス(トリフルオロメタンスルホニル)イミドアニオン[すなわち、式[(CFSO]または式[Tf]で表されるアニオン(TFSIまたはTFSAともいう)]、N-トリフルオロメタンスルホニル-N-ノナフルオロブタンスルホニルイミドアニオン[すなわち、式[CFSO-N-SO]で表されるアニオン]、ビス(ノナフルオロブタンスルホニル)イミドアニオン[すなわち、式[(CSO]で表されるアニオン]など;R1aとR2aとが互いに結合したパーフルオロアルキレン基(パーフルオロC2-4アルキレン基など)である環状のアニオン、より具体的には、ヘキサフルオロプロパン-1,3-ジ(スルホニル)イミドアニオン[すなわち、式(1a)において、R1aとR2aとが互いに結合した2価の基がヘキサフルオロプロパン-1,3-ジイル基であるアニオン]などが挙げられる。これらのうち、R1aおよびR2aがフッ素原子またはパーフルオロアルキル基(パーフルオロC1-4アルキル基など)であるアニオンが好ましく、R1aおよびR2aがパーフルオロC1-3アルキル基であるアニオンがさらに好ましく、特にTFSIなどのR1aおよびR2aがパーフルオロC1-2アルキル基であるアニオンが好ましい。
 (対カチオン)
 対カチオンは、2価以上(多価)のカチオンであってもよいが、通常、1価のカチオンであることが多い。また、前記式(1)で表されるアニオンがやわらかい塩基であることに対応して、対カチオンはやわらかい酸であるのが好ましい。さらに、対カチオンは、非ラジカルカチオンであってもよいが、ラジカルカチオンであるのが好ましい。ラジカルカチオンであると、ドーピングした際に導電性有機化合物から高い酸化力で電子を受け取り易く(ホールを注入しやすく)、ドーピング効率を有効に向上できるとともに、電子を受け取って中性状態となった後は安定に組成物中に存在できる場合が多い。このような対カチオンとしては、例えば、下記式(2)で表されるラジカルカチオンなどが挙げられる。
Figure JPOXMLDOC01-appb-C000012
(式中、R~Rはそれぞれ独立して水素原子、置換基を有していてもよい炭化水素基または置換基を有していてもよい複素環基を示す)。
 前記式(2)において、R~Rで表される炭化水素基としては、例えば、アルキル基、シクロアルキル基、アリール基、アラルキル基などが挙げられる。アルキル基としては、例えば、メチル基、エチル基、n-ブチル基、t-ブチル基などの直鎖状または分岐鎖状C1-6アルキル基などが挙げられる。シクロアルキル基としては、例えば、シクロペンチル基、シクロヘキシル基などのC3-10シクロアルキル基などが挙げられる。アリール基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基などのC6-14アリール基、ビフェニリル基などのビC6-10アリール基などが挙げられる。アラルキル基としては、例えば、ベンジル基、フェネチル基などのC6-14アリール-C1-6アルキル基などが挙げられる。これらの炭化水素基のうち、アルキル基、アリール基が好ましく、アリール基がさらに好ましい。
 R~Rで表される複素環基としては、芳香族性または非芳香族性であってもよく、例えば、窒素原子、酸素原子および硫黄原子から選択された少なくとも1種のヘテロ原子を含む複素環基などが挙げられる。また、複素環基は、単環式複素環基であってもよく、単環式複素環と1または複数の複素環および/または炭化水素環(芳香族性炭化水素環または非芳香族炭化水素環)とが縮合(オルソ縮合、オルソアンドペリ縮合など)した多環式複素環基であってもよい。複素環基を形成する環(多環式複素環基の場合は互いに縮合する各環)は、5~7員環、好ましくは5または6員環であることが多い。
 代表的な複素環基としては、例えば、ヘテロ原子として窒素原子を含む複素環基[例えば、ピロリル基、イミダゾリル基、ピリジル基、ピラジニル基などの窒素原子を含む5または6員単環式複素環基;インドリル基、キノリル基、イソキノリル基、キナゾリル基、カルバゾリル基、カルボリニル基、フェナントリジニル基、アクリジニル基、フェナジニル基、ナフチリジニル基などの窒素原子を含む5または6員環を有する多環式複素環基など];ヘテロ原子として酸素原子を含む複素環基[例えば、フリル基などの酸素原子を含む5または6員単環式複素環基;イソベンゾフラニル基、クロメニル基などの酸素原子を含む5または6員環を有する多環式複素環基など];ヘテロ原子として硫黄原子を含む複素環基[例えば、チエニル基などの硫黄原子を含む5または6員単環式複素環基;ベンゾチエニル基、チアントレニル基、チエノチエニル基などの硫黄原子を含む5または6員環を有する多環式複素環基など];異種のヘテロ原子を含む複素環基[例えば、モルホリニル基、イソチアゾリル基、イソオキサゾリル基などの異種のヘテロ原子を含む5または6員単環式複素環基;フェノキサチイニル基などの異種のヘテロ原子を含む5または6員環を有する多環式複素環基など]などが挙げられる。
 R~Rで表される炭化水素基または複素環基は、それぞれ芳香族性であってもよい。R~Rで表される炭化水素基または複素環基は、1または複数の置換基を有していてもよい。前記置換基としては、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子など)、アルキル基(メチル基、エチル基、n-ブチル基、t-ブチル基などの直鎖状または分岐鎖状C1-6アルキル基など)、ヒドロキシル基、アルコキシ基(メトキシ基、t-ブトキシ基などの直鎖状または分岐鎖状C1-6アルコキシ基など)、アシル基(ホルミル基、アセチル基などのC1-8アルキルカルボニル基、ベンゾイル基などのC6-12アリール-カルボニル基など)、アルコキシカルボニル基(メトキシカルボニル基、エトキシカルボニル基などのC1-6アルコキシ-カルボニル基など)、シアノ基、ニトロ基、アミノ基、置換アミノ基(ジメチルアミノ基などのモノまたはジアルキルアミノ基、アセチルアミノ基などのモノまたはジアシルアミノ基など)などが挙げられる。これらの置換基は、単独でまたは2種以上組み合わせて有していてもよい。これらの置換基のうち、ハロゲン原子、アルキル基、アルコキシ基などである場合が多く、好ましくはハロゲン原子(特に臭素原子)である。
 また、前記置換基の置換数は、置換する炭化水素基または複素環基の種類に応じて選択でき、例えば0~6(例えば、0~5)程度の整数の範囲から選択してもよく、好ましくは0~4(例えば0~3)の整数、さらに好ましくは1~2の整数(特に1)程度であってもよい。なお、置換位置はいずれの位置であってもよいが、例えば、炭化水素基としてのフェニル基に対して前記置換基が置換する場合、少なくともp-位に置換するのが好ましい。
 好ましいR~Rとしては、置換基を有していてもよい炭化水素基が挙げられ、より好ましくは置換基を有していてもよいアリール基(フェニル基、ナフチル基、ビフェニル基などの置換基を有していてもよいC6-14アリール基など)、さらに好ましくは置換基を有していてもよいC6-12アリール基、なかでも置換基を有していてもよいC6-10アリール基、特に好ましくはフェニル基であってもよい。R~Rは、炭化水素基(特にフェニル基などのアリール基)は少なくとも前記置換基を有しているのが好ましい。なお、炭化水素基(特にフェニル基などのアリール基)に対する好ましい置換基、置換数および置換位置は前記好ましい態様と同様である。
 R~Rとして具体的には、ハロアリール基(p-クロロフェニル基、p-ブロモフェニル基、p-ヨードフェニル基などのモノないしトリハロC6-10アリール基など)、アルキルアリール基(例えば、p-メチルフェニル基、ジメチルフェニル基などのモノないしトリC1-4アルキルC6-10アリール基など)、アルコキシアリール基(例えば、p-メトキシフェニル基などのモノないしトリC1-4アルコキシC6-10アリール基など)などが挙げられる。なかでも、好ましくはハロアリール基(モノまたはジハロC6-10アリール基など)であり、さらに好ましくはモノハロアリール基(特にp-ブロモフェニル基などのp-ハロフェニル基など)であってもよい。
 なお、R~Rは互いに同一または異なっていてもよいが、通常、同一であるのが好ましい。
 前記式(2)で表される代表的なラジカルカチオンとしては、トリアルキルアミニウムラジカルカチオン、トリシクロアルキルアミニウムラジカルカチオン、トリアリールアミニウムラジカルカチオン、トリアラルキルアミニウムラジカルカチオンなどが挙げられ、特に下記式(2a)で表されるラジカルカチオンが好ましい。
Figure JPOXMLDOC01-appb-C000013
(式中、R3a~R5aはそれぞれ独立して置換基を示し、m3~m5はそれぞれ独立して0~5の整数を示す)。
 前記式(2a)において、R3a~R5aで表される置換基は、前記式(2)のR~Rで表される炭化水素基または複素環基が有していてもよい置換基として例示した基と好ましい態様を含めて同様である。
 m3~m5で表される置換数は、例えば0~4(例えば0~3)の整数、好ましくは1~2の整数(特に1)程度であってもよく、通常、1以上であることが多い。なお、置換数m3~m5は互いに異なっていてもよいが、通常、同一であるのが好ましい。
 m3~m5が1以上である場合、異なるフェニル基に置換する置換基R3a~R5aの種類は、それぞれ互いに異なっていてもよいが、通常、同一であるのが好ましい。また、m3~m5が2以上である場合、同一のフェニル基に置換する2以上の置換基R3a~R5aの種類は、それぞれ互いに同一または異なっていてもよい。
 m3~m5が1以上である場合、対応する置換基R3a~R5aの置換位置はいずれの位置であってもよいが、フェニル基に対して少なくともp-位に置換するのが好ましい。
 式(2)または(2a)で表されるラジカルカチオンとして具体的には、トリフェニルアミン;トリス(ハロフェニル)アミン[例えば、トリス(p-クロロフェニル)アミン、トリス(p-ブロモフェニル)アミン、トリス(p-ヨードフェニル)アミン、トリス(m-ブロモフェニル)アミン、トリス(o-ブロモフェニル)アミンなどのトリス(モノまたはジハロフェニル)アミンなど];トリス(アルキルフェニル)アミン[例えば、トリス(p-メチルフェニル)アミン、トリス(p-t-ブチルフェニル)アミンなどのトリス(モノまたはジC1-4アルキル-フェニル)アミンなど];トリス(アルコキシフェニル)アミン[例えば、トリス(p-メトキシフェニル)アミン、トリス(p-t-ブトキシフェニル)アミンなどのトリス(モノまたはジC1-4アルコキシ-フェニル)アミンなど]などの対応する中性化合物(アミン化合物)のラジカルカチオンが挙げられる。これらのうち、トリス(モノハロフェニル)アミンなどのトリス(ハロフェニル)アミンが好ましく、さらに好ましくはトリス(p-ブロモフェニル)アミンなどのトリス(p-ハロフェニル)アミンであってもよい。
 本開示のドーパントは、前記式(1)で表されるアニオンと、対カチオンとを含んでいればよく、前記式(1)[または式(1a)]で表されるアニオンおよび対カチオン(例えば、式(2)または式(2a)で表されるラジカルカチオン)は、それぞれ、単独でまたは2種以上組み合わせて含んでいてもよい。通常、前記式(1)で表されるアニオンおよび対カチオンのみ[特に、単独の前記式(1)[または式(1a)]で表されるアニオンおよび単独の対カチオンのみ]で構成されることが多い。
 本開示の代表的なドーパントとしては、前記式(1a)で表されるアニオンと、対カチオンとしての前記式(2a)で表されるラジカルカチオンとの組み合わせで構成されるイオン化合物が挙げられる。なお、このような式(1a)で表されるアニオンおよび式(2a)で表されるラジカルカチオンを組み合わせたイオン化合物は新規物質である。
 具体的には、式(1a)において、R1aおよびR2aがフッ素原子またはパーフルオロアルキル基(パーフルオロC1-6アルキル基など)であるアニオン、ならびにR1aとR2aとが互いに結合したパーフルオロアルキレン基(パーフルオロC2-4アルキレン基など)である環状のアニオンから選択されるアニオン[例えば、FSI、TFSI、ヘキサフルオロプロパン-1,3-ジ(スルホニル)イミドアニオンなどの前記式(1)または(1a)で表されるアニオンとして具体的に例示したアニオンなど]と;前記式(2a)で表されるラジカルカチオン[例えば、前記式(2)または(2a)で表されるラジカルカチオンとして具体的に例示したトリフェニルアミン、トリス(ハロフェニル)アミン、トリス(アルキルフェニル)アミン、トリス(アルコキシフェニル)アミンから選択されるアミン化合物に対応するラジカルカチオンなど]とを組み合わせたイオン化合物などが挙げられる。なかでも、R1aおよびR2aがパーフルオロアルキル基(パーフルオロC1-4アルキル基など)であるアニオンと、トリス(ハロフェニル)アミン[例えば、トリス(モノハロフェニル)アミンなど]のラジカルカチオンとを組み合わせたイオン化合物が好ましく、さらに好ましくはTFSIと、トリス(p-ブロモフェニル)アミンなどのトリス(p-ハロフェニル)アミンとを組み合わせたイオン化合物であってもよい。
 (製造方法)
 本開示のドーパント(またはイオン化合物)の製造方法は特に制限されず、例えば、式(1)[特に式(1a)]で表されるアニオンおよび1価の金属イオンを含むイオン化合物と、所定の対カチオンに対応する中性化合物、具体的には、式(2)[特に式(2a)]で表されるラジカルカチオンに対応する中性化合物(または対応するアミン化合物)とを酸化剤の存在下で反応させる方法などで製造してもよい。
 前記1価の金属イオンとしては、例えば、アルカリ金属イオンなどであってもよいが、通常、遷移金属イオン、例えば、Cu、Ag、Auなどの周期表第11族金属元素のイオンなどが挙げられる。これらの1価の金属イオンは、単独でまたは2種以上組み合わせてもよい。好ましい1価の金属イオンはAgであってもよい。
 式(1)[特に式(1a)]で表されるアニオンおよび1価の金属イオンを含むイオン化合物は、前記式(1)[特に式(1a)]で表されるアニオンと、1価の金属イオンとを含んでいればよく、前記式(1)[または式(1a)]で表されるアニオンおよび1価の金属イオンは、それぞれ、単独でまたは2種以上組み合わせて含んでいてもよい。通常、前記式(1)で表されるアニオンおよび1価の金属イオンのみ[特に、単独の前記式(1)[または式(1a)]で表されるアニオンおよび単独の1価の金属イオンのみ]で構成されることが多い。
 式(1)[特に式(1a)]で表されるアニオンおよび1価の金属イオンを含むイオン化合物としては、例えば、式(1)または(1a)で表されるアニオンとして具体的に例示したアニオンの1価金属塩などが挙げられ、例えば、ビス(トリフルオロメタンスルホニル)イミド銀(AgTFSI)などのTFSIの1価金属塩などが挙げられる。式(1)[特に式(1a)]で表されるアニオンおよび1価の金属イオンを含むイオン化合物は、単独でまたは2種以上組み合わせて使用することもできる。
 式(2)[特に式(2a)]で表されるラジカルカチオンに対応する中性化合物(または対応するアミン化合物)としては、例えば、トリス(ハロフェニル)アミン[例えば、トリス(p-ブロモフェニル)アミンなど]などの式(2)または(2a)で表されるラジカルカチオンとして具体的に例示したラジカルカチオンに対応するアミン化合物などが挙げられる。
 式(1)[特に式(1a)]で表されるアニオンおよび1価の金属イオンで構成されるイオン化合物の割合は、式(2)[特に式(2a)]で表されるラジカルカチオンに対応する中性化合物1モルに対して、例えば1~5モル(例えば1.1~3モル)程度であってもよく、好ましくは1.2~2モル(例えば、1.3~1.5モル)程度であってもよい。
 前記酸化剤としては、前記中性化合物を1電子酸化して対応する式(2)[特に式(2a)]で表されるラジカルカチオンを形成可能な酸化剤であればよく、例えば、ハロゲン単体(塩素Cl、臭素Br、ヨウ素Iなど)、ハロゲン酸類[例えば、次亜ハロゲン酸塩(例えば、次亜塩素酸ナトリウムNaClOなどの次亜ハロゲン酸アルカリ金属塩など)、亜ハロゲン酸塩(例えば、亜塩素酸ナトリウムNaClOなどの亜塩素酸アルカリ金属塩など)、ハロゲン酸塩(例えば、臭素酸カリウムKBrOなどのハロゲン酸アルカリ金属塩など)、過ハロゲン酸塩(例えば、メタ過ヨウ素酸カリウムKIOなどの過ハロゲン酸アルカリ金属塩など)など]などが挙げられる。これらの酸化剤は単独でまたは2種以上組み合わせて使用することもできる。これらの酸化剤のうち、ハロゲン単体(特にヨウ素I)が好ましい。
 酸化剤の割合は、式(2)[特に式(2a)]で表されるラジカルカチオンに対応する中性化合物1モルに対して、例えば1~5モル(例えば1~3モル)程度であってもよく、好ましくは1~2モル(例えば、1~1.5モル)、さらに好ましくは1モル程度であってもよい。
 反応は、通常、溶媒の存在下で行ってもよい。溶媒としては、非プロトン性溶媒などの反応に不活性な溶媒、例えば、エーテル類(例えば、ジエチルエーテルなどの鎖状エーテル類、テトラヒドロフラン、ジオキサンなどの環状エーテル類など)などが挙げられる。通常、ジエチルエーテルなどの鎖状エーテル類がよく利用される。
 反応は、通常、不活性ガス雰囲気(窒素ガス、希ガスなど)中で行ってもよく、撹拌しながら行ってもよい。反応温度としては、例えば-70℃~+60℃(例えば-50℃~+40℃)、好ましくは-40℃~+30℃程度であってもよい。反応時間は、例えば1分~1時間(例えば5~30分)、好ましくは10~20分程度であってもよい。反応終了後、慣用の分離精製手段、例えば、ろ過、乾燥、抽出、再結晶、再沈殿、これらを組み合わせた方法などにより分離精製してもよい。
 [導電性組成物]
 本開示の導電性組成物は、本開示の前記ドーパントと、導電性有機化合物(または有機半導体化合物)とを含む。導電性組成物は、ドーパントは、本開示の前記ドーパント(第1のドーパント)とは異なる他のドーパント(第2のドーパント)を含んでいてもよいが、通常、第2のドーパント(F4TCNQなどの従来のドーパントなど)を実質的に含まないのが好ましい。なお、第1のドーパントは、単独でまたは2種以上組み合わせて使用してもよく、通常、単独で用いることが多い。
 (導電性有機化合物)
 導電性有機化合物は導電性低分子化合物であってもよく、導電性高分子化合物であってもよい。なお、本明細書および請求の範囲において、「導電性有機化合物」(「導電性低分子化合物」および「導電性高分子化合物」)は、本開示のドーパントがドーピングされた状態において、半導体や導体(または良導体)としての特性を示す化合物[または伝導度(電気伝導度または導電率)が、例えば10-10S/cm以上の物質]を意味し、ドーパントを含まない化合物単独の状態(ドーピング前または未ドープの状態)では絶縁体としての特性を示す化合物[例えば、伝導度が10-10S/cm未満の物質]も含む意味に用いる。
 導電性低分子化合物として代表的には、例えば、アセン類(例えば、ナフタセン、クリセン、ピレン、ペンタセン、ピセン、ペリレン、ヘキサセン、ヘプタセン、ジベンゾペンタセン、コロネン、テトラベンゾペンタセン、オバレンなど);フタロシアニン類(例えば、フタロシアニン(銅フタロシアニンなど)、ナフタロシアニン、サブフタロシアニンなど);カルバゾール類[例えば、1,3,5-トリス[2,7-(N,N-(p-メトキシフェニル)アミノ)-9H-カルバゾール-9-イル]ベンゼン(SGT405)など];チオフェン類[例えば、2,5-ビス[4-(N,N-ビス(p-メトキシフェニル)アミノ)フェニル]-3,4-エチレンジオキシチオフェン(H101)、2,3,4,5-テトラキス[4-(N,N-ビス(p-メトキシフェニル)アミノ)フェニル]チオフェン(H111)など];テトラカルボン酸ジイミド類[例えば、1,4,5,8-ナフタレンテトラカルボン酸ジイミド、2,3,6,7-ナフタレンテトラカルボン酸ジイミド、2,3,6,7-アントラセンテトラカルボン酸ジイミドなど];トリプチセン類[例えば、2,6,14-トリス[5’-(4-(N,N-ビス(p-メトキシフェニル)アミノ)フェニル)-チオフェン-2’-イル]トリプチセン(T103)など]などが挙げられる。
 導電性高分子化合物(または共役系高分子化合物)として代表的には、例えば、脂肪族共役系高分子化合物(例えば、trans-ポリアセチレンなどのポリアセチレン、ポリフェニルアセチレンなど);芳香族共役系高分子化合物[例えば、ポリ(p-フェニレン)、ポリ(m-フェニレン)、ポリフルオレンなど];複素環式共役系高分子化合物[例えば、ポリピロール類(例えば、ポリ(ピロール-2,5-ジイル)など)、ポリチオフェン類[例えば、ポリチオフェン、ポリアルキルチオフェン、ポリ[5,5’-ビス(3-アルキル-2-チエニル)-2,2’-ビチオフェン](またはPQT)、ポリ[2,5-ビス(3-アルキルチオフェン-2-イル)チエノ[3,2-b]チオフェン](またはPBTTT)、ポリ(3,4-エチレンジオキシチオフェン)(またはPEDOT)など]など];含ヘテロ原子共役系高分子化合物[例えば、ポリアニリン、ポリアゾベンゼン、ポリトリアリールアミン類(例えば、ポリ[ビス(4-フェニル)-(2,4,6-トリメチルフェニル)-アミン](またはPTAA)など)など];はしご形(または複鎖型)共役系高分子化合物[例えば、ポリアセン、ポリフェナントレンなど];混合型共役系高分子化合物[例えば、ポリ(p-フェニレンビニレン)、ポリ(p-フェニレンスルフィド)など]などが挙げられる。
 これらの導電性有機化合物は、市販品または慣用の方法で調製してもよい。また、これらの導電性有機化合物は、単独でまたは2種以上組み合わせて使用してもよい。なかでも、電子デバイスなどの作製における成形性(生産性)や耐熱性に優れる点から、導電性高分子化合物が好ましい。導電性高分子化合物は、単独でまたは2種以上組み合わせて使用してもよく、通常、単独の導電性高分子化合物が用いられることが多い。本開示の導電性組成物における導電性有機化合物(または導電性高分子化合物)は、通常、P型有機半導体を形成可能であることが多く、前記導電性高分子化合物のなかでも、複素環式共役系高分子化合物などの複素環を少なくとも有する導電性高分子化合物が好ましい。
 複素環を有する導電性高分子化合物は、分子構造中(特に主鎖中)に複素環を有する構成単位を少なくとも含む共役系高分子化合物であればよい。前記複素環は、単環式複素環であってもよく、単環式複素環と1または複数の環[複素環および/または炭化水素環(芳香族性炭化水素環または非芳香族炭化水素環)]とが縮合(オルソ縮合、オルソアンドペリ縮合など)した多環式複素環であってもよい。複素環を形成する環(多環式複素環の場合は互いに縮合する各環)は、5~7員環、好ましくは5または6員環であることが多い。
 前記複素環を形成するヘテロ原子としては、例えば、窒素原子、酸素原子、硫黄原子などが挙げられる。これらのヘテロ原子は、単独でまたは2種以上組み合わせて複素環に含まれていてもよい。これらのヘテロ原子のうち、窒素原子、硫黄原子が好ましく、硫黄原子がさらに好ましい。複素環は、フラン環などの酸素原子を含有する複素環、ピロール環などの窒素原子を含有する複素環などであってもよいが、チオフェン環、ベンゾチオフェン環、チエノチオフェン環、ベンゾチアジアゾール環などのヘテロ原子として少なくとも硫黄原子を含む複素環[特に、チオフェン環、ベンゾチオフェン環、チエノチオフェン環などのチオフェン環構造を有する(内包または内在する)複素環]であるのが好ましい。
 このような複素環を有する構成単位として代表的には、下記式(3)で表される構成単位などが挙げられる。
Figure JPOXMLDOC01-appb-C000014
(式中、Xは酸素原子または硫黄原子を示し、Rは置換基を示し、nは0~2の整数を示す)。
 前記式(3)において、好ましいXは硫黄原子である。
 Rで表される置換基としては、例えば、アルキル基(例えば、ヘキシル基、オクチル基、2-エチルヘキシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基などの直鎖状または分岐鎖状C1-20アルキル基など)、アルコキシ基(例えば、ヘキシルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ドデシルオキシ基、テトラデシルオキシ基、ヘキサデシルオキシ基、オクタデシルオキシ基などの直鎖状または分岐鎖状C1-20アルコキシ基など)などが挙げられる。これらのうち、直鎖状または分岐鎖状C6-18アルキル基などのアルキル基が好ましい。
 置換数nは0または1であることが多く、溶解性の観点から1が好ましい。なお、nが2の場合、2つの基Rの種類は、互いに同一または異なっていてもよい。
 前記式(3)で表される構成単位(または2価の基)として具体的には、チオフェン-2,5-ジイル基、3-アルキルチオフェン-2,5-ジイル基(例えば、3-ヘキシルチオフェン-2,5-ジイル基などの3-C6-18アルキルチオフェン-2,5-ジイル基など)などが挙げられる。これらの前記式(3)で表される構成単位は、単独でまたは2種以上組み合わせてもよい。
 複素環を有する導電性高分子化合物は前記式(3)で表される構成単位を少なくとも含んでいるのが好ましく、結晶性が高く伝導度を向上し易い点から、下記式(3A)で表される構成単位を含むのがさらに好ましい。通常、導電性有機化合物の結晶性が高いとドーピングし難い(ドーピング効率が低下し易い)ため、伝導度を向上し難いが、本開示のドーパントは結晶性の高い導電性有機化合物に対してもドーピング効率に優れるため、伝導度を有効に向上できる。
Figure JPOXMLDOC01-appb-C000015
(式中、X1aおよびX1bは酸素原子または硫黄原子を示し、R6aおよびR6bは置換基を示し、n1およびn2は0~2の整数を示し、X2aおよびX2bは酸素原子または硫黄原子を示し、R7aおよびR7bは水素原子または置換基を示す)。
 前記式(3A)において、好ましいX1aおよびX1bは硫黄原子である。X1aおよびX1bの種類は、互いに異なっていてもよいが、通常、同一であることが多い。
 R6aおよびR6bで表される置換基としては、前記式(3)におけるRと好ましい態様を含めて同様の基が挙げられる。置換数n1およびn2は、0または1であることが多く、溶解性の観点から1が好ましい。n1およびn2は互いに異なっていてもよいが、通常、同一であることが多い。n1、n2が1である場合、R6a、R6bの置換位置は、それぞれX1a、X1bを含む5員複素環の3位または4位のいずれであってもよいが、通常、前記5員複素環の3位(中央のX2aおよびX2bを含む縮合複素環に近い位置)であることが多い。
 なお、n1およびn2が1~2の場合、R6aおよびR6bの種類は互いに異なっていてもよいが、通常、同一であることが多い。また、n1、n2が2の場合、2つのR6a、2つのR6bの種類は、それぞれ互いに同一または異なっていてもよい。
 好ましいX2aおよびX2bは硫黄原子である。X2aおよびX2bの種類は、互いに異なっていてもよいが、通常、同一であることが多い。
 R7aおよびR7bで表される置換基としては、前記式(3)におけるRと好ましい態様を含めて同様の基が挙げられる。好ましいR7aおよびR7bは水素原子である。
 前記式(3A)で表される構成単位(または2価の基)として代表的には、下記式(3a)で表される構成単位(2,5-ビス(3-アルキルチオフェン-2-イル)チエノ[3,2-b]チオフェンを有する構成単位など)などが挙げられる。
Figure JPOXMLDOC01-appb-C000016
(式中、R6aおよびR6bは好ましい態様を含めて前記式(3A)と同じ)。
 式(3a)で表される構成単位として具体的には、R6aおよびR6bがドデシル基である構成単位、R6aおよびR6bがテトラデシル基である構成単位、R6aおよびR6bがヘキサデシル基である構成単位、R6aおよびR6bがオクタデシル基である構成単位などの2,5-ビス(3-C6-20アルキルチオフェン-2-イル)チエノ[3,2-b]チオフェンを有する(R6aおよびR6bがC6-20アルキル基である)構成単位などが挙げられる。前記式(3A)または(3a)などで表される構成単位は、単独でまたは2種以上組み合わせてもよい。
 なお、複素環を有する導電性高分子化合物において、複素環[好ましくはヘテロ原子として少なくとも硫黄原子を含む複素環、特にチオフェン環構造を有する複素環]を有する構成単位(前記式(3)で表される構成単位など)の割合は、構成単位全体に対して、例えば10モル%以上(例えば30モル%以上)程度であってもよく、好ましくは50モル%以上(例えば70モル%以上)、さらに好ましくは90モル%以上(例えば、実質的に100モル%)程度であってもよい。
 また、前記式(3)で表される構成単位(または2価の基)の割合は、構成単位全体に対して、例えば10~100モル%(例えば30~90モル%)程度であってもよく、好ましくは50~80モル%(例えば60~70モル%)程度であってもよい。前記式(3A)[特に(3a)]で表される構成単位の割合は、構成単位全体に対して、例えば10モル%以上(例えば30モル%以上)程度であってもよく、好ましくは50モル%以上(例えば70モル%以上)、さらに好ましくは90モル%以上(例えば、実質的に100モル%)程度であってもよい。
 複素環を有する導電性高分子化合物としては代表的には、前述の複素環式共役系高分子化合物などが挙げられ、なかでも、ポリチオフェン、ポリアルキルチオフェン、PQT、PBTTT、PEDOTなどポリチオフェン類が好ましい。
 ポリチオフェンとしては、例えば、ポリ(チオフェン-2,5-ジイル)などが挙げられる。ポリアルキルチオフェンとしては、例えば、ポリ(3-メチルチオフェン-2,5-ジイル)、ポリ(3-ヘキシルチオフェン-2,5-ジイル)(またはP3HT)、ポリ(3-オクチルチオフェン-2,5-ジイル)(またはP3OT)、ポリ(3-ドデシルチオフェン-2,5-ジイル)(またはP3DDT)などのポリ(3-C1-18アルキルチオフェン-2,5-ジイル)などが挙げられる。PQTとしては、例えば、ポリ[5,5’-ビス(3-ドデシル-2-チエニル)-2,2’-ビチオフェン](またはPQT-C12)などのポリ[5,5’-ビス(3-C1-18アルキル-2-チエニル)-2,2’-ビチオフェン]などが挙げられる。PBTTTとしては、例えば、ポリ[2,5-ビス(3-ドデシルチオフェン-2-イル)チエノ[3,2-b]チオフェン](またはPBTTT-C12)、ポリ[2,5-ビス(3-テトラデシルチオフェン-2-イル)チエノ[3,2-b]チオフェン](またはPBTTT-C14)、ポリ[2,5-ビス(3-ヘキサデシルチオフェン-2-イル)チエノ[3,2-b]チオフェン](またはPBTTT-C16)などのポリ[2,5-ビス(3-C1-18アルキルチオフェン-2-イル)チエノ[3,2-b]チオフェン]などが挙げられる。
 複素環を有する導電性高分子化合物(特にポリチオフェン類)は、単独でまたは2種以上組み合わせてもよい。なかでも、ポリチオフェン、ポリアルキルチオフェン、PQT、PBTTTなどが好ましく、PBTTTがさらに好ましい。
 導電性高分子化合物の分子量は特に制限されず、例えば、ゲルパーミエーションクロマトグラフィー(GPC)により測定したとき、ポリスチレン換算で、数平均分子量Mnは、500~5000000(例えば5000~100000)、好ましくは10000~50000(例えば15000~40000)、さらに好ましくは20000~30000(例えば23000~27000)程度であってもよく、分子量分布またはPDI(Mw/Mn)は、例えば、1~20(例えば1.1~10)、好ましくは1.2~5(例えば1.3~3)、さらに好ましくは1.5~2.5(例えば1.6~2)程度であってもよい。Mnが大きすぎると、溶解性などが低下して成形性が低下するおそれがあり、小さすぎると耐熱性や機械的特性などが低下するおそれがある。
 導電性組成物において、本開示のドーパントおよび導電性有機化合物の総量の割合は、例えば50質量%以上(例えば80質量%以上)、好ましくは90質量%以上(実質的に100質量%)程度であってもよい。ドーパントの割合が少なすぎると、キャリア密度を向上できず、伝導度を十分に向上できないおそれがあり、多すぎると、導電性有機化合物の結晶性が低下して伝導度が低下するおそれがある。本開示のドーパントはドーピング効率が高いため、少量であってもキャリア密度および伝導度を有効に向上できる。
 導電性組成物は、本開示の効果を損なわない範囲で慣用の添加剤などを含んでいてもよい。添加剤としては、例えば、レベリング剤、密着性向上剤(シランカップリング剤など)などが挙げられる。これらの添加剤は、単独で又は2種以上組み合わせて使用することもできる。添加剤の割合は、ドーパントおよび導電性有機化合物の総量100質量部に対して、例えば30質量部以下(例えば10質量部以下)、好ましくは5質量部以下(例えば0~1質量部)程度であってもよい。
 また、導電性組成物は、溶媒を含んでいなくてもよいが、印刷、塗布(コーティング)などの簡便な方法により有機半導体の薄膜やフィルムなどを形成するために、必要に応じて溶媒を含んでいてもよい。
 溶媒としては、例えば、芳香族炭化水素類(例えば、ベンゼン、トルエン、キシレン、アニソールなど);ハロゲン化炭化水素類(例えば、ジクロロメタン、クロロホルム、1,2-ジクロロエタンなどのハロC1-6アルカン、クロロベンゼン、ジクロロベンゼン);アルコール類(例えば、メタノール、エタノール、2-プロパノール、n-ブタノール、t-ブタノールなどのC1-6アルカンモノオール;エチレングリコールなどのC2-4アルカンジオールなど);エーテル類(ジエチルエーテル、ジイソプロピルエーテルなどの鎖状エーテル類、テトラヒドロフラン、ジオキサンなどの環状エーテル類など);グリコールエーテル類[例えば、セロソルブ類(メチルセロソルブなど)、カルビトール類(メチルカルビトールなど)、トリエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルなどの(ポリ)C2-4アルキレングリコールモノC1-4アルキルエーテル;エチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテルなどの(ポリ)C2-4アルキレングリコールジC1-4アルキルエーテルなど];グリコールエーテルアセテート類[例えば、セロソルブアセテート類(例えば、メチルセロソルブアセテートなどのC1-4アルキルセロソルブアセテートなど)、カルビトールアセテート類(例えば、メチルカルビトールアセテートなどのC1-4アルキルカルビトールアセテートなど)、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノブチルエーテルアセテートなどの(ポリ)C2-4アルキレングリコールモノC1-4アルキルエーテルアセテートなど];ケトン類(アセトン、メチルエチルケトンなどの鎖状ケトン、シクロヘキサノンなどの環状ケトンなど);エステル類(酢酸エチルなどの酢酸エステル、乳酸メチルなどの乳酸エステルなど);カーボネート類(ジメチルカーボネートなどの鎖状カーボネート、エチレンカーボネート、プロピレンカーボネートなどの環状カーボネートなど);ニトリル類(アセトニトリル、プロピオニトリル、ベンゾニトリルなど);アミド類(N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドンなど);スルホキシド類(ジメチルスルホキシドなど);及びこれらの混合溶媒などが挙げられる。通常、芳香族炭化水素類、ハロゲン化炭化水素類(例えば、o-ジクロロベンゼンなど)などがよく利用される。
 導電性組成物が溶媒を含む場合、各成分と溶媒とを混合した後、必要によりろ過して調製してもよい。導電性組成物(溶液または分散液)における固形分濃度は、塗布方法などに応じて選択でき、例えば、0.001~20質量%(例えば0.01~10質量%)、好ましくは0.1~5質量%(例えば0.5~3質量%)、特に0.6~2質量%(例えば0.7~1.3質量%)程度であってもよい。
 (導電性組成物の製造方法)
 本開示のドーパントおよび前記導電性有機化合物を含む導電性組成物の製造方法は、前記ドーパントを前記導電性有機化合物にドーピングするドーピング工程を少なくとも含んでいる。ドーピング工程に供する導電性有機化合物は、必ずしも所定形状に成形されていなくてもよく、ドーピング工程後またはドーピング工程において所定形状に成形してもよいが、通常、ドーピング工程前に予め所定の形状(例えば、膜状またはフィルム状など)に成形されることが多い。
 所定形状に成形する方法は慣用の成形方法が利用でき、薄膜状またはフィルム状などに形成する場合、例えば、真空蒸着法、スパッタリング法などのドライプロセスにより形成してもよく、ウェットプロセス(コーティングなど)により形成してもよい。成形性(または生産性)の点でウェットプロセスが好ましい。
 ウェットプロセスでは、基材(または基板)の少なくとも一方の面に対して、前記導電性有機化合物と前記溶媒とを少なくとも含む組成物(溶液または分散液)を印刷または塗布(またはコーティング)し、得られた塗膜から溶媒を除去して製膜する。
 前記基材(または基板)としては特に制限されず、例えば、ガラス板、シリコンウエハー、プラスチックフィルム(例えば、ポリエチレンテレフタレートフィルムなどの透明樹脂フィルムなど)などであってもよい。これらの基材は、必要に応じて、表面に1または複数の機能層(例えば、ITOなどの導電層、SiOなどの絶縁層、β-フェネチルトリメトキシシラン(β-PTS)などの自己組織化単分子膜(SAM)など)が形成されていてもよい。
 印刷または塗布方法は特に制限されず、慣用の方法、例えば、エアーナイフコート法、ロールコート法、グラビアコート法、ブレードコート法、バーコート法、ダイコート法、ディップコート法、スプレーコート法、スピンコート法、キャスト法、エッジキャスト法、ドロップキャスト法、スクリーン印刷法、インクジェット印刷法、圧縮配向法などであってもよい。通常、スピンコート法、エッジキャスト法、ドロップキャスト法、インクジェット印刷法などがよく利用され、成膜容易性(または生産性)の観点から、スピンコート法などが好ましい。
 得られた塗膜を自然乾燥、加熱および/または減圧下での乾燥、スピンドライ(またはスピン乾燥)などの慣用の方法で溶媒を除去することにより薄膜またはフィルムを形成できる。これらの乾燥方法は単独でまたは2種以上組み合わせてもよい。加熱して乾燥する場合の加熱温度は、例えば30~100℃、好ましくは40~80℃程度であってもよい。
 得られた薄膜またはフィルムは、アニール処理を施してもよい。アニール処理温度は、例えば50~400℃(例えば80~380℃)程度の範囲から選択でき、例えば100~360℃(例えば150~350℃)、好ましくは200~340℃(例えば250~330℃)、さらに好ましくは280℃~320℃程度であってもよい。アニール処理時間は、例えば10分~12時間、好ましくは30分~8時間、さらに好ましくは1~6時間(例えば2~4時間)程度であってもよい。なお、アニール処理は、大気雰囲気下で行ってもよく、窒素ガス、希ガス(ヘリウム、アルゴンなど)などの不活性ガス雰囲気下で行ってもよく、不活性ガス(特にアルゴン)雰囲気下で行うのが好ましい。
 また、ドーピング方法は特に制限されず、慣用の方法が利用でき、例えば、気相ドーピング法、ドーパント溶液に導電性有機化合物(膜またはフィルム状の導電性有機化合物など)を含浸する液相ドーピング法、ドーパントを含む電解質溶液に導電性有機化合物を浸漬して電解する電気化学的ドーピング法、イオンインプランテーション法、誘起ドーピング法などが挙げられる。
 これらのうち、液相ドーピング法がよく利用される。液相ドーピング法に用いるドーパント溶液を調製するための溶媒は、ドーパントを溶解または分散可能である限り特に制限されず、例えば、前記導電性組成物の項に例示した溶媒などが挙げられ、通常、ニトリル類(アセトニトリルなど)の極性溶媒を用いることが多い。ドーパント溶液の濃度は、例えば0.01~100mmol/L(例えば0.1~10mmol/L)程度の範囲から選択してもよく、例えば0.3~5mmol/L(例えば0.5~2mmol/L)、好ましくは0.5~1.5mmol/L(例えば0.8~1.2mmol/L)程度であってもよい。なお、効率よくドーピングするために(平衡を偏らせるために)、ドーパント溶液中のドーパントの使用量は、通常、導電性有機化合物(または導電性高分子化合物の繰り返し単位)に対して大過剰であることが多い。
 導電性有機化合物(膜またはフィルム状の導電性有機化合物など)のドーパント溶液への含浸(または浸漬)は、必要に応じて加熱しながら行ってもよい。加熱温度は、ドーパント溶液の沸点以下であればよく、例えば20~60℃(例えば30~50℃)、好ましくは35~45℃程度であってもよい。含浸時間は、例えば1分~12時間(例えば5~30分)、好ましくは10~20分程度であってもよい。
 導電性有機化合物をドーパント溶液に含浸後、得られた導電性組成物を前記慣用の方法で乾燥して溶媒を除去してもよく、例えば、導電性有機化合物が膜またはフィルム状である場合、スピンドライ後に加熱乾燥することが多い。スピンドライにおける回転数は、例えば500~5000rpm(例えば1000~2000rpm)程度であってもよく、時間は1秒~1時間(例えば5~60秒)程度であってもよい。また、加熱乾燥における温度は、例えば40~300℃(例えば60~100℃)程度であってもよく、時間は、例えば1分~12時間(例えば5~30分)程度であってもよい。
 なお、導電性組成物が前述の添加剤などを含む場合、これらの添加剤はドーピング工程の前後またはドーピング工程中に導電性有機化合物に混合してもよい。
 このようにして得られる薄膜またはフィルムの厚み(平均厚み)は、用途に応じて適宜選択してもよく、例えば1~5000nm、好ましくは30~1000nm、さらに好ましくは50~500nm程度であってもよい。
 (導電性組成物の特性および電子デバイス)
 本開示の導電性組成物は高い伝導度を示し、例えば10~10000S/cm(例えば100~5000S/cm)、好ましくは300~3000S/cm(例えば500~2500S/cm)、さらに好ましくは1000~2000S/cm(例えば1200~1800S/cm)程度であってもよい。なお、本明細書および請求の範囲において、伝導度は後述する実施例に記載の方法により測定できる。
 本開示の導電性組成物は、通常、P型半導体であってもよく、前述のように伝導度が高いため、電子デバイス、例えば、スイッチング素子、整流素子(ダイオード)、トランジスタなどの半導体素子、光電変換素子(太陽電池素子、有機エレクトロルミネッセンス(EL)素子など)、熱電変換素子などを形成するための材料として利用できる。
 本明細書に開示された各々の態様は、本明細書に開示された他のいかなる特徴とも組み合わせることができる。
 以下に、実施例に基づいて本開示をより詳細に説明するが、本開示はこれらの実施例によって限定されるものではない。
 [イオン化合物の合成]
 (実施例1)
Figure JPOXMLDOC01-appb-C000017
 ビス(トリフルオロメタンスルホニル)イミド銀[AgTFSIともいう、1.36g、3.51mmol]、トリス(4-ブロモフェニル)アミン(1.21g、2.51mmol)、およびジエチルエーテル(EtO、100mL)を混合して20分間撹拌した後、-36℃に冷却した。そこに、ヨウ素(I、0.64g、2.51mmol)/EtO(30mL)混合液を15分かけて滴下した後、室温に昇温した。析出物をろ過により回収し、室温で1時間減圧乾燥して、濃紫色固体状の粗生成物(1.77g、収率93%)を得た。得られた粗生成物を乾燥した塩化メチレン(CHCl、90mL)に溶解した後にろ過して、得られたろ液を-26℃の乾燥したEtO(360mL)に注ぎ入れた。その後、室温に昇温し、析出物を再びろ過して回収し、室温で2時間減圧乾燥して、濃紫色固体状の目的物(式(1a-1)で表されるアニオンと式(2a-1)で表されるカチオンとのイオン化合物(TPA-TFSIともいう)、1.41g、収率74%)を得た。元素分析の結果を以下に示す。
 Anal. Calcd for C20H12Br3F6N2O4S2: C 31.52; H 1.59; N 3.68. Found: C 31.55; H 1.80; N 3.80。
 [紫外可視近赤外(UV-Vis-NIR)スペクトルの測定]
 (実施例2)
 実施例1で得られたイオン化合物(TPA-TFSI)を、下記式(3a-1)で表される繰り返し単位を有する高分子化合物(Aldrich社製「PBTTT-C14」、Mn=25 300、PDI=1.8)に液相ドーピングした測定試料(導電性組成物)を以下に記載の方法で調製した。
Figure JPOXMLDOC01-appb-C000018
(式中、Rはn-テトラデシル基(基-C1429)を示す)。
 すなわち、濃度1質量%のPBTTT-C14のオルトジクロロベンゼン溶液をガラス基板上にスピンコート(500rpm、5秒の後、2000rpm、60秒)して、平均厚み40~100nmのスピンコート膜を作製した。得られたスピンコート膜を濃度1mmol/Lのドーパント溶液(実施例1で得られたイオン化合物のアセトニトリル溶液)に温度40℃で15分間浸漬した。浸漬後、スピンドライ(1500rpm、30秒)した後、温度80℃で10分間乾燥させて測定試料(導電性組成物)を調製した。
 得られた測定試料を、紫外可視近赤外分光光度計(JASCO製)を用いて、200~2700nmの範囲で1nmの間隔にて、紫外可視近赤外(UV-Vis-NIR)吸収スペクトルを測定した。測定結果を図1に示す。なお、図1には参考のために、ドーパントをドープしていないPBTTT-C14のみを測定試料としたスペクトルを示す。
 (比較例1)
 実施例1で得られたイオン化合物に代えて、2,3,5,6-テトラフルオロ-7,7,8,8-テトラシアノキノジメタン(F4-TCNQ)を用いる以外は実施例2と同様にして紫外可視近赤外(UV-Vis-NIR)吸収スペクトルを測定した。測定結果を図1に示す。
 図1から明らかなように、実施例2では、F4-TCNQをドープした比較例1に比べて、中性のPBTTT-C14に由来する500nm付近のピークが大きく減少し、PBTTT-C14ラジカルカチオンに由来する1200~2500nm付近の吸収が大きく増大している。そのため、実施例2では、比較例1のF4-TCNQをドープした場合よりもドーピング効率が高かった。なお、比較例1の400nm付近の鋭い吸収は、中性のF4-TCNQによる吸収を示し、700~1000nm付近の2つ(doublet)の吸収は、F4-TCNQアニオンの吸収を示すものと思われる。
 [X線ロッキングカーブの測定]
 (実施例3)
 実施例2と同様にして調製した測定試料(導電性組成物)を、X線回折装置(Rigaku製「SmartLab」)を用いて、X線源としてCuKαを使用して、X線ロッキングカーブを測定した。測定結果を図2に示す。なお、図2には参考のために、ドーパントをドープしていないPBTTT-C14のみを試料とした場合の測定結果も示す。
 (比較例2)
 実施例1で得られたイオン化合物に代えて、2,3,5,6-テトラフルオロ-7,7,8,8-テトラシアノキノジメタン(F4TCNQ)を用いる以外は実施例3と同様にしてX線ロッキングカーブを測定した。測定結果を図2に示す。
 図2から明らかなように、実施例3では、F4TCNQをドープした比較例2に比べて、半値幅(FWHM)が減少しており、ドーピング後における結晶性が高いことが分かった。詳細には、PBTTT-C14単独の場合に比べ、比較例2では半値幅が約2%減少するのに対して、実施例3では約10%も減少した。この結果から、ドーピング後のTFSIアニオンが結晶性の向上に大きく寄与したことを示すものと考えられる。
 [伝導度の測定]
 (実施例4)
 ガラス基板に代えて、4端子測定用の金電極がついたガラス基板を用いた以外は、実施例2と同様にして、PBTTT-C14の製膜および実施例1のイオン化合物を含むドーパント溶液に液相ドーピングを施し、測定試料を調製した。
 得られた測定試料を、デジタルマルチメータ装置(Keiythley製「Keiythley 2000 digital multimeter」)を用いて、測定条件:電流input 1μAで伝導度を測定したところ、1500S/cmと高い伝導度を示した。
 (比較例3)
 実施例1で得られたイオン化合物に代えて、2,3,5,6-テトラフルオロ-7,7,8,8-テトラシアノキノジメタン(F4-TCNQ)を用いる以外は実施例4と同様にして伝導度を測定したところ、250S/cmであった。
 本開示のドーパントは、導電性組成物における伝導度を有効に向上できるため、本開示のドーパントを含む前記導電性組成物は、様々な電子デバイス、例えば、整流素子(ダイオード)、スイッチング素子またはトランジスタ(有機薄膜トランジスタ)[例えば、接合型トランジスタ(バイポーラトランジスタ)、電界効果型トランジスタ(ユニポーラトランジスタ)など]、光電変換素子(太陽電池素子、有機EL素子など)、熱電変換素子などの有機半導体デバイスとして有効に利用できる。

Claims (10)

  1.  下記式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、RおよびRはそれぞれ独立して電子吸引性基を示し、RとRとは互いに結合してヘテロ環を形成してもよい。)
    で表されるアニオンと対カチオンとを含むドーパント。
  2.  式(1)において、RおよびRがニトロ基、シアノ基、アシル基、カルボキシル基、アルコキシカルボニル基、ハロアルキル基、スルホ基、アルキルスルホニル基、ハロスルホニル基およびハロアルキルスルホニル基から選択される少なくとも1種の基であるか、またはRとRとが互いに結合して形成された基[-SO-L-SO-](式中、Lはハロアルキレン基を示す。)である請求項1記載のドーパント。
  3.  式(1)において、RおよびRがフルオロスルホニル基もしくはフルオロアルキルスルホニル基であるか、またはRとRとが互いに結合して形成された基[-SO-L-SO-](式中、Lはフルオロアルキレン基を示す。)である請求項1または2記載のドーパント。
  4.  対カチオンが、下記式(2)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R~Rはそれぞれ独立して水素原子、置換基を有していてもよい炭化水素基または置換基を有していてもよい複素環基を示す。)
    で表されるラジカルカチオンである請求項1~3のいずれかに記載のドーパント。
  5.  式(2)において、R~Rが置換基を有していてもよいアリール基であり、前記置換基が、ハロゲン原子、アルキル基、ヒドロキシル基、アルコキシ基、ニトロ基、アミノ基および置換アミノ基から選択される基である請求項4記載のドーパント。
  6.  請求項1~5のいずれかに記載のドーパントと、導電性有機化合物とを含む導電性組成物。
  7.  請求項1~5のいずれかに記載のドーパントを導電性有機化合物にドーピングし、請求項6記載の導電性組成物を製造する方法。
  8.  請求項6記載の導電性組成物を含む電子デバイス。
  9.  下記式(1a)
    Figure JPOXMLDOC01-appb-C000003
    (式中、R1aおよびR2aは、それぞれ独立してフッ素原子もしくはフルオロアルキル基を示し、またはR1aとR2aとは互いに結合してフルオロアルキレン基を形成してもよい。)
    で表されるアニオンと、下記式(2a)
    Figure JPOXMLDOC01-appb-C000004
    (式中、R3a~R5aはそれぞれ独立して置換基を示し、m3~m5はそれぞれ独立して0~5の整数を示す。)
    で表されるラジカルカチオンとを含むイオン対。
  10.  式(1a)で表されるアニオンおよび1価の金属イオンを含むイオン化合物と、式(2a)で表されるラジカルカチオンに対応する中性化合物とを酸化剤の存在下で反応させて、請求項9記載のイオン対を製造する方法。
PCT/JP2020/030963 2019-08-23 2020-08-17 ドーパントおよび導電性組成物ならびにその製造方法 WO2021039463A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021542758A JPWO2021039463A1 (ja) 2019-08-23 2020-08-17
CN202080059299.1A CN114341104B (zh) 2019-08-23 2020-08-17 掺杂物以及导电性组合物及其制造方法
EP20856330.4A EP4019492A4 (en) 2019-08-23 2020-08-17 DOPANT, ELECTROCONDUCTIVE COMPOSITION AND CORRESPONDING METHOD FOR PRODUCTION
US17/634,286 US12046390B2 (en) 2019-08-23 2020-08-17 Dopant, electroconductive composition and method for producing same
KR1020227009077A KR20220051212A (ko) 2019-08-23 2020-08-17 도펀트 및 도전성 조성물 및 이의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-153176 2019-08-23
JP2019153176 2019-08-23

Publications (1)

Publication Number Publication Date
WO2021039463A1 true WO2021039463A1 (ja) 2021-03-04

Family

ID=74685087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030963 WO2021039463A1 (ja) 2019-08-23 2020-08-17 ドーパントおよび導電性組成物ならびにその製造方法

Country Status (7)

Country Link
US (1) US12046390B2 (ja)
EP (1) EP4019492A4 (ja)
JP (1) JPWO2021039463A1 (ja)
KR (1) KR20220051212A (ja)
CN (1) CN114341104B (ja)
TW (1) TWI851795B (ja)
WO (1) WO2021039463A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023080040A1 (ja) * 2021-11-02 2023-05-11 国立大学法人東京大学 電気又は電子デバイス、電気又は電子デバイスの製造方法、及び前記電気又は電子デバイスを備える機器
EP4144802A4 (en) * 2020-05-01 2024-07-10 Univ Tokyo CONDUCTOR MATERIAL

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7550399B2 (ja) * 2020-04-17 2024-09-13 国立大学法人 東京大学 ドーパント及び導体材料

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11193359A (ja) * 1997-10-14 1999-07-21 Xerox Corp 導電性ポリマー被覆物
JP2012253067A (ja) * 2011-05-31 2012-12-20 Hitachi Chem Co Ltd 電子受容性化合物及びその製造方法、該化合物を含む重合開始剤、有機エレクトロニクス材料、これらを用いた有機薄膜、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、並びに表示装置
JP2013087081A (ja) * 2011-10-18 2013-05-13 Hitachi Chemical Co Ltd 電子受容性化合物及びその製造方法、該化合物を含む重合開始剤、有機エレクトロニクス材料及びこれらを用いた有機薄膜、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、並びに表示装置
JP2015151365A (ja) * 2014-02-14 2015-08-24 三光化学工業株式会社 導電性オリゴチオフェン、その製造方法、導電性組成物、塗料、制電性被覆物および電子部材
WO2018074176A1 (ja) * 2016-10-19 2018-04-26 キヤノン株式会社 感熱転写記録用シート

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120086319A (ko) * 2009-10-19 2012-08-02 이 아이 듀폰 디 네모아 앤드 캄파니 전자적 응용을 위한 트라이아릴아민 화합물
CN103959392B (zh) 2011-10-04 2016-12-07 索尔维美国有限公司 用于空穴注入和传输层的经改善的掺杂方法
WO2013144177A1 (en) 2012-03-30 2013-10-03 Basf Se Quinolinium dyes with fluorinated counter anion for dye sensitized solar cells
WO2014191787A1 (en) 2013-05-29 2014-12-04 Freescale Semiconductor, Inc. Voltage regulator, application-specific integrated circuit and method for providing a load with a regulated voltage
GB201309668D0 (en) * 2013-05-30 2013-07-17 Isis Innovation Organic semiconductor doping process
JP7550399B2 (ja) * 2020-04-17 2024-09-13 国立大学法人 東京大学 ドーパント及び導体材料
EP4144802A4 (en) * 2020-05-01 2024-07-10 Univ Tokyo CONDUCTOR MATERIAL

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11193359A (ja) * 1997-10-14 1999-07-21 Xerox Corp 導電性ポリマー被覆物
JP2012253067A (ja) * 2011-05-31 2012-12-20 Hitachi Chem Co Ltd 電子受容性化合物及びその製造方法、該化合物を含む重合開始剤、有機エレクトロニクス材料、これらを用いた有機薄膜、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、並びに表示装置
JP2013087081A (ja) * 2011-10-18 2013-05-13 Hitachi Chemical Co Ltd 電子受容性化合物及びその製造方法、該化合物を含む重合開始剤、有機エレクトロニクス材料及びこれらを用いた有機薄膜、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、並びに表示装置
JP2015151365A (ja) * 2014-02-14 2015-08-24 三光化学工業株式会社 導電性オリゴチオフェン、その製造方法、導電性組成物、塗料、制電性被覆物および電子部材
WO2018074176A1 (ja) * 2016-10-19 2018-04-26 キヤノン株式会社 感熱転写記録用シート

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
POLESCHNER HELMUT, SEPPELT KONRAD: "XeF2/Fluoride Acceptors as Versatile One-Electron Oxidants", ANGEWANDTE CHEMIE, INTERNATIONAL EDITION, vol. 52, no. 49, 2013, pages 12838 - 12842, XP055797934, ISSN: 1433-7851 *
R. FUJIMOTO ET AL., ORG. ELECTRON., vol. 47, 2017, pages 139 - 146
See also references of EP4019492A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4144802A4 (en) * 2020-05-01 2024-07-10 Univ Tokyo CONDUCTOR MATERIAL
US12073957B2 (en) 2020-05-01 2024-08-27 The University Of Tokyo Conductor material
WO2023080040A1 (ja) * 2021-11-02 2023-05-11 国立大学法人東京大学 電気又は電子デバイス、電気又は電子デバイスの製造方法、及び前記電気又は電子デバイスを備える機器

Also Published As

Publication number Publication date
JPWO2021039463A1 (ja) 2021-03-04
EP4019492A4 (en) 2023-08-16
CN114341104B (zh) 2024-03-15
US12046390B2 (en) 2024-07-23
TW202116729A (zh) 2021-05-01
KR20220051212A (ko) 2022-04-26
US20220336119A1 (en) 2022-10-20
TWI851795B (zh) 2024-08-11
CN114341104A (zh) 2022-04-12
EP4019492A1 (en) 2022-06-29

Similar Documents

Publication Publication Date Title
Shi et al. Imide-functionalized thiazole-based polymer semiconductors: Synthesis, structure–property correlations, charge carrier polarity, and thin-film transistor performance
KR101372135B1 (ko) 개선된 유기 발광 다이오드를 위한 폴리티오펜 제형물
CN106663736B (zh) 可光图案化组合物、经图案化的高介电薄膜电介质及相关装置
JP5068558B2 (ja) 有機発光素子
KR100762014B1 (ko) 유기이온염을 포함하는 전도성 고분자 조성물 및 이를이용한 유기 광전 소자
US7667230B2 (en) Electronic devices containing acene-thiophene copolymers
WO2021039463A1 (ja) ドーパントおよび導電性組成物ならびにその製造方法
Shi et al. Bichalcogenophene imide-based homopolymers: chalcogen-atom effects on the optoelectronic property and device performance in organic thin-film transistors
Yuan et al. Synthesis and characterization of fused‐thiophene containing naphthalene diimide n‐type copolymers for organic thin film transistor and all‐polymer solar cell applications
Feng et al. Fluorine-Substituted Dithienylbenzodiimide-Based n-Type Polymer Semiconductors for Organic Thin-Film Transistors
KR101743241B1 (ko) 높은 전자 이동도를 갖는 ndi계 공중합체 및 이의 합성방법
Du et al. N-type conjugated polymers based on an indandione-terminated quinoidal building block
WO2013098648A1 (en) Unconventional chemical doping of organic semiconducting materials
Iguchi et al. N-type semiconducting polymers based on dicyano naphthobisthiadiazole: high electron mobility with unfavorable backbone twist
KR101582264B1 (ko) 유기 박막용 조성물, 유기 박막 및 상기 유기 박막을 포함하는 전자 소자
Zhao et al. Electron-transporting conjugated polymers from novel aromatic five-membered diimides: naphtho [1, 2-b: 4, 3-b′]-dithiophene and-diselenophene diimides
WO2014031750A1 (en) Acenaphthylene imide-derived semiconductors
Yoo et al. Ambipolar Charge Transport in p-Type Cyclopentadithiophene-Based Polymer Semiconductors Enabled by D–A–A–D Configuration
Li et al. Two-dimensional photovoltaic copolymers with spatial DAD structures: synthesis, characterization and hetero-atom effect
TWM619758U (zh) 包括由配方製備的層的光電子裝置
TWM620350U (zh) 包含由包括p 型有機半導體材料及n 型半導體材料的配方所製成之層的光電子裝置
KR101564406B1 (ko) 신규한 공액계 고분자 및 이를 이용한 유기전자소자
KR102206170B1 (ko) 신규한 나프탈렌 다이이미드 (ndi) 계열 공액 중합체 및 이를 포함하는 조성물 및 유기전자소자
Lee Comprehensive Investigation of Efficient Organic Conjugated Materials for Optoelectronics via Material-Synthesis Engineering
EP2866274A1 (en) Photovoltaic element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856330

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021542758

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227009077

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020856330

Country of ref document: EP

Effective date: 20220323