WO2021029409A1 - 小片多孔膜を適用した細胞培養法 - Google Patents
小片多孔膜を適用した細胞培養法 Download PDFInfo
- Publication number
- WO2021029409A1 WO2021029409A1 PCT/JP2020/030614 JP2020030614W WO2021029409A1 WO 2021029409 A1 WO2021029409 A1 WO 2021029409A1 JP 2020030614 W JP2020030614 W JP 2020030614W WO 2021029409 A1 WO2021029409 A1 WO 2021029409A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cells
- porous membrane
- cell culture
- small piece
- polymer porous
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M25/00—Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
- C12M25/02—Membranes; Filters
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/20—Material Coatings
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/38—Caps; Covers; Plugs; Pouring means
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M25/00—Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
- C12M25/14—Scaffolds; Matrices
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M25/00—Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
- C12M25/16—Particles; Beads; Granular material; Encapsulation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M29/00—Means for introduction, extraction or recirculation of materials, e.g. pumps
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M29/00—Means for introduction, extraction or recirculation of materials, e.g. pumps
- C12M29/04—Filters; Permeable or porous membranes or plates, e.g. dialysis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M29/00—Means for introduction, extraction or recirculation of materials, e.g. pumps
- C12M29/06—Nozzles; Sprayers; Spargers; Diffusers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M29/00—Means for introduction, extraction or recirculation of materials, e.g. pumps
- C12M29/20—Degassing; Venting; Bubble traps
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M33/00—Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
- C12M33/14—Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus with filters, sieves or membranes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M47/00—Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
- C12M47/04—Cell isolation or sorting
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/0062—General methods for three-dimensional culture
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/0068—General culture methods using substrates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0652—Cells of skeletal and connective tissues; Mesenchyme
- C12N5/0655—Chondrocytes; Cartilage
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0652—Cells of skeletal and connective tissues; Mesenchyme
- C12N5/0656—Adult fibroblasts
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0652—Cells of skeletal and connective tissues; Mesenchyme
- C12N5/0662—Stem cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2509/00—Methods for the dissociation of cells, e.g. specific use of enzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/30—Synthetic polymers
Definitions
- the present invention relates to a cell culture and a substance production system, and more specifically, to a cell culture method using a small piece polymer porous membrane.
- the present invention also relates to a cell culture device and a kit provided with a small piece polymer porous membrane.
- Cell culture cells generally exist in a living body as a population having a three-dimensional structure.
- the cells when culturing cells in an artificial environment, the cells are cultivated in a two-dimensional manner in a single-layered manner attached to the bottom of the culture vessel, or the cells are dispersed in a liquid culture medium.
- a suspension culture method in which the cells are cultured in a state is generally used.
- the cells used in the planar culture method cells having relatively high adhesiveness are suitable, but even when suitable cells are used, the properties of the cells may change significantly due to the difference in the culture environment.
- the suspension culture method some cells are suitable and some are not.
- Non-Patent Document 1 and Patent Document 1 As a method of culturing a large amount of cells in a three-dimensional environment, a method using a bioreactor or a cell culture carrier has been reported (Non-Patent Document 1 and Patent Document 1).
- a method using a bioreactor there is a method in which a fibrous substance such as glass fiber is accumulated in a column and cells are continuously cultured in the space to produce the substance (Patent Document 2).
- a typical cell culture carrier microcarriers, which are small particles capable of adhering and growing cells, have been widely studied (Patent Documents 3 and 4).
- Patent Document 4 As shown in Patent Document 4 as an example of production, in order to increase the amount of product and increase efficiency by the cell culture method using a microcarrier, it is most important to achieve high-density cell culture. It will be an important issue. Another important issue is how efficiently and easily the cells can be proliferated and the cells can be transplanted and seeded on the microcarrier which is a carrier. In this regard, in a cell culture system using microcarriers, it is necessary to sufficiently stir and diffuse the microcarriers so as not to aggregate them with each other. Therefore, there is an upper limit to the density of cells that can be cultured because a volume sufficient to sufficiently stir and diffuse the culture solution in which microcarriers are dispersed is required.
- exosomes The physiological activity of exosomes is supported by the composition of nucleic acids and proteins controlled by the cells from which the exosomes are derived, and the quality of exosomes produced at each stage of induction, logarithmic growth, quiescence, and death in cell culture. Is expected to change. Therefore, when considering the production of exosomes on an industrial scale, it is not preferable for quality control that the characteristics of exosomes change depending on the culture time, and it is possible to produce exosomes of uniform quality over a long period of time with a once established production system. Is required.
- anaerobic bacteria are excluded in cell culture regardless of whether a cell culture carrier is used or not, and whether it is a floating cell or an adherent cell.
- oxygen supply is an important issue for the healthy growth of cells.
- adherent cells are cultured in a plane using a petri dish, a plate, or a chamber, the appropriate range of the amount of medium is limited with respect to the area of the culture vessel. Therefore, when an unnecessarily large amount of medium is used, sufficient oxygen may not be supplied to the cells, which may cause damage due to hypoxia or death of the cells.
- Non-Patent Document 4 it is known that when a group of cells forms a spheroid and its size becomes too large, the cells inside become deficient in oxygen (Non-Patent Document 4).
- Patent Document 5 In order to deal with such an oxygen supply problem, attempts have been made to improve the oxygen concentration by using microbubbles (Patent Document 5) and a uniform oxygen supply method in microcarrier culture (Patent Document 6).
- Patent Document 5 a uniform oxygen supply method in microcarrier culture
- the cells preferentially inhabit and proliferate in a low oxygen environment, so that it is complicated to adjust the oxygen supply during cell culture depending on the cell type. Requires operation. Therefore, there has been a demand for the development and construction of a cell culture method capable of easily adjusting the amount of oxygen provided and culturing a large number of cells by a simple and automated process.
- the present inventors have provided cell culture methods and cell culture devices using a polymer porous membrane, but in order to prevent the continuous morphology of the membranous polymer porous membrane from being deformed, a polymer is used.
- a cell culture module in which a porous membrane is housed in a casing is applied to a cell culture container, a cell culture device, or a cell culture system (Patent Document 7: "Cell Culture Module”).
- Patent Document 7 "Cell Culture Module”
- stress is prevented from being applied to the cells grown in the polymer porous membrane, apoptosis and the like are suppressed, and a stable and large amount of cells can be cultured.
- a casing for accommodating the polymer porous membrane is required, and the size and strength of the cell culture container itself containing the casing are limited.
- polyimide porous membranes Prior to this application, polyimide porous membranes have been used for applications such as filters, low dielectric constant films, and electrolyte membranes for fuel cells, especially for battery-related applications.
- Patent Documents 8 to 10 particularly have excellent permeability to substances such as gas, high porosity, excellent smoothness on both surfaces, relatively high strength, and despite the high porosity, the film thickness direction.
- a polyimide porous membrane having a large number of macrovoids having excellent resistance to compressive stress is described. All of these are polyimide porous membranes prepared via amic acid.
- the inventors reviewed the cell culture technology using a polyimide porous membrane and reduced the size of the conventional porous membrane sheet for cell culture to a small size of about 1 mm on a side, so that a stationary type that does not require any peculiar equipment is required.
- By making the porous membrane into small pieces it is possible to install a large number of sheets in a very small space, and by supplying nutrients, it is possible to culture a large number of cells in a stable and labor-saving manner. I found.
- cell recovery from the polyimide porous membrane has tended to be difficult to proceed efficiently, it has been clarified that cell recovery also proceeds efficiently to some extent by this method.
- the small piece culture method showed high efficiency in terms of cell growth, exosome production amount, and the like. Due to its small piece properties, it has excellent system visibility and can form an excellent system for the production of various substances such as antibodies, viruses or exosomes. Sampling is also easy, and even if an extremely small amount of sample is taken out as a representative, fixation, staining, identification, evaluation, etc. can be clearly performed. In addition, it can be used in combination with a continuous culture method such as an overflow reactor, and a large amount of cells can be statically cultured for a long period of time. In particular, in the production of exosomes, it has been found that the cell culture method using the small piece polymer porous membrane of the present invention enables the production of exosomes having a stable production amount and quality over a long period of time.
- the present invention by making the polymer porous membrane into small pieces, a large amount of cells are not required, no specific cell culture equipment is required, no stirrer is applied to the cell culture container, and no spinner flask is used. It is possible to provide an optimum space that can be cultured. Further, the small piece polymer porous film is dispersed in the culture medium and / or the small piece polymer porous film is accumulated in multiple layers and sinks in a dispersed and / or laminated state at the bottom of the cell culture vessel, and maintains that state. Therefore, the present invention is completed by finding that the amount (depth) of the cell culture medium can be easily adjusted, and the amount of dissolved oxygen (oxygen supply state) in the culture medium can be easily adjusted. It came to. That is, the present invention includes, but is not limited to, the following aspects.
- a cell culture method that does not require stirring, which comprises applying cells to a small piece polymer porous membrane and culturing the cells.
- the small piece polymer porous film is a small piece having a three-layer structure having a surface layer A and a surface layer B having a plurality of pores and a macrovoid layer sandwiched between the surface layer A and the surface layer B.
- the average pore diameter of the pores existing in the surface layer A is smaller than the average pore diameter of the pores existing in the surface layer B
- the macrovoid layer is the surface layers A and B.
- a cell culture method in which the small piece polymer porous membranes are dispersed and / or the small piece polymer porous membranes are multiplely accumulated in a culture solution and dispersed and / or laminated on the bottom of a cell culture vessel.
- the cells adhered to the small piece polymer porous membrane are proliferated, the cells are detached by enzymatic treatment, and the small piece polymer porous membrane to which the cells are not adhered is added to the cell culture vessel to obtain the cells.
- the surface layer A has an average pore size of 0.01 to 50 ⁇ m.
- the small piece polyimide porous film is heat-treated at 250 ° C. or higher after forming a polyamic acid solution composition containing a polyamic acid solution obtained from tetracarboxylic dianhydride and diamine and a coloring precursor.
- the small piece polymer porous film was dispersed and / or the small piece polymer porous film was accumulated in multiple layers in the culture medium, and the small piece polymer porous film was dispersed and / or laminated on the bottom of the cell culture vessel. Since the cell culture can be performed in the state, the cell culture can be left without the need for stirring by a stirrer or the like, and therefore, unlike the use of the conventional modularized polymer porous membrane provided with a casing, the cell culture is performed. Since the size, material, strength, etc. of the container are not limited and it is not necessary to install a stirrer or the like, it is possible to use a very wide range of cell culture containers.
- the cell culture method of the present invention does not simply require stirring and does not reject the stirring conditions. Therefore, according to the present invention, it is possible to impose weak vibration or flow conditions on such a cell culture method. It is also possible to increase the cell mass (internal expansion) by adding the small piece polymer porous membrane after seeding the cells on the small piece polymer porous membrane and culturing the cells without collecting the cells. Furthermore, by using the small piece polymer porous membrane, stable and long-term substance production becomes possible. Compared with the conventional polyimide porous membrane, in the culture using the small piece polymer porous membrane, the cell proliferation is significantly increased, the cell recovery efficiency is remarkably improved, and the internal expansion is possible as described above. Therefore, it became easy to continue the cell culture for a longer period of time. Further, it has an advantage that the small piece member can be frozen and stored while the cells are supported in the small piece polymer porous membrane.
- Calcification It is a figure which shows the change in the number of cells with time of the cultured human skin fibroblast using the small piece polyimide porous membrane. It is a figure which shows an exemplary overflow type bioreactor. It is a figure and an image which shows an exemplary overflow type bioreactor. It is a figure which shows an exemplary overflow type bioreactor. It is a figure which shows the change of the cell behavior (cell density and cell behavior) with time of the cultured chondrocyte using the small piece polyimide porous membrane.
- a small polymer porous membrane can be produced by molding a polymer porous membrane described later into a desired size. Molding can be performed using various processing units. For example, but not limited to, a polymer porous membrane (for example, a polyimide porous membrane, a polyether sulfone (PES) porous membrane) is punched out with a pinnacle die using a simple pinnacle punching machine to punch a small piece of polymer porous having a desired shape. A film can be obtained.
- a polymer porous membrane for example, a polyimide porous membrane, a polyether sulfone (PES) porous membrane
- PES polyether sulfone
- the average pore diameter of the pores present in the surface layer A (hereinafter, also referred to as “A surface” or “mesh surface”) in the polymer porous film used in the present invention is not particularly limited, but is, for example. , 0.01 ⁇ m or more and less than 200 ⁇ m, 0.01 to 150 ⁇ m, 0.01 to 100 ⁇ m, 0.01 to 50 ⁇ m, 0.01 ⁇ m to 40 ⁇ m, 0.01 ⁇ m to 30 ⁇ m, 0.01 ⁇ m to 25 ⁇ m, 0.01 ⁇ m to 20 ⁇ m, Alternatively, it is 0.01 ⁇ m to 15 ⁇ m, preferably 0.01 ⁇ m to 25 ⁇ m.
- the average pore diameter of the pores existing in the surface layer B (hereinafter, also referred to as “B surface” or “large hole surface”) in the polymer porous membrane used in the present invention is the average pore diameter of the pores existing in the surface layer A. It is not particularly limited as long as it is larger than, but is, for example, more than 5 ⁇ m and 200 ⁇ m or less, 20 ⁇ m to 100 ⁇ m, 25 ⁇ m to 100 ⁇ m, 30 ⁇ m to 100 ⁇ m, 35 ⁇ m to 100 ⁇ m, 40 ⁇ m to 100 ⁇ m, 50 ⁇ m to 100 ⁇ m, or 60 ⁇ m to 100 ⁇ m, preferably. It is 30 ⁇ m to 100 ⁇ m.
- the average pore size of the polymer porous membrane surface is the area average pore size.
- the area average pore diameter can be determined according to the following (1) and (2).
- the average pore size of the portion other than the surface of the polymer porous membrane can also be obtained in the same manner.
- All the hole diameters obtained by the above formula I are applied to the following formula II, and the area average hole diameter da when the shape of the holes is a perfect circle is obtained.
- the thicknesses of the surface layers A and B are not particularly limited, but are, for example, 0.01 to 50 ⁇ m, preferably 0.01 to 20 ⁇ m.
- the average pore size of the macrovoids in the macrovoid layer in the polymer porous membrane in the film plane direction is not particularly limited, but is, for example, 10 to 500 ⁇ m, preferably 10 to 100 ⁇ m, and more preferably 10 to 80 ⁇ m.
- the thickness of the partition wall in the macrovoid layer is not particularly limited, but is, for example, 0.01 to 50 ⁇ m, preferably 0.01 to 20 ⁇ m.
- at least one partition wall in the macrovoid layer communicates with adjacent macrovoids and has an average pore size of 0.01 to 100 ⁇ m, preferably 0.01 to 50 ⁇ m, one or more. Has a hole.
- the bulkhead in the macrovoid layer is non-perforated.
- the total film thickness of the polymer porous membrane surface used in the present invention is not particularly limited, but may be 5 ⁇ m or more, 10 ⁇ m or more, 20 ⁇ m or more, or 25 ⁇ m or more, and may be 500 ⁇ m or less, 300 ⁇ m or less, 100 ⁇ m or less, 75 ⁇ m or less. Alternatively, it may be 50 ⁇ m or less. It is preferably 5 to 500 ⁇ m, and more preferably 25 to 75 ⁇ m.
- the film thickness of the polymer porous membrane used in the present invention can be measured with a contact-type thickness gauge.
- the porosity of the polymer porous membrane used in the present invention is not particularly limited, but is, for example, 40% or more and less than 95%.
- the porosity of the polymer porous film used in the present invention can be determined from the texture mass according to the following formula III by measuring the film thickness and mass of the porous film cut to a predetermined size.
- S means the area of the porous film
- d means the total film thickness
- w means the measured mass
- D means the density of the polymer.
- the density is 1.34 g / cm 3 (.)
- the polymer porous membrane used in the present invention is preferably a three-layer having a surface layer A and a surface layer B having a plurality of pores and a macrovoid layer sandwiched between the surface layer A and the surface layer B. It is a polymer porous film having a structure, wherein the average pore diameter of the pores existing in the surface layer A is 0.01 ⁇ m to 25 ⁇ m, and the average pore diameter of the pores existing in the surface layer B is 30 ⁇ m to 100 ⁇ m.
- the macrovoid layer has a partition wall bonded to the surface layers A and B, the partition wall, and a plurality of macrovoids surrounded by the surface layers A and B, and the partition wall of the macrovoid layer and the surface thereof.
- the thickness of the layers A and B is 0.01 to 20 ⁇ m, the pores in the surface layers A and B communicate with the macrovoid, the total film thickness is 5 to 500 ⁇ m, and the pore ratio is 40% or more. It is a polymer porous membrane that is less than 95%.
- at least one partition wall in the macrovoid layer communicates between adjacent macrovoids with one or more pores having an average pore diameter of 0.01-100 ⁇ m, preferably 0.01-50 ⁇ m. Have.
- the bulkhead does not have such a hole.
- the polymer porous membrane used in the present invention is preferably sterilized.
- the sterilization treatment is not particularly limited, and examples thereof include dry heat sterilization, steam sterilization, sterilization with a disinfectant such as ethanol, and arbitrary sterilization treatment such as electromagnetic wave sterilization such as ultraviolet rays and gamma rays.
- the small piece polymer porous membrane used in the present invention is not particularly limited as long as it has the above-mentioned structural characteristics, but is preferably a small piece polyimide porous membrane or a small piece polyether sulfone (PES) porous membrane.
- PES polyether sulfone
- Polyimide Porous film Polyimide is a general term for polymers containing an imide bond in a repeating unit, and usually means an aromatic polyimide in which an aromatic compound is directly linked by an imide bond.
- Aromatic polyimide has a rigid and strong molecular structure because the aromatic and the aromatic have a conjugated structure via an imide bond, and the imide bond has a strong intermolecular force, so that a very high level of heat is generated. It has physical, mechanical and chemical properties.
- the polyimide porous membrane that can be used in the present invention is preferably a polyimide porous membrane containing (as a main component) a polyimide obtained from tetracarboxylic dianhydride and diamine, and more preferably tetracarboxylic dianhydride. It is a polyimide porous film made of polyimide obtained from a substance and a diamine. "Containing as a main component" means that, as a component of the polyimide porous membrane, a component other than the polyimide obtained from tetracarboxylic dianhydride and diamine is essentially not contained or may be contained. , Means that it is an additional component that does not affect the properties of the polyimide obtained from tetracarboxylic dianhydride and diamine.
- the polyimide porous film that can be used in the present invention has a polyamic acid solution composition containing a polyamic acid solution obtained from a tetracarboxylic acid component and a diamine component and a coloring precursor, and then has a temperature of 250 ° C.
- the colored polyimide porous film obtained by the above heat treatment is also included.
- the polyamic acid is obtained by polymerizing a tetracarboxylic acid component and a diamine component.
- the polyamic acid is a polyimide precursor that can be ring-closed to form a polyimide by thermal imidization or chemical imidization.
- the polyamic acid even if a part of the amic acid is imidized, it can be used as long as it does not affect the present invention. That is, the polyamic acid may be partially thermally imidized or chemically imidized.
- an imidization catalyst an organic phosphorus-containing compound, inorganic fine particles, fine particles such as organic fine particles, and the like can be added to the polyamic acid solution, if necessary.
- fine particles such as a chemical imidizing agent, a dehydrating agent, inorganic fine particles, and organic fine particles can be added to the polyamic acid solution, if necessary. Even if the above-mentioned components are mixed with the polyamic acid solution, it is preferable to carry out the process under the condition that the coloring precursor does not precipitate.
- the "colored precursor” means a precursor that is partially or wholly carbonized by heat treatment at 250 ° C. or higher to produce a colored product.
- the coloring precursor that can be used in the production of the polyimide porous film is uniformly dissolved or dispersed in a polyamic acid solution or a polyimide solution, and is 250 ° C. or higher, preferably 260 ° C. or higher, more preferably 280 ° C. or higher, more preferably.
- Those that produce colored products are preferable, those that produce black-based colored products are more preferable, and carbon-based colored precursors are more preferable.
- the coloring precursor looks like a carbonized product when heated, but structurally, it contains a foreign element other than carbon, and has a layered structure, an aromatic crosslinked structure, and a disordered structure containing tetrahedral carbon. Including.
- the carbon-based coloring precursor is not particularly limited, and for example, a polymer obtained from a tar or pitch such as petroleum tar, petroleum pitch, coal tar, coal pitch, coke, and a monomer containing acrylonitrile, and a ferrocene compound (ferrocene and ferrocene derivative). And so on.
- a polymer and / or a ferrocene compound obtained from a monomer containing acrylonitrile is preferable, and polyacrylonitrile is preferable as a polymer obtained from a monomer containing acrylonitrile.
- the polyimide porous film that can be used in the present invention is obtained after molding a polyamic acid solution obtained from a tetracarboxylic acid component and a diamine component without using the above-mentioned coloring precursor.
- a polyimide porous membrane obtained by heat treatment is also included.
- the polyimide porous film produced without using a coloring precursor is composed of, for example, 3 to 60% by mass of a polyamic acid having an ultimate viscosity of 1.0 to 3.0 and 40 to 97% by mass of an organic polar solvent.
- a polyamic acid solution is cast into a film and immersed or brought into contact with a coagulation solvent containing water as an essential component to prepare a porous film of the polyamic acid, and then the porous film of the polyamic acid is heat-treated to imide. It may be manufactured by converting.
- the coagulation solvent containing water as an essential component is water, or a mixed solution of water of 5% by mass or more and less than 100% by mass and an organic polar solvent of more than 0% by mass and 95% by mass or less. May be. Further, after the imidization, at least one surface of the obtained porous polyimide film may be subjected to plasma treatment.
- tetracarboxylic dianhydride can be used as the tetracarboxylic dianhydride that can be used in the production of the above-mentioned polyimide porous membrane, and can be appropriately selected according to desired properties and the like.
- Specific examples of the tetracarboxylic dianhydride include pyromellitic dianhydride, 3,3', 4,4'-biphenyltetracarboxylic dianhydride (s-BPDA), 2,3,3', 4'.
- -Biphenyltetracarboxylic dianhydride such as biphenyltetracarboxylic dianhydride (a-BPDA), oxydiphthalic acid dianhydride, diphenylsulfone-3,4,3', 4'-tetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) sulfide dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropanedianhydride, 2, 3,3', 4'-benzophenonetetracarboxylic dianhydride, 3,3', 4,4'-benzophenonetetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) methanedianhydride, 2 , 2-bis (3,4-dicarboxyphenyl) propanedianhydride, p-phenylenebis (trimellitic acid monoesteric acid anhydride),
- At least one aromatic tetracarboxylic dianhydride selected from the group consisting of biphenyltetracarboxylic dianhydride and pyromellitic dianhydride is particularly preferable.
- the biphenyltetracarboxylic dianhydride 3,3', 4,4'-biphenyltetracarboxylic dianhydride can be preferably used.
- any diamine can be used as the diamine that can be used in the production of the polyimide porous membrane.
- the diamine include the following. 1) Benzenediamine with one benzene nucleus such as 1,4-diaminobenzene (para-phenylenediamine), 1,3-diaminobenzene, 2,4-diaminotoluene, 2,6-diaminotoluene; 2) Diaminodiphenyl ethers such as 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'- Dimethyl-4,4'-diaminobiphenyl, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-d
- the diamine to be used can be appropriately selected according to desired characteristics and the like.
- aromatic diamine compounds are preferable, and 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether and paraphenylenediamine, 1,3-bis (3-aminophenyl) Benzene, 1,3-bis (4-aminophenyl) benzene, 1,4-bis (3-aminophenyl) benzene, 1,4-bis (4-aminophenyl) benzene, 1,3-bis (4-amino) Phenoxy) benzene and 1,4-bis (3-aminophenoxy) benzene can be preferably used.
- at least one diamine selected from the group consisting of benzenediamine, diaminodiphenyl ether and bis (aminophenoxy) phenyl is preferable.
- the polyimide porous membrane that can be used in the present invention has a glass transition temperature of 240 ° C. or higher or a tetracarboxylic dianoxide at 300 ° C. or higher without a clear transition point from the viewpoint of heat resistance and dimensional stability at high temperature. It is preferably formed from a polyimide obtained by combining an acid dianhydride and a diamine.
- the polyimide porous film that can be used in the present invention is preferably a polyimide porous film made of the following aromatic polyimides from the viewpoint of heat resistance and dimensional stability at high temperatures.
- An aromatic polyimide composed of at least one tetracarboxylic acid unit selected from the group consisting of a biphenyl tetracarboxylic acid unit and a pyromellitic acid unit, and an aromatic diamine unit.
- Aromatic polyimide consisting of a tetracarboxylic acid unit and at least one aromatic diamine unit selected from the group consisting of a benzenediamine unit, a diaminodiphenyl ether unit and a bis (aminophenoxy) phenyl unit.
- At least one tetracarboxylic acid unit selected from the group consisting of biphenyltetracarboxylic acid units and pyromellitic acid units, and at least one selected from the group consisting of benzenediamine units, diaminodiphenyl ether units and bis (aminophenoxy) phenyl units.
- Aromatic polyimide consisting of a kind of aromatic diamine unit.
- the polyimide porous film used in the present invention preferably has a three-layer structure having a surface layer A and a surface layer B having a plurality of pores and a macrovoid layer sandwiched between the surface layer A and the surface layer B.
- the macrovoid layer has a partition wall bonded to the surface layers A and B, the partition wall, and a plurality of macrovoids surrounded by the surface layers A and B, and the partition wall of the macrovoid layer and the surface thereof.
- the thickness of the layers A and B is 0.01 to 20 ⁇ m, the pores in the surface layers A and B communicate with the macrovoid, the total film thickness is 5 to 500 ⁇ m, and the pore ratio is 40% or more.
- at least one partition wall in the macrovoid layer has one or more pores having an average pore diameter of 0.01 to 100 ⁇ m, preferably 0.01 to 50 ⁇ m, communicating the adjacent macrovoids with each other.
- polyimide porous membrane described in International Publication No. 2010/038873, JP-A-2011-219585, or JP-A-2011-219586 can also be used in the present invention.
- the PES porous membrane that can be used in the present invention comprises a polyether sulfone and typically comprises substantially a polyether sulfone.
- the polyether sulfone may be synthesized by a method known to those skilled in the art, and for example, a method of polycondensing a dihydric phenol, an alkali metal compound and a dihalogenodiphenyl compound in an organic polar solvent, a divalent phenol. It can be produced by a method in which an alkali metal dihydrate is synthesized in advance and polycondensed with a dihalogenodiphenyl compound in an organic polar solvent.
- alkali metal compound examples include alkali metal carbonate, alkali metal hydroxide, alkali metal hydride, alkali metal alkoxide and the like.
- sodium carbonate and potassium carbonate are preferable.
- Divalent phenol compounds include hydroquinone, catechol, resorcin, 4,4'-biphenol, bis (hydroxyphenyl) alkanes (eg 2,2-bis (hydroxyphenyl) propane, and 2,2-bis (hydroxyphenyl)).
- Methane), dihydroxydiphenylsulfones, dihydroxydiphenylethers, or at least one of the hydrogens on their benzene rings is a lower alkyl group such as a methyl group, an ethyl group or a propyl group, or a lower alkoxy group such as a methoxy group or an ethoxy group. Examples include those that have been replaced.
- the divalent phenol compound two or more of the above compounds can be mixed and used.
- the polyether sulfone may be a commercially available product.
- Examples of commercially available products include Sumika Excel 7600P, Sumika Excel 5900P (all manufactured by Sumitomo Chemical Co., Ltd.) and the like.
- the logarithmic viscosity of the polyether sulfone is preferably 0.5 or more, more preferably 0.55 or more, from the viewpoint of satisfactorily forming macrovoids of the porous polyether sulfone membrane, and the production of the porous polyether sulfone membrane From the viewpoint of ease, it is preferably 1.0 or less, more preferably 0.9 or less, still more preferably 0.8 or less, and particularly preferably 0.75 or less.
- the PES porous film or the polyether sulfone as a raw material thereof has a glass transition temperature of 200 ° C. or higher or a clear glass transition temperature from the viewpoint of heat resistance and dimensional stability under high temperature. It is preferably not observed.
- the method for producing the PES porous membrane that can be used in the present invention is not particularly limited, but for example, A polyether sulfone solution containing 0.3% by mass to 60% by mass of a polyether sulfone having a logarithmic viscosity of 0.5 to 1.0 and 40% by mass to 99.7% by mass of an organic polar solvent was cast into a film.
- the heat treatment includes a step of coarsening the pores to obtain a PES porous film, and the heat treatment heats the solidified film having the pores up to the glass transition temperature or higher of the polyether solvent or 240 ° C. or higher. It may be manufactured by a method including raising the temperature.
- the PES porous film that can be used in the present invention is preferably a PES porous film having a surface layer A, a surface layer B, and a macrovoid layer sandwiched between the surface layer A and the surface layer B.
- the macrovoid layer includes a partition wall bonded to the surface layers A and B, and a plurality of macrovoids surrounded by the partition wall and the surface layers A and B and having an average pore diameter of 10 ⁇ m to 500 ⁇ m in the film plane direction.
- Have and The partition wall of the macrovoid layer has a thickness of 0.1 ⁇ m to 50 ⁇ m.
- the surface layers A and B have a thickness of 0.1 ⁇ m to 50 ⁇ m, respectively.
- the surface layers A and B one has a plurality of pores having an average pore diameter of more than 5 ⁇ m and 200 ⁇ m or less, and the other has a plurality of pores having an average pore diameter of 0.01 ⁇ m or more and less than 200 ⁇ m.
- One of the surface layer A and the surface layer B has a surface aperture ratio of 15% or more, and the other surface layer has a surface aperture ratio of 10% or more.
- the pores of the surface layer A and the surface layer B communicate with the macrovoid.
- the PES porous membrane has a total film thickness of 5 ⁇ m to 500 ⁇ m and a porosity of 50% to 95%. It is a PES porous membrane.
- the above-mentioned polymer porous membrane as a cell culture carrier used in the cell culture apparatus of the present invention has a slightly hydrophilic porous property, stable liquid retention is achieved in the polymer porous membrane and it can be dried. A strong moist environment is maintained. Therefore, cell survival and proliferation can be achieved even with an extremely small amount of medium as compared with a cell culture apparatus using a conventional cell culture carrier.
- cells seeded on the porous polymer membrane can be cultured without being killed by shearing force or foam, so oxygen and nutrients can be efficiently supplied to the cells. A large number of cells can be cultured.
- the small polymer porous membrane used in the embodiment of the present invention is optional without accommodating the polymer porous membrane in a casing (mantle) as a prior art. It can be used by adding it to the cell culture solution of.
- the small piece polymer porous membrane used in the cell culture method of the present invention has a surface layer A or surface layer B having an area of 4 mm 2 or less, preferably 3 mm 2 or less, more preferably 2 mm 2 or less. Most preferably, it is 1 mm 2 .
- the lower limit of the area of the surface layer A or the surface layer B is, for example, may also be 0.01 mm 2 or more, it may also be 0.04 mm 2 or more, may also be 0.09 mm 2 or more, 0. It may be 16 mm 2 or more.
- the shape of the small piece polymer porous film includes, for example, a polygon (for example, a triangle, a quadrangle (for example, a rectangle), a pentagon, a hexagon ... n-sided (n is an arbitrary integer)), a substantially circular shape, and a substantially elliptical shape.
- the shape may include a curved line and a straight line.
- the polymer porous membrane 200a applied in the cell culture apparatus 1a has, for example, a ratio of the longest diameter / the shortest diameter of the surface layer A or the surface layer B of 0.5 to 1, preferably 0.75. It is preferably ⁇ 1, more preferably 0.9 to 1.
- the term "diameter” refers to the length between any two points on the outer circumference of the surface layer A or the surface layer B.
- the "longest diameter” means the longest length between any two points on the outer circumference of the surface layer A or the surface layer B.
- the "shortest diameter” means the shortest length between any two points on the outer circumference of the surface layer A or the surface layer B.
- the longest diameter is 2 ⁇ 2 ⁇ (1/2) mm or less
- the shortest diameter is 2 ⁇ . 2 ⁇ (1/2) mm or less
- the longest diameter is 1.5 ⁇ 2 ⁇ (1/2) mm or less
- the shortest diameter is 1.5 ⁇ 2 ⁇ (1/2) mm or less, more preferably.
- the longest diameter is 1 ⁇ 2 ⁇ (1/2) mm or less
- the shortest diameter is 1 ⁇ 2 ⁇ (1/2) mm or less.
- the longest diameter is 2 mm or less and the shortest diameter is 2 mm or less, preferably the longest diameter is 1. It is 5 mm or less and the shortest diameter is 1.5 mm or less, more preferably the longest diameter is 1.2 mm or less and the shortest diameter is 1.2 mm or less.
- it becomes possible to efficiently supply oxygen and nutrients to the cells supported on the small piece polymer porous membrane the cell proliferation becomes good, and the activity of producing exosome substances such as arbitrary proteins becomes remarkably high. Brings the effect.
- the small piece polymer porous membrane is accumulated, and the cells supported on any small piece polymer porous membrane are transferred to another small piece polymer porous membrane. It is possible to provide a culture environment in which the cells grow while moving or adhering to each other. Therefore, when the small piece polymer porous membrane is applied to the cell culture vessel, it is preferable that the cell culture vessel is allowed to stand and cultured without shaking. Since the small piece polymer porous membrane settles in the medium when left to stand, in the case of culturing cells suitable for hypoxic conditions, simply increase the amount of medium and increase the depth without using a special device. Therefore, it is possible to carry out a hypoxic culture system.
- the number of small piece polymer porous membranes added to the cell culture vessel is not limited, but it is preferable that the small piece polymer porous membranes are multiplely accumulated in the culture solution after the addition. It is preferable that one small piece polymer porous membrane partially or wholly overlaps another small piece polymer porous membrane, and specifically, the overlapping portion is 1% per small piece polymer porous membrane. 2, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80 It may be in the region of%, 90%, 95%, 98%, 99%, 100%.
- a well-formed multiple structure of a conventional polymer porous membrane obtained by stacking a plurality of small piece polymer porous membranes so that their sides are aligned in the vertical direction is obtained.
- the small piece polymer porous membrane may form an amorphous or non-uniform laminated state.
- the latter laminated state for example, to briefly explain with two small piece polymer porous membranes, one side of one membrane is in contact with one side or surface of the other membrane, resulting in a V-shaped structure and a T-shape.
- the seeded cells are not limited to the plane of the membrane in the process of their migration and proliferation, but are microspace portions formed when the membranes overlap each other, for example, a V-shaped structure. If so, the cells gather at the bottom of the V or at the step (thickness or height of the membrane) formed by overlapping the surfaces, and while holding a foothold on the small piece polyimide porous membrane, the cells further gather and spheroids.
- Adipocytes survive by accumulating membranes on the top of the inverted V-shaped structure (opposite the bottom of the V-shaped structure), while osteoblasts have membranes stacked more than the flat portion of the membrane. There is a tendency to form cell aggregates three-dimensionally in the formed stepped portion.
- the small piece polymer porous membrane when used for cell culture, as described above, it may be in a dispersed state or a state in which it is integrated with each other, and is an assembly when the small piece polymer porous membrane is used. Body formation does not matter at all.
- the small piece polymer porous membrane dispersed and multiplely accumulated at the bottom of the cell culture vessel, that is, the sedimentation has stopped has the apex, side or surface of one small piece because the small piece itself is lightweight.
- the small piece polymer porous film fluctuates, it is sterically dispersed and accumulated in multiple layers, and further, since the polymer porous film has liquid permeability, the small piece polymer porous film is provided. Since the cells supported on the membrane are not depleted of nutrients and oxygen from the medium (having excellent circulation), the cells can be allowed to stand and cultured without shaking.
- the thickness of the small piece polymer porous membrane is not different from the thickness of the above polymer porous membrane.
- the small piece polymer porous membrane has higher rigidity and its self-deformation efficiency decreases. This applies not only to strip-shaped membranes, but also to various forms of small polymer porous membranes. For example, as demonstrated in Comparative Example 1 described later, when "1 cm square polyimide porous membrane” and “1 mm square small piece polyimide porous membrane” were used for culturing human mesenchymal stem cells, the small piece polymer porous film was used.
- the cell culture method using the small piece polymer porous membrane of the present invention is from the viewpoint of cell proliferation, substance production, and long-term culture. It can be said that this is a method of providing an environment in which cells are more likely to live than the conventional cell culture method using a polymer porous membrane.
- the cell culture method of the present invention is a method in which suspended cells are poured into a small piece polymer porous membrane and allowed to stand for cell culture. There is no need to apply a stirrer or use a spinner flask.
- the small piece polymer porous membrane has the property of being dispersed and / or accumulating in multiple layers with each other and sinking to the bottom of the cell culture vessel in that state, and such a state can be achieved in the medium.
- the cell culture vessel and the cell culture device are not particularly limited. Therefore, it is usually not limited to dishes, petri dishes, plates, wells, bottles, bags, etc. used for cell culture, and is not limited to materials such as plastic, glass, etc., and any container can be used. Can be done.
- the cell culture container may be in the form of a culture tank equipped in the device.
- the small piece polymer porous membrane has the property of being dispersed and / or accumulating in multiple layers with each other and sinking to the bottom of the cell culture vessel, and does not require stirring or the like, so that it is intermittent or continuous.
- Long-term cell culture is possible by using a cell culture device having a means for exchanging the medium. Examples of such a cell culture device include, but are not limited to, an overflow type bioreactor, an intermittent type bioreactor (WO2018 / 021359), and the like.
- the overflow type bioreactor is the cell culture device 1a in FIG. 6, and the following: With a small polymer porous membrane 200a to which cells are applied; With the culture tank 10 containing the small piece polymer porous membrane 200a; With the medium supply port 113 provided in the culture tank 10 and supplying the medium; With a medium discharge port 101 provided on the side of the culture tank 10 and discharging the medium; With the medium supply tank 40 provided outside the culture tank 10 in communication with the medium supply port 113; A medium recovery tank 60 that communicates with the medium discharge port 101 and collects the medium discharged from the medium discharge port 101 is provided.
- the medium discharge port 101 is characterized in that the medium is overflowed and discharged.
- a cell culture device By using such a cell culture device, it is possible to continuously supply fresh medium, but after cell culture, depending on the amount of the supplied medium, from the medium outlet provided in the culture tank.
- the medium can be continuously recovered, and long-term cell culture can be realized.
- the concentration of proteins required for cell proliferation and the like produced by cells is prevented from suddenly changing, and nutrients (for example, glucose, etc.) in the medium consumed by the culture are continuously produced. It is possible to maintain a favorable cell culture environment.
- the above-exemplified overflow-type bioreactor (FIG. 6) is characterized in that the medium is overflowed and discharged from the medium discharge port 101, and the medium discharged from the discharge port connector 104 is transferred to the medium recovery tank 60.
- the pump 32 in the medium discharge pipe 50 connected for recovery it is also possible to forcibly recover the medium after cell culture (see FIG. 8).
- the medium discharge tube 51 (for example, the inner diameter) is placed on the upper surface of the cell culture solution without providing the medium discharge port 101 on the side portion 102 constituting the culture tank main body 100 as shown in FIGS. 6 and 8.
- An overflow bioreactor (FIG. 7) is provided that is provided with a guide 52 that penetrates (a tube having a 1 mm outer diameter of 2 mm) and can hold it. In this bioreactor, the height of the medium can be adjusted by draining the medium after cell culture from above.
- the cell culture method of the present invention is a method of applying cells to a small piece polymer porous membrane and culturing the cells, and is characterized by not requiring shaking by stirring or the like. .. Furthermore, it is possible to supply a fresh medium and easily collect the medium after culturing without collecting the cells themselves or the small polymer porous membrane on which the cells are supported, and it is possible to easily collect the medium after culturing for a long period of time in a static state. , Can be cultured.
- the term "medium” refers to a cell culture medium for culturing cells, particularly animal cells. Medium is used as a synonym for cell culture medium. Therefore, the medium used in the present invention refers to a liquid medium.
- the type of medium can be a commonly used medium and is appropriately determined depending on the type of cells to be cultured.
- the specific steps of application of cells to a small polymer porous membrane are not particularly limited. It is possible to employ the steps described herein, or any method suitable for applying the cells to the small polymer porous membrane.
- application of cells to a small polymer porous membrane includes, for example, aspects such as: (A) A mode in which a cell suspension is injected onto a small polymer porous membrane added to a cell culture vessel; (B) An embodiment in which a small piece polymer porous membrane is added to a cell suspension injected into a cell culture vessel.
- the cells seeded on the surface of the polymer porous membrane adhere to the small piece polymer porous membrane and enter the inside of the porous membrane.
- the cells adhere to the small polymer porous membrane without any external physical or chemical force.
- the cells seeded on the surface of the small polymer porous membrane can grow and proliferate stably on the surface and / or inside of the membrane. Cells can take various different morphologies depending on the position of the growing and proliferating membrane.
- the small piece polymer porous membrane to be used may be pre-wet with a cell culture solution or a sterilized liquid.
- living cells selectively stay in the small polymer porous membrane.
- live cells remain in the small polymer porous membrane and dead cells remain in the cell suspension and die by flowing the medium or by replacing the medium. Cells can be removed.
- the above sterilized liquid is not particularly limited, but is a sterilized buffer solution or sterilized water.
- the buffer solution is, for example, (+) and (-) Dulbecco's PBS, (+) and (-) Hank's Balanced Salt Solution and the like. Examples of buffer solutions are shown in Table 1 below.
- the application of cells to a small polymer porous membrane is an embodiment in which floating adhesive cells are suspendedly coexist with the small polymer porous membrane to attach the cells to the membrane (entanglement). )including.
- the cell culture medium is liquid
- the polymer porous membrane can be suspended in the cell culture medium, but the small pieces of polymer porous membrane to which the cells are attached rapidly descend in the medium and accumulate multiple times with each other. Then, it can sink to the bottom of the cell culture vessel and maintain its state.
- the height (medium level) of the medium in the cell culture container for example, the culture tank of the cell culture device
- the medium level is increased.
- the cell culture method of the present invention does not require the medium to be actively shaken with a stirrer or the like, and the small polymer porous membranes can sink to the bottom of the cell culture vessel in a dispersed and / or multiple-accumulated state.
- fresh medium can be continuously supplied, and depending on the amount of the supplied medium, a medium discharge port provided in the culture tank can be used.
- the medium after cell culture can be continuously collected, and long-term cell culture can be realized. This also applies when an intermittent bioreactor is used, and fresh medium can be supplied at predetermined time intervals, and the medium after cell culture can be collected regularly, enabling long-term cell culture. Is.
- the flowability of the medium is improved and a large amount of cells can be cultured.
- desired substances proteins, exosomes, etc.
- Example 1 described later human mesenchymal stem cells seeded on the small piece polymer porous membrane proliferated smoothly, and as shown in Example 2, when the cells were cultured for a long period of time, the cells were used. It was found that exosomes are stably produced over a long period of time.
- kits for use in cell culture methods including small piece polymer porous membranes.
- the kit of the present invention may appropriately contain components necessary for cell culture in addition to the small piece polymer porous membrane.
- cells applied to a small piece polymer porous membrane, a cell culture medium, a cell culture device, an instruction manual for a kit, and the like are included.
- a package containing a sterilized piece polymer porous membrane stored in a clear pouch that can be used as is for cell culture, or a piece in the same pouch. Includes a membrane-liquid integrated kit in which a sterile liquid is enclosed with a porous polymer membrane to enable efficient suction and seeding.
- the term "suspended cells” refers to cells obtained by forcibly suspending adherent cells by a proteolytic enzyme such as trypsin and suspending them in a medium, or known acclimatization. It contains adherent cells and the like that can be suspended and cultured in the medium by the process.
- the type of cell that can be used in the present invention is selected from the group consisting of, for example, animal cells, insect cells, plant cells, yeasts and bacteria.
- Animal cells are roughly classified into cells derived from animals belonging to the phylum Vertebrate and cells derived from invertebrates (animals other than animals belonging to the phylum Vertebrate).
- the origin of animal cells in the present specification is not particularly limited. Preferably, it means a cell derived from an animal belonging to the phylum Vertebrate.
- the vertebrate phylum includes jawless and gnathostomata, and gnathostomata includes mammals, birds, amphibians, reptiles and the like.
- Mammal is a cell derived from an animal belonging to the class Mammalia, generally referred to as a mammal.
- Mammals are not particularly limited, but preferably include mice, rats, humans, monkeys, pigs, dogs, sheep, goats and the like.
- the types of animal cells that can be used in the present invention are not limited, but are preferably selected from the group consisting of pluripotent stem cells, tissue stem cells, somatic cells, and germ cells.
- pluripotent stem cell is intended to be a general term for stem cells having the ability to differentiate into cells of any tissue (pluripotency).
- Pluripotent stem cells include, but are not limited to, embryonic stem cells (ES cells), induced pluripotent stem cells (iPS cells), embryonic germ stem cells (EG cells), germ stem cells (GS cells), and the like. ..
- ES cells embryonic stem cells
- iPS cells induced pluripotent stem cells
- EG cells embryonic germ stem cells
- GS cells germ stem cells
- any known pluripotent stem cell can be used, and for example, the pluripotent stem cell described in International Publication No. 2009/1233349 (PCT / JP2009 / 057441) can be used.
- tissue stem cell means a stem cell having the ability to differentiate into various cell types (pluripotency), although the cell lineage capable of differentiating is limited to a specific tissue.
- hematopoietic stem cells in bone marrow are the source of blood cells, and neural stem cells differentiate into nerve cells.
- hepatic stem cells that make the liver and skin stem cells that become the skin tissue.
- the tissue stem cells are selected from mesenchymal stem cells, hepatic stem cells, pancreatic stem cells, neural stem cells, skin stem cells, or hematopoietic stem cells.
- somatic cells refers to cells other than germ cells among the cells that make up multicellular organisms. In sexual reproduction, it is not passed on to the next generation.
- the somatic cells are hepatocytes, pancreatic cells, muscle cells, bone cells, osteoblasts, osteoclasts, cartilage cells, fat cells, skin cells, fibroblasts, pancreatic cells, renal cells, lung cells, or , Lymphocytes, erythrocytes, leukocytes, monospheres, macrophages or macronuclear cells.
- “Germ cell” means a cell that plays a role in transmitting genetic information to the next generation in reproduction. For example, it includes gametes for sexual reproduction, that is, eggs, egg cells, sperms, sperms, spores for asexual reproduction, and the like.
- the cells may be selected from the group consisting of sarcoma cells, established cells and transformed cells.
- Sparcoma is a cancer that develops in connective tissue cells derived from non-epithelial cells such as bone, cartilage, fat, muscle, and blood, and includes soft tissue sarcoma, malignant bone tumor, and the like.
- Sarcoma cells are cells derived from sarcoma.
- the “strained cell” means a cultured cell that has been maintained in vitro for a long period of time, has a certain stable property, and is capable of semi-permanent subculture.
- PC12 cells derived from rat adrenal medulla
- CHO cells derived from Chinese hamster ovary
- HEK293 cells derived from human fetal kidney
- HL-60 cells derived from human leukocyte cells
- HeLa cells derived from human cervical cancer
- Vero cells Derived from African green monkey kidney epithelial cells
- MDCK cells derived from canine renal tubule epithelial cells
- HepG2 cells cell line derived from human hepatoma
- BHK cells neonatal hamster kidney cells
- NIH3T3 cells derived from mouse fetal fibroblasts
- Transformed cell means a cell in which nucleic acid (DNA or the like) is introduced from the outside of the cell to change its genetic properties.
- the "adherent cell” is generally a cell that needs to adhere itself to an appropriate surface for proliferation, and is also called an adherent cell or a scaffold-dependent cell.
- the cells used are adherent cells.
- the cells used in the present invention are adherent cells, more preferably cells that can be cultured even when suspended in a medium.
- Suspension-culturable adherent cells can be obtained by acclimatizing the adherent cells to a state suitable for suspension culture by a known method, for example, CHO cells, HEK293 cells, Vero cells, NIH3T3 cells. And so on, cell lines derived from these cells can be mentioned.
- the cell culture method of the present invention by applying cells to the small piece polymer porous membrane and culturing the cells, a large amount of cells grow on the internal multifaceted connected porous portion and the surface of the small piece polymer porous membrane. , It becomes possible to easily culture a large amount of cells.
- the cells seeded on the small piece polymer porous membrane used in the present invention provide an environment in which they can grow even under stirring conditions that conventionally kill them, and a large amount of cells can be cultured.
- the volume occupied by the cell-free small piece polymer porous membrane in the space including the volume of the internal gap thereof is referred to as "apparently small piece polymer porous membrane volume".
- the cells are applied to the small piece polymer porous membrane, and the medium infiltrated into the small piece polymer porous membrane, the cells, and the small piece polymer porous membrane in a state where the cells are supported on the surface and inside of the small piece polymer porous membrane.
- the volume occupied in space as a whole is referred to as "small piece polymer porous membrane volume including cell survival area”.
- the volume of the small piece polymer porous membrane including the cell survival area is apparently larger than that of the polymer small piece polymer porous membrane by about 50% at the maximum.
- a plurality of cells (at least two cells, for example, 3 , 4, 5, 10, 20, 30, 40, 50, 100, 500, 1 ⁇ 10 3 , 2 ⁇ 10 3 ) are contained in one cell culture vessel.
- the small polymer porous membranes include cell viability for each of the multiple small polymer porous membranes carrying cells.
- the total volume of the membrane may be simply referred to as "the total volume of the small polymer porous membrane including the cell culture area”.
- the cells can be extended for a long period of time. It becomes possible to cultivate well over. Further, even if the total volume of the cell culture medium contained in the cell culture vessel is 1000 times or less than the total volume of the small piece polymer porous membrane including the cell survival area, the cells can be cultivated well for a long period of time. it can. Furthermore, even if the total volume of the cell culture medium contained in the cell culture vessel is 100 times or less than the total volume of the small piece polymer porous membrane including the cell survival area, the cells can be cultivated well for a long period of time.
- the cells can be cultivated well for a long period of time. it can.
- the space (container) for cell culture can be made as small as possible as compared with the conventional cell culture device for two-dimensional culture. Further, when it is desired to increase the number of cells to be cultured, it is possible to flexibly increase the volume of cell culture by a simple operation such as increasing the number of small polymer porous membranes to be laminated.
- the space (container) for culturing cells and the space (container) for storing the cell culture medium can be separated and cultured. It is possible to prepare a required amount of cell culture medium according to the number of cells.
- the space (container) for storing the cell culture medium may be enlarged or miniaturized according to the purpose, or may be a replaceable container, and is not particularly limited.
- mass culture of cells means, for example, the number of cells contained in a cell culture vessel after culturing using a small piece polymer porous membrane, and cell culture in which all cells are contained in the cell culture vessel. Assuming that they are uniformly dispersed in the medium, 1.0 ⁇ 10 5 or more, 1.0 ⁇ 10 6 or more, 2.0 ⁇ 10 6 or more, 5.0 ⁇ 10 6 or more per 1 ml of medium , 1.0 ⁇ 10 7 or more, 2.0 ⁇ 10 7 or more, 5.0 ⁇ 10 7 or more, 1.0 ⁇ 10 8 or more, 2.0 ⁇ 10 8 or more, 5.0 ⁇ It means culturing until the number is 10 8 or more, 1.0 ⁇ 10 9 or more, 2.0 ⁇ 10 9 or more, or 5.0 ⁇ 10 9 or more.
- Various known methods can be used as a method for measuring the number of cells during or after culturing. For example, as a method of measuring the number of cells contained in a cell culture vessel after culturing using a small piece polymer porous membrane, assuming that all the cells are uniformly dispersed in the cell culture medium contained in the cell culture vessel. Can appropriately use a known method.
- a cell number counting method using CCK8 can be preferably used. Specifically, using Cell Counting Kit8; a solution reagent manufactured by Dojin Chemical Laboratory (hereinafter referred to as "CCK8”), the number of cells in a normal culture without a small piece polymer porous membrane was measured, and the absorbance was measured.
- the correlation coefficient between and the actual number of cells Then, the cells were applied, the cultured small piece polymer porous membrane was transferred to a medium containing CCK8, stored in an incubator for 1 to 3 hours, the supernatant was extracted, and the absorbance was measured at a wavelength of 460 nm. The number of cells is calculated from the correlation coefficient obtained in.
- mass culture of cells means, for example, that the number of cells contained per square millimeter of a small piece polymer porous membrane after culturing using a small piece polymer porous membrane is 1.0 ⁇ 10 3. 2. or more, 2.0 x 10 3 or more, 1.0 x 10 4 or more, 2.0 x 10 4 or more, 5.0 x 10 4 or more, 1.0 x 10 5 or more, 2. Incubate until 0 ⁇ 10 5 or more, 5.0 ⁇ 10 5 or more, 1.0 ⁇ 10 6 or more, 2.0 ⁇ 10 6 or more, or 5.0 ⁇ 10 6 or more.
- the number of cells contained in one square centimeter of the small polymer porous membrane can be appropriately measured by using a known method such as CCK8 described above.
- the polyimide porous film used to prepare the small piece polymer porous film was composed of 3,3', 4,4'-biphenyltetracarboxylic dianhydride (s-BPDA), which is a tetracarboxylic acid component.
- s-BPDA 4,4'-biphenyltetracarboxylic dianhydride
- the obtained polyimide porous film has a three-layer structure of a polyimide porous film having a surface layer A and a surface layer B having a plurality of pores and a macrovoid layer sandwiched between the surface layer A and the surface layer B. It is a film, and the average pore diameter of the pores existing in the surface layer A is 19 ⁇ m, the average pore diameter of the pores existing in the surface layer B is 42 ⁇ m, the film thickness is 25 ⁇ m, and the porosity is 74%. ..
- Example 1 Culture method and exosome production of human mesenchymal stem cells using a small piece polymer porous film (1) Preparation of a small piece polyimide porous film Made by Tsukaya Knife Mfg. Co., Ltd. Flexible pinnacle die AP type for flat punching; 1 mm ⁇ 1 mm (1 mm ⁇ 1 mm) Prepare the blade specifications (see below), fix it on the magnet plate with magnetic force, and cut the polyimide porous film (25 ⁇ m thickness) manufactured by Ube Kosan using a simple punching machine (RDC FB type). A 1 mm ⁇ 1 mm small piece of polyimide porous film was prepared. Blade specifications Blade height 0.8mm Blade depth 0.4mm Etching depth 0.6mm Base thickness 0.2mm Blade angle 40 °
- Ronza's human mesenchymal stem cells were passaged twice with an IWAKI collagen type 1 coat dish and treated with trypsin. the cells were suspended (4.0 ⁇ 10 6 cells) at; a to the medium (ADSC-4 4ml Kohjin Bio Co. Zenofuri medium).
- the cell culture was poured into a polyimide porous membrane piece (200 cm 2 ) that had been sterilized in advance in a 150 ml sterilized bottle manufactured by Corning and previously sterilized with 50 ml of the same medium and suspended by shaking in an incubator for 30 minutes. After the addition, the cells were shaken several times and then allowed to stand in a CO 2 incubator to start culturing.
- the small piece polyimide was used by the color reaction by Cell Counting Kit-8 manufactured by Dojin Chemical Laboratory.
- the total number of cells grown was 4.6 ⁇ 10 6 cells.
- 25 ml of Thermo Fisher Scientific's TrypLE TM was added to the sheet on which the cells grow, left in the incubator for 50 minutes, the suspension was collected, and the small pieces were washed with 10 ml of TrypLE TM. And cell recovery was performed. Number of recovered cells was 2.3 ⁇ 10 6 cells (cell recovery rate of 50%). The recovered cells could be cultured in a collagen-coated dish.
- Example 2 Long-term culture using a small piece polyimide porous membrane A long-term culture of human mesenchymal stem cells was carried out using the same method as in Example 1, and the medium was recovered over time to obtain exosomes. Stable exosome acquisition was possible throughout the culture period (Fig. 2). The total number of cells 76 days after the start of the culture, was 4.82 ⁇ 10 6 cells. The change in the number of cells during the experiment is shown in FIG.
- Comparative Example 1 Culturing method using a polymer porous membrane of human mesenchymal stem cells (1) Culturing when using a 1 cm square polyimide porous membrane The 1 mm square small piece polyimide porous membrane described in Example 1 Instead, 200 1 cm square polyimide porous membranes were prepared, and the same cells as in the experiment of Example 1 were seeded at the same cell density to carry out a comparative experiment. Culture the total number of cells after 18 days, was 3.0 ⁇ 10 6 cells.
- Example 3 Culture method using a small piece polyimide porous membrane of human skin fibroblasts (1) Preparation and cell seeding of skin fibroblasts Human adult skin fibroblasts cultured in a 60 cm 2 petri dish are used with trypsin. peeling and recovered Te was prepared cell suspension (3.0 ⁇ 10 6 cells) was added to LIFELINE Co. Zenofuri medium FibroLife 3 ml. The cell culture was poured into a polyimide porous membrane small piece (300 cm 2 ) that had been sterilized in advance and sterilized with 25 ml of the same medium and suspended in an incubator with shaking for 30 minutes. After the addition, the cells were shaken several times and then allowed to stand in a CO 2 incubator to start culturing.
- Example 4 Intermittent culture method using a small piece polyimide porous membrane of a hybridoma (1) Preparation of a hybridoma and seeding on a small piece porous membrane A hybridoma (SC78.H81.C81.A9) manufactured by JCRB Cell Bank is used as a cell manufactured by Corning.
- a ⁇ -ray sterilized product of 1 ⁇ 1 mm small perforated membrane 120 cm 2 moistened with purified water was sterilized and transferred to a 125 mL Ellenmeier (model number: 4115-0125) manufactured by Thermo Fisher Scientific, and the above medium (8 mM GlutaMax TM).
- 10 mL of added CD Hybridoma was added and shaken in a CO 2 incubator for 30 minutes to complete the wetting of the membrane. Then, the medium was discharged and removed to complete the preparation of the wet film in the Erlenmeyer flask tank.
- the cells After pouring 20 mL of the above cell suspension into the tank and shaking it several times, the cells were allowed to stand in a CO 2 incubator for 1 day to complete the process of adsorbing small pieces of cells. The entire residual liquid portion was discharged and removed from the layer, 20 mL of the above medium (8 mM GlutaMax TM -added CD Hybridoma) was added, and the mixture was allowed to stand in a CO 2 incubator to start culturing.
- the above medium 8 mM GlutaMax TM -added CD Hybridoma
- Example 5 Intermittent culture method using a small piece polyimide porous membrane of a hybridoma (1) Preparation of a hybridoma and seeding on a small piece porous membrane A cell and a small piece porous membrane are prepared and cultured by the same method as in Example New 1. After pouring into the tank, the cells were shaken in a CO 2 incubator on a Thermo Fisher Scientific shaker (MaxQ 200 CO2 Plus) at 50 rpm for 24 hours, and then the culture was transferred to static culture. After the migration, the culture was carried out in the same manner as in Example 4.
- Thermo Fisher Scientific shaker MaxQ 200 CO2 Plus
- Example 6 Small Polyimide Porous Membrane Continuous Culture Method_Hybridoma (1) Preparation of Hybridoma and Seeding into Small Porous Membrane A hybridoma (SC78.H81.C81.A9) manufactured by JCRB Cell Bank is used as a cell culture dish (Falcon) manufactured by Corning. (F)) and 10 passages in 125 mL Ellenmeier manufactured by Thermo Fisher Scientific (6 passages in 8 mM GlutaMax TM -added CD Hybridoma medium after 4 passages in RPMI-1640 medium supplemented with 10% FBS). After culturing, a floating cell fluid having a viable cell density of 1.11 ⁇ 10 6 cells / mL (live cell ratio: 78%) was prepared.
- Example 7 Cell culture and protein production by skin fibroblasts on a small piece polyimide porous membrane
- Small piece porous membrane preparation and cell culture Human skin fibroblasts (manufactured by LONZA; Lot. No. 18TL215675) are corned. and five passages in company manufactured cell culture FALCON dish, the cells were suspended (1.2 ⁇ 10 6 cells) were trypsinized in a medium (produced by Lonza FGM-2 BulletKit 1.2ml).
- Example 8 Culture of Chondrocyte Small Piece Porous Membrane A 125 ml square PET storage bottle (with a 45 mm cap) manufactured by Corning Inc. containing 120 cm 2 of sterilized polyimide porous membrane small pieces (1 mm ⁇ 1 mm) is prepared.
- the amount of exosomes produced in the recovery medium on the 19th day of culture was measured with a human-derived exosome quantification CD9 / CD63ELISA kit (manufactured by Cosmo Bio Co., Ltd .; product number _EXH0102EL), and the amount of exosomes produced was measured as the amount of protein of CD63.
- Exosome production of 117 pg / ml was confirmed by accumulating for 3 days. Efficient and stable exosome production was confirmed in the intermittent culture system as well as in the above-mentioned continuous culture system.
- Example 9 Small piece porous membrane culture and cell recovery of human skin fibroblasts
- a polyimide small piece porous membrane sterilized in a 50 ml centrifuge tube (screw cap conical tube) manufactured by Sumitomo Bakelite Co., Ltd. ( 300 cm 2 ) is transferred sterilized and 12 ml of PBS is added to moisten the membrane. After 1 hour, PBS is aspirated off to complete membrane preparation.
- Human skin fibroblasts (LONZA Co., Ltd .; Lot. No. 18TL215675) were subcultured in a cell culture FALCON dish manufactured by Corning Co., Ltd., and treated with trypsin to prepare a medium (Fibroblast Serum Free manufactured by Lifeline Co., Ltd.). at medium Complete Kit) medium was adjusted to 2000 mg / L was added glucose solution 3.0ml were suspended cells (3.0 ⁇ 10 6 cells).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Sustainable Development (AREA)
- Cell Biology (AREA)
- Immunology (AREA)
- Rheumatology (AREA)
- Molecular Biology (AREA)
- Developmental Biology & Embryology (AREA)
- Clinical Laboratory Science (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
Description
細胞は生体内では一般に三次元的な構造をとった集団として存在する。一方で、細胞を人工環境において培養する場合は、細胞が培養容器底部に単層状に張り付く形で二次元的に培養される古典的な平面培養法や、液体培養液中に細胞を分散させた状態で培養する浮遊培養法が一般的に用いられる。平面培養法に用いられる細胞については、比較的接着性の高い細胞が適しているが、適した細胞を用いた場合でも、培養環境の違いにより、細胞の性質が大きく変化することがある。浮遊培養法についても、適した細胞と適さない細胞が存在する。
ポリイミド多孔質膜は、本出願前よりフィルタ、低誘電率フィルム、燃料電池用電解質膜など、特に電池関係を中心とする用途のために利用されてきた。特許文献8~10は、特に、気体などの物質透過性に優れ、空孔率の高い、両表面の平滑性が優れ、相対的に強度が高く、高空孔率にもかかわらず、膜厚み方向への圧縮応力に対する耐力に優れるマクロボイドを多数有するポリイミド多孔質膜を記載している。これらはいずれも、アミック酸を経由して作成されたポリイミド多孔質膜である。
ここで、前記小片ポリマー多孔質膜は、複数の孔を有する表面層A及び表面層Bと、前記表面層A及び表面層Bの間に挟まれたマクロボイド層とを有する三層構造の小片ポリマー多孔質膜であって、ここで前記表面層Aに存在する孔の平均孔径は、前記表面層Bに存在する孔の平均孔径よりも小さく、前記マクロボイド層は、前記表面層A及びBに結合した隔壁と、当該隔壁並びに前記表面層A及びBに囲まれた複数のマクロボイドとを有し、前記表面層A及びBにおける孔が前記マクロボイドに連通するものであり、
前記表面層A又は表面層Bの面積が4mm2以下であり、
培養液中で前記小片ポリマー多孔質膜が分散し及び/又は小片ポリマー多孔質膜同士が多重に集積し、細胞培養容器の底部に分散及び/又は積層される、細胞培養法。
[2] 間歇的に又は連続的に培地を交換することにより長期培養を行う、[1]に記載の細胞培養法。
[3] 前記小片ポリマー多孔質膜に接着させた細胞を増殖された後、酵素処理により細胞を剥離し、細胞を接着させていない小片ポリマー多孔質膜を細胞培養容器に添加することにより、細胞を継代させて大量培養を行う、[1]又は[2]に記載の細胞培養法。
[4] 前記小片ポリマー多孔質膜が、平均孔径0.01~100μmの複数の細孔を有する、[1]~[3]のいずれか1つに記載の細胞培養法。
[5] 前記表面層Aの平均孔径が、0.01~50μmである、[1]~[4]のいずれか1つに記載の細胞培養法。
[6] 前記表面層Bの平均孔径が、20~100μmである、[1]~[5]のいずれか1つに記載の細胞培養法。
[7] 前記小片ポリマー多孔質膜の総膜厚が、5~500μmである、[1]~[6]のいずれか1つに記載の細胞培養法。
[8] 前記小片ポリマー多孔質膜が、小片ポリイミド多孔質膜である、[1]~[7]のいずれか1つに記載の細胞培養法。
[9] 前記小片ポリイミド多孔質膜が、テトラカルボン酸二無水物とジアミンとから得られるポリイミドを含む、小片ポリイミド多孔質膜である、[8]に記載の細胞培養法。
[10] 前記小片ポリイミド多孔質膜が、テトラカルボン酸二無水物とジアミンとから得られるポリアミック酸溶液と着色前駆体とを含むポリアミック酸溶液組成物を成形した後、250℃以上で熱処理することにより得られる着色した小片ポリイミド多孔質膜である、[8]又は[9]に記載の細胞培養法。
[11]細胞によりエクソソームを産生させることを含む、[1]~[10]のいずれか1つに記載の細胞培養法。
[12] 小片ポリマー多孔質膜を含む、[1]~[11]のいずれか1つに記載の細胞培養法に使用するための細胞培養装置。
[13] 小片ポリマー多孔質膜を含む、[1]~[11]のいずれか1つに記載の細胞培養法に使用するためのキット。
[14] [1]~[11]のいずれか1つに記載の方法によって取得したエクソソーム。
1.小片ポリマー多孔質膜の作製
小片ポリマー多孔質膜は、後述するポリマー多孔質膜を所望の大きさに成形することによって作製することができる。成形は、様々な加工用ユニットを用いて行うことができる。例えば、限定されないが、ピナクル簡易式抜き機を用いたピナクルダイにてポリマー多孔質膜(例えば、ポリイミド多孔質膜、ポリエーテルスルホン(PES)多孔質膜)を打ち抜いて所望の形状の小片ポリマー多孔質膜を得ることができる。
本発明で使用されるポリマー多孔質膜中の表面層A(以下で、「A面」又は「メッシュ面」とも呼ぶ)に存在する孔の平均孔径は、特に限定されないが、例えば、0.01μm以上200μm未満、0.01~150μm、0.01~100μm、0.01~50μm、0.01μm~40μm、0.01μm~30μm、0.01μm~25μm、0.01μm~20μm、又は0.01μm~15μmであり、好ましくは、0.01μm~25μmである。
(1)多孔質膜表面の走査型電子顕微鏡写真から、200点以上の開孔部について孔面積Sを測定し、該孔面積を真円と仮定して式Iからそれぞれの孔径dを求める。
ポリイミドとは、繰り返し単位にイミド結合を含む高分子の総称であり、通常は、芳香族化合物が直接イミド結合で連結された芳香族ポリイミドを意味する。芳香族ポリイミドは芳香族と芳香族とがイミド結合を介して共役構造を持つため、剛直で強固な分子構造を持ち、かつ、イミド結合が強い分子間力を持つために非常に高いレベルの熱的、機械的、化学的性質を有する。
1)1,4-ジアミノベンゼン(パラフェニレンジアミン)、1,3-ジアミノベンゼン、2,4-ジアミノトルエン、2,6-ジアミノトルエンなどのベンゼン核1つのべンゼンジアミン;
2)4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテルなどのジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、3,3’-ジカルボキシ-4,4’-ジアミノジフェニルメタン、3,3’,5,5’-テトラメチル-4,4’-ジアミノジフェニルメタン、ビス(4-アミノフェニル)スルフィド、4,4’-ジアミノベンズアニリド、3,3’-ジクロロベンジジン、3,3’-ジメチルベンジジン、2,2’-ジメチルベンジジン、3,3’-ジメトキシベンジジン、2,2’-ジメトキシベンジジン、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノン、3,3’-ジアミノ-4,4’-ジクロロベンゾフェノン、3,3’-ジアミノ-4,4’-ジメトキシベンゾフェノン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、2,2-ビス(3-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(3-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、3,3’-ジアミノジフェニルスルホキシド、3,4’-ジアミノジフェニルスルホキシド、4,4’-ジアミノジフェニルスルホキシドなどのベンゼン核2つのジアミン;
3)1,3-ビス(3-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(3-アミノフェニル)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)-4-トリフルオロメチルベンゼン、3,3’-ジアミノ-4-(4-フェニル)フェノキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジ(4-フェニルフェノキシ)ベンゾフェノン、1,3-ビス(3-アミノフェニルスルフィド)ベンゼン、1,3-ビス(4-アミノフェニルスルフィド)ベンゼン、1,4-ビス(4-アミノフェニルスルフィド)ベンゼン、1,3-ビス(3-アミノフェニルスルホン)ベンゼン、1,3-ビス(4-アミノフェニルスルホン)ベンゼン、1,4-ビス(4-アミノフェニルスルホン)ベンゼン、1,3-ビス〔2-(4-アミノフェニル)イソプロピル〕ベンゼン、1,4-ビス〔2-(3-アミノフェニル)イソプロピル〕ベンゼン、1,4-ビス〔2-(4-アミノフェニル)イソプロピル〕ベンゼンなどのベンゼン核3つのジアミン;
4)3,3’-ビス(3-アミノフェノキシ)ビフェニル、3,3’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス〔3-(3-アミノフェノキシ)フェニル〕エーテル、ビス〔3-(4-アミノフェノキシ)フェニル〕エーテル、ビス〔4-(3-アミノフェノキシ)フェニル〕エーテル、ビス〔4-(4-アミノフェノキシ)フェニル〕エーテル、ビス〔3-(3-アミノフェノキシ)フェニル〕ケトン、ビス〔3-(4-アミノフェノキシ)フェニル〕ケトン、ビス〔4-(3-アミノフェノキシ)フェニル〕ケトン、ビス〔4-(4-アミノフェノキシ)フェニル〕ケトン、ビス〔3-(3-アミノフェノキシ)フェニル〕スルフィド、ビス〔3-(4-アミノフェノキシ)フェニル〕スルフィド、ビス〔4-(3-アミノフェノキシ)フェニル〕スルフィド、ビス〔4-(4-アミノフェノキシ)フェニル〕スルフィド、ビス〔3-(3-アミノフェノキシ)フェニル〕スルホン、ビス〔3-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔3-(3-アミノフェノキシ)フェニル〕メタン、ビス〔3-(4-アミノフェノキシ)フェニル〕メタン、ビス〔4-(3-アミノフェノキシ)フェニル〕メタン、ビス〔4-(4-アミノフェノキシ)フェニル〕メタン、2,2-ビス〔3-(3-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔3-(4-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔4-(3-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔3-(3-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔3-(4-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔4-(3-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパンなどのベンゼン核4つのジアミン。
(i)ビフェニルテトラカルボン酸単位及びピロメリット酸単位からなる群から選ばれる少なくとも一種のテトラカルボン酸単位と、芳香族ジアミン単位とからなる芳香族ポリイミド、
(ii)テトラカルボン酸単位と、ベンゼンジアミン単位、ジアミノジフェニルエーテル単位及びビス(アミノフェノキシ)フェニル単位からなる群から選ばれる少なくとも一種の芳香族ジアミン単位とからなる芳香族ポリイミド、
及び/又は、
(iii)ビフェニルテトラカルボン酸単位及びピロメリット酸単位からなる群から選ばれる少なくとも一種のテトラカルボン酸単位と、ベンゼンジアミン単位、ジアミノジフェニルエーテル単位及びビス(アミノフェノキシ)フェニル単位からなる群から選ばれる少なくとも一種の芳香族ジアミン単位とからなる芳香族ポリイミド。
本発明で使用され得るPES多孔質膜は、ポリエーテルスルホンを含み、典型的には実質的にポリエーテルスルホンからなる。ポリエーテルスルホンは当業者に公知の方法で合成されたものであってよく、例えば、二価フェノール、アルカリ金属化合物及びジハロゲノジフェニル化合物を有機極性溶媒中で重縮合反応させる方法、二価フェノールのアルカリ金属二塩を予め合成しジハロゲノジフェニル化合物と有機極性溶媒中で重縮合反応させる方法等によって製造できる。
対数粘度0.5~1.0のポリエーテルスルホンの0.3質量%~60質量%と有機極性溶媒40質量%~99.7質量%とを含むポリエーテルスルホン溶液を、フィルム状に流延し、ポリエーテルスルホンの貧溶媒又は非溶媒を必須成分とする凝固溶媒に浸漬又は接触させて、空孔を有する凝固膜を作製する工程、及び
前記工程で得られた空孔を有する凝固膜を熱処理して前記空孔を粗大化させて、PES多孔質膜を得る工程
を含み、前記熱処理は、前記空孔を有する凝固膜を、前記ポリエーテルスルホンのガラス転移温度以上、若しくは240℃以上まで昇温させることを含む、方法で製造されてもよい。
前記マクロボイド層は、前記表面層A及びBに結合した隔壁と、当該隔壁並びに前記表面層A及びBに囲まれた、膜平面方向の平均孔径が10μm~500μmである複数のマクロボイドとを有し、
前記マクロボイド層の隔壁は、厚さが0.1μm~50μmであり、
前記表面層A及びBはそれぞれ、厚さが0.1μm~50μmであり、
前記表面層A及びBのうち、一方が平均孔径5μm超200μm以下の複数の細孔を有し、かつ他方が平均孔径0.01μm以上200μm未満の複数の細孔を有し、
表面層A及び表面層Bの、一方の表面開口率が15%以上であり、他方の表面層の表面開口率が10%以上であり、
前記表面層A及び前記表面層Bの前記細孔が前記マクロボイドに連通しており、
前記PES多孔質膜は、総膜厚が5μm~500μmであり、かつ空孔率が50%~95%である、
PES多孔質膜である。
本発明の実施態様で使用される小片ポリマー多孔質膜は、従来技術としてポリマー多孔質膜をケーシング(外套)内に収容させることなく、任意の細胞培養溶液に添加して使用することができる。一実施態様において、本発明の細胞培養法に使用される小片ポリマー多孔質膜は、表面層A又は表面層Bの面積が、4mm2以下、好ましくは3mm2以下、より好ましくは2mm2以下、最も好ましくは1mm2であることを特徴としている。表面層A又は表面層Bの面積の下限は、例えば、0.01mm2以上であってもよく、0.04mm2以上であってもよく、0.09mm2以上であってもよく、0.16mm2以上であってもよい。小片ポリマー多孔質膜の形状としては、例えば、多角形(例えば、三角形、四角形(例えば矩形)、五角形、六角形・・・n角形(nは任意の整数))、略円形、略楕円形、曲線と直線とを含む形状であってもよい。一実施態様において、細胞培養装置1aで適用されるポリマー多孔質膜200aは、例えば、表面層A又は表面層Bの最長径/最短径の比が、0.5~1、好ましくは0.75~1、より好ましくは0.9~1であることが好ましい。本明細書において、「径」とは、表面層A又は表面層Bの外周の任意の二点の間の長さをいう。本明細書において、「最長径」とは、表面層A又は表面層Bの外周の任意の二点の間の長さのうち、最長となる長さをいう。本明細書において、「最短径」とは、表面層A又は表面層Bの外周の任意の二点の間の長さのうち、最短となる長さをいう。一実施態様において、本発明の細胞培養方法に適用される小片ポリマー多孔質膜が四角形、例えば矩形である場合、最長径が2×2^(1/2)mm以下、及び最短径が2×2^(1/2)mm以下、好ましくは、最長径が1.5×2^(1/2)mm以下、及び最短径が1.5×2^(1/2)mm以下、より好ましくは最長径が1×2^(1/2)mm以下、及び最短径が1×2^(1/2)mm以下である。他の態様において、本発明の細胞培養方法に適用されるポリマー多孔質膜が、略円形又は略楕円形である場合、最長径が2mm以下及び最短径が2mm以下、好ましくは最長径が1.5mm以下及び最短径が1.5mm以下、より好ましくは最長径が1.2mm以下及び最短径が1.2mm以下である。また、小片ポリマー多孔質膜に担持された細胞に、効率的に酸素や栄養を供給することが可能となり、細胞増殖も良好となり、任意のタンパク質等、エクソソームの物質を産生する活性も著しく高くなるという効果をもたらす。また、小片ポリマー多孔質膜が大量に培地中に適応されることにより、小片ポリマー多孔質膜が集積し、任意の小片ポリマー多孔質膜に担持された細胞が、別の小片ポリマー多孔質膜に移動したり、両者にまたがって接着しながら生育させる培養環境を提供することが可能となる。したがって、小片ポリマー多孔質膜を細胞培養容器に適用する場合は、細胞培養容器は振盪させることなく、静置して培養することが好ましい。小片ポリマー多孔質膜は、静置すると培地に沈降するため、低酸素条件に適した細胞の培養の場合には、特別な装置を使用する事なく、培地量を増加して深さを増すだけで、低酸素培養系を実行する事も可能となる。
本発明によれば、本発明の細胞培養法は、小片ポリマー多孔質膜に、懸濁された細胞を注加し、静置させて細胞培養を行う方法であって、細胞培養容器に攪拌機を適用したり、スピナーフラスコを使用する必要がない。上記の通り、小片ポリマー多孔質膜は、分散及び/又は互いに多重に集積して、その状態で細胞培養容器の底部に沈むという性質を有するものであり、培地中でこのような状態を達成できる細胞培養容器及び細胞培養装置であれば、特に限定されない。したがって、通常、細胞培養に使用されるディッシュ、シャーレ、プレート、ウェル、ボトル、バッグ等に限定されず、また素材、例えば、プラスチック製、ガラス製等に限定されず、任意の容器を利用することができる。また、細胞培養装置を用いる場合、細胞培養容器は、装置内に装備された培養槽の形態であってもよい。
細胞を適用する小片ポリマー多孔質膜200aと;
前記小片ポリマー多孔質膜200aを収容する培養槽10と;
前記培養槽10に設けられ、培地を供給する培地供給口113と;
前記培養槽10の側部に設けられ、前記培地を排出する培地排出口101と;
前記培地供給口113と連通し、前記培養槽10の外部に設けられた培地供給槽40と;
前記培地排出口101と連通し、前記培地排出口101から排出される前記培地を回収する培地回収槽60、を備え、
前記培地排出口101は、前記培地をオーバーフローさせて排出することを特徴とする。このような細胞培養装置を用いれば、新鮮な培地を継続的に供給することが可能である一方、供給された培地の量に応じて、培養槽に設けられた培地排出口から、細胞培養後の培地を連続的に回収することが可能となり、長期間の細胞培養が実現可能となる。また、従来の培地交換のように細胞が産生した細胞増殖等に必要なタンパク質の濃度が急激に変化することが防止され、培養によって消費された培地中の栄養分(例えば、グルコース等)は継続的に供給され、好ましい細胞培養環境を維持することができる。
本発明の細胞培養法は、細胞を小片ポリマー多孔質膜に適用し、培養する方法であって、攪拌等による振盪を必要としないことを特徴とする。さらに、細胞自体又は細胞を担持させた小片ポリマー多孔質膜を回収することなく、新鮮な培地の供給、及び培養後の培地を簡便に回収することが可能であり、静的な状態で長期間、培養を行うことができる。本明細書において、「培地」とは、細胞、特に動物細胞を培養するための細胞培養培地のことを指す。培地は、細胞培養液と同義の意味として用いられる。そのため、本発明において用いられる培地とは、液体培地のことを指す。培地の種類は、通常使用される培地を使用することが可能であり、培養する細胞の種類によって適宜決定される。
(A)細胞培養容器に添加した小片ポリマー多孔質膜上に、細胞懸濁液を注入する態様;
(B)細胞培養容器に注入された細胞懸濁液に小片ポリマー多孔質膜を添加する態様。
本発明はさらに、小片ポリマー多孔質膜を含む、細胞培養法に使用するためのキットを提供する。本発明のキットは、小片ポリマー多孔質膜の他に、細胞培養に必要な構成要素を適宜含みうる。例えば、小片ポリマー多孔質膜に適用する細胞、細胞培養培地、細胞培養装置、キットの取り扱い説明書などが含まれる。限定されるわけではないが、一態様として、透明なパウチ内に滅菌された小片ポリマー多孔質膜が保存され、そのままで細胞培養に使用可能な形態を含むパッケージや、あるいは、同パウチ内に小片ポリマー多孔質膜とともに滅菌液体が封入されており、効率的吸込み播種が可能になっている膜・液体の一体型形態のキットを含む。
本明細書において、「懸濁された細胞」とは、例えば、トリプシン等のタンパク質分解酵素によって、接着細胞を強制的に浮遊させて培地中に懸濁して得られた細胞や、公知の馴化工程によって、培地中に浮遊培養可能となった接着細胞などを含んでいる。
(1)小片ポリイミド多孔質膜の作製
塚谷刃物製作所製フレキシブルピナクルダイAPタイプ平抜用;1mm×1mm(刃のスペックは以下参照)を用意し、マグネットプレート上に磁力で固定して、簡易式抜き機(RDC FBタイプ)を使用して宇部興産製ポリイミド多孔質膜(25μm厚)を切断加工することがで、1mm×1mmの小片ポリイミド多孔質膜を準備した。
刃スペック
刃高 0.8mm
刃深度 0.4mm
エッチング深度 0.6mm
ベース厚 0.2mm
刃角度 40°
ロンザ社製ヒト間葉系幹細胞(Poietics(商標))を、IWAKI製コラーゲンタイプ1コートディッシュにて2継代し、トリプシン処理をして培地(コージンバイオ社製ゼノフリー培地;ADSC-4 4ml)にて細胞(4.0×106細胞)を懸濁した。コーニング製150ml滅菌ボトル内で、事前に滅菌的に同培地50mlにて湿潤し、インキュベータ内で30分間振盪懸濁したポリイミド多孔質膜小片(200cm2)に上記細胞培養を注加した。注加後、数回振り交ぜた後、CO2インキュベータ内で静置して培養を開始した。
2日若しくは3日の1度のペースで上記培地(ADSC-4)に1000mg/Lのグルコースを加えた培地50mlを交換し、培養を18日間継続した。培養過程で、グルコース消費量と乳酸産生量を継続的に測定し、順調な細胞増殖を確認した(図1)。
培養開始から18日後に、同仁化学研究所製Cell Counting Kit-8による呈色反応を利用して、小片ポリイミド多孔質膜上に生育する細胞数を検証したところ、生育する総細胞数は、4.6×106細胞であった。この細胞が生育するシートに、サーモフィッシャーサイエンティフィック社製TrypLE(商標)を25ml注加し、50分間インキュベータ内で放置した後に懸濁液を回収し、更にTrypLE(商標)10mlで小片を洗浄して細胞回収を実行した。回収した細胞数は、2.3×106細胞(細胞回収率50%)であった。回収した細胞は、コラーゲンコートディッシュにて培養が可能であった。
回収した細胞培養液を高速冷却遠心機(久保田商事株式会社製、Model 6000)を用いて4℃で30分間、10,000gで遠心分離を行い、デブリスを除去した(調製液1)。0.025μmのフィルタ(メルク社製、製品名:MF-ミリポアメンブレンフィルタ、型番:VSWP04700)を用いた吸引濾過により微粒子を除去したPBS(-)(富士フイルム和光純薬株式会社製、販売元コード:166-23555)を用いて、「調製液1」を所定の濃度に希釈した(調製液2)。次いで「調製液2」を0.2μmのシリンジフィルタ(ザルトリウス社製、製品名:ミニザルト、型番:16534K)を用いて200nm以上の粒子を除去した(調製液3)。ゼータ電位・粒径分布測定装置(株式会社マイクロテックニチオン製、ZEECOM ZC-3000)を用いて、ブラウン運動軌跡解析から、「調製液3」に含まれる粒子の粒径分布及びエクソソーム画分の粒子数を測定した。1日当たりのエクソソーム産生量は、以下に示す「式1」にて算出した。
式1:粒子数×サンプル希釈倍率×150nm以下の粒子の割合/培地溜め込み日数
(1)小片ポリイミド多孔質膜を用いる長期培養
実施例1と同様の方法を用いて、ヒト間葉系幹細胞の長期培養を行い、経時的に培地を回収してエクソソームを取得した。培養期間を通じて安定したエクソソーム取得が可能であった(図2)。培養開始後76日の総細胞数は、4.82×106細胞であった。実験期間中の細胞数変化を図3に示す。
小片ポリイミド多孔質膜で培養したヒト間葉系幹細胞の幹性検証の為、期間の異なる培養サンプルを一部回収し、脂肪細胞及び骨芽細胞への分化誘導を実施した。結果を図4に示す。培養期間を通じた幹性の維持が確認された。
(1)1cm角のポリイミド多孔質膜を用いた場合の培養
実施例1に記載の1mm角の小片ポリイミド多孔質膜の代わりに1cm角のポリイミド多孔質膜を200枚用意し、実施例1の実験と同じ細胞を同細胞密度で播種して比較実験を実施した。18日後の培養総細胞数は、3.0×106細胞であった。
実施例1と同様にTrypLE(商標)を用いる細胞回収実験を行ったところ、遊離回収された細胞数は、1.0×106細胞(細胞回収率33%)であった。
実施例1及び比較例1のグルコース消費の比較データを図1に示す。培養期間を通じて、小片ポリイミド多孔質膜での培養に於いて高いグルコース消費が行われていることが確認された。
(1)皮膚線維芽細胞の準備と細胞播種
60cm2シャーレにて培養したヒト成人皮膚線維芽細胞を、トリプシンを用いて剥離・回収し、LIFELINE社製ゼノフリー培地FibroLife 3mlを加えて細胞懸濁液(3.0×106細胞)を準備した。事前に滅菌的に同培地25mlにて湿潤し、インキュベータ内で30分間振盪懸濁したポリイミド多孔質膜小片(300cm2)に上記細胞培養を注加した。注加後、数回振り混ぜた後、CO2インキュベータ内で静置して培養を開始した。
2日若しくは3日毎に培地交換を行い、15日以降は毎日培地交換を実施した。CCK8を用いた呈色による総細胞数の変化を図5に示す。安定的な細胞成長が観測された。
(1)ハイブリドーマの準備と小片多孔膜への播種
JCRB細胞バンク製ハイブリドーマ(SC78.H81.C81.A9)をCorning社製細胞培養ディッシュ(Falcon(商標))およびThermo Fisher Scientfic社製125mLエルレンマイヤーで8継代(富士フイルム和光純薬社製RPMI-1640にGibco(商標)製ES Cell FBS 10%添加した培地で4継代した後、Thermo Fisher Scientfic社製無血清培地CD HybridomaにThermo Fisher Scientfic社製GlutaMax(商標)を8mM添加した培地で更に4継代)し、生細胞密度1.17×106細胞/mL(生細胞率:87%)の浮遊細胞液を準備した。Thermo Fisher Scientfic社製125mLエルレンマイヤー(型番;4115-0125)へ、精製水で湿潤した1×1mm小片多孔膜120cm2のγ線滅菌体を滅菌的に移送し、上記培地(8mM GlutaMax(商標)添加CD Hybridoma)を10mL注加してCO2インキュベータ内で30分間振盪して膜の湿潤を完了した。その後、上記培地を排出除去し、エルレンマイヤーフラスコ槽内での湿潤膜準備を完了した。槽内に上記細胞懸濁液20mLを注加し数回振り交ぜた後、CO2インキュベータ内で1日間静置して細胞の小片多孔膜吸着工程を完了した。層内に残留液部を全量排出除去し、上記培地(8mM GlutaMax(商標)添加CD Hybridoma)を20mL注加後、CO2インキュベータ内で静置して培養を開始した。
培養開始後、2日目と6日目に細胞培養液を少量サンプリングして、ロッシュ社製CedexBioを用いて培養液中のグルコース濃度、乳酸濃度および抗体産生量を測定し、代謝状況を検証した。良好な細胞の生着と増殖が確認され(表2)、また、効率的に抗体産生が進行する事を確認した。ハイブリドーマが小片多孔膜で培養可能であり連続的な抗体産生に適用可能である事が示された。
培養日数6日目の小片多孔膜を富士フイルム和光純薬社製Ham’s F-12培地(グルタミン・フェノールレッド含有)10mLで2回洗浄して浮遊細胞を除去した後、株式会社同仁化学研究所製のCell Counting Kit-8を用いた呈色反応により小片多孔膜に接着している生細胞密度を測定し1.64×103細胞/cm2の細胞密度で、総数は1.97×105細胞の生細胞が観察された。洗浄によって容易に剥離されない細胞が小片多孔膜に接着・生着していることが確認された。
(1)ハイブリドーマの準備と小片多孔膜への播種
実施例新1と同様の方法で細胞及び小片多孔膜を準備し、培養槽への注加後に、CO2インキュベータ内でThermo Fisher Scientfic社製シェーカー(MaxQ 200 CO2Plus)上にて50rpmで24時間振盪し、その後静置培養に移行した。移行後は実施例4と同様の操作で培養を実行した。
実施例4と同様の方法でサンプルを取得し、代謝物及び産生された抗体量の測定を行い、細胞の生着と良好な増殖を確認した。優れた抗体産生力が確認された(表3)。運動条件を用いる細胞吸着過程を経ることで、より効率的に小片多孔膜培養が実施され、効率的な抗体産生等に適用可能であることを確認した。
実施例4と同様の方法で小片多孔膜に接着した生細胞密度を測定したところ、1.41×103細胞/cm2の細胞密度で、総数は1.70×105細胞の生細胞が観察された。複数回の洗浄によっても容易に剥離されない状態でハイブリドーマが小片多孔膜に接着・生着していることが確認された。
(1)ハイブリドーマの準備と小片多孔膜への播種
JCRB細胞バンク製ハイブリドーマ(SC78.H81.C81.A9)をCorning社製細胞培養ディッシュ(Falcon(商標))およびThermo Fisher Scientfic社製125mLエルレンマイヤーで10継代(FBS 10%添加RPMI-1640培地で4継代した後、8mM GlutaMax(商標)添加CD Hybridoma培地で6継代)浮遊細胞培養して、生細胞密度1.11×106細胞/mL(生細胞率:78%)の浮遊細胞液を準備した。精製水で湿潤した1×1mm小片多孔膜120cm2の滅菌体を充填した図7に示すオーバーフローリアクターに上記細胞懸濁液20mLを注加した。注加後、培養槽部分を数回振り交ぜた後、CO2インキュベータ内で30分間静置して培養を開始した。また、図8に示す装置も同様に使用可能であった。
1日あたり約20mLのペースで上記培地(8mM GlutaMax(商標)添加CD Hybridoma)をリアクター内へ連続的に供給し、抜出ポンプ(アズワン製チューブポンプ)を利用して液面高を制御することで、培養槽内の培地量を一定に保ちながら連続的に培地回収を行った。
抜き出した培養液は1日に1度のペースで回収し、ロッシュ社製CedexBioを用いて回収液中のグルコース濃度、乳酸濃度および抗体産生量を測定した。結果を表4に示す。培養期間を通じて、安定的かつ効率的にグルコース消費・乳酸産生が進行し、同時に、良好な抗体産生が安定的かつ連続的に実施されていることを確認した。
培養日数5日目にリアクター内の培地を除去し、残留した小片多孔膜を富士フイルム和光純薬社製Ham’s F-12培地(グルタミン・フェノールレッド含有)10mLで2回洗浄して表面から離脱可能な浮遊細胞を除去した後、株式会社同仁化学研究所製のCell Counting Kit-8を用いた呈色反応により細胞数測定を実施した。この方法で細胞密度を測定すると1.46×103細胞/cm2、総数は1.75×105細胞の生細胞が、洗浄によっても容易に剥離されない状態で小片多孔膜に接着・生着していることが確認された。
(1)小片多孔膜準備と細胞培養
ヒト皮膚線維芽細胞(LONZA社製;Lot.No.18TL215675)を、Corning社製細胞培養FALCONディッシュにて5継代し、トリプシン処理をして培地(ロンザ社製FGM-2 BulletKit 1.2ml)にて細胞(1.2×106細胞)を懸濁した。コーニング製125ml滅菌ボトル内で、事前にD-PBS(富士フイルム和光純薬株式会社)50mlにて滅菌的にポリイミド小片多孔質膜(120cm2)をCO2インキュベータ内で湿潤し、D-PBSを除去した後、上記の培地(ロンザ社製FGM-2 BulletKit)を10ml注加した。この多孔膜を含む培地を同インキュベータ内で更に30分間放置した後、上記の細胞懸濁液1.2mlを注加した。注加後、数回振り交ぜた後、同インキュベータ内で一晩静置し、翌日、上記の培地(ロンザ社製FGM-2 BulletKit)を20ml注加して、長期培養を開始した。
週に1度のペースで上記の培地(FGM-2 BulletKit)30mlを交換し、培養を18日間継続した。培養過程で、グルコース消費量と乳酸産生量を測定し、順調な細胞増殖を確認した。
回収した細胞培養液を用いて、5日目、13日目、18日目のフィブロネクチン産生量をFibronectin ELISA kit(Takara製 Cat:MK115)を使用して測定した。結果を表5に示す。
滅菌済みポリイミド多孔質膜小片(1mm×1mm)120cm2を入れたCorning社製125ml角型PET製ストレージボトル(45mmキャップ付き)を準備する。この小片多孔膜の入った角型滅菌ボトルに培地(コージンバイオ社製ゼノフリー培地;KBM ADSC-4R)にグルコース液(富士フイルム和光純薬株式会社製;45w/v% D(+)-グルコース溶液)を注加し、総グルコース濃度が3000mg/Lに調整した調整培地30mlを注加して、小片を十分に培地となじませる。
(1)小片多孔膜準備と細胞準備
住友ベークライト社製50ml遠沈管(スクリューキャップコニカルチューブ)内に滅菌したポリイミド小片多孔質膜(300cm2)を滅菌的に移送し、PBS12mlを注加して膜を湿潤させる。1時間後、PBSを吸引除去し、膜準備を完了する。
先にコニカルチューブ内に準備した小片多孔膜に前記培地10ml及び上記懸濁細胞を加え数回緩やかに振り交ぜた後、CO2インキュベータ内で終夜放置する。翌日、細胞が吸着した小片ポリイミド多孔質膜をコーニング製150ml滅菌ボトル内に移送し、更に20mlの培地を加えて培養を開始する。週2回のペースで培地交換(容量30ml)を行い、2日、6日、9日、14日に、同仁化学研究所製Cell Counting Kit-8による呈色反応を利用して、多孔膜小片に生育している総細胞数を測定した。各測定日のボトル内小片ポリイミド多孔質膜に生育しているヒト皮膚線維芽細胞の1cm2当たりの細胞密度及びボトル内の総細胞数を測定し、細胞の生育状況を確認した。結果を表6に示す。
培養開始後15日目に、ボトル内の培地を排除し、PBS20mlでボトル内の小片多孔膜を洗浄した後、同PBSを吸引排除する。引き続き、サーモフィッシャーサイエンティフィック社製TrypLE Express(商標)を15ml注加し、CO2インキュベータ内で40分放置する。細胞が遊離して白濁した上清を回収し、更に前記培地25mlで小片多孔膜を洗浄して、遊離細胞を回収した。遠心分離後前記培地3mlで懸濁して細胞数測定を実施した所、3.6x106個の生細胞を確認した。回収した本細胞を培養プレート及び小片ポリイミド多孔質膜に播種し、細胞の生育を確認した。
10 培養槽
100 培養槽本体
101 培地排出口
102 側部
103 底部
104 排出口コネクタ
110 培養槽蓋体
111 第1蓋体コネクタ
112 第1培地供給管
113 培地供給口
114 第1通気管
115 第1通気フィルタ
120 培養後の培地
121 培地レベル
200a 小片ポリマー多孔質膜
30 第2培地供給管
31 第3培地供給管
32 ポンプ
40 培地供給槽
400 新鮮培地
41 培地供給槽蓋体
410 第2蓋体コネクタ
411 第2通気管
412 第2通気フィルタ
50、51 培地排出管
52 ガイド
60 培地回収槽
61 培地回収槽蓋体
610 第3蓋体コネクタ
611 第3通気管
612 第3通気フィルタ
70 培養槽設置台
Claims (14)
- 小片ポリマー多孔質膜に細胞を適用し、培養することを含む、攪拌を必要としない細胞培養法であって、
ここで、前記小片ポリマー多孔質膜は、複数の孔を有する表面層A及び表面層Bと、前記表面層A及び表面層Bの間に挟まれたマクロボイド層とを有する三層構造の小片ポリマー多孔質膜であって、ここで前記表面層Aに存在する孔の平均孔径は、前記表面層Bに存在する孔の平均孔径よりも小さく、前記マクロボイド層は、前記表面層A及びBに結合した隔壁と、当該隔壁並びに前記表面層A及びBに囲まれた複数のマクロボイドとを有し、前記表面層A及びBにおける孔が前記マクロボイドに連通するものであり、
前記表面層A又は表面層Bの面積が4mm2以下であり、
培養液中で前記小片ポリマー多孔質膜が分散し及び/又は小片ポリマー多孔膜同士が多重に集積し、細胞培養容器の底部に分散及び/又は積層される、細胞培養法。 - 間歇的に又は連続的に培地を交換することにより長期培養を行う、請求項1に記載の細胞培養法。
- 前記小片ポリマー多孔質膜に接着させた細胞を増殖された後、酵素処理により細胞を剥離し、細胞を接着させていない小片ポリマー多孔質膜を細胞培養容器に添加することにより、細胞を継代させて大量培養を行う、請求項1又は2に記載の細胞培養法。
- 前記小片ポリマー多孔質膜が、平均孔径0.01~100μmの複数の細孔を有する、請求項1~3のいずれか1項に記載の細胞培養法。
- 前記表面層Aの平均孔径が、0.01~50μmである、請求項1~4のいずれか1項に記載の細胞培養法。
- 前記表面層Bの平均孔径が、20~100μmである、請求項1~5のいずれか1項に記載の細胞培養法。
- 前記小片ポリマー多孔質膜の総膜厚が、5~500μmである、請求項1~6のいずれか1項に記載の細胞培養法。
- 前記小片ポリマー多孔質膜が、小片ポリイミド多孔質膜である、請求項1~7のいずれか1項に記載の細胞培養法。
- 前記小片ポリイミド多孔質膜が、テトラカルボン酸二無水物とジアミンとから得られるポリイミドを含む、小片ポリイミド多孔質膜である、請求項8に記載の細胞培養法。
- 前記小片ポリイミド多孔質膜が、テトラカルボン酸二無水物とジアミンとから得られるポリアミック酸溶液と着色前駆体とを含むポリアミック酸溶液組成物を成形した後、250℃以上で熱処理することにより得られる着色した小片ポリイミド多孔質膜である、請求項8又は9に記載の細胞培養法。
- 細胞によりエクソソームを産生させることを含む、請求項1~10のいずれか1項に記載の細胞培養法。
- 小片ポリマー多孔質膜を含む、請求項1~11のいずれか1項に記載の細胞培養法に使用するための細胞培養装置。
- 小片ポリマー多孔質膜を含む、請求項1~11のいずれか1項に記載の細胞培養法に使用するためのキット。
- 請求項1~11のいずれか1項に記載の方法によって取得したエクソソーム。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080056325.5A CN114207109A (zh) | 2019-08-09 | 2020-08-11 | 使用了小片多孔膜的细胞培养法 |
EP20853067.5A EP4012016A4 (en) | 2019-08-09 | 2020-08-11 | CELL CULTIVATION METHOD USING A SMALL PIECE POROUS MEMBRANE |
KR1020227004265A KR20220042371A (ko) | 2019-08-09 | 2020-08-11 | 소편 다공막을 적용한 세포 배양법 |
JP2021539299A JPWO2021029409A1 (ja) | 2019-08-09 | 2020-08-11 | |
US17/633,936 US20220290083A1 (en) | 2019-08-09 | 2020-08-11 | Cell culturing method using small-piece porous membrane |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-148236 | 2019-08-09 | ||
JP2019148236 | 2019-08-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021029409A1 true WO2021029409A1 (ja) | 2021-02-18 |
Family
ID=74569298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/030614 WO2021029409A1 (ja) | 2019-08-09 | 2020-08-11 | 小片多孔膜を適用した細胞培養法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20220290083A1 (ja) |
EP (1) | EP4012016A4 (ja) |
JP (1) | JPWO2021029409A1 (ja) |
KR (1) | KR20220042371A (ja) |
CN (1) | CN114207109A (ja) |
TW (1) | TW202122569A (ja) |
WO (1) | WO2021029409A1 (ja) |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5549209B2 (ja) | 1975-06-28 | 1980-12-10 | ||
JPS6265681A (ja) | 1985-09-18 | 1987-03-24 | Green Cross Corp:The | 付着性細胞の連続大量培養法 |
JPH07313151A (ja) | 1994-05-24 | 1995-12-05 | Asahi Chem Ind Co Ltd | 多孔質担体を用いた動物細胞の逐次培養方法 |
WO2003054174A1 (en) | 2001-12-10 | 2003-07-03 | Baxter Healthcare S.A. | Method for large scale production of virus antigen |
WO2008084857A1 (ja) | 2007-01-12 | 2008-07-17 | Nippon Sheet Glass Company, Limited | 三次元細胞培養担体およびそれを用いた細胞培養方法 |
JP2009057041A (ja) | 2007-08-06 | 2009-03-19 | Chiharu Sato | ハンドモーター |
WO2009123349A1 (ja) | 2008-03-31 | 2009-10-08 | オリエンタル酵母工業株式会社 | 多能性幹細胞を増殖させる方法 |
WO2010038873A1 (ja) | 2008-10-02 | 2010-04-08 | 宇部興産株式会社 | 多孔質ポリイミド膜及びその製造方法 |
JP2011219585A (ja) | 2010-04-07 | 2011-11-04 | Ube Industries Ltd | 多孔質ポリイミド膜及びその製造方法 |
JP2011219586A (ja) | 2010-04-07 | 2011-11-04 | Ube Industries Ltd | 多孔質ポリイミド膜及びその製造方法 |
JP5460241B2 (ja) | 2009-10-30 | 2014-04-02 | 株式会社日立製作所 | 生体細胞の培養方法及び培養装置 |
US20140227766A1 (en) * | 2011-06-08 | 2014-08-14 | Agency For Science, Technology And Research | Purification of biological products by constrained cohydration chromatography |
WO2015012415A1 (ja) * | 2013-07-26 | 2015-01-29 | 宇部興産株式会社 | 細胞の培養方法、細胞培養装置及びキット |
JP2017517505A (ja) * | 2014-05-18 | 2017-06-29 | チルドレンズ メディカル センター コーポレーション | エキソソームに関連する方法および組成物 |
WO2018021368A1 (ja) | 2016-07-25 | 2018-02-01 | 宇部興産株式会社 | 細胞培養モジュール |
WO2018021359A1 (ja) | 2016-07-25 | 2018-02-01 | 宇部興産株式会社 | サイフォン式培養法 |
WO2018021367A1 (ja) | 2016-07-25 | 2018-02-01 | 宇部興産株式会社 | 細胞の培養方法、懸濁された細胞の除去方法及び懸濁された細胞を死滅させる方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5460241A (en) | 1994-08-01 | 1995-10-24 | Labelle; James R. | Ladder accessory |
DE102006045808B4 (de) | 2006-09-26 | 2016-02-18 | Erni Production Gmbh & Co. Kg | Steckverbinder mit Zugentlastung |
JP5549209B2 (ja) | 2009-12-11 | 2014-07-16 | 株式会社Ihi | 付着性細胞培養装置 |
FR3068361B1 (fr) * | 2017-06-30 | 2021-10-15 | Univ Paris Diderot Paris 7 | Systeme fluidique de production de vesicules extracellulaires et procede associe |
US20210047595A1 (en) * | 2018-01-24 | 2021-02-18 | Ube Industries, Ltd. | Cell culture device, and cell culture method using same |
-
2020
- 2020-08-10 TW TW109126999A patent/TW202122569A/zh unknown
- 2020-08-11 JP JP2021539299A patent/JPWO2021029409A1/ja active Pending
- 2020-08-11 KR KR1020227004265A patent/KR20220042371A/ko unknown
- 2020-08-11 US US17/633,936 patent/US20220290083A1/en active Pending
- 2020-08-11 EP EP20853067.5A patent/EP4012016A4/en active Pending
- 2020-08-11 CN CN202080056325.5A patent/CN114207109A/zh active Pending
- 2020-08-11 WO PCT/JP2020/030614 patent/WO2021029409A1/ja unknown
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5549209B2 (ja) | 1975-06-28 | 1980-12-10 | ||
JPS6265681A (ja) | 1985-09-18 | 1987-03-24 | Green Cross Corp:The | 付着性細胞の連続大量培養法 |
JPH07313151A (ja) | 1994-05-24 | 1995-12-05 | Asahi Chem Ind Co Ltd | 多孔質担体を用いた動物細胞の逐次培養方法 |
WO2003054174A1 (en) | 2001-12-10 | 2003-07-03 | Baxter Healthcare S.A. | Method for large scale production of virus antigen |
WO2008084857A1 (ja) | 2007-01-12 | 2008-07-17 | Nippon Sheet Glass Company, Limited | 三次元細胞培養担体およびそれを用いた細胞培養方法 |
JP2009057041A (ja) | 2007-08-06 | 2009-03-19 | Chiharu Sato | ハンドモーター |
WO2009123349A1 (ja) | 2008-03-31 | 2009-10-08 | オリエンタル酵母工業株式会社 | 多能性幹細胞を増殖させる方法 |
WO2010038873A1 (ja) | 2008-10-02 | 2010-04-08 | 宇部興産株式会社 | 多孔質ポリイミド膜及びその製造方法 |
JP5460241B2 (ja) | 2009-10-30 | 2014-04-02 | 株式会社日立製作所 | 生体細胞の培養方法及び培養装置 |
JP2011219585A (ja) | 2010-04-07 | 2011-11-04 | Ube Industries Ltd | 多孔質ポリイミド膜及びその製造方法 |
JP2011219586A (ja) | 2010-04-07 | 2011-11-04 | Ube Industries Ltd | 多孔質ポリイミド膜及びその製造方法 |
US20140227766A1 (en) * | 2011-06-08 | 2014-08-14 | Agency For Science, Technology And Research | Purification of biological products by constrained cohydration chromatography |
WO2015012415A1 (ja) * | 2013-07-26 | 2015-01-29 | 宇部興産株式会社 | 細胞の培養方法、細胞培養装置及びキット |
JP2017517505A (ja) * | 2014-05-18 | 2017-06-29 | チルドレンズ メディカル センター コーポレーション | エキソソームに関連する方法および組成物 |
WO2018021368A1 (ja) | 2016-07-25 | 2018-02-01 | 宇部興産株式会社 | 細胞培養モジュール |
WO2018021359A1 (ja) | 2016-07-25 | 2018-02-01 | 宇部興産株式会社 | サイフォン式培養法 |
WO2018021367A1 (ja) | 2016-07-25 | 2018-02-01 | 宇部興産株式会社 | 細胞の培養方法、懸濁された細胞の除去方法及び懸濁された細胞を死滅させる方法 |
Non-Patent Citations (3)
Title |
---|
DOSH, R. H. ET AL., SCIENCE REPORTS, vol. 9, 2019 |
KUROSAWA, H, SEIBUTSU KAGAKU, vol. 91, no. 11, 2013, pages 646 - 653 |
OGATA ET AL., JOURNAL OF FERMENTATION AND BIOENGINEERING, vol. 77, no. 1, 1994, pages 46 - 51 |
Also Published As
Publication number | Publication date |
---|---|
US20220290083A1 (en) | 2022-09-15 |
TW202122569A (zh) | 2021-06-16 |
CN114207109A (zh) | 2022-03-18 |
KR20220042371A (ko) | 2022-04-05 |
EP4012016A4 (en) | 2023-10-11 |
JPWO2021029409A1 (ja) | 2021-02-18 |
EP4012016A1 (en) | 2022-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101983486B1 (ko) | 폴리이미드 다공질막을 이용하는 세포의 대량 배양 방법, 장치 및 키트 | |
KR102059248B1 (ko) | 세포의 배양 방법 및 키트 | |
KR102281173B1 (ko) | 사이펀식 배양법 | |
KR102307420B1 (ko) | 세포 배양 모듈 | |
KR102216979B1 (ko) | 세포의 배양 방법, 현탁된 세포의 제거 방법 및 현탁된 세포를 사멸시키는 방법 | |
JP6969614B2 (ja) | 細胞培養装置、及びそれを使用した細胞培養方法 | |
KR102314057B1 (ko) | 세포 배양 장치 및 그것을 사용한 세포 배양 방법 | |
JP2021027821A (ja) | 細胞培養装置及びそれを使用した細胞培養方法 | |
JP6787402B2 (ja) | 多重流路培養法 | |
KR101961580B1 (ko) | 물질의 생산 방법 | |
JP6907477B2 (ja) | 細胞培養方法及び細胞培養装置 | |
WO2021029409A1 (ja) | 小片多孔膜を適用した細胞培養法 | |
CN109477055B (zh) | 细胞的制备方法、细胞培养装置和试剂盒 | |
JP2021061855A (ja) | 幹細胞の分化を抑制する方法、幹細胞を調製する方法、及び幹細胞を分化誘導する方法 | |
WO2018021362A1 (ja) | 脱分化しやすい細胞の脱分化を抑制する方法、当該細胞の調製方法、及び物質の産生方法 | |
JP6870680B2 (ja) | 細胞培養装置、及び、それを使用した細胞培養方法 | |
WO2021029408A1 (ja) | エクソソームの産生方法 | |
JP2024131799A (ja) | 細胞の増殖速度及び/又は物質産生を促進させる方法、増殖速度及び/又は物質産生が促進された細胞並びに細胞の増殖速度及び/又は物質産生を促進させるためのモジュール化ポリイミド多孔質膜 | |
JP2019126299A (ja) | 細胞培養装置、及び、それを使用した細胞培養方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20853067 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021539299 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20227004265 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020853067 Country of ref document: EP Effective date: 20220309 |