WO2021078306A1 - 中深层地下岩热型供热系统及供热方法 - Google Patents
中深层地下岩热型供热系统及供热方法 Download PDFInfo
- Publication number
- WO2021078306A1 WO2021078306A1 PCT/CN2020/133206 CN2020133206W WO2021078306A1 WO 2021078306 A1 WO2021078306 A1 WO 2021078306A1 CN 2020133206 W CN2020133206 W CN 2020133206W WO 2021078306 A1 WO2021078306 A1 WO 2021078306A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat exchange
- heat
- temperature
- medium
- exchange medium
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 18
- 239000011435 rock Substances 0.000 claims abstract description 50
- 239000002689 soil Substances 0.000 claims abstract description 46
- 238000010438 heat treatment Methods 0.000 claims description 95
- 238000005086 pumping Methods 0.000 claims description 42
- 239000000956 alloy Substances 0.000 claims description 12
- 229910045601 alloy Inorganic materials 0.000 claims description 11
- 238000009413 insulation Methods 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 18
- 238000003911 water pollution Methods 0.000 abstract description 3
- 230000007613 environmental effect Effects 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 239000003673 groundwater Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- -1 gravel Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24T—GEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
- F24T10/00—Geothermal collectors
- F24T10/10—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
- F24T10/13—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24T—GEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
- F24T50/00—Geothermal systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B30/00—Heat pumps
- F25B30/02—Heat pumps of the compression type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B30/00—Heat pumps
- F25B30/06—Heat pumps characterised by the source of low potential heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24T—GEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
- F24T10/00—Geothermal collectors
- F24T2010/50—Component parts, details or accessories
- F24T2010/56—Control arrangements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/10—Geothermal energy
Definitions
- the invention relates to the technical field of geothermal energy development, in particular to a medium-deep underground rock-heat heating system and a medium-deep underground rock-heat heating method.
- Shallow geothermal energy is a depth range of 200m from the surface to the ground, and the temperature stored in water, soil, and rocks is below 25°C.
- the use of heat pump technology can be used to extract geothermal energy utilization technology for heating or cooling of buildings.
- the shallow geothermal energy utilization system is mainly divided into one is a water source heat pump heating system, and the other is a ground source heat pump heating system.
- the former requires the extraction of groundwater, and has strict requirements on water temperature, water output, sediment content, same-layer recharge, and water pollution control, which have been restricted or even forbidden in many places; the latter requires heat to be balanced, but in the northern summer In areas with low cooling demand, the soil thermal compensation is seriously insufficient, making the heating effect of the ground source heat pump unsatisfactory.
- Hot dry rock utilization technology that has emerged in recent years, "Geothermal Energy Terminology" (NB/T 10097-2018) defines it as an abnormally high temperature rock mass with no or only a small amount of fluid inside and a temperature higher than 180°C.
- Hot dry rock is mainly used for power generation internationally to distinguish the deep-seated hydrothermal geothermal technology used for heating. From the perspective of economic development and utilization, not all places have the conditions for hot dry rock mining. In terms of resource conditions and technical difficulty, the system does not have universal applicability.
- the present invention proposes a medium-deep underground rock heating type heating system and heating method.
- a medium-deep underground rock heating heating system including: at least one underground medium-deep rock-soil heat exchange system, an above-ground heat auxiliary system, and a heating terminal heat circulation system And control system;
- the underground mid-deep rock-soil heat exchange system is used to make the heat exchange medium exchange heat with the underground mid-deep rock and soil;
- the above-ground thermal auxiliary system is connected to the underground mid-deep rock-soil heat exchange system, which includes:
- the heat exchange temperature raising pumping device is used to raise the temperature of the heat exchange medium when the temperature of the heat exchange medium after the heat exchange is lower than the first preset temperature, and to increase the temperature of the heat exchange medium.
- the heat exchange medium is transported to the heat circulation system of the heating terminal;
- a direct supply device configured to transport the heat exchange medium to the heat supply terminal heat circulation system when the temperature of the heat exchange medium after the heat exchange is greater than or equal to the first preset temperature
- the heat supply terminal heat circulation system is connected to the above-ground thermal auxiliary system to exchange heat with the heat exchange medium delivered by the above-ground thermal auxiliary system;
- the control system is used for controlling the above-ground thermal auxiliary system according to the magnitude relationship between the temperature of the heat exchange medium and the first preset temperature.
- the underground mid-deep rock-soil heat exchange system includes: double-layer casing and high-efficiency heat exchange terminals;
- the double-layer sleeve includes an inner sleeve and an outer sleeve, the lower end of the outer sleeve is connected to the high-efficiency heat exchange terminal, and the heat exchange medium is injected by the inner sleeve, After the high-efficiency heat exchange terminal exchanges heat with the underground middle and deep rock and soil, it is transported to the above-ground thermal auxiliary system by the outer casing.
- the high-efficiency heat exchange terminal includes: a high-strength alloy sleeve, a high-efficiency heat exchanger and a high-efficiency heat transfer medium;
- the high-strength alloy sleeve is connected to the high-efficiency heat exchanger, and the high-efficiency heat transfer medium is filled between the high-strength alloy sleeve and the high-efficiency heat exchanger and the underground medium and deep rock soil To increase the heat exchange efficiency between the deep underground rock and soil and the heat exchange medium.
- a thermal insulation layer is further provided on the outer side of the upper part of the outer sleeve to prevent rapid loss of heat energy when the heat exchange medium flows through the surface of the outer sleeve.
- the medium-deep underground rock heating heating system further includes: a first three-way pipe, the first end of which is connected to the upper end of the outer casing, and the second end is connected to the heat exchange and temperature raising pumping device One end and the third end are connected to the end thermal cycle system; and
- a second three-way pipe the first end of which is connected to the upper end of the inner sleeve, the second end of which is connected to the one end of the heat exchange and temperature raising pumping device, and the third end of which is connected to the end thermal circulation system ;
- the other end of the heat exchange and temperature raising pumping device is connected to the third end of the first tee through a first connecting pipe, and the other end is connected to the second tee through a second connecting pipe The third end of the tube.
- control system includes a first temperature control device, a first control valve, a second control valve, a third control valve, and a second temperature control device;
- the first temperature control device is arranged at the first end of the first three-way pipe, the first control valve is arranged at the third end of the first three-way pipe, and the second control valve is arranged at the third end of the first three-way pipe.
- the valve is arranged at the second end of the second three-way pipe, the third control valve is arranged at the third end of the second three-way pipe, and the second temperature control device is arranged at the second connecting pipe ;
- the second temperature control device controls the operation of the heat exchange temperature raising pumping device according to the temperature of the heat exchange medium in the second connecting pipe and a second preset temperature.
- a pipeline pump is provided at the first end of the first three-way pipe, the first end of the second three-way pipe, and the third end of the first three-way pipe for the heat exchange medium
- the transportation provides kinetic energy.
- the heat exchange and temperature raising pumping device includes: an evaporator, a compressor, and a condenser.
- a medium-deep underground rock-heat heating method for use in the medium-deep underground rock-heat heating system of any one of the above.
- the method includes: obtaining underground medium-deep rock and soil heat The current temperature of the heat exchange medium delivered by the exchange system;
- the heat exchange medium is controlled to be transferred to the heat circulation system of the heating terminal through a heat exchange temperature raising pumping device or a direct supply device.
- the step of controlling the transfer of the heat exchange medium to the heat circulation system of the heating terminal through a heat exchange temperature raising pumping device or a direct supply device according to the determination result includes:
- the heat exchange medium When the current temperature is less than the preset temperature, the heat exchange medium is delivered to the heat exchange and temperature raising pumping device to raise the temperature of the heat exchange medium through the heat exchange and temperature raising pumping device After that, the heat exchange medium is transported to the heat-supply terminal thermal cycle system;
- the heat exchange medium is delivered to the direct supply device, so that the heat exchange medium is delivered to the heat supply terminal through the direct supply device. Circulatory system.
- a medium-deep underground rock heating heating system and heating method of the present invention can achieve considerable technological advancement and practicability, and has a wide range of industrial use value. It has at least the following advantages:
- Fig. 1 shows a schematic block diagram of a medium-deep underground rock heating heating system according to an embodiment of the present invention
- Fig. 2 shows a schematic flow diagram of a medium-deep underground rock heating type heating method according to an embodiment of the present invention.
- the embodiment of the present invention provides a medium-deep underground rock heating heating system, as shown in FIG. 1, including: at least one underground medium-deep rock-soil heat exchange system 1, an above-ground heat auxiliary system 2, a heating terminal heat circulation system 3 and control system 4.
- the underground middle-deep rock-soil heat exchange system 1 can be one (as shown in Figure 1). According to the actual needs of the heating terminal thermal cycle system 3, it can also be multiple underground middle-deep rock-soil heat exchange systems 1 in series and parallel. It is connected to the ground thermal auxiliary system 2 to ensure that it can provide sufficient heat energy.
- the underground medium and deep layer of rock and soil heat exchange system 1 is installed in the well.
- the well diameter is 150-300 mm
- the well depth is 600-3000 meters.
- the underground middle-deep rock-soil heat exchange system 1 may include a double-layer casing 11 and a high-efficiency heat exchange terminal 12, wherein the high-efficiency heat exchange terminal 12 is connected to the outer casing 111 of the double-layer casing 11
- the heat exchange medium is injected into the upper end of the inner sleeve 112, flows through the lower end of the inner sleeve 112, and exchanges heat with the underground medium and deep soil 10 through the high-efficiency heat exchange terminal 12 to complete the heat exchange. Lead out through the outer sleeve 111.
- the high-efficiency heat exchange terminal 12 includes a high-strength alloy sleeve 121, a high-efficiency heat exchanger 122, and a high-efficiency heat transfer medium 123 that are coupled together.
- the high-strength alloy sleeve 121 can effectively protect the high-efficiency heat exchanger 122 from being damaged, so as to ensure the stability of the underground mid-deep rock-soil heat exchange system 1.
- the high-efficiency heat exchanger 122 is made of high-strength nickel steel alloy material, which can effectively improve the heat exchange efficiency of the high-efficiency heat exchange terminal 12 while ensuring its mechanical strength.
- the high-efficiency heat exchanger 122 can also be made of other materials, which is not limited here.
- the gap between the deep underground rock and soil 10 and the high-strength alloy casing 121 and the high-efficiency heat exchanger 122 is filled with a high-efficiency heat transfer medium 123.
- the high-efficiency heat transfer medium 123 is mixed and stirred by cement, coagulant, fluid loss agent, dispersant, granulated blast furnace slag and other materials, and is densely filled in the high-strength alloy casing 121, In the gap between the high-efficiency heat exchange terminal 12 and the medium-deep rock soil 10.
- the thermal insulation layer 13 can be sprayed nano thermal insulation materials, polyurethane foam thermal insulation pipes, and the outer layer is poured into polymer thermal insulation mortar.
- the heat exchange medium may be water, of course, it may also be other materials with faster heat transfer.
- the above-ground heat auxiliary system 2 includes a heat exchange and temperature raising pumping device 21 that raises the temperature of the heat exchange medium after the heat exchange through the underground middle-deep rock-soil heat exchange system 1, and performs heat exchange.
- the latter heat exchange medium is directly transported to the direct supply device 22 of the heat circulation system 3 of the heating terminal.
- the heat exchange system 1 of the underground middle-deep rock soil 10 and the heat supply terminal heat circulation system 3 are organically connected.
- the first end 51 of the first three-way pipe 5 is connected to the upper end of the outer sleeve 111, the second end 52 is connected to one end of the heat exchange and temperature raising pumping device 21, and the third end 53 is connected to the heating end.
- Thermal circulation system 3; the first end 61 of the second three-way pipe 6 is connected to the upper end of the inner sleeve 112, the second end 62 is connected to one end of the heat exchange and temperature raising pumping device 21, and the third end 63 is connected to the supply Hot end thermal cycle system 3.
- both ends of the first connecting pipe 7 are respectively connected to the other end of the heat exchange and temperature raising pumping device 21 and the third end 53 of the first three-way pipe 5, and the second connecting pipe 8 is respectively connected to the heat exchange and temperature raising pumping device.
- the other end of the device 21 is connected to the third end 63 of the second tee 6.
- the heat exchange medium is water
- the first three-way pipe 5 and the first connecting pipe 7 are hot water pipes
- the second three-way pipe 6 and the second connecting pipe 8 are cold water pipes.
- the third end 53 of the first three-way pipe 5 and the third end 63 of the second three-way pipe 6 form a direct supply system 22.
- the control system 4 includes a first temperature control disposed at the second end 52 of the first three-way pipe 5.
- the second control valve 43 of 62 and the third control valve 44 provided at the third end 63 of the second three-way pipe 6.
- the first temperature control device 41 detects that the temperature of the heat exchange medium (for example, hot water) conveyed by the outer sleeve 111 is lower than the first preset temperature (ie, lower than the required temperature), Then the first control valve 42 and the third control valve 44 are controlled to close, the second control valve 43 is opened, and the heat exchange medium is transported to the heat exchange and temperature raising pumping device 21 through the second end 52 of the first three-way pipe 5, The temperature of the heat exchange medium that has not reached the temperature requirement is raised, and the raised heat exchange medium is transported to the heating terminal heat circulation system 3 through the first connecting pipe 7 and the third end 53 of the first three-way pipe 5 .
- the first preset temperature ie, lower than the required temperature
- the heat exchange medium for example, cold water
- the heat exchange medium for example, cold water
- the heat exchange and temperature raising pumping device through the third end 62 of the second three-way pipe 6 and the second connecting pipe 8 21, the second end 62 and the first end 61 of the second three-way pipe 6 are then transported to the inner sleeve 112 to realize the circulation of the heat exchange medium.
- the second temperature control device 45 detects that the temperature of the heat exchange medium (for example, cold water) in the second connecting pipe 8 is lower than the second preset temperature, it indicates that the heating end thermal cycle system 3 has a greater demand for heat energy.
- the heat exchange medium at the current temperature cannot meet its demand, control the operation of the heat exchange temperature raising pumping device 21 to increase the temperature of the heat exchange medium; when the second temperature control device 45 detects the heat exchange medium in the second connecting pipe 8
- the temperature of (for example, cold water) is greater than or equal to the second preset temperature
- the heat exchange and temperature raising pumping device 21 is controlled to shut down to operate at the end of the heating end.
- the thermal cycle system 3 has a small demand for thermal energy, the loss of the heat exchange and temperature raising pumping device 21 can be reduced, thereby achieving the purpose of saving energy.
- the heat exchange temperature raising pumping device 21 includes an evaporator 211, a compressor 212, and a condenser 213. Specifically, the heat exchange medium enters the evaporator through the second end 52 of the first three-way pipe 5 211. After the compressor 212 is compressed to increase the temperature, the heat exchange medium is raised through the condenser 213 to meet the requirements of the heat circulation system 3 at the heating terminal.
- the first temperature control device 41 detects that the temperature of the heat exchange medium (for example, hot water) conveyed by the outer sleeve 111 is greater than or equal to the first preset temperature (ie, meets the required temperature)
- the first control valve 42 and the third control valve 44 are controlled to open, and the second control valve 43 is closed, so as to directly transport the heat exchange medium conveyed by the outer sleeve 111 through the third end 53 of the first three-way pipe 5 To the heat circulation system 3 at the heating end.
- the heat exchange medium for example, cold water
- the heat exchange medium for example, cold water
- the sleeve 112 is used to realize the circulation of the heat exchange medium.
- the first temperature control device 41 and the second temperature control device 45 may be PLC temperature controllers, so as to realize the control of the control valve and the heat exchange temperature raising pumping device 21 according to the difference in temperature.
- the heating terminal thermal cycle system 3 includes a heating pipe network 31 and a terminal heat dissipation device 32.
- the terminal heat dissipation device 32 may be an indoor radiator, a floor heating tube plate, or a fan tube plate.
- the first end 51 of the first three-way pipe 5, the first end 61 of the second three-way pipe 6 and the first The third end 53 of the three-way pipe 5 is provided with a pipeline pump 9 to ensure the kinetic energy of the heat exchange medium to circulate.
- a pipeline pump 9 can also be provided, which is not limited to this.
- the embodiment of the present invention also provides a medium-deep underground rock heating type heating method, which is used in any one of the above-mentioned medium-deep underground rock heating heating systems, as shown in FIG. 2, the heating method include:
- Step S10 acquiring the current temperature of the heat exchange medium transported by the underground middle-deep rock-soil heat exchange system.
- the temperature requirements of the heat exchange medium in the heat circulation systems at the heating end are different. Therefore, when the heat exchange medium passes through the underground middle-deep rock-soil heat exchange system and the underground After the deep rock and soil undergoes heat exchange, the current temperature of the heat exchange medium needs to be detected, and the corresponding above-ground heat auxiliary system has been selected according to different current temperatures.
- step S20 it is judged whether the current temperature is less than a preset temperature, so as to obtain a judgment result.
- the current temperature of the heat exchange medium when the current temperature of the heat exchange medium is obtained, the current temperature needs to be compared with the preset temperature (ie, the first preset temperature), and different above-ground heat assist systems have been controlled to deliver according to different comparison results.
- the heat exchange medium is transferred to the heat circulation system at the heating end.
- the preset temperature is the temperature of the heat exchange medium required by the heating terminal thermal cycle system. Different heating terminal thermal cycle systems have different temperature requirements for the heat exchange medium. Therefore, the preset temperature can be carried out according to actual needs. set up.
- step S30 according to the determination result, the heat exchange medium is controlled to be transferred to the heat circulation system of the heating terminal through the heat exchange temperature raising pumping device or the direct supply device.
- the heat exchange medium needs to be raised. Furthermore, the heat exchange medium needs to be transported to the heat exchange and temperature raising pumping device, so that the heat exchange medium is raised by the heat exchange and temperature raising pumping device, and then sent to the heat circulation system at the heating end.
- the current temperature of the heat exchange medium When the current temperature of the heat exchange medium is greater than or equal to the preset temperature, it indicates that the temperature of the heat exchange medium meets the temperature required by the heat circulation system at the heating end, so it is only necessary to transport the heat exchange medium to the heating end through the direct supply device The thermal cycle system is sufficient.
- the medium-deep underground rock heating heating system and heating method of the above-mentioned embodiments use the underground medium-deep rock-soil heat exchange system to directly exchange heat with the medium-deep rock and soil, without extracting groundwater, and has no impact on the environment. Interference, and the heat source continues to be stable, the investment is economical, the use environment is small, and it is easy to promote.
- the heat exchange temperature raising pumping device and the direct supply device Through the arrangement of the heat exchange temperature raising pumping device and the direct supply device, the heat exchange medium can still be raised by the heat exchange temperature raising pumping device to ensure the heat at the end of the heat supply when the heat in the middle and deep rock soil is insufficient.
- the circulation system requires heat energy. When the middle and deep layers of rock and soil have sufficient heat, the heat exchange medium can be directly transported to the heating end heat circulation system through the direct supply system. There is no need to raise the temperature of the heat exchange medium, which saves energy. Consumption.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Road Paving Structures (AREA)
Abstract
一种中深层地下岩热型供热系统,包括:至少一个地下中深层岩土热交换系统(1)、地上热辅助系统(2)、供热末端热循环系统(3)及控制系统(4);其中,通过地下中深层岩土热交换系统(1)完成热交换的换热介质的温度达到预设温度时,通过地上热辅助系统(2)的直供装置将换热介质传输至供热末端热循环系统(3);当换热介质未达到预设温度时,通过地上热辅助系统(2)的换热提温泵送装置(21)对换热介质提温后传输至供热末端热循环系统(3)。解决了现有水源热泵污染水环境,热源不够稳定的情况,有效地防止了水资源的污染,并且能够提供持续稳定的热源。
Description
本发明涉地热能开发技术领域,尤其涉及一种中深层地下岩热型供热系统及中深层地下岩热型供热方法。
浅层地热能,是从地表至地下200m深度范围内,储存于水体、土体、岩石中的温度低于25℃,采用热泵技术可提取用于建筑物供热或制冷等的地热能利用技术。浅层地热能利用系统主要分为,一是水源热泵供热系统,二是土壤源热泵供热系统。前者需要抽取地下水,对水温、出水量、泥沙含量、同层回灌、水污染控制皆有严格要求,在很多地方已经限制甚至禁止使用;后者要求取热补热均衡,但在北方夏季制冷需求低的区域,土壤的热补偿严重不足,使得土壤源热泵供热效果不理想。
近年来兴起的干热岩利用技术,《地热能术语》(NB/T 10097-2018)将其定义为内部不存在或仅存在少量流体,温度高于180℃的异常高温岩体。干热岩国际上主要用于发电,以区别用于供暖的中深层水热型地热技术。从可经济开发利用角度来看,不是任何地方都具备干热岩开采条件的。从资源条件和技术难度来看,该系统不具有普遍适用性。
发明内容
针对传统水源热泵潜在水污染与同层回灌困难,土壤源热泵热补偿不足,干热岩开采的经济性和不具有的普遍适用性等问题。本发明提出了一种中深层地下岩热型供热系统及供热方法。
为了解决上述技术问题,根据本发明一方面,提供了一种中深层地下岩热型供热系统,包括:至少一个地下中深层岩土热交换系统、地上热辅助系统、供热末端热循环系统及控制系统;
其中,所述地下中深层岩土热交换系统用于使换热介质与地下中 深层岩土进行热交换;
所述地上热辅助系统连接于所述地下中深层岩土热交换系统,其包括:
换热提温泵送装置,用于在所述热交换后的所述换热介质的温度小于第一预设温度时,对所述换热介质进行提温,并将提温后的所述换热介质输送至所述供热末端热循环系统;以及
直供装置,用于在所述热交换后的所述换热介质的温度大于或等于所述第一预设温度时,将所述换热介质输送至所述供热末端热循环系统;
所述供热末端热循环系统连接至所述地上热辅助系统,以将所述地上热辅助系统输送的所述换热介质进行热交换;
控制系统,用于根据所述换热介质的温度与所述第一预设温度的大小关系控制所述地上热辅助系统。
进一步的,所述地下中深层岩土热交换系统包括:双层套管和高效换热端子;
其中,所述双层套管包括内层套管和外层套管,所述外层套管的下端连接于所述高效换热端子,所述换热介质由所述内层套管注入,并通过所述高效换热端子与地下中深层岩土进行换热后,由所述外层套管输送至所述地上热辅助系统。
进一步的,所述高效换热端子包括:高强度合金套管、高效换热器和高效传热介质;
其中,所述高强度合金套管连接至所述高效换热器,所述高效传热介质填充于所述高强度合金套管和所述高效换热器与所述地下中深层岩土之间的缝隙处,以增大所述地下中深层岩土与所述换热介质的换热效率。
进一步的,所述外层套管的上部的外侧还设置有保温层,以防止所述换热介质通过所述外层套管流经地表时热能的快速流失。
进一步的,中深层地下岩热型供热系统还包括:第一三通管,其第一端连接至所述外层套管的上端,第二端连接至所述换热提温泵送装置一端,第三端连接至所述末端热循环系统;以及
第二三通管,其第一端连接至所述内层套管的上端,第二端连接至所述换热提温泵送装置所述一端,第三端连接至所述末端热循环系统;
所述换热提温泵送装置的另一端通过第一连接管连接至所述所述第一三通管的第三端,所述另一端通过第二连接管连接至所述第二三通管的第三端。
进一步的,所述控制系统包括,第一温控装置、第一控制阀、第二控制阀、第三控制阀及第二温控装置;
其中,所述第一温控装置设置于所述第一三通管的第一端,所述第一控制阀设置于所述所述第一三通管的第三端,所述第二控制阀设置于所述第二三通管的第二端,所述第三控制阀设置于所述第二三通管的第三端,所述第二温控装置设置于所述第二连接管;
所述第二温控装置根据所述第二连接管内的所述换热介质的温度与第二预设温度控制所述换热提温泵送装置运行。
进一步地,在所述第一三通管的第一端、所述第二三通管的第一端以及所述第一三通管的第三端设置有管道泵,以为所述换热介质的输送提供动能。
进一步地,所述换热提温泵送装置包括:蒸发器、压缩机和冷凝器。
根据本发明另一方面,提供一种中深层地下岩热型供热方法,用于上述任一项所述的中深层地下岩热型供热系统,该方法包括:获取地下中深层岩土热交换系统输送的换热介质的当前温度;
判断所述当前温度是否小于预设温度,以得到判定结果;
根据所述判定结果控制将所述换热介质通过换热提温泵送装置或直供装置传输至供热末端热循环系统。
进一步地,所述根据所述判定结果控制将所述换热介质通过换热提温泵送装置或直供装置传输至供热末端热循环系统的步骤,包括:
当所述当前温度小于所述预设温度时,将所述换热介质输送至所述换热提温泵送装置,以通过所述换热提温泵送装置对所述换热介质提温后,将所述换热介质输送至所述供热末端热循环系统;
当所述当前温度大于或等于所述预设温度时,将所述换热介质输送至所述直供装置,以通过所述直供装置将所述换热介质输送至所述供热末端热循环系统。
本发明与现有技术相比具有明显的优点和有益效果。借由上述技术方案,本发明一种中深层地下岩热型供热系统及供热方法可达到相当的技术进步性及实用性,并具有产业上的广泛利用价值,其至少具有下列优点:
(1)利用储量巨大、热源稳定的中深层地下岩热资源进行供热,解决了通过燃煤取暖所造成的大气污染的问题。
(2)在换热过程中,不抽取地下水资源,杜绝了对地下水资源的污染。
(3)通过换热提温泵送装置的设置,使得在换热介质温度无法达到需求温度时,能够有效地对换热介质进行提温,进而保证了供热末端的供热效果。
(4)通过在地下中深层岩土与高效换热器之间填充高效传热介质,有效地提高了换热效率。
(5)通过在外层套管的上部增设保温层,有效地避免了换热介质在流经地表时,所造成的热能损失。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。
图1示出了本发明一实施例的中深层地下岩热型供热系统的示意框图;
图2示出了本发明一实施例的中深层地下岩热型供热方法的流程示意图。
【主要符号说明】
1:地下中深层岩土热交换系统
10:中深层岩土
11:双层套管
111:外层套管
112:内层套管
12:高效换热端子
121:高强度合金套管
122:高效换热器
123:高效传热介质
13:保温层
2:地上热辅助系统
21:换热提温泵送装置
211:蒸发器
212:压缩机
213:冷凝器
22:直供装置
3:供热末端热循环系统
31:供热管网
32:末端散热设备
4:控制系统
41:第一温控装置
42:第一空置阀
43:第二控制阀
44:第三控制阀
45:第二温控装置
5:第一三通管
6:第二三通管
51、61:第一端
52、62:第二端
53、63:第三端
7:第一连接管
8:第二连接管
9:管道泵
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明提出的一种中深层地下岩热型供热系统及供热方法的具体实施方式及其功效,详细说明如后。
本发明实施例提供了一种中深层地下岩热型供热系统,如图1所示,包括:至少一个地下中深层岩土热交换系统1、地上热辅助系统2、供热末端热循环系统3及控制系统4。
其中,地下中深层岩土热交换系统1可以是一个(如图1所示),根据供热末端热循环系统3的实际需求,也可以为多个地下中深层岩土热交换系统1串并联方式连接至地上热辅助系统2,以保证能够提供充足的热能。
为了能够获取到地下中深层岩土10的热能,需通过钻机从地表向中深层岩土10钻井,将地下中深层岩土热交换系统1设置于井内。具体的,根据当地的地质地温情况,以及热能的需求量,井径为150毫米-300毫米,井深在600-3000米。
在一实施例中,地下中深层岩土热交换系统1可以包括,双层套管11和高效换热端子12,其中,高效换热端子12连接于双层套管11的外层套管111的下端,换热介质在内层套管112的上端注入,流经内层套管112的下端后通过高效换热端子12与地下中深层岩土10进行热交换,完成热交换的换热介质通过外层套管111导出。
在一实施例中,高效换热端子12包括高强度合金套管121、高效换热器122以及高效传热介质123共同耦合组成。通过高强度合金套管121能够有效地保护高效换热器122不会被损坏,以保证地下中深层岩土热交换系统1的稳定性。高效换热器122由高强度镍钢合金材料加工而成,在保证其机械强度的同时,能够有效地提升高效换热端子12的换热效率。当然,高效换热器122还可以采用其他材料加工而成,此处不以此为限。为了进一步提升换热效率,在地下中深层岩土10与高强度合金套管121及高效换热器122的空隙处,填充高 效传热介质123。该高效传热介质123由水泥、混凝剂、降失水剂、分散剂、粒化高炉矿渣等材料混合搅拌而成,并通过泵送方式使其密实的填充在高强度合金套管121、高效换热端子12与中深层岩土10的空隙中。
进一步地,为了防止经过热交换的换热介质流经外层套管111的上部时,因地表的土壤、砂砾、水层等造成换热介质的热能快速流失,在外层套管111的上部设置有保温层13,为了能够有效地起到保温的效果,该保温层13可以为喷涂的纳米保温材料、聚氨酯发泡保温管、外层灌入聚合物保温砂浆等。
在一具体实施例中,该换热介质可以是水,当然也可以是其他热传递较快的材质。
在一实施例中,地上热辅助系统2包括有对通过地下中深层岩土热交换系统1进行热交换后的换热介质进行提温的换热提温泵送装置21,以及将进行热交换后的换热介质直接输送至供热末端热循环系统3的直供装置22。通过换热提温泵送装置21及直供装置22,将地下中深层岩土10热交换系统1与供热末端热循环系统3有机的连通。
具体地,第一三通管5的第一端51连接至外层套管111的上端,第二端52连接至换热提温泵送装置21的一端,第三端53连接至供热末端热循环系统3;第二三通管6的第一端61连接至内层套管112的上端,第二端62连接至换热提温泵送装置21的一端,第三端63连接至供热末端热循环系统3。同时第一连接管7的两端分别连接至换热提温泵送装置21的另一端与第一三通管5的第三端53,第二连接管8分别连接至换热提温泵送装置21的另一端与第二三通管6的第三端63。
由此可知,当换热介质为水时,则第一三通管5与第一连接管7为热水管,第二三通管6与第二连接管8为冷水管。
在一实施例中,第一三通管5的第三端53与第二三通管6的第三端63组成直供系统22。
为了能够实现在换热提温泵送装置21与直供装置22之间的转换, 如图1所示,控制系统4包括有设置于第一三通管5第二端52的第一温控装置41、设置于第二连接管8的第二温控装置45、设置于第一三通管5的第三端53的第一控制阀42、设置于第二三通管6的第二端62的第二控制阀43及设置于第二三通管6的第三端63的第三控制阀44。
在一实施例中,当第一温控装置41检测到有外层套管111输送的换热介质(例如,热水)的温度小于第一预设温度时(即,低于需求温度),则控制关闭第一控制阀42和第三控制阀44,开启第二控制阀43,进而将换热介质通过第一三通管5的第二端52输送至换热提温泵送装置21,以对未达到温度需求的换热介质进行提温,并将提温后的换热介质经过第一连接管7及第一三通管5的第三端53输送至供热末端热循环系统3。同时,将经过供热末端热循环系统3经过热交换的换热介质(例如,冷水)通过第二三通管6的第三端62及第二连接管8输送至换热提温泵送装置21,进而通过第二三通管6的第二端62及第一端61输送至内层套管112,以此来实现换热介质的循环。
当第二温控装置45检测到第二连接管8内的换热介质(例如,冷水)的温度低于第二预设温度时,说明供热末端热循环系统3对热能的需求较大,当前温度的换热介质无法满足其需求,则控制换热提温泵送装置21运行,以提高换热介质的温度;当第二温控装置45检测到第二连接管8内的换热介质(例如,冷水)的温度大于或等于第二预设温度时,说明供热末端热循环系统3对热能的需求较小,则控制关闭换热提温泵送装置21运行,以在供热末端热循环系统3对热能需求较小时,能够减少换热提温泵送装置21损耗,进而达到节省能源的目的。
在一具体实施例中,换热提温泵送装置21包括蒸发器211、压缩机212及冷凝器213,具体地,换热介质经过通过第一三通管5的第二端52进入蒸发器211,经过压缩机212的压缩增温,并经由冷凝器213来对换热介质进行提温,以满足供热末端热循环系统3的需求。
在另一实施例中,当第一温控装置41检测到外层套管111输送 的换热介质(例如,热水)的温度大于或等于第一预设温度时(即,满足需求温度),则控制第一控制阀42与第三控制阀44开启,第二控制阀43关闭,以此通过第一三通管5的第三端53将外层套管111输送的换热介质直接输送至供热末端热循环系统3。同时将经过供热末端热循环系统3经过热交换的换热介质(例如,冷水)通过第二三通管6的第三端63及第二三通管6的第一端61输送至内层套管112,以此来实现换热介质的循环。
在一具体实施例中,第一温控装置41和第二温控装置45可以是PLC温控器,以实现根据温度的不同,实现对控制阀及换热提温泵送装置21的控制。
在一实施例中,供热末端热循环系统3包括供热管网31及末端散热设备32,末端散热设备32可以是室内暖气片、地暖管盘或风机管盘等设备。
为了使得换热介质能够快速的输送,以满足供热末端热循环系统3的热能需求,在第一三通管5的第一端51、第二三通管6的第一端61以及第一三通管5的第三端53均设置有管道泵9,以保证换热介质流通的动能。当然,根据实际需求,例如传输距离等因素,还可以设置多个管道泵9,不以此为限。
本发明实施例还提供了一种中深层地下岩热型供热方法,该方法用于上述任一项所述的中深层地下岩热型供热系统,如图2所示,该供热方法包括:
步骤S10,获取地下中深层岩土热交换系统输送的换热介质的当前温度。
具体地,因地理环境、供热需求等因素,使得各供热末端热循环系统对换热介质的温度需求也不相同,因此,当换热介质通过地下中深层岩土热交换系统与地下中深层岩土进行热交换后,需要对换热介质的当前温度进行检测,已根据不同的当前温度来选择相应的地上热辅助系统。
步骤S20,判断所述当前温度是否小于预设温度,以得到判定结果。
具体地,当获取到换热介质的当前温度后,需要对该当前温度与 预设温度(即,第一预设温度)进行比较,已根据不同的比较结果来控制不同地上热辅助系统来输送换热介质至供热末端热循环系统。其中,预设温度为供热末端热循环系统所需的换热介质的温度,不同的供热末端热循环系统对换热介质的温度需求也不相同,因此该预设温度可根据实际需求进行设定。
步骤S30,根据所述判定结果控制将所述换热介质通过换热提温泵送装置或直供装置传输至供热末端热循环系统。
具体地,当换热介质的当前温度小于上述预设温度时,说明换热介质的温度未能达到供热末端热循环系统所需的温度,因此需要对换热介质进行提温。进而需要将换热介质输送至换热提温泵送装置,以通过换热提温泵送装置对换热介质进行提温后,再输送至供热末端热循环系统。
具体的提温方式,在上述以进行详细的说明,此处不再赘述。
当换热介质的当前温度大于或等于预设温度时,说明换热介质的温度以满足供热末端热循环系统所需的温度,因此仅需通过直供装置将换热介质输送至供热末端热循环系统即可。
换热提温泵送装置与直供系统之间的切换方式,上述以进行详细说明,此处不再赘述。
上述实施例的中深层地下岩热型供热系统及供热方法,通过地下中深层岩土热交换系统,使得换热介质与中深层岩土直接进行热交换,不会抽取地下水,对环境没有干扰,并且热源持续稳定,投资经济,对使用环境要求较小,便于推广。通过换热提温泵送装置与直供装置的设置,使得在中深层岩土的热量不足时,仍能够通过换热提温泵送装置对换热介质进行提温,以保证供热末端热循环系统对热能的需求,当中深层岩土的热量充足时,可通过直供系统直接将换热介质输送至供热末端热循环系统,不需在对换热介质进行提温,节省了能源的消耗。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变 化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。
Claims (10)
- 一种中深层地下岩热型供热系统,其特征在于,包括:至少一个地下中深层岩土热交换系统、地上热辅助系统、供热末端热循环系统及控制系统;其中,所述地下中深层岩土热交换系统用于使换热介质与地下中深层岩土进行热交换;所述地上热辅助系统连接于所述地下中深层岩土热交换系统,其包括:换热提温泵送装置,用于在所述热交换后的所述换热介质的温度小于第一预设温度时,对所述换热介质进行提温,并将提温后的所述换热介质输送至所述供热末端热循环系统;以及直供装置,用于在所述热交换后的所述换热介质的温度大于或等于所述第一预设温度时,将所述换热介质输送至所述供热末端热循环系统;所述供热末端热循环系统连接至所述地上热辅助系统,以将所述地上热辅助系统输送的所述换热介质进行热交换;控制系统,用于根据所述换热介质的温度与所述第一预设温度的大小关系控制所述地上热辅助系统。
- 根据权利要求1所述的中深层地下岩热型供热系统,其特征在于,所述地下中深层岩土热交换系统包括:双层套管和高效换热端子;其中,所述双层套管包括内层套管和外层套管,所述外层套管的下端连接于所述高效换热端子,所述换热介质由所述内层套管注入,并通过所述高效换热端子与地下中深层岩土进行换热后,由所述外层套管输送至所述地上热辅助系统。
- 根据权利要求2所述的中深层地下岩热型供热系统,其特征在于,所述高效换热端子包括:高强度合金套管、高效换热器和高效传热介质;其中,所述高强度合金套管连接至所述高效换热器,所述高效传热介质填充于所述高强度合金套管和所述高效换热器与所述地下中深层岩土之间的缝隙处,以增大所述地下中深层岩土与所述换热介质 的换热效率。
- 根据权利要求2所述的中深层地下岩热型供热系统,其特征在于,所述外层套管的上部的外侧还设置有保温层,以防止所述换热介质通过所述外层套管流经地表时热能的快速流失。
- 根据权利要求2所述的中深层地下岩热型供热系统,其特征在于,还包括,第一三通管,其第一端连接至所述外层套管的上端,第二端连接至所述换热提温泵送装置一端,第三端连接至所述末端热循环系统;以及第二三通管,其第一端连接至所述内层套管的上端,第二端连接至所述换热提温泵送装置所述一端,第三端连接至所述末端热循环系统;所述换热提温泵送装置的另一端通过第一连接管连接至所述所述第一三通管的第三端,所述另一端通过第二连接管连接至所述第二三通管的第三端。
- 根据权利要求5所述的中深层地下岩热型供热系统,其特征在于,所述控制系统包括,第一温控装置、第一控制阀、第二控制阀、第三控制阀及第二温控装置;其中,所述第一温控装置设置于所述第一三通管的第一端,所述第一控制阀设置于所述所述第一三通管的第三端,所述第二控制阀设置于所述第二三通管的第二端,所述第三控制阀设置于所述第二三通管的第三端,所述第二温控装置设置于所述第二连接管;所述第二温控装置根据所述第二连接管内的所述换热介质的温度与第二预设温度控制所述换热提温泵送装置运行。
- 根据权利要求5所述的中深层地下岩热型供热系统,其特征在于,在所述第一三通管的第一端、所述第二三通管的第一端以及所述第一三通管的第三端设置有管道泵,以为所述换热介质的输送提供动能。
- 根据权利要求1所述的中深层地下岩热型供热系统,其特征在于,所述换热提温泵送装置包括:蒸发器、压缩机和冷凝器。
- 一种中深层地下岩热型供热方法,其特征在于,用于如权利要求1所述的中深层地下岩热型供热系统,该方法包括:获取地下中深层岩土热交换系统输送的换热介质的当前温度;判断所述当前温度是否小于预设温度,以得到判定结果;根据所述判定结果控制将所述换热介质通过换热提温泵送装置或直供装置传输至供热末端热循环系统。
- 根据权利要求9所述的中深层地下岩热型供热方法,其特征在于,所述根据所述判定结果控制将所述换热介质通过换热提温泵送装置或直供装置传输至供热末端热循环系统的步骤,包括:当所述当前温度小于所述预设温度时,将所述换热介质输送至所述换热提温泵送装置,以通过所述换热提温泵送装置对所述换热介质提温后,将所述换热介质输送至所述供热末端热循环系统;当所述当前温度大于或等于所述预设温度时,将所述换热介质输送至所述直供装置,以通过所述直供装置将所述换热介质输送至所述供热末端热循环系统。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911027693.2 | 2019-10-25 | ||
CN201911027693.2A CN110631271A (zh) | 2019-10-25 | 2019-10-25 | 中深层地下岩热型供热系统及供热方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021078306A1 true WO2021078306A1 (zh) | 2021-04-29 |
Family
ID=68977892
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/133206 WO2021078306A1 (zh) | 2019-10-25 | 2020-12-02 | 中深层地下岩热型供热系统及供热方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110631271A (zh) |
WO (1) | WO2021078306A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110631271A (zh) * | 2019-10-25 | 2019-12-31 | 甘肃省建材科研设计院有限责任公司 | 中深层地下岩热型供热系统及供热方法 |
CN111380237A (zh) * | 2020-03-27 | 2020-07-07 | 甘肃省建材科研设计院有限责任公司 | 传热介质和地下中深层岩土热交换装置 |
CN111594913B (zh) * | 2020-05-29 | 2021-09-14 | 河南城建学院 | 中深层地热能无干扰清洁供热系统 |
CN112182849B (zh) * | 2020-09-04 | 2022-04-19 | 中国核动力研究设计院 | 再淹没临界后换热分析方法及装置 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001183030A (ja) * | 1999-10-12 | 2001-07-06 | Kubota Corp | 地熱採熱試験装置 |
CN2679599Y (zh) * | 2004-03-08 | 2005-02-16 | 徐生恒 | 使用热泵以大地作为热源的空气调节系统 |
JP2005048972A (ja) * | 2003-07-29 | 2005-02-24 | Nippon Steel Corp | 地中熱利用システム |
CN101581517A (zh) * | 2009-06-16 | 2009-11-18 | 天津大学 | 单回路地热井下换热器热泵系统 |
CN107514838A (zh) * | 2017-09-29 | 2017-12-26 | 上海中金能源投资有限公司 | 中深层地热源热泵系统 |
CN207113273U (zh) * | 2017-07-10 | 2018-03-16 | 陕西德龙地热开发有限公司 | 一种中深层地热能直接供热系统 |
CN207299110U (zh) * | 2017-05-26 | 2018-05-01 | 山东陆海石油技术股份有限公司 | 中深层地热井内换热供暖系统 |
CN109297077A (zh) * | 2018-09-03 | 2019-02-01 | 西安石油大学 | 一种中深层无干扰地岩热供热系统梯级利用及监测系统和方法 |
CN109869935A (zh) * | 2019-03-07 | 2019-06-11 | 河北工程大学 | 一种地热能复合运行系统 |
CN110631271A (zh) * | 2019-10-25 | 2019-12-31 | 甘肃省建材科研设计院有限责任公司 | 中深层地下岩热型供热系统及供热方法 |
CN210663425U (zh) * | 2019-10-25 | 2020-06-02 | 甘肃省建材科研设计院有限责任公司 | 中深层地下岩热型供热系统 |
-
2019
- 2019-10-25 CN CN201911027693.2A patent/CN110631271A/zh active Pending
-
2020
- 2020-12-02 WO PCT/CN2020/133206 patent/WO2021078306A1/zh active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001183030A (ja) * | 1999-10-12 | 2001-07-06 | Kubota Corp | 地熱採熱試験装置 |
JP2005048972A (ja) * | 2003-07-29 | 2005-02-24 | Nippon Steel Corp | 地中熱利用システム |
CN2679599Y (zh) * | 2004-03-08 | 2005-02-16 | 徐生恒 | 使用热泵以大地作为热源的空气调节系统 |
CN101581517A (zh) * | 2009-06-16 | 2009-11-18 | 天津大学 | 单回路地热井下换热器热泵系统 |
CN207299110U (zh) * | 2017-05-26 | 2018-05-01 | 山东陆海石油技术股份有限公司 | 中深层地热井内换热供暖系统 |
CN207113273U (zh) * | 2017-07-10 | 2018-03-16 | 陕西德龙地热开发有限公司 | 一种中深层地热能直接供热系统 |
CN107514838A (zh) * | 2017-09-29 | 2017-12-26 | 上海中金能源投资有限公司 | 中深层地热源热泵系统 |
CN109297077A (zh) * | 2018-09-03 | 2019-02-01 | 西安石油大学 | 一种中深层无干扰地岩热供热系统梯级利用及监测系统和方法 |
CN109869935A (zh) * | 2019-03-07 | 2019-06-11 | 河北工程大学 | 一种地热能复合运行系统 |
CN110631271A (zh) * | 2019-10-25 | 2019-12-31 | 甘肃省建材科研设计院有限责任公司 | 中深层地下岩热型供热系统及供热方法 |
CN210663425U (zh) * | 2019-10-25 | 2020-06-02 | 甘肃省建材科研设计院有限责任公司 | 中深层地下岩热型供热系统 |
Also Published As
Publication number | Publication date |
---|---|
CN110631271A (zh) | 2019-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021078306A1 (zh) | 中深层地下岩热型供热系统及供热方法 | |
CN107763712B (zh) | 单井地热联合太阳能供暖系统 | |
CN109869935B (zh) | 一种地热能复合运行系统 | |
CN103453571A (zh) | 一种封闭循环采暖系统 | |
US20130037236A1 (en) | Geothermal facility with thermal recharging of the subsoil | |
FI130172B (en) | Geothermal heat exchanger, geothermal heating arrangement and method for storing heat energy in the ground | |
CN201028893Y (zh) | 一种地源热泵空调系统 | |
CN111981563A (zh) | 一种金属矿山闭坑矿井地热能地埋管供暖与制冷系统 | |
CN210663425U (zh) | 中深层地下岩热型供热系统 | |
CN116446939B (zh) | 一种地面制冷穿越复杂深地层输冷矿井降温系统 | |
CN108709227A (zh) | 一种分房间式地热供暖装置及安装方法 | |
CN102506510B (zh) | 利用热管摄取地热的供热工艺 | |
NL2031422B1 (en) | Middle-deep underground rock-heat type heating system and heating method | |
CN202203915U (zh) | 焦炉炉顶余热回收系统 | |
CN210317394U (zh) | 一种基于余热水利用的井筒防冻系统 | |
CN210602306U (zh) | 一种地热能源井结构 | |
CN209840335U (zh) | 一种矿井水余热提取利用系统 | |
CN103470224B (zh) | 循环冻融原位破碎油页岩的装置及方法 | |
CN204225195U (zh) | 采用虹吸引流的中央空调系统渗滤取水装置 | |
CN207778866U (zh) | 一种水平换热和垂直换热相结合的地源热泵系统 | |
CN201145372Y (zh) | 一种地源热泵中央空调 | |
CN215216403U (zh) | 多物联网三联供换热站 | |
CN213514213U (zh) | 一种高层建筑浅层地热能直耦供冷系统 | |
CN217844135U (zh) | 利用废弃矿井水源和冷却塔实现供暖与制冷的空调系统 | |
CN205300034U (zh) | 一种基于浅层地温能热泵系统的单管热井水平管网 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20880086 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20880086 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20880086 Country of ref document: EP Kind code of ref document: A1 |