[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021078306A1 - Mid-depth underground petrothermal heat supply system, and heat supplying method - Google Patents

Mid-depth underground petrothermal heat supply system, and heat supplying method Download PDF

Info

Publication number
WO2021078306A1
WO2021078306A1 PCT/CN2020/133206 CN2020133206W WO2021078306A1 WO 2021078306 A1 WO2021078306 A1 WO 2021078306A1 CN 2020133206 W CN2020133206 W CN 2020133206W WO 2021078306 A1 WO2021078306 A1 WO 2021078306A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
heat
temperature
medium
exchange medium
Prior art date
Application number
PCT/CN2020/133206
Other languages
French (fr)
Chinese (zh)
Inventor
邵继新
司双龙
俞兆龙
李文斌
田斌守
梁斌
金先玉
沈明峰
刘翔
张苗
魏其斌
Original Assignee
甘肃省建材科研设计院有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 甘肃省建材科研设计院有限责任公司 filed Critical 甘肃省建材科研设计院有限责任公司
Publication of WO2021078306A1 publication Critical patent/WO2021078306A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T50/00Geothermal systems 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T2010/50Component parts, details or accessories
    • F24T2010/56Control arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Definitions

  • the invention relates to the technical field of geothermal energy development, in particular to a medium-deep underground rock-heat heating system and a medium-deep underground rock-heat heating method.
  • Shallow geothermal energy is a depth range of 200m from the surface to the ground, and the temperature stored in water, soil, and rocks is below 25°C.
  • the use of heat pump technology can be used to extract geothermal energy utilization technology for heating or cooling of buildings.
  • the shallow geothermal energy utilization system is mainly divided into one is a water source heat pump heating system, and the other is a ground source heat pump heating system.
  • the former requires the extraction of groundwater, and has strict requirements on water temperature, water output, sediment content, same-layer recharge, and water pollution control, which have been restricted or even forbidden in many places; the latter requires heat to be balanced, but in the northern summer In areas with low cooling demand, the soil thermal compensation is seriously insufficient, making the heating effect of the ground source heat pump unsatisfactory.
  • Hot dry rock utilization technology that has emerged in recent years, "Geothermal Energy Terminology" (NB/T 10097-2018) defines it as an abnormally high temperature rock mass with no or only a small amount of fluid inside and a temperature higher than 180°C.
  • Hot dry rock is mainly used for power generation internationally to distinguish the deep-seated hydrothermal geothermal technology used for heating. From the perspective of economic development and utilization, not all places have the conditions for hot dry rock mining. In terms of resource conditions and technical difficulty, the system does not have universal applicability.
  • the present invention proposes a medium-deep underground rock heating type heating system and heating method.
  • a medium-deep underground rock heating heating system including: at least one underground medium-deep rock-soil heat exchange system, an above-ground heat auxiliary system, and a heating terminal heat circulation system And control system;
  • the underground mid-deep rock-soil heat exchange system is used to make the heat exchange medium exchange heat with the underground mid-deep rock and soil;
  • the above-ground thermal auxiliary system is connected to the underground mid-deep rock-soil heat exchange system, which includes:
  • the heat exchange temperature raising pumping device is used to raise the temperature of the heat exchange medium when the temperature of the heat exchange medium after the heat exchange is lower than the first preset temperature, and to increase the temperature of the heat exchange medium.
  • the heat exchange medium is transported to the heat circulation system of the heating terminal;
  • a direct supply device configured to transport the heat exchange medium to the heat supply terminal heat circulation system when the temperature of the heat exchange medium after the heat exchange is greater than or equal to the first preset temperature
  • the heat supply terminal heat circulation system is connected to the above-ground thermal auxiliary system to exchange heat with the heat exchange medium delivered by the above-ground thermal auxiliary system;
  • the control system is used for controlling the above-ground thermal auxiliary system according to the magnitude relationship between the temperature of the heat exchange medium and the first preset temperature.
  • the underground mid-deep rock-soil heat exchange system includes: double-layer casing and high-efficiency heat exchange terminals;
  • the double-layer sleeve includes an inner sleeve and an outer sleeve, the lower end of the outer sleeve is connected to the high-efficiency heat exchange terminal, and the heat exchange medium is injected by the inner sleeve, After the high-efficiency heat exchange terminal exchanges heat with the underground middle and deep rock and soil, it is transported to the above-ground thermal auxiliary system by the outer casing.
  • the high-efficiency heat exchange terminal includes: a high-strength alloy sleeve, a high-efficiency heat exchanger and a high-efficiency heat transfer medium;
  • the high-strength alloy sleeve is connected to the high-efficiency heat exchanger, and the high-efficiency heat transfer medium is filled between the high-strength alloy sleeve and the high-efficiency heat exchanger and the underground medium and deep rock soil To increase the heat exchange efficiency between the deep underground rock and soil and the heat exchange medium.
  • a thermal insulation layer is further provided on the outer side of the upper part of the outer sleeve to prevent rapid loss of heat energy when the heat exchange medium flows through the surface of the outer sleeve.
  • the medium-deep underground rock heating heating system further includes: a first three-way pipe, the first end of which is connected to the upper end of the outer casing, and the second end is connected to the heat exchange and temperature raising pumping device One end and the third end are connected to the end thermal cycle system; and
  • a second three-way pipe the first end of which is connected to the upper end of the inner sleeve, the second end of which is connected to the one end of the heat exchange and temperature raising pumping device, and the third end of which is connected to the end thermal circulation system ;
  • the other end of the heat exchange and temperature raising pumping device is connected to the third end of the first tee through a first connecting pipe, and the other end is connected to the second tee through a second connecting pipe The third end of the tube.
  • control system includes a first temperature control device, a first control valve, a second control valve, a third control valve, and a second temperature control device;
  • the first temperature control device is arranged at the first end of the first three-way pipe, the first control valve is arranged at the third end of the first three-way pipe, and the second control valve is arranged at the third end of the first three-way pipe.
  • the valve is arranged at the second end of the second three-way pipe, the third control valve is arranged at the third end of the second three-way pipe, and the second temperature control device is arranged at the second connecting pipe ;
  • the second temperature control device controls the operation of the heat exchange temperature raising pumping device according to the temperature of the heat exchange medium in the second connecting pipe and a second preset temperature.
  • a pipeline pump is provided at the first end of the first three-way pipe, the first end of the second three-way pipe, and the third end of the first three-way pipe for the heat exchange medium
  • the transportation provides kinetic energy.
  • the heat exchange and temperature raising pumping device includes: an evaporator, a compressor, and a condenser.
  • a medium-deep underground rock-heat heating method for use in the medium-deep underground rock-heat heating system of any one of the above.
  • the method includes: obtaining underground medium-deep rock and soil heat The current temperature of the heat exchange medium delivered by the exchange system;
  • the heat exchange medium is controlled to be transferred to the heat circulation system of the heating terminal through a heat exchange temperature raising pumping device or a direct supply device.
  • the step of controlling the transfer of the heat exchange medium to the heat circulation system of the heating terminal through a heat exchange temperature raising pumping device or a direct supply device according to the determination result includes:
  • the heat exchange medium When the current temperature is less than the preset temperature, the heat exchange medium is delivered to the heat exchange and temperature raising pumping device to raise the temperature of the heat exchange medium through the heat exchange and temperature raising pumping device After that, the heat exchange medium is transported to the heat-supply terminal thermal cycle system;
  • the heat exchange medium is delivered to the direct supply device, so that the heat exchange medium is delivered to the heat supply terminal through the direct supply device. Circulatory system.
  • a medium-deep underground rock heating heating system and heating method of the present invention can achieve considerable technological advancement and practicability, and has a wide range of industrial use value. It has at least the following advantages:
  • Fig. 1 shows a schematic block diagram of a medium-deep underground rock heating heating system according to an embodiment of the present invention
  • Fig. 2 shows a schematic flow diagram of a medium-deep underground rock heating type heating method according to an embodiment of the present invention.
  • the embodiment of the present invention provides a medium-deep underground rock heating heating system, as shown in FIG. 1, including: at least one underground medium-deep rock-soil heat exchange system 1, an above-ground heat auxiliary system 2, a heating terminal heat circulation system 3 and control system 4.
  • the underground middle-deep rock-soil heat exchange system 1 can be one (as shown in Figure 1). According to the actual needs of the heating terminal thermal cycle system 3, it can also be multiple underground middle-deep rock-soil heat exchange systems 1 in series and parallel. It is connected to the ground thermal auxiliary system 2 to ensure that it can provide sufficient heat energy.
  • the underground medium and deep layer of rock and soil heat exchange system 1 is installed in the well.
  • the well diameter is 150-300 mm
  • the well depth is 600-3000 meters.
  • the underground middle-deep rock-soil heat exchange system 1 may include a double-layer casing 11 and a high-efficiency heat exchange terminal 12, wherein the high-efficiency heat exchange terminal 12 is connected to the outer casing 111 of the double-layer casing 11
  • the heat exchange medium is injected into the upper end of the inner sleeve 112, flows through the lower end of the inner sleeve 112, and exchanges heat with the underground medium and deep soil 10 through the high-efficiency heat exchange terminal 12 to complete the heat exchange. Lead out through the outer sleeve 111.
  • the high-efficiency heat exchange terminal 12 includes a high-strength alloy sleeve 121, a high-efficiency heat exchanger 122, and a high-efficiency heat transfer medium 123 that are coupled together.
  • the high-strength alloy sleeve 121 can effectively protect the high-efficiency heat exchanger 122 from being damaged, so as to ensure the stability of the underground mid-deep rock-soil heat exchange system 1.
  • the high-efficiency heat exchanger 122 is made of high-strength nickel steel alloy material, which can effectively improve the heat exchange efficiency of the high-efficiency heat exchange terminal 12 while ensuring its mechanical strength.
  • the high-efficiency heat exchanger 122 can also be made of other materials, which is not limited here.
  • the gap between the deep underground rock and soil 10 and the high-strength alloy casing 121 and the high-efficiency heat exchanger 122 is filled with a high-efficiency heat transfer medium 123.
  • the high-efficiency heat transfer medium 123 is mixed and stirred by cement, coagulant, fluid loss agent, dispersant, granulated blast furnace slag and other materials, and is densely filled in the high-strength alloy casing 121, In the gap between the high-efficiency heat exchange terminal 12 and the medium-deep rock soil 10.
  • the thermal insulation layer 13 can be sprayed nano thermal insulation materials, polyurethane foam thermal insulation pipes, and the outer layer is poured into polymer thermal insulation mortar.
  • the heat exchange medium may be water, of course, it may also be other materials with faster heat transfer.
  • the above-ground heat auxiliary system 2 includes a heat exchange and temperature raising pumping device 21 that raises the temperature of the heat exchange medium after the heat exchange through the underground middle-deep rock-soil heat exchange system 1, and performs heat exchange.
  • the latter heat exchange medium is directly transported to the direct supply device 22 of the heat circulation system 3 of the heating terminal.
  • the heat exchange system 1 of the underground middle-deep rock soil 10 and the heat supply terminal heat circulation system 3 are organically connected.
  • the first end 51 of the first three-way pipe 5 is connected to the upper end of the outer sleeve 111, the second end 52 is connected to one end of the heat exchange and temperature raising pumping device 21, and the third end 53 is connected to the heating end.
  • Thermal circulation system 3; the first end 61 of the second three-way pipe 6 is connected to the upper end of the inner sleeve 112, the second end 62 is connected to one end of the heat exchange and temperature raising pumping device 21, and the third end 63 is connected to the supply Hot end thermal cycle system 3.
  • both ends of the first connecting pipe 7 are respectively connected to the other end of the heat exchange and temperature raising pumping device 21 and the third end 53 of the first three-way pipe 5, and the second connecting pipe 8 is respectively connected to the heat exchange and temperature raising pumping device.
  • the other end of the device 21 is connected to the third end 63 of the second tee 6.
  • the heat exchange medium is water
  • the first three-way pipe 5 and the first connecting pipe 7 are hot water pipes
  • the second three-way pipe 6 and the second connecting pipe 8 are cold water pipes.
  • the third end 53 of the first three-way pipe 5 and the third end 63 of the second three-way pipe 6 form a direct supply system 22.
  • the control system 4 includes a first temperature control disposed at the second end 52 of the first three-way pipe 5.
  • the second control valve 43 of 62 and the third control valve 44 provided at the third end 63 of the second three-way pipe 6.
  • the first temperature control device 41 detects that the temperature of the heat exchange medium (for example, hot water) conveyed by the outer sleeve 111 is lower than the first preset temperature (ie, lower than the required temperature), Then the first control valve 42 and the third control valve 44 are controlled to close, the second control valve 43 is opened, and the heat exchange medium is transported to the heat exchange and temperature raising pumping device 21 through the second end 52 of the first three-way pipe 5, The temperature of the heat exchange medium that has not reached the temperature requirement is raised, and the raised heat exchange medium is transported to the heating terminal heat circulation system 3 through the first connecting pipe 7 and the third end 53 of the first three-way pipe 5 .
  • the first preset temperature ie, lower than the required temperature
  • the heat exchange medium for example, cold water
  • the heat exchange medium for example, cold water
  • the heat exchange and temperature raising pumping device through the third end 62 of the second three-way pipe 6 and the second connecting pipe 8 21, the second end 62 and the first end 61 of the second three-way pipe 6 are then transported to the inner sleeve 112 to realize the circulation of the heat exchange medium.
  • the second temperature control device 45 detects that the temperature of the heat exchange medium (for example, cold water) in the second connecting pipe 8 is lower than the second preset temperature, it indicates that the heating end thermal cycle system 3 has a greater demand for heat energy.
  • the heat exchange medium at the current temperature cannot meet its demand, control the operation of the heat exchange temperature raising pumping device 21 to increase the temperature of the heat exchange medium; when the second temperature control device 45 detects the heat exchange medium in the second connecting pipe 8
  • the temperature of (for example, cold water) is greater than or equal to the second preset temperature
  • the heat exchange and temperature raising pumping device 21 is controlled to shut down to operate at the end of the heating end.
  • the thermal cycle system 3 has a small demand for thermal energy, the loss of the heat exchange and temperature raising pumping device 21 can be reduced, thereby achieving the purpose of saving energy.
  • the heat exchange temperature raising pumping device 21 includes an evaporator 211, a compressor 212, and a condenser 213. Specifically, the heat exchange medium enters the evaporator through the second end 52 of the first three-way pipe 5 211. After the compressor 212 is compressed to increase the temperature, the heat exchange medium is raised through the condenser 213 to meet the requirements of the heat circulation system 3 at the heating terminal.
  • the first temperature control device 41 detects that the temperature of the heat exchange medium (for example, hot water) conveyed by the outer sleeve 111 is greater than or equal to the first preset temperature (ie, meets the required temperature)
  • the first control valve 42 and the third control valve 44 are controlled to open, and the second control valve 43 is closed, so as to directly transport the heat exchange medium conveyed by the outer sleeve 111 through the third end 53 of the first three-way pipe 5 To the heat circulation system 3 at the heating end.
  • the heat exchange medium for example, cold water
  • the heat exchange medium for example, cold water
  • the sleeve 112 is used to realize the circulation of the heat exchange medium.
  • the first temperature control device 41 and the second temperature control device 45 may be PLC temperature controllers, so as to realize the control of the control valve and the heat exchange temperature raising pumping device 21 according to the difference in temperature.
  • the heating terminal thermal cycle system 3 includes a heating pipe network 31 and a terminal heat dissipation device 32.
  • the terminal heat dissipation device 32 may be an indoor radiator, a floor heating tube plate, or a fan tube plate.
  • the first end 51 of the first three-way pipe 5, the first end 61 of the second three-way pipe 6 and the first The third end 53 of the three-way pipe 5 is provided with a pipeline pump 9 to ensure the kinetic energy of the heat exchange medium to circulate.
  • a pipeline pump 9 can also be provided, which is not limited to this.
  • the embodiment of the present invention also provides a medium-deep underground rock heating type heating method, which is used in any one of the above-mentioned medium-deep underground rock heating heating systems, as shown in FIG. 2, the heating method include:
  • Step S10 acquiring the current temperature of the heat exchange medium transported by the underground middle-deep rock-soil heat exchange system.
  • the temperature requirements of the heat exchange medium in the heat circulation systems at the heating end are different. Therefore, when the heat exchange medium passes through the underground middle-deep rock-soil heat exchange system and the underground After the deep rock and soil undergoes heat exchange, the current temperature of the heat exchange medium needs to be detected, and the corresponding above-ground heat auxiliary system has been selected according to different current temperatures.
  • step S20 it is judged whether the current temperature is less than a preset temperature, so as to obtain a judgment result.
  • the current temperature of the heat exchange medium when the current temperature of the heat exchange medium is obtained, the current temperature needs to be compared with the preset temperature (ie, the first preset temperature), and different above-ground heat assist systems have been controlled to deliver according to different comparison results.
  • the heat exchange medium is transferred to the heat circulation system at the heating end.
  • the preset temperature is the temperature of the heat exchange medium required by the heating terminal thermal cycle system. Different heating terminal thermal cycle systems have different temperature requirements for the heat exchange medium. Therefore, the preset temperature can be carried out according to actual needs. set up.
  • step S30 according to the determination result, the heat exchange medium is controlled to be transferred to the heat circulation system of the heating terminal through the heat exchange temperature raising pumping device or the direct supply device.
  • the heat exchange medium needs to be raised. Furthermore, the heat exchange medium needs to be transported to the heat exchange and temperature raising pumping device, so that the heat exchange medium is raised by the heat exchange and temperature raising pumping device, and then sent to the heat circulation system at the heating end.
  • the current temperature of the heat exchange medium When the current temperature of the heat exchange medium is greater than or equal to the preset temperature, it indicates that the temperature of the heat exchange medium meets the temperature required by the heat circulation system at the heating end, so it is only necessary to transport the heat exchange medium to the heating end through the direct supply device The thermal cycle system is sufficient.
  • the medium-deep underground rock heating heating system and heating method of the above-mentioned embodiments use the underground medium-deep rock-soil heat exchange system to directly exchange heat with the medium-deep rock and soil, without extracting groundwater, and has no impact on the environment. Interference, and the heat source continues to be stable, the investment is economical, the use environment is small, and it is easy to promote.
  • the heat exchange temperature raising pumping device and the direct supply device Through the arrangement of the heat exchange temperature raising pumping device and the direct supply device, the heat exchange medium can still be raised by the heat exchange temperature raising pumping device to ensure the heat at the end of the heat supply when the heat in the middle and deep rock soil is insufficient.
  • the circulation system requires heat energy. When the middle and deep layers of rock and soil have sufficient heat, the heat exchange medium can be directly transported to the heating end heat circulation system through the direct supply system. There is no need to raise the temperature of the heat exchange medium, which saves energy. Consumption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Road Paving Structures (AREA)

Abstract

A mid-depth underground petrothermal heat supply system, comprising: at least one underground mid-depth rock and soil heat exchange system (1), an aboveground auxiliary thermal system (2), a heat supply terminus thermal circulation system (3), and a control system (4). When the temperature of a heat exchange medium that performs heat exchange in the underground mid-depth rock and soil heat exchange system (1) reaches a preset temperature, the heat exchange medium is transmitted to the heat supply terminus thermal circulation system (3) by means of a direct supply apparatus of the aboveground auxiliary thermal system (2). When the heat exchange medium does not reach the preset temperature, the heat exchange medium is heated by means of a heat exchange heat pump apparatus (21) of the aboveground auxiliary thermal system (2), and transmitted to the heat supply terminus thermal circulation system (3). The present invention solves the problem in existing water source heat pumps of environmental water pollution and insufficient heat source stability, and effectively prevents pollution of water resources and is able to provide a continuously stable heat source.

Description

中深层地下岩热型供热系统及供热方法Medium-deep underground rock heat type heating system and heating method 技术领域Technical field
本发明涉地热能开发技术领域,尤其涉及一种中深层地下岩热型供热系统及中深层地下岩热型供热方法。The invention relates to the technical field of geothermal energy development, in particular to a medium-deep underground rock-heat heating system and a medium-deep underground rock-heat heating method.
背景技术Background technique
浅层地热能,是从地表至地下200m深度范围内,储存于水体、土体、岩石中的温度低于25℃,采用热泵技术可提取用于建筑物供热或制冷等的地热能利用技术。浅层地热能利用系统主要分为,一是水源热泵供热系统,二是土壤源热泵供热系统。前者需要抽取地下水,对水温、出水量、泥沙含量、同层回灌、水污染控制皆有严格要求,在很多地方已经限制甚至禁止使用;后者要求取热补热均衡,但在北方夏季制冷需求低的区域,土壤的热补偿严重不足,使得土壤源热泵供热效果不理想。Shallow geothermal energy is a depth range of 200m from the surface to the ground, and the temperature stored in water, soil, and rocks is below 25℃. The use of heat pump technology can be used to extract geothermal energy utilization technology for heating or cooling of buildings. . The shallow geothermal energy utilization system is mainly divided into one is a water source heat pump heating system, and the other is a ground source heat pump heating system. The former requires the extraction of groundwater, and has strict requirements on water temperature, water output, sediment content, same-layer recharge, and water pollution control, which have been restricted or even forbidden in many places; the latter requires heat to be balanced, but in the northern summer In areas with low cooling demand, the soil thermal compensation is seriously insufficient, making the heating effect of the ground source heat pump unsatisfactory.
近年来兴起的干热岩利用技术,《地热能术语》(NB/T 10097-2018)将其定义为内部不存在或仅存在少量流体,温度高于180℃的异常高温岩体。干热岩国际上主要用于发电,以区别用于供暖的中深层水热型地热技术。从可经济开发利用角度来看,不是任何地方都具备干热岩开采条件的。从资源条件和技术难度来看,该系统不具有普遍适用性。The hot dry rock utilization technology that has emerged in recent years, "Geothermal Energy Terminology" (NB/T 10097-2018) defines it as an abnormally high temperature rock mass with no or only a small amount of fluid inside and a temperature higher than 180°C. Hot dry rock is mainly used for power generation internationally to distinguish the deep-seated hydrothermal geothermal technology used for heating. From the perspective of economic development and utilization, not all places have the conditions for hot dry rock mining. In terms of resource conditions and technical difficulty, the system does not have universal applicability.
发明内容Summary of the invention
针对传统水源热泵潜在水污染与同层回灌困难,土壤源热泵热补偿不足,干热岩开采的经济性和不具有的普遍适用性等问题。本发明提出了一种中深层地下岩热型供热系统及供热方法。In view of the potential water pollution of the traditional water source heat pump and the difficulty of recharging in the same layer, the insufficient heat compensation of the ground source heat pump, the economy of dry hot rock mining and the general applicability of the lack of universal applicability. The present invention proposes a medium-deep underground rock heating type heating system and heating method.
为了解决上述技术问题,根据本发明一方面,提供了一种中深层地下岩热型供热系统,包括:至少一个地下中深层岩土热交换系统、地上热辅助系统、供热末端热循环系统及控制系统;In order to solve the above technical problems, according to one aspect of the present invention, a medium-deep underground rock heating heating system is provided, including: at least one underground medium-deep rock-soil heat exchange system, an above-ground heat auxiliary system, and a heating terminal heat circulation system And control system;
其中,所述地下中深层岩土热交换系统用于使换热介质与地下中 深层岩土进行热交换;Wherein, the underground mid-deep rock-soil heat exchange system is used to make the heat exchange medium exchange heat with the underground mid-deep rock and soil;
所述地上热辅助系统连接于所述地下中深层岩土热交换系统,其包括:The above-ground thermal auxiliary system is connected to the underground mid-deep rock-soil heat exchange system, which includes:
换热提温泵送装置,用于在所述热交换后的所述换热介质的温度小于第一预设温度时,对所述换热介质进行提温,并将提温后的所述换热介质输送至所述供热末端热循环系统;以及The heat exchange temperature raising pumping device is used to raise the temperature of the heat exchange medium when the temperature of the heat exchange medium after the heat exchange is lower than the first preset temperature, and to increase the temperature of the heat exchange medium. The heat exchange medium is transported to the heat circulation system of the heating terminal; and
直供装置,用于在所述热交换后的所述换热介质的温度大于或等于所述第一预设温度时,将所述换热介质输送至所述供热末端热循环系统;A direct supply device, configured to transport the heat exchange medium to the heat supply terminal heat circulation system when the temperature of the heat exchange medium after the heat exchange is greater than or equal to the first preset temperature;
所述供热末端热循环系统连接至所述地上热辅助系统,以将所述地上热辅助系统输送的所述换热介质进行热交换;The heat supply terminal heat circulation system is connected to the above-ground thermal auxiliary system to exchange heat with the heat exchange medium delivered by the above-ground thermal auxiliary system;
控制系统,用于根据所述换热介质的温度与所述第一预设温度的大小关系控制所述地上热辅助系统。The control system is used for controlling the above-ground thermal auxiliary system according to the magnitude relationship between the temperature of the heat exchange medium and the first preset temperature.
进一步的,所述地下中深层岩土热交换系统包括:双层套管和高效换热端子;Further, the underground mid-deep rock-soil heat exchange system includes: double-layer casing and high-efficiency heat exchange terminals;
其中,所述双层套管包括内层套管和外层套管,所述外层套管的下端连接于所述高效换热端子,所述换热介质由所述内层套管注入,并通过所述高效换热端子与地下中深层岩土进行换热后,由所述外层套管输送至所述地上热辅助系统。Wherein, the double-layer sleeve includes an inner sleeve and an outer sleeve, the lower end of the outer sleeve is connected to the high-efficiency heat exchange terminal, and the heat exchange medium is injected by the inner sleeve, After the high-efficiency heat exchange terminal exchanges heat with the underground middle and deep rock and soil, it is transported to the above-ground thermal auxiliary system by the outer casing.
进一步的,所述高效换热端子包括:高强度合金套管、高效换热器和高效传热介质;Further, the high-efficiency heat exchange terminal includes: a high-strength alloy sleeve, a high-efficiency heat exchanger and a high-efficiency heat transfer medium;
其中,所述高强度合金套管连接至所述高效换热器,所述高效传热介质填充于所述高强度合金套管和所述高效换热器与所述地下中深层岩土之间的缝隙处,以增大所述地下中深层岩土与所述换热介质的换热效率。Wherein, the high-strength alloy sleeve is connected to the high-efficiency heat exchanger, and the high-efficiency heat transfer medium is filled between the high-strength alloy sleeve and the high-efficiency heat exchanger and the underground medium and deep rock soil To increase the heat exchange efficiency between the deep underground rock and soil and the heat exchange medium.
进一步的,所述外层套管的上部的外侧还设置有保温层,以防止所述换热介质通过所述外层套管流经地表时热能的快速流失。Further, a thermal insulation layer is further provided on the outer side of the upper part of the outer sleeve to prevent rapid loss of heat energy when the heat exchange medium flows through the surface of the outer sleeve.
进一步的,中深层地下岩热型供热系统还包括:第一三通管,其第一端连接至所述外层套管的上端,第二端连接至所述换热提温泵送装置一端,第三端连接至所述末端热循环系统;以及Further, the medium-deep underground rock heating heating system further includes: a first three-way pipe, the first end of which is connected to the upper end of the outer casing, and the second end is connected to the heat exchange and temperature raising pumping device One end and the third end are connected to the end thermal cycle system; and
第二三通管,其第一端连接至所述内层套管的上端,第二端连接至所述换热提温泵送装置所述一端,第三端连接至所述末端热循环系统;A second three-way pipe, the first end of which is connected to the upper end of the inner sleeve, the second end of which is connected to the one end of the heat exchange and temperature raising pumping device, and the third end of which is connected to the end thermal circulation system ;
所述换热提温泵送装置的另一端通过第一连接管连接至所述所述第一三通管的第三端,所述另一端通过第二连接管连接至所述第二三通管的第三端。The other end of the heat exchange and temperature raising pumping device is connected to the third end of the first tee through a first connecting pipe, and the other end is connected to the second tee through a second connecting pipe The third end of the tube.
进一步的,所述控制系统包括,第一温控装置、第一控制阀、第二控制阀、第三控制阀及第二温控装置;Further, the control system includes a first temperature control device, a first control valve, a second control valve, a third control valve, and a second temperature control device;
其中,所述第一温控装置设置于所述第一三通管的第一端,所述第一控制阀设置于所述所述第一三通管的第三端,所述第二控制阀设置于所述第二三通管的第二端,所述第三控制阀设置于所述第二三通管的第三端,所述第二温控装置设置于所述第二连接管;Wherein, the first temperature control device is arranged at the first end of the first three-way pipe, the first control valve is arranged at the third end of the first three-way pipe, and the second control valve is arranged at the third end of the first three-way pipe. The valve is arranged at the second end of the second three-way pipe, the third control valve is arranged at the third end of the second three-way pipe, and the second temperature control device is arranged at the second connecting pipe ;
所述第二温控装置根据所述第二连接管内的所述换热介质的温度与第二预设温度控制所述换热提温泵送装置运行。The second temperature control device controls the operation of the heat exchange temperature raising pumping device according to the temperature of the heat exchange medium in the second connecting pipe and a second preset temperature.
进一步地,在所述第一三通管的第一端、所述第二三通管的第一端以及所述第一三通管的第三端设置有管道泵,以为所述换热介质的输送提供动能。Further, a pipeline pump is provided at the first end of the first three-way pipe, the first end of the second three-way pipe, and the third end of the first three-way pipe for the heat exchange medium The transportation provides kinetic energy.
进一步地,所述换热提温泵送装置包括:蒸发器、压缩机和冷凝器。Further, the heat exchange and temperature raising pumping device includes: an evaporator, a compressor, and a condenser.
根据本发明另一方面,提供一种中深层地下岩热型供热方法,用于上述任一项所述的中深层地下岩热型供热系统,该方法包括:获取地下中深层岩土热交换系统输送的换热介质的当前温度;According to another aspect of the present invention, there is provided a medium-deep underground rock-heat heating method for use in the medium-deep underground rock-heat heating system of any one of the above. The method includes: obtaining underground medium-deep rock and soil heat The current temperature of the heat exchange medium delivered by the exchange system;
判断所述当前温度是否小于预设温度,以得到判定结果;Judging whether the current temperature is less than a preset temperature to obtain a judgment result;
根据所述判定结果控制将所述换热介质通过换热提温泵送装置或直供装置传输至供热末端热循环系统。According to the determination result, the heat exchange medium is controlled to be transferred to the heat circulation system of the heating terminal through a heat exchange temperature raising pumping device or a direct supply device.
进一步地,所述根据所述判定结果控制将所述换热介质通过换热提温泵送装置或直供装置传输至供热末端热循环系统的步骤,包括:Further, the step of controlling the transfer of the heat exchange medium to the heat circulation system of the heating terminal through a heat exchange temperature raising pumping device or a direct supply device according to the determination result includes:
当所述当前温度小于所述预设温度时,将所述换热介质输送至所述换热提温泵送装置,以通过所述换热提温泵送装置对所述换热介质提温后,将所述换热介质输送至所述供热末端热循环系统;When the current temperature is less than the preset temperature, the heat exchange medium is delivered to the heat exchange and temperature raising pumping device to raise the temperature of the heat exchange medium through the heat exchange and temperature raising pumping device After that, the heat exchange medium is transported to the heat-supply terminal thermal cycle system;
当所述当前温度大于或等于所述预设温度时,将所述换热介质输送至所述直供装置,以通过所述直供装置将所述换热介质输送至所述供热末端热循环系统。When the current temperature is greater than or equal to the preset temperature, the heat exchange medium is delivered to the direct supply device, so that the heat exchange medium is delivered to the heat supply terminal through the direct supply device. Circulatory system.
本发明与现有技术相比具有明显的优点和有益效果。借由上述技术方案,本发明一种中深层地下岩热型供热系统及供热方法可达到相当的技术进步性及实用性,并具有产业上的广泛利用价值,其至少具有下列优点:Compared with the prior art, the present invention has obvious advantages and beneficial effects. With the above technical solutions, a medium-deep underground rock heating heating system and heating method of the present invention can achieve considerable technological advancement and practicability, and has a wide range of industrial use value. It has at least the following advantages:
(1)利用储量巨大、热源稳定的中深层地下岩热资源进行供热,解决了通过燃煤取暖所造成的大气污染的问题。(1) The medium-deep underground rock heat resources with huge reserves and stable heat sources are used for heating, which solves the problem of air pollution caused by burning coal for heating.
(2)在换热过程中,不抽取地下水资源,杜绝了对地下水资源的污染。(2) In the heat exchange process, groundwater resources are not extracted, which prevents the pollution of groundwater resources.
(3)通过换热提温泵送装置的设置,使得在换热介质温度无法达到需求温度时,能够有效地对换热介质进行提温,进而保证了供热末端的供热效果。(3) Through the setting of the heat exchange temperature raising pumping device, when the temperature of the heat exchange medium cannot reach the required temperature, the heat exchange medium can be effectively raised, thereby ensuring the heating effect at the heating end.
(4)通过在地下中深层岩土与高效换热器之间填充高效传热介质,有效地提高了换热效率。(4) By filling the high-efficiency heat transfer medium between the deep underground rock and soil and the high-efficiency heat exchanger, the heat exchange efficiency is effectively improved.
(5)通过在外层套管的上部增设保温层,有效地避免了换热介质在流经地表时,所造成的热能损失。(5) By adding an insulation layer on the upper part of the outer casing, the heat energy loss caused by the heat exchange medium flowing through the ground surface is effectively avoided.
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。The above description is only an overview of the technical solution of the present invention. In order to understand the technical means of the present invention more clearly, it can be implemented in accordance with the content of the specification, and in order to make the above and other objectives, features and advantages of the present invention more obvious and understandable. , The following is a specific example of a preferred embodiment, in conjunction with the accompanying drawings, the detailed description is as follows.
附图说明Description of the drawings
图1示出了本发明一实施例的中深层地下岩热型供热系统的示意框图;Fig. 1 shows a schematic block diagram of a medium-deep underground rock heating heating system according to an embodiment of the present invention;
图2示出了本发明一实施例的中深层地下岩热型供热方法的流程示意图。Fig. 2 shows a schematic flow diagram of a medium-deep underground rock heating type heating method according to an embodiment of the present invention.
【主要符号说明】【Explanation of main symbols】
1:地下中深层岩土热交换系统1: Underground medium and deep rock-soil heat exchange system
10:中深层岩土10: Middle-deep rock and soil
11:双层套管11: Double casing
111:外层套管111: Outer casing
112:内层套管112: inner casing
12:高效换热端子12: High-efficiency heat exchange terminal
121:高强度合金套管121: High-strength alloy casing
122:高效换热器122: High efficiency heat exchanger
123:高效传热介质123: Efficient heat transfer medium
13:保温层13: Insulation layer
2:地上热辅助系统2: Above-ground thermal auxiliary system
21:换热提温泵送装置21: Heat exchange and temperature raising pumping device
211:蒸发器211: Evaporator
212:压缩机212: Compressor
213:冷凝器213: Condenser
22:直供装置22: Direct supply device
3:供热末端热循环系统3: Heat circulation system at the end of heating
31:供热管网31: Heating pipe network
32:末端散热设备32: End cooling equipment
4:控制系统4: Control system
41:第一温控装置41: The first temperature control device
42:第一空置阀42: The first vacant valve
43:第二控制阀43: The second control valve
44:第三控制阀44: The third control valve
45:第二温控装置45: Second temperature control device
5:第一三通管5: The first three-way pipe
6:第二三通管6: The second three-way pipe
51、61:第一端51, 61: first end
52、62:第二端52, 62: second end
53、63:第三端53, 63: third end
7:第一连接管7: The first connecting pipe
8:第二连接管8: The second connecting pipe
9:管道泵9: Pipeline pump
具体实施方式Detailed ways
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明提出的一种中深层地下岩热型供热系统及供热方法的具体实施方式及其功效,详细说明如后。In order to further explain the technical means and effects of the present invention to achieve the intended purpose of the invention, in conjunction with the accompanying drawings and preferred embodiments, a medium-deep underground rock heating type heating system and heating method proposed in accordance with the present invention will be described below. The specific embodiments and their effects are described in detail later.
本发明实施例提供了一种中深层地下岩热型供热系统,如图1所示,包括:至少一个地下中深层岩土热交换系统1、地上热辅助系统2、供热末端热循环系统3及控制系统4。The embodiment of the present invention provides a medium-deep underground rock heating heating system, as shown in FIG. 1, including: at least one underground medium-deep rock-soil heat exchange system 1, an above-ground heat auxiliary system 2, a heating terminal heat circulation system 3 and control system 4.
其中,地下中深层岩土热交换系统1可以是一个(如图1所示),根据供热末端热循环系统3的实际需求,也可以为多个地下中深层岩土热交换系统1串并联方式连接至地上热辅助系统2,以保证能够提供充足的热能。Among them, the underground middle-deep rock-soil heat exchange system 1 can be one (as shown in Figure 1). According to the actual needs of the heating terminal thermal cycle system 3, it can also be multiple underground middle-deep rock-soil heat exchange systems 1 in series and parallel. It is connected to the ground thermal auxiliary system 2 to ensure that it can provide sufficient heat energy.
为了能够获取到地下中深层岩土10的热能,需通过钻机从地表向中深层岩土10钻井,将地下中深层岩土热交换系统1设置于井内。具体的,根据当地的地质地温情况,以及热能的需求量,井径为150毫米-300毫米,井深在600-3000米。In order to obtain the heat energy of the underground medium and deep layer of rock and soil 10, it is necessary to drill a drill from the surface to the medium and deep layer of rock and soil 10 by a drilling rig, and the underground medium and deep layer of rock and soil heat exchange system 1 is installed in the well. Specifically, according to the local geological conditions and the demand for heat energy, the well diameter is 150-300 mm, and the well depth is 600-3000 meters.
在一实施例中,地下中深层岩土热交换系统1可以包括,双层套管11和高效换热端子12,其中,高效换热端子12连接于双层套管11的外层套管111的下端,换热介质在内层套管112的上端注入,流经内层套管112的下端后通过高效换热端子12与地下中深层岩土10进行热交换,完成热交换的换热介质通过外层套管111导出。In an embodiment, the underground middle-deep rock-soil heat exchange system 1 may include a double-layer casing 11 and a high-efficiency heat exchange terminal 12, wherein the high-efficiency heat exchange terminal 12 is connected to the outer casing 111 of the double-layer casing 11 The heat exchange medium is injected into the upper end of the inner sleeve 112, flows through the lower end of the inner sleeve 112, and exchanges heat with the underground medium and deep soil 10 through the high-efficiency heat exchange terminal 12 to complete the heat exchange. Lead out through the outer sleeve 111.
在一实施例中,高效换热端子12包括高强度合金套管121、高效换热器122以及高效传热介质123共同耦合组成。通过高强度合金套管121能够有效地保护高效换热器122不会被损坏,以保证地下中深层岩土热交换系统1的稳定性。高效换热器122由高强度镍钢合金材料加工而成,在保证其机械强度的同时,能够有效地提升高效换热端子12的换热效率。当然,高效换热器122还可以采用其他材料加工而成,此处不以此为限。为了进一步提升换热效率,在地下中深层岩土10与高强度合金套管121及高效换热器122的空隙处,填充高 效传热介质123。该高效传热介质123由水泥、混凝剂、降失水剂、分散剂、粒化高炉矿渣等材料混合搅拌而成,并通过泵送方式使其密实的填充在高强度合金套管121、高效换热端子12与中深层岩土10的空隙中。In one embodiment, the high-efficiency heat exchange terminal 12 includes a high-strength alloy sleeve 121, a high-efficiency heat exchanger 122, and a high-efficiency heat transfer medium 123 that are coupled together. The high-strength alloy sleeve 121 can effectively protect the high-efficiency heat exchanger 122 from being damaged, so as to ensure the stability of the underground mid-deep rock-soil heat exchange system 1. The high-efficiency heat exchanger 122 is made of high-strength nickel steel alloy material, which can effectively improve the heat exchange efficiency of the high-efficiency heat exchange terminal 12 while ensuring its mechanical strength. Of course, the high-efficiency heat exchanger 122 can also be made of other materials, which is not limited here. In order to further improve the heat exchange efficiency, the gap between the deep underground rock and soil 10 and the high-strength alloy casing 121 and the high-efficiency heat exchanger 122 is filled with a high-efficiency heat transfer medium 123. The high-efficiency heat transfer medium 123 is mixed and stirred by cement, coagulant, fluid loss agent, dispersant, granulated blast furnace slag and other materials, and is densely filled in the high-strength alloy casing 121, In the gap between the high-efficiency heat exchange terminal 12 and the medium-deep rock soil 10.
进一步地,为了防止经过热交换的换热介质流经外层套管111的上部时,因地表的土壤、砂砾、水层等造成换热介质的热能快速流失,在外层套管111的上部设置有保温层13,为了能够有效地起到保温的效果,该保温层13可以为喷涂的纳米保温材料、聚氨酯发泡保温管、外层灌入聚合物保温砂浆等。Furthermore, in order to prevent the heat exchange medium that has undergone heat exchange from flowing through the upper part of the outer sleeve 111, the heat energy of the heat exchange medium is quickly lost due to the soil, gravel, water layer, etc. on the ground surface, and the upper part of the outer sleeve 111 is installed There is a thermal insulation layer 13. In order to effectively achieve the thermal insulation effect, the thermal insulation layer 13 can be sprayed nano thermal insulation materials, polyurethane foam thermal insulation pipes, and the outer layer is poured into polymer thermal insulation mortar.
在一具体实施例中,该换热介质可以是水,当然也可以是其他热传递较快的材质。In a specific embodiment, the heat exchange medium may be water, of course, it may also be other materials with faster heat transfer.
在一实施例中,地上热辅助系统2包括有对通过地下中深层岩土热交换系统1进行热交换后的换热介质进行提温的换热提温泵送装置21,以及将进行热交换后的换热介质直接输送至供热末端热循环系统3的直供装置22。通过换热提温泵送装置21及直供装置22,将地下中深层岩土10热交换系统1与供热末端热循环系统3有机的连通。In one embodiment, the above-ground heat auxiliary system 2 includes a heat exchange and temperature raising pumping device 21 that raises the temperature of the heat exchange medium after the heat exchange through the underground middle-deep rock-soil heat exchange system 1, and performs heat exchange. The latter heat exchange medium is directly transported to the direct supply device 22 of the heat circulation system 3 of the heating terminal. Through the heat exchange and temperature raising pumping device 21 and the direct supply device 22, the heat exchange system 1 of the underground middle-deep rock soil 10 and the heat supply terminal heat circulation system 3 are organically connected.
具体地,第一三通管5的第一端51连接至外层套管111的上端,第二端52连接至换热提温泵送装置21的一端,第三端53连接至供热末端热循环系统3;第二三通管6的第一端61连接至内层套管112的上端,第二端62连接至换热提温泵送装置21的一端,第三端63连接至供热末端热循环系统3。同时第一连接管7的两端分别连接至换热提温泵送装置21的另一端与第一三通管5的第三端53,第二连接管8分别连接至换热提温泵送装置21的另一端与第二三通管6的第三端63。Specifically, the first end 51 of the first three-way pipe 5 is connected to the upper end of the outer sleeve 111, the second end 52 is connected to one end of the heat exchange and temperature raising pumping device 21, and the third end 53 is connected to the heating end. Thermal circulation system 3; the first end 61 of the second three-way pipe 6 is connected to the upper end of the inner sleeve 112, the second end 62 is connected to one end of the heat exchange and temperature raising pumping device 21, and the third end 63 is connected to the supply Hot end thermal cycle system 3. At the same time, both ends of the first connecting pipe 7 are respectively connected to the other end of the heat exchange and temperature raising pumping device 21 and the third end 53 of the first three-way pipe 5, and the second connecting pipe 8 is respectively connected to the heat exchange and temperature raising pumping device. The other end of the device 21 is connected to the third end 63 of the second tee 6.
由此可知,当换热介质为水时,则第一三通管5与第一连接管7为热水管,第二三通管6与第二连接管8为冷水管。It can be seen from this that when the heat exchange medium is water, the first three-way pipe 5 and the first connecting pipe 7 are hot water pipes, and the second three-way pipe 6 and the second connecting pipe 8 are cold water pipes.
在一实施例中,第一三通管5的第三端53与第二三通管6的第三端63组成直供系统22。In one embodiment, the third end 53 of the first three-way pipe 5 and the third end 63 of the second three-way pipe 6 form a direct supply system 22.
为了能够实现在换热提温泵送装置21与直供装置22之间的转换, 如图1所示,控制系统4包括有设置于第一三通管5第二端52的第一温控装置41、设置于第二连接管8的第二温控装置45、设置于第一三通管5的第三端53的第一控制阀42、设置于第二三通管6的第二端62的第二控制阀43及设置于第二三通管6的第三端63的第三控制阀44。In order to be able to realize the conversion between the heat exchange and temperature raising pumping device 21 and the direct supply device 22, as shown in FIG. 1, the control system 4 includes a first temperature control disposed at the second end 52 of the first three-way pipe 5. Device 41, a second temperature control device 45 provided on the second connecting pipe 8, a first control valve 42 provided on the third end 53 of the first three-way pipe 5, and a second end provided on the second three-way pipe 6 The second control valve 43 of 62 and the third control valve 44 provided at the third end 63 of the second three-way pipe 6.
在一实施例中,当第一温控装置41检测到有外层套管111输送的换热介质(例如,热水)的温度小于第一预设温度时(即,低于需求温度),则控制关闭第一控制阀42和第三控制阀44,开启第二控制阀43,进而将换热介质通过第一三通管5的第二端52输送至换热提温泵送装置21,以对未达到温度需求的换热介质进行提温,并将提温后的换热介质经过第一连接管7及第一三通管5的第三端53输送至供热末端热循环系统3。同时,将经过供热末端热循环系统3经过热交换的换热介质(例如,冷水)通过第二三通管6的第三端62及第二连接管8输送至换热提温泵送装置21,进而通过第二三通管6的第二端62及第一端61输送至内层套管112,以此来实现换热介质的循环。In an embodiment, when the first temperature control device 41 detects that the temperature of the heat exchange medium (for example, hot water) conveyed by the outer sleeve 111 is lower than the first preset temperature (ie, lower than the required temperature), Then the first control valve 42 and the third control valve 44 are controlled to close, the second control valve 43 is opened, and the heat exchange medium is transported to the heat exchange and temperature raising pumping device 21 through the second end 52 of the first three-way pipe 5, The temperature of the heat exchange medium that has not reached the temperature requirement is raised, and the raised heat exchange medium is transported to the heating terminal heat circulation system 3 through the first connecting pipe 7 and the third end 53 of the first three-way pipe 5 . At the same time, the heat exchange medium (for example, cold water) that has undergone heat exchange through the heat supply terminal heat circulation system 3 is delivered to the heat exchange and temperature raising pumping device through the third end 62 of the second three-way pipe 6 and the second connecting pipe 8 21, the second end 62 and the first end 61 of the second three-way pipe 6 are then transported to the inner sleeve 112 to realize the circulation of the heat exchange medium.
当第二温控装置45检测到第二连接管8内的换热介质(例如,冷水)的温度低于第二预设温度时,说明供热末端热循环系统3对热能的需求较大,当前温度的换热介质无法满足其需求,则控制换热提温泵送装置21运行,以提高换热介质的温度;当第二温控装置45检测到第二连接管8内的换热介质(例如,冷水)的温度大于或等于第二预设温度时,说明供热末端热循环系统3对热能的需求较小,则控制关闭换热提温泵送装置21运行,以在供热末端热循环系统3对热能需求较小时,能够减少换热提温泵送装置21损耗,进而达到节省能源的目的。When the second temperature control device 45 detects that the temperature of the heat exchange medium (for example, cold water) in the second connecting pipe 8 is lower than the second preset temperature, it indicates that the heating end thermal cycle system 3 has a greater demand for heat energy. The heat exchange medium at the current temperature cannot meet its demand, control the operation of the heat exchange temperature raising pumping device 21 to increase the temperature of the heat exchange medium; when the second temperature control device 45 detects the heat exchange medium in the second connecting pipe 8 When the temperature of (for example, cold water) is greater than or equal to the second preset temperature, it indicates that the heating end thermal circulation system 3 has a small demand for heat energy, and the heat exchange and temperature raising pumping device 21 is controlled to shut down to operate at the end of the heating end. When the thermal cycle system 3 has a small demand for thermal energy, the loss of the heat exchange and temperature raising pumping device 21 can be reduced, thereby achieving the purpose of saving energy.
在一具体实施例中,换热提温泵送装置21包括蒸发器211、压缩机212及冷凝器213,具体地,换热介质经过通过第一三通管5的第二端52进入蒸发器211,经过压缩机212的压缩增温,并经由冷凝器213来对换热介质进行提温,以满足供热末端热循环系统3的需求。In a specific embodiment, the heat exchange temperature raising pumping device 21 includes an evaporator 211, a compressor 212, and a condenser 213. Specifically, the heat exchange medium enters the evaporator through the second end 52 of the first three-way pipe 5 211. After the compressor 212 is compressed to increase the temperature, the heat exchange medium is raised through the condenser 213 to meet the requirements of the heat circulation system 3 at the heating terminal.
在另一实施例中,当第一温控装置41检测到外层套管111输送 的换热介质(例如,热水)的温度大于或等于第一预设温度时(即,满足需求温度),则控制第一控制阀42与第三控制阀44开启,第二控制阀43关闭,以此通过第一三通管5的第三端53将外层套管111输送的换热介质直接输送至供热末端热循环系统3。同时将经过供热末端热循环系统3经过热交换的换热介质(例如,冷水)通过第二三通管6的第三端63及第二三通管6的第一端61输送至内层套管112,以此来实现换热介质的循环。In another embodiment, when the first temperature control device 41 detects that the temperature of the heat exchange medium (for example, hot water) conveyed by the outer sleeve 111 is greater than or equal to the first preset temperature (ie, meets the required temperature) , The first control valve 42 and the third control valve 44 are controlled to open, and the second control valve 43 is closed, so as to directly transport the heat exchange medium conveyed by the outer sleeve 111 through the third end 53 of the first three-way pipe 5 To the heat circulation system 3 at the heating end. At the same time, the heat exchange medium (for example, cold water) that has undergone heat exchange through the heating terminal heat circulation system 3 is transported to the inner layer through the third end 63 of the second three-way pipe 6 and the first end 61 of the second three-way pipe 6 The sleeve 112 is used to realize the circulation of the heat exchange medium.
在一具体实施例中,第一温控装置41和第二温控装置45可以是PLC温控器,以实现根据温度的不同,实现对控制阀及换热提温泵送装置21的控制。In a specific embodiment, the first temperature control device 41 and the second temperature control device 45 may be PLC temperature controllers, so as to realize the control of the control valve and the heat exchange temperature raising pumping device 21 according to the difference in temperature.
在一实施例中,供热末端热循环系统3包括供热管网31及末端散热设备32,末端散热设备32可以是室内暖气片、地暖管盘或风机管盘等设备。In an embodiment, the heating terminal thermal cycle system 3 includes a heating pipe network 31 and a terminal heat dissipation device 32. The terminal heat dissipation device 32 may be an indoor radiator, a floor heating tube plate, or a fan tube plate.
为了使得换热介质能够快速的输送,以满足供热末端热循环系统3的热能需求,在第一三通管5的第一端51、第二三通管6的第一端61以及第一三通管5的第三端53均设置有管道泵9,以保证换热介质流通的动能。当然,根据实际需求,例如传输距离等因素,还可以设置多个管道泵9,不以此为限。In order to enable the heat exchange medium to be transported quickly to meet the thermal energy demand of the heat circulation system 3 at the heating end, the first end 51 of the first three-way pipe 5, the first end 61 of the second three-way pipe 6 and the first The third end 53 of the three-way pipe 5 is provided with a pipeline pump 9 to ensure the kinetic energy of the heat exchange medium to circulate. Of course, according to actual requirements, such as transmission distance and other factors, multiple pipeline pumps 9 can also be provided, which is not limited to this.
本发明实施例还提供了一种中深层地下岩热型供热方法,该方法用于上述任一项所述的中深层地下岩热型供热系统,如图2所示,该供热方法包括:The embodiment of the present invention also provides a medium-deep underground rock heating type heating method, which is used in any one of the above-mentioned medium-deep underground rock heating heating systems, as shown in FIG. 2, the heating method include:
步骤S10,获取地下中深层岩土热交换系统输送的换热介质的当前温度。Step S10, acquiring the current temperature of the heat exchange medium transported by the underground middle-deep rock-soil heat exchange system.
具体地,因地理环境、供热需求等因素,使得各供热末端热循环系统对换热介质的温度需求也不相同,因此,当换热介质通过地下中深层岩土热交换系统与地下中深层岩土进行热交换后,需要对换热介质的当前温度进行检测,已根据不同的当前温度来选择相应的地上热辅助系统。Specifically, due to factors such as geographical environment, heating demand, etc., the temperature requirements of the heat exchange medium in the heat circulation systems at the heating end are different. Therefore, when the heat exchange medium passes through the underground middle-deep rock-soil heat exchange system and the underground After the deep rock and soil undergoes heat exchange, the current temperature of the heat exchange medium needs to be detected, and the corresponding above-ground heat auxiliary system has been selected according to different current temperatures.
步骤S20,判断所述当前温度是否小于预设温度,以得到判定结果。In step S20, it is judged whether the current temperature is less than a preset temperature, so as to obtain a judgment result.
具体地,当获取到换热介质的当前温度后,需要对该当前温度与 预设温度(即,第一预设温度)进行比较,已根据不同的比较结果来控制不同地上热辅助系统来输送换热介质至供热末端热循环系统。其中,预设温度为供热末端热循环系统所需的换热介质的温度,不同的供热末端热循环系统对换热介质的温度需求也不相同,因此该预设温度可根据实际需求进行设定。Specifically, when the current temperature of the heat exchange medium is obtained, the current temperature needs to be compared with the preset temperature (ie, the first preset temperature), and different above-ground heat assist systems have been controlled to deliver according to different comparison results. The heat exchange medium is transferred to the heat circulation system at the heating end. Among them, the preset temperature is the temperature of the heat exchange medium required by the heating terminal thermal cycle system. Different heating terminal thermal cycle systems have different temperature requirements for the heat exchange medium. Therefore, the preset temperature can be carried out according to actual needs. set up.
步骤S30,根据所述判定结果控制将所述换热介质通过换热提温泵送装置或直供装置传输至供热末端热循环系统。In step S30, according to the determination result, the heat exchange medium is controlled to be transferred to the heat circulation system of the heating terminal through the heat exchange temperature raising pumping device or the direct supply device.
具体地,当换热介质的当前温度小于上述预设温度时,说明换热介质的温度未能达到供热末端热循环系统所需的温度,因此需要对换热介质进行提温。进而需要将换热介质输送至换热提温泵送装置,以通过换热提温泵送装置对换热介质进行提温后,再输送至供热末端热循环系统。Specifically, when the current temperature of the heat exchange medium is less than the aforementioned preset temperature, it indicates that the temperature of the heat exchange medium has not reached the temperature required by the heat circulation system at the heating end, and therefore the temperature of the heat exchange medium needs to be raised. Furthermore, the heat exchange medium needs to be transported to the heat exchange and temperature raising pumping device, so that the heat exchange medium is raised by the heat exchange and temperature raising pumping device, and then sent to the heat circulation system at the heating end.
具体的提温方式,在上述以进行详细的说明,此处不再赘述。The specific temperature raising method is described in detail above, and will not be repeated here.
当换热介质的当前温度大于或等于预设温度时,说明换热介质的温度以满足供热末端热循环系统所需的温度,因此仅需通过直供装置将换热介质输送至供热末端热循环系统即可。When the current temperature of the heat exchange medium is greater than or equal to the preset temperature, it indicates that the temperature of the heat exchange medium meets the temperature required by the heat circulation system at the heating end, so it is only necessary to transport the heat exchange medium to the heating end through the direct supply device The thermal cycle system is sufficient.
换热提温泵送装置与直供系统之间的切换方式,上述以进行详细说明,此处不再赘述。The switching method between the heat exchange and temperature raising pumping device and the direct supply system is described in detail above, and will not be repeated here.
上述实施例的中深层地下岩热型供热系统及供热方法,通过地下中深层岩土热交换系统,使得换热介质与中深层岩土直接进行热交换,不会抽取地下水,对环境没有干扰,并且热源持续稳定,投资经济,对使用环境要求较小,便于推广。通过换热提温泵送装置与直供装置的设置,使得在中深层岩土的热量不足时,仍能够通过换热提温泵送装置对换热介质进行提温,以保证供热末端热循环系统对热能的需求,当中深层岩土的热量充足时,可通过直供系统直接将换热介质输送至供热末端热循环系统,不需在对换热介质进行提温,节省了能源的消耗。The medium-deep underground rock heating heating system and heating method of the above-mentioned embodiments use the underground medium-deep rock-soil heat exchange system to directly exchange heat with the medium-deep rock and soil, without extracting groundwater, and has no impact on the environment. Interference, and the heat source continues to be stable, the investment is economical, the use environment is small, and it is easy to promote. Through the arrangement of the heat exchange temperature raising pumping device and the direct supply device, the heat exchange medium can still be raised by the heat exchange temperature raising pumping device to ensure the heat at the end of the heat supply when the heat in the middle and deep rock soil is insufficient. The circulation system requires heat energy. When the middle and deep layers of rock and soil have sufficient heat, the heat exchange medium can be directly transported to the heating end heat circulation system through the direct supply system. There is no need to raise the temperature of the heat exchange medium, which saves energy. Consumption.
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变 化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。The above are only the preferred embodiments of the present invention, and do not limit the present invention in any form. Although the present invention has been disclosed in the preferred embodiments as above, it is not intended to limit the present invention. Anyone familiar with the profession Those skilled in the art, without departing from the scope of the technical solution of the present invention, can use the technical content disclosed above to make slight changes or modifications to equivalent embodiments with equivalent changes, but any content that does not depart from the technical solution of the present invention is based on the present invention Any simple modifications, equivalent changes and modifications made to the above embodiments are still within the scope of the technical solutions of the present invention.

Claims (10)

  1. 一种中深层地下岩热型供热系统,其特征在于,包括:至少一个地下中深层岩土热交换系统、地上热辅助系统、供热末端热循环系统及控制系统;A mid-deep underground rock heating type heating system, which is characterized by comprising: at least one underground mid-deep underground rock-soil heat exchange system, an above-ground heat auxiliary system, a heating terminal heat circulation system and a control system;
    其中,所述地下中深层岩土热交换系统用于使换热介质与地下中深层岩土进行热交换;Wherein, the underground middle-deep rock-soil heat exchange system is used for heat exchange between the heat exchange medium and the underground middle-deep rock and soil;
    所述地上热辅助系统连接于所述地下中深层岩土热交换系统,其包括:The above-ground thermal auxiliary system is connected to the underground mid-deep rock-soil heat exchange system, which includes:
    换热提温泵送装置,用于在所述热交换后的所述换热介质的温度小于第一预设温度时,对所述换热介质进行提温,并将提温后的所述换热介质输送至所述供热末端热循环系统;以及The heat exchange temperature raising pumping device is used to raise the temperature of the heat exchange medium when the temperature of the heat exchange medium after the heat exchange is lower than the first preset temperature, and to increase the temperature of the heat exchange medium. The heat exchange medium is transported to the heat circulation system of the heating terminal; and
    直供装置,用于在所述热交换后的所述换热介质的温度大于或等于所述第一预设温度时,将所述换热介质输送至所述供热末端热循环系统;A direct supply device, configured to transport the heat exchange medium to the heat supply terminal heat circulation system when the temperature of the heat exchange medium after the heat exchange is greater than or equal to the first preset temperature;
    所述供热末端热循环系统连接至所述地上热辅助系统,以将所述地上热辅助系统输送的所述换热介质进行热交换;The heat supply terminal heat circulation system is connected to the above-ground thermal auxiliary system to exchange heat with the heat exchange medium delivered by the above-ground thermal auxiliary system;
    控制系统,用于根据所述换热介质的温度与所述第一预设温度的大小关系控制所述地上热辅助系统。The control system is used for controlling the above-ground thermal auxiliary system according to the magnitude relationship between the temperature of the heat exchange medium and the first preset temperature.
  2. 根据权利要求1所述的中深层地下岩热型供热系统,其特征在于,所述地下中深层岩土热交换系统包括:双层套管和高效换热端子;The mid-deep underground rock heating heating system according to claim 1, wherein the underground mid-deep underground rock-soil heat exchange system comprises: double-layer casing and high-efficiency heat exchange terminals;
    其中,所述双层套管包括内层套管和外层套管,所述外层套管的下端连接于所述高效换热端子,所述换热介质由所述内层套管注入,并通过所述高效换热端子与地下中深层岩土进行换热后,由所述外层套管输送至所述地上热辅助系统。Wherein, the double-layer sleeve includes an inner sleeve and an outer sleeve, the lower end of the outer sleeve is connected to the high-efficiency heat exchange terminal, and the heat exchange medium is injected by the inner sleeve, After the high-efficiency heat exchange terminal exchanges heat with the underground middle and deep rock and soil, it is transported to the above-ground thermal auxiliary system by the outer casing.
  3. 根据权利要求2所述的中深层地下岩热型供热系统,其特征在于,所述高效换热端子包括:高强度合金套管、高效换热器和高效传热介质;The mid-deep underground rock heating type heating system according to claim 2, wherein the high-efficiency heat exchange terminal comprises: a high-strength alloy sleeve, a high-efficiency heat exchanger and a high-efficiency heat transfer medium;
    其中,所述高强度合金套管连接至所述高效换热器,所述高效传热介质填充于所述高强度合金套管和所述高效换热器与所述地下中深层岩土之间的缝隙处,以增大所述地下中深层岩土与所述换热介质 的换热效率。Wherein, the high-strength alloy sleeve is connected to the high-efficiency heat exchanger, and the high-efficiency heat transfer medium is filled between the high-strength alloy sleeve and the high-efficiency heat exchanger and the underground medium and deep rock soil To increase the heat exchange efficiency between the deep underground rock and soil and the heat exchange medium.
  4. 根据权利要求2所述的中深层地下岩热型供热系统,其特征在于,所述外层套管的上部的外侧还设置有保温层,以防止所述换热介质通过所述外层套管流经地表时热能的快速流失。The mid-deep underground rock heating type heating system according to claim 2, characterized in that an insulation layer is further provided on the outer side of the upper part of the outer casing to prevent the heat exchange medium from passing through the outer casing The rapid loss of heat energy as the tube flows across the ground.
  5. 根据权利要求2所述的中深层地下岩热型供热系统,其特征在于,还包括,第一三通管,其第一端连接至所述外层套管的上端,第二端连接至所述换热提温泵送装置一端,第三端连接至所述末端热循环系统;以及The mid-deep underground rock heating type heating system according to claim 2, further comprising a first three-way pipe, the first end of which is connected to the upper end of the outer casing, and the second end is connected to One end of the heat exchange and temperature raising pumping device and the third end are connected to the end thermal circulation system; and
    第二三通管,其第一端连接至所述内层套管的上端,第二端连接至所述换热提温泵送装置所述一端,第三端连接至所述末端热循环系统;A second three-way pipe, the first end of which is connected to the upper end of the inner sleeve, the second end of which is connected to the one end of the heat exchange and temperature raising pumping device, and the third end of which is connected to the end thermal circulation system ;
    所述换热提温泵送装置的另一端通过第一连接管连接至所述所述第一三通管的第三端,所述另一端通过第二连接管连接至所述第二三通管的第三端。The other end of the heat exchange and temperature raising pumping device is connected to the third end of the first tee through a first connecting pipe, and the other end is connected to the second tee through a second connecting pipe The third end of the tube.
  6. 根据权利要求5所述的中深层地下岩热型供热系统,其特征在于,所述控制系统包括,第一温控装置、第一控制阀、第二控制阀、第三控制阀及第二温控装置;The mid-deep underground rock heating type heating system according to claim 5, wherein the control system comprises a first temperature control device, a first control valve, a second control valve, a third control valve, and a second control valve. Temperature control device;
    其中,所述第一温控装置设置于所述第一三通管的第一端,所述第一控制阀设置于所述所述第一三通管的第三端,所述第二控制阀设置于所述第二三通管的第二端,所述第三控制阀设置于所述第二三通管的第三端,所述第二温控装置设置于所述第二连接管;Wherein, the first temperature control device is arranged at the first end of the first three-way pipe, the first control valve is arranged at the third end of the first three-way pipe, and the second control valve is arranged at the third end of the first three-way pipe. The valve is arranged at the second end of the second three-way pipe, the third control valve is arranged at the third end of the second three-way pipe, and the second temperature control device is arranged at the second connecting pipe ;
    所述第二温控装置根据所述第二连接管内的所述换热介质的温度与第二预设温度控制所述换热提温泵送装置运行。The second temperature control device controls the operation of the heat exchange temperature raising pumping device according to the temperature of the heat exchange medium in the second connecting pipe and a second preset temperature.
  7. 根据权利要求5所述的中深层地下岩热型供热系统,其特征在于,在所述第一三通管的第一端、所述第二三通管的第一端以及所述第一三通管的第三端设置有管道泵,以为所述换热介质的输送提供动能。The medium-deep underground rock heating type heating system according to claim 5, wherein the first end of the first three-way pipe, the first end of the second three-way pipe, and the first A pipeline pump is provided at the third end of the three-way pipe to provide kinetic energy for the transportation of the heat exchange medium.
  8. 根据权利要求1所述的中深层地下岩热型供热系统,其特征在于,The medium-deep underground rock heating heating system according to claim 1, characterized in that:
    所述换热提温泵送装置包括:蒸发器、压缩机和冷凝器。The heat exchange and temperature raising pumping device includes an evaporator, a compressor and a condenser.
  9. 一种中深层地下岩热型供热方法,其特征在于,用于如权利要求1所述的中深层地下岩热型供热系统,该方法包括:A medium-deep underground rock-heated heating method, characterized in that it is used in the medium-deep underground rock-heated heating system according to claim 1, and the method comprises:
    获取地下中深层岩土热交换系统输送的换热介质的当前温度;Obtain the current temperature of the heat exchange medium delivered by the underground mid-deep rock-soil heat exchange system;
    判断所述当前温度是否小于预设温度,以得到判定结果;Judging whether the current temperature is less than a preset temperature to obtain a judgment result;
    根据所述判定结果控制将所述换热介质通过换热提温泵送装置或直供装置传输至供热末端热循环系统。According to the determination result, the heat exchange medium is controlled to be transferred to the heat circulation system of the heating terminal through a heat exchange temperature raising pumping device or a direct supply device.
  10. 根据权利要求9所述的中深层地下岩热型供热方法,其特征在于,所述根据所述判定结果控制将所述换热介质通过换热提温泵送装置或直供装置传输至供热末端热循环系统的步骤,包括:The medium-deep underground rock heating type heating method according to claim 9, characterized in that, according to the determination result, the heat exchange medium is controlled to be transmitted to the heat supply device through a heat exchange temperature raising pumping device or a direct supply device. The steps of the hot end thermal cycle system include:
    当所述当前温度小于所述预设温度时,将所述换热介质输送至所述换热提温泵送装置,以通过所述换热提温泵送装置对所述换热介质提温后,将所述换热介质输送至所述供热末端热循环系统;When the current temperature is less than the preset temperature, the heat exchange medium is delivered to the heat exchange and temperature raising pumping device to raise the temperature of the heat exchange medium through the heat exchange and temperature raising pumping device After that, the heat exchange medium is transported to the heat-supply terminal thermal cycle system;
    当所述当前温度大于或等于所述预设温度时,将所述换热介质输送至所述直供装置,以通过所述直供装置将所述换热介质输送至所述供热末端热循环系统。When the current temperature is greater than or equal to the preset temperature, the heat exchange medium is delivered to the direct supply device, so that the heat exchange medium is delivered to the heat supply terminal through the direct supply device. Circulatory system.
PCT/CN2020/133206 2019-10-25 2020-12-02 Mid-depth underground petrothermal heat supply system, and heat supplying method WO2021078306A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911027693.2 2019-10-25
CN201911027693.2A CN110631271A (en) 2019-10-25 2019-10-25 Medium-deep underground rock heat type heat supply system and heat supply method

Publications (1)

Publication Number Publication Date
WO2021078306A1 true WO2021078306A1 (en) 2021-04-29

Family

ID=68977892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133206 WO2021078306A1 (en) 2019-10-25 2020-12-02 Mid-depth underground petrothermal heat supply system, and heat supplying method

Country Status (2)

Country Link
CN (1) CN110631271A (en)
WO (1) WO2021078306A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110631271A (en) * 2019-10-25 2019-12-31 甘肃省建材科研设计院有限责任公司 Medium-deep underground rock heat type heat supply system and heat supply method
CN111380237A (en) * 2020-03-27 2020-07-07 甘肃省建材科研设计院有限责任公司 Heat exchange device for heat transfer medium and underground medium-deep rock soil
CN111594913B (en) * 2020-05-29 2021-09-14 河南城建学院 Clean heating system of middle-deep layer geothermal energy interference-free
CN112182849B (en) * 2020-09-04 2022-04-19 中国核动力研究设计院 Method and device for analyzing heat exchange after re-submerging criticality

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001183030A (en) * 1999-10-12 2001-07-06 Kubota Corp Geothermal sampling testing device
CN2679599Y (en) * 2004-03-08 2005-02-16 徐生恒 Air conditioning system using heat pump and utilizing ground as heat source
JP2005048972A (en) * 2003-07-29 2005-02-24 Nippon Steel Corp Underground heat utilizing system
CN101581517A (en) * 2009-06-16 2009-11-18 天津大学 Heat pump system of single-loop geothermal underground heat exchanger
CN107514838A (en) * 2017-09-29 2017-12-26 上海中金能源投资有限公司 Mid-deep strata geothermal-source heat pump system
CN207113273U (en) * 2017-07-10 2018-03-16 陕西德龙地热开发有限公司 A kind of mid-deep strata geothermal energy direct heating system
CN207299110U (en) * 2017-05-26 2018-05-01 山东陆海石油技术股份有限公司 Heat exchange heating system in mid-deep strata geothermal well
CN109297077A (en) * 2018-09-03 2019-02-01 西安石油大学 A kind of hot heating system cascade utilization of mid-deep strata interference-free rock and monitoring system and method
CN109869935A (en) * 2019-03-07 2019-06-11 河北工程大学 A kind of geothermal energy combined running system
CN110631271A (en) * 2019-10-25 2019-12-31 甘肃省建材科研设计院有限责任公司 Medium-deep underground rock heat type heat supply system and heat supply method
CN210663425U (en) * 2019-10-25 2020-06-02 甘肃省建材科研设计院有限责任公司 Medium-deep underground rock heat type heating system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001183030A (en) * 1999-10-12 2001-07-06 Kubota Corp Geothermal sampling testing device
JP2005048972A (en) * 2003-07-29 2005-02-24 Nippon Steel Corp Underground heat utilizing system
CN2679599Y (en) * 2004-03-08 2005-02-16 徐生恒 Air conditioning system using heat pump and utilizing ground as heat source
CN101581517A (en) * 2009-06-16 2009-11-18 天津大学 Heat pump system of single-loop geothermal underground heat exchanger
CN207299110U (en) * 2017-05-26 2018-05-01 山东陆海石油技术股份有限公司 Heat exchange heating system in mid-deep strata geothermal well
CN207113273U (en) * 2017-07-10 2018-03-16 陕西德龙地热开发有限公司 A kind of mid-deep strata geothermal energy direct heating system
CN107514838A (en) * 2017-09-29 2017-12-26 上海中金能源投资有限公司 Mid-deep strata geothermal-source heat pump system
CN109297077A (en) * 2018-09-03 2019-02-01 西安石油大学 A kind of hot heating system cascade utilization of mid-deep strata interference-free rock and monitoring system and method
CN109869935A (en) * 2019-03-07 2019-06-11 河北工程大学 A kind of geothermal energy combined running system
CN110631271A (en) * 2019-10-25 2019-12-31 甘肃省建材科研设计院有限责任公司 Medium-deep underground rock heat type heat supply system and heat supply method
CN210663425U (en) * 2019-10-25 2020-06-02 甘肃省建材科研设计院有限责任公司 Medium-deep underground rock heat type heating system

Also Published As

Publication number Publication date
CN110631271A (en) 2019-12-31

Similar Documents

Publication Publication Date Title
WO2021078306A1 (en) Mid-depth underground petrothermal heat supply system, and heat supplying method
CN107763712B (en) Individual well underground heat combined solar heating system
CN109869935B (en) Geothermal energy composite operation system
CN103453571A (en) Closed circulation heating system
US20130037236A1 (en) Geothermal facility with thermal recharging of the subsoil
FI130172B (en) Geothermal heat exchanger, geothermal heat arrangement and method for charging thermal energy into ground
CN201028893Y (en) Ground source heat pump air conditioning system
CN111981563A (en) Metal mine closed pit mine geothermal energy buried pipe heating and refrigerating system
CN210663425U (en) Medium-deep underground rock heat type heating system
CN116446939B (en) Ground refrigeration passes through complicated deep stratum defeated cold mine cooling system
CN108709227A (en) Room-separated geothermal heating device and installation method
CN102506510B (en) Heating heating process for absorbing geothermal heat by utilizing heat pipes
NL2031422B1 (en) Middle-deep underground rock-heat type heating system and heating method
CN202203915U (en) Cock oven top exhaust heat recovery system
CN210317394U (en) Shaft anti-freezing system based on waste heat water utilization
CN210602306U (en) Geothermal energy well structure
CN209840335U (en) Mine water waste heat extraction and utilization system
CN103470224B (en) The device and method of circulating freezing resistance in-situ broken oil shale
CN204225195U (en) Adopt the central air conditioner system diafiltration water fetching device of syphon drainage
CN207778866U (en) A kind of horizontal heat exchange and the ground-source heat pump system being combined that vertically exchanges heat
CN201145372Y (en) Ground source heat pump central air conditioner
CN215216403U (en) Many thing networking trigeminy supplies heat exchange station
CN213514213U (en) Shallow geothermal energy direct coupling cooling system of high-rise building
CN217844135U (en) Air conditioning system for realizing heating and refrigeration by using waste mine water source and cooling tower
CN205300034U (en) Horizontal pipe network of single tube hot -well based on shallow geothermal energy can heat pump system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20880086

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20880086

Country of ref document: EP

Kind code of ref document: A1