[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021075940A1 - 리튬 이차전지 양극활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지 - Google Patents

리튬 이차전지 양극활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2021075940A1
WO2021075940A1 PCT/KR2020/014280 KR2020014280W WO2021075940A1 WO 2021075940 A1 WO2021075940 A1 WO 2021075940A1 KR 2020014280 W KR2020014280 W KR 2020014280W WO 2021075940 A1 WO2021075940 A1 WO 2021075940A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
cathode active
positive electrode
secondary batteries
lithium
Prior art date
Application number
PCT/KR2020/014280
Other languages
English (en)
French (fr)
Inventor
최문호
허경재
최승현
양아름
강주경
Original Assignee
주식회사 에코프로비엠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200078294A external-priority patent/KR102481032B1/ko
Application filed by 주식회사 에코프로비엠 filed Critical 주식회사 에코프로비엠
Priority to US17/754,986 priority Critical patent/US20220411282A1/en
Priority to EP20877964.5A priority patent/EP4047691A4/en
Priority to JP2022523072A priority patent/JP7408794B2/ja
Priority to CN202080073047.4A priority patent/CN114556628B/zh
Publication of WO2021075940A1 publication Critical patent/WO2021075940A1/ko
Priority to JP2023215143A priority patent/JP2024045104A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/02Amorphous compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material containing an overlithiated layered oxide (OLO), and more particularly, a positive electrode active material for a lithium secondary battery having an amorphous glass oxide coating layer formed on the surface thereof, a method for manufacturing the same, and comprising the same. It relates to a lithium secondary battery.
  • OLO overlithiated layered oxide
  • the material that has recently been spotlighted as a cathode active material is lithium nickel manganese cobalt oxide Li(Ni x Co y Mn z )O 2 (where x, y, z are the atomic fractions of each independent oxide composition element, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, and 0 ⁇ x+y+z ⁇ 1).
  • This cathode active material has an advantage of high capacity because it is used at a higher voltage than LiCoO 2 , which has been actively studied and used as a cathode active material so far, and has an advantage of low cost because the content of Co is relatively small.
  • it has disadvantages of poor rate capability and longevity at high temperatures.
  • An object of the present invention is to improve the lithium ion conductivity of a positive electrode active material including an excess lithium layered oxide, and to reduce resistance to reduce overvoltage generated during charging and discharging, and to improve high rate characteristics.
  • the positive electrode active material according to an embodiment of the present invention includes an overlithiated layered oxide (OLO) represented by the following formula (1).
  • OLO overlithiated layered oxide
  • M1 is Na, K, Mg, Al, Fe, Cr, Y, Sn, Ti, B, P, Zr, Ru, Nb, W, Ba, Sr, La, Ga, Mg, Gd, Sm, Ca, Ce, Fe, Al, Ta, Mo, Sc, V, Zn, Cu, In, S, B, Ge, Si, and at least any one or more selected from Bi).
  • the lithium-excessive layered oxide may be a solid solution phase in which Li 2 MnO 3 having a monoclinic structure and LiMO 2 having a rhombohedral structure are mixed, and M is Ni, Co, Mn, It may be at least one or more selected from M1.
  • the lithium-excessive layered oxide is Li 2 MnO 3 in the 4.4 V region of the initial charge/discharge profile.
  • the flattened section (plateau) may appear.
  • the lithium-excessive layered oxide according to an embodiment of the present invention is Li 2 MnO 3 up to 4.4 V compared to lithium during the initial charging process
  • the phase is electrochemically inactive, Li 2 MnO 3 above 4.4 V In the phase, a reaction in which lithium is desorbed and oxygen evolution may occur.
  • the ratio of the number of moles of lithium to the total number of moles of metal contained in Ni, Co, or Mn among the lithium excess layered oxide represented by Formula 1 (Li/Ni+Co+Mn) is 1.1 to 1.6, 1.2 to 1.6, 1.3 to 1.6 , Or 1.4 to 1.5.
  • the value of x may be greater than 0 0.5, greater than 0 0.4, greater than 0 0.3, greater than 0 0.2, or greater than 0 0.1.
  • the value of y may be greater than 0 0.5, greater than 0 0.4, greater than 0 0.3, greater than 0 0.2, or 0.1 to 0.2.
  • M1 is Na, K, Mg, Al, Fe, Cr, Y, Sn, Ti, B, P, Zr, Ru, Nb, W, Ba, Sr, La, Ga, Mg, Gd, Sm, As at least one or more materials selected from Ca, Ce, Fe, Al, Ta, Mo, Sc, V, Zn, Nb, Cu, In, S, B, Ge, Si, and Bi, as an example, the lithium excess layer It may be a dopant that may be included in the upper oxide. More preferably, it may be at least any one or more selected from Ba, Sr, B, P, Y, Zr, Nb, Mo, Ta, and W, which can be more suitably adjusted to a specific range by growing the size of the primary particles. , Most preferably, it may be at least any one or more selected from Nb and Ta.
  • the ratio of the number of moles of Mn to the total number of moles of Ni (Mn/Ni) may be 1 to 4.5, 1 to 4, 2 to 4.5, 2 to 4, 3 to 4.5, and 3 to 4.
  • the oxide of the present invention has a layered structure, and may have a layered structure in which a lithium atom layer and a metal atom layer of Ni, Co, Mn, or M1 are alternately overlapped via an oxygen atom layer.
  • the layered surface of the positive electrode active material may have crystal orientation in a direction perpendicular to the C-axis. In this case, mobility of lithium ions contained in the positive electrode active material is improved, and structural stability of the positive electrode active material is improved. As a result, when the battery is applied, initial capacity characteristics, output characteristics, resistance characteristics, and long-term life characteristics may be improved.
  • the positive electrode active material according to the present invention is an oxide rich in lithium and manganese, and by forming an amorphous glass oxide coating layer on the surface, Mn elution is suppressed, and rock-salt from spinel starting from the surface during cycling. By suppressing the lattice change to the phase, the voltage drop can be suppressed and the lifespan can be improved.
  • the amorphous glass oxide coating layer is coated on the surface of the lithium-excessive layered oxide particles, the problem of non-uniformity when coated in a crystalline state can be solved, and the movement of lithium ions can be further improved.
  • the amorphous glass oxide coating layer is coated on the surface of the lithium-excessive layered oxide particles, it is possible to reduce the overvoltage generated during charging and discharging in the lithium-excessive layered oxide, and improve high rate characteristics.
  • the amorphous glass oxide coating layer may include at least one or more elements selected from Si, B, P, and Ge.
  • the amorphous glass oxide coating layer may include a material represented by Formula 2 below.
  • M2 may be at least one or more selected from Si, B, P, and Ge.
  • the amorphous glass oxide coating layer may be included in an amount of 0.05 to 5 mol%, or 0.1 to 3 mol%, or 0.1 to 2 mol%, compared to the lithium excess layered oxide.
  • the amorphous glass oxide coating layer may be uniformly or non-uniformly included on the surface of the lithium-excessive layered oxide represented by Formula 1 above.
  • amorphous glass oxide on the surface of an excess lithium layered oxide, spreadability is better than that of other oxide-based coatings, and thus uniform coating on the surface may be implemented.
  • the amorphous glass oxide coating layer may be formed on the surface of each of the secondary particles or the primary particles.
  • the amorphous glass oxide coating layer may form a concentration gradient portion of an element included in the amorphous glass oxide coating layer on the surface of the secondary particles or the primary particles.
  • the thickness of the amorphous glass oxide coating layer may be 1 to 100 nm, more preferably 10 to 100 nm. If it is thinner than the coating layer, the improvement effect may be insignificant, and if it is thick, the resistance to lithium ions may increase.
  • the amorphous glass oxide coating layer satisfies the above range, the Mn elution of the Mn-rich cathode active material of the present invention is suppressed, and the lattice from the spinel to the rock-salt phase starting from the surface during cycling By suppressing the change, the voltage drop can be suppressed and the lifespan can be improved.
  • primary particles are aggregated to form secondary particles, and primary particles having a size of 300 nm to 10 ⁇ m are 50 to 100 volumes in the primary particles constituting the secondary particles. %, 70 to 100% by volume, or 100% by volume.
  • the primary particles having a size of more than 500 nm and 10 ⁇ m may be adjusted to 50 to 100% by volume, 70 to 100% by volume, or 100% by volume among the primary particles constituting the secondary particles. I can.
  • primary particles having a size of 1 ⁇ m to 10 ⁇ m may be adjusted to 50 to 100% by volume, 70 to 100% by volume, or 100% by volume relative to the total lithium-excessive layered oxide. .
  • primary particles having a size exceeding 1 ⁇ m may be adjusted to 50 to 100% by volume, 70 to 100% by volume, or 100% by volume relative to the total lithium-excessive layered oxide.
  • primary particles having a size of 2 ⁇ m or more may be adjusted to 50 to 100% by volume or less than 50 to 70% by volume of the total lithium-excessive layered oxide.
  • the size of the primary particles is adjusted, so that the number of primary particles in the secondary particles is 1 to 1,000, 1 to 100, 1 to 10, or one primary particle. Can be done.
  • the size of the primary particle means the longest length of the particle.
  • the average particle diameter of the primary particles of the positive electrode active material may be adjusted to more than 500 nm 10 nm, or 1 ⁇ to 10 nm.
  • a voltage decay phenomenon that occurs during life cycling is a problem, which is due to a phase transition from a spinel-like structure to a cubic due to transition metal movement during life cycling.
  • the present invention can control the size of the primary particles in order to solve this problem and improve the density of the positive electrode active material.
  • the positive electrode active material according to an embodiment of the present invention may have an average particle diameter of the secondary particles of 2 to 20 ⁇ m, more preferably 10 to 20 ⁇ m, and more preferably 14 to 16 ⁇ m.
  • the average particle diameter may be defined as a particle diameter corresponding to 50% of the cumulative volume in the particle diameter distribution curve of the particles.
  • the average particle diameter can be measured using, for example, a laser diffraction method.
  • the size of the primary particles in the positive electrode active material step is increased than the size of the primary particles in the precursor step in the manufacturing process conditions according to the following examples.
  • the ratio of (the size of the primary particles of the positive electrode active material with a dopant acting as a flux) / (the size of the primary particles of the positive electrode active material with the dopant acting as a flux) is 1 Or more, more preferably 30 or more, and most preferably 50 or more.
  • the M1 of Formula 1 is a dopant that acts as a flux for growing the primary particles, and may be doped in a lattice structure.
  • the meaning of acting as a flux means that it can act as a dopant to increase the size of the primary particles by growth between the primary particles.
  • the problem of voltage drop occurring in the polycrystal may be improved.
  • the half width (FWHM(deg.)) of I 104 may be 0.1 to 0.25 (deg.), but the value varies depending on the content of manganese. can do. Accordingly, by adjusting the reduction rate of the half-width through the addition and content control of the dopant M1, problems of life and voltage drop can be solved.
  • the present invention controls to increase the primary particle size in the lithium-excessive layered oxide, and when fired under the same conditions, the half width (FWHM (deg.)) of I (104) at the time of XRD analysis does not contain M1 when it is fired under the same conditions.
  • M1 is included compared to Comparative Example, it may be adjusted to decrease to 5 to 50%, or 5 to 40%, or 5 to 30%, 5 to 20%, 10 to 25%, or 10 to 20%.
  • a cathode active material according to an embodiment of the present invention may include a material represented by the following formula (3).
  • the material represented by Formula 3 below may be a material produced by reacting a dopant acting as a flux inducing growth between primary particles with lithium.
  • the 0 ⁇ a ⁇ 8, 0 ⁇ b ⁇ 15, and M3 is Na, K, Mg, Al, Fe, Cr, Y, Sn, Ti, B, P, Zr, Ru, Nb, W, Ba, Sr , La, Ga, Mg, Gd, Sm, Ca, Ce, Fe, Al, Ta, Mo, Sc, V, Zn, Cu, In, S, B, Ge, at least one selected from Si and Bi)
  • the M1 of Formula 1 may be included in 0.001 to 10 mol%, 0.01 to 5 mol%, 0.01 to 3 mol%, 0.1 to 2 mol%, and 0.1 to 1 mol% relative to the total number of moles of metal constituting the positive electrode active material. If the dopant M1 included as a flux inducing the growth of primary particles exceeds the above range, the lithium composite oxide is made excessively and may cause a decrease in capacity and efficiency, and if it is less than the above range, the primary particles are grown. The effect of letting go may be insignificant.
  • the energy density per volume (Wh/L) of the positive electrode active material according to an embodiment of the present invention may be 2.7 to 4.0 (Wh/L).
  • the energy density per volume (Wh/L) of the positive electrode active material according to an embodiment of the present invention may increase in a ratio of 5 to 30% compared to a material not containing M1.
  • the positive electrode active material according to the present invention is controlled to increase the primary particle size in the lithium-excessive layered oxide, whereby the energy density per volume (Wh/L) is 5 to 25% when M1 is included compared to Comparative Example in which M1 is not included It can be adjusted to increase in a ratio of 5 to 20%, 10 to 25%, or 10 to 20%.
  • the filling density (g/cc) of the positive electrode active material adjusted through the addition and content control of the dopant M1 may be 2.0 to 4.0 (g/cc).
  • the specific surface area (BET, m 2 /g) of the positive electrode active material adjusted through the addition and content control of the dopant M1 may be 0.1 to 1.5 (BET, m 2 /g).
  • the specific surface area (BET, m 2 /g) is 20 to 80% when M1 is included compared to the comparative example in which M1 is not included. It can be adjusted to decrease in proportion.
  • the present invention induces the growth of the primary particles to control the portion corresponding to the single crystal structure of the positive electrode active material, thereby increasing the energy density per volume and reducing the specific surface area, thereby reducing the life span and voltage drop as the surface portion of the positive electrode active material decreases.
  • inducing the growth of the primary particles includes all concepts of nucleation & ostwald ripening & particle aggregation.
  • a method of manufacturing a positive electrode active material according to an embodiment of the present invention includes a first step of preparing a positive electrode active material precursor.
  • the precursor may be performed by co-precipitation, spray-drying, solid phase method, wet pulverization, fluidized bed drying method, vibration drying method, but is not particularly limited thereto.
  • a second step of forming a lithium composite oxide by mixing and sintering a lithium compound in the positive electrode active material precursor.
  • the compound containing M1 of Formula 1 may be further mixed and fired.
  • the temperature of the firing step may be 750 to 950 °C, 800 to 950 °C, and 850 to 950 °C.
  • the coating precursor includes a third step of forming an amorphous glass oxide coating layer by mixing the material formed in the second step and the coating precursor.
  • the amorphous glass oxide coating layer may be uniformly applied on the surface of the lithium-excessive layered oxide through the following process.
  • the coating precursor may be performed by a dry mixing process.
  • the coating precursor may be performed by a wet mixing process, and as an example, the coating precursor may be dispersed or dissolved in water, alcohol, or a dispersion solution, and mixed with the material formed in the second step. .
  • the third step may include mixing the material formed in the second step and the coating precursor, maintaining at 250 to 700° C. for 7 to 12 hours, and then performing furnace cooling.
  • the application temperature may vary depending on the type of the coating precursor. As an example, when forming a coating layer containing B, it may be 250 to 500°C, or 250 to 400°C, and when forming a coating layer containing P, it may be 500 to 700°C, or 550 to 650°C.
  • the coating precursor includes B or P in the method for manufacturing a cathode active material according to an embodiment of the present invention
  • B 2 O 3 , P 2 O 5 , H 3 BO 3 , NH 4 HPO 4 , NH 4 H 2 PO 4 , (NH 4 ) 2 HPO 4 , or H 3 PO 4 It may be at least one or more selected from. Further, more preferably, H 3 BO 3 , NH 4 HPO 4 may be used, but it is not particularly limited as long as an amorphous glass oxide coating layer can be formed.
  • the step of roasting the precursor prepared at 300 to 600° C. may be further included.
  • the step of washing and drying the fired material with water may be further included.
  • the step of washing and drying the fired material with water may be further included.
  • a secondary battery according to an embodiment of the present invention includes the positive electrode active material.
  • the positive electrode active material is as described above, and the binder, the conductive material, and the solvent are not particularly limited as long as they can be used on the positive electrode current collector of the secondary battery.
  • the lithium secondary battery may specifically include a positive electrode, a negative electrode positioned opposite the positive electrode, and an electrolyte between the positive electrode and the negative electrode, but is not particularly limited as long as it can be used as a secondary battery.
  • the present invention improves the lithium ion conductivity in the lithium-excessive layered oxide and reduces the resistance to reduce overvoltage generated during charging and discharging, and improves high rate characteristics.
  • FIG. 2 shows EDS measurement results of a positive electrode active material according to an embodiment of the present invention.
  • FIG. 4 shows EDS measurement results of a positive electrode active material according to an embodiment of the present invention.
  • FIG. 5 shows EDS measurement results of a positive electrode active material according to an embodiment of the present invention.
  • FIG. 6 shows a charge/discharge graph according to an embodiment of the present invention and a comparison.
  • the 7 CO 3 precursor was synthesized.
  • a 2.5 M aqueous solution of complex transition metal sulfuric acid mixed with NiSO 4 ⁇ 6H 2 O, CoSO 4 ⁇ 7H 2 O, and MnSO 4 ⁇ H 2 O in a 90 L reactor at a molar ratio of 20:10:70 25 wt% of NaCO 3 and 28 wt% of NH 4 OH were added.
  • the pH in the reactor was maintained at 8.0 to 11.0 and the temperature at 45 to 50°C.
  • N 2 which is an inert gas, was introduced into the reactor so that the prepared precursor was not oxidized.
  • the prepared precursor was maintained in an atmosphere of O 2 or Air (50 L/min) in a Box kiln, heated to 2° C. per minute, maintained at 550° C. for 1 to 6 hours, and then furnace cooled.
  • LiOH or Li 2 CO 3 was weighed so that the roasted precursor had a Li/(Ni+Co+Mn) ratio of 1.45, and 0.6 mol% of Nb 2 O 5 was weighed as a flux dopant, and a mixer (Manual mixer, MM).
  • the mixed product was kept in an atmosphere of O 2 or Air (50L/min) in a Box sintering furnace, heated to 2 °C per minute, kept at a sintering temperature of 900 °C for 7 to 12 hours, and then furnace cooled to prepare a positive electrode active material. .
  • the mixed product was kept in an atmosphere of O 2 or Air (50L/min) in a Box sintering furnace, heated to 4.4 °C per minute, maintained at a sintering temperature of 300 °C for 7 to 12 hours, and then furnace cooled to prepare a positive electrode active material. .
  • the cathode active material was prepared in the same manner as in Example 1, except that 0.5 mol% of NH 4 HPO 4 was mixed as a surface treatment dopant in the coating step of Example 1, and the baking temperature in the coating step was calcined at 600°C. Was prepared.
  • Example 1 a positive electrode active material was prepared in the same manner as in Example 1, except that the flux dopant was not mixed and the coating step was not performed.
  • a positive electrode active material was prepared in the same manner as in Example 1, except that the coating step was not performed in Example 1.
  • a positive electrode active material was prepared in the same manner as in Example 1, except that the flux dopant was not mixed in Example 1.
  • a positive electrode slurry was prepared by dispersing 90% by weight of the positive electrode active material, 5.5% by weight of carbon black, and 4.5% by weight of a PVDF binder according to Examples and Comparative Examples in 30 g of N-methyl-2 pyrrolidone (NMP).
  • NMP N-methyl-2 pyrrolidone
  • the positive electrode slurry was applied and dried on an aluminum (Al) thin film, which is a positive electrode current collector having a thickness of 15 ⁇ m, and then roll pressed to prepare a positive electrode.
  • the loading level of the positive electrode was 5.5 mg/cm 2 and the electrode density was 2.3 g/cm 3 .
  • a battery assembly was formed by interposing a separator made of a porous polyethylene (PE) film between the positive electrode and the negative electrode, and the electrolyte was injected to prepare a lithium secondary battery (coin cell).
  • PE porous polyethylene
  • Nb which is a flux dopant that induces particle growth
  • the coating layer including B is uniformly distributed on the surface of the positive electrode active material according to Example 1.
  • the coating layer including P is uniformly distributed on the surface of the positive electrode active material according to Example 2.
  • the rate characteristic of the Example is improved by about 10% or more compared to the Comparative Example. This is because the resistance is reduced by the amorphous glass oxide coating layer.
  • Comparative Example 3 in which the amorphous glass oxide coating layer was formed compared to Comparative Example 1 was improved by about 10% or more.
  • the capacity retention rate according to the cycle was 80% or more. This is because the resistance is reduced by the amorphous glass oxide coating layer, Mn elution is suppressed, and the lifespan is improved by suppressing the phase change from spinel to rock salt phase starting from the surface during cycling.
  • a voltage maintenance rate of 97% was shown. This is because the phase change of the lithium-excessive layered oxide generated during cycling was suppressed due to the amorphous glass oxide coating layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 리튬 과잉 층상계 산화물(overlithiated layered oxide, OLO)을 포함하는 양극활물질에 관한 것으로서, 더욱 상세하게는 하기 화학식 1로 표시되는 리튬 과잉 층상계 산화물(overlithiated layered oxide, OLO); 및 상기 화학식 1로 표시되는 리튬 과잉 층상계 산화물 표면에 비정질 유리 산화물의 비정질 유리 산화물 코팅층;을 포함한다. [화학식 1] Li 2MnO 3·(1-r)Li aNi xCo yMn zM1 1-(x+y+z)O 2 (상기 화학식 1에서 0<r≤0.6, 0<a≤1, 0≤x≤1, 0≤y<1, 0≤z<1, 및 0<x+y+z≤1 이고, 상기 M1은 Na, K, Mg, Al, Fe, Cr, Y, Sn, Ti, B, P, Zr, Ru, Nb, W, Ba, Sr,La, Ga, Mg, Gd, Sm, Ca, Ce, Fe, Al, Ta, Mo, Sc, V, Zn, Cu, In, S, B, Ge, Si 및 Bi 중에서 선택되는 적어도 어느 하나 이상임).

Description

리튬 이차전지 양극활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
본 발명은 리튬 과잉 층상계 산화물(overlithiated layered oxide, OLO)을 포함하는 양극활물질에 관한 것으로서, 더욱 상세하게는 표면에 비정질 유리 산화물 코팅층이 형성된 리튬 이차전지 양극활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지에 관한 것이다.
스마트폰, MP3 플레이어, 태블릿 PC와 같은 휴대용 모바일 전자 기기의 발전으로, 전기 에너지를 저장할 수 있는 이차전지에 대한 수요가 폭발적으로 증가하고 있다. 특히, 전기 자동차, 중대형 에너지 저장 시스템, 및 고에너지 밀도가 요구되는 휴대 기기의 등장으로, 리튬 이차전지에 대한 수요가 증가하고 있는 실정이다.
양극활물질로 최근 가장 각광받고 있는 물질은 리튬 니켈망간코발트 산화물 Li(Ni xCo yMn z)O 2(이때, 상기 x, y, z는 각각 독립적인 산화물 조성 원소들의 원자분율로서, 0<x≤1, 0<y≤1, 0<z≤1, 및 0<x+y+z≤1)이다. 이 양극활물질 재료는 그동안 양극활물질로서 활발히 연구되고 사용되어 왔던 LiCoO 2보다 고전압에서 사용되기 때문에 고용량을 내는 장점이 있고, Co 함량이 상대적으로 적기 때문에 저가격이라는 장점이 있다. 그러나 고율 특성(rate capability) 및 고온에서의 수명특성이 좋지 않은 단점을 갖고 있다.
이에, 기존의 Li(Ni xCo yMn z)O 2를 능가하여 높은 가역용량을 나타내는 리튬 과잉 층상계 산화물(overlithiated layered oxide, OLO)을 리튬 이차전지에 적용하기 위한 연구가 진행되었다.
그러나, 이러한 리튬 과잉 층상계 산화물(overlithiated layered oxide, OLO)은 수명 사이클링 동안 발생하는 전압강하(voltage decay) 현상이 문제가 되는데, 이는 수명 사이클링 중 전이금속 이동에 따른 스피넬과 유사한 구조에서 큐빅(cubic)까지의 상전이에 의한 것이다. 이러한 리튬 과잉 층상계 산화물(overlithiated layered oxide, OLO)의 전압강하 현상은 리튬 이차전지로의 상용화를 위해서 반드시 해결해야 할 문제이다.
또한, 리튬 과잉 층상계 산화물의 전기화학적 특성을 향상시킬 수 있는 해결책이 요구된다.
본 발명은 리튬 과잉 층상계 산화물을 포함하는 양극활물질의 리튬이온 전도성을 향상시키고, 저항을 감소시켜 충방전시 발생하는 과전압을 감소시키고, 고율 특성을 향상시키는 것을 목적으로 한다.
또한, Mn-rich 양극활물질의 Mn 용출을 억제하고, 사이클링 시 표면상으로부터 시작되는 스피넬(spinel)에서 암염(rock-salt) 상으로의 격자 변화를 억제함으로서 전압강하를 억제하고 수명을 향상시키는 것을 목적으로 한다.
본 발명의 실시예를 따르는 양극활물질은 하기 화학식 1로 표시되는 리튬 과잉 층상계 산화물(overlithiated layered oxide, OLO)을 포함한다.
[화학식 1] rLi 2MnO 3·(1-r)Li aNi xCo yMn zM1 1-(x+y+z)O 2
(상기 화학식 1에서 0<r≤0.6, 0<a≤1, 0≤x≤1, 0≤y<1, 0≤z<1, 및 0<x+y+z≤1 이고, 상기 M1은 Na, K, Mg, Al, Fe, Cr, Y, Sn, Ti, B, P, Zr, Ru, Nb, W, Ba, Sr, La, Ga, Mg, Gd, Sm, Ca, Ce, Fe, Al, Ta, Mo, Sc, V, Zn, Cu, In, S, B, Ge, Si 및 Bi 중에서 선택되는 적어도 어느 하나 이상임).
상기 리튬 과잉 층상계 산화물은 단사정계(monoclinic) 구조의 Li 2MnO 3와 능면체(rhombohedral) 구조의 LiMO 2가 혼재되어 있는 고용체 상(phase)일 수 있고, 상기 M은 Ni, Co, Mn, M1 중에서 선택되는 적어도 어느 하나 이상일 수 있다.
또한, 상기 리튬 과잉 층상계 산화물은 초기 충방전 프로파일의 4.4 V 영역에서 Li 2MnO 3 의한 평탄 구간(plateau)이 나타날 수 있다. 본 발명의 실시예를 따르는 상기 리튬 과잉 층상계 산화물은 초기 충전 과정시, 리튬 대비 4.4 V 영역까지는 Li 2MnO 3 상이 전기화학적으로 비활성 상태이고, 4.4 V 이상에서 Li 2MnO 3 상에서 리튬이 탈리되는 반응 및 산소발생(oxygen evolution)이 일어날 수 있다.
상기 화학식 1로 표시되는 리튬 과잉 층상계 산화물 중 Ni, Co, 또는 Mn 중에서 포함되는 전체 금속 몰수 대비 리튬 몰수의 비율(Li/ Ni+Co+Mn)은 1.1 내지 1.6, 1.2 내지 1.6, 1.3 내지 1.6, 또는 1.4 내지 1.5 일 수 있다.
상기 화학식 1에서 상기 x의 값은 0 초과 0.5, 0 초과 0.4, 0 초과 0.3, 0 초과 0.2, 또는 0 초과 0.1일 수 있다.
상기 화학식 1에서 상기 y의 값은 0 초과 0.5, 0 초과 0.4, 0 초과 0.3, 0 초과 0.2, 또는 0.1 내지 0.2일 수 있다.
상기 화학식 1에서 M1은 Na, K, Mg, Al, Fe, Cr, Y, Sn, Ti, B, P, Zr, Ru, Nb, W, Ba, Sr, La, Ga, Mg, Gd, Sm, Ca, Ce, Fe, Al, Ta, Mo, Sc, V, Zn, Nb, Cu, In, S, B, Ge, Si 및 Bi 중에서 선택되는 적어도 어느 하나 이상의 물질로서, 일 예로서 상기 리튬 과잉 층상계 산화물 내에 포함될 수 있는 도펀트일 수 있다. 보다 바람직하게는 1차 입자의 크기를 보다 성장시켜 특정 범위로 보다 적합하게 조절할 수 있는 Ba, Sr, B, P, Y, Zr, Nb, Mo, Ta 및 W 중에서 선택되는 적어도 어느 하나 이상일 수 있고, 가장 바람직하게는 Nb 및 Ta 중에서 선택되는 적어도 어느 하나 이상일 수 있다.
또한, Ni 전체 몰수 대비 Mn 몰수의 비율(Mn/Ni)이 1 내지 4.5, 1 내지 4, 2 내지 4.5, 2 내지 4, 3 내지 4.5, 3 내지 4일 수 있다.
본 발명의 산화물은 층상구조로서, 리튬 원자층과 Ni, Co, Mn, 또는 M1의 금속 원자 층이 산소 원자 층을 거쳐서 교호로 겹쳐진 층상구조를 가질 수 있다.
상기 양극활물질의 층상구조의 층을 이루는 면은 C축에 수직한 방향으로 결정 배향성을 가질 수 있는데, 이 경우, 상기 양극활물질 내 포함되는 리튬 이온의 이동성이 향상되고, 상기 양극활물질의 구조 안정성이 증가하여, 전지 적용시 초기 용량 특성, 출력 특성, 저항 특성 및 장기 수명특성이 향상될 수 있다.
본 발명에 의한 양극활물질은 리튬 및 망간이 풍부한 산화물로서, 표면 상에 비정질 유리 산화물 코팅층을 형성함으로서, Mn 용출을 억제하고, 사이클링 시 표면상으로부터 시작되는 스피넬(spinel)에서 암염(rock-salt) 상으로의 격자 변화를 억제함으로서 전압강하를 억제하고 수명을 향상시킬 수 있다.
또한, 본 발명은 비정질 유리 산화물 코팅층이 리튬 과잉 층상계 산화물 입자 표면에 코팅되므로, 결정 상태로서 코팅되는 경우의 불균일성의 문제를 해소할 수 있고, 리튬 이온의 이동을 보다 향상시킬 수 있다.
또한, 본 발명은 비정질 유리 산화물 코팅층이 리튬 과잉 층상계 산화물 입자 표면에 코팅되므로, 리튬 과잉 층상계 산화물에서 충방전시 발생하는 과전압을 감소시키고, 고율 특성을 향상시킬 수 있다.
상기 비정질 유리 산화물 코팅층은 Si, B, P 및 Ge 중 선택되는 적어도 어느 하나 이상의 원소를 포함할 수 있다.
또한, 상기 비정질 유리 산화물 코팅층은 하기 화학식 2로 표시되는 물질을 포함할 수 있다.
[화학식 2] xLi 2O*(1-x)M2 aO b
상기 화학식 2의 x값에 대하여, 0<x≤8, 보다 바람직하게는 0.13≤x≤8일 수 있다. 또한, 상기 화학식 2의 a값에 대하여, 0<a≤2, 보다 바람직하게는 1≤a≤2일 수 있다. 또한, 상기 화학식 2의 b값에 대하여, 0<b≤5, 보다 바람직하게는 2≤b≤5일 수 있다. 또한, M2는 Si, B, P 및 Ge 중에서 선택되는 적어도 어느 하나 이상일 수 있다.
상기 비정질 유리 산화물 코팅층은 상기 리튬 과잉 층상계 산화물 대비 0.05 내지 5mol%, 또는 0.1 내지 3mol%, 또는 0.1 내지 2mol% 함량으로 포함될 수 있다.
상기 비정질 유리 산화물 코팅층은 상기 화학식 1로 표시되는 리튬 과잉 층상계 산화물의 표면 상에 균일 또는 불균일하게 포함될 수 있다.
보다 바람직한 일 실시예로서, 본 발명은 리튬 과잉 층상계 산화물 표면에 비정질 유리 산화물을 코팅함으로서, 다른 산화물계 코팅보다 퍼짐성이 좋아서 표면 상에 균일하게 코팅하는 것이 구현될 수 있다.
또한, 일 예로서, 상기 비정질 유리 산화물 코팅층은 2차 입자 또는 1차 입자 각각의 표면상에 형성될 수 있다.
또한, 일 예로서, 상기 비정질 유리 산화물 코팅층은 2차 입자 또는 1차 입자의 표면 상에서 비정질 유리 산화물 코팅층에 포함되는 원소가 농도구배부를 형성할 수 있다.
본 발명의 실시예를 따르는 양극활물질에서 상기 비정질 유리 산화물 코팅층의 두께는 1 내지 100nm, 보다 바람직하게는 10 내지 100nm일 수 있다. 상기 코팅층보다 얇은 경우에는 개선 효과가 미미할 수 있으며, 두꺼운 경우에는 리튬이온에 대한 저항이 증가될 수 있다. 상기 비정질 유리 산화물 코팅층이 상기 범위를 만족하는 경우, 본원 발명의 Mn-rich 양극활물질의 Mn 용출을 억제하고, 사이클링 시 표면상으로부터 시작되는 스피넬(spinel)에서 암염(rock-salt) 상으로의 격자 변화를 억제함으로서 전압강하를 억제하고 수명을 향상시킬 수 있다.
본 발명의 실시예를 따르는 상기 양극활물질은 1차 입자가 응집되어 2차 입자를 형성하고, 크기가 300 nm 내지 10μm인 1차 입자가 상기 2차 입자를 구성하는 1차 입자 중에 50 내지 100 부피%, 70 내지 100부피%, 또는 100부피%로 조절될 수 있다.
또한, 일 예로서, 상기 양극활물질은 크기가 500nm 초과 10μm인 1차 입자가 상기 2차 입자를 구성하는 1차 입자 중에 50 내지 100 부피%, 70 내지 100부피%, 또는 100부피%로 조절될 수 있다.
또한, 일 예로서, 상기 양극활물질은 크기가 1 μm 내지 10μm인 1차 입자가 상기 리튬 과잉 층상계 산화물 전체 대비 50 내지 100 부피%, 70 내지 100부피%, 또는 100부피%로 조절될 수 있다.
또한, 일 예로서, 상기 양극활물질은 크기가 1μm를 초과하는 1차 입자가 상기 리튬 과잉 층상계 산화물 전체 대비 50 내지 100 부피%, 70 내지 100부피%, 또는 100부피%로 조절될 수 있다.
또한, 일 예로서, 상기 양극활물질은 크기가 2μm 이상의 1차 입자가 상기 리튬 과잉 층상계 산화물 전체 대비 50 내지 100 부피%, 또는 50 내지 70부피% 미만으로 조절될 수 있다.
또한, 일 예로서, 상기 양극활물질은 1차 입자의 크기가 조절되어, 2차 입자 내 1차 입자의 수가 1 내지 1,000개, 1 내지 100개, 1 내지 10개, 또는 하나의 1차 입자로 이루어질 수 있다.
상기 1차 입자의 크기는 입자의 최장 길이를 의미한다.
또한, 일 예로서, 상기 양극활물질의 1차 입자의 평균 입경은 500nm 초과 10nm, 또는 1μ 내지 10nm로 조절될 수 있다.
본 발명의 리튬 과잉 층상계 산화물은 수명 사이클링 동안 발생하는 전압강하(voltage decay) 현상이 문제가 되는데, 이는 수명 사이클링 중 전이금속 이동에 따른 스피넬과 유사한 구조에서 큐빅(cubic)까지의 상전이에 의한 것이다. 본 발명은 이러한 문제를 해소하고 양극활물질의 밀도를 개선시키고자 1차 입자의 크기를 조절할 수 있다.
그러나, 1차 입자가 커지면 리튬 이온 확산 거리가 늘어나기 때문에 충방전시 리튬 이온의 농도분극(Concentration Polarization)에 의한 과전압(Overpotential)이 발생하는 문제가 있다. 결국, 키네틱스(Kinetics)가 저하되어 양극활물질의 용량이 감소할 수 있다. 그러나, 비정질 유리 산화물 코팅층을 형성함으로서, 이온전도성이 증가하여, 리튬 이온의 키테틱스가 증가하기 때문에 용량이 증가하고 과전압이 감소한다.
본 발명의 실시예를 따르는 상기 양극활물질 상기 2차 입자의 평균입경은 2 내지 20μm, 보다 바람직하게는 10 내지 20μm, 보다 바람직하게는 14 내지 16μm 일 수 있다. 상기 평균입경은 입자의 입경 분포 곡선에 있어서, 체적 누적량의 50 %에 해당하는 입경으로 정의할 수 있다. 상기 평균입경은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다.
본 발명의 실시예를 따르는 상기 양극활물질은 하기 실시예에 의한 제조 공정 조건에서 전구체 단계에서의 1 차 입자의 크기보다 양극활물질 단계에서의 1차 입자의 크기가 증가된다. 또한, 하기 실시예에 의한 제조 공정 조건에서 (융제로서 작용하는 도펀트 추가 양극활물질의 1차 입자의 크기) / (융제로서 작용하는 도펀트가 추가되지 않은 양극활물질의 1차 입자의 크기)의 비가 1 이상, 보다 바람직하게는 30 이상, 가장 바람직하게는 50 이상이다.
상기 화학식 1의 상기 M1은 상기 1차 입자를 성장시키는 융제(Flux)로서 작용하는 도펀트로서, 격자 구조에 도핑될 수 있다. 일 실시예로서, 리튬 화합물과의 소성 단계에서 상기 융제(flux) 도펀트를 첨가, 혼합하여 함께 열처리함으로서, 1차 입자의 크기가 증가되도록 조절할 수 있다. 융제로서 작용한다는 의미는 1차 입자 사이의 성장에 의해 1차 입자의 크기를 증가시키는 도펀트로서 작용할 수 있다는 의미이다.
본 발명에 의한 양극활물질에서는 단결정 구조에 해당되는 부분이 많을수록, 즉, 1차 입자 수가 적을수록, 다결정에서 나타나는 전압강하의 문제가 개선될 수 있다.
본 발명의 실시예를 따르는 상기 양극활물질의 XRD 분석시 I(104)에서의 반가폭(FWHM(deg.))은 0.1 내지 0.25(deg.)일 수 있지만, 상기 값은 망간의 함량에 따라 변화할 수 있다. 이에, 상기 도펀트 M1의 첨가 및 함량 조절을 통해 반가폭의 감소율을 조절함으로서, 수명 및 전압강하의 문제를 해소할 수 있다.
본 발명은 리튬 과잉 층상계 산화물에서 1차 입자 크기를 증가시키도록 조절함으로서, 동일 조건에서 소성한 경우 XRD 분석시 I(104)에서의 반가폭(FWHM(deg.))이 M1이 포함되지 않은 비교예 대비 M1이 포함되는 경우 5 내지 50%, 또는 5 내지 40%비율, 또는 5 내지 30% 비율, 5 내지 20 %, 10 내지 25 %, 또는 10 내지 20 %로 감소하도록 조절할 수 있다.
본 발명의 실시예를 따르는 양극활물질은 하기 화학식 3으로 표시되는 물질을 포함할 수 있다. 하기 화학식 3으로 표시되는 물질은 1차 입자 사이의 성장을 유도하는 융제로서 작용하는 도펀트가 리튬과 반응하여 생성되는 물질일 수 있다.
[화학식 3] Li aM3O b
(상기 0<a≤8, 0<b≤15이고, M3는 Na, K, Mg, Al, Fe, Cr, Y, Sn, Ti, B, P, Zr, Ru, Nb, W, Ba, Sr, La, Ga, Mg, Gd, Sm, Ca, Ce, Fe, Al, Ta, Mo, Sc, V, Zn, Cu, In, S, B, Ge, Si 및 Bi 에서 선택되는 적어도 어느 하나 이상임)
상기 화학식 1의 상기 M1은 상기 양극활물질을 구성하는 전체 금속 몰수 대비 0.001 내지 10 mol%, 0.01 내지 5mol%, 0.01 내지 3mol%, 0.1 내지 2mol%, 0.1 내지 1mol%로 포함될 수 있다. 1차 입자의 성장을 유도하는 융제로서 포함되는 도펀트 M1이 상기 범위를 초과하는 경우, 리튬복합산화물이 과량으로 만들어져 용량 및 효율 저하의 원인이 될 수 있으며, 상기 범위 미만인 경우에는 1차 입자를 성장시키는 효과가 미비할 수 있다.
또한, 본 발명의 실시예를 따르는 상기 양극활물질의 부피당 에너지 밀도(Wh/L)는 2.7 내지 4.0 (Wh/L) 일 수 있다.
또한, 본 발명의 실시예를 따르는 상기 양극활물질의 부피당 에너지 밀도(Wh/L)는 M1이 포함되지 않은 물질 대비 5 내지 30 % 비율로 증가할 수 있다. 본 발명에 의한 양극활물질은 리튬 과잉 층상계 산화물에서 1차 입자 크기가 증가하도록 조절함으로서, 부피당 에너지 밀도(Wh/L)가 M1이 포함되지 않은 비교예 대비 M1이 포함되는 경우 5 내지 25 %, 5 내지 20 %, 10 내지 25 %, 또는 10 내지 20 % 비율로 증가하도록 조절할 수 있다.
또한, 도펀트 M1의 첨가 및 함량 조절을 통해 조절된 상기 양극활물질의 충진밀도(g/cc)는 2.0 내지 4.0 (g/cc) 일 수 있다.
또한, 도펀트 M1의 첨가 및 함량 조절을 통해 조절된 상기 양극활물질의 비표면적(BET, m 2/g)은 0.1 내지 1.5 (BET, m 2/g) 일 수 있다.
본 발명에 의한 양극활물질에서는 상기 리튬 과잉 층상계 산화물에서 1차 입자 크기를 조절함으로서, 비표면적(BET, m 2/g)이 M1이 포함되지 않은 비교예 대비 M1이 포함되는 경우 20 내지 80 % 비율로 감소하도록 조절할 수 있다.
본 발명은 상기 1차 입자의 성장을 유도하여 상기 양극활물질에 단결정 구조에 해당되는 부분을 조절함으로서, 부피당 에너지 밀도를 증가시키고, 비표면적을 감소시킴으로써 양극활물질의 표면부가 감소됨에 따라 수명 및 전압강하의 문제를 해소할 수 있다. 본 발명에 있어서, 상기 1차 입자의 성장을 유도하는 것은 nucleation & ostwald ripening & particle aggregation 개념이 모두 포함된다.
본 발명의 실시예를 따르는 양극활물질 제조방법은 양극활물질 전구체를 제조하는 제 1 단계를 포함한다.
상기 전구체를 제조하기 위해 공침(co-precipitation), 분무건조(spray-drying), 고상법, 습식분쇄, 유동층건조법, 진동건조법으로 수행될 수 있으며, 이에 특별히 제한되지 않는다.
다음으로, 상기 양극활물질 전구체에 리튬 화합물을 혼합하여 소성하여 리튬 복합 산화물을 형성하는 제 2 단계를 포함한다.
상기 제 2 단계는 상기 화학식 1의 M1을 포함하는 화합물을 더 혼합하여 소성할 수 있다.
상기 소성하는 단계의 온도는 750 내지 950 ℃, 800 내지 950 ℃, 850 내지 950 ℃일 수 있다.
다음으로, 상기 제 2 단계에서 형성된 물질과 코팅 전구체를 혼합하여 비정질 유리 산화물 코팅층을 형성하는 제 3 단계를 포함한다.
본원 발명은 하기 공정을 통하여 리튬 과잉 층상계 산화물의 표면 상에 비정질 유리 산화물 코팅층을 균일하게 도포할 수 있다.
상기 제 3 단계에서 코팅 전구체는 건식 혼합 공정으로 수행될 수 있다.
또한, 제 3 단계에서 코팅 전구체는 습식 혼합 공정으로 수행될 수 있으며, 일 예로서, 상기 코팅 전구체를 물, 알코올, 또는 분산 용액 등에 분산 또는 용해시켜 상기 제 2 단계에서 형성된 물질과 혼합할 수 있다.
상기 제 3 단계는, 제 2 단계에서 형성된 물질과 코팅 전구체를 혼합한 이후, 250 내지 700 ℃에서 7 내지 12시간 유지한 후 노냉(Furnace cooling)하는 단계를 포함할 수 있다. 상기 온도는 코팅 전구체의 종류에 따라 적용 온도가 다를 수 있다. 일 예로서, B 를 포함하는 코팅층을 형성하는 경우에는 250 내지 500℃, 또는 250 내지 400℃이고, P를 포함하는 코팅층을 형성하는 경우에는 500 내지 700℃, 또는 550 내지 650℃일 수 있다.
본 발명의 실시예를 따르는 양극활물질 제조방법에서 상기 코팅 전구체가 B 또는 P를 포함하는 경우, B 2O 3, P 2O 5, H 3BO 3 , NH 4HPO 4, NH 4H 2PO 4, (NH 4) 2HPO 4, 또는 H 3PO 4 에서 선택되는 적어도 어느 하나 이상일 수 있다. 또한, 보다 바람직하게는 H 3BO 3 , NH 4HPO 4일 수 있으나, 비정질 유리 산화물 코팅층을 형성할 수 있다면 이에 특별히 한정되는 것은 아니다.
본 발명의 실시예를 따르는 양극활물질 제조방법에서 상기 제 1 단계 이후 제 2 단계 이전에, 300 내지 600℃에서 제조된 전구체를 배소하는 단계를 더 포함할 수 있다.
본 발명의 실시예를 따르는 양극활물질 제조방법에서 상기 제 1 단계 이후 제 2 단계 이전에, 상기 소성된 물질을 수세 및 건조하는 단계를 더 포함할 수 있다.
본 발명의 실시예를 따르는 양극활물질 제조방법에서 상기 제 2 단계 이후 제 3 단계 이전에, 상기 소성된 물질을 수세 및 건조하는 단계를 더 포함할 수 있다.
본 발명의 실시예를 따르는 이차전지는 상기 양극활물질을 포함한다.
상기 양극활물질은 전술한 바와 같고, 바인더, 도전재, 및 용매는 이차전지의 양극집전체 상에 사용될 수 있는 것이라면, 이에 특별히 제한되지 않는다.
상기 리튬 이차전지는 구체적으로 양극, 상기 양극과 대항하여 위치하는 음극, 및 상기 양극과 상기 음극 사이에 전해질을 포함할 수 있으나, 이차전지로서 사용될 수 있는 것이라면 이에 특별히 제한되지 않는다.
본 발명은 리튬 과잉 층상계 산화물에서 리튬이온 전도성을 향상시키고, 저항을 감소시켜 충방전시 발생하는 과전압을 감소시키고, 고율 특성을 향상시킨다.
또한, Mn-rich 양극활물질의 Mn 용출을 억제하고, 사이클링 시 표면상으로부터 시작되는 스피넬(spinel)에서 암염(rock-salt) 상으로의 격자 변화를 억제함으로서 전압강하를 억제하고 수명을 향상시킨다.
도 1은 본 발명의 실시예 및 비교예에 의한 양극활물질의 SEM 측정 결과를 나타낸다.
도 2는 본 발명의 실시예에 의한 양극활물질의 EDS 측정 결과를 나타낸다.
도 3은 본 발명의 실시예 및 비교예에 의한 양극활물질의 XRD 분석 결과를 나타낸다.
도 4는 본 발명의 실시예에 의한 양극활물질의 EDS 측정 결과를 나타낸다.
도 5는 본 발명의 실시예에 의한 양극활물질의 EDS 측정 결과를 나타낸다.
도 6은 본 발명의 실시예 및 비교에에 의한 충방전 그래프를 나타낸다.
도 7은 본 발명의 실시예 및 비교에에 의한 과전압 곡선을 나타낸다.
도 8은 본 발명의 실시예 및 비교에에 의한 율특성 곡선을 나타낸다.
도 9는 본 발명의 실시예 및 비교에에 의한 수명특성을 나타낸다.
도 10은 본 발명의 실시예 및 비교에에 의한 전압유지율을 나타낸다.
이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시예에 의하여 한정되는 것은 아니다.
본 명세서에서 사용되는 "포함하는"과 같은 표현은 다른 실시예를 포함할 가능성을 내포하는 개방형 용어(open-ended terms)로 이해되어야 한다.
본 명세서에서 사용되는 "바람직한" 및 "바람직하게"는 소정 환경하에서 소정의 이점을 제공할 수 있는 본 발명의 실시 형태를 지칭하는 것이며, 본 발명의 범주로부터 다른 실시 형태를 배제하고자 하는 것은 아니다.
<실시예 1> 양극활물질 제조
- 합성
공침법(co-precipitation method)을 이용해 구형의 Ni 0 . 2Co 0 . 1Mn 0 . 7CO 3 전구체를 합성하였다. 90 L 급의 반응기에서 NiSO 4·6H 2O, CoSO 4·7H 2O, 및 MnSO 4·H 2O을 20:10:70의 몰비(mole ratio)로 혼합한 2.5 M의 복합전이금속황산수용액에 25 wt%의 NaCO 3와 28 wt%의 NH 4OH를 투입하였다. 이때, 반응기 내의 pH는 8.0 내지 11.0, 온도는 45 내지 50 ℃로 유지하였다. 또한, 불활성 가스인 N 2를 반응기에 투입하여, 제조된 전구체가 산화되지 않도록 하였다.
합성 교반 완료 후, 필터 프레스(Filter Press, F/P) 장비를 이용하여 세척 및 탈수를 진행하였다. 최종적으로, 탈수품을 120 ℃로 2일간 건조하고, 75 μm (200 mesh) 체로 걸러서 4μm 내지 20μm의 Ni 0 . 17Co 0 . 106Mn 0 . 719CO 3 전구체를 얻었다.
- 배소
상기 제조된 전구체를 Box 소성로에서 O 2 또는 Air(50L/min) 분위기를 유지하며, 분당 2 ℃로 승온하여 550 ℃에서 1 내지 6 시간 유지한 후, 노냉(furnace cooling) 하였다.
- 소성
상기 배소된 전구체를 Li/(Ni+Co+Mn) 비율이 1.45가 되도록 LiOH 또는 Li 2CO 3를 칭량하였고, 융제 도펀트(Flux dopant)로서 Nb 2O 5를 0.6 mol% 를 칭량하여 믹서(Manual mixer, MM)를 사용하여 혼합하였다.
혼합품을 Box 소성로에서 O 2 또는 Air (50L/min) 분위기를 유지하며, 분당 2 ℃로 승온하여 소성온도 900 ℃에서 7 내지 12 시간 유지한 후, 노냉 (furnace cooling) 하여 양극활물질을 제조하였다.
실시예 1에서 제조된 양극활물질의 조성은 Li : Ni : Co : Mn : Nb = 15.3 : 15.1 : 9.3 : 59.8 : 0.4 (wt%) 이였다.
- 코팅
표면처리 도펀트로서 H 3BO 3를 1.5 mol% 를 칭량하여 믹서(Manual mixer, MM)를 사용하여 혼합하였다.
혼합품을 Box 소성로에서 O 2 또는 Air (50L/min) 분위기를 유지하며, 분당 4.4 ℃로 승온하여 소성온도 300 ℃에서 7 내지 12 시간 유지한 후, 노냉 (furnace cooling) 하여 양극활물질을 제조하였다.
<실시예 2> 양극활물질 제조
상기 실시예 1의 코팅 단계에서 표면처리 도펀트로서 NH 4HPO 4를 0.5 mol% 혼합하고, 코팅 단계에서의 소성온도를 600℃에서 소성하는 것을 제외하고, 상기 실시예 1과 동일한 방법으로 양극활물질을 제조하였다.
실시예 2에서 제조된 양극활물질의 조성은 Li : Ni : Co : Mn : Nb = 15.0 : 14.8 : 9.3 : 60.0 : 0.8 (wt%) 이였다.
<비교예 1> 양극활물질 제조
상기 실시예 1에서 융제 도펀트(Flux dopant)를 혼합하지 않고, 코팅 단계를 수행하지 않는 것을 제외하고, 상기 실시예 1과 동일한 방법으로 양극활물질을 제조하였다.
<비교예 2> 양극활물질 제조
상기 실시예 1에서 코팅 단계를 수행하지 않는 것을 제외하고, 상기 실시예 1과 동일한 방법으로 양극활물질을 제조하였다.
<비교예 3> 양극활물질 제조
상기 실시예 1에서 융제 도펀트(Flux dopant)를 혼합하지 않는 것을 제외하고, 상기 실시예 1과 동일한 방법으로 양극활물질을 제조하였다.
<제조예> 리튬 이차전지의 제조
상기 실시예 및 비교예에 의한 양극활물질 90 중량%, 카본블랙 5.5 wt%, PVDF 바인더 4.5 wt%를 N-메틸-2 피롤리돈(NMP) 30 g에 분산시켜 양극 슬러리를 제조하였다. 상기 양극 슬러리를 두께 15 μm의 양극 집전체인 알루미늄(Al) 박막에 도포 및 건조하고 롤 프레스(roll press)를 실시하여 양극을 제조하였다. 양극의 로딩 레벨은 5.5 mg/cm 2이고, 전극 밀도는 2.3 g/cm 3이었다.
상기 양극에 대하여 금속 리튬을 대극(counter electrode)으로 하였으며, 전해액으로는 1M LiPF6, EC/DMC = 1/1 (v/v) 를 사용하였다.
상기 양극 및 음극 사이에 다공질 폴리에틸렌(PE) 필름으로 이루어진 세퍼레이터를 개재하여 전지 조립체를 형성하고, 상기 전해액을 주입하여 리튬 이차 전지(코인 셀)를 제조하였다.
<실험예>
도 1을 참조하면, 비교예 2와 실시예 1, 2를 비교했을 때 B 및 P 코팅에 의한 1차입자 크기 및 모양 변화는 없는 것을 확인할 수 있다. 비교예 1과 비교예 3을 비교했을 때 비정질 유리 산화물 코팅층에 의한 입자성장은 없다는 것을 확인할 수 있다.
도 2를 참조하면, Ni, Co, Mn 원소 뿐 아니라 입자성장을 유도하는 융제 도펀트(Flux dopant)인 Nb가 입자 내에 고르게 분포하는 것을 확인할 수 있다.
도 3의 XRD 분석은 CuK α radiation=1.5406 Å 파장에서 사용되었다. 도 3을 참조하면, 플럭스 도펀트로서 Nb를 첨가할 경우 (003) peak가 이동하는데, 이는 플럭스 도펀트인 Nb가 리튬 과잉 층상계 산화물 격자 내에 도핑된 증거로서 확인할 수 있다.
도 4 를 참조하면, 실시예 1에 의한 양극활물질 표면에 B를 포함하는 코팅층이 균일하게 분포하는 것을 확인할 수 있다.
도 5 를 참조하면, 실시예 2에 의한 양극활물질 표면에 P를 포함하는 코팅층이 균일하게 분포하는 것을 확인할 수 있다.
도 6을 참조하면, 비교예 1 대비 비교예 2의 경우 1차입자 크기가 커짐에 따라 용량이 소폭 감소한다. 이는 리튬이온확산거리가 늘어나기 때문에 키네틱스((Kinetics)가 감소하기 때문이다. 그러나 비정질 유리 산화물 코팅층을 형성한 실시예의 경우, 이온전도성이 증가하여, 리튬 이온의 키네틱스가 증가하기 때문에 용량이 증가하는 것을 확인할 수 있다.
도 7을 참조하면, 1자 입자가 커지면 리튬이온확산거리가 증가하기 때문에 리튬이온의 농도분극(Concentration polarization)에 의한 과전압(Overpotential)이 발생하는 문제가 있다. 그러나 비정질 유리 산화물 코팅층을 형성한 실시예의 경우, 리튬이온의 키네틱스가 증가하기 때문에 과전압이 감소하는 것을 확인할 수 있다.
도 8을 참조하면, 비교예 대비 실시예의 율특성이 약 10% 이상 향상되는 것을 확인할 수 있다. 이는 비정질 유리 산화물 코팅층에 의해 저항이 감소하기 때문이다.
도 9를 참조하면, 비교예 1 대비 비정질 유리 산화물 코팅층이 형성된 비교예 3의 수명특성이 약 10% 이상 향상되는 것을 확인할 수 있다. 또한, 입자를 성장시키고 비정질 유리 산화물 코팅층이 형성된 실시예 1, 2의 경우 cycle에 따른 용량유지율이 80% 이상이다. 이는 비정질 유리 산화물 코팅층에 의해 저항이 감소하며, Mn 용출을 억제하고, 사이클링 시 표면상에서부터 시작하는 스피넬에서 암염 상으로의 상변화를 억제함으로써 수명이 향상 된 것이다.
도 10을 참조하면, 실시예의 경우 97%의 전압유지율을 나타내었다. 이는 비정질 유리 산화물 코팅층으로 인해 사이클링 시 발생하는 리튬 과잉 층상계 산화물의 상변화가 억제되었기 때문이다.
이상의 실험 결과를 하기 표 1에 나타내었다.
Figure PCTKR2020014280-appb-img-000001

Claims (19)

  1. 하기 화학식 1로 표시되는 리튬 과잉 층상계 산화물(overlithiated layered oxide, OLO); 및
    상기 화학식 1로 표시되는 리튬 과잉 층상계 산화물 표면에 비정질 유리 산화물 코팅층;을 포함하는,
    이차전지용 양극활물질:
    [화학식 1] rLi 2MnO 3·(1-r)Li aNi xCo yMn zM1 1-(x+y+z)O 2
    (상기 화학식 1에서 0<r≤0.6, 0<a≤1, 0≤x≤1, 0≤y<1, 0≤z<1, 및 0<x+y+z≤1 이고, 상기 M1은 Na, K, Mg, Al, Fe, Cr, Y, Sn, Ti, B, P, Zr, Ru, Nb, W, Ba, Sr, La, Ga, Mg, Gd, Sm, Ca, Ce, Fe, Al, Ta, Mo, Sc, V, Zn, Cu, In, S, B, Ge, Si 및 Bi 중에서 선택되는 적어도 어느 하나 이상임).
  2. 제 1 항에 있어서,
    상기 비정질 유리 산화물 코팅층은 Si, B, P 및 Ge 중에서 선택되는 적어도 어느 하나 이상을 포함하는,
    이차전지용 양극활물질.
  3. 제 1 항에 있어서,
    상기 비정질 유리 산화물 코팅층은 하기 화학식 2로 표시되는 물질을 포함하는,
    이차전지용 양극활물질:
    [화학식 2] xLi 2O*(1-x)M2 aO b
    (상기 0<x≤0.8, 0<a≤2, 0<b≤5이고, M2는 Si, B, P 및 Ge 중에서 선택되는 적어도 어느 하나 이상임).
  4. 제 1 항에 있어서,
    상기 비정질 유리 산화물 코팅층은 상기 리튬 과잉 층상계 산화물 대비 0.05 내지 5mol% 함량으로 포함되는,
    이차전지용 양극활물질.
  5. 제 1 항에 있어서,
    상기 비정질 유리 산화물 코팅층의 두께는 1 내지 100nm인,
    이차전지용 양극활물질.
  6. 제 1 항에 있어서,
    상기 양극활물질은 1차 입자가 응집되어 2차 입자를 형성하고,
    크기가 300 nm 내지 10 μm인 1차 입자가 상기 2차 입자를 구성하는 1차 입자 중에 50 내지 100 부피% 로 조절되는,
    이차전지용 양극활물질.
  7. 제 1 항에 있어서,
    상기 화학식 1의 상기 M1은 상기 1차 입자를 성장시키는 융제(Flux)로서 작용하는 도펀트인,
    이차전지용 양극활물질.
  8. 제 1 항에 있어서,
    상기 화학식 1의 상기 M1은 Ba, Sr, B, P, Y, Zr, Nb, Mo, Ta 및 W 중에서 선택되는 적어도 어느 하나 이상인,
    이차전지용 양극활물질.
  9. 제 1 항에 있어서,
    상기 화학식 1의 상기 M1은 상기 리튬 과잉 층상계 산화물 전체 금속 몰수 대비 0.001 내지 10 mol% 로 포함되는,
    이차전지용 양극활물질.
  10. 제 1 항에 있어서,
    상기 화학식 1로 표시되는 리튬 과잉 층상계 산화물 중 Ni, Co, 또는 Mn 중에서 포함되는 전체 금속 몰수 대비 리튬 몰수의 비율(Li/ Ni+Co+Mn)은 1.1 내지 1.6 인,
    이차전지용 양극활물질.
  11. 제 1 항에 있어서,
    상기 화학식 1로 표시되는 리튬 과잉 층상계 산화물에서 Ni 전체 몰수 대비 Mn 몰수의 비율(Mn/Ni)은 1 내지 4.5 인,
    이차전지용 양극활물질.
  12. 제 1 항의 이차전지용 양극활물질을 제조하는 방법에 있어서,
    양극활물질 전구체를 제조하는 제 1 단계;
    상기 양극활물질 전구체에 리튬 화합물을 혼합하여 소성하여 리튬 복합 산화물을 형성하는 제 2 단계; 및
    상기 제 2 단계에서 형성된 물질과 코팅 전구체를 혼합하여 비정질 유리 산화물 코팅층을 형성하는 제 3 단계; 를 포함하는,
    이차전지용 양극활물질 제조방법.
  13. 제 12 항에 있어서,
    상기 제 2 단계는 상기 화학식 1의 M1을 포함하는 화합물을 더 혼합하여 소성하는,
    이차전지용 양극활물질 제조방법.
  14. 제 12 항에 있어서,
    상기 제 3 단계는, 제 2 단계에서 형성된 물질과 코팅 전구체를 혼합한 이후, 250 내지 700 ℃에서 7 내지 12시간 유지한 후 노냉(Furnace cooling)하는 단계를 포함하는,
    이차전지용 양극활물질 제조방법.
  15. 제 14 항에 있어서,
    상기 코팅 전구체는 B 2O 3, P 2O 5, H 3BO 3 , NH 4HPO 4, NH 4H 2PO 4, (NH 4) 2HPO 4, 또는 H 3PO 4 에서 선택되는 적어도 어느 하나 이상인,
    이차전지용 양극활물질의 제조방법.
  16. 제 12 항에 있어서,
    상기 제 1 단계 이후 제 2 단계 이전에, 300 내지 600℃에서 제조된 전구체를 배소하는 단계를 더 포함하는,
    이차전지용 양극활물질 제조방법.
  17. 제 12 항에 있어서,
    상기 제 1 단계 이후 제 2 단계 이전에, 상기 소성된 물질을 수세하는 단계를 더 포함하는,
    이차전지용 양극활물질 제조방법.
  18. 제 12 항에 있어서,
    상기 제 2 단계 이후 제 3 단계 이전에, 상기 소성된 물질을 수세하는 단계를 더 포함하는,
    이차전지용 양극활물질 제조방법.
  19. 제 1 항의 양극활물질을 포함하는,
    이차전지.
PCT/KR2020/014280 2019-10-18 2020-10-19 리튬 이차전지 양극활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지 WO2021075940A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/754,986 US20220411282A1 (en) 2019-10-18 2020-10-19 Positive electrode active material for lithium secondary battery, preparation method therefor, and lithium secondary battery comprising same
EP20877964.5A EP4047691A4 (en) 2019-10-18 2020-10-19 POSITIVE ELECTRODE ACTIVE MATERIAL FOR A LITHIUM SECONDARY BATTERY, PRODUCTION METHOD THEREOF AND LITHIUM SECONDARY BATTERY THEREFOR
JP2022523072A JP7408794B2 (ja) 2019-10-18 2020-10-19 リチウム二次電池正極活物質、その製造方法、及びこれを含むリチウム二次電池
CN202080073047.4A CN114556628B (zh) 2019-10-18 2020-10-19 锂二次电池正极活性物质、其制备方法以及包含其的锂二次电池
JP2023215143A JP2024045104A (ja) 2019-10-18 2023-12-20 リチウム二次電池正極活物質、その製造方法、及びこれを含むリチウム二次電池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20190130033 2019-10-18
KR10-2019-0130033 2019-10-18
KR1020200078294A KR102481032B1 (ko) 2019-10-18 2020-06-26 리튬 이차전지 양극활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
KR10-2020-0078294 2020-06-26

Publications (1)

Publication Number Publication Date
WO2021075940A1 true WO2021075940A1 (ko) 2021-04-22

Family

ID=75537956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/014280 WO2021075940A1 (ko) 2019-10-18 2020-10-19 리튬 이차전지 양극활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지

Country Status (5)

Country Link
US (1) US20220411282A1 (ko)
EP (1) EP4047691A4 (ko)
JP (2) JP7408794B2 (ko)
CN (1) CN114556628B (ko)
WO (1) WO2021075940A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4249435A1 (en) * 2022-03-23 2023-09-27 Evonik Operations GmbH Transition metal oxide particles coated with an amorphous lithium-containing powder and the use thereof in energy-storage devices

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240136505A1 (en) * 2022-09-30 2024-04-25 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium batteries, preparation method thereof and rechargeable lithium batteries
KR20240059218A (ko) * 2022-10-27 2024-05-07 주식회사 에코프로비엠 양극 활물질 및 이를 포함하는 리튬 이차전지
KR20240059133A (ko) * 2022-10-27 2024-05-07 주식회사 에코프로비엠 양극 활물질 및 이를 포함하는 리튬 이차전지
KR20240059134A (ko) * 2022-10-27 2024-05-07 주식회사 에코프로비엠 양극 활물질 및 이를 포함하는 리튬 이차전지

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140087263A1 (en) * 2011-05-30 2014-03-27 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using positive electrode active material
KR20140048456A (ko) * 2012-10-15 2014-04-24 삼성에스디아이 주식회사 양극 활물질, 그 제조방법, 및 이를 포함하는 리튬 전지
KR20160123406A (ko) * 2015-04-15 2016-10-26 전자부품연구원 리튬이차전지용 양극 활물질 및 그 제조방법

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2932175B1 (fr) * 2008-06-05 2011-06-03 Commissariat Energie Atomique Materiau d'electrode positive forme d'un oxyde de type lamellaire pour accumulateur au lithium.
JP5791877B2 (ja) * 2009-09-30 2015-10-07 三洋電機株式会社 正極活物質、この正極活物質の製造方法、及び、正極活物質を用いた非水電解質二次電池
JP2011171113A (ja) * 2010-02-18 2011-09-01 Sanyo Electric Co Ltd リチウム二次電池用正極活物質及びその製造方法並びにそれを用いたリチウム二次電池
KR101491885B1 (ko) * 2012-12-07 2015-02-23 삼성정밀화학 주식회사 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
JP6137647B2 (ja) * 2013-07-26 2017-05-31 エルジー・ケム・リミテッド 正極活物質及びこの製造方法
CN105612124B (zh) * 2013-10-10 2018-03-23 三井金属矿业株式会社 锂过量型层状锂金属复合氧化物的制造方法
CN104979554B (zh) * 2014-04-02 2019-07-16 郭建 一种镍钴铝酸锂及其前驱体的制备方法
CN105470493B (zh) * 2014-08-19 2019-05-14 神华集团有限责任公司 一种材料及其制备以及含有该材料的锂离子正极活性物质、正极材料、电池正极和电池
WO2016053056A1 (ko) * 2014-10-02 2016-04-07 주식회사 엘지화학 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
US10439212B2 (en) * 2015-07-10 2019-10-08 California Institute Of Technology Aluminum borate coated lithium ion cathode materials
KR20170075596A (ko) * 2015-12-23 2017-07-03 주식회사 포스코 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
CN108886144B (zh) * 2016-03-30 2022-03-04 巴斯夫户田电池材料有限公司 用于非水电解质二次电池的正极活性物质及其制造方法、以及使用其的非水电解质二次电池
WO2019083157A1 (ko) * 2017-10-26 2019-05-02 주식회사 엘지화학 리튬 -결핍 전이금속 산화물을 포함하는 코팅층이 형성된 리튬 과잉의 리튬 망간계 산화물을 포함하는 양극 활물질 및 이를 포함하는 리튬 이차전지용 양극
CN108172773A (zh) * 2017-11-22 2018-06-15 合肥国轩高科动力能源有限公司 一种磷酸钴锂包覆的富锂正极材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140087263A1 (en) * 2011-05-30 2014-03-27 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using positive electrode active material
KR20140048456A (ko) * 2012-10-15 2014-04-24 삼성에스디아이 주식회사 양극 활물질, 그 제조방법, 및 이를 포함하는 리튬 전지
KR20160123406A (ko) * 2015-04-15 2016-10-26 전자부품연구원 리튬이차전지용 양극 활물질 및 그 제조방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DING ZHENGPING, CHUNXIAO ZHANG, SHENG XU, JIATU LIU, CHAOPING LIANG, LIBAO CHEN, PENG WANG, DOUGLAS G. IVEY, YIDA DENG, WEIFENG WE: "Stable heteroepitaxial interface of Li-rich layered oxide cathodes with enhanced lithium storage", ENERGY STORAGE MATERIALS, vol. 21, 5 December 2018 (2018-12-05), pages 69 - 76, XP055803281, DOI: 10.1016/j.ensm.2018.12.004 *
See also references of EP4047691A4 *
ZHAO YING, LIU JIATU, WANG SHUANGBAO, JI RAN, XIA QINGBING, DING ZHENGPING, WEI WEIFENG, LIU YONG, WANG PENG, IVEY DOUGLAS G.: "Surface Structural Transition Induced by Gradient Polyanion-Doping in Li-Rich Layered Oxides: Implications for Enhanced Electrochemical Performance", ADVANCED FUNCTIONAL MATERIALS, WILEY - V C H VERLAG GMBH & CO. KGAA, DE, vol. 26, no. 26, 1 July 2016 (2016-07-01), DE, pages 4760 - 4767, XP055803284, ISSN: 1616-301X, DOI: 10.1002/adfm.201600576 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4249435A1 (en) * 2022-03-23 2023-09-27 Evonik Operations GmbH Transition metal oxide particles coated with an amorphous lithium-containing powder and the use thereof in energy-storage devices

Also Published As

Publication number Publication date
JP2024045104A (ja) 2024-04-02
EP4047691A1 (en) 2022-08-24
CN114556628A (zh) 2022-05-27
JP7408794B2 (ja) 2024-01-05
US20220411282A1 (en) 2022-12-29
EP4047691A4 (en) 2023-12-20
CN114556628B (zh) 2024-08-30
JP2022552562A (ja) 2022-12-16

Similar Documents

Publication Publication Date Title
WO2021075940A1 (ko) 리튬 이차전지 양극활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2021075942A1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
JP4063350B2 (ja) ゾル−ゲル法を利用した複合酸化物の製造方法
WO2013002457A1 (ko) 양극활물질, 상기 양극활물질을 포함하는 전극, 및 리튬 전기 화학 전지
WO2019103522A2 (ko) 양극 활물질의 제조방법
WO2019074306A2 (ko) 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
KR102558594B1 (ko) 리튬 이차전지 양극활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2019198944A1 (ko) 양극 활물질의 제조방법
WO2021215670A1 (ko) 스피넬 복합고용체 산화물을 포함하는 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
WO2019013587A1 (ko) 양극 활물질의 제조방법
WO2021075941A2 (ko) 리튬 이차전지 양극활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2013002559A2 (ko) 양극활물질, 상기 양극활물질을 포함하는 리튬 이차 전지 및 상기 리튬 이차 전지를 전기화학적으로 활성화시키는 방법
WO2024096225A1 (ko) 소듐 이차전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 소듐 이차전지
WO2024096227A1 (ko) 소듐 이차전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 소듐 이차전지
WO2024039167A1 (ko) 리튬 이차 전지용 양극 활물질용 전구체, 이를 포함하는 양극 활물질, 및 양극 활물질의 제조 방법
CN115692682B (zh) 具有稳定结构的改性富锂锰基正极材料及其制备方法、锂离子电池
WO2023191449A1 (ko) 신규 전구체 입자 및 그로부터 제조된 양극 활물질
WO2023113581A1 (ko) 전고체 전지용 양극 활물질, 양극 및 전고체 전지
WO2023068630A1 (ko) 이차전지용 양극 활물질
WO2024096209A1 (ko) 리튬 복합 산화물 및 이를 포함하는 이차전지용 양극활물질
WO2023234729A1 (ko) 리튬 이차전지용 음극 활물질 및 이의 제조방법
WO2024122926A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
WO2022075748A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 이에 의하여 제조된 양극 활물질
WO2024219841A1 (ko) 양극 활물질, 이를 포함하는 양극 및 리튬 이차 전지
WO2022039491A1 (ko) 양극 활물질의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20877964

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022523072

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020877964

Country of ref document: EP

Effective date: 20220518