WO2020238992A1 - 一种通信方法及装置 - Google Patents
一种通信方法及装置 Download PDFInfo
- Publication number
- WO2020238992A1 WO2020238992A1 PCT/CN2020/092728 CN2020092728W WO2020238992A1 WO 2020238992 A1 WO2020238992 A1 WO 2020238992A1 CN 2020092728 W CN2020092728 W CN 2020092728W WO 2020238992 A1 WO2020238992 A1 WO 2020238992A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rbs
- subcarriers
- message
- frequency domain
- domain resource
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 93
- 238000004891 communication Methods 0.000 title claims abstract description 85
- 230000015654 memory Effects 0.000 claims description 51
- 238000012545 processing Methods 0.000 claims description 34
- 238000004590 computer program Methods 0.000 claims description 11
- 230000005540 biological transmission Effects 0.000 abstract description 10
- 238000013461 design Methods 0.000 description 25
- 230000006870 function Effects 0.000 description 24
- 238000013507 mapping Methods 0.000 description 18
- 238000010586 diagram Methods 0.000 description 15
- 239000000969 carrier Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 230000011664 signaling Effects 0.000 description 6
- 230000001360 synchronised effect Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000010295 mobile communication Methods 0.000 description 3
- 230000003190 augmentative effect Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0453—Resources in frequency domain, e.g. a carrier in FDMA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/53—Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
Definitions
- This application relates to the field of communication technology, and in particular to a communication method and device.
- the uplink data signal sent by the terminal device to the network device is carried on the physical uplink shared channel (PUSCH), and the PUSCH occupies an integer number of physical resource blocks (physica resource blocks, PRB) in the frequency domain. , And mapped on all sub-carriers included in the PRB.
- PRB physical resource blocks
- the subcarriers occupied by the PUSCH are also fewer, which will result in a narrower bandwidth of the PUSCH in the frequency domain, and the frequency domain selectivity of the channel cannot be fully obtained. Diversity gain.
- the embodiments of the present application provide a communication method and device, which utilize the diversity gain brought by the frequency domain selectivity of the channel to improve the transmission performance of the uplink data signal.
- the present application provides a communication method that can be applied to a terminal device.
- the method includes: the terminal device receives a first message from the network device, and the first message is used to instruct the terminal device to send a message to the network on N subcarriers.
- the device sends an uplink data signal; the terminal device sends an uplink data signal to the network device on the N subcarriers, where the N subcarriers are distributed in M resource blocks RB, and each of the M RBs is used to send uplink data
- the number of subcarriers of the signal is L, M is greater than or equal to 2, L is less than K, K is the number of subcarriers included in an RB, and N, M, L, and K are all positive integers.
- the N subcarriers used to transmit uplink data signals may be distributed in M RBs, and the subcarriers used to transmit uplink data signals in each of the M RBs are part of the RB.
- Carrier that is to say, PUSCH can occupy part of the sub-carriers in an RB to transmit uplink data signals, so as to broaden the frequency domain range of the channel experienced by PUSCH, fully obtain the diversity gain brought by the frequency domain selectivity of the channel, and improve PUSCH transmission performance.
- the first message may be used to indicate the L subcarriers used for transmitting the uplink data signal in each of the M RBs.
- the network device may indicate to the terminal device the distribution positions or numbers of the L subcarriers in each RB used to transmit the uplink data signal in the RB through the first message.
- N RBs distributed among M RBs for transmitting uplink data signals are regarded as at least one discrete resource block DRB
- PUSCH can be mapped to at least one DRB, and the subcarrier mapping mode of PUSCH That is, the distribution mode of the L subcarriers used for transmitting the uplink data signal in each RB in the RB, which can realize more flexible DRB scheduling.
- the frequency domain range of the channel experienced by the PUSCH can be changed by setting the values of s and S, thereby improving the transmission performance of the PUSCH.
- M RBs are located in X RBs included in the first frequency domain resource, where X is a positive integer; the first message is also used to indicate one or more of the following information: M RBs Position in X RBs, value of M, value of L, value of M ⁇ L/K, value of S.
- the terminal device can determine the N subcarriers in the M RBs for sending the uplink data signal according to the information indicated in the first message.
- the positions or numbers of the X RBs in the first frequency domain resource can be scheduled by the network device, or can be determined by the terminal device according to a preset rule, so that the flexibility of resource scheduling can be improved.
- the first frequency domain resource includes consecutive Z RBs, and Z is a positive integer greater than or equal to X; the terminal device may receive a second message from the network device, and the second message is used to indicate X The position or number of each RB in the first frequency domain resource, and the value of X, where X ⁇ L/K is a positive integer; further, the terminal device may determine X RBs according to the second message.
- the first frequency domain resource includes consecutive Z RBs, the Z RBs are numbered from 0 to Z-1, and Z is a positive integer greater than or equal to X.
- the X RBs may be X RBs numbered from 0 to X-1 in the first frequency domain resource; or, the X RBs may also be X numbered from ZX to Z-1 in the first frequency domain resource.
- the present application provides a communication method that can be applied to a network device.
- the method includes: the network device sends a first message to the terminal device, and the first message is used to instruct the terminal device to send a message to the network on N subcarriers.
- the device sends an uplink data signal; the network device receives the uplink data signal sent by the terminal device on N subcarriers, where the N subcarriers are distributed in M resource blocks RB, and each of the M RBs is used for sending
- the number of subcarriers of the uplink data signal is L, M is greater than or equal to 2, L is less than K, K is the number of subcarriers included in an RB, and N, M, L, and K are all positive integers.
- the N subcarriers used to transmit uplink data signals may be distributed in M RBs, and the subcarriers used to transmit uplink data signals in each of the M RBs are part of the subcarriers in the RB.
- Carrier that is to say, PUSCH can occupy part of the sub-carriers in an RB to transmit uplink data signals, which can broaden the frequency domain range of the channel experienced by PUSCH, fully obtain the diversity gain brought by the frequency domain selectivity of the channel, and improve PUSCH transmission performance.
- the first message is used to indicate the L subcarriers used for transmitting the uplink data signal in each of the M RBs.
- the network device may indicate to the terminal device the location or number of the distribution of the L subcarriers in each RB used to transmit the uplink data signal in the RB through the first message.
- N RBs distributed among M RBs for transmitting uplink data signals are regarded as at least one discrete resource block DRB
- PUSCH can be mapped to at least one DRB, and the subcarrier mapping mode of PUSCH That is, the distribution mode of the L subcarriers used to transmit the uplink data signal in each RB in the RB where it is located can realize more flexible DRB scheduling.
- the frequency domain range of the channel experienced by the PUSCH can be changed by setting the values of s and S, thereby improving the transmission performance of the PUSCH.
- M RBs are located in X RBs included in the first frequency domain resource, where X is a positive integer; the first message is also used to indicate one or more of the following information: M RBs Position in X RBs, value of M, value of L, value of M ⁇ L/K, value of S.
- the terminal device can be enabled to determine the N subcarriers in the M RBs for sending the uplink data signal according to the information indicated in the first message.
- the positions or numbers of the X RBs in the first frequency domain resource can be scheduled by the network device, or can be determined by the terminal device according to a preset rule, so that the flexibility of resource scheduling can be improved.
- the first frequency domain resource includes consecutive Z RBs, and Z is a positive integer greater than or equal to X; the terminal device may receive a second message from the network device, and the second message is used to indicate X The position or number of each RB in the first frequency domain resource, and the value of X, where X ⁇ L/K is a positive integer; further, the terminal device may determine X RBs according to the second message.
- the first frequency domain resource includes consecutive Z RBs, the Z RBs are numbered from 0 to Z-1, and Z is a positive integer greater than or equal to X.
- the X RBs may be X RBs numbered from 0 to X-1 in the first frequency domain resource; or, the X RBs may also be X numbered from ZX to Z-1 in the first frequency domain resource.
- the embodiments of the present application provide a communication device that has the function of a terminal device in the first aspect or any one of the possible designs of the first aspect.
- the communication device may be a terminal device, such as a handheld terminal.
- Devices, vehicle-mounted terminal devices, etc. may also be devices included in terminal devices, such as chips, or devices that include the terminal devices.
- the functions of the above-mentioned terminal device may be realized by hardware, or may be realized by hardware executing corresponding software.
- the hardware or software includes one or more modules corresponding to the above-mentioned functions.
- the communication device may also have the function of realizing the second aspect or the network device in any possible design of the second aspect.
- the communication device may be a network device, such as a base station, or a device included in the network device, such as a chip.
- the functions of the above-mentioned network equipment may be realized by hardware, or may be realized by hardware executing corresponding software.
- the hardware or software includes one or more modules corresponding to the above-mentioned functions.
- the structure of the communication device includes a processing module and a transceiver module, wherein the processing module is configured to support the communication device to perform the corresponding function in the first aspect or any one of the first aspects. , Or perform the corresponding function in the second aspect or any one of the second aspects mentioned above.
- the transceiver module is used to support communication between the communication device and other communication devices. For example, when the communication device is a terminal device, it can send uplink data signals to the network device on N subcarriers.
- the communication device may also include a storage module, which is coupled with the processing module, which stores program instructions and data necessary for the communication device.
- the processing module may be a processor
- the communication module may be a transceiver
- the storage module may be a memory.
- the memory may be integrated with the processor or may be provided separately from the processor, which is not limited in this application.
- the structure of the communication device includes a processor, and may also include a memory.
- the processor is coupled with the memory and can be used to execute computer program instructions stored in the memory, so that the communication device executes the first aspect described above. Or any one of the possible design methods of the first aspect, or implement any one of the foregoing second aspect or the second aspect of the possible design methods.
- the communication device further includes a communication interface, and the processor is coupled with the communication interface.
- the communication interface may be a transceiver or an input/output interface; when the communication device is a chip included in the terminal device, the communication interface may be an input/output interface of the chip.
- the transceiver may be a transceiver circuit, and the input/output interface may be an input/output circuit.
- an embodiment of the present application provides a chip system, including: a processor, the processor is coupled with a memory, the memory is used to store a program or an instruction, when the program or an instruction is executed by the processor , So that the chip system implements any possible design method of the foregoing first aspect, or implements any possible design method of the foregoing second aspect.
- processors in the chip system there may be one or more processors in the chip system.
- the processor can be implemented by hardware or software.
- the processor may be a logic circuit, an integrated circuit, or the like.
- the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
- the memory may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
- the memory may be a non-transitory processor, such as a read-only memory ROM, which may be integrated with the processor on the same chip, or may be set on different chips.
- the setting method of the processor is not specifically limited.
- an embodiment of the present application provides a computer-readable storage medium, which stores computer-readable instructions.
- the computer reads and executes the computer-readable instructions, the computer is caused to execute the first
- the method in any possible design of the aspect, or the method in any possible design of the second aspect described above.
- the embodiments of the present application provide a computer program product.
- the computer reads and executes the computer program product, the computer executes any of the possible design methods in the first aspect, or executes the first Any of the two possible design methods.
- an embodiment of the present application provides a communication system, which includes the network device and at least one terminal device described in the foregoing aspects.
- FIG. 1 is a schematic diagram of a network architecture of a communication system to which an embodiment of this application is applicable;
- Figure 2 is a schematic diagram of a bandwidth part BWP and resource block RB provided by an embodiment of the application;
- FIG. 3 is a schematic flowchart of a communication method provided by an embodiment of this application.
- FIG. 4 is a schematic diagram of a subcarrier mapping manner provided by an embodiment of the application.
- FIG. 5 is a schematic diagram of the distribution positions of L subcarriers provided by an embodiment of the application.
- FIG. 6 is a schematic diagram of another sub-carrier mapping method provided by an embodiment of the application.
- FIG. 7 is a schematic diagram of multiple discrete bandwidth parts DBWP configured by a network device in an embodiment of the application;
- FIG. 8 is a schematic flowchart of another communication method provided by an embodiment of this application.
- FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of this application.
- FIG. 10 is another schematic structural diagram of a communication device according to an embodiment of the application.
- FIG. 11 is a schematic structural diagram of another communication device provided by an embodiment of this application.
- FIG. 12 is a schematic diagram of another structure of another communication device provided by an embodiment of this application.
- GSM global system for mobile communications
- CDMA code division multiple access
- WCDMA broadband code division multiple access
- GPRS general packet radio service
- LTE long term evolution
- LTE frequency division duplex FDD
- TDD LTE Time division duplex
- UMTS universal mobile telecommunication system
- WIMAX worldwide interoperability for microwave access
- 5G fifth generation
- NR new radio
- FIG. 1 is a schematic diagram of a network architecture of a communication system to which an embodiment of this application is applicable.
- the communication system includes a network device 110, a terminal device 120, a terminal device 130, and a terminal device 140.
- the network device may communicate with at least one terminal device (such as the terminal device 120) through uplink (UL) and downlink (DL).
- UL uplink
- DL downlink
- the network device in Figure 1 may be an access network device, such as a base station.
- the access network device in different systems corresponding to different devices for example, in the fourth generation mobile communication technology (the 4 th generation, 4G) system
- the eNB may correspond, a corresponding access network device 5G 5G in the system, For example, gNB.
- the terminal device 120, the terminal device 130, and the terminal device 140 are shown in FIG. 1, it should be understood that the network device may provide services for multiple terminal devices, and the embodiment of the present application does not limit the number of terminal devices in the communication system.
- the terminal device in FIG. 1 is described using a mobile phone as an example, and it should be understood that the terminal device in the embodiment of the present application is not limited to this.
- Terminal equipment also known as user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
- UE user equipment
- MS mobile station
- MT mobile terminal
- the terminal device may communicate with a core network via a radio access network (RAN), and exchange voice and/or data with the RAN.
- RAN radio access network
- the terminal device may be a handheld device with a wireless connection function, a vehicle-mounted device, etc.
- terminal devices are: mobile phones (mobile phones), tablets, laptops, palmtop computers, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented Augmented reality (AR) equipment, wireless terminals in industrial control (industrial control), wireless terminals in self-driving (self-driving), wireless terminals in remote medical surgery, and smart grid (smart grid)
- Network equipment is the equipment used in the network to connect terminal equipment to the wireless network.
- the network device may be a node in a radio access network, may also be called a base station, or may also be called a radio access network (RAN) node (or device).
- the network device can be used to convert received air frames and Internet Protocol (IP) packets to each other, and act as a router between the terminal device and the rest of the access network, where the rest of the access network may include an IP network.
- IP Internet Protocol
- the network equipment can also coordinate the attribute management of the air interface.
- the network equipment may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in a long term evolution (LTE) system or an evolved LTE system (LTE-Advanced, LTE-A), or It can also include the next generation node B (gNB) in the new radio (NR) system of the fifth generation mobile communication technology (5G), or it can also include the transmission reception point.
- NodeB or eNB or e-NodeB, evolutional Node B in a long term evolution (LTE) system or an evolved LTE system (LTE-Advanced, LTE-A), or It can also include the next generation node B (gNB) in the new radio (NR) system of the fifth generation mobile communication technology (5G), or it can also include the transmission reception point.
- LTE long term evolution
- LTE-A evolved LTE system
- gNB next generation node B
- NR new radio
- TRP home base station
- BBU baseband unit
- WiFi access point access point, AP
- CU centralized unit
- DU distributed unit
- a BWP includes several consecutive resource blocks (RB) in the frequency domain.
- the RB can be a physical resource block (PRB), as shown in Figure 2.
- PRB physical resource block
- K can be 12.
- one resource block includes 12 subcarriers
- 5G NR 5G NR system
- one resource block also includes 12 subcarriers.
- the number of subcarriers included in a resource block may also be other values, which is not limited in this application.
- the uplink data channel is used to carry uplink data information.
- it is a physical uplink shared channel (PUSCH), or an enhanced physical uplink control channel (EPUSCH), or it can be other uplink data channels.
- PUSCH physical uplink shared channel
- EPUSCH enhanced physical uplink control channel
- the uplink data channel is introduced using PUSCH as an example.
- the terms “system” and “network” in the embodiments of this application can be used interchangeably.
- “Multiple” refers to two or more. In view of this, “multiple” may also be understood as “at least two” in the embodiments of the present application.
- “At least one” can be understood as one or more, for example, one, two or more. For example, including at least one means including one, two or more, and it does not limit which ones are included. For example, if at least one of A, B, and C is included, then A, B, C, A and B, A and C, B and C, or A and B and C are included. In the same way, the understanding of "at least one" and other descriptions is similar.
- FIG. 3 is a schematic flowchart of a communication method provided by an embodiment of this application.
- the method includes the following steps S301 to S304:
- Step S301 The network device sends a first message to the terminal device, where the first message is used to instruct the terminal device to send an uplink data signal to the network device on N subcarriers.
- the uplink data signal is carried on the uplink data channel, for example, the PUSCH, and the N subcarriers are subcarriers occupied by the PUSCH, that is, the subcarriers used to transmit the uplink data signal.
- these N subcarriers are distributed in M resource blocks (RB), and only occupy part of the subcarriers in each of the M RBs, and M is a positive integer greater than or equal to 2. That is to say, the number of subcarriers used to transmit uplink data signals in each of the M RBs is L, L is less than K, and K is the number of subcarriers included in one RB, for example, K may be 12.
- each RB in the M RBs includes consecutive K subcarriers, but only L subcarriers among them are used to transmit uplink data signals.
- the first message may also be used to indicate the L subcarriers used to transmit the uplink data signal in each RB of the M RBs, and give the mapping mode of PUSCH to L subcarriers.
- a possible mapping method is that the subcarriers included in each RB are numbered in the order from 0 to K-1, where the number of the L subcarriers in the RB used to transmit the uplink data signal in the RB is specifically s ,S+S,...,s+(L-1)*S.
- the value of S can be 2, 3, 4, 6, 8, 12.
- one RB includes 12 subcarriers.
- These 6 subcarriers are represented by solid lines in Figure 4, according to the step size 2. Arranged at intervals, and the remaining 6 subcarriers are represented by dashed lines.
- the PUSCH may occupy part of the subcarriers in one RB, and the subcarriers occupied by the PUSCH are not arranged continuously in the RB.
- the non-contiguous K sub-carriers are called a discrete resource block (DRB)
- DRB discrete resource block
- a DRB occupied by the PUSCH can be used to transmit uplink data signals among the S RBs.
- the degree of DRB is also different. different.
- the sub-carrier composition used to transmit uplink data signals in, the degree of DRB is 6. It should be noted that the DRB and degree here are only for the convenience of reference and do not limit the name.
- the positions of the L subcarriers used to transmit the uplink data signal in each of the M RBs indicated in the first message are also different.
- S 4
- one DRB includes subcarriers from 4 RBs, that is, the degree of DRB is 4.
- L subcarriers can have 4 possible distribution positions in one RB. Therefore, the L subcarriers indicated in the first message can be the first position, the second position, the third position, and the fourth position. One of the locations.
- the value of S can be 6.
- one RB includes 12 sub-carriers.
- These four sub-carriers are shown in Figure 6. It is represented by a solid line.
- the interval between the first sub-carrier in the first group and the first sub-carrier in the second group is 6, that is, the step size S ,
- the interval between the second subcarrier in the first group and the second subcarrier in the second group is also 6.
- each of the M RBs may use the same subcarrier mapping mode, that is, the position of the subcarrier occupied by the PUSCH in each of the M RBs and The numbers can be the same.
- Step S302 The terminal device receives the first message from the network device.
- Step S303 The terminal device sends an uplink data signal to the network device on the N subcarriers.
- the terminal device may determine the N subcarriers occupied by the PUSCH from the M RBs, and send uplink data signals on the N subcarriers.
- the M RBs may be located in the X RBs included in the first frequency domain resource, and X is a positive integer greater than or equal to M.
- the first frequency domain resource may be an uplink transmission resource configured by a network device, for example, a bandwidth portion (bandwidth). part, BWP).
- the first message can also be used to indicate one or more of the positions of M RBs in the X RBs, the value of M, the value of L, the value of M ⁇ L/K, and the value of S, so that The terminal device determines the M RBs, and determines the N subcarriers included in the M RBs for transmitting uplink data signals according to the subcarrier mapping mode.
- M ⁇ L/K is equal to N/K, which refers to the number of DRBs in M RBs.
- the N subcarriers can be regarded as one or more scheduled DRBs, and the M RBs include the scheduled one or more DRBs. Therefore, the first message indicating the positions of the M RBs in the X RBs may be: the first message includes information indicating the degree of DRB, the starting position of the DRB, and the number of DRBs.
- the degree of DRB may be one of a preset value set, for example, the preset value set may be ⁇ 2, 4, 6 ⁇ .
- the start position of the DRB is the start position of the scheduled DRB in X RBs. If the first frequency domain resource is a given BWP scheduled by a network device, all available sets of degree n in this BWP are called discrete bandwidth part-n (DBWP-n), then X RBs can be RB occupied in this DBWP-n.
- the starting position of the DRB may be the number of the DRB with the smallest number among the scheduled DRBs, or the number of the RB with the smallest number included in the DRB with the smallest number, so that the terminal device can determine the starting position of the scheduled DRB.
- the number of DRBs is the number of scheduled DRBs.
- the preset value set is ⁇ 2, 4, 6 ⁇
- the number of DRBs in DBWP-2 is N2
- the number of DRBs in DBWP-4 is N4
- the number of DRBs in DBWP-6 is N6.
- Step S304 The network device receives the uplink data signal sent by the terminal device on the N subcarriers.
- the first frequency domain resource includes consecutive Z RBs, the Z RBs are numbered from 0 to Z-1, and Z is a positive integer greater than or equal to X.
- the positions or numbers of the X RBs in the first frequency domain resource may be scheduled by the network device, or may be determined by the terminal device through a preset rule.
- the terminal device may receive a second message from the network device, where the second message is used to indicate the position or number of the X RBs in the first frequency domain resource, and the value of X.
- X ⁇ L/K is an integer, indicating the number of DRBs included in X RBs.
- the terminal device may receive the second message from the network device before receiving the first message. If the first frequency domain resource is a given BWP scheduled by the network device, the set of all available degrees of n in the BWP is called Discrete bandwidth part (discrete bandwidth part-n, DBWP-n), then X RBs may be RBs occupied by the DBWP-n.
- DBWP-n Discrete bandwidth part
- the second message may specifically indicate the position of the start RB in the DBWP-n and the number of RBs included in the DBWP-n.
- the network device can simultaneously configure multiple DBWPs of different degrees for the terminal device. As shown in Figure 6, when the degree of DBWP is different, the position and bandwidth of DBWP are also different.
- the X RBs can be X RBs numbered from 0 to X-1 in the first frequency domain resource; or, they can also be X RBs numbered from ZX to Z- in the first frequency domain resource.
- the first message and the second message mentioned in the embodiments of this application may be uplink control information (UCI) carried on a physical uplink control channel (PUCCH), or may also be It is a signaling or message sent by a network device through physical layer control signaling, medium access control (MAC) layer signaling, or radio resource control (radio resource control, RRC), which is not specifically limited.
- UCI uplink control information
- PUCCH physical uplink control channel
- MAC medium access control
- RRC radio resource control
- the N subcarriers used to transmit uplink data signals can be distributed in M RBs, and the PUSCH can occupy part of the subcarriers in one RB to transmit uplink data signals, thereby It can broaden the frequency domain range of the channel experienced by the PUSCH, fully obtain the diversity gain brought by the frequency domain selectivity of the channel, and improve the transmission performance of the PUSCH.
- FIG. 8 is a schematic flowchart of another communication method provided by an embodiment of this application.
- the method includes the following steps S801 to S804:
- Step S801 The network device sends a first message to the terminal device, where the first message is used to instruct the terminal device to receive a downlink data signal from the network device on N subcarriers;
- the downlink data signal is carried on the downlink data channel, and the downlink data signal may be a physical downlink shared channel (PDSCH), or may be other downlink data channels.
- PDSCH physical downlink shared channel
- the downstream data channel is PDSCH.
- the N subcarriers are the subcarriers occupied by the PDSCH, that is, the subcarriers used to transmit the downlink data signal.
- these N subcarriers are distributed in M resource blocks (RB), and only occupy part of the subcarriers in each of the M RBs, and M is a positive integer greater than or equal to 2. That is to say, the number of subcarriers used to transmit downlink data signals in each of the M RBs is L, L is less than K, and K is the number of subcarriers included in one RB, for example, K may be 12.
- each RB in the M RBs includes consecutive K subcarriers, but only L subcarriers among them are used to transmit downlink data signals.
- the first message may also be used to indicate the L subcarriers used for transmitting the downlink data signal in each RB of the M RBs, and give the mapping mode of the PDSCH to the L subcarriers.
- a possible mapping method is that the subcarriers included in each RB are numbered in the order from 0 to K-1, where the number of the L subcarriers in the RB used to transmit the downlink data signal in the RB is specifically s ,S+S,...,s+(L-1)*S.
- mapping manner of PDSCH to subcarriers (that is, the position or number of subcarriers occupied by PDSCH in an RB) can be referred to the mapping manner of PUSCH to subcarriers shown in FIGS. 4 to 7
- the difference is that PUSCH is replaced with PDSCH, so it will not be repeated here.
- Step S802 The network device sends a downlink data signal to the terminal device.
- the network device may send the first message first and then the downlink data signal, or may send the first message and the downlink data information at the same time, which is not limited in this application.
- the above step S802 can be executed after step S801, or can be executed simultaneously with step S801.
- Step S803 The terminal device receives the first message from the network device.
- Step S804 The terminal device receives the downlink data signal from the network device on the N subcarriers.
- the terminal device may determine the N subcarriers occupied by the PDSCH from the M RBs, and receive downlink data signals on the N subcarriers.
- M RBs may be located in the X RBs included in the first frequency domain resource, and X is a positive integer greater than or equal to M.
- the first frequency domain resource may be a downlink transmission resource configured by a network device, for example, a bandwidth part. BWP.
- the first message can also be used to indicate one or more of the positions of M RBs in the X RBs, the value of M, the value of L, the value of M ⁇ L/K, and the value of S, so that The terminal device determines the M RBs, and determines the N subcarriers included in the M RBs for receiving the downlink data signal according to the subcarrier mapping mode.
- M ⁇ L/K is equal to N/K, which refers to the number of DRBs in M RBs.
- the N subcarriers can be regarded as one or more scheduled DRBs, and the M RBs include the scheduled one or more DRBs. Therefore, the first message indicating the positions of the M RBs in the X RBs may be: the first message includes information indicating the degree of DRB, the starting position of the DRB, and the number of DRBs. Among them, the information of the degree of DRB, the starting position of the DRB, and the number of DRBs can be referred to the previous method embodiment, which will not be repeated here.
- the terminal device may also receive a second message from the network device, where the second message is used to indicate the position or number of the X RBs in the first frequency domain resource, and the value of X.
- X ⁇ L/K is an integer, indicating the number of DRBs included in X RBs.
- the terminal device may receive the second message from the network device before receiving the first message. If the first frequency domain resource is a given BWP scheduled by the network device, the set of all available degrees of n in the BWP is called Discrete bandwidth part DBWP-n, then X RBs can be RBs occupied by the DBWP-n.
- the second message may specifically indicate the position of the start RB in the DBWP-n and the number of RBs included in the DBWP-n.
- the network device can simultaneously configure multiple DBWPs of different degrees.
- the X RBs may also be determined by a preset rule.
- the X RBs may be X RBs numbered from 0 to X-1 in the first frequency domain resource, or may also be X RBs numbered in the first frequency domain resource.
- the first message and the second message mentioned in the embodiment of this application may be downlink control information (DCI) carried on a physical downlink control channel (PDCCH), or may also be It is a signaling or message sent by a network device through physical layer control signaling, medium access control (MAC) layer signaling, or radio resource control (radio resource control, RRC), which is not specifically limited.
- DCI downlink control information
- PDCCH physical downlink control channel
- MAC medium access control
- RRC radio resource control
- FIG. 9 is a schematic structural diagram of a communication device provided in an embodiment of the present application.
- the communication device 900 includes a transceiver module 910 and a processing module 920.
- the communication device can be used to implement the functions related to terminal equipment in any of the foregoing method embodiments.
- the communication device may be a terminal device, such as a handheld terminal device or a vehicle-mounted terminal device; the communication device may also be a chip included in the terminal device, or a device including the terminal device, such as various types of vehicles.
- the processing module 920 is configured to perform the operation of sending an uplink data signal to the network device on N subcarriers through the transceiver module 910, and the transceiver module 910 is configured to Perform an operation of receiving the first message from the network device.
- the processing module 920 is configured to receive a first message through the transceiver module 910, and determine N subcarriers according to the first message, the transceiver module 910 It is used to perform the operation of receiving the downlink data signal from the network device on the N subcarriers.
- the processing module 920 involved in the communication device may be implemented by a processor or processor-related circuit components, and the transceiver module 910 may be implemented by a transceiver or transceiver-related circuit components.
- the operation and/or function of each module in the communication device is to implement the corresponding process of the method shown in FIG. 3 and FIG. 8 respectively. For the sake of brevity, it will not be repeated here.
- FIG. 10 is a schematic diagram of another structure of a communication device provided in an embodiment of this application.
- the communication device may specifically be a terminal device. It is easy to understand and easy to illustrate.
- the terminal device uses a mobile phone as an example.
- the terminal device includes a processor, and may also include a memory, and of course, it may also include a radio frequency circuit, an antenna, an input and output device, and so on.
- the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
- the memory is mainly used to store software programs and data.
- the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
- the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
- Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
- the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
- the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
- the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
- only one memory and processor are shown in FIG. 10. In actual terminal equipment products, there may be one or more processors and one or more memories.
- the memory may also be referred to as a storage medium or storage device.
- the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
- the antenna and radio frequency circuit with the transceiver function can be regarded as the transceiver unit of the terminal device, and the processor with the processing function can be regarded as the processing unit of the terminal device.
- the terminal device includes a transceiver unit 1010 and a processing unit 1020.
- the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver, and so on.
- the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
- the device for implementing the receiving function in the transceiver unit 1010 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1010 as the sending unit, that is, the transceiver unit 1010 includes a receiving unit and a sending unit.
- the transceiver unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
- the receiving unit may sometimes be called a receiver, receiver, or receiving circuit.
- the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
- transceiving unit 1010 is used to perform sending and receiving operations on the terminal device side in the foregoing method embodiment
- processing unit 1020 is used to perform other operations on the terminal device in the foregoing method embodiment except for the transceiving operation.
- FIG. 11 is a schematic structural diagram of another communication device provided in an embodiment of the present application.
- the communication device 1100 includes a transceiver module 1110 and a processing module 1120.
- the communication device can be used to implement the functions related to network equipment in any of the foregoing method embodiments.
- the communication device may be a network device or a chip included in the network device.
- the transceiver module 1110 is used for sending the first message to the terminal device and receiving the uplink data signal sent by the terminal device on the N subcarriers. Operation;
- the processing module 1120 is configured to perform an operation of determining X RBs and sending a second message to the terminal device through the transceiver module 1110.
- the transceiver module 1110 is used to perform operations of sending a first message to the terminal device and sending a downlink data signal to the terminal device on N subcarriers
- the processing module 1120 is configured to perform an operation of determining X RBs and sending a second message to the terminal device through the transceiver module 1110.
- the processing module 1120 involved in the communication device may be implemented by a processor or processor-related circuit components
- the transceiver module 1110 may be implemented by a transceiver or transceiver-related circuit components.
- the operations and/or functions of the various modules in the communication device are used to implement the corresponding procedures of the methods shown in FIG. 3 and FIG. 8 respectively. For brevity, details are not described herein again.
- FIG. 12 is a schematic diagram of another structure of another communication device provided in an embodiment of this application.
- the communication device may specifically be a type of network equipment, such as a base station, which is used to implement the functions of the network equipment in any of the foregoing method embodiments.
- the network equipment includes: one or more radio frequency units, such as a remote radio unit (RRU) 1201 and one or more baseband units (BBU) (also known as digital units, digital units, DU) ) 1202.
- the RRU 1201 may be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 12011 and a radio frequency unit 12012.
- the RRU 1201 part is mainly used for receiving and sending radio frequency signals and converting radio frequency signals and baseband signals.
- the part of the BBU 1202 is mainly used to perform baseband processing and control the base station.
- the RRU 1201 and the BBU 1202 may be physically set together, or may be physically separated, that is, a distributed base station.
- the BBU 1202 is the control center of the base station, and may also be called a processing unit, which is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
- the BBU (processing unit) 1202 may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
- the BBU 1202 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network (such as an LTE network) with a single access indication, or may respectively support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
- the BBU 1202 may further include a memory 12021 and a processor 12022, and the memory 12021 is used to store necessary instructions and data.
- the processor 12022 is configured to control the base station to perform necessary actions, for example, to control the base station to perform the sending operation in the foregoing method embodiment.
- the memory 12021 and the processor 12022 may serve one or more boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
- An embodiment of the present application also provides a chip system, including: a processor, the processor is coupled with a memory, the memory is used to store a program or instruction, when the program or instruction is executed by the processor, the The chip system implements the method in any of the foregoing method embodiments.
- processors in the chip system there may be one or more processors in the chip system.
- the processor can be implemented by hardware or software.
- the processor may be a logic circuit, an integrated circuit, or the like.
- the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
- the memory may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
- the memory may be a non-transitory processor, such as a read-only memory ROM, which may be integrated with the processor on the same chip, or may be set on different chips.
- the setting method of the processor is not specifically limited.
- the chip system may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a system on chip (SoC). It can also be a central processor unit (CPU), a network processor (NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (microcontroller).
- the controller unit, MCU may also be a programmable controller (programmable logic device, PLD) or other integrated chips.
- each step in the foregoing method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
- the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
- the embodiment of the present application also provides a computer-readable storage medium, which stores computer-readable instructions, and when the computer reads and executes the computer-readable instructions, the computer is caused to execute any of the foregoing method embodiments Method in.
- the embodiments of the present application also provide a computer program product.
- the computer reads and executes the computer program product, the computer is caused to execute the method in any of the foregoing method embodiments.
- An embodiment of the present application also provides a communication system, which includes a network device and at least one terminal device.
- processors mentioned in the embodiments of this application may be a central processing unit (CPU), or may be other general-purpose processors, digital signal processors (DSP), or application specific integrated circuits ( application specific integrated circuit (ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
- the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
- the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
- the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
- the volatile memory may be random access memory (RAM), which is used as an external cache.
- RAM random access memory
- static random access memory static random access memory
- dynamic RAM dynamic random access memory
- synchronous dynamic random access memory synchronous DRAM, SDRAM
- double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
- enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
- synchronous connection dynamic random access memory serial DRAM, SLDRAM
- direct rambus RAM direct rambus RAM, DR RAM
- the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
- the memory storage module
- the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
- the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present invention.
- the implementation process constitutes any limitation.
- the disclosed system, device, and method may be implemented in other ways.
- the device embodiments described above are only illustrative.
- the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
- the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
- each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
- the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
- the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
- the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
一种通信方法及装置,该方法包括:终端设备从网络设备接收第一消息,终端设备在该第一消息中指示的N个子载波上向网络设备发送上行数据信号,其中,N个子载波分布在M个资源块RB中,M个RB中的每个RB中用于发送上行数据信号的子载波数量为L,M大于等于2,L小于K,K为一个RB中包括的子载波的个数,N、M、L、K均为正整数。采用该技术方案,PUSCH可占用一个RB中的部分子载波以发送上行数据信号,从而能够拓宽PUSCH所经历的信道的频域范围,充分获取信道的频域选择性带来的分集增益,提升PUSCH的传输性能。
Description
相关申请的交叉引用
本申请要求在2019年05月31日提交中国国家知识产权局、申请号为201910468221.4、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
现有技术中,终端设备向网络设备发送的上行数据信号承载在物理上行共享信道(physical uplink shared channel,PUSCH)上,该PUSCH在频域上占用整数个物理资源块(physica resource block,PRB),并映射在PRB包括的全部子载波上。如此,在PUSCH占用的资源块个数较少的情况下,PUSCH占用的子载波也较少,从而会导致PUSCH在频域上的带宽较窄,无法充分获取信道的频域选择性带来的分集增益。
发明内容
本申请实施例提供一种通信方法及装置,利用信道的频域选择性带来的分集增益,提升上行数据信号的传输性能。
第一方面,本申请提供一种通信方法,该方法可应用于终端设备,该方法包括:终端设备从网络设备接收第一消息,该第一消息用于指示终端设备在N个子载波上向网络设备发送上行数据信号;终端设备在该N个子载波上向网络设备发送上行数据信号,其中,N个子载波分布在M个资源块RB中,M个RB中的每个RB中用于发送上行数据信号的子载波数量为L,M大于等于2,L小于K,K为一个RB中包括的子载波的个数,N、M、L、K均为正整数。
本申请实施例中,用于发送上行数据信号的N个子载波可分布在M个RB中,并且M个RB中的每个RB中用于发送上行数据信号的子载波为该RB中的部分子载波,也就是说,PUSCH可占用一个RB中的部分子载波以发送上行数据信号,从而能够拓宽PUSCH所经历的信道的频域范围,充分获取信道的频域选择性带来的分集增益,提升PUSCH的传输性能。
在一种可能的设计中,第一消息可用于指示M个RB中的每个RB中用于发送上行数据信号的L个子载波。例如,网络设备可通过该第一消息,向终端设备指示每个RB中用于发送上行数据信号的L个子载波在所在RB中的分布的位置或编号。
对于M个RB中的每个RB,该RB中各个子载波的编号从0到K-1;L个子载波在该RB中的编号可以为s,s+S,…,s+(L-1)*S,S=K/L,s为小于S的非负整数,或者L个子载波在该RB中的编号也可以为s,s+1,s+S,s+1+S…,s+(L-1)*S,s+1+(L-1)*S,S=2*K/L,s为小于S-1的非负整数。若将分布在M个RB中用于发送上行数据信号的N个RB看做 至少一个离散资源块DRB,本申请实施例中,PUSCH可映射到至少一个DRB上,而且PUSCH的子载波的映射方式即每个RB中用于发送上行数据信号的L个子载波在所在RB中的分布方式,能够实现更加灵活的DRB的调度。例如,可通过设定s和S的值来改变PUSCH所经历的信道的频域范围,从而提升PUSCH的传输性能。
在一种可能的设计中,M个RB位于第一频域资源中包括的X个RB中,X为正整数;该第一消息还用于指示如下的一项或多项信息:M个RB在X个RB中的位置、M的值、L的值、M×L/K的值、S的值。如此,终端设备可根据第一消息中指示的信息确定M个RB中用于发送上行数据信号的N个子载波。
本申请实施例中,该X个RB在第一频域资源中的位置或编号可由网络设备调度,也可以由终端设备根据预设规则确定,从而能够提高资源调度的灵活性。例如,在一种可能的设计中,第一频域资源包括连续的Z个RB,Z为大于等于X的正整数;终端设备可从网络设备接收第二消息,该第二消息用于指示X个RB在第一频域资源中的位置或编号,以及X的值,其中,X×L/K为正整数;进而,终端设备可根据第二消息确定X个RB。
在另一种可能的设计中,第一频域资源包括连续的Z个RB,该Z个RB的编号从0到Z-1,Z为大于等于X的正整数。X个RB可以为第一频域资源中编号为0到X-1的X个RB;或者,该X个RB也可以为所述第一频域资源中编号为Z-X到Z-1的X个RB;或者,该X个RB还可以为第一频域资源中编号为floor(A/2)到B×z+floor(A/2)-1的X个RB,其中,X=floor(Z×L/K)×K/L,B=floor(Z×L/K),A=Z-B×L/K。
第二方面,本申请提供一种通信方法,该方法可应用于网络设备,该方法包括:网络设备向终端设备发送第一消息,该第一消息用于指示终端设备在N个子载波上向网络设备发送上行数据信号;网络设备接收该终端设备在N个子载波上发送的上行数据信号,其中,N个子载波分布在M个资源块RB中,该M个RB中的每个RB中用于发送上行数据信号的子载波数量为L,M大于等于2,L小于K,K为一个RB中包括的子载波的个数,N、M、L、K均为正整数。
本申请实施例中,用于发送上行数据信号的N个子载波可分布在M个RB中,并且M个RB中的每个RB中用于发送上行数据信号的子载波为该RB中的部分子载波,也就是说,PUSCH可占用一个RB中的部分子载波以发送上行数据信号,从而能够拓宽PUSCH所经历的信道的频域范围,充分获取信道的频域选择性带来的分集增益,提升PUSCH的传输性能。
在一种可能的设计中,该第一消息用于指示M个RB中的每个RB中用于发送上行数据信号的L个子载波。例如,网络设备可通过该第一消息,向终端设备指示每个RB中用于发送上行数据信号的L个子载波在所在RB中的分布的位置或编号。
对于M个RB中的每个RB,该RB中各个子载波的编号从0到K-1;L个子载波在该RB中的编号可以为s,s+S,…,s+(L-1)*S,S=K/L,s为小于S的非负整数。或者,L个子载波在该RB中的编号也可以为s,s+1,s+S,s+1+S…,s+(L-1)*S,s+1+(L-1)*S,S=2*K/L,s为小于S-1的非负整数。若将分布在M个RB中用于发送上行数据信号的N个RB看做至少一个离散资源块DRB,本申请实施例中,PUSCH可映射到至少一个DRB上,而且PUSCH的子载波的映射方式即每个RB中用于发送上行数据信号的L个子载波在所在RB中的分布方式,能够实现更加灵活的DRB的调度。例如,可通过设定s和S的值来改变PUSCH所经历的信道的频域范围,从而提升PUSCH的传输性能。
在一种可能的设计中,M个RB位于第一频域资源中包括的X个RB中,X为正整数;该第一消息还用于指示如下的一项或多项信息:M个RB在X个RB中的位置、M的值、L的值、M×L/K的值、S的值。如此,可使终端设备根据第一消息中指示的信息确定M个RB中用于发送上行数据信号的N个子载波。
本申请实施例中,该X个RB在第一频域资源中的位置或编号可由网络设备调度,也可以由终端设备根据预设规则确定,从而能够提高资源调度的灵活性。例如,在一种可能的设计中,第一频域资源包括连续的Z个RB,Z为大于等于X的正整数;终端设备可从网络设备接收第二消息,该第二消息用于指示X个RB在第一频域资源中的位置或编号,以及X的值,其中,X×L/K为正整数;进而,终端设备可根据第二消息确定X个RB。
在另一种可能的设计中,第一频域资源包括连续的Z个RB,该Z个RB的编号从0到Z-1,Z为大于等于X的正整数。X个RB可以为第一频域资源中编号为0到X-1的X个RB;或者,该X个RB也可以为所述第一频域资源中编号为Z-X到Z-1的X个RB;或者,该X个RB还可以为第一频域资源中编号为floor(A/2)到B×z+floor(A/2)-1的X个RB,其中,X=floor(Z×L/K)×K/L,B=floor(Z×L/K),A=Z-B×L/K。
第三方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第一方面或第一方面的任一种可能的设计中终端设备的功能该通信装置可以为终端设备,例如手持终端设备、车载终端设备等,也可以为终端设备中包含的装置,例如芯片,也可以为包含所述终端设备的装置。上述终端设备的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,所述硬件或软件包括一个或多个与上述功能相对应的模块。
该通信装置也可以具有实现上述第二方面或第二方面的任一种可能的设计中网络设备的功能。该通信装置可以为网络设备,例如基站,也可以为网络设备中包含的装置,例如芯片。上述网络设备的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该通信装置的结构中包括处理模块和收发模块,其中,处理模块被配置为支持该通信装置执行上述第一方面或第一方面的任一种设计中相应的功能、或执行上述第二方面或第二方面的任一种设计中相应的功能。收发模块用于支持该通信装置与其他通信设备之间的通信,例如该通信装置为终端设备时,可在N个子载波上向网络设备发送上行数据信号。该通信装置还可以包括存储模块,存储模块与处理模块耦合,其保存有通信装置必要的程序指令和数据。作为一种示例,处理模块可以为处理器,通信模块可以为收发器,存储模块可以为存储器,存储器可以和处理器集成在一起,也可以和处理器分离设置,本申请并不限定。
在另一种可能的设计中,该通信装置的结构中包括处理器,还可以包括存储器,处理器与存储器耦合,可用于执行存储器中存储的计算机程序指令,以使通信装置执行上述第一方面或第一方面的任一种可能的设计中的方法,或者执行上述第二方面或第二方面的任一种可能的设计中的方法。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。当通信装置为终端设备时,该通信接口可以是收发器或输入/输出接口;当该通信装置为终端设备中包含的芯片时,该通信接口可以是芯片的输入/输出接口。可选地,收发器可以为收发电路,输入/输出接口可以是输入/输出电路。
第四方面,本申请实施例提供一种芯片系统,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯 片系统实现上述第一方面的任一种可能的设计中的方法、或实现上述第二方面的任一种可能的设计中的方法。
可选地,该芯片系统中的处理器可以为一个或多个。该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请并不限定。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
第五方面,本申请实施例提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述第一方面的任一种可能的设计中的方法、或执行上述第二方面的任一种可能的设计中的方法。
第六方面,本申请实施例提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述第一方面的任一种可能的设计中的方法、或执行上述第二方面的任一种可能的设计中的方法。
第七方面,本申请实施例提供一种通信系统,该通信系统包括上述各方面中所述的网络设备和至少一个终端设备。
图1为本申请实施例适用的一种通信系统的网络架构示意图;
图2为本申请实施例提供的带宽部分BWP和资源块RB的示意图;
图3为本申请实施例提供的一种通信方法的流程示意图;
图4为本申请实施例提供的一种子载波的映射方式的示意图;
图5为本申请实施例提供的L个子载波的分布位置示意图;
图6为本申请实施例提供的另一种子载波的映射方式的示意图;
图7为本申请实施例中网络设备配置的多个离散带宽部分DBWP的示意图;
图8为本申请实施例提供的另一种通信方法的流程示意图;
图9为本申请实施例提供的一种通信装置的结构示意图;
图10为本申请实施例提供的一种通信装置的另一结构示意图;
图11为本申请实施例提供的另一种通信装置的结构示意图;
图12为本申请实施例提供的另一种通信装置的另一结构示意图。
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution, LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WIMAX)通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR)系统,或者应用于未来的通信系统或其它类似的通信系统等。
请参考图1,为本申请实施例适用的一种通信系统的网络架构示意图。该通信系统包括网络设备110、终端设备120、终端设备130和终端设备140。网络设备可通过上行链路(uplink,UL)和下行链路(downlink,DL)与至少一个终端设备(如终端设备120)进行通信。
图1中的网络设备可以为接入网设备,例如基站。其中,接入网设备在不同的系统对应不同的设备,例如在第四代移动通信技术(the 4
th generation,4G)系统中可以对应eNB,在5G系统中对应5G中的接入网设备,例如gNB。尽管在图1中仅示出了终端设备120、终端设备130和终端设备140,应理解,网络设备可以为多个终端设备提供服务,本申请实施例对通信系统中终端设备的数量不作限定。同理,图1中的终端设备是以手机为例进行说明的,也应理解,本申请实施例中的终端设备不限于此。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,又可称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备。所述终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。例如,终端设备可以是具有无线连接功能的手持式设备、车载设备等。目前,一些终端设备的示例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
2)网络设备,是网络中用于将终端设备接入到无线网络的设备。所述网络设备可以为无线接入网中的节点,又可以称为基站,还可以称为无线接入网(radio access network,RAN)节点(或设备)。网络设备可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。网络设备还可协调对空口的属性管理。例如,网络设备可以包括长期演进(long term evolution,LTE)系统或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(5th generation,5G)新无线(new radio,NR)系统中的下一代节点B(next generation node B,gNB),或者还可以包括传输接收点(transmission reception point,TRP)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或WiFi接入点(access point,AP)等,再或者还可以包括云接入网(cloud radio access network,CloudRAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
3)带宽部分(bandwidth part,BWP),一个BWP在频域上包括若干个连续的资源块(resource block,RB),该RB可以为物理资源块(physical resource block,PRB),如图2所示,一个PRB包括频域上连续的K个子载波,K可以为12。在LTE系统中,一个资源块包括12个子载波,在5G NR系统中,一个资源块也包括12个子载波。随着通信系统的演进,一个资源块中包括的子载波的数量也可以是其他值,本申请并不限定。
4)上行数据信道,用于承载上行数据信息。例如为物理上行共享信道(physical uplink shared channel,PUSCH),或者为增强的物理上行共享信道(enhanced physical uplink control channel,EPUSCH),或者可以是其他的上行数据信道。在本文中,上行数据信道是以PUSCH为例进行介绍的。
5)本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“至少一个”,可理解为一个或多个,例如理解为一个、两个或更多个。例如,包括至少一个,是指包括一个、两个或更多个,而且不限制包括的是哪几个。例如,包括A、B和C中的至少一个,那么包括的可以是A、B、C,A和B,A和C,B和C,或A和B和C。同理,对于“至少一种”等描述的理解,也是类似的。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词,用于区分多个对象,但不用于限定多个对象的顺序、时序、优先级或者重要程度,并且“第一”、“第二”的描述也并不限定对象一定不同。
请参考图3,为本申请实施例提供的一种通信方法的流程示意图。该方法包括如下的步骤S301至步骤S304:
步骤S301、网络设备向终端设备发送第一消息,该第一消息用于指示终端设备在N个子载波上向网络设备发送上行数据信号。
本申请实施例中,上行数据信号承载在上行数据信道上,例如可以是PUSCH,所述N个子载波为PUSCH占用的子载波,即用于发送上行数据信号的子载波。但应注意的是,这N个子载波分布在M个资源块(resource block,RB)中,且只占用M个RB中每个RB中的部分子载波,M为大于等于2的正整数。也就是说,M个RB中的每个RB中用于发送上行数据信号的子载波的数量为L,L小于K,K为一个RB中包括的子载波的个数,例如K可以是12。
可以理解,M个RB中的每个RB包括连续的K个子载波,但只有其中的L个子载波用于发送上行数据信号。鉴于此,本申请实施例中,第一消息还可以用于指示M个RB中的每个RB中用于发送上行数据信号的L个子载波,给出PUSCH到L个子载波的映射方式。
一种可能的映射方式为,每个RB包括的子载波按照从0到K-1的顺序编号,其中,该RB中用于发送上行数据信号的L个子载波在该RB中的编号具体为s,s+S,…,s+(L-1)*S。这里,S为步长,S=K/L,S可以大于等于2,s为小于S的非负整数,s+(L-1)*S小于等于K-1。
例如,S的值可以为2、3、4、6、8、12。作为一种示例,图4示出了s=0,且S分别为2、3、4、6时用于发送上行数据信号的子载波的分布。如图4所示,一个RB中包括 12个子载波,S=2时,PUSCH占用一个RB中的6个子载波即L=6,这6个子载波在图4中用实线表示,按照步长2间隔排列,其余的6个子载波用虚线表示。S=3时,PUSCH占用一个RB中的4个子载波即L=4,这4个子载波在图4中用实线表示,按照步长3间隔排列,其余的8个子载波用虚线表示。S=4时,PUSCH占用一个RB中的3个子载波即L=3,这3个子载波在图4中用实线表示,按照步长4间隔排列,其余的9个子载波用虚线表示。S=6时,PUSCH占用一个RB中的2个子载波即L=2,这2个子载波在图4中用实线表示,按照步长6间隔排列,其余的10个子载波用虚线表示。
由图4可知,PUSCH可占用一个RB中的部分子载波,且PUSCH占用的子载波在RB中不连续排列。若将非连续的K个子载波称为一个离散资源块(discrete resource block,DRB),那么在采用该子载波的映射方式时,PUSCH占用的一个DRB可由S个RB中用于发送上行数据信号的子载波组成。若将DRB关联的RB的个数记做DRB的度,此时DRB的度为S。因此,图4中分别示出了S=2、S=3、S=4、S=6时PUSCH占用的一个DRB,S不同时,DRB关联的RB的个数也不同,即DRB的度也不同。其中,S=2时,一个DRB由2个RB中用于发送上行数据信号的子载波组成,DRB的度为2;S=3时,一个DRB由3个RB中用于发送上行数据信号的子载波组成,DRB的度为3;S=4时,一个DRB由4个RB中用于发送上行数据信号的子载波组成,DRB的度为4;S=6时,一个DRB由6个RB中用于发送上行数据信号的子载波组成,DRB的度为6。需要说明的是,此处的DRB和度仅是为了方便指代,并不对名称进行限定。
再例如,当步长S为一设定值,但s的值不同时,第一消息中指示的M个RB中的每个RB中用于发送上行数据信号的L个子载波的位置也不同。如图5所示。在S为4时,一个DRB包括来自4个RB中的子载波,即DRB的度为4。当s取不同值时,L个子载波在一个RB中可具有4种可能的分布位置,因此,第一消息中指示的L个子载波可以为第一位置、第二位置、第三位置和第四位置中的一种。
另一种可能的映射方式为,每个RB包括的子载波按照从0到K-1的顺序编号,其中,该RB中用于发送上行数据信号的L个子载波在该RB中的编号具体为s,s+1,s+S,s+1+S,…,s+(L-1)*S,s+1+(L-1)*S,S=2*K/L,这里,S为步长,S=2*K/L,S可以大于等于2,s为小于S-1的非负整数,s可以为偶数,s+1+(L-1)*S小于等于K-1。
例如,S的值可以为6。如图6所示,一个RB中包括12个子载波,采用该子载波的映射方式,S=6时,PUSCH可占用一个RB中的4个子载波即L=4,这4个子载波在图6中用实线表示。在一个RB中,若将PUSCH占用的子载波分为两组,那么第一组中的第一个子载波与第二组中的第一个子载波之间的间隔为6,即步长S,第一组中的第二个子载波与第二组中的第二个子载波之间的间隔也为6。同理,在采用该子载波的映射方式时,PUSCH占用的一个DRB可由S/2个RB中用于发送上行数据信号的子载波组成,DRB的度为S/2,S为步长。例如,S=6时,一个DRB由3个RB中用于发送上行数据信号的子载波组成。
需要说明的是,本申请实施例中,M个RB中的每个RB可采用相同的子载波映射方式,也就是说,PUSCH在M个RB中的每个RB中占用的子载波的位置和编号可以是相同的。
步骤S302、终端设备从网络设备接收该第一消息。
步骤S303、终端设备在该N个子载波上向网络设备发送上行数据信号。
在步骤S302和步骤S303中,终端设备可从所述M个RB中确定PUSCH占用的N个子载波,并在该N个子载波上发送上行数据信号。
该M个RB可位于第一频域资源包括的X个RB中,X为大于等于M的正整数,该第一频域资源可以为网络设备配置的上行发送资源,例如可以是带宽部分(bandwidth part,BWP)。相应地,第一消息还可用于指示M个RB在该X个RB中的位置、M的值、L的值、M×L/K值、S的值中的一项或多项信息,以便于终端设备确定该M个RB,根据子载波的映射方式确定该M个RB中包括的用于发送上行数据信号的N个子载波。M×L/K等于N/K,是指M个RB中DRB的个数。
在一种可能的设计中,N个子载波可视为被调度的一个或多个DRB,M个RB中包括该被调度的一个或多个DRB。因此,第一消息指示M个RB在X个RB中的位置可以为:第一消息中包括用于指示DRB的度、DRB的起始位置和DRB的个数的信息。其中,DRB的度可以为预设取值集合中的一个,例如,该预设取值集合可以为{2、4、6}。
DRB的起始位置为被调度的DRB在X个RB中的起始位置。若第一频域资源为网络设备调度的给定BWP,将该BWP中所有可用的度为n的集合称为离散带宽部分(discrete bandwidth part-n,DBWP-n),那么X个RB可以为该DBWP-n中占用的RB。DRB的起始位置可以是被调度的DRB中编号最小的DRB的编号,也可以是编号最小的DRB中包含的编号最小的RB的编号,从而使终端设备能够确定被调度DRB的起始位置。
DRB的个数为被调度的DRB的个数。在预设取值集合为{2,4,6}时,DBWP-2中的DRB个数为N2,DBWP-4中的DRB个数为N4,DBWP-6中的DRB个数为N6。通常,N2>N4>N6。当被调度的DRB的个数N<=N6时,终端设备可采用度为6的DRB发送上行数据信号;当被调度的DRB的个数N6<N<=N4时,终端设备可采用度为4的DRB发送上行数据信号;当被调度的DRB的个数N4<N<=N2时,终端设备可采用度为2的DRB发送上行数据信号;当被调度的DRB的个数N>N2时,终端设备可采用PRB发送上行数据信号。从而使得终端设备能够根据第一信息中携带的DRB的位置和DRB的个数确定被调度的DRB的频域位置。
步骤S304、网络设备接收终端设备在该N个子载波上发送的上行数据信号。
本申请实施例中,第一频域资源包括连续的Z个RB,Z个RB的编号从0到Z-1,Z为大于等于X的正整数。所述X个RB在第一频域资源中的位置或编号可由网络设备调度,也可以由终端设备通过预设的规则确定。
在一种可能的设计中,终端设备可从网络设备接收第二消息,该第二消息用于指示该X个RB在第一频域资源中的位置或编号,以及X的值。其中,X×L/K为整数,表示X个RB中包括的DRB的个数。例如,终端设备可在接收第一消息之前,从网络设备接收该第二消息,若第一频域资源为网络设备调度的给定的BWP,该BWP中所有可用的度为n的集合称为离散带宽部分(discrete bandwidth part-n,DBWP-n),那么X个RB可为该DBWP-n占用的RB。该第二消息可具体指示该DBWP-n中起始RB的位置以及该DBWP-n包含的RB的个数。本申请实施例中,网络设备可同时为终端设备配置多个不同度的DBWP。如图6所示,DBWP的度为不同取值时,DBWP的位置和带宽也不同。
在另一种可能的设计中,该X个RB可以为第一频域资源中编号为0到X-1的X个RB;或者,也可以为第一频域资源中编号为Z-X到Z-1的X个RB;或者,还可以为第一频域资源中编号为floor(A/2)到B×z+floor(A/2)-1的X个RB,其中,X=floor(Z×L/K)×K/L, B=floor(Z×L/K),A=Z-B×L/K。
应理解,本申请实施例中提及的第一消息和第二消息,可以为物理上行控制信道(physical uplink control channel,PUCCH)上承载的上行控制信息(uplink control information,UCI),或者也可以为网络设备通过物理层控制信令、媒体访问控制(medium access control,MAC)层信令或无线资源控制(radio resource control,RRC)等方式发送的信令或消息,具体并不限定。
由此可知,采用本申请实施例提供的技术方案,用于发送上行数据信号的N个子载波可分布在M个RB中,并且PUSCH可占用一个RB中的部分子载波以发送上行数据信号,从而能够拓宽PUSCH所经历的信道的频域范围,充分获取信道的频域选择性带来的分集增益,提升PUSCH的传输性能。
本申请实施例提供的方法还可以扩展用于下行通信。请参考图8,为本申请实施例提供的另一种通信方法的流程示意图,该方法包括如下的步骤S801至步骤S804:
步骤S801、网络设备向终端设备发送第一消息,该第一消息用于指示终端设备在N个子载波上从网络设备接收下行数据信号;
本申请实施例中,下行数据信号承载在下行数据信道上,该下行数据信号可以是为物理下行共享信道(physical downlink shared channel,PDSCH),或者可以是其他的下行数据信道。在下文中,将以下行数据信道为PDSCH为例进行介绍。
该N个子载波为PDSCH占用的子载波,即用于发送下行数据信号的子载波。但应注意的是,这N个子载波分布在M个资源块(resource block,RB)中,且只占用M个RB中每个RB中的部分子载波,M为大于等于2的正整数。也就是说,M个RB中的每个RB中用于发送下行数据信号的子载波的数量为L,L小于K,K为一个RB中包括的子载波的个数,例如K可以是12。
可以理解,M个RB中的每个RB包括连续的K个子载波,但只有其中的L个子载波用于发送下行数据信号。鉴于此,本申请实施例中,第一消息还可以用于指示M个RB中的每个RB中用于发送下行数据信号的L个子载波,给出PDSCH到L个子载波的映射方式。
一种可能的映射方式为,每个RB包括的子载波按照从0到K-1的顺序编号,其中,该RB中用于发送下行数据信号的L个子载波在该RB中的编号具体为s,s+S,…,s+(L-1)*S。这里,S为步长,S=K/L,S可以大于等于2,s为小于S的非负整数,s+(L-1)*S小于等于K-1。
另一种可能的映射方式为,每个RB包括的子载波按照从0到K-1的顺序编号,其中,该RB中用于发送下行数据信号的L个子载波在该RB中的编号具体为s,s+1,s+S,s+1+S,…,s+(L-1)*S,s+1+(L-1)*S,S=2*K/L,这里,S为步长,S=2*K/L,S可以大于等于2,s为小于S-1的非负整数,s可以为偶数,s+1+(L-1)*S小于等于K-1。
应理解,本申请实施例中,PDSCH到子载波的映射方式(即PDSCH在一个RB中占用的子载波的位置或编号)可参照图4至图7中示出的PUSCH到子载波的映射方式来实施,区别在于将PUSCH替换为了PDSCH,因此,在此不再赘述。
步骤S802、网络设备向终端设备发送下行数据信号。
本申请实施例中,网络设备可以先发送第一消息后发送下行数据信号,也可以同时发送第一消息和下行数据信息,本申请并不限定。也就是说,上述步骤S802可以在步骤S801 之后执行,也可以与步骤S801同时执行。
步骤S803、终端设备从网络设备接收该第一消息。
步骤S804、终端设备在该N个子载波上从网络设备接收下行数据信号。
在步骤S803和步骤S804中,终端设备可从所述M个RB中确定PDSCH占用的N个子载波,并在该N个子载波上接收下行数据信号。
类似的,M个RB可位于第一频域资源包括的X个RB中,X为大于等于M的正整数,该第一频域资源可以为网络设备配置的下行发送资源,例如可以是带宽部分BWP。相应地,第一消息还可用于指示M个RB在该X个RB中的位置、M的值、L的值、M×L/K值、S的值中的一项或多项信息,以便于终端设备确定该M个RB,根据子载波的映射方式确定该M个RB中包括的用于接收下行数据信号的N个子载波。M×L/K等于N/K,是指M个RB中DRB的个数。
在一种可能的设计中,N个子载波可视为被调度的一个或多个DRB,M个RB中包括该被调度的一个或多个DRB。因此,第一消息指示M个RB在X个RB中的位置可以为:第一消息中包括用于指示DRB的度、DRB的起始位置和DRB的个数的信息。其中,DRB的度、DRB的起始位置和DRB的个数的信息等可参考上一方法实施例,在此不再赘述。
本申请实施例中,终端设备也可从网络设备接收第二消息,该第二消息用于指示该X个RB在第一频域资源中的位置或编号,以及X的值。其中,X×L/K为整数,表示X个RB中包括的DRB的个数。例如,终端设备可在接收第一消息之前,从网络设备接收该第二消息,若第一频域资源为网络设备调度的给定的BWP,该BWP中所有可用的度为n的集合称为离散带宽部分DBWP-n,那么X个RB可为该DBWP-n占用的RB。该第二消息可具体指示该DBWP-n中起始RB的位置以及该DBWP-n包含的RB的个数。本申请实施例中,网络设备可同时配置多个不同度的DBWP。
或者,X个RB也可以通过预设规则来确定,例如X个RB可以为第一频域资源中编号为0到X-1的X个RB,或者也可以为第一频域资源中编号为Z-X到Z-1的X个RB,或者还可以为第一频域资源中编号为floor(A/2)到B×z+floor(A/2)-1的X个RB,其中,X=floor(Z×L/K)×K/L,B=floor(Z×L/K),A=Z-B×L/K。
应理解,本申请实施例中提及的第一消息和第二消息,可以为物理下行控制信道(physical downlink control channel,PDCCH)上承载的下行控制信息(downlink control information,DCI),或者也可以为网络设备通过物理层控制信令、媒体访问控制(medium access control,MAC)层信令或无线资源控制(radio resource control,RRC)等方式发送的信令或消息,具体并不限定。
本申请实施例提供一种通信装置,请参考图9,为本申请实施例提供的一种通信装置的结构示意图,该通信装置900包括:收发模块910和处理模块920。该通信装置可用于实现上述任一方法实施例中涉及终端设备的功能。例如,该通信装置可以是终端设备,例如手持终端设备或车载终端设备;该通信装置还可以是终端设备中包括的芯片,或者包括终端设备的装置,如各种类型的车辆等。
当该通信装置作为终端设备,执行图3中所示的方法实施例时,处理模块920用于执行通过收发模块910在N个子载波上向网络设备发送上行数据信号的操作,收发模块910用于执行从网络设备接收第一消息的操作。
当该通信装置作为终端设备,执行图8中所示的方法实施例时,处理模块920用于执行通过收发模块910接收第一消息,根据该第一消息确定N个子载波的操作,收发模块910用于执行在N个子载波上从网络设备接收下行数据信号的操作。
该通信装置中涉及的处理模块920可以由处理器或处理器相关电路组件实现,收发模块910可以由收发器或收发器相关电路组件实现。该通信装置中的各个模块的操作和/或功能分别为了实现图3、图8中所示方法的相应流程,为了简洁,在此不再赘述。
请参考图10,为本申请实施例中提供的一种通信装置的另一结构示意图。该通信装置具体可为一种终端设备。便于理解和图示方便,在图10中,终端设备以手机作为例子。如图10所示,终端设备包括处理器,还可以包括存储器,当然,也还可以包括射频电路、天线以及输入输出装置等。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图10中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。如图10所示,终端设备包括收发单元1010和处理单元1020。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1010中用于实现接收功能的器件视为接收单元,将收发单元1010中用于实现发送功能的器件视为发送单元,即收发单元1010包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。应理解,收发单元1010用于执行上述方法实施例中终端设备侧的发送操作和接收操作,处理单元1020用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
本申请实施例还提供另一种通信装置,请参考图11,为本申请实施例提供的另一种通信装置的结构示意图,该通信装置1100包括:收发模块1110和处理模块1120。该通信装置可用于实现上述任一方法实施例中涉及网络设备的功能。例如,该通信装置可以是网络设备或网络设备中包括的芯片。
当该通信装置作为网络设备,执行图3中所示的方法实施例时,收发模块1110,用于执行向终端设备发送第一消息,以及接收终端设备在N个子载波上发送的上行数据信号的 操作;处理模块1120,用于执行确定X个RB,通过所述收发模块1110向终端设备发送第二消息的操作。
当该通信装置作为网络设备,执行图8中所示的方法实施例时,收发模块1110,用于执行向终端设备发送第一消息,以及在N个子载波上向终端设备发送下行数据信号的操作;处理模块1120,用于执行确定X个RB,通过所述收发模块1110向终端设备发送第二消息的操作。
应理解,该通信装置中涉及的处理模块1120可以由处理器或处理器相关电路组件实现,收发模块1110可以由收发器或收发器相关电路组件实现。该通信装置中的各个模块的操作和/或功能分别为了实现图3、图8中所示方法的相应流程,为了简洁,在此不再赘述。
请参考图12,为本申请实施例中提供的另一种通信装置的另一结构示意图。该通信装置可具体为一种网络设备,例如基站,用于实现上述任一方法实施例中涉及网络设备的功能。
该网络设备包括:一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1201和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)1202。所述RRU 1201可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线12011和射频单元12012。所述RRU 1201部分主要用于射频信号的收发以及射频信号与基带信号的转换。所述BBU 1202部分主要用于进行基带处理,对基站进行控制等。所述RRU 1201与BBU 1202可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 1202为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)1202可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
在一个示例中,所述BBU 1202可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 1202还可以包括存储器12021和处理器12022,所述存储器12021用于存储必要的指令和数据。所述处理器12022用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中发送操作。所述存储器12021和处理器12022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
本申请实施例还提供一种芯片系统,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片系统实现上述任一方法实施例中的方法。
可选地,该芯片系统中的处理器可以为一个或多个。该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请并不限定。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
示例性的,该芯片系统可以是现场可编程门阵列(field programmable gate array,FPGA), 可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
应理解,上述方法实施例中的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本申请实施例还提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述任一方法实施例中的方法。
本申请实施例还提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述任一方法实施例中的方法。
本申请实施例还提供一种通信系统,该通信系统包括网络设备和至少一个终端设备。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本 申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。
Claims (28)
- 一种通信方法,其特征在于,所述方法包括:终端设备从网络设备接收第一消息,所述第一消息用于指示所述终端设备在N个子载波上向所述网络设备发送上行数据信号;所述终端设备在所述N个子载波上向所述网络设备发送上行数据信号,其中,所述N个子载波分布在M个资源块RB中,所述M个RB中的每个RB中用于发送所述上行数据信号的子载波数量为L,M大于等于2,L小于K,K为一个RB中包括的子载波的个数,N、M、L、K均为正整数。
- 根据权利要求1所述的方法,其特征在于,所述第一消息用于指示所述M个RB中的每个RB中用于发送所述上行数据信号的L个子载波。
- 根据权利要求1或2所述的方法,其特征在于,对于所述M个RB中的每个RB,所述RB中各个子载波的编号从0到K-1;所述L个子载波在所述RB中的编号分别为s,s+S,…,s+(L-1)*S,S=K/L,s为小于S的非负整数;或者,所述L个子载波在所述RB中的编号分别为s,s+1,s+S,s+1+S…,s+(L-1)*S,s+1+(L-1)*S,S=2*K/L,s为小于S-1的非负整数。
- 根据权利要求1至3中任一项所述的方法,其特征在于,所述M个RB位于第一频域资源中包括的X个RB中,X为正整数;所述第一消息还用于指示如下的一项或多项信息:所述M个RB在所述X个RB中的位置、所述M的值、所述L的值、M×L/K的值、所述S的值。
- 根据权利要求4所述的方法,其特征在于,所述第一频域资源包括连续的Z个RB,Z为大于等于X的正整数;所述方法还包括:所述终端设备从所述网络设备接收第二消息,所述第二消息用于指示所述X个RB在所述第一频域资源中的位置或编号,以及所述X的值,其中,X×L/K为正整数;所述终端设备根据所述第二消息确定所述X个RB。
- 根据权利要求4所述的方法,其特征在于,所述第一频域资源包括连续的Z个RB,所述Z个RB的编号从0到Z-1,Z为大于等于X的正整数;所述X个RB为所述第一频域资源中编号为0到X-1的X个RB;或者,所述X个RB为所述第一频域资源中编号为Z-X到Z-1的X个RB;或者,所述X个RB为所述第一频域资源中编号为floor(A/2)到B×z+floor(A/2)-1的X个RB,其中,X=floor(Z×L/K)×K/L,B=floor(Z×L/K),A=Z-B×L/K。
- 一种通信方法,其特征在于,所述方法包括:网络设备向终端设备发送第一消息,所述第一消息用于指示所述终端设备在N个子载波上向所述网络设备发送上行数据信号;所述网络设备接收所述终端设备在所述N个子载波上发送的上行数据信号,其中,所述N个子载波分布在M个资源块RB中,所述M个RB中的每个RB中用于发送所述上行数据信号的子载波数量为L,M大于等于2,L小于K,K为一个RB中包括的子载波的 个数,N、M、L、K均为正整数。
- 根据权利要求7所述的方法,其特征在于,所述第一消息用于指示所述M个RB中的每个RB中用于发送所述上行数据信号的L个子载波。
- 根据权利要求7或8所述的方法,其特征在于,对于所述M个RB中的每个RB,所述RB中各个子载波的编号从0到K-1;所述L个子载波在所述RB中编号分别为s,s+S,…,s+(L-1)*S,S=K/L,s为小于S的非负整数;或者,所述L个子载波在所述RB中编号分别为s,s+1,s+S,s+1+S…,s+(L-1)*S,s+1+(L-1)*S,S=2*K/L,s为小于S-1的非负整数。
- 根据权利要求7至9中任一项所述的方法,其特征在于,所述M个RB位于第一频域资源中包括的X个RB中,X为正整数;所述第一消息还用于指示如下的一项或多项信息:所述M个RB在所述X个RB中的位置、所述M的值、所述L的值、M×L/K的值、所述S的值。
- 根据权利要求10所述的方法,其特征在于,所述第一频域资源包括连续的Z个RB,Z为大于等于X的正整数;所述方法还包括:所述网络设备向所述终端设备发送第二消息,所述第二消息用于指示所述X个RB在所述第一频域资源中的位置或编号,以及所述X的值,其中,X×L/K为正整数。
- 根据权利要求10所述的方法,其特征在于,所述第一频域资源包括连续的Z个RB,所述Z个RB的编号从0到Z-1,Z为大于等于X的正整数;所述X个RB为所述第一频域资源中编号为0到X-1的X个RB;或者,所述X个RB为所述第一频域资源中编号为Z-X到Z-1的X个RB;或者,所述X个RB为所述第一频域资源中编号为floor(A/2)到B×z+floor(A/2)-1的X个RB,其中,X=floor(Z×L/K)×K/L,B=floor(Z×L/K),A=Z-B×L/K。
- 一种通信装置,其特征在于,所述装置包括:收发模块,用于从网络设备接收第一消息,所述第一消息用于指示所述通信装置在N个子载波上向所述网络设备发送上行数据信号;处理模块,用于通过所述收发模块在所述N个子载波上向所述网络设备发送上行数据信号,其中,所述N个子载波分布在M个资源块RB中,所述M个RB中的每个RB中用于发送所述上行数据信号的子载波数量为L,M大于等于2,L小于K,K为一个RB中包括的子载波的个数,N、M、L、K均为正整数。
- 根据权利要求13所述的装置,其特征在于,所述第一消息用于指示所述M个RB中的每个RB中用于发送所述上行数据信号的L个子载波。
- 根据权利要求13或14所述的装置,其特征在于,对于所述M个RB中的每个RB,所述RB中各个子载波的编号从0到K-1;所述L个子载波在所述RB中编号分别为s,s+S,…,s+(L-1)*S,S=K/L,s为小于S的非负整数;或者,所述L个子载波在所述RB中编号分别为s,s+1,s+S,s+1+S…,s+(L-1)*S,s+1+(L-1)*S,S=2*K/L,s为小于S-1的非负整数。
- 根据权利要求13至15中任一项所述的装置,其特征在于,所述M个RB位于第一频域资源中包括的X个RB中,X为正整数;所述第一消息还用于指示如下的一项或多项信息:所述M个RB在所述X个RB中的位置、所述M的值、所述L的值、M×L/K的值、所述S的值。
- 根据权利要求16所述的装置,其特征在于,所述第一频域资源包括连续的Z个RB,Z为大于等于X的正整数;所述收发模块还用于:从所述网络设备接收第二消息,所述第二消息用于指示所述X个RB在所述第一频域资源中的位置或编号,以及所述X的值,其中,X×L/K为正整数;所述处理模块,还用于根据所述第二消息确定所述X个RB。
- 根据权利要求16所述的装置,其特征在于,所述第一频域资源包括连续的Z个RB,所述Z个RB的编号从0到Z-1,Z为大于等于X的正整数;所述X个RB为所述第一频域资源中编号为0到X-1的X个RB;或者,所述X个RB为所述第一频域资源中编号为Z-X到Z-1的X个RB;或者,所述X个RB为所述第一频域资源中编号为floor(A/2)到B×z+floor(A/2)-1的X个RB,其中,X=floor(Z×L/K)×K/L,B=floor(Z×L/K),A=Z-B×L/K。
- 一种通信装置,其特征在于,所述装置包括:收发模块,用于向终端设备发送第一消息,所述第一消息用于指示所述终端设备在N个子载波上向所述通信装置发送上行数据信号;所述收发模块,还用于接收所述终端设备在所述N个子载波上发送的上行数据信号,其中,所述N个子载波分布在M个资源块RB中,所述M个RB中的每个RB中用于发送所述上行数据信号的子载波数量为L,M大于等于2,L小于K,K为一个RB中包括的子载波的个数,N、M、L、K均为正整数。
- 根据权利要求19所述的装置,其特征在于,所述第一消息用于指示所述M个RB中的每个RB中用于发送所述上行数据信号的L个子载波。
- 根据权利要求19或20所述的装置,其特征在于,对于所述M个RB中的每个RB,所述RB中各个子载波的编号从0到K-1;所述L个子载波在所述RB中编号分别为s,s+S,…,s+(L-1)*S,S=K/L,s为小于S的非负整数;或者,所述L个子载波在所述RB中编号分别为s,s+1,s+S,s+1+S…,s+(L-1)*S,s+1+(L-1)*S,S=2*K/L,s为小于S-1的非负整数。
- 根据权利要求19至21中任一项所述的装置,其特征在于,所述M个RB位于第一频域资源中包括的X个RB中,X为正整数;所述第一消息还用于指示如下的一项或多项信息:所述M个RB在所述X个RB中的位置、所述M的值、所述L的值、M×L/K的值、所述S的值。
- 根据权利要求22所述的装置,其特征在于,所述第一频域资源包括连续的Z个RB,Z为大于等于X的正整数;所述装置还包括处理模块,所述处理模块用于确定所述X个RB,通过所述收发模块 向所述终端设备发送第二消息,所述第二消息用于指示所述X个RB在所述第一频域资源中的位置或编号,以及所述X的值,其中,X×L/K为正整数。
- 根据权利要求22所述的装置,其特征在于,所述第一频域资源包括连续的Z个RB,所述Z个RB的编号从0到Z-1,Z为大于等于X的正整数;所述X个RB为所述第一频域资源中编号为0到X-1的X个RB;或者,所述X个RB为所述第一频域资源中编号为Z-X到Z-1的X个RB;或者,所述X个RB为所述第一频域资源中编号为floor(A/2)到B×z+floor(A/2)-1的X个RB,其中,X=floor(Z×L/K)×K/L,B=floor(Z×L/K),A=Z-B×L/K。
- 一种通信装置,其特征在于,所述装置包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合:所述至少一个处理器,用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述装置执行如权利要求1至6中任一项所述的方法。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或指令,当计算机读取并执行所述计算机程序或指令时,使得计算机执行如权利要求1至6中任一项所述的方法。
- 一种通信装置,其特征在于,所述装置包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合:所述至少一个处理器,用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述装置执行如权利要求7至12中任一项所述的方法。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或指令,当计算机读取并执行所述计算机程序或指令时,使得计算机执行如权利要求7至12中任一项所述的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910468221.4 | 2019-05-31 | ||
CN201910468221.4A CN112020145A (zh) | 2019-05-31 | 2019-05-31 | 一种通信方法及装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020238992A1 true WO2020238992A1 (zh) | 2020-12-03 |
Family
ID=73500605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/092728 WO2020238992A1 (zh) | 2019-05-31 | 2020-05-27 | 一种通信方法及装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112020145A (zh) |
WO (1) | WO2020238992A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116112025A (zh) * | 2021-11-09 | 2023-05-12 | 华为技术有限公司 | 信号传输的方法和装置 |
WO2024012174A1 (zh) * | 2022-07-14 | 2024-01-18 | 华为技术有限公司 | 通信方法、装置、设备以及存储介质 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116669115A (zh) * | 2022-02-16 | 2023-08-29 | 北京紫光展锐通信技术有限公司 | 一种上行信号传输方法及相关装置 |
CN117082624A (zh) * | 2022-05-05 | 2023-11-17 | 中兴通讯股份有限公司 | 数据的传输方法、装置、存储介质及电子装置 |
WO2024016347A1 (zh) * | 2022-07-22 | 2024-01-25 | Oppo广东移动通信有限公司 | 通信方法及通信装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104823501A (zh) * | 2012-10-05 | 2015-08-05 | 司亚乐无线通讯股份有限公司 | 用于lte通信系统中上行链路无线电资源分配的方法、设备和系统 |
CN106789827A (zh) * | 2016-08-12 | 2017-05-31 | 展讯通信(上海)有限公司 | 基于单个符号的上行控制信息的传输方法及装置、终端 |
CN108834106A (zh) * | 2017-05-05 | 2018-11-16 | 中兴通讯股份有限公司 | 资源分配方法、装置及存储介质 |
CN110139247A (zh) * | 2018-02-08 | 2019-08-16 | 北京三星通信技术研究有限公司 | 物理信道传输的方法及设备 |
WO2019192001A1 (zh) * | 2018-04-04 | 2019-10-10 | 华为技术有限公司 | 一种信息传输方法和设备 |
WO2019191993A1 (zh) * | 2018-04-04 | 2019-10-10 | 华为技术有限公司 | 一种信息传输的方法和设备 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10206211B2 (en) * | 2015-06-04 | 2019-02-12 | Futurewei Technologies, Inc. | Device, network, and method for wideband long-term evolution (LTE) uplink transmission |
CN108282439B (zh) * | 2017-01-06 | 2020-08-14 | 华为技术有限公司 | 一种信号发送、接收方法及装置 |
US11405912B2 (en) * | 2017-03-24 | 2022-08-02 | Sony Corporation | Apparatus and method for a mobile telecommunications system |
-
2019
- 2019-05-31 CN CN201910468221.4A patent/CN112020145A/zh active Pending
-
2020
- 2020-05-27 WO PCT/CN2020/092728 patent/WO2020238992A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104823501A (zh) * | 2012-10-05 | 2015-08-05 | 司亚乐无线通讯股份有限公司 | 用于lte通信系统中上行链路无线电资源分配的方法、设备和系统 |
CN106789827A (zh) * | 2016-08-12 | 2017-05-31 | 展讯通信(上海)有限公司 | 基于单个符号的上行控制信息的传输方法及装置、终端 |
CN108834106A (zh) * | 2017-05-05 | 2018-11-16 | 中兴通讯股份有限公司 | 资源分配方法、装置及存储介质 |
CN110139247A (zh) * | 2018-02-08 | 2019-08-16 | 北京三星通信技术研究有限公司 | 物理信道传输的方法及设备 |
WO2019192001A1 (zh) * | 2018-04-04 | 2019-10-10 | 华为技术有限公司 | 一种信息传输方法和设备 |
WO2019191993A1 (zh) * | 2018-04-04 | 2019-10-10 | 华为技术有限公司 | 一种信息传输的方法和设备 |
Non-Patent Citations (1)
Title |
---|
SONY: "Sub-PRB Transmission in EfeMTC", 3GPP TSG RAN WG1 MEETING #88BIS R1-1705202, 25 March 2017 (2017-03-25), XP051251791, DOI: 20200623152555X * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116112025A (zh) * | 2021-11-09 | 2023-05-12 | 华为技术有限公司 | 信号传输的方法和装置 |
WO2024012174A1 (zh) * | 2022-07-14 | 2024-01-18 | 华为技术有限公司 | 通信方法、装置、设备以及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN112020145A (zh) | 2020-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109392141B (zh) | 一种调整频域资源和发送指示信息的方法、装置及系统 | |
CN108737040B (zh) | 传输方法、终端和网络设备 | |
CN111867038B (zh) | 一种通信方法及装置 | |
WO2020238992A1 (zh) | 一种通信方法及装置 | |
US11490387B2 (en) | Communication method and communications apparatus | |
WO2019029730A1 (zh) | 一种pdsch接收信息的指示方法、数据接收方法及装置 | |
CN111867086B (zh) | 通信方法以及通信装置 | |
WO2020169063A1 (zh) | 一种数据传输方法及通信装置 | |
WO2019029348A1 (zh) | 数据传输方法、终端和基站 | |
EP3703454B1 (en) | Communication method, network device, and terminal device | |
EP3687249A1 (en) | Method for indicating time domain resource in relay network, network device, and user equipment | |
CN110830195A (zh) | 一种信息的处理方法和通信装置 | |
CN111436089A (zh) | 通信的方法和装置 | |
CN116326050A (zh) | 侧行链路载波管理方法、装置和系统 | |
WO2020192719A1 (zh) | 更新波束的方法与通信装置 | |
CN108811074A (zh) | 信息传输方法及装置 | |
CN111756497B (zh) | 通信方法及装置 | |
WO2023066202A1 (zh) | 参考信号的资源映射方法与装置、终端和网络设备 | |
JP2023544285A (ja) | 物理アップリンク制御チャネル送信方法、受信方法、および通信装置 | |
WO2019129253A1 (zh) | 一种通信方法及装置 | |
WO2022001638A1 (zh) | 通信方法及装置 | |
WO2019137299A1 (zh) | 通信的方法和通信设备 | |
WO2024217377A1 (zh) | 一种无线资源的确定方法及装置 | |
WO2022252954A1 (zh) | 资源配置的方法及装置 | |
WO2022217443A1 (zh) | 信道估计方法、终端设备、网络设备、芯片和存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20813973 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20813973 Country of ref document: EP Kind code of ref document: A1 |