WO2020234931A1 - 熱交換器および冷凍サイクル装置 - Google Patents
熱交換器および冷凍サイクル装置 Download PDFInfo
- Publication number
- WO2020234931A1 WO2020234931A1 PCT/JP2019/019726 JP2019019726W WO2020234931A1 WO 2020234931 A1 WO2020234931 A1 WO 2020234931A1 JP 2019019726 W JP2019019726 W JP 2019019726W WO 2020234931 A1 WO2020234931 A1 WO 2020234931A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fin
- heat transfer
- heat exchanger
- flat
- transfer tube
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/24—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
- F28F1/30—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being attachable to the element
Definitions
- the present invention relates to a heat exchanger and a refrigeration cycle device.
- a heat exchanger or the like configured by combining a corrugated fin and a flat heat transfer tube.
- a corrugated fin tube type heat exchanger in which corrugated fins are arranged between flat portions of a plurality of flat tubes connected between a pair of headers is widespread. Then, in the corrugated fin tube type heat exchanger, a heat exchanger in which two types of fins having different widths are alternately arranged at the bent portion of the heat exchanger along the axial direction of the header has been proposed (for example). , Patent Document 1).
- the corrugated fins may buckle.
- a compressive force is generated on the inner circumference side of the heat exchanger.
- the corrugated fins buckle on the inner peripheral side of the heat exchanger, causing the fins to fall. For this reason, the performance of the heat exchanger deteriorates because the air passage is blocked by the buckling of the corrugated fins.
- An object of the present invention is to obtain a heat exchanger and a refrigeration cycle device capable of suppressing buckling of corrugated fins and suppressing performance deterioration in order to solve the above problems.
- the heat exchanger according to the present invention has a flat cross section, and the flat surfaces on the longitudinal side of the flat shape are arranged so as to face each other with a gap between them, and a plurality of flat transmissions having a flow path through which fluid flows are provided inside.
- a heat exchanger having a heat tube and a plurality of corrugated fins arranged between two adjacent flat heat transfer tubes and joined to the flat heat transfer tube in a flat surface, wherein the plurality of flat heat transfer tubes and the plurality of corrugated fins are provided.
- the refrigeration cycle apparatus according to the present invention has the above heat exchanger.
- a part of the flat shape in the longitudinal direction is provided between two adjacent flat heat transfer tubes of the heat exchanger. Has an unarranged portion in which the corrugated fins are not arranged. Therefore, a space is created between the adjacent flat heat transfer tubes, and buckling of the corrugated fins due to the compressive force generated by bending or the like can be prevented. Therefore, air can pass through without blocking the air passage, and heat exchange efficiency can be improved.
- FIG. FIG. 5 is a perspective view of a main part for explaining the arrangement relationship between the flat heat transfer tube and the corrugated fin in the heat exchanger according to the first embodiment. It is a figure which shows the heat exchanger which performed the bending process which concerns on Embodiment 1. FIG. It is a figure explaining the shape of the heat exchanger which concerns on Embodiment 1. FIG. It is a figure which shows the heat exchanger which was bent in the bent part which concerns on Embodiment 1. FIG. It is a figure explaining the shape of the heat exchanger which concerns on Embodiment 2. FIG. It is a figure which shows the heat exchanger which was bent in the bent part which concerns on Embodiment 2.
- FIG. It is a figure explaining the shape of the heat exchanger which concerns on Embodiment 3.
- FIG. It is a figure which shows the heat exchanger which was bent in the bent part which concerns on Embodiment 3.
- FIG. It is a figure explaining the shape of the heat exchanger which concerns on Embodiment 4.
- FIG. It is a figure which shows the heat exchanger which bent at the bending part which concerns on Embodiment 4.
- FIG. 1 is a diagram illustrating a configuration of a heat exchanger according to the first embodiment.
- the heat exchanger 1 is a corrugated fin tube type heat exchanger having a parallel piping type.
- the heat exchanger 1 has a pair of headers 2 (2A and 2B), a plurality of flat heat transfer tubes 3 and a plurality of corrugated fins 4.
- Each header 2 has a refrigerant inlet / outlet pipe 5 (5A and 5B) into which a refrigerant from the outside, which is a fluid, flows in and out.
- a plurality of flat heat transfer tubes 3 are arranged in parallel between the two headers 2 so as to be perpendicular to each header 2.
- Each flat heat transfer tube 3 is inserted into the header 2 via a flat tube insertion hole (not shown). Then, the contact portions between the header 2A and the header 2B and the flat heat transfer tubes 3 are joined by a brazing material. As a result, the headers 2A and 2B and the inside of each flat heat transfer tube 3 communicate with each other.
- the refrigerant flows from the refrigerant inlet / outlet pipe 5A into the header 2A. Then, the refrigerant passes through each of the flat heat transfer tubes 3, merges at the header 2B, and flows out from the refrigerant inlet / outlet pipe 5B.
- the present invention is not limited to this, and the inflow and outflow directions of the refrigerant may be opposite.
- FIG. 2 described later when the heat exchanger 1 is used as a condenser, high-temperature and high-pressure refrigerant flows through the refrigerant flow path in the flat heat transfer tube 3.
- the heat exchanger 1 is used as an evaporator, low-temperature and low-pressure refrigerant flows through the refrigerant flow path in the flat heat transfer tube 3.
- FIG. 2 is a perspective view of a main part for explaining the arrangement relationship between the flat heat transfer tube and the corrugated fin in the heat exchanger according to the first embodiment.
- the flat heat transfer tube 3 of the first embodiment has a flat cross section, and the outer surface on the longitudinal side of the flat shape in the air flow direction is a flat surface (hereinafter referred to as a flat surface).
- the flat heat transfer tube 3 has a plurality of refrigerant flow paths 3C inside.
- the flat heat transfer tube 3 is made of a metal having good heat transfer properties. Therefore, the flat heat transfer tube 3 is made of, for example, aluminum.
- the longitudinal direction and the lateral direction in the flat shape of the flat heat transfer tube 3 and the flow path direction orthogonal to these will be described as a reference of the direction.
- the corrugated fin 4 is a fin formed in a bellows shape by a zigzag fold in which a plate-shaped member is repeatedly folded in a mountain fold and a valley fold.
- the corrugated fin 4 has a fin flat surface portion 4A serving as an abdomen and a fin curved surface portion 4B serving as a top portion. Then, the flat surface portions 3A of the heat transfer tubes facing each other of the adjacent flat heat transfer tubes 3 and the curved surface portion 4B of the fins of the corrugated fins 4 are joined by brazing.
- the first fin 41 and the second fin 42 which are distinguished by the joining position of the flat heat transfer tube 3 with the flat surface portion 3A of the heat transfer tube, are provided as corrugated fins 4.
- the corrugated fin 4 is also made of a metal having good heat transfer properties. Therefore, the corrugated fin 4 is made of, for example, aluminum.
- FIG. 3 is a diagram showing a heat exchanger in which the bending process according to the first embodiment is performed.
- the heat exchanger 1 according to the first embodiment has a flat lateral direction in which a plurality of flat heat transfer tubes 3 are arranged in a row direction before being mounted on an outdoor unit of a refrigeration cycle device, for example. Bending is performed once or multiple times in the axial direction of the header 2. When the heat exchanger 1 shown in FIG. 1 is bent once, the heat exchanger 1 as shown in FIG. 3 can be obtained.
- FIG. 4 is a diagram illustrating the shape of the heat exchanger according to the first embodiment.
- FIG. 4 shows the shape of the heat exchanger 1 before bending.
- the heat exchanger 1 of the first embodiment has a straight portion 6 that is not bent and a bent portion 7 that is bent.
- the heat exchanger 1 has a bending portion 7 between the straight portions 6 at both ends.
- the straight portion 6 and the bent portion 7 have different joint positions between the fin curved surface portion 4B of the corrugated fin 4 and the heat transfer tube flat surface portion 3A of the flat heat transfer tube 3.
- the corrugated fin 4 at the bent portion 7 is designated as the first fin 41.
- the corrugated fin 4 in the straight line portion 6 is referred to as a second fin 42.
- the entire fin curved surface portion 4B, which is the top of the corrugated fin 4 is joined to the flat surface portion 3A of the heat transfer tube of the flat heat transfer tube 3. Therefore, the flat heat transfer tube 3 and the second fin 42 are joined in a normal positional relationship.
- the first fin 41 has a positional relationship different from the positional relationship between the second fin 42 and the flat heat transfer tube 3 in the straight portion 6 in the longitudinal direction which is the air passage direction, and the heat transfer tube flat surface portion 3A of the flat heat transfer tube 3 It is joined with.
- the first fin 41 is joined to the flat heat transfer tube 3 by shifting the position so as to project toward the outer peripheral side of the heat exchanger 1 by bending. Therefore, in the first embodiment, as shown in FIG. 4, when the flat heat transfer tube 3 and the first fin 41 are viewed from the direction of the refrigerant flow path 3C, the two flat heat transfer tubes adjacent to each other in the bent portion 7 are viewed. A space is formed in the fin-unarranged portion 43 in which the first fin 41 is not arranged between the three. Further, on the outer peripheral side of the heat exchanger 1, a part of the fin curved surface portion 4B is joined to the heat transfer tube flat surface portion 3A of the flat heat transfer tube 3 because the first fin 41 protrudes from the end portion of the flat heat transfer tube 3.
- first fin 41 and the second fin 42 in the first embodiment differ only in the positions where they are arranged between the adjacent flat heat transfer tubes 3. Therefore, the first fin 41 and the second fin 42 can use corrugated fins 4 having the same fin width corresponding to the longitudinal direction.
- FIG. 5 is a diagram showing a heat exchanger in which bending is performed in the bent portion according to the first embodiment.
- the heat exchanger 1 shown in FIG. 4 is bent at the bending portion 7, the heat exchanger 1 shown in FIG. 5 can be manufactured.
- the bending process in the bent portion 7 is performed in the direction in which the protruding side of the first fin 41 is the outer circumference. Therefore, the inner peripheral side of the bent portion 7 is a space created by the fin unarranged portion 43 in which the first fin 41 is not arranged. Therefore, the compressive force acting on the first fin 41 is reduced during the bending process. Therefore, buckling due to bending can be suppressed at the first fin 41 of the bending portion 7.
- the space created in the fin-unarranged portion 43, the first fin 41 and the flat heat transfer tube 3 are not joined to the length in the longitudinal direction of the flat heat transfer tube 3, and the portion not arranged is 20% or more. If a space having a length of 2 is secured, the effect of suppressing buckling can be obtained.
- the bending portion 7 to be bent is more air-like than the positional relationship between the second fin 42 of the straight portion 6 and the flat heat transfer tube 3.
- the first fin 41 is joined to a position shifted in the passing direction.
- a space is formed between the adjacent flat heat transfer tubes 3 by the fin-unarranged portion 43 in which the first fin 41 is not arranged. Therefore, it is possible to prevent the first fin 41 from buckling due to the compressive force applied to the first fin 41 during bending.
- the heat exchanger 1 of the first embodiment can suppress a decrease in heat exchange efficiency.
- corrugated fin 4 can be used for the second fin 42 of the straight portion 6 and the first fin 41 of the bent portion 7. Therefore, in the production of the heat exchanger 1, it is not necessary to change the setup and prepare new equipment and molds, and the production cost and the production space can be reduced.
- FIG. 6 is a diagram illustrating the shape of the heat exchanger according to the second embodiment.
- the members and the like having the same reference numerals as those in FIG. 4 and the like are the same as those described in the first embodiment.
- the positional relationship between the first fin 41 and the flat heat transfer tube 3 in the bent portion 7 is defined in more detail.
- the first fin 41 is joined to the flat heat transfer tube 3 by the fin-unarranged portion 43 so as to protrude in the outer peripheral direction by bending.
- the fin end on the side joined to the flat heat transfer tube 3 is in the longitudinal direction of the flat heat transfer tube 3. It is located at the central portion or on the outer peripheral side of the heat exchanger 1. Therefore, in the two fin ends, one fin end is in the center portion, or both fin ends including the other fin end are located on the same side.
- the widths of the first fin 41 and the second fin 42 are the same.
- FIG. 7 is a diagram showing a heat exchanger in which bending is performed in the bent portion according to the second embodiment.
- the heat exchanger 1 shown in FIG. 6 is bent at the bending portion 7, the heat exchanger 1 shown in FIG. 7 can be manufactured.
- the portion where the first fin 41 and the flat heat transfer tube 3 are not joined is 50% of the length in the longitudinal direction of the flat heat transfer tube 3 due to the fin unarranged portion 43. A space with the above length is secured. Therefore, buckling of the first fin 41 can be prevented.
- FIG. 8 is a diagram illustrating the shape of the heat exchanger according to the third embodiment.
- the members and the like having the same reference numerals as those in FIG. 4 and the like are the same as those described in the first embodiment.
- the flat heat transfer tube 3 is displaced so that the second fin 42 of the straight portion 6 has the fin unarranged portion 43 and protrudes in the direction of the outer circumference when the bending process is performed. Is joined with.
- FIG. 9 is a diagram showing a heat exchanger in which bending is performed in the bent portion according to the third embodiment.
- the heat exchanger 1 shown in FIG. 8 is bent at the bending portion 7, the heat exchanger 1 shown in FIG. 9 can be manufactured.
- the heat exchanger 1 of the third embodiment can be bent to form the bent portion 7 in any portion. Therefore, in the manufacturing process, the heat exchanger 1 can be manufactured without specifying the bent portion 7 and the straight portion 6 to be bent in advance, so that the types of the heat exchanger 1 required for manufacturing are not increased. I live in. Further, in the production of the heat exchanger 1, it is not necessary to change the setup and prepare new equipment and molds, and the production cost and the production space can be reduced.
- FIG. 10 is a diagram illustrating the shape of the heat exchanger according to the fourth embodiment.
- the corrugated fins 4 of the first to third embodiments have a width that matches the length of the flat surface portion 3A of the heat transfer tube in the longitudinal direction of the flat heat transfer tube 3.
- the width of the corrugated fin 4 is 0.5 times the length of the flat surface portion 3A of the heat transfer tube in the longitudinal direction of the flat heat transfer tube 3. Then, in the straight line portion 6, the corrugated fins 4 are arranged in parallel in two stages in the width direction to form the second fin 42.
- the corrugated fins 4 are arranged in one step in the width direction to form the first fin 41.
- the first fin 41 has the corrugated fin 4 arranged on the outer peripheral side of the heat exchanger 1 by bending. Therefore, a space is formed on the inner circumference side of the heat exchanger 1 by bending.
- FIG. 11 is a diagram showing a heat exchanger in which bending is performed in the bent portion according to the fourth embodiment.
- the heat exchanger 1 shown in FIG. 10 is bent at the bending portion 7, the heat exchanger 1 shown in FIG. 11 can be manufactured. Therefore, as in the first embodiment, the first fin 41 is not joined to the inner peripheral side of the bent portion 7. Therefore, the first fin 41 is not subjected to the compressive force due to the bending process, and the buckling of the first fin 41 can be prevented. Then, it is possible to eliminate the blockage of the air passage in the bent portion 7 and prevent the heat exchange efficiency in the heat exchanger 1 from being lowered.
- the width of the first fin 41 is short because the corrugated fin 4 having a length of 0.5 times the length of the flat surface portion 3A of the heat transfer tube is formed in one stage. Although the surface area of the corrugated fin 4 is reduced by that amount, the heat exchange efficiency is not lowered because the air passage can be secured in the bent portion 7.
- the corrugated fins 4 do not protrude to the outside, there is no possibility that the fins on the design surface will fall during the bending process. Further, the same type of corrugated fin 4 can be used for the second fin 42 and the first fin 41. Therefore, the manufacturing cost and the manufacturing space can be reduced.
- FIG. 12 is a diagram illustrating the shape of the heat exchanger according to the fifth embodiment.
- the corrugated fins 4 of the first to third embodiments have a width that matches the length of the flat surface portion 3A of the heat transfer tube in the longitudinal direction of the flat heat transfer tube 3.
- the width of the corrugated fins 4 to be the first fin 41 and the second fin 42 is set to 0.
- the width shall be 5 times or more and less than 1 time. More preferably, the width is smaller than 0.8 times.
- the width of the corrugated fin 4 is 0.8 times or more the length of the flat heat transfer tube 3A, the space formed between the two adjacent flat heat transfer tubes 3 is narrow and the fins are suppressed from collapsing. It may not be effective.
- the width of the corrugated fin 4 is smaller than 0.5 times the length of the flat surface portion 3A of the heat transfer tube, the surface area of the corrugated fin 4 becomes small, so that the heat exchange efficiency decreases. Therefore, the width of the corrugated fin 4 is set to be 0.5 times or more and less than 0.8 times the length of the flat surface portion 3A of the heat transfer tube.
- FIG. 13 is a diagram showing a heat exchanger in which bending is performed in the bent portion according to the fourth embodiment.
- the heat exchanger 1 shown in FIG. 12 is bent at the bending portion 7, the heat exchanger 1 shown in FIG. 13 can be manufactured.
- the heat exchanger 1 of the fifth embodiment can be bent to form the bent portion 7 in any portion. Therefore, in the manufacturing process, the heat exchanger 1 can be manufactured without specifying in advance the bending portion 7 and the straight portion 6 to be bent, without increasing the types of the heat exchanger 1 required for manufacturing. I'm sorry. Further, in the production of the heat exchanger 1, it is not necessary to change the setup and prepare new equipment and molds, and the production cost and the production space can be reduced. Further, in the heat exchanger 1 of the fifth embodiment, since the corrugated fins 4 do not protrude to the outside, there is no possibility that the fins on the design surface will fall during the bending process.
- FIG. 14 is a diagram showing the configuration of the air conditioner according to the sixth embodiment.
- an air conditioner will be described as an example of the refrigeration cycle device.
- a refrigerant circuit is configured by connecting the outdoor unit 200 and the indoor unit 100 with a gas refrigerant pipe 300 and a liquid refrigerant pipe 400.
- the outdoor unit 200 includes a compressor 210, a four-way valve 220, and an outdoor heat exchanger 230.
- the compressor 210 compresses the sucked refrigerant and discharges it.
- the compressor 210 of the first embodiment can change the capacity of the compressor 210 by arbitrarily changing the operating frequency by, for example, an inverter circuit or the like.
- the four-way valve 220 is a valve that switches the flow of the refrigerant depending on, for example, the cooling operation and the heating operation.
- the outdoor heat exchanger 230 exchanges heat between the refrigerant and the outdoor air. For example, it functions as an evaporator during heating operation to evaporate and vaporize the refrigerant. In addition, it functions as a condenser during cooling operation to condense and liquefy the refrigerant.
- the indoor heat exchanger 110 exchanges heat between, for example, the air in the room to be air-conditioned and the refrigerant. During heating operation, it functions as a condenser to condense and liquefy the refrigerant. In addition, it functions as an evaporator during cooling operation to evaporate and vaporize the refrigerant.
- the indoor unit 100 has an indoor heat exchanger 110, an expansion valve 120, and an indoor fan 130.
- the expansion valve 120 such as a throttle device, decompresses and expands the refrigerant.
- the opening degree is adjusted based on an instruction from a control device (not shown) or the like.
- the indoor heat exchanger 110 exchanges heat between the air in the room, which is the space subject to air conditioning, and the refrigerant.
- the indoor heat exchanger 110 exchanges heat between the air in the room, which is the space subject to air conditioning, and the refrigerant.
- it functions as a condenser to condense and liquefy the refrigerant.
- it functions as an evaporator during cooling operation to evaporate and vaporize the refrigerant.
- the indoor fan 130 passes the indoor air through the indoor heat exchanger 110, and supplies the air that has passed through the indoor heat exchanger 110 into the room.
- the heat exchanger described in the first to fifth embodiments is used as the outdoor heat exchanger 230, so that the heat exchange performance is improved. It is possible to measure and improve the operating efficiency of the air conditioner.
- the air conditioner can also be applied to other refrigeration cycle devices such as a refrigerating device, a refrigerating device, and a hot water supply device.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
断面が扁平形状を有し、扁平形状の長手側における扁平面がそれぞれ対向して間を隔てて配置され、流体が流れる流路を内部に有する複数の扁平伝熱管と、隣り合う2つの扁平伝熱管の間に配置され、扁平面において扁平伝熱管と接合される複数のコルゲートフィンとを備える熱交換器であって、複数の扁平伝熱管と複数のコルゲートフィンとを流路方向から見たときに、少なくとも一部の隣り合う2つの扁平伝熱管の間において、対向する扁平面間の長手方向の一部に、コルゲートフィンが配置されていないフィン未配置部分を有するものである。
Description
この発明は、熱交換器および冷凍サイクル装置に関するものである。特に、コルゲートフィンと扁平伝熱管とを組み合わせて構成する熱交換器などに関するものである。
たとえば、一対のヘッダー間に接続された複数の扁平管の平面部と平面部との間に、コルゲートフィンを配置したコルゲートフィンチューブ型の熱交換器が普及している。そして、コルゲートフィンチューブ型の熱交換器において、ヘッダーの軸方向に沿って、熱交換器の曲げ部に、幅が異なる二種類のフィンを交互に配置した熱交換器が提案されている(たとえば、特許文献1参照)。
このような熱交換器にあって、熱交換器に曲げに係る力が加わると、コルゲートフィンが座屈する可能性がある。特に、曲げ加工を行って曲げ部を作成する際、熱交換器の内周となる側に圧縮力が生じる。その結果、熱交換器の内周側においてコルゲートフィンが座屈し、フィン倒れなどが生じる。このため、熱交換器は、コルゲートフィンの座屈によって風路が閉塞し、性能が低下する。
この発明は、上記のような課題を解決するため、コルゲートフィンの座屈を抑え、性能低下を抑制することができる熱交換器および冷凍サイクル装置を得ることを目的とするものである。
この発明にかかる熱交換器は、断面が扁平形状を有し、扁平形状の長手側における扁平面がそれぞれ対向して間を隔てて配置され、流体が流れる流路を内部に有する複数の扁平伝熱管と、隣り合う2つの扁平伝熱管の間に配置され、扁平面において扁平伝熱管と接合される複数のコルゲートフィンとを備える熱交換器であって、複数の扁平伝熱管と複数のコルゲートフィンとを流路方向から見たときに、少なくとも一部の隣り合う2つの扁平伝熱管の間において、対向する扁平面間の長手方向の一部に、コルゲートフィンが配置されていないフィン未配置部分を有するものである。
また、この発明にかかる冷凍サイクル装置は、上記の熱交換器を有するものである。
この発明によれば、複数の扁平伝熱管と複数のコルゲートフィンとを流路方向から見たときに、熱交換器の隣り合う2つの扁平伝熱管の間に、扁平形状における長手方向の一部に、コルゲートフィンが配置されていない未配置部分を有する。このため、隣り合う扁平伝熱管の間に空間ができ、曲げなどで発生した圧縮力によるコルゲートフィンの座屈を防ぐことができる。このため、風路を閉塞させずに空気を通過させることができ、熱交換効率を高めることができる。
以下、実施の形態にかかる熱交換器および冷凍サイクル装置について、図面などを参照しながら説明する。以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。また、図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。特に、構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適用することができる。また、圧力および温度の高低については、特に絶対的な値との関係で高低が定まっているものではなく、装置などにおける状態、動作などにおいて相対的に定まるものとする。また、添字で区別などしている複数の同種の機器などについて、特に区別したり、特定したりする必要がない場合には、添字などを省略して記載する場合がある。
実施の形態1.
図1は、実施の形態1にかかる熱交換器の構成を説明する図である。図1に示すように、熱交換器1は、パラレル配管形となるコルゲートフィンチューブ型の熱交換器である。熱交換器1は、一対のヘッダー2(2Aおよび2B)、複数の扁平伝熱管3および複数のコルゲートフィン4を有する。
図1は、実施の形態1にかかる熱交換器の構成を説明する図である。図1に示すように、熱交換器1は、パラレル配管形となるコルゲートフィンチューブ型の熱交換器である。熱交換器1は、一対のヘッダー2(2Aおよび2B)、複数の扁平伝熱管3および複数のコルゲートフィン4を有する。
ヘッダー2は、それぞれ、流体である外部からの冷媒が流入出する冷媒出入口管5(5Aおよび5B)を有する。2本のヘッダー2の間には、複数の扁平伝熱管3が、各ヘッダー2に対して垂直となるように、平行に配置されている。各扁平伝熱管3は、扁平管挿入穴(図示せず)を介してヘッダー2内部に挿入される。そして、ヘッダー2Aおよびヘッダー2Bと各扁平伝熱管3との接触部分は、ロウ材によって接合される。これにより、ヘッダー2Aおよびヘッダー2Bと各扁平伝熱管3との内部が連通する。実施の形態1では、冷媒は、冷媒出入口管5Aからヘッダー2Aに冷媒が流入する。そして、冷媒は、各扁平伝熱管3を通り、ヘッダー2Bで合流して、冷媒出入口管5Bから流出する。ただし、これに限定するものではなく、冷媒の流入出方向が逆向きでもよい。ここで、後述する図2に示すように、熱交換器1が、凝縮器として使用される場合は、高温および高圧の冷媒が扁平伝熱管3内の冷媒流路を流れる。また、熱交換器1が、蒸発器として使用される場合は、低温および低圧の冷媒が扁平伝熱管3内の冷媒流路を流れる。
図2は、実施の形態1にかかる熱交換器における扁平伝熱管とコルゲートフィンとの配置関係について説明する要部斜視図である。実施の形態1の扁平伝熱管3は、図2に示すように、断面が扁平形状を有し、空気の流通方向となる扁平形状の長手側における外側面が平面(以下、扁平面という)となり、長手方向に直交する短手側における外側面が曲面となる伝熱管である。したがって、扁平伝熱管3は、一対の伝熱管扁平面部3Aと一対の伝熱管曲面部3Bとを有する。また、扁平伝熱管3は、内部に複数の冷媒流路3Cを有する。ここで、扁平伝熱管3は、伝熱性のよい金属を材料とすることが望ましい。このため、扁平伝熱管3は、たとえば、アルミニウムを材料とする。以下、扁平伝熱管3の扁平形状における長手方向および短手方向並びにこれらに直交する流路方向を方向の基準として説明する。
また、図2に示すように、コルゲートフィン4は、板状部材を山折りおよび谷折りを繰返すつづら折りにより、蛇腹状に形成されたフィンである。コルゲートフィン4は、腹部となるフィン平面部4Aと頂部となるフィン曲面部4Bとを有する。そして、隣り合う扁平伝熱管3の対向する伝熱管扁平面部3Aとコルゲートフィン4のフィン曲面部4Bとが、ろう付けにより接合される。実施の形態1では、後述するように、扁平伝熱管3の伝熱管扁平面部3Aとの接合位置によって区別される、第一フィン41および第二フィン42をコルゲートフィン4として有する。ここで、コルゲートフィン4についても、伝熱性のよい金属を材料とすることが望ましい。このため、コルゲートフィン4は、たとえば、アルミニウムを材料とする。
図3は、実施の形態1にかかる曲げ加工が行われた熱交換器を示す図である。実施の形態1にかかる熱交換器1は、たとえば、冷凍サイクル装置の室外機などに搭載される前に、複数の扁平伝熱管3が並んだ列方向となる、扁平形状の短手方向となるヘッダー2の軸方向に、1回または複数回曲げ加工が行われる。図1に示す熱交換器1に対して、1回の曲げ加工を行うと、図3に示すような熱交換器1が得られる。
図4は、実施の形態1にかかる熱交換器の形状について説明する図である。図4は、曲げ加工前の熱交換器1の形状について示している。実施の形態1の熱交換器1では、曲げ加工が行われない直線部6と曲げ加工が行われる曲げ部7とを有する。たとえば、1回曲げの場合、熱交換器1は、両端の直線部6の間に曲げ部7を有する。直線部6と曲げ部7とでは、コルゲートフィン4のフィン曲面部4Bと扁平伝熱管3の伝熱管扁平面部3Aとの接合位置が異なる。
コルゲートフィン4のうち、曲げ部7におけるコルゲートフィン4を、第一フィン41とする。また、直線部6におけるコルゲートフィン4を、第二フィン42とする。第二フィン42は、コルゲートフィン4の頂部となるフィン曲面部4B全体が、扁平伝熱管3の伝熱管扁平面部3Aと接合されている。したがって、扁平伝熱管3と第二フィン42とは、通常の位置関係の接合となる。第一フィン41は、空気の通過方向となる長手方向において、直線部6における第二フィン42と扁平伝熱管3との位置関係とは異なる位置関係で、扁平伝熱管3の伝熱管扁平面部3Aと接合している。実施の形態1では、第一フィン41は、曲げ加工により熱交換器1の外周側となる方に突出するように、位置をずらせて扁平伝熱管3と接合されている。このため、実施の形態1では、図4に示すように、冷媒流路3C方向から扁平伝熱管3と第一フィン41とを見たときに、曲げ部7において、隣り合う2つの扁平伝熱管3の間の、第一フィン41が配置されていないフィン未配置部分43には、空間ができる。また、熱交換器1の外周側において、フィン曲面部4Bの一部は、第一フィン41が扁平伝熱管3の端部から突出しているため、扁平伝熱管3の伝熱管扁平面部3Aと接合されない。ここで、実施の形態1における第一フィン41と第二フィン42とは、隣り合う扁平伝熱管3の間において、配置される位置が異なるだけである。したがって、第一フィン41と第二フィン42とは、長手方向に対応するフィン幅が同じコルゲートフィン4を用いることができる。
図5は、実施の形態1にかかる曲げ部において曲げ加工が行われた熱交換器を示す図である。図4に示す熱交換器1に、曲げ部7で曲げ加工を行うと、図5に示す熱交換器1を製造することができる。曲げ部7における曲げ加工は、前述したように、第一フィン41の突出した側が外周となる方向に行う。したがって、曲げ部7の内周側は、第一フィン41が配置されていないフィン未配置部分43によりできる空間となる。このため、曲げ加工時に、第一フィン41に働く圧縮力が減少する。したがって、曲げ部7の第一フィン41において、曲げ加工による座屈を抑制することができる。ここで、フィン未配置部分43にできる空間について、扁平伝熱管3の長手方向における長さに対し、第一フィン41と扁平伝熱管3とが接合されず、配置されていない部分が20%以上の長さとなるような空間を確保すれば、座屈を抑制する効果を得ることができる。
以上のように、実施の形態1の熱交換器1によれば、曲げ加工が行われる曲げ部7について、直線部6の第二フィン42と扁平伝熱管3との位置関係よりも、空気の通過方向において、ずれた位置に第一フィン41が接合される。これにより、曲げ部7では、隣り合う扁平伝熱管3の間は、第一フィン41が配置されていないフィン未配置部分43によりできる空間となる。このため、曲げ加工時に、第一フィン41にかかる圧縮力によって、第一フィン41が座屈することを抑制することができる。曲げ部7において、空気が通過する風路の閉塞を抑制することができる。したがって、実施の形態1の熱交換器1は、熱交換効率の低下を抑制することができる。
また、直線部6の第二フィン42と曲げ部7の第一フィン41とは、同種類のコルゲートフィン4を用いることができる。このため、熱交換器1の製造において、段取替え並びに新たな設備および金型の用意などが不要となり、製造コストおよび製造スペースなどを削減することができる。
実施の形態2.
図6は、実施の形態2にかかる熱交換器の形状について説明する図である。図6において、図4などと同じ符号を付している部材などについては、実施の形態1について説明したことと同様である。実施の形態2は、曲げ部7における第一フィン41と扁平伝熱管3との位置関係について、さらに詳しく規定したものである。
図6は、実施の形態2にかかる熱交換器の形状について説明する図である。図6において、図4などと同じ符号を付している部材などについては、実施の形態1について説明したことと同様である。実施の形態2は、曲げ部7における第一フィン41と扁平伝熱管3との位置関係について、さらに詳しく規定したものである。
フィン未配置部分43により、第一フィン41は、前述したように、曲げ加工により外周となる方向に突出するように扁平伝熱管3と接合される。このとき、図6に示すように、第一フィン41において、長手方向における2つのフィン端部のうち、扁平伝熱管3と接合された側のフィン端部は、扁平伝熱管3の長手方向の中心部分の位置または熱交換器1の外周側となる位置にある。したがって、2つのフィン端部は、片方のフィン端部が中心部分にあるか、他方のフィン端部も含め、2つのフィン端部が両方とも同じ側に位置することになる。ここで、第一フィン41と第二フィン42との幅は同一である。
図7は、実施の形態2にかかる曲げ部において曲げ加工が行われた熱交換器を示す図である。図6に示す熱交換器1に、曲げ部7で曲げ加工を行うと、図7に示す熱交換器1を製造することができる。実施の形態2の熱交換器1は、フィン未配置部分43によって、扁平伝熱管3の長手方向における長さに対し、第一フィン41と扁平伝熱管3とが接合されていない部分が50%以上の長さとなる空間が確保されている。このため、第一フィン41の座屈を防止することができる。
実施の形態3.
図8は、実施の形態3にかかる熱交換器の形状について説明する図である。図8において、図4などと同じ符号を付している部材などについては、実施の形態1について説明したことと同様である。実施の形態3は、直線部6の第二フィン42が、フィン未配置部分43を有し、曲げ加工を行ったときの外周となる方向に突出するように、位置がずれて扁平伝熱管3と接合されている。
図8は、実施の形態3にかかる熱交換器の形状について説明する図である。図8において、図4などと同じ符号を付している部材などについては、実施の形態1について説明したことと同様である。実施の形態3は、直線部6の第二フィン42が、フィン未配置部分43を有し、曲げ加工を行ったときの外周となる方向に突出するように、位置がずれて扁平伝熱管3と接合されている。
図9は、実施の形態3にかかる曲げ部において曲げ加工が行われた熱交換器を示す図である。図8に示す熱交換器1に、曲げ部7で曲げ加工を行うと、図9に示す熱交換器1を製造することができる。ここで、実施の形態3の熱交換器1は、いずれの部分においても、曲げ加工を行い、曲げ部7とすることができる。このため、製造工程において、曲げ加工を行う曲げ部7と直線部6とをあらかじめ特定せずに熱交換器1を製造することができるので、製造にかかる熱交換器1の種類を増大させずにすむ。また、熱交換器1の製造において、段取替え並びに新たな設備および金型の用意などが不要となり、製造コストおよび製造スペースなどを削減することができる。
実施の形態4.
図10は、実施の形態4にかかる熱交換器の形状について説明する図である。図10において、図4などと同じ符号を付している部材などについては、実施の形態1について説明したことと同様である。実施の形態1~実施の形態3のコルゲートフィン4は、扁平伝熱管3の長手方向における伝熱管扁平面部3Aの長さに合わせた幅とするものであった。実施の形態4の熱交換器1では、コルゲートフィン4の幅を、扁平伝熱管3の長手方向における伝熱管扁平面部3Aの長さの0.5倍とする。そして、直線部6においては、コルゲートフィン4を幅方向に二段で並列に配置し、第二フィン42とする。また、曲げ部7においては、コルゲートフィン4を幅方向に一段で配置し、第一フィン41とする。ここで、実施の形態4では、第一フィン41は、曲げ加工により熱交換器1の外周になる側にコルゲートフィン4を配置したものである。このため、曲げ加工により熱交換器1の内周になる側には、空間が形成される。
図10は、実施の形態4にかかる熱交換器の形状について説明する図である。図10において、図4などと同じ符号を付している部材などについては、実施の形態1について説明したことと同様である。実施の形態1~実施の形態3のコルゲートフィン4は、扁平伝熱管3の長手方向における伝熱管扁平面部3Aの長さに合わせた幅とするものであった。実施の形態4の熱交換器1では、コルゲートフィン4の幅を、扁平伝熱管3の長手方向における伝熱管扁平面部3Aの長さの0.5倍とする。そして、直線部6においては、コルゲートフィン4を幅方向に二段で並列に配置し、第二フィン42とする。また、曲げ部7においては、コルゲートフィン4を幅方向に一段で配置し、第一フィン41とする。ここで、実施の形態4では、第一フィン41は、曲げ加工により熱交換器1の外周になる側にコルゲートフィン4を配置したものである。このため、曲げ加工により熱交換器1の内周になる側には、空間が形成される。
図11は、実施の形態4にかかる曲げ部において曲げ加工が行われた熱交換器を示す図である。図10に示す熱交換器1に、曲げ部7で曲げ加工を行うと、図11に示す熱交換器1を製造することができる。このため、実施の形態1などと同様に、曲げ部7の内周側は、第一フィン41が接合されていない。したがって、第一フィン41には曲げ加工による圧縮力が加わらず、第一フィン41の座屈を防ぐことができる。そして、曲げ部7における風路の閉塞をなくし、熱交換器1における熱交換効率の低下を防止することができる。第一フィン41は、伝熱管扁平面部3Aの長さの0.5倍のコルゲートフィン4が一段で構成されていることから幅が短い。その分、コルゲートフィン4の表面積が小さくなるが、曲げ部7において風路を確保することができる分、熱交換効率が低下しない。
また、実施の形態4の熱交換器1においては、コルゲートフィン4が外側に飛び出していないため、曲げ加工時に、意匠面におけるフィン倒れが生じるおそれがなくなる。さらに、第二フィン42と第一フィン41とは、同種類のコルゲートフィン4を用いることができる。このため、製造コストおよび製造スペースなどを削減することができる。
実施の形態5.
図12は、実施の形態5にかかる熱交換器の形状について説明する図である。図12において、図4などと同じ符号を付している部材などについては、実施の形態1について説明したことと同様である。実施の形態1~実施の形態3のコルゲートフィン4は、扁平伝熱管3の長手方向における伝熱管扁平面部3Aの長さに合わせた幅とするものであった。実施の形態4の熱交換器1では、第一フィン41および第二フィン42となるコルゲートフィン4の幅を、扁平伝熱管3の長手方向における伝熱管扁平面部3Aの長さに対し、0.5倍以上および1倍より小さい幅とする。より好ましくは、0.8倍より小さい幅とする。そして、直線部6および曲げ部7の両方で、隣り合う2つの扁平伝熱管3の間で、第一フィン41および第二フィン42が配置されていないフィン未配置部分43による空間が形成されるようにする。また、直線部6および曲げ部7において、フィン未配置部分43側のフィン端部とは反対側のフィン端部の位置が、扁平伝熱管3における伝熱管端部を超えないようにする。
図12は、実施の形態5にかかる熱交換器の形状について説明する図である。図12において、図4などと同じ符号を付している部材などについては、実施の形態1について説明したことと同様である。実施の形態1~実施の形態3のコルゲートフィン4は、扁平伝熱管3の長手方向における伝熱管扁平面部3Aの長さに合わせた幅とするものであった。実施の形態4の熱交換器1では、第一フィン41および第二フィン42となるコルゲートフィン4の幅を、扁平伝熱管3の長手方向における伝熱管扁平面部3Aの長さに対し、0.5倍以上および1倍より小さい幅とする。より好ましくは、0.8倍より小さい幅とする。そして、直線部6および曲げ部7の両方で、隣り合う2つの扁平伝熱管3の間で、第一フィン41および第二フィン42が配置されていないフィン未配置部分43による空間が形成されるようにする。また、直線部6および曲げ部7において、フィン未配置部分43側のフィン端部とは反対側のフィン端部の位置が、扁平伝熱管3における伝熱管端部を超えないようにする。
コルゲートフィン4の幅が、伝熱管扁平面部3Aの長さに対して0.8倍以上であると、隣り合う2つの扁平伝熱管3の間に形成される空間が狭く、フィン倒れを抑制する効果が得られない可能性がある。一方、コルゲートフィン4の幅が、伝熱管扁平面部3Aの長さに対して0.5倍より小さいと、コルゲートフィン4の表面積が小さくなるため、熱交換効率が低下する。そこで、コルゲートフィン4の幅は、伝熱管扁平面部3Aの長さに対して0.5倍以上および0.8倍より小さい幅とする。
図13は、実施の形態4にかかる曲げ部において曲げ加工が行われた熱交換器を示す図である。図12に示す熱交換器1に、曲げ部7で曲げ加工を行うと、図13に示す熱交換器1を製造することができる。ここで、実施の形態5の熱交換器1は、いずれの部分においても、曲げ加工を行い、曲げ部7とすることができる。このため、製造工程において、曲げ加工を行う曲げ部7と直線部6とをあらかじめ特定せずに熱交換器1を製造することができ、製造にかかる熱交換器1の種類を増大させずにすむ。また、熱交換器1の製造において、段取替え並びに新たな設備および金型の用意などが不要となり、製造コストおよび製造スペースなどを削減することができる。さらに、実施の形態5の熱交換器1においては、コルゲートフィン4が外側に飛び出していないため、曲げ加工時に、意匠面におけるフィン倒れが生じるおそれがなくなる。
実施の形態6.
図14は、実施の形態6における空気調和装置の構成を示す図である。実施の形態6においては、冷凍サイクル装置の一例として、空気調和装置について説明する。図14に示すように、空気調和装置は、室外機200と室内機100とを、ガス冷媒配管300、液冷媒配管400により配管接続することで、冷媒回路が構成される。室外機200は、圧縮機210、四方弁220および室外熱交換器230を有している。実施の形態6の空気調和装置は、1台の室外機200と1台の室内機100が配管接続されているものとする。
図14は、実施の形態6における空気調和装置の構成を示す図である。実施の形態6においては、冷凍サイクル装置の一例として、空気調和装置について説明する。図14に示すように、空気調和装置は、室外機200と室内機100とを、ガス冷媒配管300、液冷媒配管400により配管接続することで、冷媒回路が構成される。室外機200は、圧縮機210、四方弁220および室外熱交換器230を有している。実施の形態6の空気調和装置は、1台の室外機200と1台の室内機100が配管接続されているものとする。
圧縮機210は、吸入した冷媒を圧縮して吐出する。特に限定するものではないが、実施の形態1の圧縮機210は、たとえばインバータ回路などにより、運転周波数を任意に変化させることにより、圧縮機210の容量を変化させることができる。四方弁220は、たとえば冷房運転時と暖房運転時とによって冷媒の流れを切り換える弁である。
室外熱交換器230は、冷媒と室外の空気との熱交換を行う。たとえば、暖房運転時においては蒸発器として機能し、冷媒を蒸発させ、気化させる。また、冷房運転時においては凝縮器として機能し、冷媒を凝縮して液化させる。
室内熱交換器110は、たとえば空調対象となる室内の空気と冷媒との熱交換を行う。暖房運転時においては凝縮器として機能し、冷媒を凝縮して液化させる。また、冷房運転時においては蒸発器として機能し、冷媒を蒸発させ、気化させる。
一方、室内機100は、室内熱交換器110、膨張弁120および室内ファン130を有している。膨張弁120は、絞り装置などの膨張弁120は、冷媒を減圧して膨張させる。たとえば電子式膨張弁などで構成した場合には、制御装置(図示せず)などの指示に基づいて開度調整を行う。また、室内熱交換器110は、空調対象空間である室内の空気と冷媒との熱交換を行う。たとえば、暖房運転時においては凝縮器として機能し、冷媒を凝縮して液化させる。また、冷房運転時においては蒸発器として機能し、冷媒を蒸発させ、気化させる。室内ファン130は、室内の空気を、室内熱交換器110に通過させ、室内熱交換器110を通過させた空気を室内に供給する。
以上のように、実施の形態6の空気調和装置によれば、実施の形態1~実施の形態5において説明した熱交換器を室外熱交換器230として用いるようにしたので、熱交換性能の向上をはかることができ、空気調和装置の運転効率を高めることができる。
前述した実施の形態6は、空気調和装置について説明したが、たとえば、冷蔵装置、冷凍装置、給湯装置のように、他の冷凍サイクル装置にも適用することができる。
1 熱交換器、2,2A,2B ヘッダー、3 扁平伝熱管、3A 伝熱管扁平面部、3B 伝熱管曲面部、3C 冷媒流路、4 コルゲートフィン、4A フィン平面部、4B フィン曲面部、5,5A,5B 冷媒出入口管、6 直線部、7 曲げ部、41 第一フィン、42 第二フィン、43 フィン未配置部分、100 室内機、110 室内熱交換器、120 膨張弁、130 室内ファン、200 室外機、210 圧縮機、220 四方弁、230 室外熱交換器、300 ガス冷媒配管、400 液冷媒配管。
Claims (7)
- 断面が扁平形状を有し、前記扁平形状の長手側における扁平面がそれぞれ対向して間を隔てて配置され、流体が流れる流路を内部に有する複数の扁平伝熱管と、
隣り合う2つの前記扁平伝熱管の間に配置され、前記扁平面において前記扁平伝熱管と接合される複数のコルゲートフィンと
を備える熱交換器であって、
複数の前記扁平伝熱管と複数の前記コルゲートフィンとを前記流路方向から見たときに、少なくとも一部の隣り合う2つの前記扁平伝熱管の間において、対向する前記扁平面間の前記長手方向の一部に、前記コルゲートフィンが配置されていないフィン未配置部分を有する熱交換器。 - 前記フィン未配置部分は、複数の前記扁平伝熱管が並んだ列が曲げ加工により曲げられる曲げ部の内周側となる部分である請求項1に記載の熱交換器。
- すべての隣り合う2つの前記扁平伝熱管の間において、前記フィン未配置部分を有する請求項1に記載の熱交換器。
- 前記長手方向に対応する前記コルゲートフィンの2つのフィン端部のうち、前記扁平伝熱管と接合された方の前記フィン端部が、前記扁平伝熱管の前記長手方向における中心部分または他方の前記フィン端部と同じ側に位置する請求項1~請求項3のいずれか一項に記載の熱交換器。
- 前記コルゲートフィンは、前記扁平伝熱管の前記長手方向における長さの0.5倍の幅を有し、
前記フィン未配置部分には、前記長手方向に1つの前記コルゲートフィンが配置され、
前記フィン未配置部分以外の部分には、2つの前記コルゲートフィンが前記長手方向に並列に配置される請求項1~請求項4のいずれか一項に記載の熱交換器。 - 前記コルゲートフィンは、
前記扁平伝熱管の前記長手方向における長さとの比が、0.5より大きく、1より小さい幅を有し、
前記長手方向に対応するフィン端部のうち、前記フィン未配置部分と反対側の前記フィン端部が、前記扁平伝熱管の前記長手方向における伝熱管端部を超えない位置に配置される請求項1~請求項3のいずれか一項に記載の熱交換器。 - 請求項1~請求項6のいずれか一項に記載の熱交換器を有する冷凍サイクル装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/019726 WO2020234931A1 (ja) | 2019-05-17 | 2019-05-17 | 熱交換器および冷凍サイクル装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/019726 WO2020234931A1 (ja) | 2019-05-17 | 2019-05-17 | 熱交換器および冷凍サイクル装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020234931A1 true WO2020234931A1 (ja) | 2020-11-26 |
Family
ID=73458974
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/019726 WO2020234931A1 (ja) | 2019-05-17 | 2019-05-17 | 熱交換器および冷凍サイクル装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020234931A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100181058A1 (en) * | 2009-01-20 | 2010-07-22 | Liu Huazhao | Micro-channel heat exchanger |
JP2013019596A (ja) * | 2011-07-11 | 2013-01-31 | Mitsubishi Electric Corp | 熱交換器、室内機、および室外機 |
JP2015200442A (ja) * | 2014-04-07 | 2015-11-12 | 株式会社デンソー | 熱交換器 |
WO2017208388A1 (ja) * | 2016-06-01 | 2017-12-07 | 三菱電機株式会社 | 熱交換器および冷凍サイクル装置 |
-
2019
- 2019-05-17 WO PCT/JP2019/019726 patent/WO2020234931A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100181058A1 (en) * | 2009-01-20 | 2010-07-22 | Liu Huazhao | Micro-channel heat exchanger |
JP2013019596A (ja) * | 2011-07-11 | 2013-01-31 | Mitsubishi Electric Corp | 熱交換器、室内機、および室外機 |
JP2015200442A (ja) * | 2014-04-07 | 2015-11-12 | 株式会社デンソー | 熱交換器 |
WO2017208388A1 (ja) * | 2016-06-01 | 2017-12-07 | 三菱電機株式会社 | 熱交換器および冷凍サイクル装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6333401B2 (ja) | 熱交換器、及び、空気調和装置 | |
US8205470B2 (en) | Indoor unit for air conditioner | |
US20130306285A1 (en) | Heat exchanger and air conditioner | |
WO2013160957A1 (ja) | 熱交換器、室内機及び冷凍サイクル装置 | |
US9546823B2 (en) | Heat exchanger, method of manufacturing same, and refrigeration cycle apparatus | |
JP2011127831A (ja) | 熱交換器及びこれを備えた冷凍サイクル装置 | |
JPWO2018225252A1 (ja) | 熱交換器及び冷凍サイクル装置 | |
JP7292510B2 (ja) | 熱交換器及び空気調和機 | |
WO2021234956A1 (ja) | 熱交換器、室外機および冷凍サイクル装置 | |
JP6765528B2 (ja) | 熱交換器、冷凍サイクル装置および空気調和機 | |
US20170356700A1 (en) | Frost tolerant microchannel heat exchanger | |
WO2016121119A1 (ja) | 熱交換器及び冷凍サイクル装置 | |
JP6656368B2 (ja) | フィンチューブ型熱交換器、および、このフィンチューブ型熱交換器を備えたヒートポンプ装置 | |
WO2020234931A1 (ja) | 熱交換器および冷凍サイクル装置 | |
US20220196345A1 (en) | Heat exchanger, method of manufacturing the same, and air-conditioning apparatus | |
WO2014125997A1 (ja) | 熱交換装置およびこれを備えた冷凍サイクル装置 | |
JP6563115B2 (ja) | 熱交換器及び冷凍サイクル装置 | |
EP4083558B1 (en) | Heat exchanger and refrigeration cycle device | |
JP4983878B2 (ja) | 熱交換器及びこの熱交換器を備えた冷蔵庫、空気調和機 | |
WO2021234961A1 (ja) | 熱交換器、空気調和装置の室外機及び空気調和装置 | |
JP6797304B2 (ja) | 熱交換器及び空気調和機 | |
WO2020178966A1 (ja) | ガスヘッダ、熱交換器及び冷凍サイクル装置 | |
WO2023199400A1 (ja) | 熱交換器および冷凍サイクル装置 | |
WO2021205905A1 (ja) | 熱交換器、熱交換器を搭載した空気調和機、及び熱交換器の製造方法 | |
JP7186903B2 (ja) | 熱交換器の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19930013 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19930013 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |