[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017168669A1 - 熱交換器及び冷凍サイクル装置 - Google Patents

熱交換器及び冷凍サイクル装置 Download PDF

Info

Publication number
WO2017168669A1
WO2017168669A1 PCT/JP2016/060624 JP2016060624W WO2017168669A1 WO 2017168669 A1 WO2017168669 A1 WO 2017168669A1 JP 2016060624 W JP2016060624 W JP 2016060624W WO 2017168669 A1 WO2017168669 A1 WO 2017168669A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
heat exchanger
bent
path
header
Prior art date
Application number
PCT/JP2016/060624
Other languages
English (en)
French (fr)
Inventor
アバスタリ
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018507969A priority Critical patent/JP6563115B2/ja
Priority to PCT/JP2016/060624 priority patent/WO2017168669A1/ja
Priority to US16/072,215 priority patent/US10578377B2/en
Priority to CN201690001575.8U priority patent/CN209054801U/zh
Publication of WO2017168669A1 publication Critical patent/WO2017168669A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/02Heat exchange conduits with particular branching, e.g. fractal conduit arrangements

Definitions

  • the present invention relates to a fin-and-tube heat exchanger and a refrigeration cycle apparatus including the heat exchanger.
  • Patent Document 1 discloses a heat exchange fin, a cylindrical wall body surrounding the heat exchange fin, a heat exchange fin and a cylindrical wall body.
  • a heat exchanger is disclosed that includes a water pipe disposed therethrough.
  • thermal distortion occurs in the water conduit due to a temperature difference between the cylindrical wall body and the water conduit.
  • the groove-shaped buffer part is formed in the cylindrical wall body.
  • some conventional fin-and-tube heat exchangers are configured such that a heat exchange medium is supplied to a plurality of heat transfer tubes through a path pipe extending from the header tube.
  • the path pipe extending from the header pipe is bent at a right angle in the middle of the path pipe, and a part of the path pipe extends in the same direction as the longitudinal direction of the header pipe. There may be.
  • a part of the path pipe extends in the same direction as the longitudinal direction of the header pipe, a large thermal stress due to thermal distortion of the header pipe and the path pipe may occur at the connection portion between the path pipe and the heat transfer pipe. Therefore, the conventional fin-and-tube type heat exchanger has a problem that the heat exchanger reliability against the thermal stress may not be ensured due to the thermal stress generated in the connecting portion of the path pipe and the heat transfer tube. .
  • the present invention has been made to solve the above-described problems, and can reduce thermal stress even when a part of a pipe of a heat exchanger is bent, thereby ensuring reliability against thermal stress. It is an object of the present invention to provide a heat exchanger and a refrigeration cycle apparatus that can perform the above operation.
  • the heat exchanger includes a plurality of plate-like fins arranged in parallel at intervals, a heat exchange unit having a plurality of heat transfer tubes intersecting with the plurality of plate-like fins, and the heat exchange unit And a plurality of path pipes connected between the heat exchange section and the header pipe, and one or more path pipes of the plurality of path pipes include the header A first straight pipe part extending in a direction away from the pipe, a first bent pipe part extending from the first straight pipe part, and a second extending in a direction away from the pipe connection part of the heat exchange part. A straight pipe section; a second bent pipe section extending from the second straight pipe section; and a third straight pipe section extending between the first bent pipe section and the second bent pipe section.
  • the bending angle of the first bent tube portion is less than 90 degrees.
  • the refrigeration cycle apparatus includes the above-described heat exchanger.
  • the heat exchanger and refrigeration cycle apparatus which can ensure the reliability with respect to a thermal stress can be provided.
  • FIG. 1 Schematic showing an example of the structure of the first pass pipe 4 and the second pass pipe 6 on the other end side of the first header pipe 3 and the second header pipe 5 of the heat exchanger 1 according to Embodiment 1 of the present invention.
  • FIG. Another example of the structure of the 1st path
  • FIG. In the heat exchanger 1 according to Embodiment 1 of the present invention, the first header pipe 3 and the first path pipe 4 when the bending angle ⁇ of the first bent pipe portion 40b of the first path pipe 4 is 90 degrees.
  • 1 is a refrigerant circuit diagram schematically showing an example of a refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention. It is the schematic which shows the internal structure of the outdoor condensation unit 200a of the indoor type refrigeration apparatus which is an example of the refrigeration apparatus 200 which concerns on Embodiment 1 of this invention. It is the schematic which shows the external appearance structure of the outdoor type freezing apparatus 200b which is an example of the freezing apparatus 200 which concerns on Embodiment 1 of this invention.
  • the first header pipe 3 and the first path pipe 4 when the bending angle ⁇ of the first bent pipe portion 40b of the first path pipe 4 is 60 degrees. It is a schematic side view which shows an example of a structure. In the heat exchanger 1 according to Embodiment 2 of the present invention, the first header pipe 3 and the first path pipe 4 when the bending angle ⁇ of the first bent pipe portion 40b of the first path pipe 4 is 100 degrees. It is a schematic side view which shows an example of a structure.
  • 6 is a graph showing the relationship between the bending angle ⁇ of the first bent pipe portion 40b of the first path pipe 4 and the thermal stress in the first bent pipe portion 40b in the heat exchanger 1 according to Embodiment 2 of the present invention.
  • the first bent pipe portion 40b of the first pass pipe 4 when the bent angle ⁇ of the first bent pipe section 40b of the first pass pipe 4 is an acute angle is an acute angle.
  • the bending angle ⁇ of the first bent pipe portion 40b of the first pass pipe 4 is the graph which showed the relationship.
  • FIG. 1 is a perspective view schematically showing a part of the structure of the heat exchanger 1 according to the first embodiment.
  • a part of the upper end portion of the heat exchanger 1 is shown as a region A surrounded by a rectangular dotted line.
  • a part of the lower end portion of the heat exchanger 1 is shown as a region B surrounded by a rectangular dotted line.
  • the heat exchanger 1 is configured as a fin-and-tube air-cooled heat exchanger. As shown in FIG. 1, the heat exchanger 1 includes a heat exchange unit 2 that constitutes a region where heat exchange is performed with air passing through the inside. A first header pipe 3 and a second header pipe 5 are arranged on one side of the heat exchange unit 2 as viewed from the air passing direction. In FIG. 1, the first header pipe 3 and the second header pipe 5 are arranged on the left side of the heat exchanger 1. Further, a side plate 7 having a plurality of punch holes 7 a is arranged between the heat exchange unit 2 and the first header pipe 3 and between the heat exchange unit 2 and the second header pipe 5.
  • a plurality of first path pipes 4 are connected between the heat exchanging unit 2 and the first header pipe 3.
  • a plurality of second path pipes 6 are connected between the heat exchanging unit 2 and the second header pipe 5.
  • FIG. 2 is a schematic diagram illustrating an example of pipe connection between the heat exchange unit 2 and the first path pipe 4 in the heat exchanger 1 according to the first embodiment.
  • the heat exchange unit 2 includes a plurality of plate-like fins 20 that are arranged in parallel with the side plate 7 at intervals, and a plurality of heat transfer tubes 25 that intersect the plurality of plate-like fins 20. ing.
  • the plurality of plate-like fins 20 are spaced apart from each other, the air flowing between the adjacent plate-like fins 20, and the heat exchange medium flowing inside the plurality of heat transfer tubes 25, For example, heat exchange is performed with the refrigerant.
  • the heat exchanger tube 25 can be comprised as a U-shaped vent pipe bent, for example in the hairpin shape.
  • the end portion 4a of the first path pipe 4 is connected to one end portion 25a of the heat transfer tube 25 arranged so as to protrude from the punch hole 7a of the side plate 7.
  • a pipe connection portion between the end portion 25 a of the heat transfer tube 25 and the punch hole 7 a of the side plate 7 is referred to as a pipe connection portion 10.
  • the end portion of the second pass pipe 6 is connected to the other end portion of the heat transfer tube 25 that protrudes from the punch hole 7a of the side plate 7 in the same manner as the end portion 4a of the first pass pipe 4. Piping is connected.
  • FIG. 3 shows an example of the structure of the first pass pipe 4 and the second pass pipe 6 on one end side of the first header pipe 3 and the second header pipe 5 of the heat exchanger 1 according to the first embodiment.
  • FIG. FIG. 4 shows an example of the structure of the first pass pipe 4 and the second pass pipe 6 on the other end side of the first header pipe 3 and the second header pipe 5 of the heat exchanger 1 according to the first embodiment.
  • FIG. FIG. 5 shows another structure of the first pass pipe 4 and the second pass pipe 6 on the other end side of the first header pipe 3 and the second header pipe 5 of the heat exchanger 1 according to the first embodiment. It is the schematic which shows an example.
  • FIG. 3 shows an example of the structure of the first pass pipe 4 and the second pass pipe 6 in the area A of FIG. 1, that is, the upper end side of the first header pipe 3 and the second header pipe 5.
  • FIG. 4 shows an example of the structure of the first path pipe 4 and the second path pipe 6 in the region B of FIG. 1, that is, the lower end side of the first header pipe 3 and the second header pipe 5.
  • FIG. 5 shows a modification of the first path pipe 4 in the region B of FIG. 1, that is, a modification of FIG.
  • the plurality of first path pipes 4 connected to both ends of the first header pipe 3 include a first straight pipe portion 40a, a first bent pipe portion 40b, Some have two straight pipe portions 40c, a second bent pipe portion 40d, and a third straight pipe portion 40e. That is, the heat exchanger 1 of FIGS. 3 to 5 includes one or more first path pipes 4 having a curved pipe structure.
  • the first straight pipe portion 40 a extends in a direction away from the first header pipe 3.
  • the 1st bending pipe part 40b is extended from the 1st straight pipe part 40a.
  • the second straight pipe part 40 c is connected by the pipe connection part 10 and extends in a direction away from the heat exchange part 2.
  • the second bent pipe portion 40d extends from the second straight pipe portion 40c.
  • the third straight pipe portion 40e extends between the first bent pipe portion 40b and the second bent pipe portion 40d.
  • the first straight pipe part 40a, the first bent pipe part 40b, the second straight pipe part 40c, the second bent pipe part 40d, and the third straight pipe part 40e may be configured integrally or separately.
  • the refrigerant piping may be connected by piping.
  • the first path pipe 4 is configured such that the first straight pipe portion 40 a and the second straight pipe portion 40 c are in a twisted positional relationship with each other. .
  • the first path pipe 4 is configured such that the first straight pipe portion 40a and the second straight pipe portion 40c are in a twisted positional relationship.
  • the first path pipe 4 is configured such that the first straight pipe portion 40 a and the second straight pipe portion 40 c are parallel to each other.
  • the pipe temperature of the first header pipe 3 is, for example, about 100 ° C., for example, high temperature of 98 ° C. to 102 ° C.
  • the first header pipe 3 and the first path are caused by the temperature difference between the pipe temperature and the outside air temperature.
  • the pipe 4 is subjected to thermal distortion due to thermal expansion.
  • thermal distortion generated in the first header pipe 3 and the first pass pipe 4 when a gas refrigerant having a refrigerant temperature of 98 ° C. flows into the first header pipe 3 and the outside air temperature is ⁇ 15 ° C. will be described.
  • FIG. 6 shows the first header pipe 3 and the first path pipe when the bending angle ⁇ of the first bent pipe portion 40b of the first path pipe 4 is 90 degrees in the heat exchanger 1 according to the first embodiment. It is a schematic side view which shows an example of the structure of 4.
  • FIG. FIG. 7 is a schematic view of the heat exchanger 1 of FIG. 6 as viewed from below. 6 and 7 correspond to the structures of the first header pipe 3 and the first path pipe 4 shown in FIG.
  • FIG. 8 schematically shows thermal distortion of the first header pipe 3 and the first pass pipe 4 when a high-temperature and high-pressure gas refrigerant flows into the first header pipe 3 in the heat exchanger 1 of FIG. It is a side view.
  • FIG. 9 is a schematic view of the heat exchanger 1 of FIG. 8 as viewed from below.
  • FIGS. 8 and 9 the shapes of the first header pipe 3 and the first path pipe 4 before thermal distortion are shown by broken lines.
  • the shapes of the first header pipe 3 and the first pass pipe 4 shown by broken lines in FIG. 8 are the same as the shapes of the first header pipe 3 and the first pass pipe 4 shown in FIG.
  • the shape of the 1st header piping 3 and the 1st path piping 4 illustrated with the broken line in FIG. 9 is the same as the shape of the 1st header piping 3 and the 1st path piping 4 of FIG.
  • thermal distortion occurs due to thermal expansion, and thermal stress occurs in the direction of the central axis of the first header pipe 3 due to thermal distortion.
  • thermal strain is generated due to the thermal expansion of the first pass piping 4, and thermal stress is generated due to the thermal strain.
  • thermal distortion occurs due to the thermal expansion of the third straight pipe portion 40 e, and the thermal stress direction of the first header pipe 3 is caused by the thermal distortion.
  • Thermal stress is generated in the same direction. Therefore, in the pipe connection part 10, a resultant force of the thermal stress generated in the first header pipe 3 and the thermal stress generated in the first path pipe 4 is generated, so that the thermal stress in the pipe connection part 10 increases. If the thermal stress in the pipe connection part 10 becomes large, cracks or breakage due to thermal fatigue may occur in the pipe connection part 10, and thus the reliability of the heat exchanger 1 may not be maintained.
  • thermal distortion occurs due to thermal expansion of the first straight pipe part 40 a and the second straight pipe part 40 c, and thermal stress is applied to the pipe connection part 10 due to the thermal distortion.
  • the pipe connection portion 10 is heated in the direction of the central axis of the first straight pipe portion 40a, that is, in the direction parallel to the surface of the side plate 7 and away from the first path pipe 4. Stress is generated.
  • the pipe connection portion 10 causes thermal stress in the direction of the central axis of the second straight pipe portion 40c, that is, in the direction perpendicular to the surface of the side plate 7 and toward the surface of the side plate 7. appear.
  • the thermal stress generated in the pipe connection portion 10 due to the thermal strain of the first straight pipe portion 40a and the second straight pipe portion 40c is not in the same direction as the thermal stress generated in the first header pipe 3. Therefore, in the pipe connection part 10, the thermal stress generated by the thermal distortion of the first straight pipe part 40 a and the second straight pipe part 40 c is generated in the first header pipe 3 and the first path pipe 4. It becomes smaller than the resultant force with thermal stress.
  • produces in the 1st straight pipe part 40a and the 2nd straight pipe part 40c is made small by reducing the length of the center axis direction of the 1st straight pipe part 40a and the 2nd straight pipe part 40c. Can do.
  • FIG. 10 shows the first header pipe 3 and the first path when the bending angle ⁇ of the first bent pipe portion 40b of the first path pipe 4 is less than 90 degrees in the heat exchanger 1 according to the first embodiment.
  • 3 is a schematic side view showing an example of the structure of a pipe 4.
  • FIG. The first path pipe 4 in FIG. 10 is configured such that the first straight pipe portion 40a and the second straight pipe portion 40c are in a twisted positional relationship with each other, and corresponds to the structure in FIG. Further, in FIG. 10, the direction of the thermal stress generated in the first header pipe 3 and the first path pipe 4 due to thermal strain is indicated by a black block arrow. In FIG. 10, since the configuration corresponding to the second straight pipe portion 40c is not shown, the position where the second straight pipe portion 40c is arranged is indicated by an arrow.
  • FIG. 11 shows the first header pipe 3 and the first path when the bending angle ⁇ of the first bent pipe portion 40b of the first path pipe 4 is less than 90 degrees in the heat exchanger 1 according to the first embodiment.
  • FIG. 11 shows another example of the structure of the piping 4.
  • the first path pipe 4 in FIG. 11 is configured such that the first straight pipe portion 40a and the second straight pipe portion 40c are parallel to each other, and corresponds to the structure of FIG.
  • pass piping 4 by the thermal strain is shown by the black block arrow.
  • thermal strain is generated due to thermal expansion, and thermal stress is generated in the direction of the central axis of the first header pipe 3 due to thermal strain.
  • thermal distortion occurs due to thermal expansion of the third straight pipe portion 40e, and the third straight pipe portion 40e is caused by thermal distortion. Thermal stress is generated in the direction of the central axis.
  • the direction of the central axis of the third straight pipe part 40e is the first header pipe.
  • the direction is different from the direction of the central axis 3. 10 and 11, the thermal stress in the direction of the central axis of the first header pipe 3 in the pipe connection portion 10 is smaller than that when the bending angle ⁇ of the first bent pipe portion 40b is 90 degrees. Therefore, by setting the bending angle ⁇ of the first bent pipe portion 40b to less than 90 degrees, the thermal stress in the pipe connection portion 10 is reduced, and the possibility of occurrence of cracks or breakage due to thermal fatigue in the pipe connection portion 10 is reduced. Therefore, the reliability of the heat exchanger 1 can be maintained.
  • FIG. 12 is a refrigerant circuit diagram schematically showing an example of the refrigeration cycle apparatus 100 according to the first embodiment.
  • the refrigeration cycle apparatus 100 includes a refrigeration cycle circuit 160 in which a compressor 110, a condenser 120, a decompression device 130, and an evaporator 140 are connected by a refrigerant pipe 150, and the refrigerant circulates in the refrigerant pipe 150.
  • Compressor 110 is a fluid machine that compresses sucked low-pressure refrigerant and discharges it as high-pressure refrigerant.
  • the compressor 110 is configured as, for example, a reciprocating compressor, a rotary compressor, a scroll compressor, or the like.
  • the compressor 110 may be configured as a vertical compressor or a horizontal compressor.
  • the condenser 120 is configured as the heat exchanger 1 that is an air-cooled heat exchanger that performs heat exchange between the high-temperature and high-pressure gas refrigerant flowing inside the condenser 120 and the low-temperature air passing through the condenser 120.
  • the In the refrigeration cycle apparatus 100, the condenser 120 may be referred to as a “heat radiator”.
  • the decompression device 130 is an actuator that expands and decompresses the high-pressure liquid refrigerant.
  • the decompression device 130 can be configured, for example, as an expansion valve such as an expansion valve such as a linear electronic expansion valve whose opening degree can be adjusted in multiple stages or continuously, or a mechanical expansion valve.
  • the linear electronic expansion valve may be abbreviated as “LEV”.
  • the evaporator 140 is configured to exchange heat between a low-temperature and low-pressure two-phase refrigerant that flows inside the evaporator 140 and a high-temperature medium that passes through the evaporator 140.
  • the evaporator 140 can be configured as an air-cooled heat exchanger that performs heat exchange between a low-temperature and low-pressure two-phase refrigerant that flows inside the evaporator 140 and high-temperature air that passes through the evaporator 140.
  • the evaporator 140 can also be configured as a water-cooled heat exchanger that exchanges heat between the low-temperature and low-pressure two-phase refrigerant that flows through the evaporator 140 and the water or brine that flows through the evaporator 140.
  • the evaporator 140 can be configured as a cross-fin type fin-and-tube heat exchanger such as the heat exchanger 1 and is configured as a water-cooled heat exchanger. In this case, for example, it can be configured as a plate heat exchanger or a double tube heat exchanger. In the refrigeration cycle apparatus 100, the evaporator 140 may be referred to as a “cooler”.
  • FIG. 12 the flow direction of the refrigerant is indicated by arrows.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 110 flows into the condenser 120.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the condenser 120 is heat-exchanged by releasing heat to the low-temperature medium in the condenser 120 to become a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant flows into the decompression device 130.
  • the high-pressure liquid refrigerant flowing into the decompression device 130 is expanded and decompressed to become a low-temperature and low-pressure two-phase refrigerant.
  • the low-temperature and low-pressure two-phase refrigerant flows into the evaporator 140, absorbs heat from the high-temperature medium in the evaporator 140, and evaporates to become a two-phase refrigerant having a high dryness or a low-temperature and low-pressure gas refrigerant.
  • the two-phase refrigerant having a high degree of dryness or the low-temperature and low-pressure gas refrigerant that has flowed out of the evaporator 140 is sucked into the compressor 110.
  • the refrigerant sucked into the compressor 110 is compressed to become a high-temperature and high-pressure gas refrigerant and discharged from the compressor 110. In the refrigeration cycle apparatus 100, the above cycle is repeated.
  • the condenser 120 when the cooling operation for supplying cold heat to the user is performed, the condenser 120 is configured as a heat source side heat exchanger, and the evaporator 140 is configured as a load side heat exchanger.
  • the condenser 120 when a heating operation for supplying warm heat to the user is performed, the condenser 120 is configured as a load side heat exchanger, and the evaporator 140 is configured as a heat source side heat exchanger.
  • the load side heat exchanger may be referred to as a “use side heat exchanger”.
  • the refrigeration cycle apparatus 100 when configured as an air conditioner, for example, a refrigerant flow switching device such as a four-way valve is disposed in the refrigeration cycle circuit 160, and the cooling operation and the heating operation are performed. It can be configured as a switchable air conditioner. Further, the refrigeration cycle apparatus 100 can be configured such that an accumulator is disposed in the refrigerant pipe 150 that connects the evaporator 140 and the compressor 110 to separate the liquid phase component from the refrigerant that has flowed out of the evaporator 140.
  • a refrigerant flow switching device such as a four-way valve
  • the refrigeration cycle apparatus 100 can be configured such that an accumulator is disposed in the refrigerant pipe 150 that connects the evaporator 140 and the compressor 110 to separate the liquid phase component from the refrigerant that has flowed out of the evaporator 140.
  • a fan such as a propeller fan can be disposed in the refrigeration cycle apparatus 100, and air can be configured to be supplied to the evaporator 140 by rotational driving of the fan.
  • the refrigeration cycle apparatus 100 may include a liquid receiver, an oil separator, a supercooling heat exchanger, and the like in addition to the above-described components.
  • the refrigeration cycle apparatus 100 may have a configuration in which a plurality of condensers 120 or evaporators 140 are arranged in parallel with the refrigeration cycle circuit 160, or a configuration in which a plurality of decompression devices 130 are arranged in the refrigeration cycle circuit 160. Good.
  • the refrigeration cycle apparatus 100 can be configured to include a plurality of refrigeration cycle circuits 160.
  • FIG. 13 is a schematic diagram showing an internal structure of an outdoor condensing unit 200a of an indoor refrigeration apparatus which is an example of the refrigeration apparatus 200 according to Embodiment 1.
  • a white block arrow indicates the direction of air flow when the outdoor condensing unit 200a of the indoor refrigeration apparatus is driven.
  • an outdoor condensing unit 200 a of an indoor refrigeration apparatus has, for example, a V shape with two heat exchangers 1 configured as a condenser 120 inside a cubic housing 210 a with a gap therebetween. It can be made the structure arrange
  • one or more blower fans 220a such as a propeller fan are provided above the housing 210a can be employed.
  • the indoor air is attracted from the side surface of the casing 210a to the internal space of the casing 210a by the rotational drive of the blower fan 220a.
  • the air attracted to the internal space of the housing 210 a passes through the heat exchanger 1, and heat exchange is performed with the high-temperature and high-pressure gas refrigerant flowing inside the heat exchanger 1.
  • the air that has undergone heat exchange joins in the space between the two heat exchangers 1 and is exhausted from the top surface of the casing 210a to the outside air by the rotational drive of the blower fan 220a.
  • FIG. 14 is a schematic diagram showing an external structure of an outdoor refrigeration apparatus 200b which is an example of the refrigeration apparatus 200 according to the first embodiment.
  • the direction in which air flows when the outdoor refrigeration apparatus 200 b is driven is indicated by white block arrows.
  • the outdoor refrigeration apparatus 200 b can have a structure in which, for example, a heat exchanger 1 configured as a condenser 120 is disposed inside a cubic housing 210 b.
  • the heat exchanger 1 can be arranged on the inner surface side of the side surface portion of the housing 210 b provided with a plurality of rectangular openings 215.
  • a structure in which one or more blower fans 220b such as a propeller fan are provided above the housing 210b can be employed.
  • the heat exchanger 1 may be configured to be disposed on one side surface portion of the housing 210b or may be configured to be disposed on a plurality of side surface portions.
  • outdoor air is attracted from the side surface of the housing 210b to the internal space of the housing 210b through the opening 215 of the housing 210b by the rotational drive of the blower fan 220b.
  • the air attracted to the internal space of the casing 210 b passes through the heat exchanger 1, and heat exchange is performed with the high-temperature and high-pressure gas refrigerant flowing inside the heat exchanger 1.
  • the air subjected to the heat exchange is exhausted from the upper part of the casing 210b to the outside air by the rotational drive of the blower fan 220b.
  • the heat exchanger 1 includes the plurality of plate-like fins 20 arranged in parallel at intervals and the plurality of heat transfer tubes 25 intersecting with the plurality of plate-like fins 20.
  • a heat exchange part 2 having a first header pipe 3 that is a header pipe that supplies a refrigerant to the heat exchange part 2, and a path pipe connected between the heat exchange part 2 and the first header pipe 3.
  • a plurality of first path pipes 4, and one or more first path pipes 4 out of the plurality of first path pipes 4 extend in a direction away from the first header pipe 3.
  • a first bent pipe part 40b extending from the first straight pipe part 40a, a second straight pipe part 40c extending in a direction away from the pipe connection part 10 with the heat exchange part 2, and a second straight pipe part 40d extending from the second bent tube portion 40d and the first bent tube portion 40b and the second bent tube portion 40d. That third has a straight pipe portion 40e, the bending angle ⁇ of the first bent tube portion 40b is less than 90 degrees.
  • the refrigeration cycle apparatus 100 includes the heat exchanger 1 described above.
  • the direction of the central axis of the third straight pipe portion 40e is The direction can be different from the direction of the central axis of the one header pipe 3. Therefore, the thermal stress in the direction of the central axis of the first header pipe 3 in the pipe connection part 10 is smaller than when the bending angle ⁇ of the first bent pipe part 40b is 90 degrees. From the above, by making the bending angle ⁇ of the first bent pipe part 40b less than 90 degrees, the thermal stress in the pipe connection part 10 can be reduced, and cracks or breakage due to thermal fatigue can occur in the pipe connection part 10. Therefore, the reliability of the heat exchanger 1 with respect to thermal stress can be maintained.
  • FIG. A heat exchanger 1 according to Embodiment 2 of the present invention will be described.
  • the heat exchanger 1 according to the second embodiment is a modification in which the bending angle ⁇ of the first bent pipe portion 40b is optimized in the heat exchanger 1 according to the first embodiment.
  • the structure of the heat exchanger 1 excluding the bending angle ⁇ of the first bent tube portion 40b is the same as that of the heat exchanger 1 according to the above-described first embodiment, and thus the description thereof is omitted. To do.
  • the bending angle ⁇ of the first bent pipe portion 40b of the first path pipe 4 in order to optimize the bending angle ⁇ of the first bent pipe portion 40b of the first path pipe 4, the bending angle ⁇ of the first bent pipe section 40b of the first path pipe 4 and the pipe connection.
  • the relationship with the thermal stress in the part 10 was measured by thermal stress analysis.
  • the thermal stress analysis of the heat exchanger 1 was performed under natural convection conditions.
  • the temperature of the gas refrigerant was 98 ° C.
  • the temperature of the liquid refrigerant was 57 ° C.
  • the outside air temperature was set to ⁇ 15 ° C.
  • the heat transfer tube 25 was configured as a copper tube, the tube diameter was 19.05 mm, and the thickness was 1.0 mm.
  • pass piping 4 was comprised as a copper pipe, the pipe diameter was 7.94 mm, and thickness was 0.7 mm.
  • the heat transfer coefficient of the heat exchanger 1 was set to 5 W / m 2 ⁇ K.
  • FIG. 15 shows the first header pipe 3 and the first path pipe when the bending angle ⁇ of the first bent pipe portion 40b of the first path pipe 4 is 60 degrees in the heat exchanger 1 according to the second embodiment. It is a schematic side view which shows an example of the structure of 4.
  • FIG. FIG. 16 shows the first header pipe 3 and the first path pipe when the bending angle ⁇ of the first bent pipe portion 40b of the first path pipe 4 is 100 degrees in the heat exchanger 1 according to the second embodiment.
  • FIG. 15 shows the first header pipe 3 and the first path pipe when the bending angle ⁇ of the first bent pipe portion 40b of the first path pipe 4 is 60 degrees in the heat exchanger 1 according to the second embodiment.
  • FIG. 16 shows the first header pipe 3 and the first path pipe when the
  • FIGS. 15 and 16 show an example of the structure of the first path pipe 4 when the bending angle ⁇ of the first bent pipe portion 40b of the first path pipe 4 is an obtuse angle.
  • the heat exchanger 1 in the pipe connection part 10 is changed by changing the parameter of the bending angle ⁇ of the first bent pipe part 40 b of the first path pipe 4. Thermal stress analysis was performed.
  • FIG. 17 is a graph showing the relationship between the bending angle ⁇ of the first bent pipe portion 40b of the first path pipe 4 and the thermal stress in the pipe connecting section 10 in the heat exchanger 1 according to the second embodiment. .
  • the horizontal axis of the graph of FIG. 17 is the bending angle ⁇ of the first bent pipe portion 40b of the first path pipe 4.
  • the vertical axis of the graph of FIG. 17 is a standard value of thermal stress normalized by setting the allowable limit value of thermal stress in the pipe connection part 10 as 100%.
  • a horizontal line indicating that the standard value of thermal stress is 100% is indicated by a dotted line.
  • FIG. 18 shows the first bent pipe part of the first path pipe 4 when the bent angle ⁇ of the first bent pipe part 40b of the first path pipe 4 is an acute angle in the heat exchanger 1 according to the second embodiment. It is a schematic side view which shows an example of the structure of 40b. As shown in FIG. 18, the thermal stress in the first bent tube portion 40b was measured at the tip C of the first bent tube portion 40b. The conditions for the thermal stress analysis of the heat exchanger 1 were the same as those for the thermal stress analysis for the thermal stress in the pipe connection part 10 described above.
  • FIG. 19 is a graph showing the relationship between the bending angle ⁇ of the first bent pipe portion 40b of the first path pipe 4 and the thermal stress in the first bent pipe portion 40b in the heat exchanger 1 according to the second embodiment. It is.
  • the horizontal axis of the graph of FIG. 17 is the bending angle ⁇ of the first bent pipe portion 40b of the first path pipe 4.
  • the vertical axis of the graph of FIG. 19 is a standard value of thermal stress normalized by setting the allowable limit value of thermal stress in the first bent pipe portion 40b as 100%.
  • the standard value of the thermal stress in the first bent pipe portion 40b is less than 50%. Therefore, there is little possibility that a crack or breakage due to thermal fatigue occurs in the first bent pipe portion 40b.
  • the bending angle ⁇ of the first bent pipe portion 40b of the first path pipe 4 is smaller than 85 degrees, cracks or breakage due to thermal fatigue can occur in both the pipe connecting portion 10 and the first bent pipe portion 40b. Is reduced.
  • FIG. 20 shows the first bent pipe part of the first path pipe 4 when the bent angle ⁇ of the first bent pipe part 40b of the first path pipe 4 is an acute angle in the heat exchanger 1 according to the second embodiment. It is a schematic side view which shows another example of the structure of 40b.
  • the structure of the first path pipe 4 in FIG. 20 is the same as that in FIG. 18 except that the tip portion C of the first bent pipe portion 40b is not shown.
  • the heat transfer tube 25 is configured as a copper tube, the tube diameter is 19.05 mm, and the thickness is 1.0 mm.
  • pass piping 4 was comprised as a copper pipe, the pipe diameter was 7.94 mm, and thickness was 0.7 mm.
  • FIG. 21 is a graph showing the relationship between the bending angle ⁇ of the first bent pipe portion 40b of the first path pipe 4 and the resonance frequency of the first path pipe 4 in the heat exchanger 1 according to the second embodiment. is there.
  • the horizontal axis of the graph of FIG. 21 is the bending angle ⁇ of the first bent pipe portion 40b of the first path pipe 4.
  • the vertical axis of the graph of FIG. 21 is the resonance frequency of the first path pipe 4 and its unit is Hertz.
  • the region of the bending angle ⁇ of the first bent tube portion 40b where the resonance frequency is 100 Hz or less is indicated by hatching.
  • the resonance frequency of the first path pipe 4 is 100 Hz or less.
  • the first path pipe 4 resonates when the bending angle ⁇ of the first bent pipe portion 40b is 25 degrees or less. Cracking or breakage may occur.
  • the first pass pipe 4 4 is made by making the bending angle ⁇ of the first bent pipe portion 40b of the first pass pipe 4 larger than 25 degrees and smaller than 85 degrees. The possibility of occurrence of cracks or breakage due to thermal fatigue or resonance and thermal stress is reduced.
  • FIG. A heat exchanger 1 according to Embodiment 3 of the present invention will be described.
  • the heat exchanger 1 according to the third embodiment is a modification in which the bending angle ⁇ of the first bent pipe portion 40b is further optimized in the heat exchanger 1 according to the first and second embodiments. is there.
  • the structure of the heat exchanger 1 excluding the bending angle ⁇ of the first bent tube portion 40b is the same as that of the heat exchanger 1 according to the first and second embodiments described above. Therefore, the description is omitted.
  • the horizontal axis of the graph of FIG. 22 is the bending angle ⁇ of the first bent pipe portion 40b of the first path pipe 4.
  • the left vertical axis of the graph of FIG. 22 is a standard value of thermal stress normalized by setting the allowable limit value of thermal stress in the pipe connection portion 10 as 100%.
  • the vertical axis on the right side of the graph of FIG. 22 shows the material cost of the first path pipe 4 normalized by setting the material cost of the first path pipe 4 to 100% when the bending angle ⁇ of the first bent pipe portion 40b is 90 degrees. The standard value.
  • a curve indicating the relationship between the bending angle ⁇ of the first bent pipe portion 40b of the first path pipe 4 and the thermal stress in the pipe connecting portion 10 is indicated by a solid line.
  • the curve which shows the relationship between bending angle (theta) of the 1st bending pipe part 40b of the 1st path piping 4, and material cost is shown with the broken line.
  • the optimum range of the bending angle ⁇ , the standard value of thermal stress, and the standard value of material cost is indicated by hatching.
  • a horizontal line indicating that the standard value of thermal stress is 100% is indicated by a dotted line.
  • the thermal stress generated in the pipe connecting portion 10 is reduced, but the first path pipe 4 becomes longer.
  • the increase in material cost of the 1-pass piping 4 is 50% or more.
  • the first bent pipe part 40b is bent.
  • the optimum value of the angle ⁇ is in a range larger than 28 degrees and smaller than 80 degrees.
  • the first pass pipe 4 4 is made by making the bending angle ⁇ of the first bent pipe portion 40b of the first pass pipe 4 larger than 60 degrees and smaller than 80 degrees.
  • the possibility of occurrence of cracks or breakage due to thermal fatigue or resonance in the case can be reduced.
  • pass piping 4 can be suppressed to less than 50%. Therefore, in the heat exchanger 1 which concerns on this Embodiment 3, while suppressing the material cost increase of the 1st path piping 4, further suppressing the generation
  • the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.
  • the refrigeration apparatus 200 is taken as an example of the refrigeration cycle apparatus 100.
  • the present invention is also applicable to refrigeration cycle apparatuses 100 other than the refrigeration apparatus 200, such as an air conditioner.
  • the plate-like fin 20 may be provided with a heat transfer promoting portion in which peaks and valleys are alternately arranged, and is configured to promote heat transfer in the plate-like fin 20. May be. Moreover, you may comprise the heat exchanger tube 25 as a flat tube.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

 熱交換器は、間隔を置いて並列に配置された複数の板状フィンと、複数の板状フィンと交差する複数の伝熱管とを有する熱交換部と、熱交換部に冷媒を供給するヘッダ配管と、熱交換部とヘッダ配管との間に接続された複数のパス配管とを備え、複数のパス配管のうち、1つ以上のパス配管は、ヘッダ配管から離れる方向に延在する第1直管部と、第1直管部から延在する第1屈曲管部と、熱交換部との配管接続部から離れる方向に延在する第2直管部と、第2直管部から延在する第2屈曲管部と、第1屈曲管部と第2屈曲管部との間を延在する第3直管部とを有しており、第1屈曲管部の屈曲角は90度未満である。また、冷凍サイクル装置は、上述の熱交換器を備える。

Description

熱交換器及び冷凍サイクル装置
 本発明は、フィンアンドチューブ型の熱交換器、及び当該熱交換器を備える冷凍サイクル装置に関する。
 従来のフィンアンドチューブ型の熱交換器としては、例えば特許文献1には、熱交換フィンと、熱交換フィンの周囲を囲む筒状の壁体と、熱交換フィンと筒状の壁体とを貫通して配置される通水管とを備える熱交換器が開示されている。特許文献1の熱交換器は、筒状の壁体と導水管との温度差により導水管に熱歪みが発生する。特許文献1の熱交換器では、通水管の熱歪みによる熱応力を低減するために、溝状の緩衝部が筒状の壁体に形成されている。
特開平7-218177号公報
 しかしながら、特許文献1のフィンアンドチューブ型の熱交換器では、例えば、導水管の一部が屈曲し、導水管の一部が溝状の緩衝部と同一方向に延在している場合には、緩衝部によって熱応力が低減できない。したがって、特許文献1のフィンアンドチューブ型の熱交換器では、導水管の形状によっては熱応力が低減できない場合があるという課題が存在する。
 また、従来のフィンアンドチューブ型の熱交換器には、ヘッダ管から延在するパス配管を通じて複数の伝熱管に熱交換媒体が供給されるように構成されたものがある。このようなフィンアンドチューブ型の熱交換器では、ヘッダ管から延在するパス配管は、パス配管の途中部分が直角に屈曲され、パス配管の一部がヘッダ管の長手方向と同一方向に延在している場合がある。パス配管の一部がヘッダ管の長手方向と同一方向に延在している場合、パス配管と伝熱管の連結部分にヘッダ管及びパス配管の熱歪みによる大きな熱応力が生じる場合がある。したがって、従来のフィンアンドチューブ型の熱交換器では、パス配管と伝熱管の連結部分に生じる熱応力のために、熱応力に対する熱交換器の信頼性を確保できない場合があるという課題があった。
 本発明は、上述の課題を解決するためになされたものであり、熱交換器の配管の一部が屈曲している場合であっても熱応力を低減でき、熱応力に対する信頼性を確保することが可能な熱交換器及び冷凍サイクル装置を提供することを目的とする。
 本発明に係る熱交換器は、間隔を置いて並列に配置された複数の板状フィンと、前記複数の板状フィンと交差する複数の伝熱管とを有する熱交換部と、前記熱交換部に冷媒を供給するヘッダ配管と、前記熱交換部と前記ヘッダ配管との間に接続された複数のパス配管とを備え、前記複数のパス配管のうち、1つ以上のパス配管は、前記ヘッダ配管から離れる方向に延在する第1直管部と、前記第1直管部から延在する第1屈曲管部と、前記熱交換部との配管接続部から離れる方向に延在する第2直管部と、前記第2直管部から延在する第2屈曲管部と、前記第1屈曲管部と前記第2屈曲管部との間を延在する第3直管部とを有しており、前記第1屈曲管部の屈曲角は90度未満である。
 また、本発明に係る冷凍サイクル装置は、上述の熱交換器を備える。
 本発明によれば、第1屈曲管部の屈曲角を90度未満とすることにより、配管接続部における熱応力を小さくし、配管接続部で熱疲労による亀裂又は折損が発生する可能性を低減できる。したがって、本発明によれば、熱応力に対する信頼性を確保することが可能な熱交換器及び冷凍サイクル装置を提供することができる。
本発明の実施の形態1に係る熱交換器1の構造の一部を概略的に示した斜面図である。 本発明の実施の形態1に係る熱交換器1における熱交換部2と第1パス配管4との配管接続の一例を示す概略図である。 本発明の実施の形態1に係る熱交換器1の第1ヘッダ配管3及び第2ヘッダ配管5の一方の末端側における、第1パス配管4及び第2パス配管6の構造の一例を示す概略図である。 本発明の実施の形態1に係る熱交換器1の第1ヘッダ配管3及び第2ヘッダ配管5の他方の末端側における、第1パス配管4及び第2パス配管6の構造の一例を示す概略図である。 本発明の実施の形態1に係る熱交換器1の第1ヘッダ配管3及び第2ヘッダ配管5の他方の末端側における、第1パス配管4及び第2パス配管6の構造の別の一例を示す概略図である。 本発明の実施の形態1に係る熱交換器1において、第1パス配管4の第1屈曲管部40bの屈曲角θが90度である場合の第1ヘッダ配管3及び第1パス配管4の構造の一例を示す概略的な側面図である。 図6の熱交換器1を下側から見た概略図である。 図6の熱交換器1において、第1ヘッダ配管3に高温高圧のガス冷媒が流入した場合の第1ヘッダ配管3及び第1パス配管4の熱歪みを概略的に示す側面図である。 図8の熱交換器1を下側から見た概略図である。 本発明の実施の形態1に係る熱交換器1において、第1パス配管4の第1屈曲管部40bの屈曲角θが90度未満である場合の第1ヘッダ配管3及び第1パス配管4の構造の一例を示す概略的な側面図である。 本発明の実施の形態1に係る熱交換器1において、第1パス配管4の第1屈曲管部40bの屈曲角θが90度未満である場合の第1ヘッダ配管3及び第1パス配管4の構造の別の一例を示す概略的な側面図である。 本発明の実施の形態1に係る冷凍サイクル装置100の一例を概略的に示す冷媒回路図である。 本発明の実施の形態1に係る冷凍装置200の一例である屋内型冷凍装置の屋外凝縮ユニット200aの内部構造を示す概略図である。 本発明の実施の形態1に係る冷凍装置200の一例である屋外型冷凍装置200bの外観構造を示す概略図である。 本発明の実施の形態2に係る熱交換器1において、第1パス配管4の第1屈曲管部40bの屈曲角θが60度である場合の第1ヘッダ配管3及び第1パス配管4の構造の一例を示す概略的な側面図である。 本発明の実施の形態2に係る熱交換器1において、第1パス配管4の第1屈曲管部40bの屈曲角θが100度である場合の第1ヘッダ配管3及び第1パス配管4の構造の一例を示す概略的な側面図である。 本発明の実施の形態2に係る熱交換器1における、第1パス配管4の第1屈曲管部40bの屈曲角θと配管接続部10における熱応力との関係を示したグラフである。 本発明の実施の形態2に係る熱交換器1において、第1パス配管4の第1屈曲管部40bの屈曲角θが鋭角である場合の第1パス配管4の第1屈曲管部40bの構造の一例を示す概略的な側面図である。 本発明の実施の形態2に係る熱交換器1における、第1パス配管4の第1屈曲管部40bの屈曲角θと第1屈曲管部40bにおける熱応力との関係を示したグラフである。 本発明の実施の形態2に係る熱交換器1において、第1パス配管4の第1屈曲管部40bの屈曲角θが鋭角である場合の第1パス配管4の第1屈曲管部40bの構造の別の一例を示す概略的な側面図である。 本発明の実施の形態2に係る熱交換器1における、第1パス配管4の第1屈曲管部40bの屈曲角θと第1パス配管4の共振周波数との関係を示したグラフである。 本発明の実施の形態3に係る熱交換器1における、第1パス配管4の第1屈曲管部40bの屈曲角θと配管接続部10における熱応力及び第1パス配管4の材料費との関係を示したグラフである。
実施の形態1.
 本発明の実施の形態1に係る熱交換器1の構造について説明する。図1は、本実施の形態1に係る熱交換器1の構造の一部を概略的に示した斜面図である。図1においては、熱交換器1の上端部の一部は、矩形の点線で囲まれて領域Aとして示されている。また、熱交換器1の下端部の一部は、矩形の点線で囲まれて領域Bとして示されている。
 なお、図1を含む以下の図面では、各構成部材の寸法の関係及び形状は、実際のものとは異なる場合がある。また、以下の図面では、同一の又は類似する部材又は部分には、同一の符号を付すか、又は符号を付すことを省略している。また、各構成部材同士の、例えば上下関係等の位置関係は、原則として、熱交換器1を使用可能な状態に設置したときのものである。
 熱交換器1は、フィンアンドチューブ型の空冷式熱交換器として構成されている。図1に示すように、熱交換器1は、内部を通過する空気との間で熱交換が行われる領域を構成する熱交換部2を備えている。空気の通過方向から見た熱交換部2の一辺側には、第1ヘッダ配管3及び第2ヘッダ配管5が配置されている。図1では、第1ヘッダ配管3及び第2ヘッダ配管5は、熱交換器1の左側に配置されている。また、熱交換部2と第1ヘッダ配管3の間、及び熱交換部2と第2ヘッダ配管5との間には、複数のパンチ穴7aを有する側板7が配置されている。
 熱交換部2と第1ヘッダ配管3との間には、複数の第1パス配管4が配管接続されている。また、熱交換部2と第2ヘッダ配管5との間には、複数の第2パス配管6が配管接続されている。
 次に、第1パス配管4の熱交換部2との配管接続構造について、図2を用いて説明する。
 図2は、本実施の形態1に係る熱交換器1における熱交換部2と第1パス配管4との配管接続の一例を示す概略図である。図2に示すように、熱交換部2は、側板7と間隔を置いて並列に配置される複数の板状フィン20と、複数の板状フィン20と交差する複数の伝熱管25とを備えている。熱交換部2において、複数の板状フィン20は互いに間隔を置いて配置されており、隣接する板状フィン20の間を流動する空気と、複数の伝熱管25の内部を流れる熱交換媒体、例えば冷媒との間で熱交換が行われる。また、図示しないが、伝熱管25は、例えばヘアピン形状に折り曲げたU字形状のベント管として構成できる。
 第1パス配管4の末端部4aは、側板7のパンチ穴7aから突出して配置された伝熱管25の一方の末端部25aに配管接続されている。以降の説明においては、伝熱管25の末端部25aと側板7のパンチ穴7aとの配管接続部分を配管接続部10と称する。
 なお、図示しないが、第2パス配管6の末端部は、第1パス配管4の末端部4aと同様に、側板7のパンチ穴7aから突出して配置された伝熱管25の他方の末端部に配管接続されている。
 次に、第1ヘッダ配管3及び第2ヘッダ配管5の両端側における第1パス配管4及び第2パス配管6の構造を図3~図5を用いて説明する。
 図3は、本実施の形態1に係る熱交換器1の第1ヘッダ配管3及び第2ヘッダ配管5の一方の末端側における、第1パス配管4及び第2パス配管6の構造の一例を示す概略図である。図4は、本実施の形態1に係る熱交換器1の第1ヘッダ配管3及び第2ヘッダ配管5の他方の末端側における、第1パス配管4及び第2パス配管6の構造の一例を示す概略図である。図5は、本実施の形態1に係る熱交換器1の第1ヘッダ配管3及び第2ヘッダ配管5の他方の末端側における、第1パス配管4及び第2パス配管6の構造の別の一例を示す概略図である。
 なお、図3は、図1の領域A、すなわち第1ヘッダ配管3及び第2ヘッダ配管5の上端側における第1パス配管4及び第2パス配管6の構造の一例を示すものである。また、図4は、図1の領域B、すなわち第1ヘッダ配管3及び第2ヘッダ配管5の下端側における第1パス配管4及び第2パス配管6の構造の一例をそれぞれ示すものである。また、図5は、図1の領域Bにおける第1パス配管4の変形例、すなわち、図4の変形例を示すものである。
 図3~図5に示すように、第1ヘッダ配管3の両端側に配管接続される複数の第1パス配管4には、第1直管部40aと、第1屈曲管部40bと、第2直管部40cと、第2屈曲管部40dと、第3直管部40eとを有するものがある。すなわち、図3~図5の熱交換器1は、湾曲した管構造を有する1以上の第1パス配管4を備えている。
 第1パス配管4において、第1直管部40aは、第1ヘッダ配管3から離れる方向に延在している。また、第1パス配管4において、第1屈曲管部40bは第1直管部40aから延在している。また、第1パス配管4において、第2直管部40cは、配管接続部10で接続され、熱交換部2から離れる方向に延在している。また、第1パス配管4において、第2屈曲管部40dは、第2直管部40cから延在している。また、第1パス配管4において、第3直管部40eは、第1屈曲管部40bと第2屈曲管部40dとの間を延在している。なお、第1直管部40a、第1屈曲管部40b、第2直管部40c、第2屈曲管部40d、及び第3直管部40eは、一体化して構成しても良いし、別個の冷媒配管として配管接続して構成しても良い。
 図3においては、第1ヘッダ配管3の上端側において、第1パス配管4は、第1直管部40a及び第2直管部40cが、互いにねじれの位置関係となるように構成されている。また、図4においては、第1ヘッダ配管3の下端側において、第1パス配管4は、第1直管部40a及び第2直管部40cが、互いにねじれの位置関係となるように構成されている。また、図5においては、第1ヘッダ配管3の下端側において、第1パス配管4は、第1直管部40a及び第2直管部40cが、互いに平行となるように構成されている。
 熱交換器1が凝縮器として機能し、第1ヘッダ配管3に高温高圧のガス冷媒が流入した場合、第1ヘッダ配管3の配管温度は例えば100℃前後、例えば98℃~102℃の高温になる場合がある。例えば、熱交換部2の板状フィン20の間を流動する外気温度が-15℃という低温度環境下においては、配管温度と外気温度との温度差により、第1ヘッダ配管3及び第1パス配管4に、熱膨張による熱歪みが生じることとなる。
 次に、第1ヘッダ配管3に冷媒温度98℃のガス冷媒が流入し、外気温度が-15℃の場合の第1ヘッダ配管3及び第1パス配管4に生じる熱歪みについて説明する。
 図6は、本実施の形態1に係る熱交換器1において、第1パス配管4の第1屈曲管部40bの屈曲角θが90度である場合の第1ヘッダ配管3及び第1パス配管4の構造の一例を示す概略的な側面図である。図7は、図6の熱交換器1を下側から見た概略図である。図6及び図7は、図4に示した第1ヘッダ配管3及び第1パス配管4の構造に対応するものである。
 また、図8は、図6の熱交換器1において、第1ヘッダ配管3に高温高圧のガス冷媒が流入した場合の第1ヘッダ配管3及び第1パス配管4の熱歪みを概略的に示す側面図である。図9は、図8の熱交換器1を下側から見た概略図である。
 図8及び図9においては、配管接続部10に対応する構造が、円形の点線に囲まれて示されている。また、図8及び図9においては、熱歪み後の第1ヘッダ配管3及び第1パス配管4の形状が実線で図示されている。また、図8においては、熱歪みにより第1ヘッダ配管3及び第1パス配管4に生じる熱応力の方向が白色のブロック矢印で示されている。
 なお、図8及び図9においては、熱歪み前の第1ヘッダ配管3及び第1パス配管4の形状は破線で図示されている。図8において破線で図示された第1ヘッダ配管3及び第1パス配管4の形状は、図6の第1ヘッダ配管3及び第1パス配管4の形状と同一である。また、図9において破線で図示された第1ヘッダ配管3及び第1パス配管4の形状は、図7の第1ヘッダ配管3及び第1パス配管4の形状と同一である。
 図8の白色のブロック矢印に示すように、第1ヘッダ配管3においては、熱膨張によって熱歪みが生じ、熱歪みによって第1ヘッダ配管3の中心軸の方向に熱応力が発生する。
 また、第1パス配管4においても、第1パス配管4の熱膨張によって熱歪みが生じ、熱歪みによって熱応力が発生する。特に、図8の白色のブロック矢印に示すように、第1パス配管4においては、第3直管部40eの熱膨張により熱歪みが生じ、熱歪みによって第1ヘッダ配管3の熱応力方向と同一方向に熱応力が発生する。したがって、配管接続部10においては、第1ヘッダ配管3に発生する熱応力と第1パス配管4に発生する熱応力との合力が発生するため、配管接続部10における熱応力は大きくなる。配管接続部10における熱応力が大きくなると、配管接続部10に熱疲労による亀裂又は折損が発生する可能性があるため、熱交換器1の信頼性が維持できない可能性がある。
 なお、図9に示すように、第1パス配管4においては、第1直管部40a及び第2直管部40cの熱膨張によって熱歪みが生じ、熱歪みによって配管接続部10に熱応力が発生する。例えば、第1直管部40aの熱歪みによって、配管接続部10には第1直管部40aの中心軸の方向、すなわち、側板7の面に平行かつ第1パス配管4から離れる方向に熱応力が発生する。また、第2直管部40cの熱歪みによって、配管接続部10では第2直管部40cの中心軸の方向、すなわち、側板7の面に垂直かつ側板7の面に向かう方向に熱応力が発生する。しかしながら、第1直管部40a及び第2直管部40cの熱歪みにより配管接続部10に発生する熱応力は、第1ヘッダ配管3に発生する熱応力とは同一方向とならない。したがって、配管接続部10において、第1直管部40a及び第2直管部40cの熱歪みにより発生する熱応力は、第1ヘッダ配管3に発生する熱応力と第1パス配管4に発生する熱応力との合力よりは小さくなる。
 なお、第1直管部40a及び第2直管部40cの中心軸方向の長さを小さくすることにより、第1直管部40a及び第2直管部40cで発生する熱応力を小さくすることができる。
 図10は、本実施の形態1に係る熱交換器1において、第1パス配管4の第1屈曲管部40bの屈曲角θが90度未満である場合の第1ヘッダ配管3及び第1パス配管4の構造の一例を示す概略的な側面図である。図10における第1パス配管4は、第1直管部40a及び第2直管部40cが、互いにねじれの位置関係となるように構成されており、図4の構造に対応している。また、図10においては、熱歪みにより第1ヘッダ配管3及び第1パス配管4に生じる熱応力の方向が黒色のブロック矢印で示されている。なお、図10においては、第2直管部40cに対応する構成が図示されないため、第2直管部40cが配置される位置を矢印にて示している。
 図11は、本実施の形態1に係る熱交換器1において、第1パス配管4の第1屈曲管部40bの屈曲角θが90度未満である場合の第1ヘッダ配管3及び第1パス配管4の構造の別の一例を示す概略的な側面図である。図11における第1パス配管4は、第1直管部40a及び第2直管部40cが、互いに平行となるように構成されており、図5の構造に対応している。また、図11においては、熱歪みにより第1ヘッダ配管3及び第1パス配管4に生じる熱応力の方向が黒色のブロック矢印で示されている。
 図10及び図11の黒色のブロック矢印に示すように、第1ヘッダ配管3においては、熱膨張によって熱歪みが生じ、熱歪みによって第1ヘッダ配管3の中心軸の方向に熱応力が発生する。また、図10及び図11の黒色のブロック矢印に示すように、第1パス配管4においても、第3直管部40eの熱膨張により熱歪みが生じ、熱歪みによって第3直管部40eの中心軸の方向に熱応力が発生する。
 しかしながら、図10及び図11において、第1パス配管4の第1屈曲管部40bの屈曲角θを90度未満とした場合、第3直管部40eの中心軸の方向は、第1ヘッダ配管3の中心軸の方向と異なる方向となる。図10及び図11においては、配管接続部10における第1ヘッダ配管3の中心軸の方向の熱応力は、第1屈曲管部40bの屈曲角θを90度とした場合よりも小さくなる。したがって、第1屈曲管部40bの屈曲角θを90度未満とすることにより、配管接続部10における熱応力を小さくし、配管接続部10で熱疲労による亀裂又は折損が発生する可能性が低減できるため、熱交換器1の信頼性を維持することができる。
 次に、本実施の形態1に係る熱交換器1を用いた冷凍サイクル装置100について説明する。
 図12は、本実施の形態1に係る冷凍サイクル装置100の一例を概略的に示す冷媒回路図である。冷凍サイクル装置100は、圧縮機110、凝縮器120、減圧装置130、及び蒸発器140が冷媒配管150で接続され、冷媒配管150の内部を冷媒が循環する冷凍サイクル回路160を備えている。
 圧縮機110は、吸入した低圧冷媒を圧縮し、高圧冷媒として吐出する流体機械である。圧縮機110は、例えばレシプロ圧縮機、ロータリ圧縮機、スクロール圧縮機等として構成される。また、圧縮機110は、縦置型圧縮機として構成しても、横置型圧縮機として構成してもよい。
 凝縮器120は、凝縮器120の内部を流れる高温高圧のガス冷媒と、凝縮器120を通過する低温の空気との間で熱交換を行う空冷式熱交換器である熱交換器1として構成される。なお、冷凍サイクル装置100においては、凝縮器120は「放熱器」と称される場合がある。
 減圧装置130は、高圧液冷媒を膨張及び減圧させるアクチュエータである。減圧装置130は、例えば、多段階又は連続的に開度を調節可能なリニア電子膨張弁等の膨張弁、又は機械式膨張弁である膨張機として構成できる。なお、冷凍サイクル装置100においては、リニア電子膨張弁は「LEV」と略称される場合がある。
 蒸発器140は、蒸発器140の内部を流れる低温低圧の二相冷媒と、蒸発器140を通過する高温の媒体との間で熱交換を行うように構成される。例えば、蒸発器140は、蒸発器140の内部を流れる低温低圧の二相冷媒と、蒸発器140を通過する高温の空気との間で熱交換を行う空冷式熱交換器として構成できる。また、蒸発器140は、蒸発器140の内部を流れ低温低圧の二相冷媒と、蒸発器140の内部を流れる水又はブライン等との間で熱交換を行う水冷式熱交換器として構成できる。蒸発器140は、空冷式熱交換器として構成される場合は、例えば、熱交換器1のようなクロスフィン式のフィンアンドチューブ型熱交換器として構成でき、水冷式熱交換器として構成される場合は、例えば、プレート式熱交換器又は二重管熱交換器として構成できる。なお、冷凍サイクル装置100においては、蒸発器140は「冷却器」と称される場合がある。
 次に、冷凍サイクル装置100の動作について説明する。図12では、冷媒の流れる方向を矢印で示している。
 圧縮機110から吐出された高温高圧のガス冷媒は、凝縮器120へ流入する。凝縮器120に流入した高温高圧のガス冷媒は、凝縮器120において低温の媒体に熱を放出することによって熱交換され、高圧の液冷媒となる。高圧の液冷媒は、減圧装置130に流入する。減圧装置130に流入した高圧の液冷媒は、膨張及び減圧されて低温低圧の二相冷媒となる。低温低圧の二相冷媒は、蒸発器140に流入し、蒸発器140において高温の媒体から熱を吸収し、蒸発して乾き度の高い二相冷媒又は低温低圧のガス冷媒となる。蒸発器140から流出した乾き度の高い二相冷媒又は低温低圧のガス冷媒は圧縮機110に吸入される。圧縮機110に吸入された冷媒は圧縮されて高温高圧のガス冷媒となり圧縮機110から吐出される。冷凍サイクル装置100では以上のサイクルが繰り返される。
 なお、冷凍サイクル装置100において、利用者に対し冷熱を供給する冷房運転が行われる場合、凝縮器120は熱源側熱交換器として構成され、蒸発器140は負荷側熱交換器として構成される。一方、冷凍サイクル装置100において、利用者に対し温熱を供給する暖房運転が行われる場合、凝縮器120は負荷側熱交換器として構成され、蒸発器140は熱源側熱交換器として構成される。なお、冷凍サイクル装置100においては、負荷側熱交換器は「利用側熱交換器」と称される場合がある。
 また、図1では図示しないが、冷凍サイクル装置100を例えば空気調和機として構成する場合には、四方弁等の冷媒流路切替装置を冷凍サイクル回路160に配置し、冷房運転と暖房運転との切り替えが可能な空気調和機として構成できる。また、冷凍サイクル装置100では、蒸発器140と圧縮機110との間を連結する冷媒配管150にアキュムレータを配置し、蒸発器140から流出した冷媒から液相成分を分離するように構成できる。また、蒸発器140を空冷式熱交換器として構成する場合、冷凍サイクル装置100にプロペラファン等のファンを配置することができ、ファンの回転駆動により蒸発器140に空気を供給するように構成できる。また、冷凍サイクル装置100は、上述の構成要素の他に、受液器、油分離器、過冷却熱交換器等を備えていてもよい。
 また、冷凍サイクル装置100は、複数の凝縮器120又は蒸発器140を、冷凍サイクル回路160に並列に配置した構成としてもよいし、冷凍サイクル回路160に複数の減圧装置130を配置した構成としてもよい。また、冷凍サイクル装置100は、複数の冷凍サイクル回路160を有する構成にできる。
 次に、本実施の形態1に係る冷凍サイクル装置100の例として、冷凍装置200の構造について説明する。
 図13は、本実施の形態1に係る冷凍装置200の一例である屋内型冷凍装置の屋外凝縮ユニット200aの内部構造を示す概略図である。図13においては、屋内型冷凍装置の屋外凝縮ユニット200aの駆動時において空気の流れる方向が白色のブロック矢印で示されている。
 図13に示すように、屋内型冷凍装置の屋外凝縮ユニット200aは、例えば、立方体形状の筐体210aの内部に凝縮器120として構成される2つの熱交換器1を間隔を開けてV字形状に配置した構造にすることができる。また、筐体210aの上方に、プロペラファン等の送風ファン220aを1つ以上設けた構造にすることができる。
 屋内型冷凍装置の屋外凝縮ユニット200aでは、送風ファン220aの回転駆動により、室内空気が筐体210aの側面部から筐体210aの内部空間に誘引される。筐体210aの内部空間に誘引された空気は、熱交換器1を通過し、熱交換器1の内部を流れる高温高圧のガス冷媒との間で熱交換が行われる。熱交換が行われた空気は、2つの熱交換器1に挟まれた空間で合流し、送風ファン220aの回転駆動により、筐体210aの上面部から外気に排気される。
 図14は、本実施の形態1に係る冷凍装置200の一例である屋外型冷凍装置200bの外観構造を示す概略図である。図14においては、屋外型冷凍装置200bの駆動時において空気の流れる方向が白色のブロック矢印で示されている。
 図14に示すように、屋外型冷凍装置200bは、例えば、立方体形状の筐体210bの内部に凝縮器120として構成される熱交換器1を配置した構造にすることができる。熱交換器1は、例えば図14に示すように、複数の矩形状の開口部215を設けた筐体210bの側面部の内側面側に配置することができる。また、筐体210bの上方に、プロペラファン等の送風ファン220bを1つ以上設けた構造にすることができる。なお、熱交換器1は、筐体210bの1つの側面部に配置する構成としてもよいし、複数の側面部に配置する構成としてもよい。
 屋外型冷凍装置200bでは、送風ファン220bの回転駆動により、室外空気が筐体210bの側面部から筐体210bの開口部215を介して筐体210bの内部空間に誘引される。筐体210bの内部空間に誘引された空気は、熱交換器1を通過し、熱交換器1の内部を流れる高温高圧のガス冷媒との間で熱交換が行われる。熱交換が行われた空気は、送風ファン220bの回転駆動により、筐体210bの上部から外気に排気される。
 以上に説明したように、本実施の形態1の熱交換器1は、間隔を置いて並列に配置された複数の板状フィン20と、複数の板状フィン20と交差する複数の伝熱管25とを有する熱交換部2と、熱交換部2に冷媒を供給するヘッダ配管である第1ヘッダ配管3と、熱交換部2と第1ヘッダ配管3との間に接続されたパス配管である複数の第1パス配管4とを備え、複数の第1パス配管4のうち、1つ以上の第1パス配管4は、第1ヘッダ配管3から離れる方向に延在する第1直管部40aと、第1直管部40aから延在する第1屈曲管部40bと、熱交換部2との配管接続部10から離れる方向に延在する第2直管部40cと、第2直管部40cから延在する第2屈曲管部40dと、第1屈曲管部40bと第2屈曲管部40dとの間を延在する第3直管部40eとを有しており、第1屈曲管部40bの屈曲角θは90度未満である。
 また、本実施の形態1の冷凍サイクル装置100は、上述の熱交換器1を備える。
 本実施の形態1の構成によれば、第1パス配管4の第1屈曲管部40bの屈曲角θを90度未満とすることにより、第3直管部40eの中心軸の方向は、第1ヘッダ配管3の中心軸の方向と異なる方向にすることができる。よって、配管接続部10における第1ヘッダ配管3の中心軸の方向の熱応力は、第1屈曲管部40bの屈曲角θを90度とした場合よりも小さくなる。以上のことから、第1屈曲管部40bの屈曲角θを90度未満とすることにより、配管接続部10における熱応力を小さくし、配管接続部10で熱疲労による亀裂又は折損が発生する可能性が低減できるため、熱応力に対する熱交換器1の信頼性を維持することができる。
実施の形態2.
 本発明の実施の形態2に係る熱交換器1について説明する。本実施の形態2に係る熱交換器1は、上述の実施の形態1に係る熱交換器1において、第1屈曲管部40bの屈曲角θを最適化した変形例である。本実施の形態2において、第1屈曲管部40bの屈曲角θを除く熱交換器1の構造は、上述の実施の形態1に係る熱交換器1のものと同一であるため、説明を省略する。
 本実施の形態2においては、第1パス配管4の第1屈曲管部40bの屈曲角θを最適化するために、第1パス配管4の第1屈曲管部40bの屈曲角θと配管接続部10における熱応力との関係を熱応力解析によって実測した。
 熱交換器1の熱応力解析は自然対流条件下で行った。ガス冷媒の温度を98℃とし、液冷媒の温度を57℃とした。また、外気温度を-15℃とした。また、伝熱管25は銅管として構成し、管径を19.05mmとし、厚みを1.0mmとした。また、第1パス配管4は銅管として構成し、管径を7.94mmとし、厚みを0.7mmとした。また、熱交換器1の熱伝達係数は5W/m2・Kとなるようにした。
 図15は、本実施の形態2に係る熱交換器1において、第1パス配管4の第1屈曲管部40bの屈曲角θが60度である場合の第1ヘッダ配管3及び第1パス配管4の構造の一例を示す概略的な側面図である。図16は、本実施の形態2に係る熱交換器1において、第1パス配管4の第1屈曲管部40bの屈曲角θが100度である場合の第1ヘッダ配管3及び第1パス配管4の構造の一例を示す概略的な側面図である。すなわち、図15は、第1パス配管4の第1屈曲管部40bの屈曲角θが鋭角である場合の第1パス配管4の構造の一例を示すものである。また、図16は、第1パス配管4の第1屈曲管部40bの屈曲角θが鈍角である場合の第1パス配管4の構造の一例を示すものである。本実施の形態2では、図15及び図16に示すように、第1パス配管4の第1屈曲管部40bの屈曲角θのパラメータを変更することにより、配管接続部10における熱交換器1の熱応力解析を行った。
 図17は、本実施の形態2に係る熱交換器1における、第1パス配管4の第1屈曲管部40bの屈曲角θと配管接続部10における熱応力との関係を示したグラフである。図17のグラフの横軸は、第1パス配管4の第1屈曲管部40bの屈曲角θである。図17のグラフの縦軸は、配管接続部10における熱応力の許容限界値を100%として規格化した熱応力の規格値である。また、図17のグラフには熱応力の規格値が100%であることを示す横線が点線で示されている。
 図17に示すように、第1パス配管4の第1屈曲管部40bの屈曲角θが85度以上となった場合、熱応力の規格値が100%を超えるため、配管接続部10で熱疲労による亀裂又は折損が発生する可能性が高くなる。
 また、本実施の形態2においては、第1パス配管4の第1屈曲管部40bの屈曲角θを最適化するために、第1パス配管4の第1屈曲管部40bの屈曲角θと第1屈曲管部40bにおける熱応力との関係を熱応力解析によって実測した。図18は、本実施の形態2に係る熱交換器1において、第1パス配管4の第1屈曲管部40bの屈曲角θが鋭角である場合の第1パス配管4の第1屈曲管部40bの構造の一例を示す概略的な側面図である。図18に示すように、第1屈曲管部40bにおける熱応力は、第1屈曲管部40bの先端部Cにおいて測定された。なお、熱交換器1の熱応力解析の条件は、上述の配管接続部10における熱応力について熱応力解析したものと同一とした。
 図19は、本実施の形態2に係る熱交換器1における、第1パス配管4の第1屈曲管部40bの屈曲角θと第1屈曲管部40bにおける熱応力との関係を示したグラフである。図17のグラフの横軸は、第1パス配管4の第1屈曲管部40bの屈曲角θである。図19のグラフの縦軸は、第1屈曲管部40bにおける熱応力の許容限界値を100%として規格化した熱応力の規格値である。
 図19に示すように、第1パス配管4の第1屈曲管部40bの屈曲角θを変化させた場合であっても、第1屈曲管部40bにおける熱応力の規格値は50%未満となるため、第1屈曲管部40bで熱疲労による亀裂又は折損が発生する可能性が少ない。
 したがって、第1パス配管4の第1屈曲管部40bの屈曲角θを85度より小さくすれば、配管接続部10及び第1屈曲管部40bの双方で熱疲労による亀裂又は折損が発生する可能性が低減される。
 次に、第1パス配管4の第1屈曲管部40bの屈曲角θと、第1パス配管4の固有値である共振周波数との関係について、図20及び図21を用いて説明する。図20は、本実施の形態2に係る熱交換器1において、第1パス配管4の第1屈曲管部40bの屈曲角θが鋭角である場合の第1パス配管4の第1屈曲管部40bの構造の別の一例を示す概略的な側面図である。図20の第1パス配管4の構造は、第1屈曲管部40bの先端部Cが図示されていない点を除けば図18と同一である。
 なお、図20においては、伝熱管25は銅管として構成し、管径を19.05mmとし、厚みを1.0mmとした。また、第1パス配管4は銅管として構成し、管径を7.94mmとし、厚みを0.7mmとした。
 図21は、本実施の形態2に係る熱交換器1における、第1パス配管4の第1屈曲管部40bの屈曲角θと第1パス配管4の共振周波数との関係を示したグラフである。図21のグラフの横軸は、第1パス配管4の第1屈曲管部40bの屈曲角θである。図21のグラフの縦軸は、第1パス配管4の共振周波数であり、単位はヘルツである。また、図21のグラフでは、共振周波数が100Hz以下となる第1屈曲管部40bの屈曲角θの領域が斜線で示されている。
 図21に示すように、第1パス配管4の第1屈曲管部40bの屈曲角θが25度以下となった場合、第1パス配管4の共振周波数が100Hz以下となる。熱交換器1を備える冷凍サイクル装置100において、圧縮機110の運転周波数は最大100Hzであるため、第1屈曲管部40bの屈曲角θが25度以下となると、第1パス配管4が共振することによる亀裂又は折損が発生する可能性がある。
 したがって、本実施の形態2に係る熱交換器1では、第1パス配管4の第1屈曲管部40bの屈曲角θを25度より大きく85度よりも小さくすることにより、第1パス配管4における熱疲労又は共振と熱応力とによる亀裂又は折損が発生する可能性が低減できる。
実施の形態3.
 本発明の実施の形態3に係る熱交換器1について説明する。本実施の形態3に係る熱交換器1は、上述の実施の形態1及び実施の形態2に係る熱交換器1において、第1屈曲管部40bの屈曲角θを更に最適化した変形例である。本実施の形態3において、第1屈曲管部40bの屈曲角θを除く熱交換器1の構造は、上述の実施の形態1及び実施の形態2に係る熱交換器1のものと同一であるため、説明を省略する。
 図22は、本実施の形態3に係る熱交換器1における、第1パス配管4の第1屈曲管部40bの屈曲角θと配管接続部10における熱応力及び第1パス配管4の材料費との関係を示したグラフである。図22のグラフの横軸は、第1パス配管4の第1屈曲管部40bの屈曲角θである。図22のグラフの左側縦軸は、配管接続部10における熱応力の許容限界値を100%として規格化した熱応力の規格値である。図22のグラフの右側縦軸は、第1屈曲管部40bの屈曲角θを90度とした場合の第1パス配管4の材料費を100%として規格化した第1パス配管4の材料費の規格値である。
 図22のグラフでは、第1パス配管4の第1屈曲管部40bの屈曲角θと配管接続部10における熱応力との関係を示す曲線は実線で示されている。また、第1パス配管4の第1屈曲管部40bの屈曲角θと材料費との関係を示す曲線は破線で示されている。なお、図22のグラフには、屈曲角θ、熱応力の規格値、及び材料費の規格値の最適範囲が斜線にて示されている。また、図22のグラフには熱応力の規格値が100%であることを示す横線が点線で示されている。
 図22に示すように、第1屈曲管部40bの屈曲角θを60度以下とした場合、配管接続部10に発生する熱応力は小さくなるが、第1パス配管4が長くなるため、第1パス配管4の材料費の増加は50%以上となる。
 また、上述の実施の形態2において、配管接続部10における熱応力の安全率と第1パス配管4における共振周波数及び熱応力の安全率を1.2とすると、第1屈曲管部40bの屈曲角θの最適値は28度より大きく80度より小さい範囲となる。第1屈曲管部40bの屈曲角θを28度より大きく80度より小さくすることにより、第1パス配管4における熱疲労又は共振による亀裂又は折損が発生する可能性が更に低減できる。
 したがって、本実施の形態3に係る熱交換器1では、第1パス配管4の第1屈曲管部40bの屈曲角θを60度より大きく80度よりも小さくすることにより、第1パス配管4における熱疲労又は共振による亀裂又は折損が発生する可能性を低減できる。また、第1パス配管4の材料費の増加を50%未満に抑制できる。よって、本実施の形態3に係る熱交換器1では、第1パス配管4の材料費増加を抑制するとともに、第1パス配管4における熱疲労又は共振による亀裂又は折損の発生を更に抑制することができる。
その他の実施の形態.
 本発明は、上述の実施の形態に限らず、本発明の要旨を逸脱しない範囲において種々の変形が可能である。例えば、上述の実施の形態では、冷凍サイクル装置100として冷凍装置200を例に挙げたが、本発明は、冷凍装置200以外の冷凍サイクル装置100、例えば空気調和装置等にも適用可能である。
 また、図示しないが、板状フィン20には、山部と谷部が交互に並んで形成される伝熱促進部を設けてもよく、板状フィン20における伝熱を促進させるように構成してもよい。また、伝熱管25は、扁平管として構成してもよい。
 1 熱交換器、2 熱交換部、3 第1ヘッダ配管、4 第1パス配管、4a 末端部、5 第2ヘッダ配管、6 第2パス配管、7 側板、7a パンチ穴、10 配管接続部、20 板状フィン、25 伝熱管、25a 末端部、40a 第1直管部、40b 第1屈曲管部、40c 第2直管部、40d 第2屈曲管部、40e 第3直管部、100 冷凍サイクル装置、110 圧縮機、120 凝縮器、130 減圧装置、140 蒸発器、150 冷媒配管、160 冷凍サイクル回路、200 冷凍装置、200a 屋外凝縮ユニット、200b 屋外型冷凍装置、210a、210b 筐体、215 開口部、220a、220b 送風ファン。

Claims (6)

  1.  間隔を置いて並列に配置された複数の板状フィンと、前記複数の板状フィンと交差する複数の伝熱管とを有する熱交換部と、
     前記熱交換部に冷媒を供給するヘッダ配管と、
     前記熱交換部と前記ヘッダ配管との間に接続された複数のパス配管と
    を備え、
     前記複数のパス配管のうち、1つ以上のパス配管は、
     前記ヘッダ配管から離れる方向に延在する第1直管部と、
     前記第1直管部から延在する第1屈曲管部と、
     前記熱交換部との配管接続部から離れる方向に延在する第2直管部と、
     前記第2直管部から延在する第2屈曲管部と、
     前記第1屈曲管部と前記第2屈曲管部との間を延在する第3直管部と
    を有しており、
     前記第1屈曲管部の屈曲角は90度未満である
    熱交換器。
  2.  前記第2直管部は、前記第1直管部とねじれの位置にある
    請求項1に記載の熱交換器。
  3.  前記第2直管部は、前記第1直管部と平行である
    請求項1に記載の熱交換器。
  4.  前記屈曲角は25度より大きく85度よりも小さい
    請求項1~3のいずれか一項に記載の熱交換器。
  5.  前記屈曲角は60度より大きく80度よりも小さい
    請求項1~3のいずれか一項に記載の熱交換器。
  6.  請求項1~5のいずれか一項に記載の熱交換器を備える冷凍サイクル装置。
PCT/JP2016/060624 2016-03-31 2016-03-31 熱交換器及び冷凍サイクル装置 WO2017168669A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018507969A JP6563115B2 (ja) 2016-03-31 2016-03-31 熱交換器及び冷凍サイクル装置
PCT/JP2016/060624 WO2017168669A1 (ja) 2016-03-31 2016-03-31 熱交換器及び冷凍サイクル装置
US16/072,215 US10578377B2 (en) 2016-03-31 2016-03-31 Heat exchanger and refrigeration cycle apparatus
CN201690001575.8U CN209054801U (zh) 2016-03-31 2016-03-31 热交换器以及制冷循环装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/060624 WO2017168669A1 (ja) 2016-03-31 2016-03-31 熱交換器及び冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2017168669A1 true WO2017168669A1 (ja) 2017-10-05

Family

ID=59963706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060624 WO2017168669A1 (ja) 2016-03-31 2016-03-31 熱交換器及び冷凍サイクル装置

Country Status (4)

Country Link
US (1) US10578377B2 (ja)
JP (1) JP6563115B2 (ja)
CN (1) CN209054801U (ja)
WO (1) WO2017168669A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11573056B2 (en) 2018-07-11 2023-02-07 Mitsubishi Electric Corporation Heat exchanger, heat exchanger unit, and refrigeration cycle apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022042559A1 (zh) * 2020-08-26 2022-03-03 广东美的暖通设备有限公司 空调装置以及电控盒

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108971A (ja) * 1985-11-06 1987-05-20 株式会社日立製作所 ヒ−トポンプ用熱交換器
JPS62172957U (ja) * 1986-04-23 1987-11-02
JPH07159063A (ja) * 1993-12-06 1995-06-20 Tokyo Gas Co Ltd 二重管式オープンラック型気化装置
JP2006336936A (ja) * 2005-06-01 2006-12-14 Kobe Steel Ltd フィンチューブ型熱交換器の冷媒供給方法
JP2014102052A (ja) * 2012-11-21 2014-06-05 Mitsubishi Heavy Ind Ltd 熱交換器

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4483156A (en) * 1984-04-27 1984-11-20 The Trane Company Bi-directional variable subcooler for heat pumps
DE3938842A1 (de) * 1989-06-06 1991-05-29 Thermal Waerme Kaelte Klima Verfluessiger fuer ein kaeltemittel einer fahrzeugklimaanlage
US5038854A (en) * 1990-09-12 1991-08-13 Modine Manufacturing Company Heat exchanger assembly
JPH07218177A (ja) 1994-01-26 1995-08-18 Nippondenso Co Ltd 熱交換器とそれを用いた給湯器
CN101487669B (zh) * 2008-01-17 2012-08-22 开利公司 包括多管式分配器的热交换器
AU2010261177B2 (en) * 2009-06-19 2013-07-18 Daikin Industries, Ltd. Ceiling-mounted air conditioning unit
EP2392881B1 (de) * 2010-06-04 2013-01-02 Thermofin GmbH Wärmeübertrager für phasenwechselndes Kältemittel mit horizontalem Verteiler- und Sammlerrohr
JP5777622B2 (ja) * 2010-08-05 2015-09-09 三菱電機株式会社 熱交換器、熱交換方法及び冷凍空調装置
JP5071597B2 (ja) * 2011-01-21 2012-11-14 ダイキン工業株式会社 熱交換器および空気調和機
EP2667134A4 (en) * 2011-01-21 2014-07-09 Daikin Ind Ltd HEAT EXCHANGER AND AIR CONDITIONER
US8978409B2 (en) * 2011-06-28 2015-03-17 Advanced Distributor Products Llc Hybrid heat exchanger
WO2013160954A1 (ja) * 2012-04-26 2013-10-31 三菱電機株式会社 熱交換器及びこの熱交換器を備えた冷凍サイクル装置
ES2784132T3 (es) * 2012-04-26 2020-09-22 Mitsubishi Electric Corp Dispositivo distribuidor de refrigerante e intercambiador de calor equipado con tal dispositivo distribuidor de refrigerante
US10107538B2 (en) * 2012-09-10 2018-10-23 Hoshizaki America, Inc. Ice cube evaporator plate assembly
US20140262167A1 (en) * 2013-03-14 2014-09-18 Mao-Ho Kuo Coil assembly
CN105190202B (zh) * 2013-05-08 2017-11-17 三菱电机株式会社 热交换器和制冷循环装置
CN103245244B (zh) * 2013-05-10 2016-03-16 丹佛斯微通道换热器(嘉兴)有限公司 换热器
ES2700604T3 (es) * 2013-09-11 2019-02-18 Daikin Ind Ltd Intercambiador de calor y aparato de aire acondicionado
US8763424B1 (en) * 2013-09-30 2014-07-01 Heat Pump Technologies, LLC Subcooling heat exchanger adapted for evaporator distribution lines in a refrigeration circuit
US10054376B2 (en) * 2013-10-29 2018-08-21 Mitsubishi Electric Corporation Heat exchanger and air-conditioning apparatus
JP5805833B1 (ja) * 2014-07-28 2015-11-10 木村工機株式会社 ヒートポンプ式空気調和機
KR101550549B1 (ko) * 2014-08-01 2015-09-04 엘지전자 주식회사 공기 조화기
KR101615445B1 (ko) * 2014-08-14 2016-04-25 엘지전자 주식회사 공기 조화기
JP6361452B2 (ja) * 2014-10-16 2018-07-25 ダイキン工業株式会社 冷媒蒸発器
US20160123645A1 (en) * 2014-10-29 2016-05-05 Lg Electronics Inc. Air conditioner and method of controlling the same
JP6351494B2 (ja) * 2014-12-12 2018-07-04 日立ジョンソンコントロールズ空調株式会社 空気調和機
US10156387B2 (en) * 2014-12-18 2018-12-18 Lg Electronics Inc. Outdoor device for an air conditioner
JP6573484B2 (ja) * 2015-05-29 2019-09-11 日立ジョンソンコントロールズ空調株式会社 熱交換器
KR102527913B1 (ko) * 2016-01-28 2023-05-02 삼성전자주식회사 공기조화기의 열교환기 고정구조
US10234178B2 (en) * 2016-03-14 2019-03-19 Vertiv Corporation Fin and tube-evaporator with mini-slab circuit extenders
US10788243B2 (en) * 2016-08-29 2020-09-29 Advanced Distributor Products Llc Refrigerant distributor for aluminum coils
KR102622735B1 (ko) * 2016-09-13 2024-01-09 삼성전자주식회사 열교환기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108971A (ja) * 1985-11-06 1987-05-20 株式会社日立製作所 ヒ−トポンプ用熱交換器
JPS62172957U (ja) * 1986-04-23 1987-11-02
JPH07159063A (ja) * 1993-12-06 1995-06-20 Tokyo Gas Co Ltd 二重管式オープンラック型気化装置
JP2006336936A (ja) * 2005-06-01 2006-12-14 Kobe Steel Ltd フィンチューブ型熱交換器の冷媒供給方法
JP2014102052A (ja) * 2012-11-21 2014-06-05 Mitsubishi Heavy Ind Ltd 熱交換器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11573056B2 (en) 2018-07-11 2023-02-07 Mitsubishi Electric Corporation Heat exchanger, heat exchanger unit, and refrigeration cycle apparatus

Also Published As

Publication number Publication date
US10578377B2 (en) 2020-03-03
JPWO2017168669A1 (ja) 2018-10-11
JP6563115B2 (ja) 2019-08-21
CN209054801U (zh) 2019-07-02
US20190033017A1 (en) 2019-01-31

Similar Documents

Publication Publication Date Title
CN112204312B (zh) 空气调节装置的室外机及空气调节装置
US20110030932A1 (en) Multichannel heat exchanger fins
US20120031601A1 (en) Multichannel tubes with deformable webs
WO2013084397A1 (ja) 空気調和機
US10480869B2 (en) Heat exchanger and refrigeration cycle apparatus including the same
JP6765528B2 (ja) 熱交換器、冷凍サイクル装置および空気調和機
EP3062037A1 (en) Heat exchanger and refrigeration cycle device using said heat exchanger
JP6563115B2 (ja) 熱交換器及び冷凍サイクル装置
JP5627635B2 (ja) 空気調和機
JP6318371B2 (ja) 室外ユニットおよびそれを用いた冷凍サイクル装置
JP6104378B2 (ja) 空気調和装置
JP6298992B2 (ja) 空気調和機
EP2796822A1 (en) Air conditioner
JP5864030B1 (ja) 熱交換器、及び、この熱交換器を備えた冷凍サイクル装置
CN107850358B (zh) 热交换器及制冷循环装置
JP6797304B2 (ja) 熱交換器及び空気調和機
JP7130116B2 (ja) 空気調和装置
JP4983878B2 (ja) 熱交換器及びこの熱交換器を備えた冷蔵庫、空気調和機
WO2019180817A1 (ja) 熱交換器、冷凍サイクル装置および空気調和装置
WO2023175782A1 (ja) 熱交換装置および冷却装置
JP2008170134A (ja) 冷凍装置
CN210773626U (zh) 热交换器以及制冷循环装置
WO2021199138A1 (ja) 熱交換器、室外機、および空気調和装置
WO2020012548A1 (ja) 熱交換器、熱交換器ユニット及び冷凍サイクル装置
WO2016098204A1 (ja) 熱交換器及びこの熱交換器を備えた冷凍サイクル装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018507969

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896887

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16896887

Country of ref document: EP

Kind code of ref document: A1