WO2020202878A1 - Zirconium boride/boron carbide composite and method for manufacturing same - Google Patents
Zirconium boride/boron carbide composite and method for manufacturing same Download PDFInfo
- Publication number
- WO2020202878A1 WO2020202878A1 PCT/JP2020/006751 JP2020006751W WO2020202878A1 WO 2020202878 A1 WO2020202878 A1 WO 2020202878A1 JP 2020006751 W JP2020006751 W JP 2020006751W WO 2020202878 A1 WO2020202878 A1 WO 2020202878A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- zrb
- boron carbide
- zirconium
- powder
- vol
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/563—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on boron carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
Definitions
- zirconium boride / carbide boron (ZrB 2 / B 4 C) composites particularly Vickers hardness H v is at least 23 GPa
- fracture toughness value K IC is 9.0 MPa ⁇ m 1/2 or more dense ZrB 2 / B 4 relates C composite and a manufacturing method thereof.
- UHTC ultra-high temperature heat-resistant ceramic
- Patent Document 1 a predetermined amount of Zr powder, a predetermined amount of tungsten (W) powder, and a predetermined amount of B powder are wet-mixed and then pressure-molded to obtain a molded product, and the molded product is discharged.
- a method for producing tungsten-added ZrB 2 by plasma sintering [also known as pulse energization pressure sintering method] is disclosed.
- Vickers hardness (H v) of the sintered body obtained using this manufacturing method is 20.7GPa at maximum, the mechanical properties further improve, to be particularly improve the strength properties at high temperatures It is desired.
- Vickers hardness H v is at least 23 GPa
- fracture toughness value K IC is an object of the present invention to provide a 9.0 MPa ⁇ m 1/2 or more dense ZrB 2 / B 4 C composite. Further, an object of the present invention is also to provide a manufacturing method of ZrB 2 / B 4 C composite having excellent physical properties mentioned above.
- the present inventors have, as a result of various investigations, the carbon C of amorphous particles, boron B amorphous powder were homogeneously mixed in a predetermined molar ratio, and this mixture and ZrB 2 powder
- a green compact is prepared by mixing at a predetermined volume ratio and molding, and the green compact is pulsed and pressure-sintered (PECPS), a self-propagating high-temperature synthesis is performed during the PECPS heat treatment. : SHS) is induced, the temperature inside the sample rises above the external heating temperature, thereby, it has found that a composite of dense sintered is sintered ZrB 2 / B 4 C can be produced, and completed the present invention .
- the present inventors have obtained a ZrB 2 / B 4 C composite having a volume ratio of 10/90 to 60/40 of ZrB 2 / B 4 C obtained by using the above production method, and the ZrB 2 / B 4 C composite has a Vickers hardness. It was also found that it is a high-density ceramic having excellent mechanical properties of H v 23 GPa or more and a fracture toughness value of 9.0 MPa ⁇ m 1/2 or more.
- the Vickers hardness H v is at least 23 GPa
- fracture toughness value K IC is at 9.0 MPa ⁇ m 1/2 or more
- zirconium boride / The theoretical volume ratio of boron carbide is 10/90 to 60/40 vol%.
- the present invention provides a ZrB 2 / B 4 C composite having the above physical properties, the volume ratio of the theoretical zirconium boride / boron carbide is 40/60 ⁇ 60 / 40vol% , bending at 1000 ⁇ 1600 ° C. It is characterized in that the intensity ⁇ b is 500 MPa or more.
- ZrB 2 / B 4 C composite of the present invention the Vickers hardness H v is at least 29 GPa, fracture toughness value K IC is at 9.3 MPa ⁇ m 1/2 or more, theoretical zirconium boride / boron carbide The volume ratio of the above is 20/80 to 50/50 vol%.
- a step of performing mold molding using the mixed powder to obtain a molded product having a desired shape, sintering the obtained molded product, and synthesizing and simultaneously sintering a zirconium boride / boron carbide composite is included. It is characterized by.
- the present invention provides a ZrB 2 / B 4 production method of C composite having the above characteristics, the sintering, in a vacuum of 10 Pa, a sintering temperature of 1800 ⁇ 2000 ° C., pressure of 10 ⁇ 100 MPa It is characterized by pulse energization pressure sintering under the condition of holding time of 5 to 30 minutes.
- the present invention provides a ZrB 2 / B 4 production method of C composite having the above characteristics, the volume ratio of the theoretical of the ZrB 2 and B 4 C is in the range of 20/80 ⁇ 50 / 50vol% It is also characterized by that.
- ZrB 2 / B 4 is a flowchart showing a procedure in an example of the manufacturing method of the present invention for the production of C composite, manufacturing conditions used in Examples are also shown together. It is an SEM image of the ZrB 2 powder used as a starting material, and is an image taken at a magnification of 1000 times in the upper photograph and 2000 times in the lower photograph. It is a graph which shows the relative density of the green compact after uniaxial pressing, cold isostatic pressing (CIP), and the sintered body after PECPS.
- CIP cold isostatic pressing
- FIG. 1 is a flowchart showing a procedure in an example of the manufacturing method of the present invention.
- the amorphous boron powder and the amorphous carbon powder have a molar ratio of (3.6 to 6.5): 1 (13.4 to 21.6 atomic% C), preferably (3). Weighed so that it was 9.9 to 5.2): 1 (16.4 to 20.4 atomic% C), more preferably 4.4: 1, and mixed (preferably wet mixing) to carry out amorphous.
- a starting material in which quality boron and amorphous carbon are uniformly mixed is prepared.
- amorphous boron and amorphous carbon and as boron powder
- boron powder It is preferable to use one having an average particle size of about 1.5 ⁇ m, and it is preferable to use a carbon powder having an average particle size of about 30 nm.
- alcohol for example, ethanol
- the solvent is limited to this. It's not something.
- ZrB 2 is based on the theoretical volume of boron carbide (B 4 C, theoretical density 2.515 Mg ⁇ m -3 ) synthesized from the above mixture of amorphous boron and amorphous carbon.
- / B 4 C 10/90 to 60/40 vol% of zirconium borohydride (ZrB 2 ) powder (average particle size: about 3 ⁇ m) is prepared, and this ZrB 2 is added to the starting material and mixed. And obtain a mixed powder.
- ZrB 2 zirconium borohydride
- Uniaxial mold molding is generally used as a means for forming the molded body in this step, but the present invention is not limited to this, and the molded body is subjected to cold hydrostatic press (CIP) treatment or the like. After increasing the density, it is preferable to perform pulse energization pressure sintering.
- synthetic simultaneous sintering refers to a dense sintered body (ZrB 2 / B 4 C composite) from a homogeneous mixture of starting materials (a mixture of B and C containing a specific amount of ZrB 2 ). It shall indicate that it is produced.
- pulse energization pressure sintering When performing pulse energization pressure sintering by the production method of the present invention, it can be carried out using a commercially available pulse energization pressure sintering apparatus.
- pulsed energization pressurization sintering under uniaxial pressurization (10 to 100 MPa), a large pulsed DC current (several tens to several hundreds of 100A to 1500A: this current value changes depending on the size of the sample) at a low voltage (several V).
- Diffusion and self-burning synthesis (SHS) occur.
- a dense sintered body (high density, fine crystal grain size) with suppressed grain growth is obtained by high-speed temperature rise (50 to 100 ° C./min) and short-time sintering (5 to 30 minutes) under high pressure. be able to.
- boron B and microparticle powders of carbon C of amorphous by pulse current pressure sintering a mixed powder obtained by mixing with zirconium boride ZrB 2 powder, when Atsushi Nobori utilizing energy produced at the time of generating is B 4 C from B and C, and a relatively mild heat treatment conditions of 1900 °C / 50MPa / 10 min, it is possible to generate a B 4 C by the self-combustion synthesis.
- (4 ⁇ B + C) fine particles are arranged in the gap between the ZrB 2 particles during molding, and at the time of PECPS, they also play a role as a binder that holds the ZrB 2 particles together with the synthetic simultaneous sintering of B 4 C. As a result, a dense sintered body can be obtained.
- the pulse energization pressure sintering in the production method of the present invention is performed in a vacuum of 10 Pa or less under the conditions of a sintering temperature of 1800 to 2000 ° C., a pressing force of 10 to 100 MPa, and a holding time of 5 to 30 minutes. It is preferable, and more preferable conditions for pulse energization pressure sintering are a sintering temperature of 1850 to 1950 ° C., a holding time of 7 to 15 minutes, a pressing force of 30 to 70 MPa under a vacuum of 10 Pa or less, and 1900 ° C./50 MPa / The condition of 10 minutes is particularly preferable.
- the pressing force is less than 10 MPa
- the sintering density becomes low, and conversely, if it exceeds 100 MPa, the strength of the mold used for pulse energization pressure sintering has an upper limit and cannot be used.
- the sintering temperature is less than 1800 ° C.
- the density becomes low, and conversely, when the sintering temperature exceeds 2000 ° C., grain growth tends to occur, which is not preferable.
- the holding time is 5 to 30 minutes for sufficient compaction.
- Vickers hardness to produce a more ceramic 20GPa It is not possible.
- the present invention will be specifically described based on Examples, but the present invention is not limited to Examples.
- uniaxial mold molding (20 mm ⁇ , 75 MPa, addition of 3% acrylic / PVA) was performed, and then cold hydrostatic pressure (245 MPa, 3 minutes) was pressed. ..
- the obtained molded body is heat-treated (950 ° C./2 h / vacuum), and further, using a commercially available pulse energization pressure sintering apparatus (using SPS Syntex Co., Ltd./SPS-510A), 10 Pa or less. under vacuum, the sintering temperature 1900 ° C., holding time 10 min, subjected to pulse current pressure sintering under a pressure 50 MPa, the 100 ° C.
- the sintered body (ZrB 2 / B 4 C composite) Got Regarding the evaluation of the manufactured sintered body, the phase characteristics were evaluated by the XRD pattern, the morphology was observed by the SEM image, and the Vickers hardness (JIS R 1610: 2003 Fine Ceramics Hardness Test Method, Load: The mechanical properties were evaluated by the fracture toughness value (measured at 2 kgf) and the fracture toughness value (using the IF method of the room temperature fracture toughness (toughness) test method for fine ceramics).
- a bending tester Autograph-AG-X Plus, manufactured by Shimadzu Corporation
- the bending strength at three points in the temperature range from room temperature to 1800 ° C in argon gas. Evaluated by test.
- FIG. 2 is a scanning electron microscope (SEM) image (measured by FE-SEM, JEOL Ltd., JSM 7000) of ZrB 2 powder (manufactured by JEOL Ltd.) used as a starting material. Is an image taken at a magnification of 1000 times, and the lower photograph is an image taken at a magnification of 2000 times. From the photograph of FIG. 2, the particle size of ZrB 2 powder used in Example approximately 2 ⁇ 4 [mu] m: an (average of about 3 [mu] m), it small variation was confirmed.
- SEM scanning electron microscope
- the relative density is higher in the case of ZrB 2 / (4B + C) composite than in the case of ZrB 2 (100 vol%) because the B in the gap between the particles of ZrB 2 having a large particle size has a small particle size. It is probable that C was added and the relative density increased.
- the relative density of the sintered body after PECPS showed a high value of 96.7% or more in the range of 0 to 70 vol% of ZrB 2 .
- the bright part is ZrB 2 from the analysis (EDS analysis) result using the energy dispersive X-ray Spectrometer for the bright part and the dark part. It was confirmed that the dark part was B 4 C, and it was confirmed that a very dense composite was obtained when the PECPS temperature was 1900 ° C.
- Figure 6 is a graph showing the sintered sample (50vol% ZrB 2 / 50vol% B 4 C), and sintering temperature, bulk density, a relationship between the relative density of the ZrB 2, bulk density and relative density Is also shown. From the experimental results of FIG. 6, when performing PECPS at a temperature of 1900 ° C., the ZrB 2 / B 4 C composite, the relative density of 99.8% or more dense ceramic is prepared, with a composition consisting of ZrB 2 is It was confirmed that the density was only 70.3%.
- FIG. 9 is a graph showing the relationship between the ZrB 2 content, the relative density, and the ZrB 2 crystal grain size of the sintered body sintered at 1900 ° C.
- Graph of Figure 9 if PECPS temperature is 1900 ° C., in ZrB 2 / B 4 C composite content ZrB 2 is 40 ⁇ 70 vol% composition, relative density of 99% or more of the dense sintered body is obtained, It is shown that as the content of ZrB 2 increases (40 ⁇ 70 vol%), the crystal grain size of ZrB 2 increases.
- Figure 10 is a graph showing the mechanical properties of the sintered body sintered at 1900 ° C. (Vickers hardness H v and fracture toughness value K IC). From the graph of FIG. 10, ZrB 2 / B 4 C composite content ZrB 2 is 10/90 ⁇ 60 / 40vol% composition, Vickers hardness H v is at least 23 GPa, the fracture toughness value K IC 9.0 MPa -It can be seen that it is a dense sintered body of m 1/2 or more. Further, in the graph of FIG.
- the fracture toughness value of ZrB 2 is 3.5 to 4.2 MPa ⁇ m 1/2
- the fracture toughness value of B 4 C is 5.0 MPa ⁇ m 1/2 or less. It was confirmed that the ZrB 2 / B 4 C composite obtained by using the above manufacturing method has a larger fracture toughness value than the ZrB 2 and B 4 C single-phase ceramics, and has excellent mechanical properties. It was.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
To provide: a high-density zirconium boride/boron carbide composite having a Vickers hardness Hv of 23 GPa or more and a fracture toughness value KIC of 9.0 MPa•m1/2 or more, said zirconium boride/boron carbide being represented by ZrB2/B4C; and a method for manufacturing the same. The method according to the present invention comprises: a step for preparing a starting material by mixing an amorphous boron powder with an amorphous carbon powder to give a molar ratio B:C of (3.6-6.5):1; a step for weighing a ZrB2 powder in such an amount as to give a theoretical ratio by volume to B4C, which is synthesized from the starting material, ZrB2/B4C of 10/90-60/40 vol% and mixing with the starting material to give a mixed powder; and a step for molding the mixed powder using a die to give a molded article and then sintering the obtained molded article to thereby simultaneously synthesize and sinter the ZrB2/B4C composite.
Description
本発明は、ホウ化ジルコニウム/炭化ホウ素(ZrB2/B4C)コンポジット、特にビッカース硬度Hvが23GPa以上で、破壊靭性値KICが9.0MPa・m1/2以上の高密度ZrB2/B4Cコンポジット及びその製造方法に関するものである。
The present invention, zirconium boride / carbide boron (ZrB 2 / B 4 C) composites, particularly Vickers hardness H v is at least 23 GPa, fracture toughness value K IC is 9.0 MPa · m 1/2 or more dense ZrB 2 / B 4 relates C composite and a manufacturing method thereof.
エンジニアリングセラミックスの分野で最近注目されている超高温耐熱セラミックス(UHTC)であるホウ化ジルコニウム(ZrB2)は、高融点Tm=3200℃の共有結合性素材であり、現在、宇宙航空機用のUHTCとして期待されているが、難焼結材であるために緻密な高密度の焼結体を作製することが困難であった。
例えば、下記の特許文献1には、所定量のZr粉末、所定量のタングステン(W)粉末および所定量のB粉末を湿式混合した後、加圧成形して成形体とし、この成形体を放電プラズマ焼結〔別名:パルス通電加圧焼結法〕することにより、タングステン添加ZrB2を製造する方法が開示されている。しかし、このような製造方法を用いて得られる焼結体のビッカース硬度(Hv)は最大で20.7GPaであり、機械的特性をさらに向上させ、特に高温下において強度性をより高めることが望まれている。 Zirconium borohydride (ZrB 2 ), which is an ultra-high temperature heat-resistant ceramic (UHTC) that has recently attracted attention in the field of engineering ceramics, is a covalent material having a high melting point of T m = 3200 ° C., and is currently a UHTC for spacecraft. However, since it is a difficult-to-sinter material, it has been difficult to produce a dense and high-density sintered body.
For example, in Patent Document 1 below, a predetermined amount of Zr powder, a predetermined amount of tungsten (W) powder, and a predetermined amount of B powder are wet-mixed and then pressure-molded to obtain a molded product, and the molded product is discharged. A method for producing tungsten-added ZrB 2 by plasma sintering [also known as pulse energization pressure sintering method] is disclosed. However, Vickers hardness (H v) of the sintered body obtained using this manufacturing method is 20.7GPa at maximum, the mechanical properties further improve, to be particularly improve the strength properties at high temperatures It is desired.
例えば、下記の特許文献1には、所定量のZr粉末、所定量のタングステン(W)粉末および所定量のB粉末を湿式混合した後、加圧成形して成形体とし、この成形体を放電プラズマ焼結〔別名:パルス通電加圧焼結法〕することにより、タングステン添加ZrB2を製造する方法が開示されている。しかし、このような製造方法を用いて得られる焼結体のビッカース硬度(Hv)は最大で20.7GPaであり、機械的特性をさらに向上させ、特に高温下において強度性をより高めることが望まれている。 Zirconium borohydride (ZrB 2 ), which is an ultra-high temperature heat-resistant ceramic (UHTC) that has recently attracted attention in the field of engineering ceramics, is a covalent material having a high melting point of T m = 3200 ° C., and is currently a UHTC for spacecraft. However, since it is a difficult-to-sinter material, it has been difficult to produce a dense and high-density sintered body.
For example, in Patent Document 1 below, a predetermined amount of Zr powder, a predetermined amount of tungsten (W) powder, and a predetermined amount of B powder are wet-mixed and then pressure-molded to obtain a molded product, and the molded product is discharged. A method for producing tungsten-added ZrB 2 by plasma sintering [also known as pulse energization pressure sintering method] is disclosed. However, Vickers hardness (H v) of the sintered body obtained using this manufacturing method is 20.7GPa at maximum, the mechanical properties further improve, to be particularly improve the strength properties at high temperatures It is desired.
大気中で使用できるUHTCについては、主に金属ホウ化物のZrB2を基材とするZrB2/SiC、ZrB2/B4C、ZrB2/LaB6のコンポジットの作製が検討されてきたが、高融点化合物は共有結合性のため難焼結性であり、高密度焼結体を作製することは難しく、難焼結物質の高密度焼結体を作製するのに適したパルス通電加圧焼結法(Pulsed Electric-current Pressure Sintering:PECPS)を用いても、高密度焼結体の作製は困難である。
Regarding UHTC that can be used in the atmosphere, the production of composites of ZrB 2 / SiC, ZrB 2 / B 4 C, and ZrB 2 / LaB 6 mainly based on the metal borohydride ZrB 2 has been studied. Since the high melting point compound is covalently bondable, it is difficult to sinter, and it is difficult to prepare a high-density sintered body. It is difficult to produce a high-density sintered body even by using a method (Pulsed Electric-current Pressure Sintering: PECPS).
又、炭化ホウ素(B4C)は、軽量(理論密度Dx=2.515Mg・m-3)で、高融点(Tm=2450℃)の物質として知られており、ダイヤモンド、立方晶窒化ホウ素(c-BN)に次ぐ硬度(ビッカース硬度Hv:29~33GPa)を有するので、ZrB2とB4Cの両者から構成されるコンポジットも、UHTCとしての使用の可能性を有した材料の一つである。
しかしながら、B4Cも共有結合性の難焼結素材であるために、ZrB2に添加したZrB2/B4Cコンポジットの作製には2050~2150℃/30~50MPaという高温高圧が必要で、高コストでの製造となり、また、その作製の報告例は少ない。 Boron carbide (B 4 C) is known as a material having a light weight (theoretical density D x = 2.515 Mg · m -3 ) and a high melting point (T m = 2450 ° C.), and is diamond or cubic nitride. Since it has a hardness (Vickers hardness H v : 29 to 33 GPa) next to boron (c-BN), a composite composed of both ZrB 2 and B 4 C is also a material that has the potential to be used as UHTC. It is one.
However, B 4 to C is also difficult to sinter the material of covalent, the production of ZrB 2 / B 4 C composite added to the ZrB 2 requires high temperature and pressure that 2050 ~ 2150 ℃ / 30 ~ 50MPa , It is manufactured at high cost, and there are few reports of its production.
しかしながら、B4Cも共有結合性の難焼結素材であるために、ZrB2に添加したZrB2/B4Cコンポジットの作製には2050~2150℃/30~50MPaという高温高圧が必要で、高コストでの製造となり、また、その作製の報告例は少ない。 Boron carbide (B 4 C) is known as a material having a light weight (theoretical density D x = 2.515 Mg · m -3 ) and a high melting point (T m = 2450 ° C.), and is diamond or cubic nitride. Since it has a hardness (Vickers hardness H v : 29 to 33 GPa) next to boron (c-BN), a composite composed of both ZrB 2 and B 4 C is also a material that has the potential to be used as UHTC. It is one.
However, B 4 to C is also difficult to sinter the material of covalent, the production of ZrB 2 / B 4 C composite added to the ZrB 2 requires high temperature and pressure that 2050 ~ 2150 ℃ / 30 ~ 50MPa , It is manufactured at high cost, and there are few reports of its production.
本発明は、ビッカース硬度Hvが23GPa以上で、破壊靭性値KICが9.0MPa・m1/2以上の高密度ZrB2/B4Cコンポジットを提供することを課題とする。又、本発明の課題は、上記の優れた物性を有するZrB2/B4Cコンポジットの製造方法を提供することでもある。
本発明者等は、種々検討を行った結果、非晶質微粒子の炭素Cと、非晶質粉体のホウ素Bを所定のモル比にて均質混合し、この混合物とZrB2粉体とを所定の体積比率で混合し、成形を行って圧粉体を作製し、この圧粉体をパルス通電加圧焼結(PECPS)すると、PECPS熱処理時に自己燃焼合成反応(Self-propagating High-temperature Synthesis:SHS)が誘起され、外部加熱温度以上に試料内部の温度が上昇し、これによって、緻密な焼結体であるZrB2/B4Cのコンポジットが作製できることを見出して、本発明を完成した。
又、本発明者等は、上記の製造方法を用いて得られた、ZrB2/B4Cの体積比率10/90~60/40の組成であるZrB2/B4Cコンポジットが、ビッカース硬度Hv23GPa以上、破壊靭性値9.0MPa・m1/2以上の優れた機械的特性を有する高密度セラミックスであることも見出した。 The present invention, Vickers hardness H v is at least 23 GPa, fracture toughness value K IC is an object of the present invention to provide a 9.0 MPa · m 1/2 or more dense ZrB 2 / B 4 C composite. Further, an object of the present invention is also to provide a manufacturing method ofZrB 2 / B 4 C composite having excellent physical properties mentioned above.
The present inventors have, as a result of various investigations, the carbon C of amorphous particles, boron B amorphous powder were homogeneously mixed in a predetermined molar ratio, and this mixture and ZrB 2 powder When a green compact is prepared by mixing at a predetermined volume ratio and molding, and the green compact is pulsed and pressure-sintered (PECPS), a self-propagating high-temperature synthesis is performed during the PECPS heat treatment. : SHS) is induced, the temperature inside the sample rises above the external heating temperature, thereby, it has found that a composite of dense sintered is sinteredZrB 2 / B 4 C can be produced, and completed the present invention ..
Further, the present inventors have obtained a ZrB 2 / B 4 C composite having a volume ratio of 10/90 to 60/40 of ZrB 2 / B 4 C obtained by using the above production method, and the ZrB 2 / B 4 C composite has a Vickers hardness. It was also found that it is a high-density ceramic having excellent mechanical properties of H v 23 GPa or more and a fracture toughness value of 9.0 MPa · m 1/2 or more.
本発明者等は、種々検討を行った結果、非晶質微粒子の炭素Cと、非晶質粉体のホウ素Bを所定のモル比にて均質混合し、この混合物とZrB2粉体とを所定の体積比率で混合し、成形を行って圧粉体を作製し、この圧粉体をパルス通電加圧焼結(PECPS)すると、PECPS熱処理時に自己燃焼合成反応(Self-propagating High-temperature Synthesis:SHS)が誘起され、外部加熱温度以上に試料内部の温度が上昇し、これによって、緻密な焼結体であるZrB2/B4Cのコンポジットが作製できることを見出して、本発明を完成した。
又、本発明者等は、上記の製造方法を用いて得られた、ZrB2/B4Cの体積比率10/90~60/40の組成であるZrB2/B4Cコンポジットが、ビッカース硬度Hv23GPa以上、破壊靭性値9.0MPa・m1/2以上の優れた機械的特性を有する高密度セラミックスであることも見出した。 The present invention, Vickers hardness H v is at least 23 GPa, fracture toughness value K IC is an object of the present invention to provide a 9.0 MPa · m 1/2 or more dense ZrB 2 / B 4 C composite. Further, an object of the present invention is also to provide a manufacturing method of
The present inventors have, as a result of various investigations, the carbon C of amorphous particles, boron B amorphous powder were homogeneously mixed in a predetermined molar ratio, and this mixture and ZrB 2 powder When a green compact is prepared by mixing at a predetermined volume ratio and molding, and the green compact is pulsed and pressure-sintered (PECPS), a self-propagating high-temperature synthesis is performed during the PECPS heat treatment. : SHS) is induced, the temperature inside the sample rises above the external heating temperature, thereby, it has found that a composite of dense sintered is sintered
Further, the present inventors have obtained a ZrB 2 / B 4 C composite having a volume ratio of 10/90 to 60/40 of ZrB 2 / B 4 C obtained by using the above production method, and the ZrB 2 / B 4 C composite has a Vickers hardness. It was also found that it is a high-density ceramic having excellent mechanical properties of H v 23 GPa or more and a fracture toughness value of 9.0 MPa · m 1/2 or more.
上記の課題を解決可能な本発明のZrB2/B4Cコンポジットは、ビッカース硬度Hvが23GPa以上で、破壊靭性値KICが9.0MPa・m1/2以上であり、ホウ化ジルコニウム/炭化ホウ素の理論上の体積比率が10/90~60/40vol%であることを特徴とする。
ZrB 2 / B 4 C composite resolvable present invention the above problems, the Vickers hardness H v is at least 23 GPa, fracture toughness value K IC is at 9.0 MPa · m 1/2 or more, zirconium boride / The theoretical volume ratio of boron carbide is 10/90 to 60/40 vol%.
又、本発明は、上記の物性を有するZrB2/B4Cコンポジットにおいて、ホウ化ジルコニウム/炭化ホウ素の理論上の体積比率が40/60~60/40vol%であり、1000~1600℃における曲げ強度σbが500MPa以上であることを特徴とする。
Further, the present invention provides a ZrB 2 / B 4 C composite having the above physical properties, the volume ratio of the theoretical zirconium boride / boron carbide is 40/60 ~ 60 / 40vol% , bending at 1000 ~ 1600 ° C. It is characterized in that the intensity σ b is 500 MPa or more.
又、本発明のZrB2/B4Cコンポジットは、ビッカース硬度Hvが29GPa以上で、破壊靭性値KICが9.3MPa・m1/2以上であり、ホウ化ジルコニウム/炭化ホウ素の理論上の体積比率が20/80~50/50vol%であることを特徴とする。
Further, ZrB 2 / B 4 C composite of the present invention, the Vickers hardness H v is at least 29 GPa, fracture toughness value K IC is at 9.3 MPa · m 1/2 or more, theoretical zirconium boride / boron carbide The volume ratio of the above is 20/80 to 50/50 vol%.
又、上記の物性を有するZrB2/B4Cコンポジットを製造するための本発明の製造方法は、
非晶質ホウ素粉体と非晶質炭素粉体をB:C=(3.6~6.5):1のモル比(13.4~21.6原子%C)となるように混合を行ない、非晶質ホウ素と非晶質炭素とから成る出発原料を調製する工程と、
ホウ化ジルコニウム粉体を、前記出発原料から合成される炭化ホウ素との理論上の体積比率がZrB2/B4C=10/90~60/40vol%となるように秤量し、前記出発原料と混合して、混合粉を得る工程と、
前記混合粉を用いて金型成形を行い、所望の形状を有した成形体を得、得られた成形体を焼結してホウ化ジルコニウム/炭化ホウ素コンポジットを合成同時焼結する工程
を含むことを特徴とする。 Further, the production method of the present invention for producing aZrB 2 / B 4 C composite having the above physical properties,
Amorphous boron powder and amorphous carbon powder are mixed so as to have a molar ratio of B: C = (3.6 to 6.5): 1 (13.4 to 21.6 atomic% C). The process of preparing a starting material consisting of amorphous boron and amorphous carbon,
The zirconium boborate powder was weighed so that the theoretical volume ratio with the boron carbide synthesized from the starting material was ZrB 2 / B 4 C = 10/90 to 60/40 vol%, and the starting material was used. The process of mixing to obtain a mixed powder,
A step of performing mold molding using the mixed powder to obtain a molded product having a desired shape, sintering the obtained molded product, and synthesizing and simultaneously sintering a zirconium boride / boron carbide composite is included. It is characterized by.
非晶質ホウ素粉体と非晶質炭素粉体をB:C=(3.6~6.5):1のモル比(13.4~21.6原子%C)となるように混合を行ない、非晶質ホウ素と非晶質炭素とから成る出発原料を調製する工程と、
ホウ化ジルコニウム粉体を、前記出発原料から合成される炭化ホウ素との理論上の体積比率がZrB2/B4C=10/90~60/40vol%となるように秤量し、前記出発原料と混合して、混合粉を得る工程と、
前記混合粉を用いて金型成形を行い、所望の形状を有した成形体を得、得られた成形体を焼結してホウ化ジルコニウム/炭化ホウ素コンポジットを合成同時焼結する工程
を含むことを特徴とする。 Further, the production method of the present invention for producing a
Amorphous boron powder and amorphous carbon powder are mixed so as to have a molar ratio of B: C = (3.6 to 6.5): 1 (13.4 to 21.6 atomic% C). The process of preparing a starting material consisting of amorphous boron and amorphous carbon,
The zirconium boborate powder was weighed so that the theoretical volume ratio with the boron carbide synthesized from the starting material was ZrB 2 / B 4 C = 10/90 to 60/40 vol%, and the starting material was used. The process of mixing to obtain a mixed powder,
A step of performing mold molding using the mixed powder to obtain a molded product having a desired shape, sintering the obtained molded product, and synthesizing and simultaneously sintering a zirconium boride / boron carbide composite is included. It is characterized by.
又、本発明は、上記の特徴を有したZrB2/B4Cコンポジットの製造方法において、前記焼結が、10Pa以下の真空中、1800~2000℃の焼結温度、10~100MPaの加圧力および5~30分の保持時間の条件でのパルス通電加圧焼結であることを特徴とするものである。
Further, the present invention provides a ZrB 2 / B 4 production method of C composite having the above characteristics, the sintering, in a vacuum of 10 Pa, a sintering temperature of 1800 ~ 2000 ° C., pressure of 10 ~ 100 MPa It is characterized by pulse energization pressure sintering under the condition of holding time of 5 to 30 minutes.
又、本発明は、上記の特徴を有したZrB2/B4Cコンポジットの製造方法において、前記ZrB2とB4Cの理論上の体積比率が20/80~50/50vol%の範囲であることを特徴とするものでもある。
Further, the present invention provides a ZrB 2 / B 4 production method of C composite having the above characteristics, the volume ratio of the theoretical of the ZrB 2 and B 4 C is in the range of 20/80 ~ 50 / 50vol% It is also characterized by that.
本発明の製造方法を用いることによって、従来報告例がないZrB2/B4C=10/90~60/40vol%の組成での高硬度・高破壊靱性コンポジットが短時間省エネルギーで作製できる。又、その機械的特性(ビッカース硬度Hv)もZrB2/B4C=10/90~60/40vol%の組成に応じて23.5~32.7GPaの高い硬度を示す。又、本発明により、室温から1600℃まで約650MPa以上の高温曲げ強度を有するコンポジットが供給できる。
By using the production method of the present invention, a high hardness and high fracture toughness composite having a composition of ZrB 2 / B 4 C = 10/90 to 60/40 vol%, which has not been reported in the past, can be produced in a short time with energy saving. Moreover, its mechanical properties (Vickers hardness H v) also show a high degree of hardness 23.5 ~ 32.7GPa according to ZrB 2 / B 4 C = 10 /90 ~ 60 / 40vol% of the composition. Further, according to the present invention, it is possible to supply a composite having a high temperature bending strength of about 650 MPa or more from room temperature to 1600 ° C.
まず、本発明のZrB2/B4Cコンポジットの製造方法における各工程について説明する。図1は、本発明の製造方法の一例における手順を示すフローチャートである。
最初の工程では、非晶質ホウ素粉体と非晶質炭素粉体をモル比が(3.6~6.5):1(13.4~21.6原子%C)、好ましくは(3.9~5.2):1(16.4~20.4原子%C)、より好ましくは4.4:1となるように秤量し、混合(好ましくは湿式混合)を行なって、非晶質ホウ素と非晶質炭素とが均質に混合された出発原料を調製するが、この際、非晶質ホウ素及び非晶質炭素としては市販品をそのまま使用することができ、ホウ素粉体としては平均粒径1.5μm程度のものを使用することが好ましく、炭素粉体としては平均粒径30nm程度のものを使用することが好ましい。
上記の非晶質ホウ素と非晶質炭素との湿式混合においては、アルミナ製の乳鉢と乳棒を用いてアルコール(例えばエタノール)中で一定時間混合を行なうのが好ましいが、溶媒はこれに限定されるものではない。 First, a description will be given of each step in the ZrB 2 / B 4 production method of C composites of the present invention. FIG. 1 is a flowchart showing a procedure in an example of the manufacturing method of the present invention.
In the first step, the amorphous boron powder and the amorphous carbon powder have a molar ratio of (3.6 to 6.5): 1 (13.4 to 21.6 atomic% C), preferably (3). Weighed so that it was 9.9 to 5.2): 1 (16.4 to 20.4 atomic% C), more preferably 4.4: 1, and mixed (preferably wet mixing) to carry out amorphous. A starting material in which quality boron and amorphous carbon are uniformly mixed is prepared. At this time, commercially available products can be used as they are as amorphous boron and amorphous carbon, and as boron powder, It is preferable to use one having an average particle size of about 1.5 μm, and it is preferable to use a carbon powder having an average particle size of about 30 nm.
In the above-mentioned wet mixing of amorphous boron and amorphous carbon, it is preferable to mix in alcohol (for example, ethanol) for a certain period of time using an alumina mortar and pestle, but the solvent is limited to this. It's not something.
最初の工程では、非晶質ホウ素粉体と非晶質炭素粉体をモル比が(3.6~6.5):1(13.4~21.6原子%C)、好ましくは(3.9~5.2):1(16.4~20.4原子%C)、より好ましくは4.4:1となるように秤量し、混合(好ましくは湿式混合)を行なって、非晶質ホウ素と非晶質炭素とが均質に混合された出発原料を調製するが、この際、非晶質ホウ素及び非晶質炭素としては市販品をそのまま使用することができ、ホウ素粉体としては平均粒径1.5μm程度のものを使用することが好ましく、炭素粉体としては平均粒径30nm程度のものを使用することが好ましい。
上記の非晶質ホウ素と非晶質炭素との湿式混合においては、アルミナ製の乳鉢と乳棒を用いてアルコール(例えばエタノール)中で一定時間混合を行なうのが好ましいが、溶媒はこれに限定されるものではない。 First, a description will be given of each step in the ZrB 2 / B 4 production method of C composites of the present invention. FIG. 1 is a flowchart showing a procedure in an example of the manufacturing method of the present invention.
In the first step, the amorphous boron powder and the amorphous carbon powder have a molar ratio of (3.6 to 6.5): 1 (13.4 to 21.6 atomic% C), preferably (3). Weighed so that it was 9.9 to 5.2): 1 (16.4 to 20.4 atomic% C), more preferably 4.4: 1, and mixed (preferably wet mixing) to carry out amorphous. A starting material in which quality boron and amorphous carbon are uniformly mixed is prepared. At this time, commercially available products can be used as they are as amorphous boron and amorphous carbon, and as boron powder, It is preferable to use one having an average particle size of about 1.5 μm, and it is preferable to use a carbon powder having an average particle size of about 30 nm.
In the above-mentioned wet mixing of amorphous boron and amorphous carbon, it is preferable to mix in alcohol (for example, ethanol) for a certain period of time using an alumina mortar and pestle, but the solvent is limited to this. It's not something.
次の工程では、前記の非晶質ホウ素と非晶質炭素の混合物から合成される炭化ホウ素(B4C、理論密度2.515Mg・m-3)の理論上の体積に基づいて、ZrB2/B4C=10/90~60/40vol%となる量のホウ化ジルコニウム(ZrB2)粉体(平均粒径:3μm程度)を準備し、このZrB2を前記出発原料に添加して混合し、混合粉を得る。この際、水やアルコール等の溶媒中で、例えば超音波ホモジナイザーを用いて分散処理し、ZrB2を均一に分散させ、その後、乾燥を行うことが好ましい。
In the next step, ZrB 2 is based on the theoretical volume of boron carbide (B 4 C, theoretical density 2.515 Mg · m -3 ) synthesized from the above mixture of amorphous boron and amorphous carbon. / B 4 C = 10/90 to 60/40 vol% of zirconium borohydride (ZrB 2 ) powder (average particle size: about 3 μm) is prepared, and this ZrB 2 is added to the starting material and mixed. And obtain a mixed powder. At this time, it is preferable to carry out dispersion treatment in a solvent such as water or alcohol using, for example, an ultrasonic homogenizer to uniformly disperse ZrB 2 and then perform drying.
最終の工程においては、前記工程で得られた混合粉を用いて成形を行い、所望の形状の成形体を得、得られた成形体を焼結してZrB2/B4Cコンポジットを合成同時焼結する。
この工程における成形体の形成手段としては一軸金型成形(一軸プレス)が一般的であるが、これに限定されるものではなく、上記成形体は、冷間静水圧プレス(CIP)処理等により、その密度をより高めた後、パルス通電加圧焼結を行うことが好ましい。又、本発明では、パルス通電加圧焼結する前の成形体を真空中で加熱して、成形体を構成する微粒子表面の水分や吸着ガスを除去することが好ましい。
本明細書中で「合成同時焼結」とは、出発原料の均質な混合物(特定量のZrB2を含むBとCの混合物)から緻密な焼結体(ZrB2/B4Cコンポジット)を作製することを指し示すものとする。 In the final step, molding is performed using the mixed powder obtained in the above step to obtain a molded product having a desired shape, and the obtained molded product is sintered to synthesize a ZrB 2 / B 4 C composite at the same time. Sinter.
Uniaxial mold molding (uniaxial press) is generally used as a means for forming the molded body in this step, but the present invention is not limited to this, and the molded body is subjected to cold hydrostatic press (CIP) treatment or the like. After increasing the density, it is preferable to perform pulse energization pressure sintering. Further, in the present invention, it is preferable to heat the molded product before pulse energization pressure sintering in a vacuum to remove water and adsorbed gas on the surface of the fine particles constituting the molded product.
In the present specification, "synthetic simultaneous sintering" refers to a dense sintered body (ZrB 2 / B 4 C composite) from a homogeneous mixture of starting materials (a mixture of B and C containing a specific amount of ZrB 2 ). It shall indicate that it is produced.
この工程における成形体の形成手段としては一軸金型成形(一軸プレス)が一般的であるが、これに限定されるものではなく、上記成形体は、冷間静水圧プレス(CIP)処理等により、その密度をより高めた後、パルス通電加圧焼結を行うことが好ましい。又、本発明では、パルス通電加圧焼結する前の成形体を真空中で加熱して、成形体を構成する微粒子表面の水分や吸着ガスを除去することが好ましい。
本明細書中で「合成同時焼結」とは、出発原料の均質な混合物(特定量のZrB2を含むBとCの混合物)から緻密な焼結体(ZrB2/B4Cコンポジット)を作製することを指し示すものとする。 In the final step, molding is performed using the mixed powder obtained in the above step to obtain a molded product having a desired shape, and the obtained molded product is sintered to synthesize a ZrB 2 / B 4 C composite at the same time. Sinter.
Uniaxial mold molding (uniaxial press) is generally used as a means for forming the molded body in this step, but the present invention is not limited to this, and the molded body is subjected to cold hydrostatic press (CIP) treatment or the like. After increasing the density, it is preferable to perform pulse energization pressure sintering. Further, in the present invention, it is preferable to heat the molded product before pulse energization pressure sintering in a vacuum to remove water and adsorbed gas on the surface of the fine particles constituting the molded product.
In the present specification, "synthetic simultaneous sintering" refers to a dense sintered body (ZrB 2 / B 4 C composite) from a homogeneous mixture of starting materials (a mixture of B and C containing a specific amount of ZrB 2 ). It shall indicate that it is produced.
本発明の製造方法にてパルス通電加圧焼結を行う際、市販のパルス通電加圧焼結装置を用いて実施することができる。
パルス通電加圧焼結の場合、一軸加圧下(10~100MPa)において、低電圧(数V)でパルス状直流大電流(数10~数100A~1500A:この電流値は試料の大きさによって変化する)をカーボンプランジャー・モールドに流し、成形体中に火花放電現象を誘起し、瞬時に粒子間に高エネルギーを発生させて試料を焼結することができ、急激なジュール加熱により溶解と高速拡散、及び自己燃焼合成(SHS)が生じる。そして、高圧下、高速昇温(50~100℃/分)、短時間焼結(5~30分)により、粒成長を抑えた緻密な焼結体(高密度、微細結晶粒径)を得ることができる。 When performing pulse energization pressure sintering by the production method of the present invention, it can be carried out using a commercially available pulse energization pressure sintering apparatus.
In the case of pulsed energization pressurization sintering, under uniaxial pressurization (10 to 100 MPa), a large pulsed DC current (several tens to several hundreds of 100A to 1500A: this current value changes depending on the size of the sample) at a low voltage (several V). ) Is poured into a carbon plunger mold to induce a spark discharge phenomenon in the molded body, and high energy can be instantly generated between the particles to sinter the sample. Diffusion and self-burning synthesis (SHS) occur. Then, a dense sintered body (high density, fine crystal grain size) with suppressed grain growth is obtained by high-speed temperature rise (50 to 100 ° C./min) and short-time sintering (5 to 30 minutes) under high pressure. be able to.
パルス通電加圧焼結の場合、一軸加圧下(10~100MPa)において、低電圧(数V)でパルス状直流大電流(数10~数100A~1500A:この電流値は試料の大きさによって変化する)をカーボンプランジャー・モールドに流し、成形体中に火花放電現象を誘起し、瞬時に粒子間に高エネルギーを発生させて試料を焼結することができ、急激なジュール加熱により溶解と高速拡散、及び自己燃焼合成(SHS)が生じる。そして、高圧下、高速昇温(50~100℃/分)、短時間焼結(5~30分)により、粒成長を抑えた緻密な焼結体(高密度、微細結晶粒径)を得ることができる。 When performing pulse energization pressure sintering by the production method of the present invention, it can be carried out using a commercially available pulse energization pressure sintering apparatus.
In the case of pulsed energization pressurization sintering, under uniaxial pressurization (10 to 100 MPa), a large pulsed DC current (several tens to several hundreds of 100A to 1500A: this current value changes depending on the size of the sample) at a low voltage (several V). ) Is poured into a carbon plunger mold to induce a spark discharge phenomenon in the molded body, and high energy can be instantly generated between the particles to sinter the sample. Diffusion and self-burning synthesis (SHS) occur. Then, a dense sintered body (high density, fine crystal grain size) with suppressed grain growth is obtained by high-speed temperature rise (50 to 100 ° C./min) and short-time sintering (5 to 30 minutes) under high pressure. be able to.
本発明では、非晶質のホウ素Bと炭素Cの微粒子粉体を、ホウ化ジルコニウムZrB2粉体と混合して得た混合粉体をパルス通電加圧焼結することにより、加熱昇温時にBとCからB4Cが生成する際の生成エネルギーを活用し、1900℃/50MPa/10分という比較的マイルドな熱処理条件で、自己燃焼合成によりB4Cを生成させることができる。尚、本発明では、成形時にZrB2粒子間の隙間に(4・B+C)の微粒子が配置され、PECPS時にB4Cの合成同時焼結と共にZrB2粒子を繋ぎ止めるバインダーとしての役割も担い、これにより、緻密な焼結体が得られる。
In the present invention, boron B and microparticle powders of carbon C of amorphous, by pulse current pressure sintering a mixed powder obtained by mixing with zirconium boride ZrB 2 powder, when Atsushi Nobori utilizing energy produced at the time of generating is B 4 C from B and C, and a relatively mild heat treatment conditions of 1900 ℃ / 50MPa / 10 min, it is possible to generate a B 4 C by the self-combustion synthesis. In the present invention, (4 · B + C) fine particles are arranged in the gap between the ZrB 2 particles during molding, and at the time of PECPS, they also play a role as a binder that holds the ZrB 2 particles together with the synthetic simultaneous sintering of B 4 C. As a result, a dense sintered body can be obtained.
本発明の製造方法におけるパルス通電加圧焼結は、10Pa以下の真空中で、1800~2000℃の焼結温度、10~100MPaの加圧力、5~30分の保持時間の条件にて行なわれることが好ましく、より好ましいパルス通電加圧焼結の条件は、10Pa以下の真空下、焼結温度1850~1950℃、保持時間7~15分、加圧力30~70MPaであり、1900℃/50MPa/10分の条件が特に好ましい。この際、加圧力が10MPa未満では焼結密度が低くなり、逆に100MPaを超えるとパルス通電加圧焼結に使用する金型の強度に上限があり使用出来なくなる。又、焼結温度が1800℃未満になると低密度となり、逆に2000℃を超えると粒成長しやすくなるので好ましくない。尚、保持時間については5~30分で充分緻密化する。
The pulse energization pressure sintering in the production method of the present invention is performed in a vacuum of 10 Pa or less under the conditions of a sintering temperature of 1800 to 2000 ° C., a pressing force of 10 to 100 MPa, and a holding time of 5 to 30 minutes. It is preferable, and more preferable conditions for pulse energization pressure sintering are a sintering temperature of 1850 to 1950 ° C., a holding time of 7 to 15 minutes, a pressing force of 30 to 70 MPa under a vacuum of 10 Pa or less, and 1900 ° C./50 MPa / The condition of 10 minutes is particularly preferable. At this time, if the pressing force is less than 10 MPa, the sintering density becomes low, and conversely, if it exceeds 100 MPa, the strength of the mold used for pulse energization pressure sintering has an upper limit and cannot be used. Further, when the sintering temperature is less than 1800 ° C., the density becomes low, and conversely, when the sintering temperature exceeds 2000 ° C., grain growth tends to occur, which is not preferable. The holding time is 5 to 30 minutes for sufficient compaction.
本発明における、ZrB2の、非晶質Bと非晶質Cの混合物から合成されるB4Cに対する体積比率はZrB2/B4C=10/90~60/40vol%の範囲であり、特に20/80~50/50vol%の範囲の場合には、ビッカース硬度29GPa以上、破壊靭性値9.3MPa・m1/2以上のZrB2/B4Cコンポジットが得られる。
これに対し、市販の難焼結性のB4C粉体とZrB2粉体の混合物を用いて上記と同様の低温短時間焼結を行っても、ビッカース硬度が20GPa以上のセラミックスを製造することはできない。
又、上記の製法を用いて得られる本発明のZrB2/B4Cコンポジットは、優れた高温曲げ強度を有しており、特にZrB2/B4C=40/60~60/40vol%のコンポジットの場合、1000~1600℃の温度範囲において500MPa以上の高温曲げ強度を示す。
以下、実施例に基づいて本発明を具体的に説明するが、本発明は実施例により限定されるものではない。 In the present invention, the ZrB 2, volume ratio B 4 C, which is synthesized from a mixture of amorphous B and amorphous C is in the range of ZrB 2 / B 4 C = 10 /90 ~ 60 / 40vol%, particularly in the case of the range of 20/80 ~ 50 / 50vol%, the Vickers hardness 29GPa or more, fracture toughness 9.3 MPa · m 1/2 or more ZrB 2 / B 4 C composite is obtained.
In contrast, even if the same low-temperature short-time sintering as described above using a mixture of commercial sintering-resistant of B 4 C powder and ZrB 2 powder, Vickers hardness to produce a more ceramic 20GPa It is not possible.
Further, the ZrB 2 / B 4 C composite of the present invention obtained by using the above manufacturing method has excellent high temperature bending strength, and in particular, ZrB 2 / B 4 C = 40/60 to 60/40 vol%. In the case of composite, it exhibits high-temperature bending strength of 500 MPa or more in the temperature range of 1000 to 1600 ° C.
Hereinafter, the present invention will be specifically described based on Examples, but the present invention is not limited to Examples.
これに対し、市販の難焼結性のB4C粉体とZrB2粉体の混合物を用いて上記と同様の低温短時間焼結を行っても、ビッカース硬度が20GPa以上のセラミックスを製造することはできない。
又、上記の製法を用いて得られる本発明のZrB2/B4Cコンポジットは、優れた高温曲げ強度を有しており、特にZrB2/B4C=40/60~60/40vol%のコンポジットの場合、1000~1600℃の温度範囲において500MPa以上の高温曲げ強度を示す。
以下、実施例に基づいて本発明を具体的に説明するが、本発明は実施例により限定されるものではない。 In the present invention, the ZrB 2, volume ratio B 4 C, which is synthesized from a mixture of amorphous B and amorphous C is in the range of ZrB 2 / B 4 C = 10 /90 ~ 60 / 40vol%, particularly in the case of the range of 20/80 ~ 50 / 50vol%, the Vickers hardness 29GPa or more, fracture toughness 9.3 MPa · m 1/2 or more ZrB 2 / B 4 C composite is obtained.
In contrast, even if the same low-temperature short-time sintering as described above using a mixture of commercial sintering-resistant of B 4 C powder and ZrB 2 powder, Vickers hardness to produce a more ceramic 20GPa It is not possible.
Further, the ZrB 2 / B 4 C composite of the present invention obtained by using the above manufacturing method has excellent high temperature bending strength, and in particular, ZrB 2 / B 4 C = 40/60 to 60/40 vol%. In the case of composite, it exhibits high-temperature bending strength of 500 MPa or more in the temperature range of 1000 to 1600 ° C.
Hereinafter, the present invention will be specifically described based on Examples, but the present invention is not limited to Examples.
[高密度ZrB2/B4Cコンポジットの作製例]
市販の非晶質ホウ素(平均粒径Ps:1.5μm)と非晶質炭素(平均粒径Ps:30nm)を、モル比がB:C=4:1となるように秤量し、アルミナ製の乳鉢と乳棒を用いてエタノール中30分間湿式混合を行ない、出発原料を調製した。
一方、市販のZrB2粉体(平均粒径Ps:3μm)を、前記の非晶質ホウ素と非晶質炭素の混合物から合成される炭化ホウ素B4Cとの理論上の体積比率(ZrB2/B4C)が0/100,10/90,20/80,30/70,40/60,50/50,60/40,70/30となるように秤量し、これを前記出発原料に添加して、エタノール中で超音波ホモジナイザー(周波数20kHz、出力300W)を用いて30分間分散処理を行い、乾燥を行うことにより混合粉末を得た。 [Preparation example of high-density ZrB 2 / B 4 C Composite
Commercially available amorphous boron (average particle size P s : 1.5 μm) and amorphous carbon (average particle size P s : 30 nm) are weighed so that the molar ratio is B: C = 4: 1. A starting material was prepared by wet mixing in ethanol for 30 minutes using an alumina milk pot and a milk stick.
On the other hand, the theoretical volume ratio (ZrB) of commercially available ZrB 2 powder (average particle size P s : 3 μm) to boron carbide B 4 C synthesized from the above-mentioned mixture of amorphous boron and amorphous carbon. 2 / B 4 C) 0 / 100,10 / 90, 20/80, 30 / 70,40 / 60, 50 / 50,60 / 40,70 / 30 and were weighed so as the starting material which The mixture was added to and dispersed in ethanol using an ultrasonic homogenizer (frequency 20 kHz, output 300 W) for 30 minutes, and dried to obtain a mixed powder.
市販の非晶質ホウ素(平均粒径Ps:1.5μm)と非晶質炭素(平均粒径Ps:30nm)を、モル比がB:C=4:1となるように秤量し、アルミナ製の乳鉢と乳棒を用いてエタノール中30分間湿式混合を行ない、出発原料を調製した。
一方、市販のZrB2粉体(平均粒径Ps:3μm)を、前記の非晶質ホウ素と非晶質炭素の混合物から合成される炭化ホウ素B4Cとの理論上の体積比率(ZrB2/B4C)が0/100,10/90,20/80,30/70,40/60,50/50,60/40,70/30となるように秤量し、これを前記出発原料に添加して、エタノール中で超音波ホモジナイザー(周波数20kHz、出力300W)を用いて30分間分散処理を行い、乾燥を行うことにより混合粉末を得た。 [Preparation example of high-
Commercially available amorphous boron (average particle size P s : 1.5 μm) and amorphous carbon (average particle size P s : 30 nm) are weighed so that the molar ratio is B: C = 4: 1. A starting material was prepared by wet mixing in ethanol for 30 minutes using an alumina milk pot and a milk stick.
On the other hand, the theoretical volume ratio (ZrB) of commercially available ZrB 2 powder (average particle size P s : 3 μm) to boron carbide B 4 C synthesized from the above-mentioned mixture of amorphous boron and amorphous carbon. 2 / B 4 C) 0 / 100,10 / 90, 20/80, 30 / 70,40 / 60, 50 / 50,60 / 40,70 / 30 and were weighed so as the starting material which The mixture was added to and dispersed in ethanol using an ultrasonic homogenizer (
そして、このようにして得られた混合粉末を整粒した後、一軸金型成形し(20mmφ, 75MPa、アクリル/PVA3%添加)、ついで冷間静水圧(245MPa、3分)プレス処理を行った。その後、得られた成形体を熱処理(950℃/2h/真空)し、さらに、市販のパルス通電加圧焼結装置(SPSシンテックス(株)/SPS-510Aを使用)を用いて、10Pa以下の真空下、焼結温度1900℃、保持時間10分、加圧力50MPa、昇温速度100℃/分の条件でパルス通電加圧焼結を行い、焼結体(ZrB2/B4Cコンポジット)を得た。
尚、製造された焼結体の評価については、XRDパターンにて相特性評価を行い、SEM画像にて形態観察を行い、ビッカース硬度(JIS R 1610:2003 ファインセラミックスの硬さ試験方法、荷重:2kgfにて測定)、破壊靱性値(JIS R 1607:2015 ファインセラミックスの室温破壊じん(靱)性試験方法のIF法を採用)にて機械的特性を評価した。又、高温下での曲げ強度σbについては、曲げ試験機(島津製作所製、Autograph-AG-X Plus)を使用し、アルゴンガス中にて室温から1800℃までの温度範囲で3点曲げ強度試験により評価した。 Then, after sizing the mixed powder thus obtained, uniaxial mold molding (20 mmφ, 75 MPa, addition of 3% acrylic / PVA) was performed, and then cold hydrostatic pressure (245 MPa, 3 minutes) was pressed. .. Then, the obtained molded body is heat-treated (950 ° C./2 h / vacuum), and further, using a commercially available pulse energization pressure sintering apparatus (using SPS Syntex Co., Ltd./SPS-510A), 10 Pa or less. under vacuum, thesintering temperature 1900 ° C., holding time 10 min, subjected to pulse current pressure sintering under a pressure 50 MPa, the 100 ° C. / minute heating rate condition, the sintered body (ZrB 2 / B 4 C composite) Got
Regarding the evaluation of the manufactured sintered body, the phase characteristics were evaluated by the XRD pattern, the morphology was observed by the SEM image, and the Vickers hardness (JIS R 1610: 2003 Fine Ceramics Hardness Test Method, Load: The mechanical properties were evaluated by the fracture toughness value (measured at 2 kgf) and the fracture toughness value (using the IF method of the room temperature fracture toughness (toughness) test method for fine ceramics). For the bending strength σ b at high temperature, a bending tester (Autograph-AG-X Plus, manufactured by Shimadzu Corporation) was used, and the bending strength at three points in the temperature range from room temperature to 1800 ° C in argon gas. Evaluated by test.
尚、製造された焼結体の評価については、XRDパターンにて相特性評価を行い、SEM画像にて形態観察を行い、ビッカース硬度(JIS R 1610:2003 ファインセラミックスの硬さ試験方法、荷重:2kgfにて測定)、破壊靱性値(JIS R 1607:2015 ファインセラミックスの室温破壊じん(靱)性試験方法のIF法を採用)にて機械的特性を評価した。又、高温下での曲げ強度σbについては、曲げ試験機(島津製作所製、Autograph-AG-X Plus)を使用し、アルゴンガス中にて室温から1800℃までの温度範囲で3点曲げ強度試験により評価した。 Then, after sizing the mixed powder thus obtained, uniaxial mold molding (20 mmφ, 75 MPa, addition of 3% acrylic / PVA) was performed, and then cold hydrostatic pressure (245 MPa, 3 minutes) was pressed. .. Then, the obtained molded body is heat-treated (950 ° C./2 h / vacuum), and further, using a commercially available pulse energization pressure sintering apparatus (using SPS Syntex Co., Ltd./SPS-510A), 10 Pa or less. under vacuum, the
Regarding the evaluation of the manufactured sintered body, the phase characteristics were evaluated by the XRD pattern, the morphology was observed by the SEM image, and the Vickers hardness (JIS R 1610: 2003 Fine Ceramics Hardness Test Method, Load: The mechanical properties were evaluated by the fracture toughness value (measured at 2 kgf) and the fracture toughness value (using the IF method of the room temperature fracture toughness (toughness) test method for fine ceramics). For the bending strength σ b at high temperature, a bending tester (Autograph-AG-X Plus, manufactured by Shimadzu Corporation) was used, and the bending strength at three points in the temperature range from room temperature to 1800 ° C in argon gas. Evaluated by test.
図2は、出発原料として用いたZrB2粉末(日本新金属株式会社製)の走査型電子顕微鏡(SEM)画像(FE-SEM、日本電子製、JSM 7000にて測定)であり、上側の写真が倍率1000倍で、下側の写真が倍率2000倍で撮影した画像である。
図2の写真から、実施例で用いたZrB2粉末の粒子径は約2~4μm(平均:約3μm)であり、バラツキが小さいことが確認された。 FIG. 2 is a scanning electron microscope (SEM) image (measured by FE-SEM, JEOL Ltd., JSM 7000) of ZrB 2 powder (manufactured by JEOL Ltd.) used as a starting material. Is an image taken at a magnification of 1000 times, and the lower photograph is an image taken at a magnification of 2000 times.
From the photograph of FIG. 2, the particle size of ZrB 2 powder used in Example approximately 2 ~ 4 [mu] m: an (average of about 3 [mu] m), it small variation was confirmed.
図2の写真から、実施例で用いたZrB2粉末の粒子径は約2~4μm(平均:約3μm)であり、バラツキが小さいことが確認された。 FIG. 2 is a scanning electron microscope (SEM) image (measured by FE-SEM, JEOL Ltd., JSM 7000) of ZrB 2 powder (manufactured by JEOL Ltd.) used as a starting material. Is an image taken at a magnification of 1000 times, and the lower photograph is an image taken at a magnification of 2000 times.
From the photograph of FIG. 2, the particle size of ZrB 2 powder used in Example approximately 2 ~ 4 [mu] m: an (average of about 3 [mu] m), it small variation was confirmed.
以下の表1には、ZrB2組成を変化させた際の、一軸プレスサンプル、CIP処理サンプル、焼結サンプルについての、かさ密度(Dobs)、相対密度(Dr)、ビッカース硬度(HV)、破壊靭性値(KIC)が要約されている。尚、相対密度(Dr)は、理論密度を100%とし、かさ密度を、試験体の大気中での重量と、水中での重量から求める、いわゆるアルキメデス法にて測定し、このかさ密度を理論密度で割って求めた値を%表示した値である。
Table 1 below, when changing the ZrB 2 composition, uniaxial pressing samples, CIP treated samples for the sintered samples, bulk density (D obs), relative density (D r), Vickers hardness (H V ), fracture toughness (K IC) are summarized. The relative density ( Dr ) is measured by the so-called Archimedes method, in which the theoretical density is 100% and the bulk density is determined from the weight of the test piece in the air and the weight in water, and this bulk density is measured. The value obtained by dividing by the theoretical density is expressed in%.
図3は、一軸プレス、冷間静水圧プレス(CIP)後の圧粉体、及びPECPS後の焼結体の相対密度を示すグラフであり、圧粉体の理論密度は、Dx(ZrB2)=6.119Mg・m-3、Dx(B)=2.37Mg・m-3、Dx(C)=1.8Mg・m-3から算出した。
この図3の結果から、一軸プレスにより得られた圧粉体の相対密度は、ZrB2の含有量が10~100vol%の範囲において48.8~58.9%であったが、CIP処理の場合には52.9~64.7%まで高くなることが確認された。
ZrB2(100vol%)の場合よりも、ZrB2/(4B+C)コンポジットの場合の方が相対密度が大きくなるのは、粒子径が大きいZrB2の粒子間の隙間に、粒子径の小さなB、Cが入って相対密度が高くなったものと考えられる。
そして、PECPS後の焼結体の相対密度については、ZrB2の含有量が0~70vol%の範囲において96.7%以上の高い値を示した。 FIG. 3 is a graph showing the relative densities of the green compact after the uniaxial press, the cold hydrostatic press (CIP), and the sintered body after the PECPS, and the theoretical density of the green compact is D x (ZrB 2). ) = 6.119 Mg · m -3 , D x (B) = 2.37 Mg · m -3 , D x (C) = 1.8 Mg · m -3 .
From the results of FIG. 3, the relative density of the green compact obtained by the uniaxial press was 48.8 to 58.9% in the range of the ZrB 2 content of 10 to 100 vol%, but the CIP treatment was performed. In some cases, it was confirmed that the value increased from 52.9 to 64.7%.
The relative density is higher in the case of ZrB 2 / (4B + C) composite than in the case of ZrB 2 (100 vol%) because the B in the gap between the particles of ZrB 2 having a large particle size has a small particle size. It is probable that C was added and the relative density increased.
The relative density of the sintered body after PECPS showed a high value of 96.7% or more in the range of 0 to 70 vol% of ZrB 2 .
この図3の結果から、一軸プレスにより得られた圧粉体の相対密度は、ZrB2の含有量が10~100vol%の範囲において48.8~58.9%であったが、CIP処理の場合には52.9~64.7%まで高くなることが確認された。
ZrB2(100vol%)の場合よりも、ZrB2/(4B+C)コンポジットの場合の方が相対密度が大きくなるのは、粒子径が大きいZrB2の粒子間の隙間に、粒子径の小さなB、Cが入って相対密度が高くなったものと考えられる。
そして、PECPS後の焼結体の相対密度については、ZrB2の含有量が0~70vol%の範囲において96.7%以上の高い値を示した。 FIG. 3 is a graph showing the relative densities of the green compact after the uniaxial press, the cold hydrostatic press (CIP), and the sintered body after the PECPS, and the theoretical density of the green compact is D x (ZrB 2). ) = 6.119 Mg · m -3 , D x (B) = 2.37 Mg · m -3 , D x (C) = 1.8 Mg · m -3 .
From the results of FIG. 3, the relative density of the green compact obtained by the uniaxial press was 48.8 to 58.9% in the range of the ZrB 2 content of 10 to 100 vol%, but the CIP treatment was performed. In some cases, it was confirmed that the value increased from 52.9 to 64.7%.
The relative density is higher in the case of ZrB 2 / (4B + C) composite than in the case of ZrB 2 (100 vol%) because the B in the gap between the particles of ZrB 2 having a large particle size has a small particle size. It is probable that C was added and the relative density increased.
The relative density of the sintered body after PECPS showed a high value of 96.7% or more in the range of 0 to 70 vol% of ZrB 2 .
図4は、種々のPECPS温度(1600℃~1900℃)で焼結されたZrB2/B4C=50/50vol%組成に相当するサンプルのXRDパターンであり、これらのXRDパターンのいずれにも、B4Cの生成を示すピーク(▲)が認められ、このことから、1600℃以上のPECPS温度の場合には、ZrB2+(4B+C)混合粉体からZrB2/B4Cコンポジットが生成することが確認された。
FIG. 4 is an XRD pattern of a sample corresponding to a ZrB 2 / B 4 C = 50/50 vol% composition sintered at various PECPS temperatures (1600 ° C to 1900 ° C), and any of these XRD patterns , B 4 C observed peak indicating the production of (▲) found from this that, in the case of PECPS temperature above 1600 ° C., it ZrB 2 / B 4 C composite from ZrB 2 + (4B + C) mixture powder product It was confirmed that
図5は、種々の温度(1600℃~1900℃)で焼結されたZrB2/B4C=50/50vol%コンポジットの破断表面についてのSEM画像であり、それぞれのコンポジットの相対密度も併記されている。
このSEM写真において、色の明るい箇所と、色の暗い箇所についての、エネルギー分散型X線分析装置(Energy Dispersive X-ray Spectrometer)を用いた分析(EDS分析)結果から、明るい箇所がZrB2で、暗い箇所がB4Cであることが確認され、PECPS温度が1900℃の場合、非常に緻密なコンポジットが得られることが確認された。 FIG. 5 is an SEM image of the fractured surface of ZrB 2 / B 4 C = 50/50 vol% composites sintered at various temperatures (1600 ° C to 1900 ° C), and the relative densities of each composite are also shown. ing.
In this SEM photograph, the bright part is ZrB 2 from the analysis (EDS analysis) result using the energy dispersive X-ray Spectrometer for the bright part and the dark part. It was confirmed that the dark part was B 4 C, and it was confirmed that a very dense composite was obtained when the PECPS temperature was 1900 ° C.
このSEM写真において、色の明るい箇所と、色の暗い箇所についての、エネルギー分散型X線分析装置(Energy Dispersive X-ray Spectrometer)を用いた分析(EDS分析)結果から、明るい箇所がZrB2で、暗い箇所がB4Cであることが確認され、PECPS温度が1900℃の場合、非常に緻密なコンポジットが得られることが確認された。 FIG. 5 is an SEM image of the fractured surface of ZrB 2 / B 4 C = 50/50 vol% composites sintered at various temperatures (1600 ° C to 1900 ° C), and the relative densities of each composite are also shown. ing.
In this SEM photograph, the bright part is ZrB 2 from the analysis (EDS analysis) result using the energy dispersive X-ray Spectrometer for the bright part and the dark part. It was confirmed that the dark part was B 4 C, and it was confirmed that a very dense composite was obtained when the PECPS temperature was 1900 ° C.
図6は、焼結サンプル(50vol%ZrB2/50vol%B4C)についての、焼結温度と、かさ密度、相対密度との関係を示すグラフであり、ZrB2の、かさ密度と相対密度も示されている。
図6の実験結果から、1900℃の温度でPECPSを行った場合、ZrB2/B4Cコンポジットでは、相対密度99.8%以上の緻密なセラミックスが作製されるが、ZrB2からなる組成では70.3%の緻密化に留まることが確認された。 Figure 6 is a graph showing the sintered sample (50vol% ZrB 2 / 50vol% B 4 C), and sintering temperature, bulk density, a relationship between the relative density of the ZrB 2, bulk density and relative density Is also shown.
From the experimental results of FIG. 6, when performing PECPS at a temperature of 1900 ° C., the ZrB 2 / B 4 C composite, the relative density of 99.8% or more dense ceramic is prepared, with a composition consisting of ZrB 2 is It was confirmed that the density was only 70.3%.
図6の実験結果から、1900℃の温度でPECPSを行った場合、ZrB2/B4Cコンポジットでは、相対密度99.8%以上の緻密なセラミックスが作製されるが、ZrB2からなる組成では70.3%の緻密化に留まることが確認された。 Figure 6 is a graph showing the sintered sample (50vol% ZrB 2 / 50vol% B 4 C), and sintering temperature, bulk density, a relationship between the relative density of the ZrB 2, bulk density and relative density Is also shown.
From the experimental results of FIG. 6, when performing PECPS at a temperature of 1900 ° C., the ZrB 2 / B 4 C composite, the relative density of 99.8% or more dense ceramic is prepared, with a composition consisting of ZrB 2 is It was confirmed that the density was only 70.3%.
図7は、異なるZrB2組成を有した焼結サンプル(PECPS温度:1900℃)のXRDパターンであり、これらのXRDパターンのいずれにも、B4Cの生成を示すピーク(黒い菱形の位置のピーク)が認められ、このことから、1900℃の温度でPECPSを行った場合、ZrB2/B4C=40/60~70/30vol%の組成において、ZrB2+(4B+C)混合粉体からZrB2/B4Cコンポジットが生成することが確認された。
FIG. 7 shows the XRD patterns of sintered samples (PECPS temperature: 1900 ° C.) with different ZrB 2 compositions, and all of these XRD patterns show peaks (at the positions of the black diamonds) indicating the formation of B 4 C. Peak) was observed, and from this, when PECPS was performed at a temperature of 1900 ° C., from the ZrB 2 + (4B + C) mixed powder in the composition of ZrB 2 / B 4 C = 40/60 to 70/30 vol%. it was confirmed that ZrB 2 / B 4 C composite is produced.
図8は、異なるZrB2組成を有した焼結サンプル(PECPS温度:1900℃)の破断表面についてのSEM画像であり、各焼結体の相対密度も併記されている。
これらのSEM画像から、1900℃の温度でPECPSを行った場合、ZrB2の含有量が増加(40→70vol%)すると、相対密度が若干低下し(100%→99.35%)、ZrB2の結晶粒子径(色の薄い部分)が大きくなることが確認された。 8 is different from ZrB 2 composition had a sintered sample (PECPS Temperature: 1900 ° C.) is a SEM image of fracture surface, the relative density of each sintered body are also shown alongside.
From these SEM images, when PECPS was performed at a temperature of 1900 ° C., when the ZrB 2 content increased (40 → 70 vol%), the relative density decreased slightly (100% → 99.35%), and ZrB 2 It was confirmed that the crystal particle size (light-colored part) of was increased.
これらのSEM画像から、1900℃の温度でPECPSを行った場合、ZrB2の含有量が増加(40→70vol%)すると、相対密度が若干低下し(100%→99.35%)、ZrB2の結晶粒子径(色の薄い部分)が大きくなることが確認された。 8 is different from ZrB 2 composition had a sintered sample (PECPS Temperature: 1900 ° C.) is a SEM image of fracture surface, the relative density of each sintered body are also shown alongside.
From these SEM images, when PECPS was performed at a temperature of 1900 ° C., when the ZrB 2 content increased (40 → 70 vol%), the relative density decreased slightly (100% → 99.35%), and ZrB 2 It was confirmed that the crystal particle size (light-colored part) of was increased.
図9は、1900℃で焼結された焼結体の、ZrB2含有量と、相対密度、ZrB2結晶粒径の関係を示すグラフである。
図9のグラフは、PECPS温度が1900℃の場合、ZrB2の含有量が40~70vol%組成のZrB2/B4Cコンポジットにおいて、相対密度99%以上の緻密な焼結体が得られ、ZrB2の含有量が増加(40→70vol%)すると、ZrB2結晶粒径が大きくなることを示している。 FIG. 9 is a graph showing the relationship between the ZrB 2 content, the relative density, and the ZrB 2 crystal grain size of the sintered body sintered at 1900 ° C.
Graph of Figure 9, if PECPS temperature is 1900 ° C., in ZrB 2 / B 4 C composite content ZrB 2 is 40 ~ 70 vol% composition, relative density of 99% or more of the dense sintered body is obtained, It is shown that as the content of ZrB 2 increases (40 → 70 vol%), the crystal grain size of ZrB 2 increases.
図9のグラフは、PECPS温度が1900℃の場合、ZrB2の含有量が40~70vol%組成のZrB2/B4Cコンポジットにおいて、相対密度99%以上の緻密な焼結体が得られ、ZrB2の含有量が増加(40→70vol%)すると、ZrB2結晶粒径が大きくなることを示している。 FIG. 9 is a graph showing the relationship between the ZrB 2 content, the relative density, and the ZrB 2 crystal grain size of the sintered body sintered at 1900 ° C.
Graph of Figure 9, if PECPS temperature is 1900 ° C., in ZrB 2 / B 4 C composite content ZrB 2 is 40 ~ 70 vol% composition, relative density of 99% or more of the dense sintered body is obtained, It is shown that as the content of ZrB 2 increases (40 → 70 vol%), the crystal grain size of ZrB 2 increases.
図10は、1900℃で焼結された焼結体の機械的特性(ビッカース硬度Hvと破壊靭性値KIC)を示すグラフである。
この図10のグラフから、ZrB2の含有量が10/90~60/40vol%組成のZrB2/B4Cコンポジットは、ビッカース硬度Hvが23GPa以上で、破壊靭性値KICが9.0MPa・m1/2以上の緻密な焼結体であることがわかる。
又、図10のグラフは、ZrB2/B4C=20/80~50/50vol%組成のコンポジットが、ビッカース硬度Hv29GPa以上、破壊靭性値KIC9.3MPa・m1/2以上の緻密な焼結体であり、更に、ZrB2/B4C=30/70~40/60vol%組成のコンポジットが、ビッカース硬度Hv31GPa以上、破壊靭性値KIC9.8MPa・m1/2以上の緻密な焼結体であることを示している。
これに対し、ZrB2の破壊靭性値が3.5~4.2MPa・m1/2であり、B4Cの破壊靭性値が5.0MPa・m1/2以下であることから、本発明の製造方法を用いて得られるZrB2/B4Cコンポジットは、ZrB2、B4C単一相セラミックスよりも大きな破壊靭性値を有しており、機械的特性が優れていることが確認された。 Figure 10 is a graph showing the mechanical properties of the sintered body sintered at 1900 ° C. (Vickers hardness H v and fracture toughness value K IC).
From the graph of FIG. 10, ZrB 2 / B 4 C composite content ZrB 2 is 10/90 ~ 60 / 40vol% composition, Vickers hardness H v is at least 23 GPa, the fracture toughness value K IC 9.0 MPa -It can be seen that it is a dense sintered body of m 1/2 or more.
Further, in the graph of FIG. 10, the composite having a ZrB 2 / B 4 C = 20/80 to 50/50 vol% composition has a Vickers hardness H v 29 GPa or more and a fracture toughness value K IC 9.3 MPa · m 1/2 or more. It is a dense sintered body, and the composite with ZrB 2 / B 4 C = 30/70 to 40/60 vol% composition has a Vickers hardness of H v 31 GPa or more and a fracture toughness value of K IC 9.8 MPa · m 1/2. It shows that it is the above-mentioned dense sintered body.
On the other hand, the fracture toughness value of ZrB 2 is 3.5 to 4.2 MPa · m 1/2 , and the fracture toughness value of B 4 C is 5.0 MPa · m 1/2 or less. It was confirmed that the ZrB 2 / B 4 C composite obtained by using the above manufacturing method has a larger fracture toughness value than the ZrB 2 and B 4 C single-phase ceramics, and has excellent mechanical properties. It was.
この図10のグラフから、ZrB2の含有量が10/90~60/40vol%組成のZrB2/B4Cコンポジットは、ビッカース硬度Hvが23GPa以上で、破壊靭性値KICが9.0MPa・m1/2以上の緻密な焼結体であることがわかる。
又、図10のグラフは、ZrB2/B4C=20/80~50/50vol%組成のコンポジットが、ビッカース硬度Hv29GPa以上、破壊靭性値KIC9.3MPa・m1/2以上の緻密な焼結体であり、更に、ZrB2/B4C=30/70~40/60vol%組成のコンポジットが、ビッカース硬度Hv31GPa以上、破壊靭性値KIC9.8MPa・m1/2以上の緻密な焼結体であることを示している。
これに対し、ZrB2の破壊靭性値が3.5~4.2MPa・m1/2であり、B4Cの破壊靭性値が5.0MPa・m1/2以下であることから、本発明の製造方法を用いて得られるZrB2/B4Cコンポジットは、ZrB2、B4C単一相セラミックスよりも大きな破壊靭性値を有しており、機械的特性が優れていることが確認された。 Figure 10 is a graph showing the mechanical properties of the sintered body sintered at 1900 ° C. (Vickers hardness H v and fracture toughness value K IC).
From the graph of FIG. 10, ZrB 2 / B 4 C composite content ZrB 2 is 10/90 ~ 60 / 40vol% composition, Vickers hardness H v is at least 23 GPa, the fracture toughness value K IC 9.0 MPa -It can be seen that it is a dense sintered body of m 1/2 or more.
Further, in the graph of FIG. 10, the composite having a ZrB 2 / B 4 C = 20/80 to 50/50 vol% composition has a Vickers hardness H v 29 GPa or more and a fracture toughness value K IC 9.3 MPa · m 1/2 or more. It is a dense sintered body, and the composite with ZrB 2 / B 4 C = 30/70 to 40/60 vol% composition has a Vickers hardness of H v 31 GPa or more and a fracture toughness value of K IC 9.8 MPa · m 1/2. It shows that it is the above-mentioned dense sintered body.
On the other hand, the fracture toughness value of ZrB 2 is 3.5 to 4.2 MPa · m 1/2 , and the fracture toughness value of B 4 C is 5.0 MPa · m 1/2 or less. It was confirmed that the ZrB 2 / B 4 C composite obtained by using the above manufacturing method has a larger fracture toughness value than the ZrB 2 and B 4 C single-phase ceramics, and has excellent mechanical properties. It was.
図11は、1900℃で焼結された焼結体(ZrB2/B4C=30/70、40/60、50/50、60/40vol%組成)の高温曲げ強度測定の結果を示すグラフである。
この図11の結果から、ZrB2/B4C=40/60~60/40vol%のコンポジットの場合には、1000~1600℃の温度範囲において500MPa以上の高温曲げ強度を示すことが確認された。尚、30/70vol%、40/60vol%、50/50vol%組成のコンポジットの場合、室温での曲げ強度σbは約850MPaであり、モノリシックZrB2セラミックスについてこれまでに報告されている値(450MPa)よりも約2倍高いことがわかった。
上記の測定結果から、本発明のZrB2/B4Cコンポジットは、特にZrB2/B4C=40/60~60/40vol%の場合、1600℃までの高温下において大きな曲げ強度を有するものであることが確認された。 FIG. 11 is a graph showing the results of high temperature bending strength measurement of a sintered body (ZrB 2 / B 4 C = 30/70, 40/60, 50/50, 60/40 vol% composition) sintered at 1900 ° C. Is.
From the results of FIG. 11, it was confirmed that in the case of a composite of ZrB 2 / B 4 C = 40/60 to 60/40 vol%, a high temperature bending strength of 500 MPa or more is exhibited in a temperature range of 1000 to 1600 ° C. .. In the case of a composite having a composition of 30/70 vol%, 40/60 vol%, and 50/50 vol%, the bending strength σ b at room temperature is about 850 MPa, which is a value (450 MPa) reported so far for monolithic ZrB 2 ceramics. ) Was found to be about twice as high.
From the above measurement results, the ZrB 2 / B 4 C composite of the present invention has a large bending strength at a high temperature of up to 1600 ° C., especially when ZrB 2 / B 4 C = 40/60 to 60/40 vol%. It was confirmed that.
この図11の結果から、ZrB2/B4C=40/60~60/40vol%のコンポジットの場合には、1000~1600℃の温度範囲において500MPa以上の高温曲げ強度を示すことが確認された。尚、30/70vol%、40/60vol%、50/50vol%組成のコンポジットの場合、室温での曲げ強度σbは約850MPaであり、モノリシックZrB2セラミックスについてこれまでに報告されている値(450MPa)よりも約2倍高いことがわかった。
上記の測定結果から、本発明のZrB2/B4Cコンポジットは、特にZrB2/B4C=40/60~60/40vol%の場合、1600℃までの高温下において大きな曲げ強度を有するものであることが確認された。 FIG. 11 is a graph showing the results of high temperature bending strength measurement of a sintered body (ZrB 2 / B 4 C = 30/70, 40/60, 50/50, 60/40 vol% composition) sintered at 1900 ° C. Is.
From the results of FIG. 11, it was confirmed that in the case of a composite of ZrB 2 / B 4 C = 40/60 to 60/40 vol%, a high temperature bending strength of 500 MPa or more is exhibited in a temperature range of 1000 to 1600 ° C. .. In the case of a composite having a composition of 30/70 vol%, 40/60 vol%, and 50/50 vol%, the bending strength σ b at room temperature is about 850 MPa, which is a value (450 MPa) reported so far for monolithic ZrB 2 ceramics. ) Was found to be about twice as high.
From the above measurement results, the ZrB 2 / B 4 C composite of the present invention has a large bending strength at a high temperature of up to 1600 ° C., especially when ZrB 2 / B 4 C = 40/60 to 60/40 vol%. It was confirmed that.
本発明の製造方法では、高融点で、難焼結性物質であるZrB2粉体に、(3.6~6.5):1のモル比率の非晶質BとCの混合物を添加してパルス通電加圧焼結すると、ZrB2/B4Cコンポジットが合成同時焼結により製造でき、ZrB2/B4C=10/90~60/40vol%の組成にて得られたコンポジットは高い相対密度を有し、高硬度・高破壊靱性を有している。
本発明のZrB2/B4Cコンポジットは、耐熱性の点でも優れた素材であるので、高硬度・高破壊靱性、耐熱性が求められる各種の用途、例えば高温タービンの内壁材や、核融合炉の炉材や、大気圏外超音速航空機の外壁材等に用いられる超高温耐熱セラミックス(UHTC)として有用である。 In the production method of the present invention, a high melting point, the ZrB 2 powder is a sintering-resistant material, (3.6 to 6.5): A mixture of amorphous B and C of 1 molar ratio When pulsed energization and pressure sintering is performed, a ZrB 2 / B 4 C composite can be produced by synthetic simultaneous sintering, and the composite obtained with a composition of ZrB 2 / B 4 C = 10/90 to 60/40 vol% is high. It has a relative density and has high hardness and high fracture toughness.
ZrB 2 / B 4 C composite of the present invention, since a material which is excellent in terms of heat resistance, various applications where high hardness and high fracture toughness, heat resistance is desired, for example, the inner wall material and the high-temperature turbine, Fusion It is useful as ultra-high temperature heat-resistant ceramics (UHTC) used for furnace materials of furnaces and outer wall materials of ultra-sonic aircraft outside the atmosphere.
本発明のZrB2/B4Cコンポジットは、耐熱性の点でも優れた素材であるので、高硬度・高破壊靱性、耐熱性が求められる各種の用途、例えば高温タービンの内壁材や、核融合炉の炉材や、大気圏外超音速航空機の外壁材等に用いられる超高温耐熱セラミックス(UHTC)として有用である。 In the production method of the present invention, a high melting point, the ZrB 2 powder is a sintering-resistant material, (3.6 to 6.5): A mixture of amorphous B and C of 1 molar ratio When pulsed energization and pressure sintering is performed, a ZrB 2 / B 4 C composite can be produced by synthetic simultaneous sintering, and the composite obtained with a composition of ZrB 2 / B 4 C = 10/90 to 60/40 vol% is high. It has a relative density and has high hardness and high fracture toughness.
Claims (6)
- ビッカース硬度Hvが23GPa以上で、破壊靭性値KICが9.0MPa・m1/2以上であり、ホウ化ジルコニウム/炭化ホウ素の理論上の体積比率が10/90~60/40vol%であることを特徴とするホウ化ジルコニウム/炭化ホウ素コンポジット。 The Vickers hardness H v is 23 GPa or more, the fracture toughness value K IC is 9.0 MPa · m 1/2 or more, and the theoretical volume ratio of zirconium borate / boron carbide is 10/90 to 60/40 vol%. A zirconium boride / boron carbide composite.
- 前記ホウ化ジルコニウム/炭化ホウ素の理論上の体積比率が40/60~60/40vol%であり、1000~1600℃における曲げ強度σbが500MPa以上であることを特徴とする請求項1に記載のホウ化ジルコニウム/炭化ホウ素コンポジット。 The first aspect of the present invention, wherein the theoretical volume ratio of zirconium borate / boron carbide is 40/60 to 60/40 vol%, and the bending strength σ b at 1000 to 1600 ° C. is 500 MPa or more. Zirconium boro / boron carbide composite.
- ビッカース硬度Hvが29GPa以上で、破壊靭性値KICが9.3MPa・m1/2以上であり、ホウ化ジルコニウム/炭化ホウ素の理論上の体積比率が20/80~50/50vol%であることを特徴とするホウ化ジルコニウム/炭化ホウ素コンポジット。 The Vickers hardness H v is 29 GPa or more, the fracture toughness value K IC is 9.3 MPa · m 1/2 or more, and the theoretical volume ratio of zirconium borate / boron carbide is 20/80 to 50/50 vol%. A zirconium boride / boron carbide composite.
- ホウ化ジルコニウム/炭化ホウ素コンポジットを製造するための方法であって、
非晶質ホウ素粉体と非晶質炭素粉体をB:C=(3.6~6.5):1のモル比となるように混合を行ない、非晶質ホウ素と非晶質炭素とから成る出発原料を調製する工程と、
ホウ化ジルコニウム粉体を、前記出発原料から合成される炭化ホウ素との理論上の体積比率がZrB2/B4C=10/90~60/40vol%となるように秤量し、前記出発原料と混合して、混合粉を得る工程と、
前記混合粉を用いて金型成形を行い、所望の形状を有した成形体を得、得られた成形体を焼結してホウ化ジルコニウム/炭化ホウ素コンポジットを合成同時焼結する工程
を含むことを特徴とするホウ化ジルコニウム/炭化ホウ素コンポジットの製造方法。 A method for producing zirconium boroboroides / boron carbide composites.
Amorphous boron powder and amorphous carbon powder are mixed so as to have a molar ratio of B: C = (3.6 to 6.5): 1, and amorphous boron and amorphous carbon are mixed. The process of preparing a starting material consisting of
The zirconium boborate powder was weighed so that the theoretical volume ratio with the boron carbide synthesized from the starting material was ZrB 2 / B 4 C = 10/90 to 60/40 vol%, and the starting material was used. The process of mixing to obtain a mixed powder,
A step of performing mold molding using the mixed powder to obtain a molded product having a desired shape, sintering the obtained molded product, and synthesizing and simultaneously sintering a zirconium boride / boron carbide composite is included. A method for producing a zirconium boride / boron carbide composite. - 前記焼結が、10Pa以下の真空中、1800~2000℃の焼結温度、10~100MPaの加圧力および5~30分の保持時間の条件でのパルス通電加圧焼結であることを特徴とする請求項4に記載のホウ化ジルコニウム/炭化ホウ素コンポジットの製造方法。 The feature is that the sintering is pulse energization pressure sintering under the conditions of a sintering temperature of 1800 to 2000 ° C., a pressing force of 10 to 100 MPa, and a holding time of 5 to 30 minutes in a vacuum of 10 Pa or less. The method for producing a zirconium borohydride / boron carbide composite according to claim 4.
- 前記ZrB2とB4Cの理論上の体積比率が20/80~50/50vol%の範囲であることを特徴とする請求項4又は5に記載のホウ化ジルコニウム/炭化ホウ素コンポジットの製造方法。 The method for producing a zirconium borohydride / boron carbide composite according to claim 4 or 5, wherein the theoretical volume ratio of ZrB 2 and B 4 C is in the range of 20/80 to 50/50 vol%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021511212A JP7414300B2 (en) | 2019-04-02 | 2020-02-20 | Zirconium boride/boron carbide composite and its manufacturing method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-070753 | 2019-04-02 | ||
JP2019070753 | 2019-04-02 | ||
JP2019154503 | 2019-08-27 | ||
JP2019-154503 | 2019-08-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020202878A1 true WO2020202878A1 (en) | 2020-10-08 |
Family
ID=72667806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/006751 WO2020202878A1 (en) | 2019-04-02 | 2020-02-20 | Zirconium boride/boron carbide composite and method for manufacturing same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7414300B2 (en) |
WO (1) | WO2020202878A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112522546A (en) * | 2020-10-26 | 2021-03-19 | 中北大学 | Preparation of B by using SLM technology4Method for C reinforced aluminium base composite material |
RU2812539C1 (en) * | 2023-06-02 | 2024-01-30 | Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет" | Method for manufacturing composite ceramics boron carbide - zirconium diboride |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62153166A (en) * | 1985-12-27 | 1987-07-08 | 旭硝子株式会社 | B4c base composite sintered body |
JPH01308874A (en) * | 1988-06-06 | 1989-12-13 | Mitsubishi Heavy Ind Ltd | Sintered compact having excellent conductivity and high hardness and toughness |
JPH09100165A (en) * | 1995-10-03 | 1997-04-15 | Mitsubishi Materials Corp | Boride ceramic and its production |
CN102515772A (en) * | 2011-12-28 | 2012-06-27 | 牡丹江金钢钻碳化硼有限公司 | Boron carbide-zirconium boride composite ceramic material and preparation method thereof |
CN103992113A (en) * | 2014-04-28 | 2014-08-20 | 广东工业大学 | Preparation method for B4C-ZrB2 multiphase ceramic material |
JP2015151323A (en) * | 2014-02-18 | 2015-08-24 | 学校法人同志社 | Boron carbide/titanium boride composite ceramic and method for producing the same |
-
2020
- 2020-02-20 WO PCT/JP2020/006751 patent/WO2020202878A1/en active Application Filing
- 2020-02-20 JP JP2021511212A patent/JP7414300B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62153166A (en) * | 1985-12-27 | 1987-07-08 | 旭硝子株式会社 | B4c base composite sintered body |
JPH01308874A (en) * | 1988-06-06 | 1989-12-13 | Mitsubishi Heavy Ind Ltd | Sintered compact having excellent conductivity and high hardness and toughness |
JPH09100165A (en) * | 1995-10-03 | 1997-04-15 | Mitsubishi Materials Corp | Boride ceramic and its production |
CN102515772A (en) * | 2011-12-28 | 2012-06-27 | 牡丹江金钢钻碳化硼有限公司 | Boron carbide-zirconium boride composite ceramic material and preparation method thereof |
JP2015151323A (en) * | 2014-02-18 | 2015-08-24 | 学校法人同志社 | Boron carbide/titanium boride composite ceramic and method for producing the same |
CN103992113A (en) * | 2014-04-28 | 2014-08-20 | 广东工业大学 | Preparation method for B4C-ZrB2 multiphase ceramic material |
Non-Patent Citations (3)
Title |
---|
RUJIE HE ET AL.: "Effects of ZrB2 contents on the mechanical properties and thermal shock resistance of B4C-ZrB2 ceramics", MATERIALS AND DESIGN, vol. 71, 2015, pages 56 - 61, XP055746272 * |
S.G.HUANG ET AL.: "Powder synthesis and densification of ultrafine B4C-ZrB2 composite by pulsed electrical current sintering", JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, vol. 34, 2014, pages 1923 - 1933, XP055746274 * |
WEI-MING GUO ET AL.: "Three-step reactive hot pressing of B4C-ZrB2 ceramics", JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, vol. 36, 2016, pages 951 - 957, XP029373543, DOI: 10.1016/j.jeurceramsoc.2015.11.022 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112522546A (en) * | 2020-10-26 | 2021-03-19 | 中北大学 | Preparation of B by using SLM technology4Method for C reinforced aluminium base composite material |
CN112522546B (en) * | 2020-10-26 | 2022-02-08 | 中北大学 | Preparation of B by using SLM technology4Method for C reinforced aluminium base composite material |
RU2812539C1 (en) * | 2023-06-02 | 2024-01-30 | Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет" | Method for manufacturing composite ceramics boron carbide - zirconium diboride |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020202878A1 (en) | 2020-10-08 |
JP7414300B2 (en) | 2024-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhou et al. | Preparation of Ti3AlC2 and Ti2AlC by self-propagating high-temperature synthesis | |
JP6344844B2 (en) | Boron carbide / titanium boride composite ceramics and method for producing the same | |
Sun et al. | Ternary compound Ti3SiC2: part I. Pulse discharge sintering synthesis | |
JP5930317B2 (en) | Fabrication method of high strength toughness ZrO2-Al2O3 solid solution ceramics | |
Kermani et al. | The effect of mechanical alloying on microstructure and mechanical properties of MoSi2 prepared by spark plasma sintering | |
Nassajpour-Esfahani et al. | Towards high strength MgAl2O4/Si3N4 transparent nanocomposite, using spark plasma sintering | |
Emami et al. | Effect of composition on spark plasma sintering of ZrB2–SiC–ZrC nanocomposite synthesized by MASPSyn | |
JP6436905B2 (en) | Boron carbide ceramics and manufacturing method thereof | |
CN108610055A (en) | A kind of method that low-temp liquid-phase sintering prepares compact silicon nitride ceramics | |
WO2020202878A1 (en) | Zirconium boride/boron carbide composite and method for manufacturing same | |
JP4809096B2 (en) | TiB2-based Ti-Si-C composite ceramics and method for producing sintered body thereof | |
JP2011088804A (en) | Method for producing titanium silicon carbide ceramics | |
Sun et al. | Synthesis and consolidation of ternary compound Ti3SiC2 from green compact of mixed powders | |
JP4362582B2 (en) | Method for producing sintered metal ceramic titanium silicon carbide | |
Xu et al. | Physicochemical differences after densifying radio frequency plasma sprayed hydroxyapatite powders using spark plasma and conventional sintering techniques | |
Davodi et al. | Sinterability and characterization of Ag/Al2O3 metal and ceramic matrix composites processed by mechanical milling | |
JP2735152B2 (en) | Titanium nitride sintered body using aluminum as assistant and method for producing the same | |
Michalski et al. | Synthesis and characterization of cBN/WCCo composites obtained by the pulse plasma sintering (PPS) method | |
JP2016147780A (en) | Conductive high strength and high hardness composite ceramic and method of making the same | |
JPH02275772A (en) | Production of aluminum nitride-base sintered material | |
JP3992474B2 (en) | Method for producing boron carbide-aluminum nitride sintered body | |
JP2014141359A (en) | Sialon-base sintered compact | |
Ke et al. | Synthesis of 30 vol% TiB2 Containing Fe–5Ti Matrix Composites with High Thermal Conductivity and Hardness | |
JP5565724B2 (en) | Method for producing Al2O3 / Mo2N composite by capsule-free hot isostatic pressing | |
JP2008297188A (en) | Method of manufacturing tungsten-addition zirconium boride |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20785186 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021511212 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20785186 Country of ref document: EP Kind code of ref document: A1 |