[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH01308874A - Sintered compact having excellent conductivity and high hardness and toughness - Google Patents

Sintered compact having excellent conductivity and high hardness and toughness

Info

Publication number
JPH01308874A
JPH01308874A JP63137230A JP13723088A JPH01308874A JP H01308874 A JPH01308874 A JP H01308874A JP 63137230 A JP63137230 A JP 63137230A JP 13723088 A JP13723088 A JP 13723088A JP H01308874 A JPH01308874 A JP H01308874A
Authority
JP
Japan
Prior art keywords
sintered compact
toughness
hardness
conductivity
high hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63137230A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kuwabara
敏行 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP63137230A priority Critical patent/JPH01308874A/en
Publication of JPH01308874A publication Critical patent/JPH01308874A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To enable provision of the title sintered compact consisting essentially of boron carbide capable of readily preparing also in complicate shape, by adding titanium boride and zirconium boride to boron carbide at specific amounts. CONSTITUTION:The aimed sintered compact containing >=11wt.% TiB2 or/and ZrB2 and <=89wt.% B4C. The TiB2 and ZrB2 have both melting point and hardness comparable to that of B4C and are effective to preparing B4C ceramics reduced in fault and simultaneously enable processing of sintered compact because of having excellent conductivity. Conductivity of the sintered compact is insufficient in <=10% amounts of the both compounds or <=10% amount of either one compound and the sintered compact contains preferably <=70% and especially preferably <=50% of the above-mentioned compounds in order to secure hardness and toughness of B4C. In the case of B4C content of >=90%, conductivity of the sintered compact is reduced, though B4C is a main ingredient required for obtaining high hardness ad toughness.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は導電性に優れた高硬度、高靭性焼結体に関し、
更に詳しくはウオタージェットポングの高硬度、高耐摩
耗性を要し、かつ細孔径をもつアブレシプルノズ〜に適
用できる他に、高精度に加工を要する耐摩耗製品、耐摩
耗性を要する弁体、ノズル、機械治工具、建設機械部品
、軸受、ベアリング及びこれらを適用する機器などに適
用できるB、C(ボロンカーバイド)を主体とする焼結
体に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a high hardness and high toughness sintered body with excellent electrical conductivity.
In more detail, it can be applied to abrasive nozzles that require high hardness, high wear resistance, and pore diameter of water jet pumps, as well as wear-resistant products that require highly precise machining, valve bodies that require wear resistance, This invention relates to a sintered body mainly composed of B and C (boron carbide), which can be applied to nozzles, machine jigs and tools, construction machine parts, bearings, and equipment to which these are applied.

〔従来の技術〕[Conventional technology]

B、Cは密度比が低い(96%以下)と硬度靭性が悪化
し期待される耐摩耗性は得られない。
For B and C, if the density ratio is low (96% or less), the hardness and toughness deteriorate and the expected wear resistance cannot be obtained.

従って高密度比(97%以上)を得るだめ、ホットプレ
スを用いて焼結しているが、この焼結法では複雑形状部
品の焼結はできず、加工も困難なため、単純形状品を対
象としたものに限られていた。
Therefore, in order to obtain a high density ratio (over 97%), hot press is used for sintering, but this sintering method cannot sinter parts with complex shapes and is difficult to process, so products with simple shapes cannot be sintered. It was limited to what was targeted.

複雑形状品は常圧焼結法などによって製造されているが
、これらの方法では高密度のものは得られず、硬度、靭
性の低下を来たすため、耐摩耗材としてのメリットは少
ない。従って我国では、B4Cは中性子吸収能を応用し
た原子力用機能材として主に利用されているに過ぎない
Products with complex shapes are manufactured by pressureless sintering, etc., but these methods do not provide high density products and result in a decrease in hardness and toughness, so they have little merit as wear-resistant materials. Therefore, in our country, B4C is mainly used as a functional material for nuclear power using its neutron absorption ability.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

B4Cの理論密度(比重2..52 t/3” )値を
もった焼結体は、ヌープ硬度5500 、破壊靭性Ki
C)5kgf/m’ 、電気伝導度1〜10−LΩ−備
の物性値を有している。しかしながら、 ■ 理論密度に近い高密度比の焼結体はホットプレス法
等の加圧焼結法によらねばならない。
The sintered body with the theoretical density (specific gravity 2.52 t/3") value of B4C has a Knoop hardness of 5500 and a fracture toughness Ki.
C) It has physical property values of 5 kgf/m' and an electrical conductivity of 1 to 10 LΩ. However, (1) A sintered body with a high density ratio close to the theoretical density must be produced by a pressure sintering method such as a hot press method.

■ ホットプレス法では、単純形状の焼結体しか得られ
々い。
■ The hot press method can only produce sintered bodies with simple shapes.

■ 単純形状焼結体では用途が限られる。■ Simple-shaped sintered bodies have limited applications.

■ 単純形状焼結体を複雑形状品に加工するため機械加
工法を適用すれば、材質が高硬度なため、高価な加工と
なる。
■ If a machining method is applied to process a simple-shaped sintered body into a complex-shaped product, the processing becomes expensive because the material is highly hard.

■ B4Cはセラミックスとしては、良電導体であり、
放電加工法等電子加工法も可能であるが経済的にこれら
の工法を適用するには電気伝導度が不足である。
■ B4C is a good conductor as a ceramic,
Electronic machining methods such as electrical discharge machining are also possible, but the electrical conductivity is insufficient to economically apply these methods.

という問題点がある。There is a problem.

本発明は上記事実に鑑み、複雑形状品をも容易に製作す
ることができるB4Cを主体とする導電性に優れた高硬
度、高靭性、焼結体を提供しようとするものである。
In view of the above-mentioned facts, the present invention aims to provide a high hardness, high toughness, and sintered body with excellent electrical conductivity, which is mainly made of B4C and can easily be manufactured into products with complex shapes.

〔問題点を解1失するための手段〕 本発明はTi%又は/及びZrB111重量%以上とB
、CB 9重量%以下とを含有してなることを特徴とす
る導電性に優れた高硬度、高靭性焼結体である。
[Means for solving the problems] The present invention provides Ti% or/and ZrB of 111% by weight or more and B.
This is a high hardness, high toughness sintered body with excellent electrical conductivity, characterized by containing 9% by weight or less of CB.

TiB2(ホウ化チタン)、Zr1% (ホウ化ジルコ
ニウム)は共にB4Cと月程度の1点と硬度とを合わせ
もち、欠陥の少ないB4Cセラミックス焼結体を作るの
に有効であるばかシでなく、導電性に優れるので焼結体
の加工が可能となる。両化合物ともあわせて10重量%
以下又は単独で10重量%以下では導電性が不十分であ
るので少々くとも11重量%以上含有させる必要がある
。々お、これら化合物はB4Cの硬度、靭性を確保する
ためには70重量%以下が好ましく、更に50重量%以
下が一層好ましい。
TiB2 (titanium boride) and Zr1% (zirconium boride) both have a hardness that is about the same as that of B4C, and are effective in making B4C ceramic sintered bodies with few defects. Since it has excellent conductivity, it is possible to process sintered bodies. Both compounds together 10% by weight
If it is less than 10% by weight or less than 10% by weight, the conductivity is insufficient, so it is necessary to contain at least 11% by weight or more. In order to ensure the hardness and toughness of B4C, the content of these compounds is preferably 70% by weight or less, and more preferably 50% by weight or less.

B4Cは高硬度、高靭性を得るための主成分とがるもの
であるが、90重量X以上では導電性が低下するので8
9重量%以下にすべきである。
B4C is a sharp main component to obtain high hardness and high toughness, but if the weight exceeds 90X, the conductivity will decrease, so
It should be less than 9% by weight.

なお、十分々硬度、靭性を得るためには、30重量%以
上が好ましく、更に50重1%以上であることが一層好
ましい。
In order to obtain sufficient hardness and toughness, the content is preferably 30% by weight or more, and more preferably 50% by weight or more.

本発明の導電性に優れた高硬度、高靭性の焼結体を得る
には、上記で説明したように配合し九B4CとTiB、
又は/ ZrB1とを、例えば1800〜2500°C
,10”k17/国2以上の加圧条件で行うホットプレ
スによる加圧焼結、または例えば3000°C以上の温
度、10−” kg/al以下の条件で行うプラズマ焼
結などによって焼結することによって行われる。
In order to obtain the high hardness, high toughness sintered body with excellent conductivity of the present invention, 9B4C and TiB,
or / ZrB1 at, for example, 1800 to 2500°C
Sintering is performed by pressure sintering using a hot press under pressure conditions of , 10"k17/Country 2 or higher, or plasma sintering performed at a temperature of 3000°C or higher and a pressure of 10-"kg/al or lower, for example. It is done by

〔作用〕[Effect]

B4Cの高密度焼結体の電気伝導度が10−10−α程
度であるのに対し、これにTiB、又は/及びZ r 
B2を添加したB4C’焼結体のそれは10−”〜10
−’Ω−C(この数値はNi−Cr合金、18−8ステ
ンv y 61なみの値)となり、放電加工法による加
工が十分なものとなる。又、TiB2又は/及びZrB
2の添加によるB4C焼結体の硬度、靭性の低下は殆ん
どない。
While the electrical conductivity of a high-density sintered body of B4C is about 10-10-α, TiB or/and Z r
That of the B4C' sintered body with B2 added is 10-"~10
-'Ω-C (this value is equivalent to the value of Ni-Cr alloy, 18-8 stainless v y 61), and the machining by electric discharge machining becomes sufficient. Also, TiB2 or/and ZrB
There is almost no decrease in the hardness and toughness of the B4C sintered body due to the addition of 2.

〔実施例〕〔Example〕

以下、本発明の実施例をあげ、本発明の効果につき更に
詳述する。
EXAMPLES Hereinafter, the effects of the present invention will be explained in more detail by giving examples of the present invention.

B4CにTiB、又はZrB1の量を種々変化して添加
して、ホットプレスで1900 ”01110kg/i
の高温、高圧下で焼結した場合の電気伝導度を第1図に
示す。第1図中、■はZrB2を添加した場合、■はT
iB、を添加した場合、■は対照として18−8オーヌ
テナイト系ステンレス哨の場合を夫々示す。これよりZ
rB2 、 TiI%の添加量を増せば焼結体の電気伝
導度は18−8オーステナイト系ステンレス鋼に近づく
ことが判る。
Various amounts of TiB or ZrB1 were added to B4C, and 1900"01110kg/i was produced by hot pressing.
Figure 1 shows the electrical conductivity when sintered at high temperature and high pressure. In Figure 1, ■ indicates when ZrB2 is added, and ■ indicates T.
When iB was added, ■ indicates the case of 18-8 autenite stainless steel as a control. From this Z
It can be seen that the electrical conductivity of the sintered body approaches that of 18-8 austenitic stainless steel as the amounts of rB2 and TiI% are increased.

比較例として、B4Cのみをホットプレスで1700°
C,90kg/α2の焼結条件で焼結して得た焼結体と
、上記実施例の焼結体を比較して、夫々の物性を比較し
て下表に示す。
As a comparative example, only B4C was hot pressed at 1700°.
The sintered body obtained by sintering under the sintering conditions of C, 90 kg/α2 was compared with the sintered body of the above example, and the physical properties of each are shown in the table below.

i:平均値 〔応用例〕 TiB、を添加したB4Cのホットプレス焼結体を放電
加工することによって、容易に1.0fiの怪をもつノ
ズルを製作することができた。
i: Average value [Application example] By electrical discharge machining a hot-pressed sintered body of B4C to which TiB was added, a nozzle with a diameter of 1.0 fi could be easily manufactured.

〔発明の効果〕〔Effect of the invention〕

1、 本発明により、高性能耐摩耗(超耐摩耗)製品へ
のB、C焼結晶の適用が拡大される。
1. The present invention expands the application of B and C sintered crystals to high-performance wear-resistant (super wear-resistant) products.

λ 従来品よりも硬度向上、1耐摩耗性向上、並びに加
工精度向上により、ウオタージェットポンプ等のノズル
性能が向上し、機器の性能及び信頼性が向上する。
λ Improved hardness, improved wear resistance, and improved processing accuracy compared to conventional products improve nozzle performance for water jet pumps, etc., and improve equipment performance and reliability.

五 vi雑形状の耐摩耗材への適用も拡大されB4Cの
需要が拡大する。
5) The demand for B4C will expand as its application to wear-resistant materials with irregular shapes expands.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はB4Cに添加するZrB2 、 TiB1の添
加量と得られた焼結体の直裁伝導度の関係を示す図表で
ある。
FIG. 1 is a chart showing the relationship between the amounts of ZrB2 and TiB1 added to B4C and the direct conductivity of the obtained sintered body.

Claims (1)

【特許請求の範囲】[Claims] TiB_2又は/及びZrB_211重量%以上とB_
4C89重量%以下とを含有してなることを特徴とする
導電性に優れた高硬度、高靭性焼結体。
TiB_2 or/and ZrB_2 11% or more by weight and B_
A high hardness, high toughness sintered body with excellent electrical conductivity, characterized by containing 89% by weight or less of 4C.
JP63137230A 1988-06-06 1988-06-06 Sintered compact having excellent conductivity and high hardness and toughness Pending JPH01308874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63137230A JPH01308874A (en) 1988-06-06 1988-06-06 Sintered compact having excellent conductivity and high hardness and toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63137230A JPH01308874A (en) 1988-06-06 1988-06-06 Sintered compact having excellent conductivity and high hardness and toughness

Publications (1)

Publication Number Publication Date
JPH01308874A true JPH01308874A (en) 1989-12-13

Family

ID=15193823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63137230A Pending JPH01308874A (en) 1988-06-06 1988-06-06 Sintered compact having excellent conductivity and high hardness and toughness

Country Status (1)

Country Link
JP (1) JPH01308874A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214075A (en) * 1990-12-12 1992-08-05 Koichi Niihara Boron carbide-base combined sintered body and its manufacture
WO2003040060A1 (en) * 2001-11-06 2003-05-15 National Institute Of Advanced Industrial Science And Technology Boron carbide based sintered compact and method for preparation thereof
JP2009143777A (en) * 2007-12-17 2009-07-02 Denki Kagaku Kogyo Kk Boron carbide-titanium diboride sintered compact, and production method therefor
WO2020202878A1 (en) * 2019-04-02 2020-10-08 学校法人同志社 Zirconium boride/boron carbide composite and method for manufacturing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214075A (en) * 1990-12-12 1992-08-05 Koichi Niihara Boron carbide-base combined sintered body and its manufacture
WO2003040060A1 (en) * 2001-11-06 2003-05-15 National Institute Of Advanced Industrial Science And Technology Boron carbide based sintered compact and method for preparation thereof
US7417002B2 (en) 2001-11-06 2008-08-26 National Institute Of Advanced Industrial Science And Technology Boron carbide based sintered compact and method for preparation thereof
US7442661B2 (en) 2001-11-06 2008-10-28 National Institute Of Advanced Industrial Science And Technology Boron carbide based sintered compact and method for preparation thereof
JP2009143777A (en) * 2007-12-17 2009-07-02 Denki Kagaku Kogyo Kk Boron carbide-titanium diboride sintered compact, and production method therefor
WO2020202878A1 (en) * 2019-04-02 2020-10-08 学校法人同志社 Zirconium boride/boron carbide composite and method for manufacturing same
JPWO2020202878A1 (en) * 2019-04-02 2020-10-08

Similar Documents

Publication Publication Date Title
US4022584A (en) Sintered cermets for tool and wear applications
JP3554379B2 (en) Pressureless sintering method of whisker reinforced alumina composite
JPS61197464A (en) Manufacture of sintered formed body
CN104609865A (en) Preparation method of silicon nitride-based conductive ceramic and molding method of silicon nitride-based conductive ceramic cutting tool
CN106216687B (en) A kind of gradient tungsten carbide-base micro-nano complex cutter material and preparation method thereof
CN101008064A (en) Whisker plasticizing tungsten carbide-cobalt base hard alloy material and its preparation process
JP2008538228A (en) Intermetallic bonded diamond composite composition and method of forming an article from the composition
CN1102555C (en) High-antiwear composite ceramet material for cutting tools
JPH01308874A (en) Sintered compact having excellent conductivity and high hardness and toughness
JPH0627036B2 (en) High strength and high toughness TiB ▲ Bottom 2 ▼ Ceramics
CA1070717A (en) Sintered cermets for tool and wear applications
JPS62153166A (en) B4c base composite sintered body
Rangaraj et al. Reaction, densification, and mechanical properties of Ti2AlCx ceramics at low applied pressure and temperature
JPH02217359A (en) Titanium carbon nitride based toughened ceramics
CN106830941A (en) Al2O3With the covalent key compound sintered body of multicomponent magnesium-yttrium-transition metal and preparation method thereof
Graziani et al. Production and characteristics of B4C/TiB2 composites
CN109317681B (en) Titanium nitride reinforced iron-based composite layer/steel laminated wear-resistant material and preparation method thereof
CN1065058A (en) Reinforcing of carbon-ceramics composite material with flexibilizer for coystal whiskers
JPH07502072A (en) Boron carbide-copper cermet and its manufacturing method
JP3297535B2 (en) Cubic boron nitride sintered body
CN1152759C (en) Ceramic-carbide compound cutter and technology thereof
JPS62187173A (en) Bite chip for machining iron material
Cutler Pressureless-Sintered Al sub 2 O sub 3--TiC Composites
CN108624795A (en) A kind of sintering method of cermet
Yang et al. Fabrication of WC matrix composite tool material and its cutting performance in machining titanium alloys