WO2020262511A1 - 芯鞘複合糸及び布帛 - Google Patents
芯鞘複合糸及び布帛 Download PDFInfo
- Publication number
- WO2020262511A1 WO2020262511A1 PCT/JP2020/024943 JP2020024943W WO2020262511A1 WO 2020262511 A1 WO2020262511 A1 WO 2020262511A1 JP 2020024943 W JP2020024943 W JP 2020024943W WO 2020262511 A1 WO2020262511 A1 WO 2020262511A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- core
- sheath
- composite yarn
- sheath composite
- yarn
- Prior art date
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/12—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent
Definitions
- the present invention relates to a core-sheath composite yarn and a fabric having hygroscopicity.
- Synthetic fibers made of thermoplastic resins such as polyamide and polyester are widely used in clothing and industrial applications because of their excellent strength, chemical resistance, and heat resistance.
- polyamide fibers have excellent hygroscopicity in addition to their unique softness, high tensile strength, color development during dyeing, and high heat resistance, and are widely used in applications such as innerwear and sportswear. ..
- polyamide fibers do not have sufficient hygroscopicity as compared with natural fibers such as cotton, and have problems such as stuffiness and stickiness, and are inferior to natural fibers in terms of comfort. ..
- the fiber structure a core-sheath structure
- a core-sheath structure with a highly hygroscopic thermoplastic resin as the core and a thermoplastic resin with excellent mechanical properties as the sheath, moisture absorption performance and mechanical properties are achieved. There are many studies to achieve both.
- Patent Document 1 describes a core-sheath composite cross-sectional fiber having a thermoplastic polymer as a core and a fiber-forming polyamide as a sheath, and the main component of the thermoplastic polymer forming the core is a polyether ester.
- a core-sheath composite cross-section fiber which is an amide copolymer and has an excellent moisture absorption / desorption performance, characterized in that the ratio of the core portion is 5 to 50% by weight of the total weight of the composite fiber, is disclosed.
- Patent Document 2 a polyalkylene oxide modified product obtained by reacting a polyalkylene oxide with a polyol and an aliphatic diisocyanate compound is used as a moisture absorbing / releasing component, and the fiber structure component is polyamide, which is a hindered amine type or phosphite.
- the fiber structure component is polyamide, which is a hindered amine type or phosphite.
- the sheath polymer is a polyamide and the core polymer is a polyether ester amide copolymer, and by suppressing the thermal deterioration of the core polymer, it is soft even if washing and drying are repeated.
- a core-sheath composite yarn capable of maintaining texture, durability and moisture absorption / desorption performance is disclosed.
- the sheath polymer is polyester
- the core polymer is polyester and polyoxyethylene-based polyether
- a specific amount of half-hindered phenol compound is used as an antioxidant to reduce the amount of alkali.
- Patent Document 1 Although the fibers described in Patent Document 1 have moisture absorption and desorption properties, the core component is thermally deteriorated by continuous use of a household washer / dryer, so that the fibers are hardened and the texture of the fabric is hardened. There is a problem that durability and moisture absorption / desorption performance are deteriorated. In addition, although there is a description of an antioxidant, there is no suggestion about a specific formulation.
- Patent Document 2 Although the fibers described in Patent Document 2 have examples of hindered amines and phosphite-based heat-resistant agents, they can maintain whiteness, but the core component is thermally deteriorated by continuous use of a household washer / dryer. There is a problem that the texture becomes hard and the durability and the moisture absorption / desorption performance are deteriorated.
- Patent Document 3 have moisture absorption and desorption properties, and can maintain a soft texture, durability and moisture absorption and desorption performance without heat deterioration due to continuous use of a household washer / dryer, but over time. There was a problem that yellowing progressed, and further improvement was required.
- the fiber described in Patent Document 4 has a polyester sheath polymer, and half-hindered phenol is inactivated by washing with water to which a bleaching agent is added. Therefore, the core component is thermally deteriorated by continuous use of a household washer / dryer. However, there is a problem that the texture of the fabric becomes hard and the durability and antistatic performance are lowered.
- the present invention has the following configuration in order to solve the above problems.
- the sheath polymer is a polyamide and the core polymer is a polyether ester amide copolymer, and when heat-treated at 150 ° C., the time until the start of heat generation due to oxidative heat generation is 100 hours or more, and 70 ° C.
- a hygroscopic core-sheath composite yarn having hygroscopicity and no yellowing it is possible to provide a hygroscopic core-sheath composite yarn having hygroscopicity and no yellowing. Further, a hygroscopic core-sheath composite yarn having a soft texture, durability and moisture absorption / desorption performance and excellent yellowing resistance can be obtained even after repeated washing and drying.
- the core-sheath composite yarn of the present invention uses polyamide for the sheath and a polyether ester amide copolymer for the core.
- a polyether ester amide copolymer is a block copolymer having an ether bond, an ester bond and an amide bond in the same molecular chain. More specifically, one or more polyamide components (A) selected from lactam, aminocarboxylic acid, diamine and dicarboxylic acid salts, and a polyether ester component consisting of dicarboxylic acid and poly (alkylene oxide) glycol (. It is a block copolymer polymer obtained by subjecting B) to a polycondensation reaction.
- the polyamide component (A) includes lactams such as ⁇ -caprolactam, dodecanolactam, and undecanolactam, ⁇ -aminocarboxylic acids such as aminocaproic acid, 11-aminoundecanoic acid, and 12-aminododecanoic acid, nylon 66, and nylon.
- lactams such as ⁇ -caprolactam, dodecanolactam, and undecanolactam
- ⁇ -aminocarboxylic acids such as aminocaproic acid, 11-aminoundecanoic acid, and 12-aminododecanoic acid
- nylon 66 and nylon.
- nylon salts of diamine-dicarboxylic acid which are precursors such as 610 and nylon 612
- a preferable polyamide-forming component is ⁇ -caprolactam.
- the polyether ester component (B) is composed of a dicarboxylic acid having 4 to 20 carbon atoms and a poly (alkylene oxide) glycol.
- dicarboxylic acids having 4 to 20 carbon atoms include aliphatic dicarboxylic acids such as succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, sebacic acid, and dodecadic acid, terephthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid.
- Such as aromatic dicarboxylic acid and alicyclic dicarboxylic acid such as 1,4-cyclohexanedicarboxylic acid can be mentioned, and one kind or a mixture of two or more kinds can be used.
- Preferred dicarboxylic acids are adipic acid, sebacic acid, dodecadic acid, terephthalic acid and isophthalic acid.
- Examples of the poly (alkylene oxide) glycol include polyethylene glycol, poly (1,2- and 1,3-propylene oxide) glycol, poly (tetramethylene oxide) glycol, poly (hexamethylene oxide) glycol and the like. Polyethylene glycol having good moisture absorption performance is preferable.
- the number average molecular weight of the poly (alkylene oxide) glycol is preferably 300 to 5000, more preferably 500 to 4000.
- the molecular weight is 300 or more, it is difficult to scatter to the outside of the system during the polycondensation reaction, and the fiber has stable hygroscopic performance, which is preferable.
- poly (alkylene oxide) glycol is uniformly dispersed in the polymer, and good hygroscopic performance can be obtained, which is preferable.
- the composition ratio of the polyether ester component (B) in the entire polyether ester amide copolymer is preferably 20 to 80% in terms of molar ratio. When it is 20% or more, good moisture absorption performance can be obtained, which is preferable. Further, when it is 80% or less, it is preferable because good dyeing fastness and washing durability with hygroscopic performance can be obtained.
- the composition ratio of polyamide and poly (alkylene oxide) glycol is preferably 20% / 80% to 80% / 20% in terms of molar ratio.
- the poly (alkylene oxide) glycol is 20% or more, good hygroscopic performance can be obtained, which is preferable. Further, when the poly (alkylene oxide) glycol is 80% or less, good dyeing fastness and washing durability with hygroscopic performance can be obtained, which is preferable.
- the polyamide of the sheath includes nylon 6, nylon 66, nylon 46, nylon 9, nylon 610, nylon 11, nylon 12, nylon 612, etc., or compounds having amide-forming functional groups thereof, such as laurolactam and sebacic acid.
- examples thereof include copolymerized polyamides containing copolymerizing components such as terephthalic acid, isophthalic acid, and 5-sodium sulfoisophthalic acid.
- nylon 6 and nylon 11, nylon 12, nylon 610, and nylon 612 have a small difference in melting point from the polyether ester amide copolymer, and can suppress thermal deterioration of the polyether ester amide copolymer during melt spinning. , Preferable from the viewpoint of yarn-making property.
- nylon 6 is preferably dyeable.
- the core-sheath composite yarn of the present invention has a time of 100 hours or more until the start of heat generation due to oxidative heat generation when heat-treated at 150 ° C.
- the core component the polyether ester amide copolymer, generates heat when it starts oxidative decomposition, but by suppressing the oxidative heat generation over the required time, after repeated execution in a household washer / dryer (hereinafter referred to as tumble drying).
- tumble drying a household washer / dryer
- the core component does not oxidatively decompose or denature, and can maintain a soft texture, durability, and moisture absorption / desorption performance.
- the core-sheath composite yarn of the present invention has a yellowness (YI) change ⁇ YI of 10 or less. Since clothing fibers are dyed in various colors, they are desired to be colorless to white. If the fibers are yellowed, the color development after light color dyeing becomes dull, and there may be restrictions such as limited use for dark color dyeing. It is desired that even if the yarn is colorless to white immediately after the production of the raw yarn, it does not yellow over time even during the storage period of the raw yarn and the period from the production of the raw yarn to the dyeing. It can be used as a fiber for use.
- ⁇ YI degree of yellowing
- the yellowness (YI 0 ) after 8 hours of treatment in a thermostat at 70 ° C. and 45% RH temperature and humidity is 13 or less. Within this range, not only yellowing over time, but also yellowing due to heat history (dyeing of fabric, heat setting, etc.) during higher-order processing processes, and yellowing even after repeated tumble drying, and color tone A fabric that does not change can be obtained.
- the core-sheath composite yarn of the present invention has a function of adjusting the humidity inside the garment in order to obtain good comfort when worn.
- ⁇ MR represented by the difference in moisture absorption rate is used. The larger the ⁇ MR, the higher the hygroscopic performance, which corresponds to the good comfort when worn.
- the core-sheath composite yarn of the present invention preferably has a ⁇ MR of 5.0% or more. More preferably, it is 7.0% or more. Within such a range, stuffiness and stickiness at the time of wearing can be suppressed, and it becomes possible to provide clothing having excellent comfort.
- the core-sheath composite yarn of the present invention preferably has a ⁇ MR retention rate of 70% or more and 100% or less after a dry heat treatment at 150 ° C. for 1 hour. Within such a range, it is possible to maintain the moisture absorption / desorption performance even if tumble drying is repeatedly performed, and it is possible to provide clothing having excellent comfort. More preferably, it is 80% or more.
- the polyether ester amide copolymer used for the core of the present invention contains poly (alkylene oxide) glycol, and the poly (alkylene oxide) glycol generates radicals from inside the molecule due to heat application and is adjacent to the copolymer.
- a chain reaction such as the generation of radicals by attacking the atoms is carried out, and the heat of the reaction causes the temperature to exceed 200 ° C.
- the smaller the molecular weight of the poly (alkylene oxide) glycol the easier it is to apply heat to the molecular chain, so that radicals are likely to be generated and reaction heat tends to be generated.
- the number average molecular weight of the poly (alkylene oxide) glycol contained in the polyether ester amide copolymer used in the present invention is relatively small, 300 to 5000, the heat deterioration of the polyether ester amide copolymer is caused by the above mechanism. Is easy to proceed, and it is very easy to cause hardening and brittleness of the raw yarn, deterioration of moisture absorption performance, and the like.
- an antioxidant that captures radicals is added to the polyether ester amide copolymer in the core.
- hindered phenolic stabilizers which are generally used as antioxidants with a radical-supplementing effect
- the thermal history during the spinning process high temperature applied during polymer melting and heat set after stretching
- higher-order processing Due to the heat history during the process (dyeing of fabric, heat setting, etc.)
- the thermal deterioration of the polyether ester amide copolymer progresses, and the amount of active component of the antioxidant that captures the radicals remaining at the stage of fabric and clothing is large. Decreases to.
- HALS is denatured into a coloring decomposition product by heat and colored, or because HALS is basic, a dimer of hindered phenol or the like is generated and colored.
- the fabric turns yellow due to the history.
- half-hindered phenol-based antioxidants reduce the amount of active component of the antioxidant in the heat history during the spinning process and the heat history during the higher-order processing process. Is very small. Therefore, the reaction heat and thermal deterioration can be suppressed by using the half-hindered phenol-based stabilizer alone without using the hindered amine-based stabilizer (HALS) in combination like both hindered phenol-based stabilizers, and the temperature is 150 ° C. It is possible to set the time until the start of heat generation due to oxidative heat generation to 100 hours or more when the heat treatment is performed in. Further, since the decomposed product of half-hindered phenol is less colored, yellowing can be suppressed and the ⁇ YI value can be set to 10 or less.
- HALS hindered amine-based stabilizer
- the amount of the half-hindered phenolic stabilizer added during the production of the core-sheath composite yarn of the present invention is 1.0% by weight or more and 5.0% by weight with respect to the weight of the polyether ester amide copolymer in the core portion.
- the following is preferable. More preferably, it is 2.0% by weight or more.
- the content is 5.0% by weight or less, the yarn-forming property is improved and the yellowing of the raw yarn can be suppressed, which is preferable.
- the half-hindered phenolic antioxidant used in the present invention is, for example, 2,2'-dimethyl-2,2'-(2,4,8,10-tetraoxaspiro [5.5] undecane-3,9. -Diyl) Dipropane-1,1'-Diyl-bis [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propanoart] (Sumitomo Chemical Co., Ltd.
- phosphorus-based and hindered amine-based stabilizers can be used in combination with the core polyether ester amide copolymer.
- various other additives such as matting agents, flame retardants, ultraviolet absorbers, infrared absorbers, crystal nucleating agents, fluorescent whitening agents, antistatic agents, hygroscopic polymers, carbon, etc. are all added.
- the content may be copolymerized or mixed as required in the range of 0.001 to 10% by weight based on the whole fiber.
- various additives such as a matting agent, a flame retardant, an ultraviolet absorber, an infrared absorber, a crystal nucleating agent, a bright whitening agent, an antistatic agent, and a hygroscopic polymer are applied to the polyamide of the sheath portion.
- a matting agent such as a flame retardant, an ultraviolet absorber, an infrared absorber, a crystal nucleating agent, a bright whitening agent, an antistatic agent, and a hygroscopic polymer
- Carbon and the like may be copolymerized or mixed as required with a total additive content of 0.001 to 10% by weight based on the total fiber content.
- the core-sheath composite yarn of the present invention preferably has an elongation of 35% or more. More preferably, it is 40 to 80%. Within such a range, the process passability in higher-order processes such as weaving, knitting, and false twisting becomes good.
- the total fineness and the number of filaments of the core-sheath composite yarn of the present invention are not particularly limited, and the cross-sectional shape can be any shape depending on the application of the fabric. Considering the use as a long fiber material for clothing, the total fineness as a multifilament is preferably 5 decitex or more and 235 decitex or less, and the number of filaments is preferably 1 or more and 144 filaments or less. Further, the cross-sectional shape is not particularly limited to circular, triangular, flat, Y-shaped, and star-shaped, and the composite form is not limited, but the eccentric type and the bonded type are preferable.
- the core-sheath composite yarn of the present invention can be obtained by a known method of melt spinning and composite spinning, and examples are as follows.
- polyamide (sheath part) and polyether ester amide copolymer (core part) are melted separately, weighed and transported by a gear pump, and a composite flow is formed so as to take a core-sheath structure as it is by a usual method.
- the yarn is discharged from the spun cap and blown with cooling air by a yarn cooling device such as a chimney to cool the yarn to room temperature, refueled by the lubrication device and focused, entangled by the first fluid entanglement nozzle device, and a take-up roller. , Passing through a stretching roller, at which time stretching is performed according to the ratio of the peripheral speeds of the take-up roller and the stretching roller. Further, the yarn is heat-set by a drawing roller and wound by a winder (winding device).
- the temperature of the molten part of the core polymer is preferably 235 ° C. or higher and 260 ° C. or lower.
- the temperature of the molten portion of the core polymer is 235 ° C. or higher, the polyether ester amide copolymer in the core has a melt viscosity suitable for melt spinning, which is preferable.
- the temperature is 260 ° C. or lower, thermal decomposition of the polytel ester amide copolymer and decomposition of the half-hindered phenolic antioxidant can be suppressed, and yellowing can be suppressed, which is preferable. More preferably, it is 240 ° C. or lower.
- the temperature of the melted portion of the sheath polymer is preferably 240 ° C. or higher and 285 ° C. or lower.
- the temperature of the molten portion of the sheath polymer is 240 ° C. or higher, the polyamide in the sheath has a melt viscosity suitable for melt spinning, which is preferable.
- the temperature is 285 ° C. or lower, thermal decomposition due to an increase in the temperature of the polytel ester amide copolymer in the core portion and decomposition of the half-hindered phenolic antioxidant can be suppressed, and yellowing can be suppressed, which is preferable. More preferably, it is 260 ° C. or lower.
- the temperature of the molten portion at the confluence is preferably 235 ° C. or higher and 270 ° C. or lower.
- the polyamide and the polyether ester amide copolymer have a melt viscosity suitable for melt spinning, which is preferable.
- the temperature is 270 ° C. or lower, thermal decomposition of the polyether ester amide copolymer and decomposition of the half-hindered phenolic antioxidant can be suppressed, and yellowing can be suppressed, which is preferable. More preferably, it is 260 ° C. or lower.
- the ratio of the core portion of the core-sheath composite yarn of the present invention is 20% by weight to 80% by weight with respect to the entire composite yarn. More preferably, it is 30% by weight to 70% by weight. Within such a range, it is possible to apply appropriate stretching to the polyamide of the sheath portion. In addition, good dyeing fastness and hygroscopic performance can be obtained. If it is less than 20% by weight, sufficient hygroscopic performance may not be obtained. On the other hand, if it exceeds 80% by weight, not only the fiber surface is liable to be cracked due to swelling in a hot water atmosphere such as dyeing, but also excessive stretching is applied to the polyamide in the sheath portion, which may cause thread breakage or fluff. .. Further, spinning and drawing that generate excessive tension lead to yarn breakage and fluffing, which is not preferable for stable production of the target fiber.
- the polyamide chip used for the sheath portion of the present invention preferably has a sulfuric acid relative viscosity of 2.3 or more and 3.3 or less. Within such a range, it is possible to apply appropriate stretching to the polyamide of the sheath portion.
- the chip of the polyether ester amide copolymer polymer used for the core portion of the present invention preferably has an orthochlorophenol relative viscosity of 1.2 or more and 2.0 or less.
- an optimum stress is applied to the sheath portion during spinning, crystallization of the polyamide in the sheath portion proceeds, and the strength is increased, which is preferable.
- the method of blending the half-hindered phenol-based oxidative spinning agent and the polyether ester amide copolymer is not particularly limited.
- a method of adding the polyether ester amide copolymer at the start of polymerization and during the polymerization a dry blend method in which a half-hindered phenol-based antioxidant is attached to the chip of the polyether ester amide copolymer, and two methods in advance.
- a master chip containing a high concentration of half-hindered phenolic antioxidant in a polyether ester amide copolymer is produced, and this master chip and poly are used in the spinning process.
- examples thereof include a master chip method of blending with an ether ester amide copolymer chip.
- the product of the speed of the yarn taken up by the take-up roller (spinning speed, m / min) and the drawing ratio which is the value of the peripheral speed ratio of the take-up roller and the drawing roller, is 3300 or more and 4500 or less. It is preferable to set the spinning conditions. More preferably, it is 4000 or less.
- This numerical value represents the total drawing amount in which the polymer discharged from the mouthpiece is stretched from the mouthpiece discharge line speed to the peripheral speed of the take-up roller, and further from the peripheral speed of the take-up roller to the peripheral speed of the drawing roller. Within such a range, it is possible to apply appropriate stretching to the polyamide of the sheath portion.
- the heat setting temperature by the stretching roller is preferably 110 ° C. or higher and 160 ° C. or lower.
- the temperature is 110 ° C. or higher, crystallization of nylon in the sheath portion is promoted, strength is improved, and drum winding is suppressed, which is preferable.
- the temperature of 160 ° C. or lower is preferable because the thermal decomposition of the hindered phenolic antioxidant is suppressed.
- the spinning oil agent given by the refueling device is preferably a non-hydrous oil agent.
- the polyether ester amide copolymer in the core is a polymer having a ⁇ MR of 10% or more and has excellent hygroscopicity, when a non-hydrous oil is added, it gradually absorbs moisture in the air, causing swelling. It is preferable because it is difficult and stable winding is possible.
- the core-sheath composite yarn of the present invention has excellent hygroscopicity and can be preferably used for clothing.
- a woven fabric, a knitted fabric, a non-woven fabric, or the like can be selected according to the purpose.
- the larger the ⁇ MR the higher the hygroscopic performance, which corresponds to the better comfort when worn. Therefore, the fabric having the core-sheath composite yarn of the present invention at least in a part is excellent in comfort by adjusting the mixing ratio of the core-sheath composite yarn of the present invention so that ⁇ MR is 5.0% or more.
- Clothing can be provided. As clothing, various clothing products such as innerwear and sportswear can be used.
- Example 1 As a polyether ester amide copolymer, a polyether ester amide copolymer (alchema) in which the polyamide component is nylon 6, the polyether component is polyethylene glycol having a molecular weight of 1500, and the molar ratio of nylon 6 to polyethylene glycol is 24%: 76%. Co., Ltd., MH1657, orthochlorophenol relative viscosity: 1.69) A chip was used for the core. In addition, a half-hindered phenol-based antioxidant: 2,2'-dimethyl-2,2'-(2,4,8,10) was added to the polyether ester amide copolymer at a high concentration in advance using a twin-screw extruder.
- a half-hindered phenol-based antioxidant 2,2'-dimethyl-2,2'-(2,4,8,10) was added to the polyether ester amide copolymer at a high concentration in advance using a twin-screw extruder.
- Adecastab AO-80 Adecastab AO-80
- polyether ester amide copolymer chip A master chip containing Adecastab AO-80) manufactured by Adecastab AO-80) and a polyether ester amide copolymer chip were blended and adjusted to be 3.0% by weight based on the weight of the core.
- a nylon 6 chip having a relative sulfuric acid viscosity of 2.63 was used for the sheath portion.
- the above-mentioned polyether ester amide copolymer is used as a core, nylon 6 is used as a sheath, and the core is melted at a core melt temperature of 235 ° C, a sheath melt temperature of 260 ° C, and a confluence melt temperature of 255 ° C.
- the core / sheath ratio (% by weight) was spun from the sheath composite mouthpiece so as to be 30/70.
- the rotation speed of the gear pump is selected so that the total fineness of the obtained core-sheath composite yarn is 56 decitex, the yarn is cooled and solidified by the yarn cooling device, and the non-hydraulic oil is lubricated by the lubrication device.
- Entanglement is applied by the first fluid entanglement nozzle device, the peripheral speed of the take-up roller which is the first roll is 2426 m / min, the peripheral speed of the stretching roller which is the second roll is 3590 m / min, and the stretching ratio is 1.48 times.
- the heat was set by a drawing roller at 150 ° C., and the winding speed was 3500 m / min to obtain a core-sheath composite yarn of 56 decitex 24 filaments.
- Table 1 shows the physical characteristics of the obtained fibers.
- Example 2 A core-sheath composite yarn of 56 decitex 24 filaments was obtained in the same manner as in Example 1 except that the core melted portion temperature was 235 ° C, the sheath melted portion temperature was 240 ° C, and the confluence melted portion temperature was 235 ° C. Table 1 shows the physical characteristics of the obtained fibers.
- Example 3 A core-sheath composite yarn of 56 decitex 24 filaments was obtained in the same manner as in Example 1 except that the core melted portion temperature was 260 ° C., the sheath portion melted portion temperature was 280 ° C., and the merging portion fused portion temperature was 270 ° C. Table 1 shows the physical characteristics of the obtained fibers.
- Example 4 Half-hindered phenolic antioxidants, 1,3,5-tris [[4- (1,1-dimethylethyl) -3-hydroxy-2,6-dimethylphenyl] methyl] -1,3,4-
- a core-sheath composite yarn of 56 decitex 24 filaments was obtained in the same manner as in Example 1 except that triazine-2,4,6 (1H, 3H, 5H) -trion (Cyanox1790 manufactured by Solvay) was used.
- Table 1 shows the physical characteristics of the obtained fibers.
- Example 5 A core-sheath composite yarn of 56 decitex 24 filaments was prepared in the same manner as in Example 1 except that the amount of the half-hindered phenolic antioxidant added was adjusted to 1.0% by weight based on the weight of the core. Obtained. Table 1 shows the physical characteristics of the obtained fibers.
- Example 6 A core-sheath composite yarn of 56 decitex 24 filaments was prepared in the same manner as in Example 1 except that the amount of the half-hindered phenolic antioxidant added was adjusted to 5.0% by weight with respect to the weight of the core. Obtained. Table 1 shows the physical characteristics of the obtained fibers.
- Example 7 In addition to the addition of the half-hindered phenolic antioxidant (ADEKA ADEKA AO-80), the phosphorus stabilizer (BASF Irgafos 168) was added so as to be 2.0% by weight based on the weight of the core. A core-sheath composite yarn of 56 decitex 24 filaments was obtained in the same manner as in Example 1 except for the adjustment. Table 1 shows the physical characteristics of the obtained fibers.
- Example 8 A core-sheath composite yarn of 56 decitex 24 filaments was obtained in the same manner as in Example 1 except that the core / sheath ratio (% by weight) was 50/50. Table 1 shows the physical characteristics of the obtained fibers.
- Example 1 A core-sheath composite yarn of 56 decitex 24 filaments was obtained in the same manner as in Example 1 except that a half-hindered phenolic antioxidant was not added (no agent was added). Table 2 shows the physical characteristics of the obtained fibers.
- the obtained core-sheath composite yarn had an oxidative heat generation time of 0 hours, and oxidative heat generation was confirmed.
- the core component was oxidatively decomposed and denatured, and the texture and moisture absorption / desorption performance were deteriorated.
- Example 3 Adjust the phosphorus-based stabilizer (BASF's Irgafos 168) to 2.0% by weight based on the weight of the core, and the HALS-based stabilizer (BASF's CHIMASORB2020FDL) to be 2.0% by weight based on the weight of the core.
- a core-sheath composite yarn of 56 decitex 24 filaments was obtained in the same manner as in Example 1 except for the above.
- Table 2 shows the physical characteristics of the obtained fibers.
- the oxidative heat generation time of the obtained core-sheath composite yarn was 0.5 hours, and oxidative heat generation was confirmed.
- the core component was oxidatively decomposed and denatured, and the texture and moisture absorption / desorption performance were deteriorated.
- Example 4 A core-sheath composite yarn of 56 decitex 24 filaments was prepared in the same manner as in Example 1 except that both hindered phenolic stabilizers (Irganox 1010 manufactured by BASF) were adjusted to be 2.0% by weight based on the weight of the core.
- Got Table 2 shows the physical characteristics of the obtained fibers.
- the core component was oxidatively decomposed and denatured, the texture and moisture absorption / desorption performance deteriorated, and the color tone changed drastically.
- Example 2 Using the same method as in Example 1, a master chip containing a high concentration of a half-hindered phenolic antioxidant (ADEKA, ADEKA STAB AO-80) and a polyester copolymer chip were prepared from this polyester copolymer. It was blended and adjusted to be 3.0% by weight based on the weight of the core. The copolymerized polyester thus adjusted was used as the core polymer, and the sheath polymer was changed to polyethylene terephthalate having an ultimate viscosity of 0.70.
- ADEKA half-hindered phenolic antioxidant
- the core melt temperature was 260 ° C
- the sheath melt temperature was 285 ° C
- the confluence melt temperature was 270.
- a core-sheath composite yarn of 56 decitex 24 filaments was obtained in the same manner as in Example 1 except that it was melted at ° C.
- the physical characteristics of the obtained fiber were strength 2.8 cN / dtex and elongation 47%.
- the obtained core-sheath composite yarn was obtained from (6) Oxidation heat generation test B. Since half-hindered phenol was inactivated by washing with water to which a bleaching agent was added as a pretreatment, the oxidative heat generation time was 0.2 hours, and oxidative heat generation was confirmed. In addition, B. of (6).
- the pre-treated fabric was deactivated by half-hindered phenol by washing with water after adding bleach, so the core component was oxidatively decomposed and denatured, and the texture was harder and stiffer than before the treatment, and the color tone was YI. It deteriorated sharply to 18.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Multicomponent Fibers (AREA)
Abstract
鞘部ポリマーがポリアミド、芯部ポリマーがポリエーテルエステルアミド共重合体であって、150℃で熱処理したした際に、酸化発熱による発熱開始までの時間が100時間以上、70℃、8時間処理後の黄色度(YI)の変化が10以下である芯鞘複合糸。 吸放湿性を有し、黄変のない吸湿性芯鞘複合糸を提供する。さらには、洗濯乾燥を繰り返し実施してもソフトな風合い、耐久性および吸放湿性能を維持、耐黄変に優れた吸湿性芯鞘複合糸を提供する。
Description
本発明は、吸湿性を有する芯鞘複合糸及び布帛に関する。
ポリアミドやポリエステルなどの熱可塑性樹脂から成る合成繊維は、強度、耐薬品性、耐熱性などに優れるために、衣料用途や産業用途など幅広く用いられている。特にポリアミド繊維はその独特な柔らかさ、高い引っ張り強度、染色時の発色性、高い耐熱性等の特性に加え、吸湿性に優れており、インナーウエア、スポーツウエアなどの用途に広く使用されている。しかしながら、ポリアミド繊維は綿などの天然繊維と比べると吸湿性は十分とはいえず、また、ムレやべたつきといった問題点を有し、快適性の面で天然繊維に劣ることが問題となっている。
そのような背景からムレやべたつきを防ぐための優れた吸放湿性を示し、天然繊維に近い快適性を有する合成繊維が、主にインナー用途やスポーツ衣料用途において要望されている。
そこで、繊維の構造を芯鞘構造とし、高吸湿性の熱可塑性樹脂を芯部に、力学特性に優れた熱可塑性樹脂を鞘部とする芯鞘構造とすることで、吸湿性能と、力学特性を両立させる検討が盛んに行われている。
例えば、特許文献1には、熱可塑性ポリマーを芯部とし、繊維形成性ポリアミドを鞘部とした芯鞘複合断面繊維であって、該芯部を形成する熱可塑性ポリマーの主成分がポリエーテルエステルアミド共重合体であり、かつ芯部の比率が複合繊維全重量の5~50重量%であることを特徴とする吸放湿性能に優れた芯鞘複合断面繊維が開示されている。
また、特許文献2には、ポリアルキレンオキサイドとポリオールおよび脂肪族ジイソシアネート化合物との反応によって得られたポリアルキレンオキサイド変性物を吸放湿性成分とし、繊維構造成分がポリアミドであり、ヒンダードアミン系およびフォスファイト系酸化防止剤を添加し、白度を維持した織編物に関する記載がある。
また、特許文献3には、鞘部ポリマーがポリアミド、芯部ポリマーがポリエーテルエステルアミド共重合体であり、かつ芯部ポリマーの熱劣化を抑えることで、洗濯乾燥を繰り返し実施してもソフトな風合い、耐久性および吸放湿性能を維持できる芯鞘複合糸について開示されている。
また、特許文献4には、鞘部ポリマーがポリエステルであり、芯部ポリマーがポリエステルとポリオキシエチレン系ポリエーテルを配合し、酸化防止剤としてハーフヒンダードフェノール化合物を特定量用いることにより、アルカリ減量加工を施した際にも初期の白度レベルをそのまま保つことのできる、耐黄変性に極めて優れたポリエステル芯鞘複合糸について開示されている。
しかしながら、特許文献1に記載の繊維は、吸放湿性を有しているものの、芯成分が家庭用洗濯乾燥機継続使用により熱劣化することで、繊維が硬化し、布帛の風合いが硬くなる、耐久性および吸放湿性能が低下する課題がある。また、酸化防止剤の記載はあるが、具体的な処方についての示唆はない。
特許文献2に記載の繊維は、ヒンダードアミンやフォスファイト系耐熱剤の例示があるものの、白度を維持することはできるが、芯成分が家庭用洗濯乾燥機継続使用により熱劣化するため、布帛の風合いが硬くなる、耐久性および吸放湿性能が低下する課題がある。
特許文献3に記載の繊維は、吸放湿性を有し、かつ家庭用洗濯乾燥機継続使用により熱劣化することなく、ソフトな風合い、耐久性および吸放湿性能を維持できるが、経時での黄変が進行する課題がありさらなる改善が求められていた。
特許文献4に記載の繊維は、鞘ポリマーがポリエステルであり、漂白剤を加えての水洗濯にて、ハーフヒンダードフェノールが失活するため、芯成分が家庭用洗濯乾燥機継続使用により熱劣化し、布帛の風合いが硬くなり、耐久性および制電性能が低下する課題がある。
本発明は、上記課題を解決するために、下記の構成からなる。
(1)鞘部ポリマーがポリアミド、芯部ポリマーがポリエーテルエステルアミド共重合体であって、150℃で熱処理した際に酸化発熱による発熱開始までの時間が100時間以上であり、かつ70℃、8時間乾熱処理後の黄色度(YI)の変化(ΔYI)が10以下であることを特徴とする芯鞘複合糸。
(2)ΔMRが5.0%以上であり、150℃、1時間乾熱処理後のΔMR保持率が70%以上であることを特徴とする(1)に記載の芯鞘複合糸。
(3)70℃、8時間乾熱処理後の黄色度(YI0)が13以下であることを特徴とする(1)または(2)に記載の芯鞘複合糸。
(4)(1)~(3)のいずれかに記載の芯鞘複合糸を少なくとも一部に有する布帛。
本発明によれば、吸放湿性を有し、黄変のない吸湿性芯鞘複合糸を提供することができる。さらには、洗濯乾燥を繰り返し実施してもソフトな風合い、耐久性および吸放湿性能を維持、耐黄変に優れた吸湿性芯鞘複合糸を得ることができる。
本発明の芯鞘複合糸は、鞘部にポリアミド、芯部にポリエーテルエステルアミド共重合体を用いる。
ポリエーテルエステルアミド共重合体とは、同一分子鎖内にエーテル結合、エステル結合およびアミド結合を持つブロック共重合体である。より具体的にはラクタム、アミノカルボン酸、ジアミンとジカルボン酸の塩から選ばれた1種もしくは2種以上のポリアミド成分(A)およびジカルボン酸とポリ(アルキレンオキシド)グリコールからなるポリエーテルエステル成分(B)を重縮合反応させて得られるブロック共重合体ポリマーである。
ポリアミド成分(A)としては、ε-カプロラクタム、ドデカノラクタム、ウンデカノラクタム等のラクタム類、アミノカプロン酸,11-アミノウンデカン酸、12-アミノドデカン酸などのω-アミノカルボン酸、ナイロン66、ナイロン610、ナイロン612等の前駆体であるジアミン-ジカルボン酸のナイロン塩類があり、好ましいポリアミド形成性成分はε-カプロラクタムである。
ポリエーテルエステル成分(B)としては、炭素数4~20のジカルボン酸とポリ(アルキレンオキシド)グリコールとからなるものである。炭素数4~20のジカルボン酸としてはコハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、セバシン酸、ドデカジ酸等の脂肪族ジカルボン酸、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸等の芳香族ジカルボン酸、1,4-シクロヘキサンジカルボン酸等の脂環式ジカルボン酸をあげることができ、1種または2種以上混合して用いることができる。好ましいジカルボン酸はアジピン酸、セバシン酸、ドデカジ酸、テレフタル酸、イソフタル酸である。またポリ(アルキレンオキシド)グリコールとしては、ポリエチレングリコール、ポリ(1,2-および1,3-プロピレンオキシド)グリコール、ポリ(テトラメチレンオキシド)グリコール、ポリ(ヘキサメチレンオキシド)グリコール等があげられ、特に良好な吸湿性能を有するポリエチレングリコールが好ましい。
ポリ(アルキレンオキシド)グリコールの数平均分子量は300~5000が好ましく、より好ましくは500~4000である。分子量が300以上であると、重縮合反応中に系外に飛散しにくく、吸湿性能が安定した繊維となるため好ましい。また、5000以下であると、ポリマー中にポリ(アルキレンオキシド)グリコールが均一に分散し、良好な吸湿性能が得られるため好ましい。
ポリエーテルエステルアミド共重合体全体の中でのポリエーテルエステル成分(B)の構成比率はモル比にて、20~80%であることが好ましい。20%以上であると、良好な吸湿性能が得られるため好ましい。また、80%以下であると、良好な染色堅牢性や吸湿性能の洗濯耐久性が得られるため好ましい。
ポリアミドとポリ(アルキレンオキシド)グリコールの構成比率はモル比にて、20%/80%~80%/20%であることが好ましい。ポリ(アルキレンオキシド)グリコールが20%以上であると、良好な吸湿性能が得られるため好ましい。また、ポリ(アルキレンオキシド)グリコールが80%以下であると、良好な染色堅牢性や吸湿性能の洗濯耐久性が得られるため好ましい。
このようなポリエーテルエステルアミド共重合体として、アルケマ社製“MH1657”や“MV1074”等が市販されている。
鞘部のポリアミドには、ナイロン6、ナイロン66、ナイロン46、ナイロン9、ナイロン610、ナイロン11、ナイロン12、ナイロン612等、あるいはそれらとアミド形成官能基を有する化合物、例えばラウロラクタム、セバシン酸、テレフタル酸、イソフタル酸、5-ナトリウムスルホイソフタル酸等の共重合成分を含有する共重合ポリアミドがあげられる。中でも、ナイロン6および、ナイロン11、ナイロン12、ナイロン610、ナイロン612が、ポリエーテルエステルアミド共重合体との融点の差が小さく、溶融紡糸時にポリエーテルエステルアミド共重合体の熱劣化が抑制でき、製糸性の観点から好ましい。中でも好ましくは、染色性に富むナイロン6である。
本発明の芯鞘複合糸は、150℃で熱処理した際に酸化発熱による発熱開始までの時間が100時間以上である。芯成分のポリエーテルエステルアミド共重合体は酸化分解を開始すると発熱するが、かかる時間、酸化発熱を抑制することで、家庭用洗濯乾燥機(以下、タンブル乾燥と称す)での繰り返し実施後においても芯成分が酸化分解や変性せず、ソフトな風合いや耐久性および吸放湿性能を維持できる。100時間未満の場合、タンブル乾燥を繰り返し実施すると、ポリエーテルエステルアミド共重合体の熱劣化が進行し、原糸の硬化や脆化、吸湿性能の低下が進行し、洗濯乾燥する毎に風合いが硬くなり、布帛の耐久性および吸放湿性能が低下する。好ましくは150時間以上である。
本発明の芯鞘複合糸は、黄色度(YI)変化ΔYIが10以下である。衣料用繊維は、様々な色で染色されるため、無色~白色であることが望まれている。繊維が黄変していると淡色染め後の発色がくすんだものとなり、濃色染めに限定使用するなど制限されることがある。原糸製造直後は無色~白色でも、原糸保管期間、原糸製造から染色までの期間においても経時黄変しないことが望まれており、かかる範囲とすることにより、経時黄変がなく、衣料用繊維としての使用が可能となる。ここでいう経時黄変の指標として、70℃、45%RH温湿度下の恒温機内で8時間処理前後の黄色度の差で表される黄変度(ΔYI)を用いる。ΔYIが小さければ小さいほど経時黄変せず、耐黄変に優れることに対応する。さらに好ましくは5以下であり、特に好ましくは3以下である。
また、70℃、45%RH温湿度下の恒温機内で8時間処理後の黄色度(YI0)が13以下であることが好ましい。かかる範囲とすることにより、経時黄変だけでなく、高次加工工程時の熱履歴(布帛の染色や熱セット等)による黄変や、タンブル乾燥を繰り返し実施しても黄変がなく、色調変化のない布帛が得られる。
本発明の芯鞘複合糸は、着用時に良好な快適性を得るため、衣服内の湿度を調節する機能を有する。湿度調整の指標として、軽~中作業あるいは軽~中運動を行った際の30℃×90%RHに代表される衣服内温湿度と、20℃×65%RHに代表される外気温湿度とにおける吸湿率の差で表されるΔMRを用いる。ΔMRは大きければ大きいほど吸湿性能が高く、着用時の快適性が良好であることに対応する。
本発明の芯鞘複合糸は、ΔMRが5.0%以上であることが好ましい。より好ましくは7.0%以上である。かかる範囲とすることで、着用時のムレやべたつきが抑制でき、快適性に優れる衣料が提供可能となる。
本発明の芯鞘複合糸は、150℃、1時間乾熱処理後のΔMRの保持率が70%以上100%以下であることが好ましい。かかる範囲とすることで、タンブル乾燥を繰り返し実施しても吸放湿性能を維持でき、優れた快適性を保持した衣料を提供可能となる。更に好ましくは80%以上である。
本発明の芯部に使用するポリエーテルエステルアミド共重合体には、ポリ(アルキレンオキシド)グリコールが含まれており、ポリ(アルキレンオキシド)グリコールは、熱付与により分子内よりラジカルが発生し、隣接する原子を攻撃することでラジカルが発生するといった連鎖反応が進み、反応熱により200度を超える高温となる。また、ポリ(アルキレンオキシド)グリコールの分子量が小さいほど、分子鎖への熱付与が容易なため、ラジカルが発生し易く、反応熱が発生し易い傾向がある。
本発明に使用するポリエーテルエステルアミド共重合体に含まれるポリ(アルキレンオキシド)グリコールの数平均分子量は300~5000と比較的小さいため、上記のメカニズムから、ポリエーテルエステルアミド共重合体の熱劣化が進みやすく、原糸の硬化や脆化、吸湿性能の低下等が非常に引き起こされやすい。
そのため、芯部のポリエーテルエステルアミド共重合体には、ラジカルを補足する酸化防止剤を添加する。しかしながら、ラジカル補足効果のある酸化防止剤として一般的に使用されている両ヒンダードフェノール系安定剤では、紡糸工程時の熱履歴(ポリマー溶融時に加わる高温や延伸後の熱セット)、高次加工工程時の熱履歴(布帛の染色や熱セット等)によりポリエーテルエステルアミド共重合体の熱劣化が進み、布帛および衣料品の段階で残存するラジカルを補足する酸化防止剤の有効成分量が大幅に低下する。さらにその後の実使用において、タンブル乾燥を繰り返し実施すると、ポリエーテルエステルアミド共重合体の熱劣化が進行し、原糸の硬化や脆化、吸湿性能の低下等が進行してしまう。特許文献3に記載のとおり、ラジカルを補足する酸化防止剤の有効成分量の低下を抑制するために、ヒンダードフェノール系安定剤、ヒンダードアミン系安定剤(HALS)を併用する手法を提案し、タンブル乾燥を繰り返し実施しても、ソフトな風合い、耐久性および吸放湿性能を維持することができた。しかしながら、かかる手法では、熱によってHALSが着色性の分解物に変性して着色したり、HALSが塩基性であるため、ヒンダードフェノールの2量体等が生成し、着色したりするため、熱履歴により布帛が黄変してしまう。一方で、ヒンダードフェノールを多量に添加する手法もあるが、ヒンダードフェノール分解物による着色は免れない。芯部のポリエーテルエステルアミド共重合体のラジカル発生を抑制し、反応熱・熱劣化の抑制(酸化発熱を防止)と、黄変の抑制を両立させるためには、ハーフヒンダードフェノール系の酸化防止剤が有効である。
ハーフヒンダードフェノール系の酸化防止剤は、両ヒンダードフェノール系の安定剤と比較して、紡糸工程時の熱履歴や、高次加工工程時の熱履歴における酸化防止剤の有効成分量の低下が非常に小さい。そのため、両ヒンダードフェノール系の安定剤のようにヒンダードアミン系安定剤(HALS)を併用することなく、ハーフヒンダードフェノール系の安定剤の単独使用で、反応熱・熱劣化を抑制でき、150℃で熱処理した際に酸化発熱による発熱開始までの時間が100時間以上とすることが可能になる。また、ハーフヒンダードフェノールの分解物は着色が少ないため、黄変が抑制でき、ΔYI値を10以下とすることが可能となる。
本発明の芯鞘複合糸の製造時に添加するハーフヒンダードフェノール系安定剤の量は、芯部のポリエーテルエステルアミド共重合体の重量に対して、1.0重量%以上5.0重量%以下が好ましい。より好ましくは、2.0重量%以上である。1.0重量%以上とすることで、反応熱・熱劣化を抑制でき、150℃で熱処理した際に酸化発熱による発熱開始までの時間が100時間以上とすることが可能になる。また、タンブル乾燥を繰り返し実施しても、原糸の硬化や脆化を防ぐことが出来、ソフトな風合いや耐久性および吸放湿性能を維持できる。5.0重量%以下とすることで、製糸性が良好となり、また、原糸の黄変が抑制できることから好ましい。
本発明に用いるハーフヒンダードフェノール系酸化防止剤は、例えば、2,2’-ジメチル-2,2’-(2,4,8,10-テトラオキサスピロ[5.5]ウンデカン-3,9-ジイル)ジプロパン-1,1’-ジイル=ビス[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロパノアート](住友化学社製「スミライザー」(登録商標)AG80、ADEKA社製「アデカスタブ」(登録商標)AO-80)、1,3,5-トリス[[4-(1,1-ジメチルエチル)-3-ヒドロキシ-2,6-ジメチルフェニル]メチル]-1,3,4-トリアジン-2,4,6(1H,3H,5H)-トリオン(ソルベー社製「Cyanox」(登録商標)1790)が挙げられる。
なかでも、2,2’-ジメチル-2,2’-(2,4,8,10-テトラオキサスピロ[5.5]ウンデカン-3,9-ジイル)ジプロパン-1,1’-ジイル=ビス[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロパノアート](アデカスタブAO-80)が好ましい。
本発明において、芯部のポリエーテルエステルアミド共重合体には、その他のリン系、ヒンダードアミン系の安定剤を併用することも可能である。また、その他各種の添加剤、たとえば、艶消剤、難燃剤、紫外線吸収剤、赤外線吸収剤、結晶核剤、螢光増白剤、帯電防止剤、吸湿性ポリマー、カーボンなどを、総添加物含有量が繊維全体に対して0.001~10重量%の間で必要に応じて共重合または混合していてもよい。
本発明において、鞘部のポリアミドには、各種の添加剤、たとえば、艶消剤、難燃剤、紫外線吸収剤、赤外線吸収剤、結晶核剤、螢光増白剤、帯電防止剤、吸湿性ポリマー、カーボンなどを、総添加物含有量が繊維全体に対して0.001~10重量%の間で必要に応じて共重合または混合していてもよい。
本発明の芯鞘複合糸は、伸度が35%以上であることが好ましい。より好ましくは40~80%である。かかる範囲とすることで、製織、製編、仮撚りといった高次工程での工程通過性が良好となる。
本発明の芯鞘複合糸の総繊度、フィラメント数も特に限定はなく、断面形状も得られる布帛の用途等に応じて任意の形状とすることができる。衣料用長繊維素材として使用することを考慮すると、マルチフィラメントとしての総繊度は5デシテックス以上235デシテックス以下、フィラメント数は1以上144フィラメント以下が好ましい。また、断面形状は円形、三角、扁平、Y型、星形と特に制約はなく、複合形態も制約はないが、偏芯型、貼り合わせ型が好ましい。
本発明の芯鞘複合糸は、公知の溶融紡糸、複合紡糸の手法により得ることができるが、例示すると以下のとおりである。
例えば、ポリアミド(鞘部)とポリエーテルエステルアミド共重合体(芯部)を別々に溶融しギヤポンプにて計量・輸送し、そのまま通常の方法で芯鞘構造をとるように複合流を形成して紡糸口金から吐出し、チムニー等の糸条冷却装置によって冷却風を吹き当てることにより糸条を室温まで冷却し、給油装置で給油するとともに集束し、第1流体交絡ノズル装置で交絡し、引き取りローラー、延伸ローラーを通過し、その際引き取りローラーと延伸ローラーの周速度の比に従って延伸する。さらに、糸条を延伸ローラーにより熱セットし、ワインダー(巻取装置)で巻き取る。
紡糸工程において、芯部ポリマーの溶融部温度は235℃以上260℃以下とすることが好ましい。芯部ポリマーの溶融部温度が235℃以上であると、芯部のポリエーテルエステルアミド共重合体が溶融紡糸に適した溶融粘度となるため好ましい。260℃以下であるとポリーテルエステルアミド共重合体の熱分解、およびハーフヒンダードフェノール系酸化防止剤の分解を抑制でき、黄変が抑制できるため好ましい。さらに好ましくは240℃以下である。鞘部ポリマーの溶融部温度は240℃以上285℃以下が好ましい。鞘部ポリマーの溶融部温度が240℃以上であると、鞘部のポリアミドが溶融紡糸に適した溶融粘度となるため好ましい。285℃以下であると芯部のポリーテルエステルアミド共重合体の温度上昇による熱分解、およびハーフヒンダードフェノール系酸化防止剤の分解を抑制でき、黄変が抑制できるため好ましい。さらに好ましくは260℃以下である。合流部の溶融部温度は235℃以上270℃以下とすることが好ましい。温度が235℃以上であると、ポリアミドおよびポリエーテルエステルアミド共重合体が溶融紡糸に適した溶融粘度となるため好ましい。270℃以下であると、ポリーテルエステルアミド共重合体の熱分解、およびハーフヒンダードフェノール系酸化防止剤の分解を抑制でき、黄変が抑制できるため好ましい。さらに好ましくは260℃以下である。
本発明の芯鞘複合糸の芯部の比率は、複合糸全体に対して20重量%~80重量%である。更に好ましくは、30重量%~70重量%である。かかる範囲とすることにより、鞘部のポリアミドに適切な延伸を加えることが可能となる。また、良好な染色堅牢性、吸湿性能が得られる。20重量%未満であると、十分な吸湿性能が得られない場合がある。一方、80重量%を超えると染色のような熱水雰囲気下で膨潤による繊維表面の割れが発生し易くなるばかりか、鞘部のポリアミドに過度な延伸が加わり糸切れや毛羽となる場合がある。また、過度な張力を発生させる紡糸、延伸は糸切れや毛羽の発生に繋がり、目的とする繊維を安定的に製造するためには好ましくない。
本発明の鞘部に使用するポリアミドチップは、硫酸相対粘度にて2.3以上3.3以下が好ましい。かかる範囲とすることにより、鞘部のポリアミドに適切な延伸を加えることが可能となる。
本発明の芯部に使用するポリエーテルエステルアミド共重合体ポリマーのチップは、オルトクロロフェノール相対粘度にて1.2以上2.0以下であることが好ましい。オルトクロロフェノール相対粘度が1.2以上であると、紡糸時に鞘部に最適な応力が加わり、鞘部のポリアミドの結晶化が進み、高強度化となり好ましい。
ハーフヒンダードフェノール系酸化紡糸剤とポリエーテルエステルアミド共重合体をブレンドする方法は特に限定しない。例えば、ポリエーテルエステルアミド共重合体の重合開始時、重合途中に添加する方法や、ポリエーテルエステルアミド共重合体のチップにハーフヒンダードフェノール系酸化防止剤を付着させるドライブレンド法、および予め二軸押出機や単軸押出機を使用して、ポリエーテルエステルアミド共重合体に高濃度でハーフヒンダードフェノール系酸化防止剤を含有させたマスターチップを製造し、紡糸工程でこのマスターチップとポリエーテルエステルアミド共重合体チップとをブレンドするマスターチップ法などが挙げられる。
延伸工程において、引き取りローラーによって引き取られる糸条の速度(紡糸速度、m/分)と、引き取りローラーと延伸ローラーの周速度比の値である延伸倍率との積が、3300以上4500以下となるように紡糸条件を設定することが好ましい。さらに好ましくは4000以下である。この数値は口金より吐出されたポリマーが、口金吐出線速度から引き取りローラーの周速度まで、さらに引き取りローラーの周速度から延伸ローラーの周速度まで延伸される総延伸量を表している。かかる範囲とすることにより、鞘部のポリアミドに適切な延伸を加えることが可能となる。3300以上であると鞘部のポリアミドの結晶化が進むため、原糸強度が向上し耐熱性が得られるため好ましい。一方、4500以下であると鞘部のポリアミドの結晶化が適度に進行し、製糸の際に糸切れや毛羽の発生が少なく、好ましい。
また、延伸ローラーによる熱セット温度は、110℃以上160℃以下であることが好ましい。110℃以上とすることで、鞘部のナイロンの結晶化が促進され、強度の向上や、ドラムの巻き締まりが抑制されるため好ましい。また、160℃以下であるとヒンダードフェノール系酸化防止剤の熱分解が抑制されるため好ましい。
給油工程において、給油装置によって付与される紡糸油剤は非含水系油剤であることが好ましい。芯部のポリエーテルエステルアミド共重合体は、ΔMRが10%以上のポリマーで吸湿性能に優れるため、非含水系油剤を付与した場合、徐々に空気中の水分を吸収するため、膨潤が発生し難く、安定した巻き取りが可能なため好ましい。
本発明の芯鞘複合糸は、吸湿性能に優れているので衣料品に好ましく用いられることができる。布帛形態としては、織物、編物、不織布など目的に応じて選択できる。前述したとおり、ΔMRは大きければ大きいほど吸湿性能が高く、着用時の快適性が良好であることに対応する。従って、本発明の芯鞘複合糸を少なくとも一部に有する布帛は、△MRが5.0%以上となるように本発明の芯鞘複合糸の混率を調整することで、快適性に優れた衣料を提供することができる。衣料品としては、インナーウエア、スポーツウエアなどの各種衣料用製品とすることができる。
以下、実施例を挙げて本発明をさらに具体的に説明する。なお実施例における特性値の測定法等は次のとおりである。
(1)硫酸相対粘度
試料0.25gを濃度98wt%の硫酸100mlに対して1gになるように溶解し、オストワルド型粘度計を用いて25℃での流下時間(T1)を測定した。引き続き、濃度98wt%の硫酸のみの流下時間(T2)を測定した。T2に対するT1の比、すなわちT1/T2を硫酸相対粘度とした。
試料0.25gを濃度98wt%の硫酸100mlに対して1gになるように溶解し、オストワルド型粘度計を用いて25℃での流下時間(T1)を測定した。引き続き、濃度98wt%の硫酸のみの流下時間(T2)を測定した。T2に対するT1の比、すなわちT1/T2を硫酸相対粘度とした。
(2)オルトクロロフェノール相対粘度
試料0.5gをオルトクロロフェノール100mlに対して1gになるように溶解し、オストワルド型粘度計を用いて25℃での流下時間(T1)を測定した。引き続き、オルトクロロフェノールのみの流下時間(T2)を測定した。T2に対するT1の比、すなわちT1/T2を硫酸相対粘度とした。
試料0.5gをオルトクロロフェノール100mlに対して1gになるように溶解し、オストワルド型粘度計を用いて25℃での流下時間(T1)を測定した。引き続き、オルトクロロフェノールのみの流下時間(T2)を測定した。T2に対するT1の比、すなわちT1/T2を硫酸相対粘度とした。
(3)総繊度
1.125m/周の検尺器に繊維試料をセットし、200回転させて、ループ状かせを作成し、熱風乾燥機にて乾燥後(105±2℃×60分)、天秤にてかせ質量を量り、公定水分率を乗じた値から総繊度を算出した。なお、芯鞘複合糸の公定水分率は、4.5%とした。
1.125m/周の検尺器に繊維試料をセットし、200回転させて、ループ状かせを作成し、熱風乾燥機にて乾燥後(105±2℃×60分)、天秤にてかせ質量を量り、公定水分率を乗じた値から総繊度を算出した。なお、芯鞘複合糸の公定水分率は、4.5%とした。
(4)強度・伸度
繊維試料を、オリエンテック(株)製“TENSILON”(登録商標)、UCT-100でJIS L1013(化学繊維フィラメント糸試験方法、2010年)に示される定速伸長条件で測定した。伸度は、引張強さ-伸び曲線における最大強力を示した点の伸びから求めた。また、強度は、最大強力を総繊度で除した値を強度とした。測定は10回行い、平均値を強度および伸度とした。
繊維試料を、オリエンテック(株)製“TENSILON”(登録商標)、UCT-100でJIS L1013(化学繊維フィラメント糸試験方法、2010年)に示される定速伸長条件で測定した。伸度は、引張強さ-伸び曲線における最大強力を示した点の伸びから求めた。また、強度は、最大強力を総繊度で除した値を強度とした。測定は10回行い、平均値を強度および伸度とした。
(5)筒編地作製
筒編機にて度目が50となるように調整して作製した。繊維の正量繊度が低い場合は、筒編機に給糸する繊維の総繊度が50~100デシテックスとなるように適宜合糸し、総繊度が100デシテックスを超える場合は、筒編機への給糸を1本で行い、前記同様度目が50となるように調整して作製した。
筒編機にて度目が50となるように調整して作製した。繊維の正量繊度が低い場合は、筒編機に給糸する繊維の総繊度が50~100デシテックスとなるように適宜合糸し、総繊度が100デシテックスを超える場合は、筒編機への給糸を1本で行い、前記同様度目が50となるように調整して作製した。
(6)酸化発熱の開始時間
化繊協会の定めるポリプロピレン繊維の酸化発熱方法に従い以下の通り実施した。
A.試料の準備
(5)記載の筒編地から直径50mmの大きさの布帛を採取し、円筒容器の深さ(50mm)まで積み重ね充填できる枚数を採取した。
B.前処理
JIS L0217(1995年)「繊維製品の取り扱いに関する表示記号およびその表示方法」の103法により実施した洗濯、および約60℃で30分間のタンブル乾燥を実施した。洗濯、乾燥を1セットとし、これを10セット繰り返した。
C.酸化発熱試験
図1に示した円筒容器に前処理した試料を入れ、恒温乾燥機で150℃に維持した。試料の中心部の温度が150℃に達した後の時間と温度変化を記録し、発熱の有無を確認した。100時間で発熱が観測されない場合、酸化発熱試験合格とした。
化繊協会の定めるポリプロピレン繊維の酸化発熱方法に従い以下の通り実施した。
A.試料の準備
(5)記載の筒編地から直径50mmの大きさの布帛を採取し、円筒容器の深さ(50mm)まで積み重ね充填できる枚数を採取した。
B.前処理
JIS L0217(1995年)「繊維製品の取り扱いに関する表示記号およびその表示方法」の103法により実施した洗濯、および約60℃で30分間のタンブル乾燥を実施した。洗濯、乾燥を1セットとし、これを10セット繰り返した。
C.酸化発熱試験
図1に示した円筒容器に前処理した試料を入れ、恒温乾燥機で150℃に維持した。試料の中心部の温度が150℃に達した後の時間と温度変化を記録し、発熱の有無を確認した。100時間で発熱が観測されない場合、酸化発熱試験合格とした。
(7)吸放湿性ΔMR
(5)記載の筒編地を、秤量瓶に1~2g程度はかり取り、110℃に2時間保ち乾燥させ重量を測定し(W0)、次に対象物質を20℃、相対湿度65%に24時間保持した後重量を測定する(W65)。そして、これを30℃、相対湿度90%に24時間保持した後重量を測定する(W90)。そして、以下の式にしたがい計算した。
MR65=[(W65-W0)/W0]×100%・・・・・ (1)
MR90=[(W90-W0)/W0]×100%・・・・・ (2)
ΔMR=MR90-MR65 ・・・・・・・・・・・・ (3)。
(5)記載の筒編地を、秤量瓶に1~2g程度はかり取り、110℃に2時間保ち乾燥させ重量を測定し(W0)、次に対象物質を20℃、相対湿度65%に24時間保持した後重量を測定する(W65)。そして、これを30℃、相対湿度90%に24時間保持した後重量を測定する(W90)。そして、以下の式にしたがい計算した。
MR65=[(W65-W0)/W0]×100%・・・・・ (1)
MR90=[(W90-W0)/W0]×100%・・・・・ (2)
ΔMR=MR90-MR65 ・・・・・・・・・・・・ (3)。
(8)乾熱処理後ΔMR
(5)記載の筒編地を、熱風乾燥機にて乾熱処理後(150±2℃×60分)、上記記載の吸放湿性ΔMRを測定し算出した。
(5)記載の筒編地を、熱風乾燥機にて乾熱処理後(150±2℃×60分)、上記記載の吸放湿性ΔMRを測定し算出した。
(9)乾熱処理後のΔMR保持率
乾熱処理前後のΔMRの変化指標として、乾熱処理後のΔMR保持率を下記式にて算出した。
(乾熱処理後のΔMR/乾熱処理前のΔMR)×100。
乾熱処理前後のΔMRの変化指標として、乾熱処理後のΔMR保持率を下記式にて算出した。
(乾熱処理後のΔMR/乾熱処理前のΔMR)×100。
(10)黄色度(YI)変化(ΔYI)
(5)記載の筒編地について、スガ試験機(株)製カラーコンピューターを用い、JIS K7373(プラスチック-黄色度及び黄変度の求め方、2006年)に従って測定し、耐黄変性について評価した。
ΔYI=YI-YI0
YI:熱処理前の黄色度
YI0:熱処理(70℃、45%RH温湿度条件下の恒温機内で8時間処理)後の黄色度。
(5)記載の筒編地について、スガ試験機(株)製カラーコンピューターを用い、JIS K7373(プラスチック-黄色度及び黄変度の求め方、2006年)に従って測定し、耐黄変性について評価した。
ΔYI=YI-YI0
YI:熱処理前の黄色度
YI0:熱処理(70℃、45%RH温湿度条件下の恒温機内で8時間処理)後の黄色度。
(11)タンブル乾燥
(5)記載の筒編地を、JIS L1930(2014年 家庭洗濯試験方法) 付属書G記載のA1形のタンブル乾燥機にて、温度80℃、1時間の乾燥を、繰り返し10回実施した。
(5)記載の筒編地を、JIS L1930(2014年 家庭洗濯試験方法) 付属書G記載のA1形のタンブル乾燥機にて、温度80℃、1時間の乾燥を、繰り返し10回実施した。
(12)風合い評価
(11)記載のタンブル乾燥後の筒編地の風合いについて、検査者(5人)の相対評価を実施した。その結果は、各検査者の評価点の平均値をとり小数点以下は四捨五入して、平均値が3をS、2をA、1をCとした。
S、Aを合格とした。
S:タンブル乾燥前と全く変わらない、非常にやわらかな風合い
A:タンブル乾燥前と比較し変化の少ない、やわらかな風合い
C:タンブル乾燥前と比較し、硬化が進みごわごわする風合い。
(11)記載のタンブル乾燥後の筒編地の風合いについて、検査者(5人)の相対評価を実施した。その結果は、各検査者の評価点の平均値をとり小数点以下は四捨五入して、平均値が3をS、2をA、1をCとした。
S、Aを合格とした。
S:タンブル乾燥前と全く変わらない、非常にやわらかな風合い
A:タンブル乾燥前と比較し変化の少ない、やわらかな風合い
C:タンブル乾燥前と比較し、硬化が進みごわごわする風合い。
(13)色調評価
(11)記載のタンブル乾燥後の筒編地の色調について、以下の3段階で評価した。S、Aを合格とした。
S:ΔYI0.9未満
A:ΔYI0.9以上、5.0未満
C:ΔYI5.0以上。
(11)記載のタンブル乾燥後の筒編地の色調について、以下の3段階で評価した。S、Aを合格とした。
S:ΔYI0.9未満
A:ΔYI0.9以上、5.0未満
C:ΔYI5.0以上。
(14)吸湿性能
(5)記載の筒編地について、(11)記載のタンブル乾燥前後の(7)記載の△MRを測定し、保持率を算出した。S、Aを合格とした。
S: 80%以上
A: 70%以上80%未満
C: 70%未満。
(5)記載の筒編地について、(11)記載のタンブル乾燥前後の(7)記載の△MRを測定し、保持率を算出した。S、Aを合格とした。
S: 80%以上
A: 70%以上80%未満
C: 70%未満。
[実施例1]
ポリエーテルエステルアミド共重合体として、ポリアミド成分がナイロン6、ポリエーテル成分が分子量1500のポリエチレングリコール、ナイロン6とポリエチレングリコールのモル比が24%:76%であるポリエーテルエステルアミド共重合体(アルケマ社製、MH1657、オルトクロロフェノール相対粘度:1.69)チップを芯部に用いた。なお、予め二軸押出機にて、ポリエーテルエステルアミド共重合体に高濃度でハーフヒンダードフェノール系酸化防止剤:2,2’-ジメチル-2,2’-(2,4,8,10-テトラオキサスピロ[5.5]ウンデカン-3,9-ジイル)ジプロパン-1,1’-ジイル=ビス[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロパノアート](ADEKA社製、アデカスタブAO-80)を含有させたマスターチップとポリエーテルエステルアミド共重合体チップをブレンドし、芯部の重量に対して3.0重量%となるように調整した。ポリアミドとして、硫酸相対粘度が2.63であるナイロン6チップを鞘部に用いた。
ポリエーテルエステルアミド共重合体として、ポリアミド成分がナイロン6、ポリエーテル成分が分子量1500のポリエチレングリコール、ナイロン6とポリエチレングリコールのモル比が24%:76%であるポリエーテルエステルアミド共重合体(アルケマ社製、MH1657、オルトクロロフェノール相対粘度:1.69)チップを芯部に用いた。なお、予め二軸押出機にて、ポリエーテルエステルアミド共重合体に高濃度でハーフヒンダードフェノール系酸化防止剤:2,2’-ジメチル-2,2’-(2,4,8,10-テトラオキサスピロ[5.5]ウンデカン-3,9-ジイル)ジプロパン-1,1’-ジイル=ビス[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロパノアート](ADEKA社製、アデカスタブAO-80)を含有させたマスターチップとポリエーテルエステルアミド共重合体チップをブレンドし、芯部の重量に対して3.0重量%となるように調整した。ポリアミドとして、硫酸相対粘度が2.63であるナイロン6チップを鞘部に用いた。
上記ポリエーテルエステルアミド共重合体を芯部とし、ナイロン6を鞘部とし、芯部溶融部温度235℃、鞘部溶融部温度260℃、合流部溶融部温度255℃にて溶融し、同心円芯鞘複合用口金から芯/鞘比率(重量%)=30/70になるように紡糸した。この時、得られる芯鞘複合糸の総繊度が56デシテックスとなるようにギヤポンプの回転数を選定し、糸条冷却装置で糸条を冷却固化し、給油装置により非含水油剤を給油したのち、第1流体交絡ノズル装置で交絡を付与し、第1ロールである引き取りローラーの周速度を2426m/分、第2ロールである延伸ローラーの周速度を3590m/分で延伸、延伸倍率1.48倍、延伸ローラー150℃により熱セットを行い、巻き取り速度を3500m/分で巻き取り、56デシテックス24フィラメントの芯鞘複合糸を得た。
得られた繊維の物性を表1に示す。得られた芯鞘複合糸の酸化発熱時間200時間以上、ΔYI=0.5であった。また、タンブル乾燥後においても、風合い、色調、吸湿性能に優れていた。
[実施例2]
芯部溶融部温度235℃、鞘部溶融部温度240℃、合流部溶融部温度235℃にて溶融した以外実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表1に示す。
芯部溶融部温度235℃、鞘部溶融部温度240℃、合流部溶融部温度235℃にて溶融した以外実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表1に示す。
[実施例3]
芯部溶融部温度260℃、鞘部溶融部温度280℃、合流部溶融部温度270℃にて溶融した以外は実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表1に示す。
芯部溶融部温度260℃、鞘部溶融部温度280℃、合流部溶融部温度270℃にて溶融した以外は実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表1に示す。
[実施例4]
ハーフヒンダードフェノール系酸化防止剤を、1,3,5-トリス[[4-(1,1-ジメチルエチル)-3-ヒドロキシ-2,6-ジメチルフェニル]メチル]-1,3,4-トリアジン-2,4,6(1H,3H,5H)-トリオン(ソルベー社製Cyanox1790)とした以外は実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表1に示す。
ハーフヒンダードフェノール系酸化防止剤を、1,3,5-トリス[[4-(1,1-ジメチルエチル)-3-ヒドロキシ-2,6-ジメチルフェニル]メチル]-1,3,4-トリアジン-2,4,6(1H,3H,5H)-トリオン(ソルベー社製Cyanox1790)とした以外は実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表1に示す。
[実施例5]
ハーフヒンダードフェノール系酸化防止剤の添加量が、芯部の重量に対し1.0重量%となるように調整した以外は実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表1に示す。
ハーフヒンダードフェノール系酸化防止剤の添加量が、芯部の重量に対し1.0重量%となるように調整した以外は実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表1に示す。
[実施例6]
ハーフヒンダードフェノール系酸化防止剤の添加量が、芯部の重量に対し5.0重量%となるように調整した以外は実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表1に示す。
ハーフヒンダードフェノール系酸化防止剤の添加量が、芯部の重量に対し5.0重量%となるように調整した以外は実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表1に示す。
[実施例7]
ハーフヒンダードフェノール系酸化防止剤(ADEKA社製アデカスタブAO-80)の添加に加えて、リン系安定剤(BASF社製Irgafos168)を、芯部の重量に対し2.0重量%となるように調整した以外は実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表1に示す。
ハーフヒンダードフェノール系酸化防止剤(ADEKA社製アデカスタブAO-80)の添加に加えて、リン系安定剤(BASF社製Irgafos168)を、芯部の重量に対し2.0重量%となるように調整した以外は実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表1に示す。
[実施例8]
芯/鞘比率(重量%)=50/50とした以外は実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表1に示す。
芯/鞘比率(重量%)=50/50とした以外は実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表1に示す。
[比較例1]
ハーフヒンダードフェノール系酸化防止剤を添加しないこと(剤無添加)以外は実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表2に示す。得られた芯鞘複合糸は、酸化発熱時間0時間であり、酸化発熱が確認された。また、タンブル乾燥での繰り返し実施において、芯成分が酸化分解や変性し、風合いや吸放湿性能が低下した。
ハーフヒンダードフェノール系酸化防止剤を添加しないこと(剤無添加)以外は実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表2に示す。得られた芯鞘複合糸は、酸化発熱時間0時間であり、酸化発熱が確認された。また、タンブル乾燥での繰り返し実施において、芯成分が酸化分解や変性し、風合いや吸放湿性能が低下した。
[比較例2]
両ヒンダードフェノール系安定剤(BASF社製「Irganox」(登録商標)1010)を芯部の重量に対し2.0重量%、HALS系安定剤(BASF社製CHIMASSORB2020FDL)を芯部の重量に対し2.0重量%となるように調整した以外は実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表2に示す。得られた芯鞘複合糸のΔYI=11.0であり、黄変が確認された。また、タンブル乾燥後での繰り返し実施において、色調が激しく変化した。
両ヒンダードフェノール系安定剤(BASF社製「Irganox」(登録商標)1010)を芯部の重量に対し2.0重量%、HALS系安定剤(BASF社製CHIMASSORB2020FDL)を芯部の重量に対し2.0重量%となるように調整した以外は実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表2に示す。得られた芯鞘複合糸のΔYI=11.0であり、黄変が確認された。また、タンブル乾燥後での繰り返し実施において、色調が激しく変化した。
[比較例3]
リン系安定剤(BASF社製Irgafos168)を芯部の重量に対し2.0重量%、HALS系安定剤(BASF社製CHIMASSORB2020FDL)を芯部の重量に対し2.0重量%となるように調整した以外は実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表2に示す。得られた芯鞘複合糸の酸化発熱時間0.5時間であり、酸化発熱が確認された。また、タンブル乾燥での繰り返し実施において、芯成分が酸化分解や変性し、風合いや吸放湿性能が低下した。
リン系安定剤(BASF社製Irgafos168)を芯部の重量に対し2.0重量%、HALS系安定剤(BASF社製CHIMASSORB2020FDL)を芯部の重量に対し2.0重量%となるように調整した以外は実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表2に示す。得られた芯鞘複合糸の酸化発熱時間0.5時間であり、酸化発熱が確認された。また、タンブル乾燥での繰り返し実施において、芯成分が酸化分解や変性し、風合いや吸放湿性能が低下した。
[比較例4]
両ヒンダードフェノール系安定剤(BASF社製Irganox1010)を芯部の重量に対し2.0重量%となるように調整した以外は実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表2に示す。得られた芯鞘複合糸の酸化発熱時間0.2時間、ΔYI=10.7であり、酸化発熱と黄変が確認された。また、タンブル乾燥後での繰り返し実施において、芯成分が酸化分解や変性し、風合いや吸放湿性能が低下し、色調が激しく変化した。
両ヒンダードフェノール系安定剤(BASF社製Irganox1010)を芯部の重量に対し2.0重量%となるように調整した以外は実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表2に示す。得られた芯鞘複合糸の酸化発熱時間0.2時間、ΔYI=10.7であり、酸化発熱と黄変が確認された。また、タンブル乾燥後での繰り返し実施において、芯成分が酸化分解や変性し、風合いや吸放湿性能が低下し、色調が激しく変化した。
[参考例]
ジメチルテレフタル酸194部、エチレングリコール135部、5-ナトリウムスルホイソフタル酸ジメチル(SSIA)26.6部、トリメリット酸トリメチル(TMTM)7.5部およびテトラブチルチタネート0.1部を加え、140~230℃でメタノールを留出しつつエステル交換反応を行った後、リン酸トリメチル0.08部のエチレングリコール溶液および分子量4000のポリエチレングリコール328部、消泡剤としてシリコン0.2部、およびテトラブチルチタネート0.1部を加え、1.0mmHgの減圧下250℃の条件下4時間重合を行い、ポリエステル共重合体を得た。このポリエステル共重合体を実施例1と同様の方法で、高濃度でハーフヒンダードフェノール系酸化防止剤(ADEKA社製、アデカスタブAO-80)を含有させたマスターチップと、ポリエステル共重合体チップをブレンドし、芯部の重量に対して3.0重量%となるように調整した。こうして調整した共重合ポリエステルを芯部ポリマーとし、鞘部ポリマーを極限粘度0.70のポリエチレンテレフタレートに変更し、芯部溶融部温度260℃、鞘部溶融部温度285℃、合流部溶融部温度270℃にて溶融した以外は実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性は、強度2.8cN/dtex、伸度47%であった。得られた芯鞘複合糸は、(6)酸化発熱試験のB.前処理である漂白剤を加えての水洗濯にて、ハーフヒンダードフェノールが失活するため、酸化発熱時間0.2時間であり、酸化発熱が確認された。また、(6)のB.前処理を実施した布帛は、漂白剤を加えての水洗濯にてハーフヒンダードフェノールが失活したため、芯成分が酸化分解や変性し、処理前に比べ、風合いが硬くごわごわし、色調はYIにて18と激しく悪化した。
ジメチルテレフタル酸194部、エチレングリコール135部、5-ナトリウムスルホイソフタル酸ジメチル(SSIA)26.6部、トリメリット酸トリメチル(TMTM)7.5部およびテトラブチルチタネート0.1部を加え、140~230℃でメタノールを留出しつつエステル交換反応を行った後、リン酸トリメチル0.08部のエチレングリコール溶液および分子量4000のポリエチレングリコール328部、消泡剤としてシリコン0.2部、およびテトラブチルチタネート0.1部を加え、1.0mmHgの減圧下250℃の条件下4時間重合を行い、ポリエステル共重合体を得た。このポリエステル共重合体を実施例1と同様の方法で、高濃度でハーフヒンダードフェノール系酸化防止剤(ADEKA社製、アデカスタブAO-80)を含有させたマスターチップと、ポリエステル共重合体チップをブレンドし、芯部の重量に対して3.0重量%となるように調整した。こうして調整した共重合ポリエステルを芯部ポリマーとし、鞘部ポリマーを極限粘度0.70のポリエチレンテレフタレートに変更し、芯部溶融部温度260℃、鞘部溶融部温度285℃、合流部溶融部温度270℃にて溶融した以外は実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性は、強度2.8cN/dtex、伸度47%であった。得られた芯鞘複合糸は、(6)酸化発熱試験のB.前処理である漂白剤を加えての水洗濯にて、ハーフヒンダードフェノールが失活するため、酸化発熱時間0.2時間であり、酸化発熱が確認された。また、(6)のB.前処理を実施した布帛は、漂白剤を加えての水洗濯にてハーフヒンダードフェノールが失活したため、芯成分が酸化分解や変性し、処理前に比べ、風合いが硬くごわごわし、色調はYIにて18と激しく悪化した。
1:高温乾燥機
2:熱電対
3:円筒容器
4:試料
2:熱電対
3:円筒容器
4:試料
Claims (4)
- 鞘部ポリマーがポリアミド、芯部ポリマーがポリエーテルエステルアミド共重合体であって、150℃で熱処理した際に酸化発熱による発熱開始までの時間が100時間以上であり、かつ70℃、8時間乾熱処理後の黄色度(YI)の変化(ΔYI)が10以下であることを特徴とする芯鞘複合糸。
- ΔMRが5.0%以上であり、150℃、1時間乾熱処理後のΔMR保持率が70%以上であることを特徴とする請求項1に記載の芯鞘複合糸。
- 70℃、8時間乾熱処理後の黄色度(YI)が13以下であることを特徴とする請求項1または2に記載の芯鞘複合糸。
- 請求項1~3のいずれかに記載の芯鞘複合糸を少なくとも一部に有する布帛。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020541609A JPWO2020262511A1 (ja) | 2019-06-28 | 2020-06-25 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-120931 | 2019-06-28 | ||
JP2019120931 | 2019-06-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020262511A1 true WO2020262511A1 (ja) | 2020-12-30 |
Family
ID=74060623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/024943 WO2020262511A1 (ja) | 2019-06-28 | 2020-06-25 | 芯鞘複合糸及び布帛 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2020262511A1 (ja) |
TW (1) | TW202113176A (ja) |
WO (1) | WO2020262511A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH108324A (ja) * | 1996-04-22 | 1998-01-13 | Tosoh Corp | ポリエーテルエステルアミドエラストマー弾性糸 |
WO2017098861A1 (ja) * | 2015-12-08 | 2017-06-15 | 東レ株式会社 | 吸湿性芯鞘複合糸及び布帛 |
JP2018076613A (ja) * | 2016-11-08 | 2018-05-17 | 東レ株式会社 | 吸湿性芯鞘複合糸 |
JP2019502036A (ja) * | 2015-12-28 | 2019-01-24 | 東レ株式会社 | 芯鞘型複合繊維、仮撚糸及び繊維構造体 |
-
2020
- 2020-06-25 WO PCT/JP2020/024943 patent/WO2020262511A1/ja active Application Filing
- 2020-06-25 JP JP2020541609A patent/JPWO2020262511A1/ja active Pending
- 2020-06-29 TW TW109121781A patent/TW202113176A/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH108324A (ja) * | 1996-04-22 | 1998-01-13 | Tosoh Corp | ポリエーテルエステルアミドエラストマー弾性糸 |
WO2017098861A1 (ja) * | 2015-12-08 | 2017-06-15 | 東レ株式会社 | 吸湿性芯鞘複合糸及び布帛 |
JP2019502036A (ja) * | 2015-12-28 | 2019-01-24 | 東レ株式会社 | 芯鞘型複合繊維、仮撚糸及び繊維構造体 |
JP2018076613A (ja) * | 2016-11-08 | 2018-05-17 | 東レ株式会社 | 吸湿性芯鞘複合糸 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020262511A1 (ja) | 2020-12-30 |
TW202113176A (zh) | 2021-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20180097712A (ko) | 코어-시스형 복합 섬유, 가연사 및 섬유 구조체 | |
KR20170095806A (ko) | 흡습성 심초 복합사 | |
JP2016204784A (ja) | 吸湿性、接触冷感に優れたポリアミド系芯鞘複合繊維およびそれを用いた布帛 | |
TWI693311B (zh) | 吸濕性芯鞘複合絲及其製造方法 | |
EP3388562B1 (en) | Moisture-absorbing core-sheath composite yarn, and fabric | |
US10400358B2 (en) | Nylon based filaments, yarns, and fabrics | |
KR102575877B1 (ko) | 흡습성, 주름방지성이 우수한 심초 복합 단면섬유 | |
WO2020262511A1 (ja) | 芯鞘複合糸及び布帛 | |
JP6939102B2 (ja) | 吸湿性に優れた芯鞘型複合繊維、仮撚糸および繊維構造体 | |
JP2018076613A (ja) | 吸湿性芯鞘複合糸 | |
JP6690160B2 (ja) | 耐久性に優れた制電性ポリアミド芯鞘複合繊維 | |
WO2022065121A1 (ja) | ポリアミド芯鞘複合繊維及び布帛 | |
WO2017165552A1 (en) | Nylon based yarns and fabrics | |
JP2022040592A (ja) | 繊維製造方法 | |
JP2018172831A (ja) | 海島型複合繊維 | |
JP2016117979A (ja) | 洗濯耐久性に優れた吸湿性芯鞘複合糸 | |
JP2016132828A (ja) | 吸湿性芯鞘複合糸 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020541609 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20833271 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20833271 Country of ref document: EP Kind code of ref document: A1 |