[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020262414A1 - ビフィドバクテリウム属細菌の増殖促進方法 - Google Patents

ビフィドバクテリウム属細菌の増殖促進方法 Download PDF

Info

Publication number
WO2020262414A1
WO2020262414A1 PCT/JP2020/024692 JP2020024692W WO2020262414A1 WO 2020262414 A1 WO2020262414 A1 WO 2020262414A1 JP 2020024692 W JP2020024692 W JP 2020024692W WO 2020262414 A1 WO2020262414 A1 WO 2020262414A1
Authority
WO
WIPO (PCT)
Prior art keywords
cysteine
medium
milk
cystine
milk medium
Prior art date
Application number
PCT/JP2020/024692
Other languages
English (en)
French (fr)
Inventor
康介 加藤
薫 栃谷
剛一 奥村
Original Assignee
株式会社ヤクルト本社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヤクルト本社 filed Critical 株式会社ヤクルト本社
Priority to JP2021527665A priority Critical patent/JP7518828B2/ja
Priority to CN202080046262.5A priority patent/CN114026218A/zh
Priority to US17/621,305 priority patent/US20220356439A1/en
Priority to EP20832070.5A priority patent/EP3991564A4/en
Publication of WO2020262414A1 publication Critical patent/WO2020262414A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/123Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/123Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt
    • A23C9/1234Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt characterised by using a Lactobacillus sp. other than Lactobacillus Bulgaricus, including Bificlobacterium sp.
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/13Fermented milk preparations; Treatment using microorganisms or enzymes using additives
    • A23C9/1322Inorganic compounds; Minerals, including organic salts thereof, oligo-elements; Amino-acids, peptides, protein-hydrolysates or derivatives; Nucleic acids or derivatives; Yeast extract or autolysate; Vitamins; Antibiotics; Bacteriocins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/14Milk preparations; Milk powder or milk powder preparations in which the chemical composition of the milk is modified by non-chemical treatment
    • A23C9/146Milk preparations; Milk powder or milk powder preparations in which the chemical composition of the milk is modified by non-chemical treatment by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/38Chemical stimulation of growth or activity by addition of chemical compounds which are not essential growth factors; Stimulation of growth by removal of a chemical compound
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2400/00Lactic or propionic acid bacteria
    • A23V2400/51Bifidobacterium

Definitions

  • the present invention relates to a method for promoting the growth of Bifidobacterium spp.
  • Cysteine is a non-essential amino acid that naturally constitutes a protein in the form of L-cysteine and is biosynthesized from methionine in the human body.
  • L-Cysteine has an antioxidant effect, an effect of suppressing the production of melanin pigment, an effect of detoxifying acetaldehyde produced by the metabolism of alcohol, etc., and paying attention to its whitening effect and hangover alleviating effect, foods, cosmetics, pharmaceuticals, etc. It is used in the field.
  • Cystine is a type of amino acid in which two cysteine molecules are oxidized and linked via a disulfide bond. Cystine is poorly soluble in water and is easily reduced to cysteine. Naturally, it constitutes a protein in the form of L-cystine, and is particularly contained in a large amount in keratin such as hair and nails.
  • Non-Patent Document 1 a medium for growing Bifidobacterium spp.
  • cysteine lowers the redox potential, making them suitable for the growth of oxygen- and hydrogen peroxide-sensitive bifidobacteria. It is believed to be an ingredient.
  • cysteine is added to milk to lower the redox potential and enhance the survival of bifidobacteria during storage (Non-Patent Document 2).
  • the addition of cysteine or cystine to the Bifidobacterium growth medium is merely for the purpose of supplementing amino acids and lowering the redox potential.
  • An object of the present invention is to provide a simple and efficient method for promoting the growth of Bifidobacterium spp.
  • the present inventors have conducted heat treatment by adding cysteine, cystine or a salt thereof to the milk medium in culturing the Bifidobacterium bacterium in the milk medium, and then heat-treating the milk.
  • Bifidobacterium spp. Are cultured in a medium, the growth of the bacteria is compared with the case of culturing using a milk medium in which a milk medium and cysteine, cystine or salts thereof are individually heat-treated and mixed. was found to be promoted.
  • the present invention provides the following [1] to [13].
  • Bifidobacterium spp. are cultured in the milk medium after heat-treating a milk medium containing one or more selected from the group consisting of cysteine, cystine and salts thereof.
  • a method for promoting the growth of Bifidobacterium spp. [2] The method of [1], wherein the heat treatment is performed at 60 to 125 ° C. for 10 to 40 minutes. [3] The method of [1] or [2], wherein the milk medium contains one or more selected from the group consisting of L-cysteine, L-cystine and salts thereof.
  • the heat-treated product is a component of the heat-treated milk medium having a molecular weight of less than 3000, is held on an anion exchange resin at a pH of 8.0 or higher, and exchanges the anions in the presence of anions of 1 to 400 mM.
  • a milk medium containing one or more selected from the group consisting of cysteine, cystine and salts thereof is heat-treated, and components having a molecular weight of less than 3000 of the obtained heat-treated milk medium are separated.
  • a method for producing a milk medium component which comprises retaining the obtained component in an anion resin at pH 8.0 or higher, and further eluting the obtained component from the anion resin in the presence of an anion of 1 to 400 mM.
  • bifidobacteria are cultured in the milk medium.
  • the growth of Bifidobacterium spp. Can be promoted easily and efficiently, and the culture time can be shortened.
  • Such a method for promoting the growth of Bifidobacterium spp. Is also useful as a method for producing fermented milk.
  • the component isolated under specific conditions from the heat-treated product of the milk medium containing one or more selected from the group consisting of cysteine, cystine and salts thereof is the growth of bifidobacteria. It is useful as an accelerator.
  • a milk medium containing one or more selected from the group consisting of cysteine, cystine and salts thereof is heat-treated and then applied to the milk medium. It is characterized by culturing Bifidobacterium spp.
  • Bifidobacterium genus used in the present invention is not particularly limited, but for example, Bifidobacterium breve, Bifidobacterium longum, Bifidobacterium longum, Bifidobacterium bifidam ( Bifidobacterium bifidium, Bifidobacterium animalis, Bifidobacterium suis, Bifidobacterium influenza, Bifidobacterium bacteria, Bifidobacterium bacteria, Bifidobacterium bacteria, Bifidobacterium bacteria, Bifidobacterium bacteria, Bifidobacterium bacteria, Bifidobacterium bacteria , Bifidobacterium bacteria , Bifidobacterium bacteria , Bifidobacterium catenuratum, Bifidobacterium pseudocatenulatum, Bifidobacterium pseudocatenulatum, Bifidobacterium lactis (Bifidobacterium bac
  • Bifidobacterium breve, Bifidobacterium longum, and Bifidobacterium bifidam are preferable because they have been used in many dairy products for a long time and data such as safety have been accumulated.
  • Breve and Bifidobacterium bifidam are more preferable, and specifically, Bifidobacterium Breve YIT 12272 (FERM BP-11320) and Bifidobacterium Bifidum YIT 10347 (FERM BP-10613) are particularly preferable.
  • the medium for the growth of Bifidobacterium spp. Used in the present invention is a milk medium.
  • the milk medium is not particularly limited as long as it is a medium containing milk as a main component.
  • milk include milk (whole fat milk), skim milk which is a processed product thereof, whey from which casein has been removed, whey-derived components, milk-derived peptides and the like.
  • whey-derived component a water-soluble protein (whey protein) contained in whey is preferable, and specific examples thereof include ⁇ -lactoglobulin and ⁇ -lactalbumin.
  • the milk medium skim milk medium and whey medium are preferable.
  • the non-fat milk solid content and the fat content can be arbitrarily set depending on the milk raw material used and the blending amount thereof. Growth factors of Bifidobacterium spp., Such as yeast extract, may be added to the milk medium.
  • the cysteine or cystine used in the present invention may be of natural origin, or may be produced by a chemical synthesis method, a fermentation method or a gene recombination method.
  • the cysteine or cystine any of L-form, D-form, and DL-form can be used, but L-form is preferable.
  • the salt of cysteine or cystine may be any pharmacologically acceptable salt, for example, a salt with an alkali metal (sodium, potassium, etc.), a salt with an alkaline earth metal (calcium, magnesium, etc.), ammonium.
  • Salts salts with inorganic acids (hydrochloride, hydrobromic acid, sulfuric acid, nitrate, phosphoric acid, etc.), and organic acids (acetic acid, propionic acid, tartaric acid, fumaric acid, maleic acid, succinic acid, malic acid, citric acid, etc.) ) And salt.
  • inorganic acids hydroochloride, hydrobromic acid, sulfuric acid, nitrate, phosphoric acid, etc.
  • organic acids acetic acid, propionic acid, tartaric acid, fumaric acid, maleic acid, succinic acid, malic acid, citric acid, etc.
  • L-cysteine hydrochloride and L-cystine are preferable, and L-cysteine hydrochloride is more preferable.
  • Cysteine, cystine or salts thereof may be used alone or in combination of two or more.
  • the content of one or more (hereinafter referred to as cysteine or the like) selected from the group consisting of cysteine, cystine and salts thereof in the milk medium is not particularly limited, but is final from the viewpoint of growth promoting effect.
  • the concentration is preferably 0.001 to 0.1 (w / v)%, more preferably 0.001 to 0.05 (w / v)%, and preferably 0.005 to 0.05 (w / v)%. More preferred.
  • Cysteine and the like shall be added to the milk medium before the heat treatment.
  • the addition method is not particularly limited, and cysteine or the like may be added to the milk medium as it is so as to have the final concentration, or a solution of cysteine or the like (for example, an aqueous solution) may be added to the milk medium.
  • a milk medium containing cysteine or the like is heat-treated.
  • the means of heat treatment is not particularly limited, and an autoclave or the like is exemplified.
  • the heating temperature is preferably 60 to 125 ° C., more preferably 64 to 121 ° C., even more preferably 100 to 121 ° C., still more preferably 115 to 121 ° C.
  • the heating time is preferably 10 to 40 minutes, more preferably 15 to 30 minutes, and even more preferably 20 to 30 minutes.
  • heat treatment may be performed so as to satisfy the heat history (total amount of heat added) or heat sterilization strength corresponding to the above heat treatment conditions.
  • the temperature of the heat-treated milk medium may be lowered to below the culture temperature by the time of culturing by allowing it to stand or using a cooling device.
  • the heat-treated milk medium is inoculated with Bifidobacterium spp. And cultured.
  • Bifidobacterium spp. Normal culture conditions may be applied as they are. That is, various conditions such as an inoculation amount, temperature, time, and culture atmosphere suitable for the bifidobacteria to be inoculated into the medium may be appropriately set.
  • the inoculation amount is 0.01 to 5%, preferably 0.1 to 1%
  • the culture temperature is 25 to 46 ° C., preferably 35 to 42 ° C.
  • the culture time is 6 to 120 hours, preferably 24 to 24 to It may be 72 hours.
  • the culture atmosphere may be aerobic or anaerobic, but it is preferable to carry out the culture under anaerobic conditions, and the culture method is particularly limited to standing, stirring, shaking and the like. It is not done, and either one may be selected.
  • the method for promoting the growth of bifidobacteria of the present invention can efficiently grow bifidobacteria in a milk medium in a short time, the method contains bifidobacteria. It is also useful as a method for producing fermented milk.
  • the fermented milk which is a culture of bifidobacteria obtained by the method of the present invention, can be made into a final product by adding an arbitrary component such as syrup (sweetener).
  • Syrups include glucose, sucrose, fructose, fructose-glucose liquid sugar, glucose-fructose liquid sugar, palatinose, trehalose, lactose, xylose, maltose, honey, sugars such as sugar honey, sorbitol, xylitol, erythritol, lactitol, palatinit, reduced candy , Sugar alcohols such as reduced maltose glucose candy, and high-sweetness sweeteners such as aspartame, somatin, sclarose, acesulfam K, and stevia.
  • fermented milk contains emulsifiers such as sucrose fatty acid ester, glycerin fatty acid ester, polyglycerin fatty acid ester, sorbitan fatty acid ester, and lecithin, agar, gelatin, carrageenan, guar gum, xanthan gum, pectin, locust bean gum, gellan gum, and carboxymethyl cellulose.
  • Soybean polysaccharide, propylene glycol alginate and other thickening (stabilizing) agents may be blended.
  • vitamins such as vitamin A, vitamin B, vitamin C, vitamin D, and vitamin E, minerals such as calcium, magnesium, zinc, iron, and manganese, citric acid, lactic acid, acetic acid, and malic acid, Acidulants such as tartrate and gluconic acid, milk fat such as cream, butter and sour cream, yogurt, berry, orange, karin, perilla, citrus, apple, mint, grape, apricot, pair , Custard cream, peach, melon, banana, tropical, herb-based, tea, coffee-based and other flavors, herb extract, brown sugar extract and the like can also be blended.
  • a conventional method may be followed.
  • the fermented milk may be homogenized to obtain a fermented milk base, then a separately prepared syrup solution may be added and mixed, homogenized with a homogenizer or the like, and further flavored to finish the final product.
  • the fermented dairy product includes beverages and foods, and may be a product in any form such as plain type, soft type, fruit flavor type, solid form, liquid type, etc., which does not contain syrup (sweetener).
  • the growth of Bifidobacterium spp. Can be promoted. It is considered that this is because the substance produced by the reaction between the milk medium component and cysteine or the like by the simultaneous heat treatment of the milk medium and cysteine or the like contributes to the promotion of the growth of Bifidobacterium spp. Therefore, the heat-treated product of the milk medium containing cysteine or the like can be used as a growth promoter for Bifidobacterium spp.
  • the heat treatment conditions include the above-mentioned conditions. Since cysteine or the like is an amino acid, a protein or peptide is assumed as a milk medium component that reacts with cysteine or the like.
  • the heat-treated product of the milk medium containing cysteine and the like is more specifically the heat-treated product of the milk medium.
  • a milk medium component For such a milk medium component, a milk medium containing cysteine or the like is heat-treated, and a component having a molecular weight of less than 3000 is separated from the obtained milk medium, and the obtained component is retained in an anion exchange resin at pH 8.0 or higher. It can be produced by further elution from the anion exchange resin in the presence of anions of 1 to 400 mM, preferably 50 to 200 mM.
  • the content of cysteine or the like in the milk medium when the heat-treated product is obtained is not particularly limited, but from the viewpoint of production efficiency, the final concentration is preferably 0.001 to 1 (w / v)%. 0.001 to 0.5 (w / v)% is more preferable, 0.001 to 0.1 (w / v)% is further preferable, and 0.001 to 0.05 (w / v)% is further preferable. , 0.005 to 0.05 (w / v)% is particularly preferable.
  • Cysteine and the like shall be added to the milk medium before the heat treatment.
  • the addition method is not particularly limited, and cysteine or the like may be added to the milk medium as it is so as to have the final concentration, or a solution of cysteine or the like (for example, an aqueous solution) may be added to the milk medium.
  • the heating temperature is preferably 60 to 125 ° C, more preferably 64 to 121 ° C, even more preferably 100 to 121 ° C, and even more preferably 115 to 121 ° C.
  • the heating time is preferably 10 to 40 minutes, more preferably 15 to 30 minutes, and even more preferably 20 to 30 minutes.
  • heat treatment may be performed so as to satisfy the heat history (total amount of heat added) or heat sterilization strength corresponding to the above heat treatment conditions.
  • components having a molecular weight of less than 3000 are separated from the heat-treated product of the obtained milk medium.
  • known means may be used, and examples thereof include ultrafiltration and gel filtration chromatography.
  • the filtrate may be recovered by using an ultrafiltration filter having a molecular weight cut-off of about 3 kDa.
  • the molecular weight of the obtained component can be confirmed by SDS-polyacrylamide gel electrophoresis.
  • the obtained component having a molecular weight of less than 3000 is adjusted to pH 8.0 or higher, preferably pH 8.0 with hydrochloric acid or the like, brought into contact with the anion exchange resin, and the desired component is retained in the anion exchange resin.
  • the pH is adjusted in order to negatively charge the desired component and adsorb it on the anion exchange resin.
  • the material, structure, and the like of the anion exchange resin are not particularly limited and can be appropriately selected.
  • the resin base of the anion exchange resin include styrene resin, acrylic resin, agarose resin and the like.
  • the resin structure of the anion exchange resin include a gel type, a porous type, and a high porous type.
  • the functional group of the anion exchange resin include a primary amino group, a secondary amino group, a tertiary amino group, a quaternary ammonium group and the like.
  • the anion exchange resin may be a strong basic anion exchange resin or a weak basic anion exchange resin, but a strong basic anion exchange resin is preferable from the viewpoint of separability.
  • an anion exchange resin for example, as the strongly basic anion exchange resin, Diaion (registered trademark) SA10A, SA12A, SA11A, NSA100, UBA120, PA306S, PA308, PA312 may be used. , PA316, PA318L, HPA25, SA20A, SA21A, PA408, PA412, PA418 (manufactured by Mitsubishi Chemical Co., Ltd.), Q Sepharose (registered trademark) High Performance, Q Sepharose Fast Flow (manufactured by GE Healthcare Japan Co., Ltd.), etc.
  • the weakly basic anion exchange resin examples include Diaion (registered trademark) WA10, WA20, WA21J, WA30 (manufactured by Mitsubishi Chemical Co., Ltd.), DEAE Sepharose Fast Flow (manufactured by GE Healthcare Japan Co., Ltd.), and the like. Be done.
  • the anion exchange resin is preferably equilibrated in advance with a buffer having a buffering ability at pH 8.0 (for example, Tris buffer).
  • the contact method with the anion exchange resin may be a batch method or a column method, but the column method is preferable from the viewpoint of efficiency.
  • a solution containing a component having a molecular weight of less than 3000 of the milk medium heat-treated product obtained above may be passed through a column packed with an anion exchange resin.
  • a sufficient amount of a buffer having a buffering capacity at pH 8.0 (for example, Tris buffer) may be passed to wash away the substances not adsorbed on the anion exchange resin.
  • the column capacity and the flow velocity are not particularly limited and may be appropriately selected in consideration of the sample amount, the holding performance of the anion exchange resin and the like.
  • the column capacity is 1 to 20 mL, preferably 5.
  • the flow rate is 0.1 to 20 mL / min, preferably 1 to 10 mL / min.
  • a commercially available product may be used as a column filled with such an anion exchange resin.
  • HiTrap registered trademark
  • QFF registered trademark
  • HiPrep registered trademark
  • Q FF manufactured by GE Healthcare Japan Co., Ltd.
  • examples of the column filled with the weakly basic anion exchange resin include HiTrap DEAE FF (manufactured by GE Healthcare Japan Co., Ltd.) and the like.
  • the components retained in the anion exchange resin are eluted from the anion exchange resin in the presence of 1-400 mM, preferably 50-200 mM anions.
  • the type of anion is not particularly limited, and examples thereof include Cl - ion and the like.
  • a buffer solution having a pH of 8.0 for example, Tris buffer solution
  • NaCl of 1 to 400 mM, preferably 50 to 200 mM
  • the flow velocity is not particularly limited and may be appropriately selected in consideration of the retention performance of the anion exchange resin and the like.
  • 0.1 to 20 mL / min preferably 1 to 10 mL / min can be mentioned. Be done. Such conditions may be appropriately changed according to the amount of purification.
  • the obtained eluate may be added to the medium as it is and used, or may be concentrated, diluted or the like by a known means according to the purpose, and then used.
  • the milk medium component thus eluted can promote the growth of Bifidobacterium spp., As shown in Examples below.
  • a whey medium containing 0.001 to 1 (w / v)% of cysteine or the like as a final concentration is heated at 115 ° C. for 30 minutes.
  • the heat-treated product of the obtained whey medium is passed through an ultrafiltration membrane having a molecular weight cut-off of 3 kDa, and components having a molecular weight of less than 3000 are recovered as a filtrate.
  • the pH of the recovered filtrate is adjusted to 8.0 with hydrochloric acid.
  • a 20 mM Tris buffer solution having a pH of 8.0 is passed through an anion exchange column (for example, HiTrap Q FF (manufactured by GE Healthcare Japan Co., Ltd.)) for equilibration.
  • the pH-adjusted filtrate is passed through an equilibrated anion exchange column, and the desired component is retained in the anion exchange column. Substances that have not been adsorbed on the anion exchange column are washed away by passing a sufficient amount of 20 mM Tris buffer through the anion exchange column.
  • the eluate is then recovered by passing a pH 8.0 Tris buffer containing 50-200 mM NaCl through the column.
  • a fraction having an elution volume of 22 to 28 mL may be recovered under the following conditions.
  • Addition method Direct sample load 10 mL Flow velocity: 1 mL / min
  • Example 1 Growth promoting effect by simultaneous heating of milk and cystine or cysteine (1)
  • Test strain Bifidobacterium breve YIT 12272 hereinafter referred to as BbY
  • Bifidobacterium Bifidum YIT 10347 hereinafter, BF- Lactobacillus casei YIT 9029 (hereinafter referred to as YIT 9029)
  • Lactobacillus acidophilus YIT 0198 hereinafter referred to as YIT 0198
  • Skim milk medium Dissolve skim milk powder (ABC; manufactured by Snow Brand Megmilk Co., Ltd.) in RO water to a concentration of 12% (w / v), and nitrogen in the gas phase in a medium-sized test tube with a rim. While replacing with gas, 10 mL each was dispensed and sealed with a butyl rubber stopper. Then, it was sterilized by heating in an autoclave device (SX-500; manufactured by Tomy Seiko Co., Ltd.) at 115 ° C. for 30 minutes to prepare a skim milk medium (additive-free medium).
  • ABS Autoclave device
  • an aqueous suspension of L-cystine (manufactured by Kyowa Hakko Bio Co., Ltd.) or an aqueous solution of L-cysteine hydrochloride (manufactured by Nichiri Kagaku Co., Ltd.) was added to a final concentration of 0.05 (w / v)%.
  • a defatted milk medium (simultaneous heating medium) that was added before heat sterilization and then heat sterilized, and a defatted milk medium (individual heating medium) that was added after heat sterilization and immediately before inoculation were prepared.
  • the L-cystine aqueous suspension and the L-cysteine hydrochloride aqueous solution were prepared as a 5% (w / v) aqueous suspension and an aqueous solution, respectively, and 1% (v / v) was added to each medium.
  • 1% (v / v) sterilized water was used immediately before inoculation in the simultaneous heating medium and before heating in the individual heating medium.
  • the additive-free medium the medium was added twice, before heating and immediately before inoculation.
  • Results Figure 1 shows the proliferation of each strain when skim milk and L-cystine or L-cysteine hydrochloride (hereinafter referred to as L-cysteine) are heated simultaneously or individually.
  • L-cysteine L-cysteine hydrochloride
  • YIT 0198 and YIT 9029 two Lactobacillus strains
  • BbY which is a bacterium belonging to the genus Bifidobacterium
  • the addition of L-cystine increased the acidity by 2.2 to 2.6 times and the viable cell count by 5.6 times in the case of no addition after culturing for 12 hours.
  • the growth curve of BbY when 0.03% (w / v) of L-cystine or L-cysteine was added at the final concentration was examined by a test independent of the test of FIG. 1, and is shown in FIG. As described above, it was found that the rate of increase in the viable cell count was faster in the simultaneous heating, and the increase in acidity was also increased accordingly.
  • BF-1 which is also a bacterium belonging to the genus Bifidobacterium
  • the addition of L-cystine increases the acidity by 1.1 to 1.5 times and 1.7 to 7.7 times that in the case of no addition in 12-hour culture. A double increase in viable cell count was observed.
  • Example 2 Effect of addition concentration of cystine or cysteine on bacterial culture properties (1) Test strains BbY and BF-1 were used.
  • the supernatant was adjusted to pH 6.5 with 5N NaOH and centrifuged at 10,000 ⁇ g for 15 to 30 minutes. While replacing the gas phase in the medium-sized test tube with a rim with nitrogen gas, 10 mL of the supernatant was dispensed and sealed with a butyl rubber stopper. Then, it was sterilized by heating in an autoclave device at 115 ° C. for 30 minutes to prepare a pre-heated separated whey medium. Further, under anaerobic conditions, L-cystine or L-cysteine was added before heating as in the case of skim milk medium, and then heat sterilized medium (simultaneous heating medium) was prepared. The final concentration of L-cystine or L-cysteine added was 0.001, 0.003, 0.005, 0.01, 0.03, 0.05, 0.1% (w / v). ..
  • Inoculation / culture was carried out in the same manner as in Example 1 except that the culture time was set to 9 hours only when BbY was cultured in skim milk medium.
  • FIGS. 3 to 6 show the acidity and viable cell count of BbY and BF-1 when the final concentration of L-cystine or L-cysteine added to the skim milk medium or the preheated separated whey medium was changed. ..
  • FIG. 3 shows the case where BbY was cultured in the defatted milk medium
  • FIG. 4 shows the case where BbY was cultivated in the whey medium
  • FIG. 5 shows the case where BF-1 was cultured in the defatted milk medium
  • FIG. The case where BF-1 was cultured in the whey medium is shown.
  • the viable cell count and acidity when neither L-cystine nor L-cysteine was added were 5.67 ⁇ when BbY was cultured in a defatted milk medium.
  • Whey is a component obtained by removing casein from defatted milk, and contains water-soluble components in defatted milk such as whey protein, lactose, and minerals. Whey was separated as a supernatant by adjusting the pH of skim milk to 4.6, readjusted to pH 6.5, and used for culturing. As a result of culturing, when using a simultaneous heating medium to which L-cystine or L-cysteine was added for both BbY and BF-1, a medium to which neither L-cystine nor L-cysteine was added was used. In comparison, the viable cell count and acidity increased.
  • both the skim milk medium and the whey medium had an L-cystine concentration of 0.01% (w / v), and the viable cell count in the simultaneous heating medium was the maximum.
  • the L-cysteine concentration, which maximized the viable cell count in the simultaneous heating medium was 0.03% (w / v) in the milk medium and 0.01% (w / v) in the whey medium.
  • the L-cystine concentrations in skim milk medium and whey medium were 0.1% (w / v) and 0.03% (w / v), respectively, and the viable cell count in the simultaneous heating medium was the maximum. became.
  • n 3 for the concentration at which the viable cell count was maximized, as shown in FIGS. 7 (BbY) and 8 (BF-1), regardless of the strain and the additive substance, Simultaneous heating increased viable cell count and acidity compared to individual heating.
  • Example 3 Changes in growth promoting action depending on the timing of addition of whey and cysteine separated from skim milk before and after heating (1) Test strain BbY was used.
  • the pH was adjusted to 4.6 with 5N HCl, and the mixture was centrifuged at 3,000 ⁇ g for 5 minutes. Then, the supernatant was adjusted to pH 6.5 with 5N NaOH and centrifuged at 10,000 ⁇ g for 15 to 30 minutes. While substituting the gas phase in a medium-sized test tube with a rim that had been sterilized in advance with nitrogen gas, 10 mL of the supernatant was dispensed and sealed with a butyl rubber stopper to prepare a separated whey medium after heating.
  • casein is removed before heating (pre-heated separated whey medium) or casein is removed after heating with casein (post-heated separated whey medium)
  • L-cysteine promotes BbY growth. Admitted.
  • the viable cell count in the simultaneous heating medium was higher than the viable cell count in the individual heating medium, but the viable cell count ratio between the simultaneous heating medium and the individual heating medium was the pre-heating isolated whey. Since the medium was higher, it is considered that whey is more deeply involved in the growth promoting factor than casein.
  • Example 4 Change in growth promoting action by simultaneous heating temperature of milk and L-cystine (1) Test strain BbY was used.
  • Non-fat milk medium A simultaneous heating medium of the non-fat milk medium and L-cystine and an individual heating medium were prepared in the same manner as in Example 1 except for the heating temperature and the concentration of L-cystine added. Heating was performed at 115 ° C. for 30 minutes or 121 ° C. for 30 minutes. The concentration of L-cystine added was 0.03% (w / v) at the final concentration before or after heating.
  • Example 5 Search for growth-promoting factors The results of Examples 1 to 4 suggest that milk reacts with L-cystine or L-cysteine to produce growth-promoting factors. In addition, it was considered that the components contained in whey in milk were involved in the production of the growth promoting factor. Therefore, the growth promoting factor was searched for.
  • the viable cell count and acidity after culturing at 37 ° C. for 12 hours were measured in the same manner as in Example 1.
  • the same operation was performed for a pre-heated separated whey medium that had been heat-treated alone at 115 ° C. for 30 minutes with L-cysteine hydrochloride added at a final concentration of 0.03% (w / v) (individually). Heated sample).
  • 1 mL of Tris buffer was added to skim milk medium to culture BbY.
  • the growth-promoting factor of Bifidobacterium spp. Is a component having a molecular weight of less than 3000 in a heat-treated product of a milk medium containing cysteine, cystine or a salt thereof, particularly L-cysteine hydrochloride, and has a pH of 8. It was revealed that it is a milk medium component that is retained by the anion exchange resin at 0 or more and elutes from the anion exchange resin in the presence of 50 to 200 mM anion.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Nutrition Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Dairy Products (AREA)

Abstract

ビフィドバクテリウム属細菌の増殖促進方法の提供。システイン、シスチン及びそれらの塩からなる群より選択される1種又は2種以上を含有する乳培地を加熱処理した後、前記乳培地にてビフィドバクテリウム属細菌を培養することを特徴とする、ビフィドバクテリウム属細菌の増殖促進方法。

Description

ビフィドバクテリウム属細菌の増殖促進方法
 本発明は、ビフィドバクテリウム属細菌の増殖促進方法に関する。
 システインは、非必須アミノ酸の1種で、天然にはL-システインの形でタンパク質を構成しており、ヒトの体内ではメチオニンより生合成される。L-システインは、抗酸化作用、メラニン色素の産生抑制作用、アルコールの代謝により生じるアセトアルデヒドの無毒化作用等を有し、その美白効果や二日酔い緩和効果に注目して、食品、化粧品、医薬品等の分野で利用されている。
 シスチンは、システイン2分子が酸化されてジスルフィド結合を介してつながったアミノ酸の1種である。シスチンは、水に溶けにくく、容易に還元されてシステインになる。天然にはL-シスチンの形でタンパク質を構成しており、特に、毛髪、爪等のケラチンに多量に含まれている。
 従来より、ビフィドバクテリウム属細菌を増殖させるための培地に、システイン又はシスチンを添加することが知られている(非特許文献1)。これらは、ビフィドバクテリウム属細菌の増殖にとって必須のアミノ酸であり、システインは、酸化還元電位を低下させることから、酸素や過酸化水素に感受性のあるビフィドバクテリウム属細菌の増殖には適した成分であると考えられている。また、乳にシステインを添加して酸化還元電位を低下させ、保存時のビフィズス菌の生残性を高めることが報告されている(非特許文献2)。しかしながら、ビフィドバクテリウム属細菌増殖培地へのシステイン又はシスチンの添加については、単にアミノ酸の補給と酸化還元電位の低下を目的としたものに過ぎない。
Rajiv I. Dave & Nagendra P. Shah, International Dairy Journal, Volume 7, Issues 8-9, 1997, pp. 537-545. Marie-Pierre Bolduc, et al., International Dairy Journal, Volume 16, Issue 9, 2006, pp. 1038-1048.
 本発明の課題は、簡便で効率よくビフィドバクテリウム属細菌の増殖を促進できる方法を提供することにある。
 本発明者らは、上記課題に鑑み種々検討した結果、ビフィドバクテリウム属細菌の乳培地での培養において、乳培地にシステイン、シスチン又はそれらの塩を含有せしめて加熱処理した後、前記乳培地にてビフィドバクテリウム属細菌を培養すれば、乳培地とシステイン、シスチン又はそれらの塩を個別に加熱処理して混合した乳培地を用いて培養する場合に比して、前記細菌の増殖が促進されることを見出した。これは、乳培地とシステイン、シスチン又はそれらの塩の同時加熱処理により、乳培地成分とシステイン、シスチン又はそれらの塩が反応し生成した物質が、ビフィドバクテリウム属細菌の増殖促進剤として働くためと考えられた。そこで、本発明者らは、かかる増殖促進剤を探索すべく種々検討したところ、システイン、シスチン又はそれらの塩を含有する乳培地の加熱処理物より分子量3000未満の成分を分取し、前記成分をpH8.0以上で陰イオン交換樹脂に保持させ、さらに特定濃度の陰イオン存在下で前記陰イオン交換樹脂より溶離させて得られる乳培地成分が、ビフィドバクテリウム属細菌の増殖促進効果を示すことを見出した。本発明者らは、これらの知見に鑑み、本発明を完成した。
 すなわち、本発明は、以下の〔1〕~〔13〕を提供するものである。
〔1〕システイン、シスチン及びそれらの塩からなる群より選択される1種又は2種以上を含有する乳培地を加熱処理した後、前記乳培地にてビフィドバクテリウム属細菌を培養することを特徴とする、ビフィドバクテリウム属細菌の増殖促進方法。
〔2〕前記加熱処理が60~125℃で10~40分処理するものである、〔1〕の方法。
〔3〕前記乳培地がL-システイン、L-シスチン及びそれらの塩からなる群より選択される1種又は2種以上を含有するものである、〔1〕又は〔2〕の方法。
〔4〕前記乳培地がL-システイン塩酸塩を含有するものである、〔1〕~〔3〕の方法。
〔5〕システイン、シスチン及びそれらの塩からなる群より選択される1種又は2種以上を含有する乳培地を加熱処理した後、前記乳培地にてビフィドバクテリウム属細菌を培養することを特徴とする、発酵乳の製造方法。
〔6〕〔5〕の方法により得られる発酵乳。
〔7〕システイン、シスチン及びそれらの塩からなる群より選択される1種又は2種以上を含有する乳培地の加熱処理物を有効成分とするビフィドバクテリウム属細菌の増殖促進剤。
〔8〕前記加熱処理が60~125℃で10~40分処理するものである、〔7〕の増殖促進剤。
〔9〕前記乳培地がL-システイン、L-シスチン及びそれらの塩からなる群より選択される1種又は2種以上を含有するものである、〔7〕又は〔8〕の増殖促進剤。
〔10〕前記乳培地がL-システイン塩酸塩を含有するものである、〔7〕~〔9〕の増殖促進剤。
〔11〕前記加熱処理物が、加熱処理された乳培地の分子量3000未満の成分であり、pH8.0以上で陰イオン交換樹脂に保持され、1~400mMの陰イオン存在下で前記陰イオン交換樹脂より溶離するものである、〔7〕~〔10〕の増殖促進剤。
〔12〕システイン、シスチン及びそれらの塩からなる群より選択される1種又は2種以上を含有し加熱処理された乳培地の分子量3000未満の成分であり、pH8.0以上で陰イオン交換樹脂に保持され、1~400mMの陰イオン存在下で前記陰イオン交換樹脂より溶離するものである、乳培地成分。
〔13〕システイン、シスチン及びそれらの塩からなる群より選択される1種又は2種以上を含有する乳培地を加熱処理し、得られた乳培地加熱処理物の分子量3000未満の成分を分取し、得られた成分をpH8.0以上で陰イオン樹脂に保持させ、さらに1~400mMの陰イオン存在下で前記陰イオン樹脂より溶離させることを特徴とする、乳培地成分の製造方法。
 本発明によれば、システイン、シスチン及びそれらの塩からなる群より選択される1種又は2種以上を含有する乳培地を加熱処理した後、前記乳培地にてビフィドバクテリウム属細菌を培養することで、ビフィドバクテリウム属細菌の増殖を簡便に効率よく促進することができ、培養時間の短縮が可能となる。かかるビフィドバクテリウム属細菌の増殖促進方法は、発酵乳の製造方法としても有用である。また、システイン、シスチン及びそれらの塩からなる群より選択される1種又は2種以上を含有する乳培地の加熱処理物より特定条件下で単離した成分は、ビフィドバクテリウム属細菌の増殖促進剤として有用である。
乳とL-シスチン若しくはL-システイン塩酸塩を同時又は個別に加熱した場合のラクトバチルス属細菌株とビフィドバクテリウム属細菌株の増殖性を示す図である。 乳とL-シスチン若しくはL-システイン塩酸塩を同時又は個別に加熱した場合のビフィドバクテリウム属細菌株の増殖曲線の図である。 脱脂乳培地に添加したL-シスチン又はL-システイン塩酸塩の濃度の違いによるビフィドバクテリウム・ブレーベ YIT 12272(BbY)の培養性状の違いを示す図である。 ホエイ培地に添加したL-シスチン又はL-システイン塩酸塩の濃度の違いによるBbYの培養性状の違いを示す図である。 脱脂乳培地に添加したL-シスチン又はL-システイン塩酸塩の濃度の違いによるビフィドバクテリウム・ビフィダム YIT 10347(BF-1)の培養性状の違いを示す図である。 ホエイ培地に添加したL-シスチン又はL-システイン塩酸塩の濃度の違いによるBF-1の培養性状の違いを示す図である。 生菌数の最大値が認められたL-シスチン又はL-システイン塩酸塩濃度でのBbYの培養性状を示す図である。 生菌数の最大値が認められたL-シスチン又はL-システイン塩酸塩濃度でのBF-1の培養性状を示す図である。 同時加熱サンプル(上段)と個別加熱サンプル(下段)の画分ごとの生菌数を示す図である。縦軸は、対照サンプルの生菌数を1としたときの画分ごとの生菌数比を示し、横軸は、溶出体積を示す。 同時加熱サンプル(上段)と個別加熱サンプル(下段)の画分ごとの酸度を示す図である。縦軸は、対照サンプルの酸度を0としたときの画分ごとの酸度の差を示し、横軸は、溶出体積を示す。
 本発明のビフィドバクテリウム属細菌の増殖促進方法は、システイン、シスチン及びそれらの塩からなる群より選択される1種又は2種以上を含有する乳培地を加熱処理した後、前記乳培地にてビフィドバクテリウム属細菌を培養することを特徴とする。
 本発明で用いるビフィドバクテリウム属細菌の種類は、特に限定されないが、例えば、ビフィドバクテリウム・ブレーベ(Bifidobacterium breve)、ビフィドバクテリウム・ロンガム(Bifidobacterium longum)、ビフィドバクテリウム・ビフィダム(Bifidobacterium bifidum)、ビフィドバクテリウム・アニマーリス(Bifidobacterium animalis)、ビフィドバクテリウム・ズイス(Bifidobacterium suis)、ビフィドバクテリウム・インファンティス(Bifidobacterium infantis)、ビフィドバクテリウム・アドレセンティス(Bifidobacterium adolescentis)、ビフィドバクテリウム・カテヌラータム(Bifidobacterium catenulatum)、ビフィドバクテリウム・シュードカテヌラータム(Bifidobacterium pseudocatenulatum)、ビフィドバクテリウム・ラクチス(Bifidobacterium lactis)、ビフィドバクテリウム・グロボサム(Bifidobacterium globosum)等が挙げられる。中でも、ビフィドバクテリウム・ブレーベ、ビフィドバクテリウム・ロンガム、ビフィドバクテリウム・ビフィダムは、以前から乳製品に数多く使用され安全性等のデータが積み重ねられているため好ましく、ビフィドバクテリウム・ブレーベ、ビフィドバクテリウム・ビフィダムがより好ましく、具体的には、ビフィドバクテリウム・ブレーベ YIT 12272(FERM BP-11320)及びビフィドバクテリウム・ビフィダム YIT 10347(FERM BP-10613)が特に好ましい。
 本発明で用いるビフィドバクテリウム属細菌の増殖のための培地は、乳培地である。ここで、乳培地とは、乳を主成分とする培地である限り特に限定されない。乳としては、乳(全脂乳)、その加工品である脱脂乳、カゼインを除去したホエイ、ホエイ由来成分、乳由来ペプチド等が挙げられる。ホエイ由来成分としては、ホエイに含まれる水溶性タンパク質(乳清タンパク質)が好ましく、具体的にはβ-ラクトグロブリン、α-ラクトアルブミン等が例示される。乳培地としては、脱脂乳培地及びホエイ培地が好ましい。使用する乳原料とその配合量により、無脂乳固形分や脂肪分を任意に設定することができる。乳培地には、酵母エキス等のビフィドバクテリウム属細菌の増殖因子を加えてもよい。
 本発明で用いるシステイン又はシスチンとしては、天然由来のものであってもよいし、化学合成法、発酵法又は遺伝子組換え法によって産生されたものであってもよい。システイン又はシスチンとしては、L体、D体、DL体のいずれも用いることができるが、L体が好ましい。システイン又はシスチンの塩としては、薬理学的に許容される塩であればよく、例えば、アルカリ金属(ナトリウム、カリウム等)との塩、アルカリ土類金属(カルシウム、マグネシウム等)との塩、アンモニウム塩、無機酸(塩酸、臭化水素酸、硫酸、硝酸、リン酸等)との塩、及び有機酸(酢酸、プロピオン酸、酒石酸、フマル酸、マレイン酸、コハク酸、リンゴ酸、クエン酸等)との塩が挙げられる。これらのうち、安全性と取扱い容易性の観点から、食品添加物であるL-システイン塩酸塩及びL-シスチンが好ましく、L-システイン塩酸塩がより好ましい。システイン、シスチン又はそれらの塩は、それぞれ単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 システイン、シスチン及びそれらの塩からなる群より選択される1種又は2種以上(以下、システイン等と称する)の乳培地における含有量としては、特に限定されないが、増殖促進効果の観点から、終濃度として、0.001~0.1(w/v)%が好ましく、0.001~0.05(w/v)%がより好ましく、0.005~0.05(w/v)%がさらに好ましい。システイン等は、加熱処理前に乳培地に添加するものとする。添加方式は特に限定されず、前記終濃度となるように、システイン等をそのまま乳培地に添加してもよいし、システイン等の溶液(例えば水溶液)を乳培地に添加してもよい。
 本発明のビフィドバクテリウム属細菌の増殖促進方法においては、システイン等を含有する乳培地を加熱処理する。加熱処理の手段は、特に限定されず、オートクレーブ等が例示される。加熱温度は、60~125℃が好ましく、64~121℃がより好ましく、100~121℃がさらに好ましく、115~121℃がさらに好ましい。加熱時間は、10~40分が好ましく、15~30分がより好ましく、20~30分がさらに好ましい。あるいは、上記加熱処理条件に相当する熱履歴(加えた熱量の総和)又は加熱滅菌強度を満たすように加熱処理してもよい。加熱処理した乳培地の温度は、静置あるいは冷却装置を用いる等して、培養時までに培養温度以下にまで下がるようにすればよい。
 次いで、加熱処理した乳培地に、ビフィドバクテリウム属細菌を接種し、培養を行う。ビフィドバクテリウム属細菌の培養は、通常の培養条件をそのまま適用すればよい。すなわち、培地に接種するビフィドバクテリウム属細菌に適した接種量、温度、時間、培養雰囲気等の各種条件を適宜設定して行えばよい。例えば、接種量は、0.01~5%、好ましくは0.1~1%、培養温度は、25~46℃、好ましくは35~42℃、培養時間は6~120時間、好ましくは24~72時間とすればよい。また、培養雰囲気は好気的な条件であっても嫌気的な条件であってもよいが、嫌気的な条件で行うことが好ましく、培養方法については、静置、攪拌、振盪等、特に制限されることはなく、いずれを選択してもよい。
 本発明のビフィドバクテリウム属細菌の増殖促進方法により、ビフィドバクテリウム属細菌を乳培地にて効率よく短時間で増殖させることができるため、前記方法は、ビフィドバクテリウム属細菌を含有する発酵乳の製造方法としても有用である。
 本発明の方法により得られたビフィドバクテリウム属細菌の培養物である発酵乳は、シロップ(甘味料)等の任意成分を添加し、最終製品とすることができる。シロップとしては、グルコース、ショ糖、フルクトース、果糖ブドウ糖液糖、ブドウ糖果糖液糖、パラチノース、トレハロース、ラクトース、キシロース、麦芽糖、蜂蜜、糖蜜等の糖類、ソルビトール、キシリトール、エリスリトール、ラクチトール、パラチニット、還元水飴、還元麦芽糖水飴等の糖アルコール、アスパルテーム、ソーマチン、スクラロース、アセスルファムK、ステビア等の高甘味度甘味料が挙げられる。また、発酵乳には、ショ糖脂肪酸エステル、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、レシチン等の乳化剤、寒天、ゼラチン、カラギーナン、グァーガム、キサンタンガム、ペクチン、ローカストビーンガム、ジェランガム、カルボキシメチルセルロース、大豆多糖類、アルギン酸プロピレングリコール等の増粘(安定)剤を配合してもよい。この他にも、ビタミンA、ビタミンB類、ビタミンC、ビタミンD、ビタミンE類等のビタミン類、カルシウム、マグネシウム、亜鉛、鉄、マンガン等のミネラル類、クエン酸、乳酸、酢酸、リンゴ酸、酒石酸、グルコン酸等の酸味料、クリーム、バター、サワークリーム等の乳脂肪、ヨーグルト系、ベリー系、オレンジ系、花梨系、シソ系、シトラス系、アップル系、ミント系、グレープ系、アプリコット系、ペア、カスタードクリーム、ピーチ、メロン、バナナ、トロピカル、ハーブ系、紅茶、コーヒー系等のフレーバー類、ハーブエキス、黒糖エキス等を配合することも可能である。
 発酵乳製品を製造するには、常法に従えばよい。例えば、発酵乳を均質化処理して発酵乳ベースを得、次いで、別途調製したシロップ溶液を添加混合し、ホモゲナイザー等で均質化し、さらにフレーバーを添加して最終製品に仕上げればよい。発酵乳製品としては、飲料及び食品が含まれ、シロップ(甘味料)を含有しないプレーンタイプ、ソフトタイプ、フルーツフレーバータイプ、固形状、液状等のいずれの形態の製品とすることもできる。
 後記実施例に示す通り、システイン等を含有する乳培地を加熱処理したものを培養に用いれば、ビフィドバクテリウム属細菌の増殖を促進することができる。これは、乳培地とシステイン等の同時加熱処理により、乳培地成分とシステイン等が反応し生成した物質が、ビフィドバクテリウム属細菌の増殖促進に寄与しているためと考えられる。よって、システイン等を含有する乳培地の加熱処理物は、ビフィドバクテリウム属細菌の増殖促進剤として用いることができる。加熱処理条件としては、上述の条件が挙げられる。なお、システイン等がアミノ酸であることから、システイン等と反応する乳培地成分として、タンパク質又はペプチドが想定される。
 後記実施例に示す通り、システイン等を含有する乳培地の加熱処理物中のビフィドバクテリウム属細菌の増殖促進効果を示す乳培地成分は、より具体的には、前記乳培地の加熱処理物に含まれる分子量3000未満の成分であり、pH8.0以上で陰イオン交換樹脂に保持され、1~400mM、好ましくは50~200mMの陰イオン存在下で当該陰イオン交換樹脂より溶離する乳培地成分である。
 かかる乳培地成分は、システイン等を含有する乳培地を加熱処理し、得られた乳培地の分子量3000未満の成分を分取し、得られた成分をpH8.0以上で陰イオン交換樹脂に保持させ、さらに1~400mM、好ましくは50~200mMの陰イオン存在下で当該陰イオン交換樹脂より溶離させることにより製造することができる。
 ここで、加熱処理物を得る際の乳培地におけるシステイン等の含有量としては、特に限定されないが、製造効率の観点から、終濃度として、0.001~1(w/v)%が好ましく、0.001~0.5(w/v)%がより好ましく、0.001~0.1(w/v)%がさらに好ましく、0.001~0.05(w/v)%がさらに好ましく、0.005~0.05(w/v)%が特に好ましい。システイン等は、加熱処理前に乳培地に添加するものとする。添加方式は特に限定されず、前記終濃度となるように、システイン等をそのまま乳培地に添加してもよいし、システイン等の溶液(例えば水溶液)を乳培地に添加してもよい。
 加熱処理条件としては、上述の条件が挙げられる。具体的には、加熱温度は、60~125℃が好ましく、64~121℃がより好ましく、100~121℃がさらに好ましく、115~121℃がさらに好ましい。加熱時間は、10~40分が好ましく、15~30分がより好ましく、20~30分がさらに好ましい。あるいは、上記加熱処理条件に相当する熱履歴(加えた熱量の総和)又は加熱滅菌強度を満たすように加熱処理してもよい。
 次いで、得られた乳培地の加熱処理物から、分子量3000未満の成分を分取する。ここで、分子量に基づく成分の分取手段としては、公知の手段を用いればよく、例えば、限外ろ過、ゲルろ過クロマトグラフィー等が挙げられる。例えば、限外ろ過を利用する場合には、分画分子量が3kDa程度の限外ろ過フィルターを用いて、ろ過液を回収すればよい。得られた成分の分子量は、SDS-ポリアクリルアミドゲル電気泳動法で確認することができる。
 次いで、得られた分子量3000未満の成分を、塩酸等によりpH8.0以上、好ましくはpH8.0に調整し、陰イオン交換樹脂に接触させ、所望の成分を陰イオン交換樹脂に保持させる。pHの調整は、所望の成分を負に帯電させ、陰イオン交換樹脂に吸着させるために行われる。
 ここで、陰イオン交換樹脂の材質、構造等には特に制限はなく、適宜選択することができる。陰イオン交換樹脂の樹脂母体としては、例えば、スチレン系樹脂、アクリル系樹脂、アガロース系樹脂等が挙げられる。陰イオン交換樹脂の樹脂構造としては、例えば、ゲル型、ポーラス型、ハイポーラス型が挙げられる。陰イオン交換樹脂の官能基としては、例えば、一級アミノ基、二級アミノ基、三級アミノ基、四級アンモニウム基等を挙げることができる。陰イオン交換樹脂としては、強塩基性陰イオン交換樹脂であっても、弱塩基性陰イオン交換樹脂であってもよいが、分離能の観点から、強塩基性陰イオン交換樹脂が好ましい。
 このような陰イオン交換樹脂として市販品を使用してもよく、例えば、強塩基性陰イオン交換樹脂としては、ダイヤイオン(登録商標)SA10A、SA12A、SA11A、NSA100、UBA120、PA306S、PA308、PA312、PA316、PA318L、HPA25、SA20A、SA21A、PA408、PA412、PA418(三菱ケミカル株式会社製)、Q Sepharose(登録商標) High Performance、Q Sepharose Fast Flow(GEヘルスケア・ジャパン株式会社製)等が挙げられ、弱塩基性陰イオン交換樹脂としては、ダイヤイオン(登録商標)WA10、WA20、WA21J、WA30(三菱ケミカル株式会社製)、DEAE Sepharose Fast Flow(GEヘルスケア・ジャパン株式会社製)等が挙げられる。なお、陰イオン交換樹脂は、予めpH8.0における緩衝能を有する緩衝液(例えばTris緩衝液)で平衡化しておくことが好ましい。
 陰イオン交換樹脂との接触方法は、バッチ式でもカラム式でもよいが、効率の点から、カラム式が好ましい。カラム式の場合には、陰イオン交換樹脂を充填したカラムに、上記で得られた乳培地加熱処理物の分子量3000未満の成分を含有する溶液を通液すればよい。その後、十分量のpH8.0における緩衝能を有する緩衝液(例えばTris緩衝液)を通液させて、陰イオン交換樹脂に吸着しなかった物質を洗い流せばよい。ここで、カラム容量や流速は、特に制限されず、サンプル量や陰イオン交換樹脂の保持性能等を考慮して適宜選択すればよいが、例えば、カラム容量としては、1~20mL、好ましくは5~20mLが挙げられ、流速としては、0.1~20mL/min、好ましくは1~10mL/minが挙げられる。かかる条件は、精製量に応じて適宜変更すればよい。
 このような陰イオン交換樹脂を充填したカラムとして市販品を使用してもよく、例えば、強塩基性陰イオン交換樹脂を充填したカラムとしては、HiTrap(登録商標) Q FF、HiPrep(登録商標) Q FF(GEヘルスケア・ジャパン株式会社製)等が挙げられ、弱塩基性陰イオン交換樹脂を充填したカラムとしては、HiTrap DEAE FF(GEヘルスケア・ジャパン株式会社製)等が挙げられる。
 陰イオン交換樹脂に保持された成分は、1~400mM、好ましくは50~200mMの陰イオン存在下で当該陰イオン交換樹脂より溶離させる。ここで、陰イオンの種類としては、特に限定されず、例えばCl-イオン等が挙げられる。具体的には、1~400mM、好ましくは50~200mMのNaClを含有するpH8.0の緩衝液(例えばTris緩衝液)を陰イオン交換樹脂に通液させて、溶出液を回収すればよい。溶離の場合も、流速は特に制限されず、陰イオン交換樹脂の保持性能等を考慮して適宜選択すればよいが、例えば、0.1~20mL/min、好ましくは1~10mL/minが挙げられる。かかる条件は、精製量に応じて適宜変更すればよい。得られた溶出液は、そのまま培地に添加して用いてもよいし、目的に応じて、公知の手段により濃縮、希釈等してから用いてもよい。かくして溶離された乳培地成分は、後記実施例に示すように、ビフィドバクテリウム属細菌の増殖を促進することができる。
 以下に、本発明の増殖促進剤たる乳培地成分の製造方法について、例を挙げて詳細に説明するが、これに限定されるものではない。
 システイン等を終濃度として0.001~1(w/v)%含有するホエイ培地を、115℃で30分間加熱する。得られたホエイ培地の加熱処理物を、分画分子量が3kDaの限外ろ過膜を通過させ、分子量3000未満の成分をろ液として回収する。回収したろ液のpHを塩酸により8.0に調整する。一方、陰イオン交換カラム(例えば、HiTrap Q FF(GEヘルスケア・ジャパン株式会社製))に、pH8.0の20mM Tris緩衝液を通液し、平衡化を行う。pH調整したろ液を平衡化した陰イオン交換カラムに通液させ、所望の成分を陰イオン交換カラムに保持させる。陰イオン交換カラムに吸着しなかった物質は、陰イオン交換カラムに20mM Tris緩衝液を十分量通液させて洗い流す。次いで、50~200mMのNaClを含有するpH8.0のTris緩衝液をカラムに通すことにより溶出液を回収する。なお、陰イオン交換カラムから所望の乳培地成分を回収するにあたり、液体クロマトグラフィー装置を用いる場合には、例えば、以下の条件では、溶出体積が22~28mLの画分を回収すればよい。
カラム:HiTrap Q FF 1mL
開始バッファー:20mM Tris緩衝液(pH8.0)
溶出バッファー:1M NaClを含む20mM Tris緩衝液(pH8.0)
溶出方式:Flowthrough 20CV、Gradient(0→100%、20CV)、2mL/fraction、wash(100%、5CV)
添加方式:Direct sample load 10mL
流速:1mL/min
カラム温度:室温
機器:AKTA explorer(GEヘルスケア)
 次に実施例を挙げて本発明をさらに詳細に説明するが、本発明は何らこれらに限定されるものではない。
実施例1 乳とシスチン又はシステインの同時加熱による増殖促進効果
(1)供試菌株
 ビフィドバクテリウム・ブレーベ YIT 12272(以下、BbYと称する)、ビフィドバクテリウム・ビフィダム YIT 10347(以下、BF-1と称する)、ラクトバチルス・カゼイ YIT 9029(以下、YIT 9029と称する)及びラクトバチルス・アシドフィルス YIT 0198(以下、YIT 0198と称する)を用いた。
(2)培地調製
(i)脱脂乳培地
 脱脂粉乳(ABC;雪印メグミルク株式会社製)を12%(w/v)となるようにRO水に溶解し、リム付き中型試験管内の気相を窒素ガスで置換しながら10mLずつ分注してブチルゴム栓で封をした。その後、115℃、30分間オートクレーブ装置(SX-500;株式会社トミー精工製)内で加熱滅菌し、脱脂乳培地とした(無添加培地)。また、嫌気条件下で、L-シスチン(協和発酵バイオ株式会社製)水懸濁液又はL-システイン塩酸塩(日理化学株式会社製)水溶液を、終濃度0.05(w/v)%となるように加熱滅菌前に添加し、その後加熱滅菌した脱脂乳培地(同時加熱培地)と、加熱滅菌後かつ植菌直前に添加した脱脂乳培地(個別加熱培地)を調製した。なお、L-シスチン水懸濁液及びL-システイン塩酸塩水溶液は、それぞれ5%(w/v)水懸濁液及び水溶液として調製し、各培地に1%(v/v)添加した。溶液添加によるサンプルの濃度変化と酸化還元電位の変化をサンプル間で統一するために、1%(v/v)の滅菌水を、同時加熱培地では植菌直前に、個別加熱培地では加熱前に、無添加培地では加熱前と植菌直前の2回添加した。
(3)植菌・培養条件
 菌を接種する際には容器内の気相を窒素ガスで置換しながら接種し、ブチルゴム栓で窒素ガスを封入して培養に供した。培養は37℃に設定した恒温水槽にて12時間行った。
(4)各種パラメータ測定方法
(i)pH
 培地又は菌液のpHは、卓上pHメーター(F52;株式会社堀場製作所製)を用いて測定した。
(ii)酸度
 pH8.5に達するまでに要した、菌液9.0gあたりの0.1N 水酸化ナトリウム水溶液の量を酸度とした。測定には自動滴定装置(平沼産業株式会社製)を用いた。
(iii)生菌数
 菌株によらず、菌液を0.85%(w/v)塩化ナトリウム水溶液(生理食塩水)で適宜希釈した。ビフィドバクテリウム属細菌の場合はTOSプロピオン酸寒天培地(ヤクルト薬品工業株式会社製)、ラクトバチルス属細菌の場合はBCP加プレートカウント培地(栄研化学株式会社製)の平板培地に希釈菌液をスパイラルプレーター EDDY JET(IUL Instruments GmbH製)で播種し、37℃で48~72時間培養後、生じたコロニーを生菌数として計数した。培養はラクトバチルス属細菌の場合は好気条件、ビフィドバクテリウム属細菌の場合は嫌気条件(アネロパック;三菱ガス化学株式会社製)で行った。コロニーの計数にはコロニーカウンター ProtoCOL(Synoptics Ltd.製)を用いた。
(5)結果
 脱脂乳とL-シスチン又はL-システイン塩酸塩(以下、L-システインと称する)を同時加熱又は個別加熱した場合の各菌株の増殖性を図1に示す。
 ラクトバチルス属菌株2種(YIT 0198及びYIT 9029)では、L-シスチン又はL-システインを添加することによる増殖促進は認められず、L-システインの添加タイミングによる差も認められなかった。
 一方、ビフィドバクテリウム属細菌であるBbYでは、L-シスチンの添加によって12時間の培養で無添加の場合の2.2~2.6倍の酸度の増加と5.6倍の生菌数の増加が認められた。また、L-シスチンを乳と同時に加熱した場合、培養12時間では個別加熱と生菌数は同じだったが、酸度が1.3mL/9g高かった。このように、培養時間が十分に長い条件において、生菌数が十分に多い状態(例えば109CFU/mL以上)で同程度であるにもかかわらず、酸度が高い場合には、増殖性が高いと判定できる。これは、増殖性の高い方の生菌数が先に頭打ちになり、その後に増殖性の低い方の生菌数が追いつくためである。そこで、図1の試験とは独立した試験により、L-シスチン又はL-システインを終濃度で0.03%(w/v)添加した場合のBbYの増殖曲線を検討したところ、図2に示すように、同時加熱の方が生菌数の増加速度が速く、酸度の上昇もそれに伴って高くなることが分かった。
 同じくビフィドバクテリウム属細菌であるBF-1でも、L-シスチンの添加によって12時間の培養で無添加の場合の1.1~1.5倍の酸度の増加と1.7~7.7倍の生菌数の増加が認められた。L-シスチンを乳と同時に加熱した場合、個別の加熱よりも酸度が1.3倍高く、生菌数も4.5倍高かった。
 ビフィドバクテリウム属菌株2種に関しては、同様の実験を3回行ったが、いずれの結果も同じ傾向を示した。よって、脱脂乳とL-シスチン又はL-システインを同時加熱した場合の増殖促進効果は、ビフィドバクテリウム属細菌に特異的であることが示唆された。
 L-シスチンの代わりに水に易溶性のL-システインを添加した場合でも、L-シスチンと同様に、乳との同時加熱によって増殖の促進が認められたので(図1、2)、加熱によるL-シスチンの溶解量増加は、増殖促進作用の主要因ではないことが示唆された。
 なお、L-システインを単独で加熱し、乳に終濃度で0.03%(w/v)添加した場合(個別加熱)と、L-システインを加熱せずに0.22μmフィルターでフィルター滅菌し、乳に終濃度で0.03%(w/v)添加した場合(フィルター滅菌)で、BbYの培養性状を比較したところ、以下の表1に示すように差は認められなかった。よって、加熱によりL-システインの増殖促進効果が減衰した可能性は否定される。
Figure JPOXMLDOC01-appb-T000001
実施例2 シスチン又はシステインの添加濃度による細菌の培養性状への影響
(1)供試菌株
 BbY及びBF-1を用いた。
(2)培地調製
(i)脱脂乳培地
 実施例1と同様にして、乳とL-シスチン又はL-システインの同時加熱培地を調製した。L-シスチン又はL-システインの添加濃度は、終濃度で0.001、0.003、0.005、0.01、0.03、0.05、0.1%(w/v)とした。
(ii)加熱前分離ホエイ培地
 脱脂粉乳を12%(w/v)となるようにRO水に溶解した12%(w/v)脱脂乳を5N HClでpH4.6に調整し、3,000×g、5分間遠心分離した。その後、上清を5N NaOHでpH6.5に調整し、10,000×g、15~30分間遠心分離した。リム付き中型試験管内の気相を窒素ガスで置換しながら上清を10mLずつ分注してブチルゴム栓で封をした。その後、115℃、30分間オートクレーブ装置内で加熱滅菌し、加熱前分離ホエイ培地とした。また、嫌気条件下で、脱脂乳培地の場合と同様に、L-シスチン又はL-システインを加熱前に添加し、その後加熱滅菌した培地(同時加熱培地)を調製した。L-シスチン又はL-システインの添加濃度は、終濃度で0.001、0.003、0.005、0.01、0.03、0.05、0.1%(w/v)とした。
(3)植菌・培養条件
 脱脂乳培地でBbYを培養した場合のみ培養時間を9時間とした以外は、実施例1と同様に植菌・培養を行った。
(4)各種パラメータ測定方法
(i)pH、(ii)酸度、(iii)生菌数は、実施例1と同様に測定した。
(5)結果
 脱脂乳培地又は加熱前分離ホエイ培地に添加するL-シスチン又はL-システインの終濃度を変化させた場合のBbY及びBF-1の酸度と生菌数を図3~6に示す。図3は、脱脂乳培地でBbYを培養した場合を、図4は、ホエイ培地でBbYを培養した場合を、図5は、脱脂乳培地でBF-1を培養した場合を、図6は、ホエイ培地でBF-1を培養した場合を示す。なお、図3~6には示していないが、L-シスチン及びL-システインのいずれも添加しなかった場合の生菌数と酸度は、脱脂乳培地でBbYを培養した場合に5.67×108CFU/mLと2.48mL/9g、ホエイ培地でBbYを培養した場合に7.42×107CFU/mLと1.05mL/9g、脱脂乳培地でBF-1を培養した場合に3.81×108CFU/mLと2.53mL/9g、ホエイ培地でBF-1を培養した場合に5.59×107CFU/mLと1.21mL/9gであった。
 ホエイ(乳清)は脱脂乳からカゼインを除いた成分であり、ホエイタンパク質や乳糖、ミネラル等の脱脂乳中の水溶性の成分を含む。ホエイは脱脂乳のpHを4.6に調整することで上清として分離し、pH6.5に再調整して培養に供した。
 培養の結果、BbY及びBF-1の両方について、L-シスチン又はL-システインを添加した同時加熱培地を用いることにより、L-シスチン及びL-システインのいずれも添加しなかった培地を用いる場合に比べて生菌数と酸度が増加した。
 BbYについては、脱脂乳培地、ホエイ培地ともにL-シスチン濃度0.01%(w/v)で同時加熱培地での生菌数が最大となった。また、同時加熱培地での生菌数が最大となったL-システイン濃度は乳培地で0.03%(w/v)、ホエイ培地で0.01%(w/v)であった。
 BF-1については、脱脂乳培地、ホエイ培地でL-シスチン濃度がそれぞれ0.1%(w/v)と0.03%(w/v)で同時加熱培地での生菌数が最大となった。また、同時加熱培地での生菌数が最大となったL-システイン濃度は脱脂乳培地で0.05%(w/v)、ホエイ培地で0.03%(w/v)であった。
 上記の生菌数が最大となる濃度についてn=3で個別加熱と同時加熱を比較したところ、図7(BbY)及び8(BF-1)に示すように、菌株と添加物質によらず、個別加熱に比して同時加熱により、生菌数と酸度が増加した。特に、L-シスチンもしくはL-システインを添加した脱脂乳培地又はホエイ培地でBbYを培養した場合、L-シスチンを添加した脱脂乳培地又はL-シスチンもしくはL-システインを添加したホエイ培地でBF-1を培養した場合に、個別加熱に比して同時加熱により、生菌数が1.3~2.6倍有意に増加することを確認した。
 以上の結果から、加熱により乳とL-シスチン又はL-システインが反応し、何らかの増殖促進因子が生じることが示唆された。
実施例3 加熱前後に脱脂乳から分離したホエイとシステイン添加タイミングによる増殖促進作用の変化
(1)供試菌株
 BbYを用いた。
(2)培地調製
(i)加熱前分離ホエイ培地
 実施例2と同様にして、加熱前分離ホエイとL-システインの同時加熱培地を調製した。また、L-システインを加熱滅菌後かつ植菌直前に添加した培地(個別加熱培地)も調製した。L-システインの添加濃度は、終濃度で0.03(w/v)%とした。
(ii)加熱後分離ホエイ培地
 脱脂粉乳を12%(w/v)となるようにRO水に溶解した12%(w/v)脱脂乳を窒素ガスによる嫌気条件下で115℃、30分間オートクレーブ装置内で加熱滅菌した後、5N HClでpH4.6に調整し、3,000×g、5分間遠心分離した。その後、上清を5N NaOHでpH6.5に調整し、10,000×g、15~30分間遠心分離した。事前に滅菌したリム付き中型試験管内の気相を窒素ガスで置換しながら上清を10mLずつ分注してブチルゴム栓で封をし、加熱後分離ホエイ培地とした。また、嫌気条件下で、実施例1の脱脂乳培地の場合と同様に、L-システインを加熱前に添加し、その後加熱滅菌した培地(同時加熱培地)と、加熱滅菌後かつpH4.6調整前に添加した培地(個別加熱培地)も調製した。
(3)植菌・培養条件
 実施例1と同様に植菌・培養を行った。
(4)各種パラメータ測定方法(i)pH、(ii)酸度、(iii)生菌数は、実施例1と同様に測定した。
(iv)生菌数比
 (iii)の生菌数をもとに、同時加熱培地での生菌数を個別加熱培地での生菌数で除して、生菌数比を算出した。
(5)結果
 結果を以下の表2に示す。
Figure JPOXMLDOC01-appb-T000002
 加熱前にカゼインを除いた場合(加熱前分離ホエイ培地)でも、カゼインを含む状態で加熱した後にカゼインを除いた場合(加熱後分離ホエイ培地)でも、L-システインの添加によるBbYの増殖促進が認められた。また、いずれにおいても、個別加熱培地での生菌数よりも、同時加熱培地での生菌数の方が高かったが、同時加熱培地と個別加熱培地における生菌数比は、加熱前分離ホエイ培地の方が高かったため、増殖促進因子には、カゼインよりもホエイが深く関わっていると考えられる。
実施例4 乳とL-シスチンの同時加熱温度による増殖促進作用の変化
(1)供試菌株
 BbYを用いた。
(2)培地調製
(i)脱脂乳培地
 加熱温度とL-シスチンの添加濃度以外は実施例1と同様にして脱脂乳培地とL-シスチンの同時加熱培地及び個別加熱培地を調製した。加熱は、115℃で30分間又は121℃で30分間行った。L-シスチンの添加濃度は、終濃度にして0.03%(w/v)となるように加熱の前又は後で添加した。
(3)植菌・培養条件
 実施例1と同様に植菌・培養を行った。
(4)各種パラメータ測定方法
(i)pH、(ii)酸度、(iii)生菌数は、実施例1と同様に測定した。
(5)結果
 結果を以下の表3に示す。
Figure JPOXMLDOC01-appb-T000003
 いずれの加熱温度においても、L-シスチンの添加によるBbYの増殖促進が認められた。また、いずれの加熱温度においても、脱脂乳とL-シスチンを同時加熱した場合に、脱脂乳とL-シスチンを個別加熱した場合に比して、生菌数と酸度の増加が認められた。
実施例5 増殖促進因子の探索
 実施例1~4の結果から、加熱により乳とL-シスチン又はL-システインが反応し、増殖促進因子が生じることが示唆された。また、当該増殖促進因子の産生には、乳中のホエイに含まれる成分が関与していることが考えられた。そこで、当該増殖促進因子の探索を行った。
(1)方法
 加熱前分離ホエイ培地に、L-システイン塩酸塩を終濃度0.03%(w/v)で添加し、115℃、30分間加熱した。得られた加熱処理物を5N NaOHでpH8.0に調整し、13,000×g、30分間遠心分離した。上清を限外ろ過フィルターアミコンウルトラ-15 3kDa(メルク製)に添加し、5,000×g、60分間遠心分離した。ろ過液(分子量3000未満の画分)を、下記条件にて陰イオン交換カラムを使用した液体クロマトグラフィー(移動相はTris緩衝液)に供した。
カラム:HiTrap Q FF 1mL
開始バッファー:20mM Tris緩衝液(pH8.0)
溶出バッファー:1M NaClを含む20mM Tris緩衝液(pH8.0)
溶出方式:Flowthrough 20CV、Gradient(0→100%、20CV)、2mL/fraction、wash(100%、5CV)
添加方式:Direct sample load 10mL
流速:1mL/min
カラム温度:室温
機器:AKTA explorer(GEヘルスケア)
 得られた画分のうち1mLをそれぞれ、115℃、30分で加熱処理済の実施例1と同様の脱脂乳培地9mLに添加し、BbYを接種した(同時加熱サンプル)。37℃で12時間培養後の生菌数と酸度を実施例1と同様にして測定した。
 また、単独で115℃、30分で加熱処理した加熱前分離ホエイ培地にL-システイン塩酸塩を終濃度0.03%(w/v)添加したものについても、同様の操作を行った(個別加熱サンプル)。対照として、Tris緩衝液1mLを脱脂乳培地に添加してBbYの培養を行った。
(2)結果
 対照サンプルの生菌数(5.5×108CFU/mL)を1としたときの画分ごとの生菌数比を図9に、対照サンプルの酸度を0としたときの画分ごとの酸度の差を図10に示す。同時加熱サンプルでは、特に溶出体積が約22~28mLの画分に増殖促進効果が認められた。一方、個別加熱サンプルでは、増殖促進効果のある画分は認められなかった。この溶出体積が22~28mLの画分は、50~200mMの陰イオン存在下で溶離される画分に相当する。
 ビフィドバクテリウム属細菌としてBF-1を用いた場合でも同様の結果が得られた。
 よって、ビフィドバクテリウム属細菌の増殖促進因子は、システイン、シスチン又はそれらの塩、特にL-システイン塩酸塩を含有する乳培地の加熱処理物中の、分子量3000未満の成分であり、pH8.0以上で陰イオン交換樹脂に保持され、50~200mMの陰イオン存在下で陰イオン交換樹脂から溶離する乳培地成分であることが明らかになった。

Claims (13)

  1.  システイン、シスチン及びそれらの塩からなる群より選択される1種又は2種以上を含有する乳培地を加熱処理した後、前記乳培地にてビフィドバクテリウム属細菌を培養することを特徴とする、ビフィドバクテリウム属細菌の増殖促進方法。
  2.  前記加熱処理が60~125℃で10~40分処理するものである、請求項1記載の方法。
  3.  前記乳培地がL-システイン、L-シスチン及びそれらの塩からなる群より選択される1種又は2種以上を含有するものである、請求項1又は2記載の方法。
  4.  前記乳培地がL-システイン塩酸塩を含有するものである、請求項1~3のいずれか1項記載の方法。
  5.  システイン、シスチン及びそれらの塩からなる群より選択される1種又は2種以上を含有する乳培地を加熱処理した後、前記乳培地にてビフィドバクテリウム属細菌を培養することを特徴とする、発酵乳の製造方法。
  6.  請求項5記載の方法により得られる発酵乳。
  7.  システイン、シスチン及びそれらの塩からなる群より選択される1種又は2種以上を含有する乳培地の加熱処理物を有効成分とするビフィドバクテリウム属細菌の増殖促進剤。
  8.  前記加熱処理が60~125℃で10~40分処理するものである、請求項7記載の増殖促進剤。
  9.  前記乳培地がL-システイン、L-シスチン及びそれらの塩からなる群より選択される1種又は2種以上を含有するものである、請求項7又は8記載の増殖促進剤。
  10.  前記乳培地がL-システイン塩酸塩を含有するものである、請求項7~9のいずれか1項記載の増殖促進剤。
  11.  前記加熱処理物が、加熱処理された乳培地の分子量3000未満の成分であり、pH8.0以上で陰イオン交換樹脂に保持され、1~400mMの陰イオン存在下で前記陰イオン交換樹脂より溶離するものである、請求項7~10のいずれか1項記載の増殖促進剤。
  12.  システイン、シスチン及びそれらの塩からなる群より選択される1種又は2種以上を含有し加熱処理された乳培地の分子量3000未満の成分であり、pH8.0以上で陰イオン交換樹脂に保持され、1~400mMの陰イオン存在下で前記陰イオン交換樹脂より溶離するものである、乳培地成分。
  13.  システイン、シスチン及びそれらの塩からなる群より選択される1種又は2種以上を含有する乳培地を加熱処理し、得られた乳培地加熱処理物の分子量3000未満の成分を分取し、得られた成分をpH8.0以上で陰イオン樹脂に保持させ、さらに1~400mMの陰イオン存在下で前記陰イオン樹脂より溶離させることを特徴とする、乳培地成分の製造方法。
PCT/JP2020/024692 2019-06-25 2020-06-24 ビフィドバクテリウム属細菌の増殖促進方法 WO2020262414A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021527665A JP7518828B2 (ja) 2019-06-25 2020-06-24 ビフィドバクテリウム属細菌の増殖促進方法
CN202080046262.5A CN114026218A (zh) 2019-06-25 2020-06-24 双歧杆菌属细菌的增殖促进方法
US17/621,305 US20220356439A1 (en) 2019-06-25 2020-06-24 Method for promoting growth of bacteria of genus bifidobacterium
EP20832070.5A EP3991564A4 (en) 2019-06-25 2020-06-24 METHOD FOR PROMOTING THE GROWTH OF BACTERIA OF THE GENUS BIFIDOBACTERIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-117361 2019-06-25
JP2019117361 2019-06-25

Publications (1)

Publication Number Publication Date
WO2020262414A1 true WO2020262414A1 (ja) 2020-12-30

Family

ID=74060239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024692 WO2020262414A1 (ja) 2019-06-25 2020-06-24 ビフィドバクテリウム属細菌の増殖促進方法

Country Status (6)

Country Link
US (1) US20220356439A1 (ja)
EP (1) EP3991564A4 (ja)
JP (1) JP7518828B2 (ja)
CN (1) CN114026218A (ja)
TW (1) TW202116172A (ja)
WO (1) WO2020262414A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11269142A (ja) * 1998-03-18 1999-10-05 Toa Yakuhin Kogyo Kk アゼチジン誘導体、それを有効成分とするビフィズス菌分裂促進組成物およびその製造方法
JP2008237224A (ja) * 2001-02-01 2008-10-09 Yakult Honsha Co Ltd ビフィドバクテリウム属細菌及びこれを含有する発酵乳飲食品
JP2009514543A (ja) * 2005-11-08 2009-04-09 クラサド インコーポレイテッド オリゴ糖の製造方法
WO2012011174A1 (ja) * 2010-07-22 2012-01-26 ビオフェルミン製薬株式会社 脂質代謝改善剤、脂質代謝改善作用増強剤、抗肥満剤及び抗肥満作用増強剤
JP2017066087A (ja) * 2015-09-30 2017-04-06 雪印メグミルク株式会社 デオキシコール酸低減剤
CN107805656A (zh) * 2017-12-14 2018-03-16 合生元(广州)健康产品有限公司 一种检测双歧杆菌的培养基及检测方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5283974A (en) * 1976-01-01 1977-07-13 Yakult Honsha Kk Incubation mixture of milk containing living cell of bifidus strain and method of producing same
JP3447358B2 (ja) * 1994-02-18 2003-09-16 明治乳業株式会社 ビフィズス菌の生残性改善方法
JP3501415B2 (ja) * 1994-03-30 2004-03-02 雪印乳業株式会社 ビフィズス菌および乳酸菌増殖促進剤
DK2796542T3 (en) * 2011-12-19 2018-06-06 Morinaga Milk Industry Co Ltd Bifidobacterium proliferation promoter
MX2021009990A (es) * 2019-02-19 2021-09-21 Yakult Honsha Kk Metodo para producir cultivos de bacterias de acido lactico y/o bacterias que pertenecen al genero bifidobacterium.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11269142A (ja) * 1998-03-18 1999-10-05 Toa Yakuhin Kogyo Kk アゼチジン誘導体、それを有効成分とするビフィズス菌分裂促進組成物およびその製造方法
JP2008237224A (ja) * 2001-02-01 2008-10-09 Yakult Honsha Co Ltd ビフィドバクテリウム属細菌及びこれを含有する発酵乳飲食品
JP2009514543A (ja) * 2005-11-08 2009-04-09 クラサド インコーポレイテッド オリゴ糖の製造方法
WO2012011174A1 (ja) * 2010-07-22 2012-01-26 ビオフェルミン製薬株式会社 脂質代謝改善剤、脂質代謝改善作用増強剤、抗肥満剤及び抗肥満作用増強剤
JP2017066087A (ja) * 2015-09-30 2017-04-06 雪印メグミルク株式会社 デオキシコール酸低減剤
CN107805656A (zh) * 2017-12-14 2018-03-16 合生元(广州)健康产品有限公司 一种检测双歧杆菌的培养基及检测方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
AKIMASA NAKASHIMA: "Effects of Amino Acids on the Acid Production of Lactic Acid Bacteria Added to Skim Milk", JOURNAL OF HOME ECONOMICS OF JAPAN, vol. 47, no. 11, 15 November 1996 (1996-11-15), pages 1085 - 1091, XP055870887, ISSN: 0913-5227, DOI: 10.11428/jhej1987.47.1085 *
DAVE, R. I . ET AL.: "Effect of Cysteine on the Viability of Yoghurt and Probiotic Bacteria in Yoghurts Made with Commercial Starter Cultures", INT. DAIRY JOURNAL, vol. 7, 1997, pages 537 - 545, XP055417447, DOI: 10.1016/S0958-6946(97)00053-8 *
MARIE-PIERRE BOLDUC ET AL., INTERNATIONAL DAIRY JOURNAL, vol. 16, 2006, pages 1038 - 1048
RAJIV I. DAVENAGENDRA P. SHAH, INTERNATIONAL DAIRY JOURNAL, vol. 7, 1997, pages 537 - 545
See also references of EP3991564A4
SUGIURA WATARU: "Studies on cystine containing medium for enumeration of Bifidobacterium", BULLETIN OF OSAKA PREFECTURAL INSTITUTE OF PUBLIC HEALTH, vol. 27, 30 November 1988 (1988-11-30), pages 101 - 105, XP009532165, ISSN: 0289-5897 *

Also Published As

Publication number Publication date
EP3991564A1 (en) 2022-05-04
EP3991564A4 (en) 2023-10-25
JPWO2020262414A1 (ja) 2020-12-30
US20220356439A1 (en) 2022-11-10
TW202116172A (zh) 2021-05-01
JP7518828B2 (ja) 2024-07-18
CN114026218A (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
WO2008116355A1 (fr) Procédé de préparation d'une boisson lactée directement acidifiée stable à température ambiante présentant des taux élevés de bactéries d'acide lactique viables
KR101867429B1 (ko) 발효식품 및 그의 제조방법
KR102675263B1 (ko) 첨차 추출 에센스 및 그 용도
EP3949739A1 (en) Method for producing lactic acid bacterium fermentation food product
WO2020262414A1 (ja) ビフィドバクテリウム属細菌の増殖促進方法
JP6770874B2 (ja) 乳酸菌数低下抑制剤およびこれを含有する発酵乳製品
JP4426506B2 (ja) 新規乳酸菌及び新規乳酸菌を利用した飲料
EP2843038B1 (en) Lactobacillus culture and method of producing same
JP7398202B2 (ja) 乳飲食品及びその苦味低減方法
WO2020170776A1 (ja) 乳酸菌及び/又はビフィドバクテリウム属細菌培養物の製造方法
JP5329924B2 (ja) 乳酸菌含有発酵食品およびその製造方法
JP6654639B2 (ja) 血中トリプトファン濃度上昇抑制剤
WO2021095476A1 (ja) オリゴ糖を含む発酵乳の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20832070

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021527665

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020832070

Country of ref document: EP

Effective date: 20220125