[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020262464A1 - ハイブリッドキャパシタ - Google Patents

ハイブリッドキャパシタ Download PDF

Info

Publication number
WO2020262464A1
WO2020262464A1 PCT/JP2020/024840 JP2020024840W WO2020262464A1 WO 2020262464 A1 WO2020262464 A1 WO 2020262464A1 JP 2020024840 W JP2020024840 W JP 2020024840W WO 2020262464 A1 WO2020262464 A1 WO 2020262464A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
graphite
film
positive electrode
aluminum
Prior art date
Application number
PCT/JP2020/024840
Other languages
English (en)
French (fr)
Inventor
芳尾 真幸
直哉 小林
Original Assignee
Tpr株式会社
芳尾 真幸
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tpr株式会社, 芳尾 真幸 filed Critical Tpr株式会社
Priority to JP2021527695A priority Critical patent/JP6967688B2/ja
Priority to CN202080038594.9A priority patent/CN114207756B/zh
Publication of WO2020262464A1 publication Critical patent/WO2020262464A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/42Powders or particles, e.g. composition thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a hybrid capacitor.
  • the present application claims priority based on Japanese Patent Application No. 2019-116704 filed in Japan on June 24, 2019, the contents of which are incorporated herein by reference.
  • Electric double layer capacitors see, for example, Patent Document 1
  • secondary batteries are known as techniques for storing electric energy.
  • Electric double layer capacitors (EDLCs) are significantly superior to secondary batteries in terms of life, safety, and power density.
  • the electric double layer capacitor has a problem that the energy density (volume energy density) is lower than that of the secondary battery.
  • an electric double layer capacitor As a technique for improving the capacitance of an electric double layer capacitor, a technique for increasing the specific surface area of activated carbon constituting the electrode of the electric double layer capacitor is known.
  • activated carbons have a specific surface area of 1000 m 2 / g to 2500 m 2 / g.
  • an organic electrolytic solution in which a quaternary ammonium salt is dissolved in an organic solvent, an aqueous electrolytic solution such as sulfuric acid, or the like is used as the electrolytic solution. Since the organic electrolyte has a wide usable voltage range, the applied voltage can be increased and the energy density can be improved.
  • a lithium ion capacitor is known as a capacitor in which the applied voltage is improved by utilizing the principle of an electric double layer capacitor.
  • a lithium ion capacitor is a capacitor that uses graphite or carbon that can intercalate and deintercalate lithium ions for the negative electrode and activated carbon that is equivalent to the electrode material of an electric double layer capacitor that can absorb and desorb electrolyte ions for the positive electrode. ing.
  • the positive electrode and the negative electrode which uses the same activated carbon as the electrode material of the electric double layer capacitor, and which uses a metal oxide or a conductive polymer as the electrode at which the Faraday reaction occurs on the other electrode, It is called a hybrid capacitor.
  • the negative electrode is made of graphite, hard carbon, soft carbon, etc., which are the negative electrode materials of the lithium ion secondary battery, and the inside of the graphite, hard carbon, soft carbon, etc.
  • a lithium ion capacitor is characterized in that the applied voltage is larger than that of a general electric double layer capacitor, that is, one in which both electrodes are composed of activated carbon.
  • hard carbon and soft carbon have a lower capacity per volume of the electrode than graphite, and the voltage is also lower than that of graphite (becomes a noble potential). Therefore, there is a problem that the energy density of the lithium ion capacitor becomes low.
  • the lithium ion capacitor When emphasizing low temperature characteristics, it is difficult to use high-capacity graphite for the negative electrode. It is difficult to further increase the energy density of lithium-ion capacitors. Further, in the lithium ion capacitor, a copper foil is used for the current collector as in the negative electrode of the lithium ion secondary battery, so that when an overdischarge of 2 V or less is performed, copper is eluted to cause a short circuit or charge. There are problems such as a decrease in discharge capacity. Therefore, the lithium ion capacitor has a problem that the usable voltage range is limited as compared with the electric double layer capacitor which can discharge up to 0V.
  • Patent Document 2 As a new concept capacitor, a capacitor using graphite as the positive electrode active material instead of activated carbon and using a reaction of inserting and removing electrolyte ions between the layers of graphite has been developed (see, for example, Patent Document 2).
  • Patent Document 2 in the conventional electric double-layer capacitor using activated carbon as the positive electrode active material, when a voltage exceeding 2.5 V is applied to the positive electrode, the electrolytic solution is decomposed and gas is generated, whereas the positive electrode active material is generated. It is described that a capacitor with a new concept that uses graphite does not cause decomposition of the electrolytic solution even at a charging voltage of 3.5 V, and can operate at a higher voltage than a conventional electric double-layer capacitor that uses activated carbon as the positive electrode active material.
  • the energy density can be increased by about 2 to 3 times as compared with the conventional electric double layer capacitor.
  • the cycle characteristics, low temperature characteristics, and output characteristics are also equal to or better than those of conventional electric double layer capacitors.
  • the specific surface area of graphite is several hundredths of the specific surface area of activated carbon, and this difference in electrolytic solution decomposition action is due to this large difference in specific surface area.
  • Capacitors with a new concept that uses graphite as the positive electrode active material have not been put into practical use due to insufficient durability, but a technology that uses an aluminum material coated with an amorphous carbon film for the current collector (patented). (Refer to Reference 3), it is known that the high temperature durability performance can be improved to a practical level.
  • the capacitor of this new concept is a capacitor that uses a reaction of inserting and removing electrolyte ions between layers of graphite on the positive electrode, and is not strictly an electric double layer capacitor, but in Patent Document 3, it is electric in a broad sense. It is called a double layer capacitor.
  • the durability test is usually performed by raising the temperature and performing an accelerated test (high temperature durability test, charge / discharge cycle test).
  • the test can be performed by a method according to the "durability (high temperature continuous rated voltage application) test" described in JIS D 1401: 2009. It is said that the deterioration rate doubles when the temperature is raised from room temperature by 10 ° C.
  • a high-temperature durability test for example, the battery is held (continuously charged) at a predetermined voltage (3 V or more in the present invention) for 2000 hours in a constant temperature bath at 60 ° C., and then returned to room temperature for charging and discharging, and discharging at that time. There is a test to measure capacity. After this high temperature durability test, it is considered desirable that the discharge capacity retention rate satisfies 80% or more with respect to the initial discharge capacity.
  • the capacitor of the new concept of Patent Document 3 aluminum, which is a current collector, is coated with an amorphous carbon film.
  • the diamond-like carbon (DLC) film is amorphous carbon film, graphite are contained and the sp 3 structure mainly composed of sp 2 structure and diamond composed mainly of, containing the sp 2 structure the ratio sp 2 / Since (sp 2 + sp 3 ) is 35 to 55%, it is a hard film. Therefore, when the capacitor is used, when it is consolidated by a roll press or the like in order to increase the electrode density, it may be damaged or peeled off from the aluminum material, and the aluminum dissolution reaction starts in the exposed portion, resulting in durability. There is a concern that the sex will deteriorate.
  • the capacitor is required to further improve the input / output characteristics of the capacitor by preventing such a decrease in durability and reducing the interfacial resistance between the current collector and the electrode active material layer.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a hybrid capacitor that suppresses a decrease in durability due to dissolution of a current collector and has excellent input / output characteristics.
  • the present invention employs the following means.
  • the positive electrode contains graphite as the positive electrode active material
  • the current collector on the positive electrode side is an aluminum material
  • the aluminum material has a sp 2 structure content ratio sp 2. It is coated with a carbon-plated film in which / (sp 2 + sp 3 ) is 80% or more.
  • the thickness of the carbon plating film is preferably 100 nm or more and 5000 nm or less.
  • the current collector on the negative electrode side is an aluminum material coated with a carbon plating film, an amorphous carbon film and a negative electrode active material. It is preferably selected from the group consisting of an aluminum material having a conductive carbon layer formed between them, an aluminum material coated with an amorphous carbon film, etched aluminum, and an aluminum material.
  • the graphite preferably contains rhombohedral crystals.
  • the negative electrode is a carbon substance selected from the group consisting of activated carbon, graphite, hard carbon, and soft carbon as the negative electrode active material. It preferably contains at least one of the materials or lithium titanate.
  • the carbon plating film is preferably a plating film made from a molten salt as a raw material.
  • the present invention it is possible to provide a hybrid capacitor that suppresses a decrease in durability due to melting of a current collector and has excellent input / output characteristics.
  • the hybrid capacitor according to the embodiment of the present invention includes a positive electrode, a negative electrode, an electrolytic solution, and a separator, the positive electrode contains graphite as a positive electrode active material, the current collector on the positive electrode side is an aluminum material, and the aluminum material is sp 2. It is characterized in that it is coated with a carbon-plated film having a structure content ratio of sp 2 / (sp 2 + sp 3 ) of 80% or more.
  • the positive electrode includes a current collector (current collector on the positive electrode side) and a positive electrode active material layer formed on the current collector.
  • the positive electrode active material layer is formed by applying a paste-like positive electrode material containing a positive electrode active material, a binder, and an required amount of a conductive material on the current collector on the positive electrode side, and drying and drying the positive electrode material. be able to.
  • fluororesin for example, fluororesin, rubber, acrylic resin, olefin resin, carboxymethyl cellulose (CMC) resin, and natural polymer
  • fluororesin examples include polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE).
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • rubber examples include fluororubber, ethylene propylene diene rubber, and styrene butadiene rubber.
  • natural polymers include gelatin, chitosan and alginic acid. One of these binders may be used alone, or two or more of these binders may be used in combination.
  • the conductive material is not particularly limited as long as it improves the conductivity of the positive electrode active material layer, and a known conductive material can be used.
  • a known conductive material can be used.
  • carbon black and carbon fiber can be used.
  • carbon fibers include carbon nanotubes (CNT) and VGCF®.
  • the carbon nanotubes may be single-walled carbon nanotubes or multi-walled carbon nanotubes.
  • One of these conductive materials may be used alone, or two or more of them may be used in combination.
  • the current collector on the positive electrode side is an aluminum material coated with a carbon plating film.
  • an aluminum material generally used for current collector applications can be used.
  • the shape of the aluminum material can be a foil, a sheet, a film, a mesh, or the like.
  • Aluminum foil can be preferably used as the current collector. Further, in addition to a plain aluminum material, etched aluminum described later may be used.
  • the thickness when the aluminum material is a foil, sheet or film is not particularly limited, but if the size of the cell itself is the same, the thinner the aluminum material, the more active material can be enclosed in the cell case, but the strength is reduced. Therefore, select an appropriate thickness.
  • the thickness is preferably 10 ⁇ m to 50 ⁇ m, more preferably 15 ⁇ m to 30 ⁇ m. If the thickness is less than 10 ⁇ m, the aluminum material may be broken or cracked during the step of roughening the surface of the aluminum material or another manufacturing process.
  • Etched aluminum may be used as the aluminum material. Etched aluminum is roughened by etching.
  • etching a method of immersing in an acid solution such as hydrochloric acid (chemical etching) or electrolysis (electrochemical etching) using aluminum as an anode in an acid solution such as hydrochloric acid is generally used.
  • electrochemical etching the etching shape differs depending on the current waveform during electrolysis, solution composition, temperature, etc., so it can be selected from the viewpoint of capacitor performance.
  • the aluminum material either one having a passivation layer on the surface or one not having a passivation layer can be used.
  • a passivation film which is a natural oxide film
  • a carbon plating film layer may be provided on the natural oxide film, or may be provided after the natural oxide film is removed.
  • the natural oxide film on the aluminum material is a passivation film and has the advantage that it is not easily eroded by the electrolytic solution, but on the other hand, it forms a uniform and strong carbon plating film, and also increases the resistance of the current collector. To prevent it, it is preferable that there is no natural oxide film.
  • electrolytic etching, chemical etching, or the like can be used. By etching by these methods, the surface of the aluminum material is formed with irregularities at the same time as the natural oxide film is removed, which is also preferable in that the adhesion with the subsequent carbon plating film is improved.
  • the aluminum material is coated with a carbon plating film.
  • the carbon plated layer contains an sp 3 structure mainly composed of sp 2 structure and diamond composed mainly of graphite, sp 2 structure content ratio sp 2 / (sp 2 + sp 3) of becomes 80% or more It has a structure similar to that of a graphite film.
  • the content ratios of the sp 2 structure and the sp 3 structure can be confirmed, for example, by analyzing XANES (X-ray Absorption Near Edge Structure: structure near the X-ray absorption edge) obtained by X-ray irradiation.
  • XANES X-ray Absorption Near Edge Structure: structure near the X-ray absorption edge
  • this carbon-plated film is softer than the DLC film, which is an amorphous carbon film.
  • the Vickers hardness is about 700 to 1000 HV in the case of the DLC film, while it is about 3 to 80 HV in the case of the carbon-plated film.
  • this carbon-plated film has a lower resistivity and higher conductivity than the DLC film.
  • the resistivity in the penetration resistance measurement method using a gold probe is about 0.3 to 1.0 m ⁇ ⁇ cm 2 in the case of a DLC film, whereas it is about 0.3 to 1.0 m ⁇ ⁇ cm 2 in the case of a carbon-plated film. It is about 0.04 to 0.2 ⁇ ⁇ cm 2 . It should be noted that these values are values when the aluminum foil is coated with each film.
  • a halide is suitable as the molten salt bath, and for example, LiCl, NaCl, KCl, MgCl 2, etc. can be used alone or in combination.
  • CaCl 2 or the like is added as a carbon source to the molten salt bath to dissolve it.
  • a metal to be plated here, an aluminum material
  • Classic carbon or the like can be used for the cathode.
  • the carbon plating film is a plating film using a molten salt as a raw material or a part of the raw material, and is formed, for example, by changing carbon ion C 2- in the molten salt to C at the anode.
  • C 2- ⁇ C + 2e ⁇ occurs at the anode
  • Li + + e ⁇ ⁇ Li occurs at the cathode.
  • the feature of carbon plating is that a dense film can be formed and the thickness of the formed film can be controlled by the amount of electricity. Furthermore, since the carbon produced is graphite or carbon having an sp 2 structure similar to graphite, it is also a major feature that it has high conductivity. In the present embodiment, the thickness of the carbon plating film is preferably 100 nm or more and 5000 nm or less.
  • the positive electrode active material used in the hybrid capacitor of the present invention contains graphite.
  • the graphite either artificial graphite or natural graphite can be used.
  • natural graphite scaly and earth-like graphite are known.
  • Natural graphite is obtained by crushing the mined raw ore and repeating beneficiation called flotation.
  • artificial graphite is produced, for example, through a graphitization step of calcining a carbon material at a high temperature. More specifically, for example, the raw material coke is molded by adding a binder such as pitch, heated to around 1300 ° C. for primary firing, then the primary fired product is impregnated with the pitch resin, and the temperature is further increased to 3000 ° C. It is obtained by secondary firing at a near high temperature. Further, those in which the surface of graphite particles is coated with carbon can also be used.
  • the crystal structure of graphite is roughly divided into hexagonal crystals with a layered structure consisting of ABAB and rhombohedral crystals with a layered structure consisting of ABCABC. Depending on the conditions, these structures may be in a single state or in a mixed state, but any crystal structure or a mixed state can be used.
  • the graphite of KS-6 (trade name) manufactured by Imerys GC Japan Co., Ltd. used in the examples described later has a rhombohedral crystal ratio of 26%, and is an artificial graphite manufactured by Osaka Gas Chemical Co., Ltd.
  • Carbon microbeads (MCMB) have a ratio of rhombohedral crystals of 0%.
  • the graphite used in this embodiment has a different capacitance expression mechanism from the activated carbon used in the conventional EDLC.
  • activated carbon taking advantage of its large specific surface area, electrolyte ions are adsorbed and desorbed on the surface of the activated carbon to develop capacitance.
  • the capacity is developed by inserting and desorbing (intercalation-deintercalation) an anion which is an electrolyte ion between the layers.
  • the hybrid capacitor according to the present embodiment was called an electric double layer capacitor in a broad sense in Patent Document 3, but it can also be called a hybrid capacitor, and activated carbon having an electric double layer is used. It is distinct from EDLC.
  • the negative electrode includes a current collector (current collector on the negative electrode side) and a negative electrode active material layer formed on the current collector.
  • the negative electrode active material layer is formed by applying a paste-like negative electrode material containing a negative electrode active material, a binder, and an required amount of a conductive material on the current collector on the negative electrode side, and drying the negative electrode material. be able to.
  • the negative electrode active material materials capable of absorbing / desorbing or inserting / desorbing (intercalation-deintercalation) a cation which is an electrolyte ion, for example, activated carbon, graphite, hard carbon, soft carbon and carbon which are carbonaceous materials.
  • Lithium titanate which is an electrode potential material that is more noble than the quality material, can be used.
  • a known collector can be used as the current collector on the negative electrode side, but a conductive carbon layer is formed between the aluminum material coated with the carbon plating film, the amorphous carbon film, and the negative electrode active material.
  • a material selected from the group consisting of an aluminum material, an aluminum material coated with an amorphous carbon film, etched aluminum, and an aluminum material can be used.
  • an aluminum material coated with a carbon plating film is used on the negative electrode side as well, it is preferable in that high temperature durability performance can be improved when the hybrid capacitor is operated at a high voltage.
  • binder and conductive material those of the same type as the positive electrode can be used.
  • an organic electrolytic solution using an organic solvent can be used.
  • electrolyte ions it is not limited to the organic electrolyte.
  • a gel may be used.
  • the electrolyte contains electrolyte ions that can be attached to and detached from the electrode.
  • the type of electrolyte ion is preferably one having an ion diameter as small as possible. Specifically, ammonium salts, phosphonium salts, ionic liquids, lithium salts and the like can be used.
  • ammonium salt tetraethylammonium (TEA) salt, triethylammonium (TEMA) salt and the like can be used.
  • TEA tetraethylammonium
  • TMA triethylammonium
  • phosphonium salt a spiro compound having two five-membered rings or the like can be used.
  • the type of ionic liquid is not particularly limited, but a material having a viscosity as low as possible and a high conductivity (conductivity) is preferable from the viewpoint of facilitating the movement of electrolyte ions.
  • the cation constituting the ionic liquid include imidazolium ion and pyridinium ion.
  • the imidazolium ion include 1-ethyl-3-methylimidazolium (EMIm) ion and 1-methyl-1-propylpyrrolidinium (1-methyl-1-propylpyrrolidinium).
  • EMIm 1-ethyl-3-methylimidazolium
  • MPPi 1-methyl-1-propylpyrrolidinium
  • the lithium salt lithium tetrafluorobolate LiBF 4 , lithium hexafluorophosphate LiPF 6, or the like can be used.
  • Examples of the pyridinium ion include 1-ethylpyridinium ion, 1-butylpyridinium ion and the like.
  • the anions that make up the ionic liquid include BF 4 ions, PF 6 ions, [(CF 3 SO 2 ) 2 N] ions, FSI (bis (fluorosulfonyl) imide, bis (fluorosulfonyl) imide) ions, and TFSI (bis (bis (fluorosulfonyl) imide) ions. Examples thereof include trifluoromethylsulfonyl) imide and bis (trifluoromethyl sulphonyl) ion.
  • acetonitrile propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dimethyl sulfone, ethyl isopropyl sulfone, ethyl carbonate, fluoroethylene carbonate, ⁇ -butyrolactone, sulfolane, N, N-dimethylformamide, dimethyl sulfoxide and the like alone or A mixed solvent can be used.
  • a cellulosic paper-like separator As the separator, a cellulosic paper-like separator, a glass fiber separator, a microporous polyethylene or polypropylene film, or the like is suitable for the purpose of preventing a short circuit between the positive electrode and the negative electrode and ensuring the electrolyte liquid retention property.
  • the current collector is coated with a carbon plating film.
  • This carbon-plated film has a denser structure than the films obtained by other manufacturing methods, and the gaps between the particles constituting the film are remarkably small.
  • this carbon-plated film has a content ratio of sp 2 structure mainly composed of graphite of 80% or more and has a structure close to graphite, it is compared with a film having an amorphous structure such as a DLC film. And soft. Therefore, the adhesion to the current collector and the electrode active material is high, and it is possible to reduce the occurrence of problems such as damage or peeling from the aluminum material when consolidation is performed by a roll press or the like in order to increase the electrode density. ..
  • the hybrid capacitor according to the present embodiment it is possible to suppress a decrease in durability due to a part of the aluminum material being exposed and the dissolution reaction starting from there.
  • the carbon-plated film covering the current collector of the present invention has higher conductivity than the film having an amorphous structure, the interfacial resistance with the electrode active material layer is low, and the present hybrid capacitor It is possible to reduce the resistance and obtain excellent input / output characteristics.
  • Example 1 In an argon glove box, 5 mol% of CaC 2 was added to a solution containing LiCl and KCl at a weight percent concentration (wt%) of 50:50, and the solution was dissolved at 500 ° C. to prepare a molten salt bath.
  • Aluminum foil (thickness 50 ⁇ m) was used for the anode, and glassy carbon was used for the cathode.
  • Electrolysis was carried out at a constant current of 3 mA / cm 2 for 25 minutes, and carbon was plated on an aluminum foil (thickness 50 ⁇ m) having a purity of 99.99% to obtain a current collector on the positive electrode side of this example.
  • the thickness (film thickness) of the carbon plating film was measured by observing the cross section of the current collector with an SEM, it was 3 ⁇ m. Further, the ratio sp 2 / the sp 2 structure (sp 2 + sp 3), was measured using a soft X-ray XANES (X-ray absorption near edge structure) was 83%.
  • Graphite manufactured by Imeris GC Japan Co., Ltd. (trade name: KS-6), acetylene black (conductive material), and vinylidene fluoride (organic solvent-based binder) are used as positive electrode active materials in terms of weight percent concentration (wt%). Weighed so as to be 80:10:10, and the paste obtained by dissolving and mixing with N-methylpyrrolidone (organic solvent) was applied onto the obtained current collector using a doctor blade. An example positive electrode was obtained.
  • the negative electrode active material activated charcoal manufactured by Kansai Thermochemical Co., Ltd. (trade name: MSP-20), acetylene black (conductive material), and polyvinylidene fluoride (organic solvent-based binder) were added in a weight percent concentration (wt%) ratio. Weighed so that the concentration was 80:10:10, and the paste obtained by dissolving and mixing with N-methylpyrrolidone (organic solvent) was placed on an etched aluminum foil (thickness 20 ⁇ m) manufactured by Nippon Denki Kogyo Co., Ltd. The coating was applied using a doctor blade to obtain a negative electrode of this example.
  • the obtained positive electrode was punched into a disk shape having a diameter of 16 mm and the obtained negative electrode having a diameter of 14 mm, and vacuum dried at 150 ° C. for 24 hours. After that, it was moved to the argon glove box.
  • the dried positive electrode and negative electrode are laminated via a paper separator (trade name: TF40-30) manufactured by Nippon Kodoshi Paper Industry Co., Ltd., and 1M TEA-BF 4 (tetraethylammonium tetrafluoride) is used as an electrolyte and a solvent is used.
  • 0.1 mL of an electrolytic solution using SL + DMS (Sulfolane + dimethyl sulfide) was added to prepare a 2032 type coin cell of this example in an argon glove box.
  • Example 2 Similar to the current collector on the positive electrode side of Example 1, a 2032 type coin cell similar to that of Example 1 was produced as the current collector on the negative electrode side, except that an aluminum foil coated with a carbon plating film was used.
  • Example 3 A 2032 type coin cell similar to that of Example 1 was produced except that artificial graphite (trade name: MCMB6-10) manufactured by Osaka Gas Chemical Co., Ltd. was used as the positive electrode active material.
  • artificial graphite trade name: MCMB6-10 manufactured by Osaka Gas Chemical Co., Ltd. was used as the positive electrode active material.
  • Example 4 Examples except that lithium titanate Li 4 Ti 5 O 12 was used as the negative electrode active material, 1 M lithium tetrafluoroborate LiBF 4 was used as the electrolyte, and an electrolytic solution using propylene carbonate (PC) as the solvent was used. A 2032 type coin cell similar to No. 1 was produced.
  • Example 5 In the same procedure as the carbon plating of Example 1, a plurality of current collectors having different thicknesses of the carbon plating film were prepared by changing the electrolysis time at a constant current. Specifically, those having thicknesses of 0 nm, 50 nm, 100 nm, 300 nm, 1000 nm, 2000 nm, 3000 nm, 5000 nm, 7000 nm, and 10000 nm were produced. In each case, a 2032 type coin cell similar to that of Example 1 was produced except that the electrolysis time at a constant current was changed.
  • Example 1 A 2032 type coin cell similar to that of Example 1 was produced except that the activated carbon manufactured by Kansai Coke Chemical Co., Ltd. (trade name: MSP-20) used as the negative electrode active material in Example 1 was also used as the positive electrode active material. ..
  • DLC-coated aluminum foil a DLC-coated aluminum foil (hereinafter, may be referred to as “DLC-coated aluminum foil”) was used as the current collector on the positive electrode side.
  • the DLC coated aluminum foil corresponds to an aluminum material coated with an amorphous carbon film.
  • an aluminum foil (thickness 50 ⁇ m) having a purity of 99.99% is subjected to argon sputtering to remove a natural oxide film on the surface of the aluminum foil, and then methane and acetylene are present in the vicinity of the aluminum surface.
  • a discharge plasma was generated in a mixed gas of and nitrogen, and a negative bias voltage was applied to the aluminum material to form a DLC film.
  • the thickness of the DLC film on the aluminum foil coated with DLC was measured using a stylus type surface shape measuring instrument DektakXT manufactured by Bruker Co., Ltd. and found to be 135 nm.
  • a current density of 0.4 mA / cm 2 and 0 for the cells of Examples 1, 3, 4 and Comparative Example 1 produced in a constant temperature bath at 25 ° C. using the charge / discharge test device BTS2004 manufactured by Nagano Co., Ltd.
  • a charge / discharge test was performed at a voltage in the range of ⁇ 3.5V.
  • Table 1 shows the results of calculating the energy (Wh) from the obtained discharge capacity and the average discharge voltage.
  • the energy and discharge capacities of Examples 1, 3 and 4 are shown as standardized values in Comparative Example 1, respectively. At this time, the result of Comparative Example 1 was standardized as 100.
  • the energy (product of discharge capacity and average discharge voltage) of Examples 1 and 3 using graphite as the positive electrode is 4.4 times and 3.2 times, respectively, as compared with Comparative Example 1 in which the conventional activated carbon is used as the positive electrode. It was found that all of them have high energy. This is because graphite, which can insert and desorb electrolyte ions between layers, can have a larger discharge capacity than activated carbon, which absorbs and desorbs electrolyte ions on the surface of pores. Further, in the case of the graphite positive electrode, the fact that the voltage can be higher than that of the activated carbon positive electrode is also mentioned as a factor of energy improvement.
  • Example 4 in which lithium titanate was used as the negative electrode, the energy was 5.8 times and the discharge capacity was 3.3 times that of Comparative Example 1. This is because the discharge potential of lithium titanate in Example 4 is flatter than that of the activated carbon negative electrode of Example 1, the average voltage is higher, so that the energy is higher and the discharge capacity is also larger than that of activated carbon. It is thought that this is due to the fact.
  • Example 1 in which the carbon-plated aluminum foil was used for the current collector on the positive electrode side, the discharge capacity retention rate could be significantly improved to 47 times that of Comparative Example 1. Further, in the case of Example 2 in which the carbon-plated aluminum foil was also used for the current collector on the negative electrode side, it was possible to improve 54 times as much as in Comparative Example 1 and further improve the durability performance. Further, as a result of comparing Example 1 in which the carbon-plated aluminum foil was used for the current collector on the positive side with Comparative Example 2 in which only the DLC-coated aluminum foil was used, the result was 1.12 times improved, and carbon plating was performed. When the aluminum foil was used, the durability performance could be further improved as compared with the case where the DLC coated aluminum foil was used.
  • the discharge rate of Example 1 is shown as a standardized value in Comparative Example 2.
  • the result of Comparative Example 2 was standardized as 100.
  • Example 1 The discharge rate performance of Example 1 could be improved 1.26 times as compared with Comparative Example 2.
  • the results show that the carbon-plated aluminum foil has a high sp 2 structure ratio sp 2 / (sp 2 + sp 3 ) of 83%, which has a structure similar to graphite, and that it has a structure similar to that of graphite particles. It is considered that this is because the contact resistance is reduced, the unevenness of the plated carbon enhances the contact property with the active material particles, and the interfacial resistance between the current collector and the active material layer is reduced.
  • the graph of FIG. 1 shows the thickness (film thickness) (nm) of the carbon-plated film, the discharge capacity retention rate (%), and the discharge capacity (%) per electrode volume when the cell of Example 5 is used. It is a graph which shows the relationship of.
  • the discharge capacity of the electrode was defined as the discharge capacity per electrode volume including the thickness of the current collector, and the discharge capacity when the thickness of the carbon plating film was 0 nm was standardized as 100.
  • the volume capacity of the electrode including the current collector decreases due to the increase in the thickness of the carbon plating film. From FIG. 1, it can be seen that the discharge capacity is reduced by 7% when the thickness of the carbon plating film is 10000 nm and when it is 0 nm. Since the high temperature durability performance became constant at 1000 nm or more, it is considered that the range of 1000 to 5000 nm is optimal from the viewpoint of the volume capacity of the electrode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

本発明のハイブリッドキャパシタは、正極は正極活物質として黒鉛を含み、正極側の集電体はアルミニウム材であり、アルミニウム材は、sp構造の含有比率sp/(sp+sp)が80%以上である炭素めっき膜で被覆されている。

Description

ハイブリッドキャパシタ
 本発明は、ハイブリッドキャパシタに関する。
 本願は、2019年6月24日に、日本に出願された特願2019-116704号に基づき優先権を主張し、その内容をここに援用する。
 従来、電気エネルギーを貯蔵する技術として、電気二重層キャパシタ(例えば、特許文献1参照)や二次電池が知られている。電気二重層キャパシタ(EDLC:Electric double-layer capacitor)は、寿命、安全性、出力密度が二次電池よりも格段に優れている。しかしながら、電気二重層キャパシタは、二次電池に比べてエネルギー密度(体積エネルギー密度)が低いという課題がある。
 ここで、電気二重層キャパシタに蓄積されるエネルギー(E)は、キャパシタの静電容量(C)と印加電圧(V)を用いてE=1/2×C×Vと表され、エネルギーは静電容量と印加電圧の二乗とに比例する。従って、電気二重層キャパシタのエネルギー密度を改善するために、電気二重層キャパシタの静電容量や印加電圧を向上する技術が提案されている。
 電気二重層キャパシタの静電容量を向上する技術としては、電気二重層キャパシタの電極を構成する活性炭の比表面積を増大させる技術が知られている。現在、知られている活性炭は、比表面積が1000m/g~2500m/gである。このような活性炭を電極に用いた電気二重層キャパシタでは、電解液として第四級アンモニウム塩を有機溶媒に溶解させた有機電解液や、硫酸等の水溶液電解液等が用いられている。
 有機電解液は使用できる電圧範囲が広いため、印加電圧を高めることができ、エネルギー密度を向上することができる。
 電気二重層キャパシタの原理を利用して印加電圧を向上させたキャパシタとして、リチウムイオンキャパシタが知られている。負極にリチウムイオンをインターカレート、ディインターカレートできる黒鉛あるいは炭素を用い、正極に電解質イオンを吸脱着できる電気二重層キャパシタの電極材と同等の活性炭を用いるものは、リチウムイオンキャパシタと呼ばれている。また、正極あるいは負極のいずれか一方に電気二重層キャパシタの電極材と同等の活性炭を用い、もう一方の電極にファラデー反応が起こる電極として、金属酸化物、導電性高分子を用いるものについては、ハイブリッドキャパシタと呼ばれている。リチウムイオンキャパシタは、電気二重層キャパシタを構成する電極のうち、負極がリチウムイオン二次電池の負極材料である黒鉛やハードカーボン、ソフトカーボン等で構成され、その黒鉛やハードカーボン、ソフトカーボン内にリチウムイオンが挿入された電極である。リチウムイオンキャパシタは、一般的な電気二重層キャパシタ、すなわち、両極が活性炭で構成されるものよりも印加電圧が大きくなるという特徴がある。
 しかし、電極に黒鉛を用いた場合、電解液の溶媒として知られる、プロピレンカーボネートを用いることができないという課題がある。電極に黒鉛を用いた場合、プロピレンカーボネートが電気分解して、黒鉛の表面にプロピレンカーボネートの分解生成物が付着し、リチウムイオンの可逆性が低下するためである。プロピレンカーボネートは、低温でも動作可能な溶媒である。プロピレンカーボネートを電気二重層キャパシタに適用した場合、その電気二重層キャパシタは-40℃でも作動することができる。そこで、リチウムイオンキャパシタでは、プロピレンカーボネートが分解し難いハードカーボンやソフトカーボンが電極材料に用いられている。しかし、ハードカーボンやソフトカーボンは、黒鉛に比べて電極の体積当たりの容量が低く、電圧も黒鉛に比べて低くなる(貴な電位になる)。そのため、リチウムイオンキャパシタのエネルギー密度が低くなる等の課題がある。
 低温特性を重視した場合、高容量の黒鉛を負極に使用するのが難しいリチウムイオンキャパシタのさらなる高エネルギー密度化は難しい。さらに、リチウムイオンキャパシタでは、リチウムイオン二次電池の負極と同様に集電体に銅箔を用いているため、2V以下の過放電を行った場合に銅が溶出して短絡を起こす、あるいは充放電容量が低下する等の課題がある。したがって、リチウムイオンキャパシタは、0Vまで放電できる電気二重層キャパシタに比べると使用できる電圧範囲が限定されている等の課題がある。
 新しい概念のキャパシタとして、活性炭の代わりに黒鉛を正極活物質に用いて黒鉛の層間に電解質イオンを挿入脱離する反応を利用したキャパシタが開発された(例えば、特許文献2参照)。特許文献2には、正極活物質に活性炭を用いる従来の電気二重層キャパシタでは正極に2.5Vを超える電圧を印加すると電解液の分解が生じてガスが発生するのに対して、正極活物質に黒鉛を用いる新しい概念のキャパシタでは3.5Vの充電電圧でも電解液の分解を招来せず、正極活物質に活性炭を用いる従来の電気二重層キャパシタよりも高い電圧で動作できることが記載されている。この技術を用いると、従来の電気二重層キャパシタに比べてエネルギー密度を2~3倍程度高めることができる。サイクル特性や低温特性、出力特性に関しても従来の電気二重層キャパシタと同等以上となる。黒鉛の比表面積は活性炭の比表面積の数百分の1であり、この電解液分解作用の違いはこの大きな比表面積の違いに起因する。
 黒鉛を正極活物質に用いる新しい概念のキャパシタでは、耐久性が十分ではないため、実用化が阻まれていたが、非晶質炭素被膜で被覆されたアルミニウム材を集電体に用いる技術(特許文献3参照)により、高温耐久性能を実用化レベルまで改善できることが分かっている。なお、この新しい概念のキャパシタは、正極に黒鉛の層間に電解質イオンを挿入脱離する反応を用いたキャパシタであり、厳密には電気二重層キャパシタではないが、特許文献3では広義の意味で電気二重層キャパシタと呼んでいる。
 ここで、耐久性の試験は通常、温度を高めて加速試験(高温耐久性試験、充放電サイクル試験)によって行う。その試験はJIS D 1401:2009に記載されている「耐久性(高温連続定格電圧印加)試験」に準じた方法で行うことができる。温度を室温から10℃上昇させると劣化速度が約2倍になると言われている。高温耐久性試験としては例えば、60℃の恒温槽で2000時間、所定の電圧(本発明では、3V以上)で保持(連続充電)し、その後室温に戻して充放電を行ない、そのときの放電容量を測定する試験がある。この高温耐久性試験後に、初期の放電容量に対して放電容量維持率が80%以上を満足することが望ましいと考えられる。
特開2011-046584号公報 特開2010-040180号公報 特許第6167243号公報 特開2015-232171号公報
 特許文献3の新しい概念のキャパシタでは、集電体であるアルミニウムが、非晶質炭素被膜に被覆されている。非晶質炭素被膜であるダイヤモンドライクカーボン(DLC)膜には、黒鉛を主体とするsp構造とダイヤモンドを主体とするsp構造とが含有されており、sp構造の含有比率sp/(sp+sp)が35~55%であるため、硬い膜となっている。したがって、当該キャパシタを用いた場合、電極密度を高めるためにロールプレス等の圧密化を行った際に、傷ついたり、アルミニウム材から剥がれたりして、露出した部分においてアルミニウムの溶解反応が始まり、耐久性が低下する懸念がある。当該キャパシタには、こうした耐久性の低下を防ぐとともに、集電体と電極活物質層との界面抵抗を低減することによって、キャパシタの入出力特性をさらに向上することが求められている。
 本発明は上記事情に鑑みてなされたものであり、集電体が溶解することによる耐久性の低下を抑制し、かつ、優れた入出力特性を有するハイブリッドキャパシタを提供することを目的とする。
 上記課題を解決するため、本発明は以下の手段を採用している。
(1)本発明の一態様に係るハイブリッドキャパシタは、正極が正極活物質として黒鉛を含み、前記正極側の集電体がアルミニウム材であり、前記アルミニウム材が、sp構造の含有比率sp/(sp+sp)が80%以上である炭素めっき膜で被覆されている。
(2)前記(1)に記載のハイブリッドキャパシタにおいて、前記炭素めっき膜の厚みは、100nm以上、5000nm以下であることが好ましい。
(3)前記(1)または(2)のいずれかに記載のハイブリッドキャパシタにおいて、負極側の集電体は、炭素めっき膜で被覆されたアルミニウム材、非晶質炭素被膜と負極活物質との間に導電性炭素層が形成されているアルミニウム材、非晶質炭素被膜で被覆されたアルミニウム材、エッチドアルミニウム、および、アルミニウム材からなる群から選択されたものであることが好ましい。
(4)前記(1)~(3)のいずれか一つに記載のハイブリッドキャパシタにおいて、前記黒鉛は、菱面体晶を含むことが好ましい。
(5)前記(1)~(4)のいずれか一つに記載のハイブリッドキャパシタにおいて、負極は、負極活物質として活性炭、黒鉛、ハードカーボン、および、ソフトカーボンからなる群から選択された炭素質材料、あるいはチタン酸リチウムの少なくとも1つを含むことが好ましい。
(6)前記(1)~(5)のいずれか一つに記載のハイブリッドキャパシタにおいて、炭素めっき膜は、溶融塩を原料とするめっき膜であることが好ましい。
 本発明によれば、集電体が溶解することによる耐久性の低下を抑制し、かつ、優れた入出力特性を有するハイブリッドキャパシタを提供することができる。
本発明の実施例5に係るハイブリッドキャパシタにおいて、炭素めっき膜の厚み(膜厚)と、放電容量維持率および電極体積当たりの放電容量との関係を示すグラフである。
 以下、本発明を適用した実施形態に係るハイブリッドキャパシタについて、図面を用いて詳細に説明する。なお、以下の説明で用いる図面は、特徴を分かりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。また、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
 本発明の一実施形態に係るハイブリッドキャパシタは、正極、負極、電解液、セパレータを備え、正極は正極活物質として黒鉛を含み、正極側の集電体はアルミニウム材であり、アルミニウム材はsp構造の含有比率sp/(sp+sp)が80%以上である炭素めっき膜で被覆されていることを特徴とする。
 正極は、集電体(正極側の集電体)とその上に形成されている正極活物質層を含む。正極活物質層は主に、正極活物質、バインダー、および、必要に応じた量の導電材を含むペースト状の正極材料を、正極側の集電体上に塗布し、乾燥して、形成することができる。
 バインダーとしては、例えば、フッ素樹脂、ゴム、アクリル系樹脂、オレフィン系樹脂、カルボキシメチルセルロース(CMC)系樹脂、天然高分子を用いることができる。フッ素樹脂の例としては、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)が挙げられる。ゴムの例としては、フッ素ゴム、エチレンプロピレンジエンゴム、スチレンブタジエンゴムが挙げられる。天然高分子の例としては、ゼラチン、キトサン、アルギン酸が挙げられる。これらのバインダーは、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 導電材は、正極活物質層の導電性を良好にするものであれば特に限定されず、公知の導電材を用いることができる。例えば、カーボンブラック、炭素繊維を用いることができる。炭素繊維の例としては、カーボンナノチューブ(CNT)、VGCF(登録商標)が挙げられる。カーボンナノチューブは、単層カーボンナノチューブであってもよいし、多層カーボンナノチューブであってもよい。これらの導電材は、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 正極側の集電体は、炭素めっき膜で被覆されたアルミニウム材である。基材であるアルミニウム材としては、一般的に集電体用途で使用されるアルミニウム材を用いることができる。アルミニウム材の形状としては、箔、シート、フィルム、メッシュなどの形態をとることができる。集電体としては、アルミニウム箔を好適に用いることができる。また、アルミニウム材としてプレーンなものの他、後述するエッチドアルミニウムを用いてもよい。
 アルミニウム材が箔、シートまたはフィルムである場合の厚みについては、特に限定されないが、セル自体のサイズが同じ場合、薄いほどセルケースに入れる活物質を多く封入できるというメリットはあるが、強度が低下するため、適正な厚みを選択する。厚みとしては、10μm~50μmが好ましく、15μm~30μmがより好ましい。厚みが10μm未満の場合、アルミニウム材の表面を粗面化する工程、または、他の製造工程中において、アルミニウム材の破断または亀裂を生じるおそれがある。
 アルミニウム材として、エッチドアルミニウムを用いてもよい。エッチドアルミニウムは、エッチングによって粗面化処理されたものである。エッチングは一般的に塩酸等の酸溶液に浸漬(化学エッチング)したり、塩酸等の酸溶液中でアルミニウムを陽極として電解(電気化学エッチング)する方法等が用いられる。電気化学エッチングでは電解の際の電流波形、溶液の組成、温度等によりエッチング形状が異なるのでキャパシタ性能の観点で選択できる。
 アルミニウム材は、表面に不動態層を備えているもの、備えていないもののいずれも用いることができる。アルミニウム材は、その表面に自然酸化膜である不動態膜が形成されている場合、炭素めっき膜層をこの自然酸化膜の上に設けてもよいし、自然酸化膜を除去した後に設けてもよい。アルミニウム材上の自然酸化膜は不動態膜であり、それ自体、電解液に浸食されにくいという利点がある一方、均一で強い炭素めっき膜を形成するため、また、集電体の抵抗の増大を防ぐため、自然酸化膜がない方が好ましい。除去の方法としては、電解エッチングや化学エッチング等を用いることができる。これらの方法でエッチングすることにより、自然酸化膜の除去と同時に、アルミニウム材の表面に凹凸が形成されるので、その後の炭素めっき膜との密着性が向上する点でも好ましい。
 アルミニウム材は、炭素めっき膜で被覆されている。この炭素めっき膜は、黒鉛を主体とするsp構造とダイヤモンドを主体とするsp構造とを含有し、sp構造の含有比率sp/(sp+sp)が80%以上となっており、黒鉛の膜に近い構造となっている。sp構造、sp構造の含有比率については、例えばX線照射して得られるXANES(X-ray Absorption Near Edge Structure:X線吸収端近傍構造)を分析することによって、確認することができる。
 そのため、この炭素めっき膜は、非晶質炭素被膜であるDLC膜に比べて柔らかくなっている。具体的には、ビッカーズ硬度がDLC膜の場合には700~1000HV程度であるのに対し、炭素めっき膜の場合には3~80HV程度である。
 また、この炭素めっき膜は、DLC膜に比べて抵抗率が低く、高い導電性を有している。具体的には、金プローブを用いた貫通抵抗測定法での抵抗率が、DLC膜の場合には0.3~1.0mΩ・cm程度であるのに対し、炭素めっき膜の場合には0.04~0.2Ω・cm程度である。なお、これらの値はアルミニウム箔にそれぞれの膜を被覆した場合の値である。
 炭素は、水溶液系ではめっきすることができないが、例えば特許文献4に記載されているように溶融塩を用いることで、めっきが可能となり、上述した炭素めっき膜をアルミニウム材に形成することができる。この場合、溶融塩浴としては、ハロゲン化物が好適であり、例えばLiCl、NaCl、KCl、MgCl等を単独で、あるいは混合して用いることができる。この溶融塩浴に対して、炭素源としてCaCl等を加えて溶解させる。陽極には、めっき対象の金属(ここではアルミニウム材)を用いることができる。陰極には、クラシックカーボン等を用いることができる。
 炭素めっき膜は、溶融塩を原料あるいは原料の一部とするめっき膜であって、例えば、溶融塩中の炭素イオンC2-が、陽極でCに変わることによって形成される。このとき、陽極ではC2-→C+2eの反応が起き、陰極ではLi+e→Liの反応が起きる。
 炭素めっきの特徴は、緻密な膜を形成でき、形成される膜の厚みを電気量によって制御できる点である。さらに、生成する炭素が、黒鉛あるいは黒鉛に類似のsp構造を有する炭素なので、導電性が高い点も大きな特徴である。本実施形態において、炭素めっき膜の厚みは、100nm以上、5000nm以下であることが好ましい。
 なお、炭素めっきの代わりに、黒鉛粒子をアルミニウム材に塗布する方法もある。この場合、黒鉛の導電性は炭素めっき膜の炭素と同等以上であるが、バインダーと共にインク状にしてアルミニウム材に塗布するため、黒鉛粒子間には隙間が存在し、その隙間より電解液が侵入して充放電中にアルミニウムが溶出しやすくなる。特に高温耐久性の試験等では、より顕著にアルミニウムの溶解の問題が生じやすい。また、バインダーは有機物で構成されるため、導電性を低下させると共に、充放電時の電圧によってはバインダー自身が分解しやすくなる等の悪影響がある。
 本発明のハイブリッドキャパシタで用いる正極活物質は黒鉛を含むものである。黒鉛としては、人造黒鉛、天然黒鉛のいずれも用いることができる。また、天然黒鉛としては鱗片状のものと土状のものが知られている。天然黒鉛は、採掘した原鉱石を粉砕し、浮遊選鉱と呼ばれる選鉱を繰り返すことによって得られる。また、人造黒鉛は例えば、高温度によって炭素材料を焼成する黒鉛化工程を経て製造されるものである。より具体的には例えば、原料のコークスにピッチなどの結合剤を加えて成形し、1300℃付近まで加熱することで一次焼成し、次に一次焼成品をピッチ樹脂に含浸させ、さらに3000℃に近い高温で二次焼成することで得られる。また、黒鉛粒子表面を炭素でコーティングしているものも用いることができる。
 黒鉛の結晶構造は大きく分けて、ABABからなる層構造の六方晶と、ABCABCからなる層構造の菱面体晶がある。これらは条件によってそれらの構造単独、あるいは混合状態になるが、いずれの結晶構造のものも混合状態のものも用いることができる。例えば、後述する実施例で用いたイメリス・ジーシー・ジャパン株式会社製KS-6(商品名)の黒鉛は菱面体晶の比率が26%であり、大阪ガスケミカル株式会社製の人造黒鉛であるメソカーボンマイクロビーズ(MCMB)は菱面体晶の比率0%である。
 本実施形態で用いている黒鉛は、従来のEDLCで用いられている活性炭とは静電容量の発現メカニズムが異なる。活性炭の場合には、比表面積が大きいことを活かし、その表面に電解質イオンが吸脱着することにより、静電容量を発現するものである。これに対して黒鉛の場合は、その層間において、電解質イオンであるアニオンが挿入脱離(インターカレーション-ディインターカレーション)することにより、容量を発現するものである。このような違いから、本実施形態に係るハイブリッドキャパシタは、特許文献3においては広義の意味で電気二重層キャパシタと呼んでいたが、ハイブリッドキャパシタと呼ぶことができ、電気二重層を有する活性炭を用いるEDLCと区別されるものである。
 負極は、集電体(負極側の集電体)とその上に形成されている負極活物質層を含む。
 負極活物質層は主に、負極活物質、バインダー、および、必要に応じた量の導電材を含むペースト状の負極材料を、負極側の集電体上に塗布し、乾燥して、形成することができる。
 負極活物質としては、電解質イオンであるカチオンを吸脱着あるいは、挿入脱離(インターカレーション-ディインターカレーション)できる材料、例えば、炭素質材料である活性炭、黒鉛、ハードカーボン、ソフトカーボンおよび炭素質材料より貴な電極電位材料であるチタン酸リチウム等を用いることができる。
 負極側の集電体としては公知のものを用いることができるが、炭素めっき膜で被覆されたアルミニウム材、非晶質炭素被膜と負極活物質との間に導電性炭素層が形成されているアルミニウム材、非晶質炭素被膜で被覆されたアルミニウム材、エッチドアルミニウム、および、アルミニウム材からなる群から選択されたものを用いることができる。負極側においても炭素めっき膜で被覆されたアルミニウム材を用いた場合、ハイブリッドキャパシタを高電圧で作動させたときに、高温耐久性能を向上できる点で好ましい。
 バインダーおよび導電材は、正極と同様な類型のものを用いることができる。
 電解液としては、例えば有機溶媒を用いた有機電解液を用いることができる。電解質イオンを含んで入れば、有機電解液に限らない。また、例えばゲルでもよい。電解液は、電極に吸脱着可能な電解質イオンを含む。電解質イオンの種類は、そのイオン径ができるだけ小さいものの方が好ましい。具体的には、アンモニウム塩やホスホニウム塩、あるいはイオン液体、リチウム塩等を用いることができる。
 アンモニウム塩としては、テトラエチルアンモニウム(TEA)塩、トリエチルアンモニウム(TEMA)塩等を用いることができる。また、ホスホニウム塩としては、二つの五員環を持つスピロ化合物等を用いることができる。
 イオン液体としては、その種類は特に問わないが、電解質イオンを移動し易くする観点から、粘度ができる限り低く、また、導電性(導電率)が高い材料が好ましい。イオン液体を構成するカチオンとしては、例えばイミダゾリウムイオン、ピリジニウムイオン等が挙げられる。イミダゾリウムイオンとしては、例えば、1-エチル-3-メチルイミダゾリウム(1-ethyl-3-methylimidazolium)(EMIm)イオン、1-メチル-1-プロピルピロリジニウム(1-methyl-1-propylpyrrolidinium)(MPPy)イオン、1-メチル-1-プロピルピペリジニウム(1-methyl-1-propylpiperidinium)(MPPi)イオン等が挙げられる。また、リチウム塩としては四フッ化ホウ酸リチウムLiBF、六フッ化リン酸リチウムLiPF等を用いることができる。
 ピリジニウムイオンとしては、例えば、1-エチルピリジニウム(1-ethylpyridinium)イオン、1-ブチルピリジニウム(1-buthylpyridinium)イオン等が挙げられる。
 イオン液体を構成するアニオンとしては、BFイオン、PFイオン、[(CFSON]イオン、FSI(ビス(フルオロスルホニル)イミド、bis(fluorosulfonyl)imide)イオン、TFSI(ビス(トリフルオロメチルスルホニル)イミド、bis(trifluoromethylsulfonyl)imide)イオン等が挙げられる。
 溶媒としてはアセトニトリルやプロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジメチルスルホン、エチルイソプロピルスルホン、エチルカーボネート、フルオロエチレンカーボネート、γブチロラクトン、スルホラン、N,N-ジメチルホルムアミド、ジメチルスルホキシド等の単独もしくは混合溶媒を用いることができる。
 セパレータとしては、正極と負極の短絡防止や電解液保液性の確保等の理由から、セルロース系の紙状セパレータや、ガラス繊維セパレータ、ポリエチレンやポリプロピレンの微多孔膜等が好適である。
 以上のように、本実施形態に係るハイブリッドキャパシタは、集電体が炭素めっき膜で被覆されている。この炭素めっき膜は、他の製法で得られた膜に比べて緻密な構造を有しており、膜を構成する粒子間の隙間が著しく少ない。
 また、この炭素めっき膜は、黒鉛を主体とするsp構造の含有比率が80%以上であり、黒鉛に近い構造を有しているため、DLC膜等の非晶質構造を有する膜に比べて柔らかい。そのため、集電体、電極活物質に対する密着性が高く、電極密度を高めるためにロールプレス等の圧密化を行った際に、傷ついたり、アルミニウム材から剥がれたりする問題の発生を減らすことができる。
 したがって、本実施形態に係るハイブリッドキャパシタでは、アルミニウム材の一部が露出し、そこから溶解反応が始まることによる、耐久性の低下を抑えることができる。
 また、本発明の集電体を被覆する炭素めっき膜は、非晶質構造を有する膜に比べて高い導電性を有しているため、電極活物質層との界面抵抗が低く、本ハイブリッドキャパシタを低抵抗化し、優れた入出力特性を得ることができる。
 以下、実施例により、本発明の効果をより明らかなものとする。なお、本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。
<実施例1>
 アルゴングローブボックス中で、LiClとKClを重量パーセント濃度(wt%)50:50の比率で含む溶液に対して、CaCを5mol%加え、500℃で溶解させたものを溶融塩浴とした。陽極にはアルミニウム箔(厚さ50μm)を用い、陰極にはグラッシーカーボンを用いた。3mA/cmの定電流で25分間電解を行い、純度99.99%のアルミニウム箔(厚さ50μm)上に炭素をめっきし、本実施例の正極側の集電体を得た。
 SEMで集電体の断面を観察して炭素めっき膜の厚み(膜厚)を測定したところ、3μmであった。また、sp構造の比率sp/(sp+sp)を、軟X線XANES(X線吸収端近傍構造)を用いて測定したところ、83%であった。
 正極活物質としてイメリス・ジーシー・ジャパン株式会社製黒鉛(商品名:KS-6)、アセチレンブラック(導電材)、ポリフッ化ビニリデン(有機溶剤系バインダー)を、重量パーセント濃度(wt%)の比率が80:10:10となるように秤量し、N-メチルピロリドン(有機溶剤)で溶解混合することで得たペーストを、得られた集電体上に、ドクターブレードを用いて塗布し、本実施例の正極を得た。
 次に、負極活物質として関西熱化学株式会社製活性炭(商品名:MSP-20)とアセチレンブラック(導電材)、ポリフッ化ビニリデン(有機溶剤系バインダー)を、重量パーセント濃度(wt%)の比率が80:10:10となるように秤量し、N-メチルピロリドン(有機溶剤)で溶解混合することで得たペーストを、日本蓄電器工業株式会社製エッチドアルミニウム箔(厚さ20μm)上に、ドクターブレードを用いて塗布し、本実施例の負極を得た。
 次に、得られた正極を直径16mm、得られた負極を直径14mmの円板状に打ち抜いたものを150℃で24時間真空乾燥した。その後、アルゴングローブボックスへ移動した。乾燥後の正極と負極を、ニッポン高度紙工業株式会社製紙セパレータ(商品名:TF40-30)を介して積層し、電解質に1MのTEA-BF(四フッ化ホウ酸テトラエチルアンモニウム)、溶媒にSL+DMS(スルホラン(Sulfolane)+硫化ジメチル)を用いた電解液を0.1mL加えて、アルゴングローブボックス中で本実施例の2032型コインセルを作製した。
<実施例2>
 負極側の集電体として実施例1の正極側の集電体と同様に、炭素めっき膜で被覆されたアルミニウム箔を用いたこと以外は、実施例1と同様の2032型コインセルを作製した。
<実施例3>
 正極活物質として大阪ガスケミカル株式会社製人造黒鉛(商品名:MCMB6-10)を用いたこと以外は、実施例1と同様の2032型コインセルを作製した。
<実施例4>
 負極活物質としてチタン酸リチウムLiTi12を用い、電解質に1Mの四フッ化ホウ酸リチウムLiBF、溶媒にプロピレンカーボネート(PC)を用いた電解液を用いたこと以外は、実施例1と同様の2032型コインセルを作製した。
<実施例5>
 実施例1の炭素めっきと同じ手順において、定電流での電解の時間を変化させ、炭素めっき膜の厚みが異なる複数の集電体を作製した。具体的には、厚みが0nm、50nm、100nm、300nm、1000nm、2000nm、3000nm、5000nm、7000nm、10000nmのものを作製した。いずれも、定電流での電解の時間を変えたこと以外は、実施例1と同様の2032型コインセルを作製した。
<比較例1>
 実施例1で負極活物質として用いた関西熱化学株式会社製活性炭(商品名:MSP-20)を、正極活物質としても用いたこと以外は、実施例1と同様の2032型コインセルを作製した。
<比較例2>
 正極側の集電体としてDLCコーティングしたアルミニウム箔(以下、「DLCコートアルミニウム箔」ということがある)を用いたこと以外は、実施例1と同様の2032型コインセルを作製した。DLCコートアルミニウム箔は、非晶質炭素被膜で被覆されたアルミニウム材に相当する。DLCコートアルミニウム箔の製造法としては、純度99.99%のアルミニウム箔(厚さ50μm)に対して、アルゴンスパッタリングでアルミニウム箔表面の自然酸化膜を除去した後、そのアルミニウム表面近傍にメタン、アセチレンおよび窒素の混合ガス中で放電プラズマを発生させ、アルミニウム材に負のバイアス電圧を印加することによりDLC膜を生成させた。ここで、DLCをコーティング(被覆)したアルミニウム箔上のDLC膜の厚みを、ブルカー(BRUKER)社製触針式表面形状測定器DektakXTを用いて計測したところ、135nmであった。
 株式会社ナガノ製充放電試験装置BTS2004を用いて、25℃の恒温槽中で、作製した実施例1、3、4、比較例1のセルに対し、0.4mA/cmの電流密度、0~3.5Vの範囲の電圧で充放電試験を行った。得られた放電容量と平均放電電圧より、エネルギー(Wh)を算出した結果を表1に示す。表1においては、実施例1、3、4のエネルギーと放電容量を、各々比較例1で規格化した値を示した。この際、比較例1の結果を100として規格化した。なお、印加電圧の上限について、黒鉛を正極活物質として用いた実施例1、3、4は3.5Vまで印加できたが、活性炭を正極活物質として用いた比較例1では、2.5Vまでで測定した。
Figure JPOXMLDOC01-appb-T000001
 従来の活性炭を正極に用いた比較例1に対して、黒鉛を正極に用いた実施例1、3のエネルギー(放電容量と放電平均電圧の積)は、それぞれ4.4倍、3.2倍となっており、いずれも高エネルギー化されていることがわかった。これは、電解質イオンを細孔表面で吸脱着する活性炭に比べて、層間に電解質イオンを挿入脱離することができる黒鉛の方が、放電容量を大きくできるためである。また、黒鉛正極の場合、活性炭正極に比べて電圧を高くできることも、エネルギー向上の要因として挙げられる。
 また、実施例1、3の放電容量は、比較例1に対して、それぞれ3.2倍、2.3倍になり、高容量化できていることがわかった。また、負極にチタン酸リチウムを用いた実施例4では、比較例1に対して、エネルギーが5.8倍、放電容量が3.3倍となった。これは、実施例1の活性炭負極に比べて、実施例4のチタン酸リチウムの放電電位の方が平坦になり、平均電圧が高くなったために高エネルギー化し、放電容量も活性炭に比べて大きくなったためであると考えられる。
 株式会社ナガノ製充放電試験装置BTS2004を用いて60℃の恒温槽中で、作製した実施例1、2、4、比較例1、2のセルに対し、電流密度0.4mA/cm、電圧3.5Vで2000時間連続充電試験(定電流定電圧連続充電試験)を行った。その結果として得られた放電容量改善率を表2に示す。放電容量改善率とは、定電流定電圧連続充電試験開始前の放電容量に対して、定電流定電圧連続充電試験後の放電容量維持率が、80%以下になった充電時間を寿命とし、それぞれ比較例1または比較例3での寿命になった時間を、100として規格化したものである。すなわち、比較例1の活性炭を正極活物質にも負極活物質にも用いた場合や、比較例2の正極側の集電体にDLCコーティングした場合を100として規格化した。
Figure JPOXMLDOC01-appb-T000002
 炭素めっきしたアルミニウム箔を正極側の集電体に用いた実施例1では、比較例1に対して47倍と、大幅に放電容量維持率を改善できた。また、負極側の集電体にも炭素めっきしたアルミニウム箔を用いた実施例2の場合、比較例1に比べて54倍に改善でき、さらに耐久性能を高めることができた。また、炭素めっきしたアルミニウム箔を正極側の集電体に用いた実施例1をDLCコートアルミニウム箔のみを用いた比較例2と比較した結果、1.12倍に向上しており、炭素めっきしたアルミニウム箔を用いた場合、DLCコートアルミニウム箔を用いた場合よりも、より一層耐久性能を高めることができた。
 株式会社ナガノ製充放電試験装置BTS2004を用いて、25℃の恒温槽中で、作製した実施例1および比較例2のセルに対し、電流密度40mA/cm、0~3.5Vの電圧範囲で充放電を行い、放電率として、0.4mA/cmでの放電容量に対する4.0mA/cmでの放電容量との比率を算出した結果を表3に示す。表3においては、実施例1の放電率を、比較例2で規格化した値を示した。この際、比較例2の結果を100として規格化した。
Figure JPOXMLDOC01-appb-T000003
 実施例1の放電率性能は、比較例2に対して1.26倍に改善できた。この結果は、炭素めっきしたアルミニウム箔では、sp構造の比率sp/(sp+sp)が83%と高く、黒鉛に近い構造を有していること、活物質である黒鉛粒子との接触抵抗が低減され、かつめっきされた炭素の凹凸が活物質粒子との接触性を強め、集電体と活物質層との界面抵抗が低減されていること、によるものと考えられる。
 図1のグラフは、実施例5のセルを用いた場合の、炭素めっきの膜の厚み(膜厚)(nm)と、放電容量維持率(%)および電極体積当たりの放電容量(%)との関係を示すグラフである。電極の放電容量は、集電体の厚みを加えた電極体積当たりの放電容量とし、炭素めっき膜の厚みが0nmの時の放電容量を100として規格化した。
 図1より、炭素めっき膜の厚みが100nmのとき、放電容量維持率が2890となり、高温耐久性能が高まることがわかった。さらに厚みを増すことで1000nm以上では4600~4750と安定した高温耐久性能を示した。
 また、炭素めっき膜の厚みの増加により集電体を含む電極の体積容量が低下する。図1より、放電容量は、炭素めっき膜の厚みが10000nmの場合には、0nmの場合の7%低下していることが分かる。高温耐久性能は1000nm以上で一定になったので、電極の体積容量の観点から、1000~5000nmの範囲が最適であると考えられる。

Claims (6)

  1.  ハイブリッドキャパシタであって、
     正極は正極活物質として黒鉛を含み、
     正極側の集電体はアルミニウム材であり、
     前記アルミニウム材は、sp構造の含有比率sp/(sp+sp)が80%以上である炭素めっき膜で被覆されている
     ことを特徴とするハイブリッドキャパシタ。
  2.  前記炭素めっき膜の厚みは、100nm以上、5000nm以下である
     請求項1に記載のハイブリッドキャパシタ。
  3.  負極側の集電体は、炭素めっき膜で被覆されたアルミニウム材、非晶質炭素被膜と負極活物質との間に導電性炭素層が形成されているアルミニウム材、非晶質炭素被膜で被覆されたアルミニウム材、エッチドアルミニウム、および、アルミニウム材からなる群から選択されたものである
     請求項1または2のいずれかに記載のハイブリッドキャパシタ。
  4.  前記黒鉛は、菱面体晶を含む
     請求項1~3のいずれか一項に記載のハイブリッドキャパシタ。
  5.  負極は、負極活物質として活性炭、黒鉛、ハードカーボン、および、ソフトカーボンからなる群から選択された炭素質材料、あるいはチタン酸リチウムの少なくとも1つを含む
     請求項1~4のいずれか一項に記載のハイブリッドキャパシタ。
  6.  前記炭素めっき膜は、溶融塩を原料とするめっき膜である
     請求項1~5のいずれか一項に記載のハイブリッドキャパシタ。
PCT/JP2020/024840 2019-06-24 2020-06-24 ハイブリッドキャパシタ WO2020262464A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021527695A JP6967688B2 (ja) 2019-06-24 2020-06-24 ハイブリッドキャパシタ
CN202080038594.9A CN114207756B (zh) 2019-06-24 2020-06-24 混合电容器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-116704 2019-06-24
JP2019116704 2019-06-24

Publications (1)

Publication Number Publication Date
WO2020262464A1 true WO2020262464A1 (ja) 2020-12-30

Family

ID=74061772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024840 WO2020262464A1 (ja) 2019-06-24 2020-06-24 ハイブリッドキャパシタ

Country Status (3)

Country Link
JP (1) JP6967688B2 (ja)
CN (1) CN114207756B (ja)
WO (1) WO2020262464A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008117905A (ja) * 2006-11-02 2008-05-22 Gs Yuasa Corporation:Kk 電気化学キャパシタ
JP2008536254A (ja) * 2004-03-16 2008-09-04 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ インコーポレイテッド 溶融塩電解質を有するリチウムイオンバッテリ用の炭素コーティング集電体を用いた腐食防止
JP2009120860A (ja) * 2007-11-12 2009-06-04 Doshisha 炭素膜の製造方法
JP2011097118A (ja) * 2009-02-25 2011-05-12 Daikin Industries Ltd 電気二重層キャパシタ
JP2011258348A (ja) * 2010-06-07 2011-12-22 Toyota Central R&D Labs Inc リチウム二次電池用負極、リチウム二次電池及びリチウム二次電池用負極の製造方法
JP2014053130A (ja) * 2012-09-06 2014-03-20 Nariyasu Machida 電気デバイス
WO2015087943A1 (ja) * 2013-12-10 2015-06-18 Dowaエレクトロニクス株式会社 銀微粒子分散液
JP6167243B1 (ja) * 2016-06-17 2017-07-19 Tpr株式会社 電気二重層キャパシタ
WO2019017376A1 (ja) * 2017-07-18 2019-01-24 Tpr株式会社 ハイブリッドキャパシタ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5217243B2 (ja) * 2006-05-22 2013-06-19 株式会社豊田中央研究所 非晶質炭素膜、非晶質炭素膜の形成方法、非晶質炭素膜を備えた導電性部材および燃料電池用セパレータ
WO2011077746A1 (ja) * 2009-12-25 2011-06-30 株式会社豊田中央研究所 配向性非晶質炭素膜およびその形成方法
US8951401B2 (en) * 2010-05-28 2015-02-10 Toyota Boshoku Kabushiki Kaisha Method for electrochemically depositing carbon film on a substrate
WO2015087948A1 (ja) * 2013-12-12 2015-06-18 住友電気工業株式会社 炭素材料被覆金属多孔体、集電体、電極及び蓄電デバイス

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008536254A (ja) * 2004-03-16 2008-09-04 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ インコーポレイテッド 溶融塩電解質を有するリチウムイオンバッテリ用の炭素コーティング集電体を用いた腐食防止
JP2008117905A (ja) * 2006-11-02 2008-05-22 Gs Yuasa Corporation:Kk 電気化学キャパシタ
JP2009120860A (ja) * 2007-11-12 2009-06-04 Doshisha 炭素膜の製造方法
JP2011097118A (ja) * 2009-02-25 2011-05-12 Daikin Industries Ltd 電気二重層キャパシタ
JP2011258348A (ja) * 2010-06-07 2011-12-22 Toyota Central R&D Labs Inc リチウム二次電池用負極、リチウム二次電池及びリチウム二次電池用負極の製造方法
JP2014053130A (ja) * 2012-09-06 2014-03-20 Nariyasu Machida 電気デバイス
WO2015087943A1 (ja) * 2013-12-10 2015-06-18 Dowaエレクトロニクス株式会社 銀微粒子分散液
JP6167243B1 (ja) * 2016-06-17 2017-07-19 Tpr株式会社 電気二重層キャパシタ
WO2019017376A1 (ja) * 2017-07-18 2019-01-24 Tpr株式会社 ハイブリッドキャパシタ

Also Published As

Publication number Publication date
JP6967688B2 (ja) 2021-11-17
CN114207756B (zh) 2023-06-09
CN114207756A (zh) 2022-03-18
JPWO2020262464A1 (ja) 2021-11-18

Similar Documents

Publication Publication Date Title
US10636581B2 (en) Electric double layer capacitor
Rauhala et al. Lithium-ion capacitors using carbide-derived carbon as the positive electrode–A comparison of cells with graphite and Li4Ti5O12 as the negative electrode
WO2007132896A1 (ja) 蓄電デバイスおよび蓄電システム
JP6504378B1 (ja) ハイブリッドキャパシタ
JP6889751B2 (ja) デュアルイオン蓄電デバイス
WO2020080521A1 (ja) キャパシタ及びキャパシタ用電極
JP6575891B1 (ja) デュアルイオンバッテリ
JP6620330B2 (ja) ハイブリッドキャパシタ
WO2020080520A1 (ja) キャパシタ及びキャパシタ用電極
JP6967688B2 (ja) ハイブリッドキャパシタ
JP6620331B2 (ja) ハイブリッドキャパシタ
JP7181400B2 (ja) 蓄電デバイス電極用集電体、その製造方法、及び蓄電デバイス
US10079116B2 (en) Aluminum-ion capacitor and uses thereof
JP7487876B2 (ja) キャパシタ
JP2019079861A (ja) キャパシタ及びキャパシタ電極用耐電圧活物質の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831285

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021527695

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831285

Country of ref document: EP

Kind code of ref document: A1