[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020240786A1 - Slurry composition for batteries, and methods for producing electrode, electrolyte sheet, and battery member - Google Patents

Slurry composition for batteries, and methods for producing electrode, electrolyte sheet, and battery member Download PDF

Info

Publication number
WO2020240786A1
WO2020240786A1 PCT/JP2019/021593 JP2019021593W WO2020240786A1 WO 2020240786 A1 WO2020240786 A1 WO 2020240786A1 JP 2019021593 W JP2019021593 W JP 2019021593W WO 2020240786 A1 WO2020240786 A1 WO 2020240786A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
mass
electrode mixture
slurry
positive electrode
Prior art date
Application number
PCT/JP2019/021593
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 西村
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to PCT/JP2019/021593 priority Critical patent/WO2020240786A1/en
Priority to JP2021521700A priority patent/JP7438207B2/en
Publication of WO2020240786A1 publication Critical patent/WO2020240786A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery slurry composition and a method for manufacturing an electrode, an electrolyte sheet, and a battery member.
  • lithium secondary battery has a high energy density, and is therefore attracting attention as a power source for electric vehicle batteries, power storage batteries, and the like.
  • lithium secondary batteries as batteries for electric vehicles include zero-emission electric vehicles that do not have an engine, hybrid electric vehicles that have both an engine and a secondary battery, and plug-in hybrids that charge directly from the power system. It is used in electric vehicles such as electric vehicles.
  • a lithium secondary battery as a power storage battery is used in a stationary power storage system or the like that supplies power stored in advance in an emergency when the power system is cut off.
  • lithium secondary battery with a higher energy density is required, and its development is being made.
  • lithium secondary batteries for electric vehicles are required to have high safety in addition to high input / output characteristics and high energy density, and therefore, more advanced technology for ensuring safety is required.
  • Patent Document 1 describes that a solvent obtained by mixing an organic electrolytic solution and an ionic liquid is used as the electrolytic solution, and flame retardancy can be ensured by mixing the organic electrolytic solution and the ionic liquid. It is disclosed.
  • Patent Document 2 discloses a gel electrolyte containing a solvent such as a low molecular weight lipid peptide type gelling agent and a solvent such as an ionic liquid in order to provide an electrolyte having excellent ionic conductivity while immobilizing the electrolyte. There is.
  • the present invention contains, as a first aspect, a polymer, an ionic liquid, at least one electrolyte salt selected from the group consisting of lithium salt, sodium salt, calcium salt and magnesium salt, and a dispersion medium.
  • Battery slurry composition in which the total mass ratio of the total content of the polymer, ionic liquid, and electrolyte salt to the total content of the polymer, ionic liquid, electrolyte salt, and dispersion medium is 0.1 to 0.3. Provide things.
  • the battery slurry composition may further contain an electrode active material.
  • the mass ratio is preferably 0.2 to 0.3.
  • the battery slurry composition may further contain oxide particles.
  • the mass ratio may be 0.13 to 0.3.
  • the mass ratio may be 0.1 to 0.25.
  • the present invention is a method for manufacturing an electrode including a current collector and an electrode mixture layer formed on one surface of the current collector as a second aspect, and the manufacturing method is for the above-mentioned battery.
  • a method for manufacturing an electrode comprising a step of applying a slurry composition on one surface of a current collector to form an electrode mixture layer.
  • the present invention is a method for producing an electrolyte sheet comprising a base material and an electrolyte layer formed on one surface of the base material as a third aspect, wherein the above-mentioned battery slurry composition is used as a base material.
  • a method for producing an electrolyte sheet which comprises a step of applying the mixture on one surface to form an electrolyte layer.
  • the present invention is a method for manufacturing a battery member including a current collector, an electrode mixture layer, and an electrolyte layer in this order as a fourth aspect, and is an electrode mixture containing an electrode active material on one surface of the current collector.
  • a step of forming an electrolyte layer, and a method of manufacturing a battery member are examples of the intermediate layer, the step of applying the above battery slurry composition on the surface of the electrode mixture intermediate layer opposite to the current collector.
  • a battery slurry composition capable of producing a battery member by coating and suppressing reprecipitation of contained components.
  • FIG. 1 It is a perspective view which shows the secondary battery which concerns on one Embodiment. It is an exploded perspective view which shows one Embodiment of the electrode group of the secondary battery shown in FIG. It is a schematic cross-sectional view which shows the manufacturing method of the positive electrode which concerns on one Embodiment. It is a schematic cross-sectional view which shows the manufacturing method of the electrolyte sheet which concerns on one Embodiment. It is a schematic cross-sectional view which shows the manufacturing method of the positive electrode member which concerns on one Embodiment. It is an exploded perspective view which shows one Embodiment of the electrode group of a bipolar type secondary battery.
  • the numerical values and their ranges in the present specification do not limit the present invention.
  • the numerical range indicated by using "-" in the present specification indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value described in another stepwise description.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • the "positive electrode” and the “negative electrode” may be collectively referred to as an “electrode”, and the same applies to similar expressions such as “electrode active material” and “electrode mixture layer”.
  • FIG. 1 is a perspective view showing a secondary battery according to an embodiment.
  • the secondary battery 1 includes an electrode group 2 composed of a positive electrode, a negative electrode, and an electrolyte layer, and a bag-shaped battery exterior body 3 accommodating the electrode group 2.
  • the positive electrode and the negative electrode are provided with a positive electrode current collecting tab 4 and a negative electrode current collecting tab 5, respectively.
  • the positive electrode current collecting tab 4 and the negative electrode current collecting tab 5 project from the inside of the battery exterior 3 to the outside so that the positive electrode and the negative electrode can be electrically connected to the outside of the secondary battery 1, respectively.
  • the battery exterior 3 may be formed of, for example, a laminated film.
  • the laminated film may be, for example, a laminated film in which a resin film such as polyethylene terephthalate (PET) film, a metal foil such as aluminum, copper, and stainless steel, and a sealant layer such as polypropylene are laminated in this order.
  • PET polyethylene terephthalate
  • metal foil such as aluminum, copper, and stainless steel
  • a sealant layer such as polypropylene
  • FIG. 2 is an exploded perspective view showing an embodiment of the electrode group 2 of the secondary battery 1 shown in FIG.
  • the electrode group 2A includes a positive electrode 6, an electrolyte layer 7, and a negative electrode 8 in this order.
  • the positive electrode 6 includes a positive electrode current collector 9 and a positive electrode mixture layer 10 provided on the positive electrode current collector 9.
  • the positive electrode current collector 9 of the positive electrode 6 is provided with a positive electrode current collector tab 4.
  • the negative electrode 8 includes a negative electrode current collector 11 and a negative electrode mixture layer 12 provided on the negative electrode current collector 11.
  • the negative electrode current collector 11 of the negative electrode 8 is provided with a negative electrode current collector tab 5.
  • the electrode group 2A includes a first battery member (positive electrode member) including a positive electrode current collector 9, a positive electrode mixture layer 10, and an electrolyte layer 7 in this order. Can be done. Similarly, it can be seen that the electrode group 2A includes a second battery member (negative electrode member) including the negative electrode current collector 11, the negative electrode mixture layer 12, and the electrolyte layer 7 in this order. ..
  • the battery slurry composition in the present invention is, for example, a slurry composition used for producing an electrode, an electrolyte layer, or a battery member in a secondary battery as described above.
  • the battery slurry composition is a slurry composition (slurry composition) used for forming an electrode mixture layer (positive electrode mixture layer 10 or negative electrode mixture layer 12) included in an electrode (positive electrode 6 or negative electrode 8).
  • electrode mixture slurry used for forming an electrode mixture layer (positive electrode mixture layer 10 or negative electrode mixture layer 12) included in an electrode (positive electrode 6 or negative electrode 8).
  • electrode mixture slurry used for forming an electrode mixture layer (positive electrode mixture layer 10 or negative electrode mixture layer 12) included in an electrode (positive electrode 6 or negative electrode 8).
  • electrode mixture slurry a slurry composition (hereinafter, also referred to as “electrolyte slurry”) used for forming the electrolyte layer 7.
  • the battery slurry composition contains a polymer, an ionic liquid, at least one electrolyte salt selected from the group consisting of lithium salt, sodium salt, calcium salt and magnesium salt, and a dispersion medium. To do.
  • the polymer is a polymer containing at least one selected from the group consisting of ethylene tetrafluoride, vinylidene fluoride, hexafluoropropylene, acrylic acid, maleic acid, ethyl methacrylate, methyl methacrylate, and acrylonitrile as a monomer unit, styrene-butadiene. It may be rubber, isopene rubber, rubber such as acrylic rubber, or the like.
  • the polymer is preferably a polymer containing at least one selected from the group consisting of polyvinylidene fluoride, hexafluoropropylene, and vinylidene fluoride as a monoma unit.
  • the polymer is preferably polyvinylidene fluoride or a copolymer containing hexafluoropropylene and vinylidene fluoride as structural units.
  • the polymer in the electrode mixture slurry has a role as a binder.
  • the polymer preferably has a first structural unit selected from the group consisting of ethylene tetrafluoroethylene and vinylidene fluoride.
  • the polymer in the electrolyte slurry is preferably one kind or two or more kinds of polymers, and among the structural units constituting one kind or two or more kinds of polymers, the above-mentioned first structural unit and hexafluoropropylene are included.
  • a second polymer having a second structural unit may constitute at least two kinds of polymers.
  • the polymer contained in the electrolyte slurry may be polytetrafluoroethylene, polyvinylidene fluoride, copolymer of vinylidene fluoride and hexafluoropropylene, or the like.
  • the polymer content is preferably 0.3% by mass or more, more preferably 0.5% by mass or more, still more preferably 0.5% by mass or more, based on the total amount of the battery slurry composition, from the viewpoint of facilitating application of the battery slurry composition. It is 0.7% by mass or more.
  • the polymer content is preferably 50% by mass or less, more preferably 30% by mass or less, still more preferably 30% by mass or less, based on the total amount of the battery slurry composition, from the viewpoint of more preferably suppressing reprecipitation in the battery slurry composition. It is 20% by mass or less.
  • the content of the polymer is preferably 0.3% by mass or more based on the total amount of the electrode mixture slurry from the viewpoint of making it easier to apply the electrode mixture slurry. It is more preferably 0.5% by mass or more, still more preferably 0.7% by mass or more.
  • the polymer content is preferably 20% by mass or less, more preferably 10% by mass or less, still more preferably 5 based on the total amount of the electrode mixture slurry from the viewpoint of more preferably suppressing reprecipitation from the electrode mixture slurry. It is mass% or less.
  • the content of the polymer is 0.3% by mass or more, 0.5% by mass or more, 1 by mass or more, based on the total amount of the non-volatile content (the component excluding the dispersion medium from the electrode mixture slurry, the same applies hereinafter) in the electrode mixture slurry. It may be 10% by mass or more, 1.5% by mass or more, and may be 10% by mass or less, 8% by mass or less, 6% by mass or less, or 4% by mass or less. As a result, the content of the polymer in the obtained electrode mixture layer becomes the same as the content.
  • the content of the polymer is preferably 1% by mass or more, more preferably 3% by mass or more, based on the total amount of the electrolyte slurry from the viewpoint that the electrolyte slurry can be applied more uniformly. More preferably, it is 5% by mass or more.
  • the polymer content is preferably 50% by mass or less, more preferably 30% by mass or less, still more preferably 20% by mass or less, based on the total amount of the electrolyte slurry, from the viewpoint of more preferably suppressing reprecipitation in the electrolyte slurry. ..
  • the content of the polymer is 3% by mass or more, 10% by mass or more, 20% by mass or more, or 30% by mass based on the total amount of the non-volatile content (the component excluding the dispersion medium from the electrolyte slurry, the same applies hereinafter) in the electrolyte slurry. It may be 70% by mass or less, 60% by mass or less, 50% by mass or less, or 40% by mass or less. As a result, the content of the polymer in the obtained electrolyte layer becomes the same as the content.
  • the ionic liquid contains the following anionic and cationic components.
  • the ionic liquid in the present specification is a substance that is liquid at ⁇ 20 ° C. or higher.
  • Anion component of the ionic liquid is not particularly limited, Cl -, Br -, I - and a halogen anion, BF 4 -, N (SO 2 F) 2 - ([FSI] -) inorganic anions such as, B (C 6 H 5) 4 - , CH 3 SO 2 O -, CF 3 SO 2 O -, N (SO 2 C 4 F 9) 2 -, N (SO 2 CF 3) 2 - ([TFSI] -) , N (SO 2 C 2 F 5 ) 2 - etc.
  • Organic anions may be used.
  • the anionic component of the ionic liquid preferably contains at least one of the anionic components represented by the following formula (1).
  • Anion component represented by formula (1) may, for example, N (SO 2 C 4 F 9) 2 -, N (SO 2 F) 2 -, N (SO 2 CF 3) 2 - and N (SO 2 C 2 F 5) 2 - a.
  • Anion component of the ionic liquid from the viewpoint of improving the ion conductivity of the secondary battery 1, and more preferably, N (SO 2 C 4 F 9) 2 -, CF 3 SO 2 O -, N (SO 2 F) 2 -, N (SO 2 CF 3) 2 -, and N (SO 2 C 2 F 5 ) 2 - contains at least one selected from the group consisting of, more preferably N (SO 2 F) 2 - a contains.
  • the cation component of the ionic liquid is preferably at least one selected from the group consisting of a chain quaternary onium cation, a piperidinium cation, a pyrrolidinium cation, a pyridinium cation, and an imidazolium cation.
  • the chain quaternary onium cation is, for example, a compound represented by the following formula (2).
  • R 1 to R 4 are independently chain alkyl groups having 1 to 20 carbon atoms or chain alkoxyalkyl groups represented by RO- (CH 2 ) n- (R is It represents a methyl group or an ethyl group, where n represents an integer of 1 to 4), and X represents a nitrogen atom or a phosphorus atom.
  • the number of carbon atoms of the alkyl group represented by R 1 to R 4 is preferably 1 to 20, more preferably 1 to 10, and even more preferably 1 to 5.
  • the piperidinium cation is, for example, a nitrogen-containing six-membered cyclic compound represented by the following formula (3).
  • R 5 and R 6 are each independently an alkyl group having 1 to 20 carbon atoms or an alkoxyalkyl group represented by RO-O- (CH 2 ) n- (R is a methyl group or ethyl). Represents a group, where n represents an integer of 1 to 4).
  • the number of carbon atoms of the alkyl group represented by R 5 and R 6 is preferably 1 to 20, more preferably 1 to 10, and even more preferably 1 to 5. ]
  • the pyrrolidinium cation is, for example, a five-membered cyclic compound represented by the following formula (4).
  • R 7 and R 8 are each independently an alkyl group having 1 to 20 carbon atoms or an alkoxyalkyl group represented by RO-O- (CH 2 ) n- (R is a methyl group or ethyl). Represents a group, where n represents an integer of 1 to 4).
  • the alkyl group represented by R 7 and R 8 has preferably 1 to 20, more preferably 1 to 10, and even more preferably 1 to 5. ]
  • the pyridinium cation is, for example, a compound represented by the following formula (5).
  • R 9 to R 13 are independently alkyl groups having 1 to 20 carbon atoms and alkoxyalkyl groups represented by RO-O- (CH 2 ) n- (R is a methyl group or an ethyl group).
  • N represents an integer of 1 to 4), or represents a hydrogen atom.
  • the number of carbon atoms of the alkyl group represented by R 9 to R 13 is preferably 1 to 20, more preferably 1 to 10, and even more preferably 1 to 5.
  • the imidazolium cation is, for example, a compound represented by the following formula (6).
  • R 14 to R 18 are independently alkyl groups having 1 to 20 carbon atoms and alkoxyalkyl groups represented by RO-O- (CH 2 ) n- (R is a methyl group or an ethyl group).
  • N represents an integer of 1 to 4), or represents a hydrogen atom.
  • the number of carbon atoms of the alkyl group represented by R 14 to R 18 is preferably 1 to 20, more preferably 1 to 10, and even more preferably 1 to 5.
  • the ionic liquid is N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium-bis (trifluoromethanesulfonyl) imide (DEME-TFSI), N, N-diethyl-N.
  • the electrolyte salt is at least one selected from the group consisting of lithium salt, sodium salt, calcium salt, and magnesium salt.
  • Anionic component of the electrolyte salt preferably, N (SO 2 F) 2 -, N (SO 2 CF 3) 2 - above anion component represented by formula (1), such as, PF 6 -, BF 4 - , B (O 2 C 2 O 2) 2 -, or ClO 4 - is.
  • Lithium salts include LiPF 6 , LiBF 4 , Li [FSI], Li [TFSI], Li [f3C], Li [BOB], LiClO 4 , LiBF 3 (CF 3 ), LiBF 3 (C 2 F 5 ), LiBF. 3 (C 3 F 7 ), LiBF 3 (C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , LiCF 3 SO 2 O, LiCF 3 COO, and LiRCOO (R is an alkyl group having 1 to 4 carbon atoms). , A phenyl group, or a naphthyl group), which may be at least one selected from the group.
  • Sodium salts include NaPF 6 , NaBF 4 , Na [FSI], Na [TFSI], Na [f3C], Na [BOB], NaClO 4 , NaBF 3 (CF 3 ), NaBF 3 (C 2 F 5 ), NaBF. 3 (C 3 F 7 ), NaBF 3 (C 4 F 9 ), NaC (SO 2 CF 3 ) 3 , NaCF 3 SO 2 O, NaCF 3 COO, and NaRCOO (R is an alkyl group having 1 to 4 carbon atoms). , A phenyl group, or a naphthyl group), which may be at least one selected from the group.
  • Calcium salts are Ca (PF 6 ) 2 , Ca (BF 4 ) 2 , Ca [FSI] 2 , Ca [TFSI] 2 , Ca [f3C] 2 , Ca [BOB] 2 , Ca (ClO 4 ) 2 , Ca.
  • R is an alkyl group having 1 to 4 carbon atoms, phenyl. It may be at least one selected from the group consisting of a group or a naphthyl group).
  • Magnesium salts are Mg (PF 6 ) 2 , Mg (BF 4 ) 2 , Mg [FSI] 2 , Mg [TFSI] 2 , Mg [f3C] 2 , Mg [BOB] 2 , Mg (ClO 4 ) 2 , Mg.
  • the electrolyte salt is preferably LiPF 6 , LiBF 4 , Li [FSI], Li [TFSI], Li [f3C], Li [BOB], LiClO 4 , LiBF 3 (CF 3 ), LiBF 3 (C 2 F 5 ), LiBF 3 (C 3 F 7 ), LiBF 3 (C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , LiCF 3 SO 2 O, It is at least one selected from the group consisting of LiCF 3 COO and LiRCOO (R is an alkyl group having 1 to 4 carbon atoms, a phenyl group, or a naphthyl group), and more preferably Li [TFSI], Li.
  • It is at least one selected from the group consisting of [FSI], LiPF 6 , LiBF 4 , Li [BOB], and LiClO 4 , and more preferably 1 selected from the group consisting of Li [TFSI] and Li [FSI]. It is a seed.
  • the ionic liquid and the electrolyte salt may be contained in the battery slurry composition as the ionic liquid electrolyte.
  • the ionic liquid electrolyte is a liquid in which an electrolyte salt is dissolved in an ionic liquid.
  • the salt concentration of the electrolyte salt per unit volume of the ionic liquid may be 0.3 mol / L or more, 0.5 mol / L or more, or 1.0 mol / L or more, and may be 3.0 mol / L or more. It may be L or less, 2.7 mol / L or less, or 2.5 mol / L or less.
  • the content of the ionic liquid electrolyte (the total content of the ionic liquid and the electrolyte salt) is preferably 1% by mass or more based on the total amount of the battery slurry composition from the viewpoint of improving the ionic conductivity of the secondary battery 1. , More preferably 3% by mass or more, still more preferably 5% by mass or more.
  • the content of the ionic liquid electrolytic solution is preferably 40% by mass or less, more preferably 30% by mass or less, based on the total amount of the battery slurry composition, from the viewpoint of more preferably suppressing reprecipitation in the battery slurry composition. More preferably, it is 20% by mass or less.
  • the content of the ionic liquid electrolytic solution is preferably 1% by mass based on the total amount of the electrode mixture slurry from the viewpoint of improving the ionic conductivity of the electrode mixture layer. As mentioned above, it is more preferably 3% by mass or more, still more preferably 5% by mass or more.
  • the content of the ionic liquid electrolytic solution is preferably 30% by mass or less, more preferably 20% by mass or less, still more preferably 20% by mass or less, based on the total amount of the electrode mixture slurry, from the viewpoint of more preferably suppressing reprecipitation in the electrode mixture slurry. Is 15% by mass or less.
  • the content of the ionic liquid electrolytic solution is preferably 3% by mass or more, more preferably 5% by mass or more, based on the total amount of the non-volatile content in the electrode mixture slurry from the viewpoint of improving the ionic conductivity of the electrode mixture layer. , More preferably 10% by mass or more.
  • the content of the ionic liquid electrolytic solution is preferably 30% by mass or less, more preferably 30% by mass or less, based on the total amount of the non-volatile content in the electrode mixture slurry from the viewpoint of more preferably suppressing reprecipitation in the electrode mixture slurry. It is 25% by mass or less, more preferably 20% by mass or less. As a result, the content of the ionic liquid electrolytic solution in the obtained electrode mixture layer becomes the same as the content.
  • the content of the ionic liquid electrolyte is preferably 0.5% by mass or more based on the total amount of the battery slurry composition from the viewpoint of improving the ionic conductivity of the electrolyte layer. , More preferably 1% by mass or more, still more preferably 1.5% by mass or more.
  • the content of the ionic liquid electrolyte is preferably 40% by mass or less, more preferably 30% by mass or less, still more preferably 30% by mass or less, based on the total amount of the battery slurry composition, from the viewpoint of more preferably suppressing reprecipitation in the electrolyte slurry. It is 20% by mass or less.
  • the content of the ionic liquid electrolytic solution may be 3% by mass or more, 5% by mass or more, 5% by mass or more, 10% by mass or more, or 20% by mass or more, based on the total amount of the non-volatile content in the electrolyte slurry. Further, it may be 60% by mass or less, 50% by mass or less, or 40% by mass or less. As a result, the content of the ionic liquid electrolytic solution in the obtained electrolyte layer becomes the same as the content.
  • the dispersion medium may be water or an organic solvent.
  • the organic solvent may be N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), N, N-dimethylacetamide, methyl ethyl ketone, toluene, 2-butanol, cyclohexanone, ethyl acetate, 2-propanol and the like. It is preferably NMP or DMSO.
  • NMP N-methyl-2-pyrrolidone
  • DMSO dimethyl sulfoxide
  • the content of the dispersion medium is based on the total amount of the battery slurry composition, preferably 3% by mass or more, 5% by mass or more, 10% by mass or more, and 20% by mass from the viewpoint of facilitating the application of the battery slurry composition. As mentioned above, it is 30% by mass or more, 40% by mass or more, or 50% by mass or more.
  • the content of the dispersion medium is preferably 90% by mass or less, 70% by mass or less, and 50% by mass or less based on the total amount of the battery slurry composition from the viewpoint of more preferably suppressing reprecipitation in the battery slurry composition. , Or 40% by mass or less.
  • the content of the dispersion medium is preferably 3% by mass or more based on the total amount of the electrode mixture slurry from the viewpoint of making it easier to apply the electrode mixture slurry. It is preferably 5% by mass or more, and more preferably 10% by mass or more.
  • the content of the dispersion medium is preferably 60% by mass or less, more preferably 50% by mass or less, still more preferably 50% by mass or less, based on the total amount of the electrode mixture slurry, from the viewpoint of more preferably suppressing reprecipitation from the electrode mixture slurry. It is 40% by mass or less.
  • the content of the dispersion medium may be 3 parts by mass or more, 5 parts by mass or more, 10 parts by mass or more, or 20 parts by mass or more with respect to 100 parts by mass of the non-volatile content in the electrode mixture slurry, and 1000 parts by mass. It may be parts by mass or less, 500 parts by mass or less, 300 parts by mass or less, 100 parts by mass or less, or 50 parts by mass or less.
  • the content of the dispersion medium is preferably 20% by mass or more, more preferably 30% by mass or more based on the total amount of the electrolyte slurry from the viewpoint that the electrolyte slurry can be applied more uniformly. , More preferably 40% by mass or more.
  • the content of the dispersion medium is preferably 90% by mass or less, more preferably 85% by mass or less, still more preferably 80% by mass or less, based on the total amount of the electrolyte slurry, from the viewpoint of more preferably suppressing reprecipitation in the electrolyte slurry. is there.
  • the content of the dispersion medium may be 10 parts by mass or more, 25 parts by mass or more, or 50 parts by mass or more, and 1000 parts by mass or less and 500 parts by mass with respect to 100 parts by mass of the non-volatile content in the electrolyte slurry. Below, or 300 parts by mass or less.
  • the electrode mixture slurry may contain an electrode active material. That is, the electrode mixture slurry may contain a polymer, an ionic liquid, an electrolyte salt, a dispersion medium, and an electrode active material.
  • the electrode mixture slurry may contain a positive electrode active material.
  • the positive electrode active material may be a lithium transition metal compound such as a lithium transition metal oxide or a lithium transition metal phosphate.
  • the lithium transition metal oxide may be, for example, lithium manganate, lithium nickel oxide, lithium cobalt oxide, or the like.
  • the lithium transition metal oxide is a part of transition metals such as Mn, Ni, and Co contained in lithium manganate, lithium nickelate, lithium cobalt, etc., and one or more other transition metals, or It may be a lithium transition metal oxide substituted with a metal element (typical element) such as Mg or Al. That is, the lithium transition metal oxide may be a compound represented by LiM 1 O 2 or LiM 1 2 O 4 (M 1 comprises at least one transition metal).
  • the lithium transition metal oxides are Li (Co 1/3 Ni 1/3 Mn 1/3 ) O 2 , LiNi 1/2 Mn 1/2 O 2 , and LiNi 1/2 Mn 3/2 O. It may be 4 mag.
  • the lithium transition metal oxide is preferably a compound represented by the following formula (A) from the viewpoint of further improving the energy density.
  • M 2 is at least one selected from the group consisting of Al, Mn, Mg and Ca
  • a, b, c, d and e are 0.2 ⁇ a ⁇ 1.2 and 0, respectively. .5 ⁇ b ⁇ 0.9, 0.1 ⁇ c ⁇ 0.4, 0 ⁇ d ⁇ 0.2, ⁇
  • Lithium transition metal phosphates are LiFePO 4 , LiMnPO 4 , LiMn x M 3 1-x PO 4 (0.3 ⁇ x ⁇ 1, M 3 are Fe, Ni, Co, Ti, Cu, Zn, Mg and Zr. It may be at least one element selected from the group consisting of) and the like.
  • the positive electrode active material may be primary particles that have not been granulated, or may be secondary particles that have been granulated.
  • the particle size of the positive electrode active material is adjusted so as to be equal to or less than the thickness of the positive electrode mixture layer 10.
  • the coarse particles are removed in advance by sieving classification, wind flow classification, etc.
  • a positive electrode active material having a diameter is selected.
  • the average particle size of the positive electrode active material is preferably 0.1 ⁇ m or more, and more preferably 1 ⁇ m or more.
  • the average particle size of the positive electrode active material is preferably 30 ⁇ m or less, more preferably 25 ⁇ m or less.
  • the average particle size of the positive electrode active material is the particle size (D 50 ) when the ratio (volume fraction) to the volume of the entire positive electrode active material is 50%.
  • a suspension in which the positive electrode active material is suspended in water is measured by a laser scattering method using a laser scattering type particle size measuring device (for example, Microtrac). You can get it.
  • the content of the positive electrode active material may be 20% by mass or more, 30% by mass or more, or 40% by mass or more based on the total amount of the positive electrode mixture slurry, and 80% by mass or less, 70% by mass or less, or 60. It may be mass% or less.
  • the content of the positive electrode active material may be 60% by mass or more, 70% by mass or more, 80% by mass or more, or 90% by mass or more, and 99% by mass, based on the total amount of the non-volatile content in the positive electrode mixture slurry. It may be less than or equal to%. As a result, the content of the positive electrode active material in the obtained positive electrode mixture layer becomes the same as the content.
  • the electrode mixture slurry may contain a negative electrode active material.
  • the negative electrode active material those commonly used in the field of energy devices can be used. Specific examples of the negative electrode active material include metallic lithium, lithium titanate (Li 4 Ti 5 O 12 ), lithium alloys or other metal compounds, carbon materials, metal complexes, and organic polymer compounds. ..
  • the negative electrode active material may be one of these alone or a mixture of two or more of them.
  • Examples of carbon materials include natural graphite (scaly graphite, etc.), graphite such as artificial graphite (graphite), amorphous carbon, carbon fiber, and acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal. Examples include carbon black such as black.
  • the negative electrode active material may be silicon, tin or a compound containing these elements (alloy with oxide, nitride, other metal) from the viewpoint of obtaining a larger theoretical capacity (for example, 500 to 1500 Ah / kg). Good.
  • the average particle size (D 50 ) of the negative electrode active material is preferably 1 ⁇ m or more from the viewpoint of obtaining a well-balanced negative electrode having an enhanced ability to retain electrolyte salts while suppressing an increase in irreversible capacity due to a decrease in particle size. It is more preferably 5 ⁇ m or more, further preferably 10 ⁇ m or more, preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, still more preferably 30 ⁇ m or less.
  • the average particle size (D 50 ) of the negative electrode active material is measured by the same method as the average particle size (D 50 ) of the positive electrode active material described above.
  • the content of the negative electrode active material may be 20% by mass or more, 30% by mass or more, or 40% by mass or more based on the total amount of the negative electrode mixture slurry, and 80% by mass or less, 70% by mass or less, or 60. It may be mass% or less.
  • the content of the negative electrode active material is 50% by mass or more, 55% by mass or more, or 60% by mass or more based on the total amount of non-volatile components (components obtained by removing the dispersion medium from the negative electrode mixture slurry) in the negative electrode mixture slurry. It may be 99% by mass or less, 95% by mass or less, or 90% by mass or less. As a result, the content of the negative electrode active material in the obtained negative electrode mixture layer becomes the same as the content.
  • the electrode mixture slurry may contain a conductive material.
  • the conductive material is not particularly limited, but may be a carbon material such as graphite, acetylene black, carbon black, or carbon fiber. As the conductive material, these may be used alone or in combination of two or more.
  • the content of the conductive material may be 0.1% by mass or more, 0.2% by mass or more, or 0.3% by mass or more, and 10% by mass or less and 5% by mass based on the total amount of the electrode mixture slurry. % Or less, or 3% by mass or less.
  • the content of the conductive material may be 0.1% by mass or more, 0.2% by mass or more, or 0.3% by mass or more, and is 20% by mass, based on the total amount of the non-volatile content in the electrode mixture slurry. % Or less, 10% by mass or less, or 5% by mass or less. As a result, the content of the conductive material in the obtained electrode mixture layer becomes the same as the content.
  • the electrolyte slurry may contain oxide particles. That is, the electrolyte slurry may contain a polymer, an ionic liquid, an electrolyte salt, a dispersion medium, and oxide particles.
  • the oxide particles are, for example, inorganic oxide particles.
  • the inorganic oxide is, for example, an inorganic oxide containing Li, Mg, Al, Si, Ca, Ti, Zr, La, Na, K, Ba, Sr, V, Nb, B, Ge and the like as constituent elements. Good.
  • the oxide particles are preferably at least one selected from the group consisting of SiO 2 , Al 2 O 3 , AlOOH, MgO, CaO, ZrO 2 , TiO 2 , Li 7 La 3 Zr 2 O 12 , and BaTIO 3 . It is a particle. Since the oxide particles have polarity, the dissociation of the electrolyte in the electrolyte layer can be promoted and the battery characteristics can be enhanced.
  • the oxide particles may be oxides of rare earth metals.
  • the oxide particles are specifically scandium oxide, yttrium oxide, lanthanum oxide, cerium oxide, placeodium oxide, neodymium oxide, samarium oxide, urobium oxide, gadolinium oxide, terbium oxide, dysprosium oxide, formium oxide, erbium oxide, and oxidation. It may be thulium, ytterbium oxide, lutetium oxide or the like.
  • the oxide particles may have a hydrophobic surface.
  • Oxide particles usually have a hydroxyl group on their surface and tend to be hydrophilic.
  • Oxide particles having a hydrophobic surface have fewer hydroxyl groups on the surface than oxide particles having no hydrophobic surface. Therefore, the use of oxide particles having a hydrophobic surface, if it contains the ionic liquid in the electrolyte slurry (e.g., the anionic component is N (SO 2 F) 2 - having like -, N (SO 2 CF 3 ) 2 Since the ionic liquid) and the ionic liquid are hydrophobic, it is expected that the affinity between the oxide particles and the ionic liquid will be improved.
  • the liquid retention property of the ionic liquid in the electrolyte layer 7 is further improved, and as a result, the ionic conductivity of the electrolyte layer 7 is improved. Further, in a secondary battery including an electrolyte layer 7 containing oxide particles having a hydrophobic surface, the discharge characteristics can be particularly improved.
  • Oxide particles having a hydrophobic surface can be obtained, for example, by treating oxide particles exhibiting hydrophilicity with a surface treatment agent capable of imparting a hydrophobic surface. That is, the oxide particles having a hydrophobic surface mean the oxide particles surface-treated with a surface treatment agent.
  • the surface treatment agent is preferably a silicon-containing compound.
  • the oxide particles may be surface-treated with a silicon-containing compound. That is, the oxide particles may be those in which the surface of the oxide particles and the silicon atom of the silicon-containing compound are bonded via an oxygen atom.
  • the silicon-containing compound is preferably at least one selected from the group consisting of halogen-containing alkylsilanes, alkoxysilanes, epoxy group-containing silanes, amino group-containing silanes, silazanes, and siloxanes.
  • the halogen element in the halogen-containing alkylsilane may be chlorine, fluorine, or the like.
  • the halogen-containing alkylsilane (alkylchlorosilane) containing chlorine may be methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, n-octyldimethylchlorosilane or the like.
  • the halogen-containing alkylsilane (fluoroalkylsilane) containing fluorine may be trifluoropropyltrimethoxysilane, tridecafluorooctyltrimethoxysilane, or the like.
  • the alkoxysilanes are methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, dimethoxydiphenylsilane, n-propyltrimethoxysilane, hexyltrimethoxysilane, tetraethoxysilane, methyltriethoxysilane, and dimethyldiphenyl. It may be ethoxysilane, n-propyltriethoxysilane, or the like.
  • the epoxy group-containing silanes are 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3-glycidoxypropylmethyldiethoxy. It may be silane, 3-glycidoxypropyltriethoxysilane, or the like.
  • Amino group-containing silanes are N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N- It may be phenyl-3-aminopropyltrimethoxysilane or the like.
  • Cilazan may be hexamethyldisilazan or the like.
  • the siloxane may be dimethyl silicone oil or the like. Those having a reactive functional group (for example, a carboxyl group) at one end or both ends thereof may be used.
  • oxide particles having a hydrophobic surface those produced by a known method may be used, or commercially available products may be used as they are.
  • Oxide particles are generally a primary particle (a particle that does not constitute a secondary particle) that integrally forms a single particle and a plurality of primary particles, judging from the apparent geometrical morphology. May include secondary particles formed by the aggregation of.
  • the specific surface area of the oxide particles may be 2 to 500 m 2 / g, 2 to 400 m 2 / g, 5 to 100 m 2 / g, 10 to 80 m 2 / g, or 15 to 60 m 2 / g. May be good.
  • the specific surface area is 2 to 500 m 2 / g
  • the secondary battery provided with the electrolyte layer containing such oxide particles tends to have excellent discharge characteristics.
  • the specific surface area of the oxide particles may be 2 m 2 / g or more, 5 m 2 / g or more, 10 m 2 / g or more, 15 m 2 / g or more, or 50 m 2 / g or more, and may be 500 m.
  • the specific surface area of the oxide particles means the specific surface area of the entire oxide particles including the primary particles and the secondary particles, and is measured by the BET method.
  • the average primary particle size of the oxide particles is preferably 0.005 ⁇ m (5 nm) or more, more preferably 0.01 ⁇ m (from the viewpoint of improving the conductivity of the secondary battery 1). It is 10 nm) or more, and more preferably 0.015 ⁇ m (15 nm) or more.
  • the average primary particle size of the oxide particles is preferably 1 ⁇ m or less, more preferably 0.1 ⁇ m or less, and further preferably 0.05 ⁇ m or less from the viewpoint of thinning the electrolyte layer 7.
  • the average primary particle size of the oxide particles can be measured by observing the oxide particles with a transmission electron microscope or the like.
  • the average particle size of the oxide particles is preferably 0.005 ⁇ m or more, more preferably 0.01 ⁇ m or more, and further preferably 0.03 ⁇ m or more.
  • the average particle size of the oxide particles is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, and further preferably 1 ⁇ m or less.
  • the average particle size of the oxide particles is measured by the laser diffraction method, and corresponds to the particle size at which the volume accumulation is 50% when the volume cumulative particle size distribution curve is drawn from the small particle size side.
  • the content of the oxide particles may be 0.5% by mass or more, 1% by mass or more, or 3% by mass or more based on the total amount of the electrolyte slurry, and 50% by mass or less, 40% by mass or less, or 30. It may be mass% or less.
  • the content of the oxide particles may be 5% by mass or more, 10% by mass or more, or 15% by mass or more, and 80% by mass or less and 70% by mass or less, based on the total amount of the non-volatile content in the electrolyte slurry. , Or 60% by mass or less. As a result, the content of the oxide particles in the obtained electrolyte layer becomes the same as the content.
  • the battery slurry composition may contain fibers such as cellulose fibers as other components.
  • the content of the polymer, the ionic liquid, the electrolyte salt, and the dispersion medium can be produced from the viewpoint of being able to produce a member for the battery by coating and suppressing the reprecipitation of the contained components.
  • the mass ratio of the total content of the polymer, the ionic liquid, and the electrolyte salt to the total (hereinafter, may be simply referred to as “mass ratio”) is 0.1 to 0.3 (polymer, ionic liquid, and Total content of electrolyte salt / total content of polyma, ionic liquid, electrolyte salt, and dispersion medium).
  • the lower limit of the mass ratio is 0.1 or more, preferably 0.12 or more, more preferably 0.14 or more, still more preferably 0., from the viewpoint of increasing the viscosity of the battery slurry composition and facilitating application. It is 15 or more.
  • the upper limit of the mass ratio is 0.3 or less, preferably 0.29 or less, more preferably 0.27 or less, still more preferably 0.2, from the viewpoint of suppressing reprecipitation of the contained components from the battery slurry. It is as follows.
  • the mass ratios are 0.1 to 0.29, 0.1 to 0.27, 0.1 to 0.2, 0.12 to 0.3, 0.12 to 0.29, 0.12 to 0. 27, 0.12 to 0.2, 0.14 to 0.3, 0.14 to 0.29, 0.14 to 0.27, 0.14 to 0.2, 0.15 to 0.3, It may be 0.15 to 0.29, 0.15 to 0.27, or 0.15 to 0.2.
  • the mass ratio is preferably 0.2 or more, more preferably 0.21 or more, still more preferably 0.22 or more, and preferably 0.3. Below, it is more preferably 0.29 or less, still more preferably 0.28 or less.
  • the mass ratios are 0.2 to 0.3, 0.2 to 0.29, 0.2 to 0.28, 0.21 to 0.3, It may be 0.21 to 0.29, 0.21 to 0.28, 0.22 to 0.3, 0.22 to 0.29, or 0.22 to 0.28.
  • the mass ratio is preferably 0.13 or more, more preferably 0.15 or more, still more preferably 0.16, from the viewpoint of preferably producing an electrolyte sheet described later. It is more than that, and is preferably 0.3 or less, 0.29 or less, 0.28 or less, 0.25 or less, or 0.2 or less.
  • the mass ratios are 0.13 to 0.3, 0.13 to 0.29, 0.13 to 0.28, 0.13 to 0.25, 0.
  • 0.16- It may be 0.3, 0.16 to 0.29, 0.16 to 0.28, 0.16 to 0.25, or 0.16 to 0.2.
  • the battery slurry composition is an electrolyte slurry
  • it is preferably 0.1 or more, more preferably 0.11 or more, still more preferably 0, from the viewpoint of producing a battery member by applying the electrolyte slurry (details will be described later). It is .13 or more, preferably 0.25 or less, more preferably 0.23 or less, still more preferably 0.2 or less.
  • the mass ratios are 0.1 to 0.25, 0.1 to 0.23, 0.1 to 0.2, 0.11 to 0.25, 0. It may be 11 to 0.23, 0.11 to 0.2, 0.13 to 0.25, 0.13 to 0.23, or 0.13 to 0.2.
  • an electrode (positive electrode 6 or negative electrode 8) having a current collector and an electrode mixture layer in this order can be manufactured.
  • the method for manufacturing an electrode according to one embodiment includes a step of applying the above-mentioned battery slurry composition on one surface of a current collector to form an electrode mixture layer.
  • the battery slurry composition may be the electrode mixture slurry described above.
  • FIG. 3 is a schematic cross-sectional view showing a method of manufacturing the positive electrode 6 according to the embodiment.
  • a positive electrode current collector 9 is prepared.
  • the positive electrode current collector 9 may be a metal such as aluminum, titanium, tantalum, or an alloy thereof. Since the positive electrode current collector 9 is lightweight and has a high weight energy density, it is preferably aluminum or an alloy thereof. The thickness of the positive electrode current collector 9 may be 10 ⁇ m or more, and may be 100 ⁇ m or less.
  • a positive electrode mixture slurry is applied on one surface 9a of the positive electrode current collector 9 to provide a layer 10A of the positive electrode mixture slurry.
  • the positive electrode mixture slurry contains components that can be contained in the battery slurry composition described above.
  • Examples of the method of applying the positive electrode mixture slurry include a method of applying using an applicator, a method of applying by spraying, and the like.
  • the thickness of the layer 10A of the positive electrode mixture slurry may be, for example, 5 to 100 ⁇ m.
  • the dispersion medium contained in the layer 10A of the positive electrode mixture slurry is volatilized.
  • the method for volatilizing the dispersion medium may be, for example, a method of drying by heating, a method of reducing the pressure, a method of combining the pressure reduction and the heating, and the like.
  • the positive electrode mixture layer 10 is formed, and the positive electrode 6 as shown in FIG. 3C can be obtained.
  • the positive electrode 6 can be manufactured by coating, and the positive electrode mixture layer 10 is formed with a uniform thickness and adheres to the positive electrode current collector 9. It is also possible to manufacture a positive electrode 6 having excellent properties.
  • the manufacturing method of the negative electrode 8 according to the embodiment may be the same as the manufacturing method of the positive electrode 6 described above. That is, the method for manufacturing the negative electrode 8 is a method in which "positive electrode” is read as “negative electrode” in the above-mentioned manufacturing method for the positive electrode 6.
  • the negative electrode current collector 11 used in the method for manufacturing the negative electrode 8 may be a metal such as aluminum, copper, nickel, stainless steel, an alloy thereof, or the like. Since the negative electrode current collector 11 is lightweight and has a high weight energy density, it is preferably aluminum or an alloy thereof. The negative electrode current collector 11 is preferably copper from the viewpoint of ease of processing into a thin film and cost. The thickness of the negative electrode current collector 11 may be 10 ⁇ m or more, and may be 100 ⁇ m or less.
  • An electrolyte sheet can be produced by using the above-mentioned battery slurry composition.
  • the electrolyte sheet is a sheet including a base material and an electrolyte layer formed on one surface of the base material, and is used to obtain the electrolyte layer 7.
  • the method for producing an electrolyte sheet includes a step of applying the above-mentioned battery slurry composition on one surface of a base material to form an electrolyte layer.
  • the battery slurry composition may be the above-mentioned electrolyte slurry.
  • FIG. 4 is a schematic cross-sectional view showing a method for manufacturing an electrolyte sheet according to an embodiment.
  • this manufacturing method first, as shown in FIG. 4A, the base material 13 is prepared.
  • the base material 13 is not limited as long as it has heat resistance that can withstand heating when the dispersion medium is volatilized, does not react with the battery slurry composition, and does not swell due to the battery slurry composition.
  • the base material 13 may be a film made of a resin (general-purpose engineering plastic) such as polyethylene terephthalate, polytetrafluoroethylene, polyimide, polyethersulfone, and polyetherketone.
  • the thickness of the base material 13 may be, for example, 5 ⁇ m or more and 100 ⁇ m or less.
  • an electrolyte slurry is applied onto one surface 13a of the base material 13 to provide a layer 7A of the electrolyte slurry.
  • the electrolyte slurry is the battery slurry composition described above.
  • the method of applying the electrolyte slurry may be the same as the method of applying the positive electrode mixture slurry described above.
  • the thickness of the layer 7A of the electrolyte slurry may be, for example, 5 to 30 ⁇ m.
  • the dispersion medium contained in the layer 7A of the electrolyte slurry is volatilized.
  • the method for volatilizing the dispersion medium may be the same as the method for volatilizing the dispersion medium contained in the layer 10A of the positive electrode mixture slurry described above.
  • the electrolyte layer 7 is formed, and the electrolyte sheet 14 as shown in FIG. 4C can be obtained.
  • the electrolyte sheet 14 can be produced by coating, and the electrolyte layer 7 having a uniform thickness and excellent strength is formed and can stand on its own.
  • the electrolyte sheet 14 can be manufactured. Further, in the obtained electrolyte sheet 14, the base material 13 can be easily peeled off.
  • the electrolyte sheet 14 can be continuously manufactured while being wound into a roll.
  • the surface of the electrolyte layer 7 may come into contact with the back surface of the base material 13 and a part of the electrolyte layer 7 may adhere to the base material 13 to damage the electrolyte layer 7.
  • the electrolyte sheet may be provided with a protective material on the side opposite to the base material 13 of the electrolyte layer 7.
  • the protective material may be any material that can be easily peeled off from the electrolyte layer 7, and is preferably a non-polar resin film such as polyethylene, polypropylene, or polytetrafluoroethylene.
  • a non-polar resin film such as polyethylene, polypropylene, or polytetrafluoroethylene.
  • the secondary battery 1 can be manufactured by using the electrolyte sheet 14, the positive electrode 6 and the negative electrode 8.
  • the secondary battery 1 is obtained by peeling the base material 13 from the electrolyte sheet 14 and, in some cases, the protective material, and laminating the positive electrode 6, the electrolyte layer 7, and the negative electrode 8 by, for example, laminating. Be done.
  • the electrolyte layer 7 is located on the positive electrode mixture layer 10 side of the positive electrode 6 and on the negative electrode mixture layer 12 side of the negative electrode 8, that is, the positive electrode current collector 9, the positive electrode mixture layer 10, and the electrolyte layer 7.
  • the negative electrode mixture layer 12 and the negative electrode current collector 11 are laminated in this order.
  • a battery member (positive electrode member or negative electrode member) including a current collector, an electrode mixture layer, and an electrolyte layer in this order can be manufactured.
  • the method for manufacturing the battery member according to one embodiment includes a step of forming an electrode mixture intermediate layer containing an electrode active material on one surface of a current collector and a method on the opposite side of the current collector of the electrode mixture intermediate layer.
  • a step of applying the above-mentioned battery slurry composition on the surface and a step of volatilizing the dispersion medium to form an electrode mixture layer and an electrolyte layer are provided.
  • FIG. 5 is a schematic cross-sectional view showing a method of manufacturing a positive electrode member according to an embodiment.
  • a positive electrode current collector 9 is prepared.
  • the positive electrode mixture intermediate layer 10B is formed on one surface 9a of the positive electrode current collector 9.
  • the method of forming the positive electrode mixture intermediate layer 10B is, in one embodiment, a method of applying the positive electrode mixture precursor onto one surface 9a of the positive electrode current collector 9.
  • the positive electrode mixture precursor may be the above-mentioned battery slurry composition, or may be a composition different from the battery slurry composition.
  • the positive electrode mixture precursor contains, in one embodiment, a positive electrode active material, a polymer, and a dispersion medium.
  • the positive electrode active material, the polymer, and the dispersion medium may be the same as those described above. That is, the positive electrode mixture precursor does not have to contain an ionic liquid and an electrolyte salt.
  • the method of applying the positive electrode mixture precursor on one surface 9a of the positive electrode current collector 9 may be the same as the method of applying the positive electrode mixture slurry described above.
  • the positive electrode mixture intermediate layer 10B is formed.
  • the thickness of the positive electrode mixture intermediate layer 10B may be, for example, 5 to 100 ⁇ m.
  • the dispersion medium contained in the positive electrode mixture precursor may be volatilized. That is, the "positive electrode mixture intermediate layer" includes a layer formed of the positive electrode mixture precursor and a layer formed by volatilizing a part or all of the dispersion medium from the positive electrode mixture precursor. ..
  • the method for volatilizing the dispersion medium may be the same as the method for volatilizing the dispersion medium contained in the layer 10A of the positive electrode mixture slurry described above.
  • an electrolyte slurry is applied on the surface 10a of the positive electrode mixture intermediate layer 10B opposite to the positive electrode current collector 9, and the layer 7A of the electrolyte slurry is provided.
  • the electrolyte slurry is the battery slurry composition described above.
  • the method of applying the electrolyte slurry may be the same as the method of applying the positive electrode mixture slurry described above.
  • the thickness of the layer 7A of the electrolyte slurry may be, for example, 5 to 30 ⁇ m.
  • the electrolyte slurry layer 7A is provided. Occasionally, the ionic liquid and the electrolyte salt contained in the layer 7A of the electrolyte slurry move from the layer 7A of the electrolyte slurry to the positive electrode mixture intermediate layer 10B as the ionic liquid electrolyte.
  • the positive electrode mixture intermediate layer 10B after the electrolyte slurry layer 7A is applied contains an ionic liquid and an electrolyte salt.
  • the dispersion medium contained in the positive electrode mixture intermediate layer 10B and the electrolyte slurry layer 7A is volatilized.
  • the method for volatilizing the dispersion medium may be the same as the method for volatilizing the dispersion medium contained in the layer 10A of the positive electrode mixture slurry described above.
  • the positive electrode mixture layer 10 and the electrolyte layer 7 are formed, and the positive electrode member 15 as shown in FIG. 5D can be obtained.
  • the electrolyte slurry can be applied on the positive electrode mixture intermediate layer 10B with a uniform thickness, and the electrolyte slurry is applied to the positive electrode mixture intermediate. It can also be facilitated to penetrate layer 10B.
  • the method for manufacturing the negative electrode member according to the embodiment may be the same as the method for manufacturing the positive electrode member 15 described above. That is, the method for manufacturing the negative electrode member is a method in which "positive electrode” is read as “negative electrode” in the above-mentioned manufacturing method for the positive electrode member 15.
  • the secondary battery 1 can be obtained by using the positive electrode member 15 and the negative electrode member obtained by the above-mentioned manufacturing method.
  • the secondary battery 1 can be manufactured by pressing the surface of the positive electrode member 15 on the electrolyte layer 7 side and the surface of the negative electrode member 15 on the electrolyte layer 7 side together.
  • the battery slurry composition may be used in the manufacture of a so-called bipolar secondary battery.
  • FIG. 6 is an exploded perspective view showing an embodiment of the electrode group of the bipolar type secondary battery.
  • the electrode group 2B includes a positive electrode 6, a first electrolyte layer 7, a bipolar electrode 16, a second electrolyte layer 7, and a negative electrode 8 in this order.
  • the bipolar electrode 16 includes a bipolar electrode current collector 17, a positive electrode mixture layer 10 provided on the negative electrode side surface (positive electrode surface) of the bipolar electrode current collector 17, and a positive electrode side surface (positive electrode surface) of the bipolar electrode current collector. It is provided with a negative electrode mixture layer 12 provided on the negative electrode surface).
  • the above-mentioned battery slurry composition can be used for producing the positive electrode 6, the negative electrode 8, and the electrolyte layer 7 in the bipolar secondary battery, and forms the positive electrode mixture layer 10 and the negative electrode mixture layer in the bipolar electrode 16. It can be used to form twelve.
  • the electrode group 2B in the bipolar type secondary battery includes a first battery member having a positive electrode 6 and an electrolyte layer 7 in this order, and a second battery member having a negative electrode 8 and an electrolyte layer 7 in this order. It can be seen that the battery member (negative electrode member) is included. Further, it can be seen that the electrode group 2B includes a third battery member (bipolar battery member) including the electrolyte layer 7, the bipolar electrode 16, and the electrolyte layer 7 in this order.
  • the above-mentioned battery slurry composition can also be used for forming the positive electrode mixture layer 10 and the negative electrode mixture layer 12 in the manufacture of these battery members.
  • the battery slurry composition can also be used to form an interface cambium.
  • the interface cambium is a layer provided between the positive electrode mixture layer and the electrolyte layer on the positive electrode and / or between the negative electrode mixture layer and the electrolyte layer on the negative electrode.
  • the interface forming layer makes it possible to form the interface between the electrode mixture layer and the electrolyte layer more satisfactorily, and it becomes possible to further increase the ionic conductivity in the secondary battery.
  • the method of forming the interface forming layer may be, for example, a method of applying the above-mentioned battery slurry composition on one surface of the electrolyte layer to volatilize the dispersion medium.
  • the battery slurry composition used for forming the interface cambium preferably contains the components contained in the above-mentioned electrolyte slurry.
  • Examples 1-1 to 1-3, Comparative examples 1-1 to 1-5> Based on the composition shown in Table 1, layered lithium-nickel-manganese-cobalt composite oxide (NMC, positive electrode active material), acetylene black (conductive material, average particle size 48 nm, product name: HS-100, Denka Co., Ltd.) ), A polymer solution in which polyvinylidene fluoride was dissolved in a dispersion medium (NMP) (binder, solid content 12% by mass), and optionally a dispersion medium (NMP) were kneaded using a kneading device.
  • NMP dispersion medium
  • NMP dispersion medium
  • An ionic liquid (1.5 moL / L / LiFSI / EMI-FSI) in which an electrolyte salt was dissolved was added as an ionic liquid electrolytic solution and further kneaded to prepare a positive electrode mixture slurry.
  • an aqueous solution prepared by dissolving 0.968 g of ammonium persulfate as a polymerization initiator in 76 g of purified water was added, and immediately, 183.8 g of acrylonitrile as a nitrile group-containing monomer and 9.7 g of acrylic acid as a carboxyl group-containing monomer were added.
  • an aqueous solution prepared by dissolving 0.25 g of ammonium persulfate in 21.3 g of purified water was additionally added to the suspended reaction system, the temperature was raised to 84 ° C., and then the temperature of the system was maintained at 84 ⁇ 2 ° C. The reaction proceeded for 2.5 hours. Then, after cooling to 40 ° C. over 1 hour, stirring was stopped and the mixture was allowed to cool overnight at room temperature to precipitate a copolymer (polymer A) in which acrylic acid and a linear ether group were added to a polyacrylonitrile skeleton. Obtained liquid. The reaction solution was suction-filtered, and the collected wet precipitate was washed 3 times with 1800 g of purified water and then vacuum-dried at 80 ° C. for 10 hours to isolate and purify the polymer A.
  • a positive electrode mixture slurry was prepared by the same method as in Example 1-1 except that the polymer in the polymer solution was changed to the polymer A synthesized in Synthesis Example 1 above.
  • Examples 1-6 to 1-7 Comparative Examples 1-9 to 1-11> Based on the composition shown in Table 1, graphite (negative electrode active material, Hitachi Chemical Co., Ltd.), carbon fiber (conductive material, product name: VGCF-H, Showa Denko Co., Ltd.), and polyvinylidene fluoride as a dispersion medium (NMP)
  • the dissolved polymer solution binder, solid content 13% by mass
  • the dispersion medium was kneaded using a kneader.
  • An ionic liquid (1.5 moL / L / LiFSI / EMIFSI) in which an electrolyte salt was dissolved was added as an ionic liquid electrolytic solution and further kneaded to prepare a negative electrode mixture slurry.
  • the mass ratio of the total content of the polymer and the ionic liquid electrolyte to the total content of the polymer, the ionic liquid electrolyte, and the dispersion medium is in the range of 0.1 to 0.3. Reprecipitation did not occur in the electrode mixture slurry of the example inside. On the other hand, in the electrode mixture slurry of the comparative example in which the mass ratio was outside the range of 0.1 to 0.3, gelation due to reprecipitation of the polymer occurred.
  • the electrode mixture slurry of Comparative Example 1-5 and Comparative Example 1-11 has too low viscosity, so that the electrode mixture slurry flows out from the current collector when the desired coating amount is applied. It could not be applied normally on the current collector.
  • Examples 2-1 to 2-6 Comparative Examples 2-1 to 2-3> Based on the composition shown in Table 2, as a copolyma (PVDF-HFP) of vinylidene fluoride and hexafluoropyrene, SiO 2 particles (product name: AEROSIL RX50, manufactured by Nippon Aerosil Co., Ltd.), and an ionic liquid electrolyte.
  • An ionic liquid 1.5 moL / L / LiFSI / EMI-FSI in which an electrolyte salt is dissolved and cellulose fibers (average length 50 ⁇ m, average fiber diameter 0.1 ⁇ m) are dispersed in a dispersion medium (NMP).
  • An electrolyte slurry was prepared by kneading with a kneading device.
  • Examples 2-7 to 2-9> An electrolyte slurry was prepared by the same method as in Example 2-1 except that the dispersion medium was changed to DMSO.
  • the mass ratio of the total content of the polymer and the ionic liquid electrolyte to the total content of the polymer, the ionic liquid electrolyte, and the dispersion medium is in the range of 0.1 to 0.3.
  • the electrolyte sheet prepared using the electrolyte slurry of the example in the above reprecipitation did not occur.
  • the electrolyte sheet prepared by using the electrolyte slurry of the comparative example in which the mass ratio is out of the range of 0.1 to 0.3 reprecipitation of the polymer was particularly generated.
  • An electrolyte sheet was prepared using the electrolyte slurry of Examples 2-4 to 2-9.
  • the electrolyte slurry was applied onto a base material made of polyethylene terephthalate (product name: Theonex RQ51, manufactured by Teijin DuPont Film Co., Ltd., thickness 38 ⁇ m) using an applicator.
  • the applied electrolyte slurry was heated and dried at 80 ° C. for 1 hour to volatilize the dispersion medium to obtain an electrolyte sheet.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

In one aspect, the present invention provides a slurry composition for batteries, the slurry composition containing a polymer; an ionic liquid; at least one electrolyte salt selected from the group consisting of lithium salts, sodium salts, calcium salts, and magnesium salts; and a dispersion medium, wherein the mass ratio of the total content of the polymer, the ionic liquid, and the electrolyte salt to the total content of the polymer, the ionic liquid, the electrolyte salt, and the dispersion medium is 0.1 to 0.3.

Description

電池用スラリ組成物、並びに、電極、電解質シート、及び電池部材の製造方法A method for manufacturing a battery slurry composition, an electrode, an electrolyte sheet, and a battery member.
 本発明は、電池用スラリ組成物、並びに、電極、電解質シート、及び電池部材の製造方法に関する。 The present invention relates to a battery slurry composition and a method for manufacturing an electrode, an electrolyte sheet, and a battery member.
 近年、携帯型電子機器、電気自動車等の普及により、高性能な二次電池が必要とされている。中でもリチウム二次電池は、高いエネルギ密度を有するため、電気自動車用電池、電力貯蔵用電池等の電源として注目されている。具体的には、電気自動車用電池としてのリチウム二次電池は、エンジンを搭載しないゼロエミッション電気自動車、エンジン及び二次電池の両方を搭載したハイブリッド電気自動車、電力系統から直接充電させるプラグイン・ハイブリッド電気自動車等の電気自動車に採用されている。また、電力貯蔵用電池としてのリチウム二次電池は、電力系統が遮断された非常時に、予め貯蔵しておいた電力を供給する定置式電力貯蔵システム等に用いられている。 In recent years, with the spread of portable electronic devices, electric vehicles, etc., high-performance secondary batteries are required. Among them, the lithium secondary battery has a high energy density, and is therefore attracting attention as a power source for electric vehicle batteries, power storage batteries, and the like. Specifically, lithium secondary batteries as batteries for electric vehicles include zero-emission electric vehicles that do not have an engine, hybrid electric vehicles that have both an engine and a secondary battery, and plug-in hybrids that charge directly from the power system. It is used in electric vehicles such as electric vehicles. Further, a lithium secondary battery as a power storage battery is used in a stationary power storage system or the like that supplies power stored in advance in an emergency when the power system is cut off.
 このような広範な用途に使用するために、より高いエネルギ密度のリチウム二次電池が求められており、その開発がなされている。特に、電気自動車用のリチウム二次電池には、高い入出力特性及び高いエネルギ密度に加えて、高い安全性が要求されるため、安全性を確保するためのより高度な技術が求められる。 In order to use it in such a wide range of applications, a lithium secondary battery with a higher energy density is required, and its development is being made. In particular, lithium secondary batteries for electric vehicles are required to have high safety in addition to high input / output characteristics and high energy density, and therefore, more advanced technology for ensuring safety is required.
 より安全性の高い電池としては、難燃性のイオン液体を使用することが検討されている。例えば、特許文献1には、有機電解液とイオン液体を混合した溶媒を電解液に用いることが記載されており、有機電解液とイオン液体を混合することで難燃性が確保されることが開示されている。 As a safer battery, the use of flame-retardant ionic liquid is being considered. For example, Patent Document 1 describes that a solvent obtained by mixing an organic electrolytic solution and an ionic liquid is used as the electrolytic solution, and flame retardancy can be ensured by mixing the organic electrolytic solution and the ionic liquid. It is disclosed.
 リチウム二次電池の安全性を向上させる方法として、電解液を固体電解質へ変更する方法も知られている。例えば、特許文献2には、電解質を非流動化させつつイオン伝導度に優れた電解質を提供するため、低分子脂質ペプチド型ゲル化剤、及びイオン液体等の溶媒を含むゲル電解質が開示されている。 As a method of improving the safety of the lithium secondary battery, a method of changing the electrolyte to a solid electrolyte is also known. For example, Patent Document 2 discloses a gel electrolyte containing a solvent such as a low molecular weight lipid peptide type gelling agent and a solvent such as an ionic liquid in order to provide an electrolyte having excellent ionic conductivity while immobilizing the electrolyte. There is.
特開2008-305574号公報Japanese Unexamined Patent Publication No. 2008-305574 特開2012-186055号公報Japanese Unexamined Patent Publication No. 2012-186055
 しかしながら、本発明者らの検討によると、電極合剤層、又は固体状の電解質層にイオン液体を使用した場合に、イオン液体に難溶性の他の含有成分(例えば、ポリマ等)が再析出してしまう場合があることが判明した。含有成分の再析出が生じると、電極合剤層又は電解質層を均一な厚さで形成することが困難となり、電池特性にも悪影響を及ぼし得る。 However, according to the study by the present inventors, when an ionic liquid is used for the electrode mixture layer or the solid electrolyte layer, other components (for example, a polymer) which are poorly soluble in the ionic liquid are reprecipitated. It turned out that there are cases where it will be done. When the contained components are reprecipitated, it becomes difficult to form the electrode mixture layer or the electrolyte layer with a uniform thickness, which may adversely affect the battery characteristics.
 本発明は、一側面において、塗布により電池用の部材を製造することが可能であり、かつ、含有成分の再析出が抑制された、電池用スラリ組成物を提供することを目的とする。 It is an object of the present invention to provide a battery slurry composition capable of producing a battery member by coating on one side and suppressing reprecipitation of contained components.
 本発明は、第1の側面として、ポリマと、イオン液体と、リチウム塩、ナトリウム塩、カルシウム塩及びマグネシウム塩からなる群より選ばれる少なくとも1種の電解質塩と、分散媒と、を含有し、ポリマ、イオン液体、電解質塩、及び分散媒の含有量の合計に対する、ポリマ、イオン液体、及び電解質塩の含有量の合計の質量比が、0.1~0.3である、電池用スラリ組成物を提供する。 The present invention contains, as a first aspect, a polymer, an ionic liquid, at least one electrolyte salt selected from the group consisting of lithium salt, sodium salt, calcium salt and magnesium salt, and a dispersion medium. Battery slurry composition in which the total mass ratio of the total content of the polymer, ionic liquid, and electrolyte salt to the total content of the polymer, ionic liquid, electrolyte salt, and dispersion medium is 0.1 to 0.3. Provide things.
 電池用スラリ組成物は、電極活物質を更に含有してもよい。この場合、上記の質量比が、好ましくは0.2~0.3である。 The battery slurry composition may further contain an electrode active material. In this case, the mass ratio is preferably 0.2 to 0.3.
 電池用スラリ組成物は、酸化物粒子を更に含有してもよい。この場合、上記の質量比が、0.13~0.3であってよい。質量比が、0.1~0.25であってもよい。 The battery slurry composition may further contain oxide particles. In this case, the mass ratio may be 0.13 to 0.3. The mass ratio may be 0.1 to 0.25.
 本発明は、第2の側面として、集電体と、該集電体の一面上に形成された電極合剤層と、を備える電極の製造方法であって、製造方法は、上記の電池用スラリ組成物を、集電体の一面上に塗布して電極合剤層を形成する工程を備える、電極の製造方法を提供する。 The present invention is a method for manufacturing an electrode including a current collector and an electrode mixture layer formed on one surface of the current collector as a second aspect, and the manufacturing method is for the above-mentioned battery. Provided is a method for manufacturing an electrode, comprising a step of applying a slurry composition on one surface of a current collector to form an electrode mixture layer.
 本発明は、第3の側面として、基材と、該基材の一面上に形成された電解質層と、を備える電解質シートの製造方法であって、上記の電池用スラリ組成物を、基材の一面上に塗布して電解質層を形成する工程を備える、電解質シートの製造方法を提供する。 The present invention is a method for producing an electrolyte sheet comprising a base material and an electrolyte layer formed on one surface of the base material as a third aspect, wherein the above-mentioned battery slurry composition is used as a base material. Provided is a method for producing an electrolyte sheet, which comprises a step of applying the mixture on one surface to form an electrolyte layer.
 本発明は、第4の側面として、集電体、電極合剤層、電解質層をこの順に備える電池部材の製造方法であって、集電体の一面上に電極活物質を含有する電極合剤中間層を形成する工程と、電極合剤中間層の集電体とは反対側の面上に、上記の電池用スラリ組成物を塗布する工程と、分散媒を揮発させて、電極合剤層及び電解質層を形成する工程と、を備える、電池部材の製造方法を提供する。 The present invention is a method for manufacturing a battery member including a current collector, an electrode mixture layer, and an electrolyte layer in this order as a fourth aspect, and is an electrode mixture containing an electrode active material on one surface of the current collector. The step of forming the intermediate layer, the step of applying the above battery slurry composition on the surface of the electrode mixture intermediate layer opposite to the current collector, and the step of volatilizing the dispersion medium to volatilize the electrode mixture layer. And a step of forming an electrolyte layer, and a method of manufacturing a battery member.
 本発明の一側面によれば、塗布により電池用の部材を製造することが可能であり、かつ、含有成分の再析出が抑制された、電池用スラリ組成物を提供できる。 According to one aspect of the present invention, it is possible to provide a battery slurry composition capable of producing a battery member by coating and suppressing reprecipitation of contained components.
一実施形態に係る二次電池を示す斜視図である。It is a perspective view which shows the secondary battery which concerns on one Embodiment. 図1に示した二次電池の電極群の一実施形態を示す分解斜視図である。It is an exploded perspective view which shows one Embodiment of the electrode group of the secondary battery shown in FIG. 一実施形態に係る正極の製造方法を示す模式断面図である。It is a schematic cross-sectional view which shows the manufacturing method of the positive electrode which concerns on one Embodiment. 一実施形態に係る電解質シートの製造方法を示す模式断面図である。It is a schematic cross-sectional view which shows the manufacturing method of the electrolyte sheet which concerns on one Embodiment. 一実施形態に係る正極部材の製造方法を示す模式断面図である。It is a schematic cross-sectional view which shows the manufacturing method of the positive electrode member which concerns on one Embodiment. バイポーラ型二次電池の電極群の一実施形態を示す分解斜視図である。It is an exploded perspective view which shows one Embodiment of the electrode group of a bipolar type secondary battery.
 以下、図面を適宜参照しながら、本発明の実施形態について説明する。ただし、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(ステップ等も含む)は、特に明示した場合を除き、必須ではない。各図における構成要素の大きさは概念的なものであり、構成要素間の大きさの相対的な関係は各図に示されたものに限定されない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings as appropriate. However, the present invention is not limited to the following embodiments. In the following embodiments, the components (including steps and the like) are not essential unless otherwise specified. The sizes of the components in each figure are conceptual, and the relative size relationships between the components are not limited to those shown in each figure.
 本明細書における数値及びその範囲は、本発明を制限するものではない。本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書において段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の上限値又は下限値に置き換えてもよい。また、本明細書中に記載される数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。 The numerical values and their ranges in the present specification do not limit the present invention. The numerical range indicated by using "-" in the present specification indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively. In the numerical range described stepwise in the present specification, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value described in another stepwise description. Further, in the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
 本明細書では、下記の略称を用いる場合がある。
 [FSI]:N(SOF) 、ビス(フルオロスルホニル)イミドアニオン
 [TFSI]:N(SOCF 、ビス(トリフルオロメタンスルホニル)イミドアニオン
 [BOB]:B(O 、ビスオキサレートボラートアニオン
 [f3C]:C(SOF) 、トリス(フルオロスルホニル)カルボアニオン
In this specification, the following abbreviations may be used.
[FSI] -: N (SO 2 F) 2 -, bis (fluorosulfonyl) imide anion [TFSI] -: N (SO 2 CF 3) 2 -, bis (trifluoromethanesulfonyl) imide anion [BOB] -: B (O 2 C 2 O 2) 2 -, bis oxalate borate anion [f3C] -: C (SO 2 F) 3 -, tris (fluorosulfonyl) carbanions
 本明細書において、「正極」及び「負極」をまとめて「電極」と呼ぶことがあり、「電極活物質」、「電極合剤層」等の類似表現においても同様である。 In the present specification, the "positive electrode" and the "negative electrode" may be collectively referred to as an "electrode", and the same applies to similar expressions such as "electrode active material" and "electrode mixture layer".
 図1は、一実施形態に係る二次電池を示す斜視図である。図1に示すように、二次電池1は、正極、負極及び電解質層から構成される電極群2と、電極群2を収容する袋状の電池外装体3とを備えている。正極及び負極には、それぞれ正極集電タブ4及び負極集電タブ5が設けられている。正極集電タブ4及び負極集電タブ5は、それぞれ正極及び負極が二次電池1の外部と電気的に接続可能なように、電池外装体3の内部から外部へ突き出している。 FIG. 1 is a perspective view showing a secondary battery according to an embodiment. As shown in FIG. 1, the secondary battery 1 includes an electrode group 2 composed of a positive electrode, a negative electrode, and an electrolyte layer, and a bag-shaped battery exterior body 3 accommodating the electrode group 2. The positive electrode and the negative electrode are provided with a positive electrode current collecting tab 4 and a negative electrode current collecting tab 5, respectively. The positive electrode current collecting tab 4 and the negative electrode current collecting tab 5 project from the inside of the battery exterior 3 to the outside so that the positive electrode and the negative electrode can be electrically connected to the outside of the secondary battery 1, respectively.
 電池外装体3は、例えばラミネートフィルムで形成されていてよい。ラミネートフィルムは、例えば、ポリエチレンテレフタレート(PET)フィルム等の樹脂フィルムと、アルミニウム、銅、ステンレス鋼等の金属箔と、ポリプロピレン等のシーラント層とがこの順で積層された積層フィルムであってよい。 The battery exterior 3 may be formed of, for example, a laminated film. The laminated film may be, for example, a laminated film in which a resin film such as polyethylene terephthalate (PET) film, a metal foil such as aluminum, copper, and stainless steel, and a sealant layer such as polypropylene are laminated in this order.
 図2は、図1に示した二次電池1の電極群2の一実施形態を示す分解斜視図である。図2に示すように、電極群2Aは、正極6、電解質層7及び負極8をこの順に備える。正極6は、正極集電体9と、正極集電体9上に設けられた正極合剤層10とを備えている。正極6の正極集電体9には、正極集電タブ4が設けられている。負極8は、負極集電体11と、負極集電体11上に設けられた負極合剤層12とを備えている。負極8の負極集電体11には、負極集電タブ5が設けられている。 FIG. 2 is an exploded perspective view showing an embodiment of the electrode group 2 of the secondary battery 1 shown in FIG. As shown in FIG. 2, the electrode group 2A includes a positive electrode 6, an electrolyte layer 7, and a negative electrode 8 in this order. The positive electrode 6 includes a positive electrode current collector 9 and a positive electrode mixture layer 10 provided on the positive electrode current collector 9. The positive electrode current collector 9 of the positive electrode 6 is provided with a positive electrode current collector tab 4. The negative electrode 8 includes a negative electrode current collector 11 and a negative electrode mixture layer 12 provided on the negative electrode current collector 11. The negative electrode current collector 11 of the negative electrode 8 is provided with a negative electrode current collector tab 5.
 一実施形態において、電極群2Aには、正極集電体9と、正極合剤層10と、電解質層7とをこの順に備える第1の電池部材(正極部材)が含まれていると見ることができる。同様に、電極群2Aには、負極集電体11と、負極合剤層12と、電解質層7とをこの順に備える第2の電池部材(負極部材)が含まれていると見ることもできる。 In one embodiment, it is considered that the electrode group 2A includes a first battery member (positive electrode member) including a positive electrode current collector 9, a positive electrode mixture layer 10, and an electrolyte layer 7 in this order. Can be done. Similarly, it can be seen that the electrode group 2A includes a second battery member (negative electrode member) including the negative electrode current collector 11, the negative electrode mixture layer 12, and the electrolyte layer 7 in this order. ..
 本発明における電池用スラリ組成物は、例えば、上記のような二次電池における、電極、電解質層、又は電池部材を製造するために用いられるスラリ組成物である。電池用スラリ組成物は、一実施形態において、電極(正極6又は負極8)が備える電極合剤層(正極合剤層10又は負極合剤層12)を形成するために用いられるスラリ組成物(以下、「電極合剤スラリ」ともいう。)である。電池用スラリ組成物は、他の一実施形態において、電解質層7を形成するために用いられるスラリ組成物(以下、「電解質スラリ」ともいう。)である。 The battery slurry composition in the present invention is, for example, a slurry composition used for producing an electrode, an electrolyte layer, or a battery member in a secondary battery as described above. In one embodiment, the battery slurry composition is a slurry composition (slurry composition) used for forming an electrode mixture layer (positive electrode mixture layer 10 or negative electrode mixture layer 12) included in an electrode (positive electrode 6 or negative electrode 8). Hereinafter, it is also referred to as “electrode mixture slurry”). The battery slurry composition is, in another embodiment, a slurry composition (hereinafter, also referred to as “electrolyte slurry”) used for forming the electrolyte layer 7.
 一実施形態に係る電池用スラリ組成物は、ポリマと、イオン液体と、リチウム塩、ナトリウム塩、カルシウム塩及びマグネシウム塩からなる群より選ばれる少なくとも1種の電解質塩と、分散媒と、を含有する。 The battery slurry composition according to one embodiment contains a polymer, an ionic liquid, at least one electrolyte salt selected from the group consisting of lithium salt, sodium salt, calcium salt and magnesium salt, and a dispersion medium. To do.
 ポリマは、四フッ化エチレン、フッ化ビニリデン、ヘキサフルオロプロピレン、アクリル酸、マレイン酸、エチルメタクリレート、メチルメタクリレート、及びアクリロニトリルからなる群より選ばれる少なくとも1種をモノマ単位として含有するポリマ、スチレン-ブタジエンゴム、イソプレンゴム、アクリルゴム等のゴムなどであってよい。ポリマは、好ましくは、ポリフッ化ビニリデン、ヘキサフルオロプロピレン、及びフッ化ビニリデンからなる群より選ばれる少なくとも1種をモノマ単位として含有するポリマである。 The polymer is a polymer containing at least one selected from the group consisting of ethylene tetrafluoride, vinylidene fluoride, hexafluoropropylene, acrylic acid, maleic acid, ethyl methacrylate, methyl methacrylate, and acrylonitrile as a monomer unit, styrene-butadiene. It may be rubber, isopene rubber, rubber such as acrylic rubber, or the like. The polymer is preferably a polymer containing at least one selected from the group consisting of polyvinylidene fluoride, hexafluoropropylene, and vinylidene fluoride as a monoma unit.
 電極合剤スラリにおいて、ポリマは、好ましくは、ポリフッ化ビニリデン、又は、ヘキサフルオロプロピレンとフッ化ビニリデンとを構造単位として含有するコポリマである。電極合剤スラリにおけるポリマは、結着剤としての役割を有する。 In the electrode mixture slurry, the polymer is preferably polyvinylidene fluoride or a copolymer containing hexafluoropropylene and vinylidene fluoride as structural units. The polymer in the electrode mixture slurry has a role as a binder.
 電解質スラリにおいて、ポリマは、好ましくは、四フッ化エチレン及びフッ化ビニリデンからなる群より選ばれる第1の構造単位を有する。 In the electrolyte slurry, the polymer preferably has a first structural unit selected from the group consisting of ethylene tetrafluoroethylene and vinylidene fluoride.
 電解質スラリにおけるポリマは、好ましくは、1種又は2種以上のポリマであり、1種又は2種以上のポリマを構成する構造単位の中には、上記の第1の構造単位と、ヘキサフルオロプロピレン、アクリル酸、マレイン酸、エチルメタクリレート、及びメチルメタクリレートからなる群より選ばれる第2の構造単位とが含まれていてもよい。すなわち、第1の構造単位及び第2の構造単位は、1種のポリマに含まれてコポリマを構成していてもよく、それぞれ別のポリマに含まれて、第1の構造単位を有する第1のポリマと、第2の構造単位を有する第2のポリマとの少なくとも2種のポリマを構成していてもよい。 The polymer in the electrolyte slurry is preferably one kind or two or more kinds of polymers, and among the structural units constituting one kind or two or more kinds of polymers, the above-mentioned first structural unit and hexafluoropropylene are included. , Acrylic acid, maleic acid, ethyl methacrylate, and a second structural unit selected from the group consisting of methyl methacrylate. That is, the first structural unit and the second structural unit may be contained in one kind of polymer to form a copolymer, and each of them is contained in another polymer and has a first structural unit. And a second polymer having a second structural unit may constitute at least two kinds of polymers.
 電解質スラリに含まれるポリマは、より具体的には、ポリ四フッ化エチレン、ポリフッ化ビニリデン、フッ化ビニリデンとヘキサフルオロプロピレンとのコポリマ等であってよい。 More specifically, the polymer contained in the electrolyte slurry may be polytetrafluoroethylene, polyvinylidene fluoride, copolymer of vinylidene fluoride and hexafluoropropylene, or the like.
 ポリマの含有量は、電池用スラリ組成物を塗布しやすくする観点から、電池用スラリ組成物全量基準で、好ましくは0.3質量%以上、より好ましくは0.5質量%以上、更に好ましくは0.7質量%以上である。ポリマの含有量は、電池用スラリ組成物における再析出をより好適に抑制する観点から、電池用スラリ組成物全量基準で、好ましくは50質量%以下、より好ましくは30質量%以下、更に好ましくは20質量%以下である。 The polymer content is preferably 0.3% by mass or more, more preferably 0.5% by mass or more, still more preferably 0.5% by mass or more, based on the total amount of the battery slurry composition, from the viewpoint of facilitating application of the battery slurry composition. It is 0.7% by mass or more. The polymer content is preferably 50% by mass or less, more preferably 30% by mass or less, still more preferably 30% by mass or less, based on the total amount of the battery slurry composition, from the viewpoint of more preferably suppressing reprecipitation in the battery slurry composition. It is 20% by mass or less.
 電池用スラリ組成物が電極合剤スラリである場合、ポリマの含有量は、電極合剤スラリをより塗布しやすくする観点から、電極合剤スラリ全量基準で、好ましくは0.3質量%以上、より好ましくは0.5質量%以上、更に好ましくは0.7質量%以上である。ポリマの含有量は、電極合剤スラリからの再析出をより好適に抑制する観点から、電極合剤スラリ全量基準で、好ましくは20質量%以下、より好ましくは10質量%以下、更に好ましくは5質量%以下である。 When the battery slurry composition is an electrode mixture slurry, the content of the polymer is preferably 0.3% by mass or more based on the total amount of the electrode mixture slurry from the viewpoint of making it easier to apply the electrode mixture slurry. It is more preferably 0.5% by mass or more, still more preferably 0.7% by mass or more. The polymer content is preferably 20% by mass or less, more preferably 10% by mass or less, still more preferably 5 based on the total amount of the electrode mixture slurry from the viewpoint of more preferably suppressing reprecipitation from the electrode mixture slurry. It is mass% or less.
 ポリマの含有量は、電極合剤スラリ中の不揮発分(電極合剤スラリから分散媒を除いた成分、以下同様)全量を基準として、0.3質量%以上、0.5質量%以上、1質量%以上、又は1.5質量%以上であってよく、また、10質量%以下、8質量%以下、6質量%以下、又は4質量%以下であってよい。これにより、得られる電極合剤層中のポリマの含有量は、当該含有量と同様の含有量となる。 The content of the polymer is 0.3% by mass or more, 0.5% by mass or more, 1 by mass or more, based on the total amount of the non-volatile content (the component excluding the dispersion medium from the electrode mixture slurry, the same applies hereinafter) in the electrode mixture slurry. It may be 10% by mass or more, 1.5% by mass or more, and may be 10% by mass or less, 8% by mass or less, 6% by mass or less, or 4% by mass or less. As a result, the content of the polymer in the obtained electrode mixture layer becomes the same as the content.
 電池用スラリ組成物が電解質スラリである場合、ポリマの含有量は、電解質スラリをより均一に塗布できる観点から、電解質スラリ全量基準で、好ましくは1質量%以上、より好ましくは3質量%以上、更に好ましくは5質量%以上である。ポリマの含有量は、電解質スラリにおける再析出をより好適に抑制する観点から、電解質スラリ全量基準で、好ましくは50質量%以下、より好ましくは30質量%以下、更に好ましくは20質量%以下である。 When the battery slurry composition is an electrolyte slurry, the content of the polymer is preferably 1% by mass or more, more preferably 3% by mass or more, based on the total amount of the electrolyte slurry from the viewpoint that the electrolyte slurry can be applied more uniformly. More preferably, it is 5% by mass or more. The polymer content is preferably 50% by mass or less, more preferably 30% by mass or less, still more preferably 20% by mass or less, based on the total amount of the electrolyte slurry, from the viewpoint of more preferably suppressing reprecipitation in the electrolyte slurry. ..
 ポリマの含有量は、電解質スラリ中の不揮発分(電解質スラリから分散媒を除いた成分、以下同様)全量を基準として、3質量%以上、10質量%以上、20質量%以上、又は30質量%以上であってよく、また、70質量%以下、60質量%以下、50質量%以下、又は40質量%以下であってよい。これにより、得られる電解質層中のポリマの含有量は、当該含有量と同様の含有量となる。 The content of the polymer is 3% by mass or more, 10% by mass or more, 20% by mass or more, or 30% by mass based on the total amount of the non-volatile content (the component excluding the dispersion medium from the electrolyte slurry, the same applies hereinafter) in the electrolyte slurry. It may be 70% by mass or less, 60% by mass or less, 50% by mass or less, or 40% by mass or less. As a result, the content of the polymer in the obtained electrolyte layer becomes the same as the content.
 イオン液体は、以下のアニオン成分及びカチオン成分を含有する。なお、本明細書におけるイオン液体は、-20℃以上で液状の物質である。 The ionic liquid contains the following anionic and cationic components. The ionic liquid in the present specification is a substance that is liquid at −20 ° C. or higher.
 イオン液体のアニオン成分は、特に限定されないが、Cl、Br、I等のハロゲンのアニオン、BF 、N(SOF) ([FSI])等の無機アニオン、B(C 、CHSO、CFSO、N(SO 、N(SOCF ([TFSI])、N(SO 等の有機アニオンなどであってよい。イオン液体のアニオン成分は、好ましくは、下記式(1)で表されるアニオン成分の少なくとも1種を含有する。
N(SO2m+1)(SO2n+1    (1)
[式中、m及びnは、それぞれ独立に0~5の整数を表す。m及びnは、互いに同一でも異なっていてもよく、好ましくは互いに同一である。]
Anion component of the ionic liquid is not particularly limited, Cl -, Br -, I - and a halogen anion, BF 4 -, N (SO 2 F) 2 - ([FSI] -) inorganic anions such as, B (C 6 H 5) 4 - , CH 3 SO 2 O -, CF 3 SO 2 O -, N (SO 2 C 4 F 9) 2 -, N (SO 2 CF 3) 2 - ([TFSI] -) , N (SO 2 C 2 F 5 ) 2 - etc. Organic anions may be used. The anionic component of the ionic liquid preferably contains at least one of the anionic components represented by the following formula (1).
N (SO 2 C m F 2 m + 1 ) (SO 2 C n F 2n + 1 ) - (1)
[In the formula, m and n each independently represent an integer of 0 to 5. m and n may be the same or different from each other, and are preferably the same as each other. ]
 式(1)で表されるアニオン成分は、例えば、N(SO 、N(SOF) 、N(SOCF 及びN(SO である。イオン液体のアニオン成分は、二次電池1におけるイオン伝導率を向上させる観点から、より好ましくは、N(SO 、CFSO、N(SOF) 、N(SOCF 、及びN(SO からなる群より選ばれる少なくとも1種を含有し、更に好ましくはN(SOF) を含有する。 Anion component represented by formula (1) may, for example, N (SO 2 C 4 F 9) 2 -, N (SO 2 F) 2 -, N (SO 2 CF 3) 2 - and N (SO 2 C 2 F 5) 2 - a. Anion component of the ionic liquid, from the viewpoint of improving the ion conductivity of the secondary battery 1, and more preferably, N (SO 2 C 4 F 9) 2 -, CF 3 SO 2 O -, N (SO 2 F) 2 -, N (SO 2 CF 3) 2 -, and N (SO 2 C 2 F 5 ) 2 - contains at least one selected from the group consisting of, more preferably N (SO 2 F) 2 - a contains.
 イオン液体のカチオン成分は、好ましくは鎖状四級オニウムカチオン、ピペリジニウムカチオン、ピロリジニウムカチオン、ピリジニウムカチオン、及びイミダゾリウムカチオンからなる群より選ばれる少なくとも1種である。 The cation component of the ionic liquid is preferably at least one selected from the group consisting of a chain quaternary onium cation, a piperidinium cation, a pyrrolidinium cation, a pyridinium cation, and an imidazolium cation.
 鎖状四級オニウムカチオンは、例えば、下記式(2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000001
[式中、R~Rは、それぞれ独立に、炭素数が1~20の鎖状アルキル基、又はR-O-(CH-で表される鎖状アルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)を表し、Xは、窒素原子又はリン原子を表す。R~Rで表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
The chain quaternary onium cation is, for example, a compound represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000001
[In the formula, R 1 to R 4 are independently chain alkyl groups having 1 to 20 carbon atoms or chain alkoxyalkyl groups represented by RO- (CH 2 ) n- (R is It represents a methyl group or an ethyl group, where n represents an integer of 1 to 4), and X represents a nitrogen atom or a phosphorus atom. The number of carbon atoms of the alkyl group represented by R 1 to R 4 is preferably 1 to 20, more preferably 1 to 10, and even more preferably 1 to 5. ]
 ピペリジニウムカチオンは、例えば、下記式(3)で表される、窒素を含有する六員環環状化合物である。
Figure JPOXMLDOC01-appb-C000002
[式中、R及びRは、それぞれ独立に、炭素数が1~20のアルキル基、又はR-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)を表す。R及びRで表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
The piperidinium cation is, for example, a nitrogen-containing six-membered cyclic compound represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000002
[In the formula, R 5 and R 6 are each independently an alkyl group having 1 to 20 carbon atoms or an alkoxyalkyl group represented by RO-O- (CH 2 ) n- (R is a methyl group or ethyl). Represents a group, where n represents an integer of 1 to 4). The number of carbon atoms of the alkyl group represented by R 5 and R 6 is preferably 1 to 20, more preferably 1 to 10, and even more preferably 1 to 5. ]
 ピロリジニウムカチオンは、例えば、下記式(4)で表される五員環環状化合物である。
Figure JPOXMLDOC01-appb-C000003
[式中、R及びRは、それぞれ独立に、炭素数が1~20のアルキル基、又はR-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)を表す。R及びRで表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
The pyrrolidinium cation is, for example, a five-membered cyclic compound represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000003
[In the formula, R 7 and R 8 are each independently an alkyl group having 1 to 20 carbon atoms or an alkoxyalkyl group represented by RO-O- (CH 2 ) n- (R is a methyl group or ethyl). Represents a group, where n represents an integer of 1 to 4). The alkyl group represented by R 7 and R 8 has preferably 1 to 20, more preferably 1 to 10, and even more preferably 1 to 5. ]
 ピリジニウムカチオンは、例えば、下記式(5)で示される化合物である。
Figure JPOXMLDOC01-appb-C000004
[式中、R~R13は、それぞれ独立に、炭素数が1~20のアルキル基、R-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)、又は水素原子を表す。R~R13で表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
The pyridinium cation is, for example, a compound represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000004
[In the formula, R 9 to R 13 are independently alkyl groups having 1 to 20 carbon atoms and alkoxyalkyl groups represented by RO-O- (CH 2 ) n- (R is a methyl group or an ethyl group). , N represents an integer of 1 to 4), or represents a hydrogen atom. The number of carbon atoms of the alkyl group represented by R 9 to R 13 is preferably 1 to 20, more preferably 1 to 10, and even more preferably 1 to 5. ]
 イミダゾリウムカチオンは、例えば、下記式(6)で示される化合物である。
Figure JPOXMLDOC01-appb-C000005
[式中、R14~R18は、それぞれ独立に、炭素数が1~20のアルキル基、R-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)、又は水素原子を表す。R14~R18で表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
The imidazolium cation is, for example, a compound represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000005
[In the formula, R 14 to R 18 are independently alkyl groups having 1 to 20 carbon atoms and alkoxyalkyl groups represented by RO-O- (CH 2 ) n- (R is a methyl group or an ethyl group). , N represents an integer of 1 to 4), or represents a hydrogen atom. The number of carbon atoms of the alkyl group represented by R 14 to R 18 is preferably 1 to 20, more preferably 1 to 10, and even more preferably 1 to 5. ]
 イオン液体は、より具体的には、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム-ビス(トリフルオロメタンスルホニル)イミド(DEME-TFSI)、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム-ビス(フルオロスルホニル)イミド(DEME-FSI)、1-エチル-3-メチルイミダゾリウム-ビス(トリフルオロメタンスルホニル)イミド(EMI-TFSI)、1-エチル-3-メチルイミダゾリウム-ビス(フルオロスルホニル)イミド(EMI-FSI)、N-メチル-N-プロピルピロリジニウム-ビス(トリフルオロメタンスルホニル)イミド(Py13-TFSI)、N-メチル-N-プロピルピロリジニウム-ビス(フルオロスルホニル)イミド(Py13-FSI)、N-エチル-N-メチルピロリジニウム-ビス(トリフルオロメタンスルホニル)イミド(Py12-TFSI)、N-エチル-N-メチルピロリジニウム-ビス(フルオロスルホニル)イミド(Py12-FSI)、1-エチル-3-メチルイミダゾリウムジシアナミド(EMI-DCA)等であってよい。これらは、1種を単独で又は2種以上を組み合わせて用いられてもよい。 More specifically, the ionic liquid is N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium-bis (trifluoromethanesulfonyl) imide (DEME-TFSI), N, N-diethyl-N. -Methyl-N- (2-methoxyethyl) ammonium-bis (fluorosulfonyl) imide (DEME-FSI), 1-ethyl-3-methylimidazolium-bis (trifluoromethanesulfonyl) imide (EMI-TFSI), 1- Ethyl-3-methylimidazolium-bis (fluorosulfonyl) imide (EMI-FSI), N-methyl-N-propylpyrrolidinium-bis (trifluoromethanesulfonyl) imide (Py13-TFSI), N-methyl-N- Propropylpyrrolidinium-bis (fluorosulfonyl) imide (Py13-FSI), N-ethyl-N-methylpyrrolidinium-bis (trifluoromethanesulfonyl) imide (Py12-TFSI), N-ethyl-N-methylpyrrolidi It may be nium-bis (fluorosulfonyl) imide (Py12-FSI), 1-ethyl-3-methylimidazolium disianamide (EMI-DCA) or the like. These may be used individually by 1 type or in combination of 2 or more type.
 電解質塩は、リチウム塩、ナトリウム塩、カルシウム塩、及びマグネシウム塩からなる群より選ばれる少なくとも1種である。 The electrolyte salt is at least one selected from the group consisting of lithium salt, sodium salt, calcium salt, and magnesium salt.
 電解質塩のアニオン成分は、ハロゲン化物イオン(I、Cl、Br等)、SCN、BF 、BF(CF、BF(C、PF 、ClO 、SbF 、N(SOF) 、N(SOCF 、N(SO 、B(C 、B(O 、C(SOF) 、C(SOCF 、CFCOO、CFSO、CSO、B(O 等であってよい。電解質塩のアニオン成分は、好ましくは、N(SOF) 、N(SOCF 等の上述した式(1)で表されるアニオン成分、PF 、BF 、B(O 、又はClO である。 Anionic component of the electrolyte salt, a halide ion (I -, Cl -, Br - , etc.), SCN -, BF 4 - , BF 3 (CF 3) -, BF 3 (C 2 F 5) -, PF 6 - , ClO 4 -, SbF 6 - , N (SO 2 F) 2 -, N (SO 2 CF 3) 2 -, N (SO 2 C 2 F 5) 2 -, B (C 6 H 5) 4 -, B (O 2 C 2 H 4 ) 2 -, C (SO 2 F) 3 -, C (SO 2 CF 3) 3 -, CF 3 COO -, CF 3 SO 2 O -, C 6 F 5 SO 2 O - , B (O 2 C 2 O 2 ) 2 - etc. Anionic component of the electrolyte salt, preferably, N (SO 2 F) 2 -, N (SO 2 CF 3) 2 - above anion component represented by formula (1), such as, PF 6 -, BF 4 - , B (O 2 C 2 O 2) 2 -, or ClO 4 - is.
 リチウム塩は、LiPF、LiBF、Li[FSI]、Li[TFSI]、Li[f3C]、Li[BOB]、LiClO、LiBF(CF)、LiBF(C)、LiBF(C)、LiBF(C)、LiC(SOCF、LiCFSOO、LiCFCOO、及びLiRCOO(Rは、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)からなる群より選ばれる少なくとも1種であってよい。 Lithium salts include LiPF 6 , LiBF 4 , Li [FSI], Li [TFSI], Li [f3C], Li [BOB], LiClO 4 , LiBF 3 (CF 3 ), LiBF 3 (C 2 F 5 ), LiBF. 3 (C 3 F 7 ), LiBF 3 (C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , LiCF 3 SO 2 O, LiCF 3 COO, and LiRCOO (R is an alkyl group having 1 to 4 carbon atoms). , A phenyl group, or a naphthyl group), which may be at least one selected from the group.
 ナトリウム塩は、NaPF、NaBF、Na[FSI]、Na[TFSI]、Na[f3C]、Na[BOB]、NaClO、NaBF(CF)、NaBF(C)、NaBF(C)、NaBF(C)、NaC(SOCF、NaCFSOO、NaCFCOO、及びNaRCOO(Rは、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)からなる群より選ばれる少なくとも1種であってよい。 Sodium salts include NaPF 6 , NaBF 4 , Na [FSI], Na [TFSI], Na [f3C], Na [BOB], NaClO 4 , NaBF 3 (CF 3 ), NaBF 3 (C 2 F 5 ), NaBF. 3 (C 3 F 7 ), NaBF 3 (C 4 F 9 ), NaC (SO 2 CF 3 ) 3 , NaCF 3 SO 2 O, NaCF 3 COO, and NaRCOO (R is an alkyl group having 1 to 4 carbon atoms). , A phenyl group, or a naphthyl group), which may be at least one selected from the group.
 カルシウム塩は、Ca(PF、Ca(BF、Ca[FSI]、Ca[TFSI]、Ca[f3C]、Ca[BOB]、Ca(ClO、Ca[BF(CF)]、Ca[BF(C)]、Ca[BF(C)]、Ca[BF(C)]、Ca[C(SOCF、Ca(CFSOO)、Ca(CFCOO)、及びCa(RCOO)(Rは、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)からなる群より選ばれる少なくとも1種であってよい。 Calcium salts are Ca (PF 6 ) 2 , Ca (BF 4 ) 2 , Ca [FSI] 2 , Ca [TFSI] 2 , Ca [f3C] 2 , Ca [BOB] 2 , Ca (ClO 4 ) 2 , Ca. [BF 3 (CF 3 )] 2 , Ca [BF 3 (C 2 F 5 )] 2 , Ca [BF 3 (C 3 F 7 )] 2 , Ca [BF 3 (C 4 F 9 )] 2 , Ca [C (SO 2 CF 3 ) 3 ] 2 , Ca (CF 3 SO 2 O) 2 , Ca (CF 3 COO) 2 , and Ca (RCOO) 2 (R is an alkyl group having 1 to 4 carbon atoms, phenyl. It may be at least one selected from the group consisting of a group or a naphthyl group).
 マグネシウム塩は、Mg(PF、Mg(BF、Mg[FSI]、Mg[TFSI]、Mg[f3C]、Mg[BOB]、Mg(ClO、Mg[BF(CF)]、Mg[BF(C)]、Mg[BF(C)]、Mg[BF(C)]、Mg[C(SOCF、Mg(CFSO、Mg(CFCOO)、及びMg(RCOO)(Rは、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)からなる群より選ばれる少なくとも1種であってよい。 Magnesium salts are Mg (PF 6 ) 2 , Mg (BF 4 ) 2 , Mg [FSI] 2 , Mg [TFSI] 2 , Mg [f3C] 2 , Mg [BOB] 2 , Mg (ClO 4 ) 2 , Mg. [BF 3 (CF 3 )] 2 , Mg [BF 3 (C 2 F 5 )] 2 , Mg [BF 3 (C 3 F 7 )] 2 , Mg [BF 3 (C 4 F 9 )] 2 , Mg [C (SO 2 CF 3 ) 3 ] 2 , Mg (CF 3 SO 3 ) 2 , Mg (CF 3 COO) 2 , and Mg (RCOO) 2 (R is an alkyl group or phenyl group having 1 to 4 carbon atoms. , Or a naphthyl group), which may be at least one selected from the group.
 これらのうち、解離性及び電気化学的安定性の観点から、電解質塩は、好ましくはLiPF、LiBF、Li[FSI]、Li[TFSI]、Li[f3C]、Li[BOB]、LiClO4、LiBF(CF)、LiBF(C)、LiBF(C)、LiBF(C)、LiC(SOCF、LiCFSOO、LiCFCOO、及びLiRCOO(Rは、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)からなる群より選ばれる少なくとも1種であり、より好ましくはLi[TFSI]、Li[FSI]、LiPF、LiBF、Li[BOB]、及びLiClO4からなる群より選ばれる少なくとも1種であり、更に好ましくはLi[TFSI]、及びLi[FSI]からなる群より選ばれる1種である。 Of these, from the viewpoint of dissociability and electrochemical stability, the electrolyte salt is preferably LiPF 6 , LiBF 4 , Li [FSI], Li [TFSI], Li [f3C], Li [BOB], LiClO 4 , LiBF 3 (CF 3 ), LiBF 3 (C 2 F 5 ), LiBF 3 (C 3 F 7 ), LiBF 3 (C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , LiCF 3 SO 2 O, It is at least one selected from the group consisting of LiCF 3 COO and LiRCOO (R is an alkyl group having 1 to 4 carbon atoms, a phenyl group, or a naphthyl group), and more preferably Li [TFSI], Li. It is at least one selected from the group consisting of [FSI], LiPF 6 , LiBF 4 , Li [BOB], and LiClO 4 , and more preferably 1 selected from the group consisting of Li [TFSI] and Li [FSI]. It is a seed.
 イオン液体、及び電解質塩は、イオン液体電解液として電池用スラリ組成物に含有されてよい。イオン液体電解液は、イオン液体に電解質塩が溶解された液である。 The ionic liquid and the electrolyte salt may be contained in the battery slurry composition as the ionic liquid electrolyte. The ionic liquid electrolyte is a liquid in which an electrolyte salt is dissolved in an ionic liquid.
 イオン液体電解液において、イオン液体の単位体積あたりの電解質塩の塩濃度は、0.3mol/L以上、0.5mol/L以上、又は1.0mol/L以上であってよく、3.0mol/L以下、2.7mol/L以下、又は2.5mol/L以下であってよい。 In the ionic liquid electrolytic solution, the salt concentration of the electrolyte salt per unit volume of the ionic liquid may be 0.3 mol / L or more, 0.5 mol / L or more, or 1.0 mol / L or more, and may be 3.0 mol / L or more. It may be L or less, 2.7 mol / L or less, or 2.5 mol / L or less.
 イオン液体電解液の含有量(イオン液体及び電解質塩の含有量の合計)は、二次電池1のイオン伝導率を向上させる観点から、電池用スラリ組成物全量基準で、好ましくは1質量%以上、より好ましくは3質量%以上、更に好ましくは5質量%以上である。イオン液体電解液の含有量は、電池用スラリ組成物における再析出をより好適に抑制する観点から、電池用スラリ組成物全量基準で、好ましくは40質量%以下、より好ましくは30質量%以下、更に好ましくは20質量%以下である。 The content of the ionic liquid electrolyte (the total content of the ionic liquid and the electrolyte salt) is preferably 1% by mass or more based on the total amount of the battery slurry composition from the viewpoint of improving the ionic conductivity of the secondary battery 1. , More preferably 3% by mass or more, still more preferably 5% by mass or more. The content of the ionic liquid electrolytic solution is preferably 40% by mass or less, more preferably 30% by mass or less, based on the total amount of the battery slurry composition, from the viewpoint of more preferably suppressing reprecipitation in the battery slurry composition. More preferably, it is 20% by mass or less.
 電池用スラリ組成物が電極合剤スラリである場合、イオン液体電解液の含有量は、電極合剤層のイオン伝導率を向上させる観点から、電極合剤スラリ全量基準で、好ましくは1質量%以上、より好ましくは3質量%以上、更に好ましくは5質量%以上である。イオン液体電解液の含有量は、電極合剤スラリにおける再析出をより好適に抑制する観点から、電極合剤スラリ全量基準で、好ましくは30質量%以下、より好ましくは20質量%以下、更に好ましくは15質量%以下である。 When the battery slurry composition is an electrode mixture slurry, the content of the ionic liquid electrolytic solution is preferably 1% by mass based on the total amount of the electrode mixture slurry from the viewpoint of improving the ionic conductivity of the electrode mixture layer. As mentioned above, it is more preferably 3% by mass or more, still more preferably 5% by mass or more. The content of the ionic liquid electrolytic solution is preferably 30% by mass or less, more preferably 20% by mass or less, still more preferably 20% by mass or less, based on the total amount of the electrode mixture slurry, from the viewpoint of more preferably suppressing reprecipitation in the electrode mixture slurry. Is 15% by mass or less.
 イオン液体電解液の含有量は、電極合剤層のイオン伝導率を向上させる観点から、電極合剤スラリ中の不揮発分全量を基準として、好ましくは3質量%以上、より好ましくは5質量%以上、更に好ましくは10質量%以上である。イオン液体電解液の含有量は、電極合剤スラリにおける再析出をより好適に抑制する観点から、電極合剤スラリ中の不揮発分全量を基準として、好ましくは30質量%以下であり、より好ましくは25質量%以下であり、更に好ましくは20質量%以下である。これにより、得られる電極合剤層中のイオン液体電解液の含有量は、当該含有量と同様の含有量となる。 The content of the ionic liquid electrolytic solution is preferably 3% by mass or more, more preferably 5% by mass or more, based on the total amount of the non-volatile content in the electrode mixture slurry from the viewpoint of improving the ionic conductivity of the electrode mixture layer. , More preferably 10% by mass or more. The content of the ionic liquid electrolytic solution is preferably 30% by mass or less, more preferably 30% by mass or less, based on the total amount of the non-volatile content in the electrode mixture slurry from the viewpoint of more preferably suppressing reprecipitation in the electrode mixture slurry. It is 25% by mass or less, more preferably 20% by mass or less. As a result, the content of the ionic liquid electrolytic solution in the obtained electrode mixture layer becomes the same as the content.
 電池用スラリ組成物が電解質スラリである場合、イオン液体電解液の含有量は、電解質層のイオン伝導率を向上させる観点から、電池用スラリ組成物全量基準で、好ましくは0.5質量%以上、より好ましくは1質量%以上、更に好ましくは1.5質量%以上である。イオン液体電解液の含有量は、電解質スラリにおける再析出をより好適に抑制する観点から、電池用スラリ組成物全量基準で、好ましくは40質量%以下、より好ましくは30質量%以下、更に好ましくは20質量%以下である。 When the battery slurry composition is an electrolyte slurry, the content of the ionic liquid electrolyte is preferably 0.5% by mass or more based on the total amount of the battery slurry composition from the viewpoint of improving the ionic conductivity of the electrolyte layer. , More preferably 1% by mass or more, still more preferably 1.5% by mass or more. The content of the ionic liquid electrolyte is preferably 40% by mass or less, more preferably 30% by mass or less, still more preferably 30% by mass or less, based on the total amount of the battery slurry composition, from the viewpoint of more preferably suppressing reprecipitation in the electrolyte slurry. It is 20% by mass or less.
 イオン液体電解液の含有量は、電解質スラリ中の不揮発分全量を基準として、3質量%以上、5質量%以上、5質量%以上、10質量%以上、又は20質量%以上であってよく、また、60質量%以下、50質量%以下、又は40質量%以下であってよい。これにより、得られる電解質層中のイオン液体電解液の含有量は、当該含有量と同様の含有量となる。 The content of the ionic liquid electrolytic solution may be 3% by mass or more, 5% by mass or more, 5% by mass or more, 10% by mass or more, or 20% by mass or more, based on the total amount of the non-volatile content in the electrolyte slurry. Further, it may be 60% by mass or less, 50% by mass or less, or 40% by mass or less. As a result, the content of the ionic liquid electrolytic solution in the obtained electrolyte layer becomes the same as the content.
 分散媒は、水又は有機溶剤であってよい。有機溶剤は、N-メチル-2-ピロリドン(NMP)、ジメチルスルホキシド(DMSO)、N,N-ジメチルアセトアミド、メチルエチルケトン、トルエン、2-ブタノール、シクロヘキサノン、酢酸エチル、2-プロパノール等であってよく、好ましくはNMP、又はDMSOである。分散媒は、これらを1種単独で、又は2種以上を組み合わせて用いられてよい。 The dispersion medium may be water or an organic solvent. The organic solvent may be N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), N, N-dimethylacetamide, methyl ethyl ketone, toluene, 2-butanol, cyclohexanone, ethyl acetate, 2-propanol and the like. It is preferably NMP or DMSO. As the dispersion medium, these may be used alone or in combination of two or more.
 分散媒の含有量は、電池用スラリ組成物を塗布しやすくする観点から、電池用スラリ組成物全量基準で、好ましくは、3質量%以上、5質量%以上、10質量%以上、20質量%以上、30質量%以上、40質量%以上、又は50質量%以上である。分散媒の含有量は、電池用スラリ組成物における再析出をより好適に抑制する観点から、電池用スラリ組成物全量基準で、好ましくは、90質量%以下、70質量%以下、50質量%以下、又は40質量%以下である。 The content of the dispersion medium is based on the total amount of the battery slurry composition, preferably 3% by mass or more, 5% by mass or more, 10% by mass or more, and 20% by mass from the viewpoint of facilitating the application of the battery slurry composition. As mentioned above, it is 30% by mass or more, 40% by mass or more, or 50% by mass or more. The content of the dispersion medium is preferably 90% by mass or less, 70% by mass or less, and 50% by mass or less based on the total amount of the battery slurry composition from the viewpoint of more preferably suppressing reprecipitation in the battery slurry composition. , Or 40% by mass or less.
 電池用スラリ組成物が電極合剤スラリである場合、分散媒の含有量は、電極合剤スラリをより塗布しやすくする観点から、電極合剤スラリ全量基準で、好ましくは3質量%以上、より好ましくは5質量%以上、更に好ましくは10質量%以上である。分散媒の含有量は、電極合剤スラリからの再析出をより好適に抑制する観点から、電極合剤スラリ全量基準で、好ましくは60質量%以下、より好ましくは50質量%以下、更に好ましくは40質量%以下である。 When the battery slurry composition is an electrode mixture slurry, the content of the dispersion medium is preferably 3% by mass or more based on the total amount of the electrode mixture slurry from the viewpoint of making it easier to apply the electrode mixture slurry. It is preferably 5% by mass or more, and more preferably 10% by mass or more. The content of the dispersion medium is preferably 60% by mass or less, more preferably 50% by mass or less, still more preferably 50% by mass or less, based on the total amount of the electrode mixture slurry, from the viewpoint of more preferably suppressing reprecipitation from the electrode mixture slurry. It is 40% by mass or less.
 分散媒の含有量は、電極合剤スラリ中の不揮発分100質量部に対して、3質量部以上、5質量部以上、10質量部以上、又は20質量部以上であってよく、また、1000質量部以下、500質量部以下、300質量部以下、100質量部以下、又は50質量部以下であってよい。 The content of the dispersion medium may be 3 parts by mass or more, 5 parts by mass or more, 10 parts by mass or more, or 20 parts by mass or more with respect to 100 parts by mass of the non-volatile content in the electrode mixture slurry, and 1000 parts by mass. It may be parts by mass or less, 500 parts by mass or less, 300 parts by mass or less, 100 parts by mass or less, or 50 parts by mass or less.
 電池用スラリ組成物が電解質スラリである場合、分散媒の含有量は、電解質スラリをより均一に塗布できる観点から、電解質スラリ全量基準で、好ましくは20質量%以上、より好ましくは30質量%以上、更に好ましくは40質量%以上である。分散媒の含有量は、電解質スラリにおける再析出をより好適に抑制する観点から、電解質スラリ全量基準で、好ましくは90質量%以下、より好ましくは85質量%以下、更に好ましくは80質量%以下である。 When the battery slurry composition is an electrolyte slurry, the content of the dispersion medium is preferably 20% by mass or more, more preferably 30% by mass or more based on the total amount of the electrolyte slurry from the viewpoint that the electrolyte slurry can be applied more uniformly. , More preferably 40% by mass or more. The content of the dispersion medium is preferably 90% by mass or less, more preferably 85% by mass or less, still more preferably 80% by mass or less, based on the total amount of the electrolyte slurry, from the viewpoint of more preferably suppressing reprecipitation in the electrolyte slurry. is there.
 分散媒の含有量は、電解質スラリ中の不揮発分100質量部に対して、10質量部以上、25質量部以上、又は50質量部以上であってよく、また、1000質量部以下、500質量部以下、又は300質量部以下であってよい。 The content of the dispersion medium may be 10 parts by mass or more, 25 parts by mass or more, or 50 parts by mass or more, and 1000 parts by mass or less and 500 parts by mass with respect to 100 parts by mass of the non-volatile content in the electrolyte slurry. Below, or 300 parts by mass or less.
 電池用スラリ組成物が電極合剤スラリである場合、電極合剤スラリは、電極活物質を含有してよい。すなわち、電極合剤スラリは、ポリマと、イオン液体と、電解質塩と、分散媒と、電極活物質と、を含有してよい。 When the battery slurry composition is an electrode mixture slurry, the electrode mixture slurry may contain an electrode active material. That is, the electrode mixture slurry may contain a polymer, an ionic liquid, an electrolyte salt, a dispersion medium, and an electrode active material.
 電極が正極である場合、電極合剤スラリ(正極合剤スラリ)は正極活物質を含有してよい。正極活物質は、リチウム遷移金属酸化物、リチウム遷移金属リン酸塩等のリチウム遷移金属化合物であってよい。 When the electrode is a positive electrode, the electrode mixture slurry (positive electrode mixture slurry) may contain a positive electrode active material. The positive electrode active material may be a lithium transition metal compound such as a lithium transition metal oxide or a lithium transition metal phosphate.
 リチウム遷移金属酸化物は、例えば、マンガン酸リチウム、ニッケル酸リチウム、コバルト酸リチウム等であってよい。リチウム遷移金属酸化物は、マンガン酸リチウム、ニッケル酸リチウム、コバルト酸リチウム等に含有されるMn、Ni、Co等の遷移金属の一部を、1種若しくは2種以上の他の遷移金属、又はMg、Al等の金属元素(典型元素)で置換したリチウム遷移金属酸化物であってもよい。すなわち、リチウム遷移金属酸化物は、LiM又はLiM (Mは少なくとも1種の遷移金属を含む)で表される化合物であってよい。リチウム遷移金属酸化物は、具体的には、Li(Co1/3Ni1/3Mn1/3)O、LiNi1/2Mn1/2、LiNi1/2Mn3/2等であってよい。 The lithium transition metal oxide may be, for example, lithium manganate, lithium nickel oxide, lithium cobalt oxide, or the like. The lithium transition metal oxide is a part of transition metals such as Mn, Ni, and Co contained in lithium manganate, lithium nickelate, lithium cobalt, etc., and one or more other transition metals, or It may be a lithium transition metal oxide substituted with a metal element (typical element) such as Mg or Al. That is, the lithium transition metal oxide may be a compound represented by LiM 1 O 2 or LiM 1 2 O 4 (M 1 comprises at least one transition metal). Specifically, the lithium transition metal oxides are Li (Co 1/3 Ni 1/3 Mn 1/3 ) O 2 , LiNi 1/2 Mn 1/2 O 2 , and LiNi 1/2 Mn 3/2 O. It may be 4 mag.
 リチウム遷移金属酸化物は、エネルギ密度を更に向上させる観点から、好ましくは下記式(A)で表される化合物である。
LiNiCo 2+e   (A)
[式中、Mは、Al、Mn、Mg及びCaからなる群より選ばれる少なくとも1種であり、a、b、c、d及びeは、それぞれ0.2≦a≦1.2、0.5≦b≦0.9、0.1≦c≦0.4、0≦d≦0.2、-0.2≦e≦0.2、且つb+c+d=1を満たす数である。]
The lithium transition metal oxide is preferably a compound represented by the following formula (A) from the viewpoint of further improving the energy density.
Li a Ni b Co c M 2 d O 2 + e (A)
[In the formula, M 2 is at least one selected from the group consisting of Al, Mn, Mg and Ca, and a, b, c, d and e are 0.2 ≦ a ≦ 1.2 and 0, respectively. .5 ≦ b ≦ 0.9, 0.1 ≦ c ≦ 0.4, 0 ≦ d ≦ 0.2, −0.2 ≦ e ≦ 0.2, and b + c + d = 1. ]
 リチウム遷移金属リン酸塩は、LiFePO、LiMnPO、LiMn 1-xPO(0.3≦x≦1、MはFe、Ni、Co、Ti、Cu、Zn、Mg及びZrからなる群より選ばれる少なくとも1種の元素である)等であってよい。 Lithium transition metal phosphates are LiFePO 4 , LiMnPO 4 , LiMn x M 3 1-x PO 4 (0.3 ≤ x ≤ 1, M 3 are Fe, Ni, Co, Ti, Cu, Zn, Mg and Zr. It may be at least one element selected from the group consisting of) and the like.
 正極活物質は、造粒されていない一次粒子であってもよく、造粒された二次粒子であってもよい。 The positive electrode active material may be primary particles that have not been granulated, or may be secondary particles that have been granulated.
 正極活物質の粒径は、正極合剤層10の厚さ以下になるように調整される。正極活物質中に正極合剤層10の厚さ以上の粒径を有する粗粒子がある場合、ふるい分級、風流分級等により粗粒子を予め除去し、正極合剤層10の厚さ以下の粒径を有する正極活物質を選別する。 The particle size of the positive electrode active material is adjusted so as to be equal to or less than the thickness of the positive electrode mixture layer 10. When there are coarse particles having a particle size equal to or larger than the thickness of the positive electrode mixture layer 10 in the positive electrode active material, the coarse particles are removed in advance by sieving classification, wind flow classification, etc. A positive electrode active material having a diameter is selected.
 正極活物質の平均粒径は、好ましくは0.1μm以上であり、より好ましくは1μm以上である。正極活物質の平均粒径は、好ましくは30μm以下であり、より好ましくは25μm以下である。正極活物質の平均粒径は、正極活物質全体の体積に対する比率(体積分率)が50%のときの粒径(D50)である。正極活物質の平均粒径(D50)は、レーザー散乱型粒径測定装置(例えば、マイクロトラック)を用いて、レーザー散乱法により水中に正極活物質を懸濁させた懸濁液を測定することで得られる。 The average particle size of the positive electrode active material is preferably 0.1 μm or more, and more preferably 1 μm or more. The average particle size of the positive electrode active material is preferably 30 μm or less, more preferably 25 μm or less. The average particle size of the positive electrode active material is the particle size (D 50 ) when the ratio (volume fraction) to the volume of the entire positive electrode active material is 50%. For the average particle size (D 50 ) of the positive electrode active material, a suspension in which the positive electrode active material is suspended in water is measured by a laser scattering method using a laser scattering type particle size measuring device (for example, Microtrac). You can get it.
 正極活物質の含有量は、正極合剤スラリ全量基準で、20質量%以上、30質量%以上、又は40質量%以上であってよく、また、80質量%以下、70質量%以下、又は60質量%以下であってよい。 The content of the positive electrode active material may be 20% by mass or more, 30% by mass or more, or 40% by mass or more based on the total amount of the positive electrode mixture slurry, and 80% by mass or less, 70% by mass or less, or 60. It may be mass% or less.
 正極活物質の含有量は、正極合剤スラリ中の不揮発分全量を基準として、60質量%以上、70質量%以上、80質量%以上、又は90質量%以上であってよく、また、99質量%以下であってよい。これにより、得られる正極合剤層中の正極活物質の含有量は、当該含有量と同様の含有量となる。 The content of the positive electrode active material may be 60% by mass or more, 70% by mass or more, 80% by mass or more, or 90% by mass or more, and 99% by mass, based on the total amount of the non-volatile content in the positive electrode mixture slurry. It may be less than or equal to%. As a result, the content of the positive electrode active material in the obtained positive electrode mixture layer becomes the same as the content.
 電極が負極である場合、電極合剤スラリ(負極合剤スラリ)は負極活物質を含有してよい。負極活物質は、エネルギデバイスの分野で常用されるものを使用できる。負極活物質としては、具体的には、例えば、金属リチウム、チタン酸リチウム(LiTi12)、リチウム合金又はその他の金属化合物、炭素材料、金属錯体、及び有機高分子化合物が挙げられる。負極活物質は、これらの1種単独、又は2種以上の混合物であってよい。炭素材料としては、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等の黒鉛(グラファイト)、非晶質炭素、炭素繊維、及び、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラックなどが挙げられる。負極活物質は、より大きな理論容量(例えば500~1500Ah/kg)を得る観点から、シリコン、スズ又はこれらの元素を含む化合物(酸化物、窒化物、他の金属との合金)であってもよい。 When the electrode is a negative electrode, the electrode mixture slurry (negative electrode mixture slurry) may contain a negative electrode active material. As the negative electrode active material, those commonly used in the field of energy devices can be used. Specific examples of the negative electrode active material include metallic lithium, lithium titanate (Li 4 Ti 5 O 12 ), lithium alloys or other metal compounds, carbon materials, metal complexes, and organic polymer compounds. .. The negative electrode active material may be one of these alone or a mixture of two or more of them. Examples of carbon materials include natural graphite (scaly graphite, etc.), graphite such as artificial graphite (graphite), amorphous carbon, carbon fiber, and acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal. Examples include carbon black such as black. The negative electrode active material may be silicon, tin or a compound containing these elements (alloy with oxide, nitride, other metal) from the viewpoint of obtaining a larger theoretical capacity (for example, 500 to 1500 Ah / kg). Good.
 負極活物質の平均粒径(D50)は、粒径減少に伴う不可逆容量の増加を抑制しつつ、且つ、電解質塩の保持能力を高めたバランスの良い負極を得る観点から、好ましくは1μm以上であり、より好ましくは5μm以上であり、更に好ましくは10μm以上であり、また、好ましくは50μm以下であり、より好ましくは40μm以下であり、更に好ましくは30μm以下である。負極活物質の平均粒径(D50)は、上述した正極活物質の平均粒径(D50)と同様の方法により測定される。 The average particle size (D 50 ) of the negative electrode active material is preferably 1 μm or more from the viewpoint of obtaining a well-balanced negative electrode having an enhanced ability to retain electrolyte salts while suppressing an increase in irreversible capacity due to a decrease in particle size. It is more preferably 5 μm or more, further preferably 10 μm or more, preferably 50 μm or less, more preferably 40 μm or less, still more preferably 30 μm or less. The average particle size (D 50 ) of the negative electrode active material is measured by the same method as the average particle size (D 50 ) of the positive electrode active material described above.
 負極活物質の含有量は、負極合剤スラリ全量基準で、20質量%以上、30質量%以上、又は40質量%以上であってよく、また、80質量%以下、70質量%以下、又は60質量%以下であってよい。 The content of the negative electrode active material may be 20% by mass or more, 30% by mass or more, or 40% by mass or more based on the total amount of the negative electrode mixture slurry, and 80% by mass or less, 70% by mass or less, or 60. It may be mass% or less.
 負極活物質の含有量は、負極合剤スラリ中の不揮発分(負極合剤スラリから分散媒を除いた成分)全量を基準として、50質量%以上、55質量%以上、又は60質量%以上であってよく、また、99質量%以下、95質量%以下、又は90質量%以下であってよい。これにより、得られる負極合剤層中の負極活物質の含有量は、当該含有量と同様の含有量となる。 The content of the negative electrode active material is 50% by mass or more, 55% by mass or more, or 60% by mass or more based on the total amount of non-volatile components (components obtained by removing the dispersion medium from the negative electrode mixture slurry) in the negative electrode mixture slurry. It may be 99% by mass or less, 95% by mass or less, or 90% by mass or less. As a result, the content of the negative electrode active material in the obtained negative electrode mixture layer becomes the same as the content.
 電池用スラリ組成物が電極合剤スラリである場合、電極合剤スラリは、導電材を含有してもよい。導電材は、特に限定されないが、黒鉛、アセチレンブラック、カーボンブラック、炭素繊維等の炭素材料などであってよい。導電材は、これらを1種単独で、又は2種以上を組み合わせて用いられてよい。 When the battery slurry composition is an electrode mixture slurry, the electrode mixture slurry may contain a conductive material. The conductive material is not particularly limited, but may be a carbon material such as graphite, acetylene black, carbon black, or carbon fiber. As the conductive material, these may be used alone or in combination of two or more.
 導電材の含有量は、電極合剤スラリ全量基準で、0.1質量%以上、0.2質量%以上、又は0.3質量%以上であってよく、また、10質量%以下、5質量%以下、又は3質量%以下であってよい。 The content of the conductive material may be 0.1% by mass or more, 0.2% by mass or more, or 0.3% by mass or more, and 10% by mass or less and 5% by mass based on the total amount of the electrode mixture slurry. % Or less, or 3% by mass or less.
 導電材の含有量は、電極合剤スラリ中の不揮発分全量を基準として、0.1質量%以上、0.2質量%以上、又は0.3質量%以上であってよく、また、20質量%以下、10質量%以下、又は5質量%以下であってよい。これにより、得られる電極合剤層中の導電材の含有量は、当該含有量と同様の含有量となる。 The content of the conductive material may be 0.1% by mass or more, 0.2% by mass or more, or 0.3% by mass or more, and is 20% by mass, based on the total amount of the non-volatile content in the electrode mixture slurry. % Or less, 10% by mass or less, or 5% by mass or less. As a result, the content of the conductive material in the obtained electrode mixture layer becomes the same as the content.
 電池用スラリ組成物が電解質スラリである場合、電解質スラリは、酸化物粒子を含有してよい。すなわち、電解質スラリは、ポリマと、イオン液体と、電解質塩と、分散媒と、酸化物粒子と、を含有してよい。 When the battery slurry composition is an electrolyte slurry, the electrolyte slurry may contain oxide particles. That is, the electrolyte slurry may contain a polymer, an ionic liquid, an electrolyte salt, a dispersion medium, and oxide particles.
 酸化物粒子は、例えば無機酸化物の粒子である。無機酸化物は、例えば、Li、Mg、Al、Si、Ca、Ti、Zr、La、Na、K、Ba、Sr、V、Nb、B、Ge等を構成元素として含む無機酸化物であってよい。酸化物粒子は、好ましくは、SiO、Al、AlOOH、MgO、CaO、ZrO、TiO、LiLaZr12、及びBaTiOからなる群より選ばれる少なくとも1種の粒子である。酸化物粒子は極性を有するため、電解質層中の電解質の解離を促進し、電池特性を高めることができる。 The oxide particles are, for example, inorganic oxide particles. The inorganic oxide is, for example, an inorganic oxide containing Li, Mg, Al, Si, Ca, Ti, Zr, La, Na, K, Ba, Sr, V, Nb, B, Ge and the like as constituent elements. Good. The oxide particles are preferably at least one selected from the group consisting of SiO 2 , Al 2 O 3 , AlOOH, MgO, CaO, ZrO 2 , TiO 2 , Li 7 La 3 Zr 2 O 12 , and BaTIO 3 . It is a particle. Since the oxide particles have polarity, the dissociation of the electrolyte in the electrolyte layer can be promoted and the battery characteristics can be enhanced.
 酸化物粒子は、希土類金属の酸化物であってもよい。酸化物粒子は、具体的には、酸化スカンジウム、酸化イットリウム、酸化ランタン、酸化セリウム、酸化プラセオジム、酸化ネオジム、酸化サマリウム、酸化ユウロビウム、酸化ガドリニウム、酸化テルビウム、酸化ジスプロシウム、酸化ホルミウム、酸化エルビウム、酸化ツリウム、酸化イッテルビウム、酸化ルテチウム等であってよい。 The oxide particles may be oxides of rare earth metals. The oxide particles are specifically scandium oxide, yttrium oxide, lanthanum oxide, cerium oxide, placeodium oxide, neodymium oxide, samarium oxide, urobium oxide, gadolinium oxide, terbium oxide, dysprosium oxide, formium oxide, erbium oxide, and oxidation. It may be thulium, ytterbium oxide, lutetium oxide or the like.
 酸化物粒子は、疎水性表面を有していてもよい。酸化物粒子は、通常、その表面に水酸基を有し、親水性を示す傾向にある。疎水性表面を有する酸化物粒子は、疎水性表面を有しない酸化物粒子に比べて、表面の水酸基が減少している。そのため、疎水性表面を有する酸化物粒子を用いると、電解質スラリにイオン液体が含まれる場合(例えば、アニオン成分がN(SOF) 、N(SOCF 等を有するイオン液体)、イオン液体が疎水性であることから、酸化物粒子とイオン液体との親和性が向上することが予想される。そのため、電解質層7においてイオン液体の保液性がより一層向上し、その結果として、電解質層7のイオン伝導率が向上すると考えられる。また、疎水性表面を有する酸化物粒子が含まれる電解質層7を備える二次電池においては、特に放電特性を向上させることができる。 The oxide particles may have a hydrophobic surface. Oxide particles usually have a hydroxyl group on their surface and tend to be hydrophilic. Oxide particles having a hydrophobic surface have fewer hydroxyl groups on the surface than oxide particles having no hydrophobic surface. Therefore, the use of oxide particles having a hydrophobic surface, if it contains the ionic liquid in the electrolyte slurry (e.g., the anionic component is N (SO 2 F) 2 - having like -, N (SO 2 CF 3 ) 2 Since the ionic liquid) and the ionic liquid are hydrophobic, it is expected that the affinity between the oxide particles and the ionic liquid will be improved. Therefore, it is considered that the liquid retention property of the ionic liquid in the electrolyte layer 7 is further improved, and as a result, the ionic conductivity of the electrolyte layer 7 is improved. Further, in a secondary battery including an electrolyte layer 7 containing oxide particles having a hydrophobic surface, the discharge characteristics can be particularly improved.
 疎水性表面を有する酸化物粒子は、例えば、親水性を示す酸化物粒子を、疎水性表面を付与することが可能な表面処理剤で処理することによって得ることができる。すなわち、疎水性表面を有する酸化物粒子は、表面処理剤で表面処理された酸化物粒子を意味する。表面処理剤は、好ましくは、ケイ素含有化合物である。 Oxide particles having a hydrophobic surface can be obtained, for example, by treating oxide particles exhibiting hydrophilicity with a surface treatment agent capable of imparting a hydrophobic surface. That is, the oxide particles having a hydrophobic surface mean the oxide particles surface-treated with a surface treatment agent. The surface treatment agent is preferably a silicon-containing compound.
 酸化物粒子は、ケイ素含有化合物で表面処理されていてもよい。すなわち、酸化物粒子は、酸化物粒子の表面とケイ素含有化合物のケイ素原子とが酸素原子を介して結合していているものであってもよい。ケイ素含有化合物は、好ましくは、ハロゲン含有アルキルシラン、アルコキシシラン、エポキシ基含有シラン、アミノ基含有シラン、シラザン、及びシロキサンからなる群より選ばれる少なくとも1種である。 The oxide particles may be surface-treated with a silicon-containing compound. That is, the oxide particles may be those in which the surface of the oxide particles and the silicon atom of the silicon-containing compound are bonded via an oxygen atom. The silicon-containing compound is preferably at least one selected from the group consisting of halogen-containing alkylsilanes, alkoxysilanes, epoxy group-containing silanes, amino group-containing silanes, silazanes, and siloxanes.
 ハロゲン含有アルキルシランにおけるハロゲン元素は、塩素、フッ素等であってよい。塩素を含有するハロゲン含有アルキルシラン(アルキルクロロシラン)は、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、n-オクチルジメチルクロロシラン等であってもよい。フッ素を含有するハロゲン含有アルキルシラン(フルオロアルキルシラン)は、トリフルオロプロピルトリメトキシシラン、トリデカフルオロオクチルトリメトキシシラン等であってもよい。 The halogen element in the halogen-containing alkylsilane may be chlorine, fluorine, or the like. The halogen-containing alkylsilane (alkylchlorosilane) containing chlorine may be methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, n-octyldimethylchlorosilane or the like. The halogen-containing alkylsilane (fluoroalkylsilane) containing fluorine may be trifluoropropyltrimethoxysilane, tridecafluorooctyltrimethoxysilane, or the like.
 アルコキシシランは、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメトキシジフェニルシラン、n-プロピルトリメトキシシラン、ヘキシルトリメトキシシラン、テトラエトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、n-プロピルトリエトキシシラン等であってもよい。 The alkoxysilanes are methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, dimethoxydiphenylsilane, n-propyltrimethoxysilane, hexyltrimethoxysilane, tetraethoxysilane, methyltriethoxysilane, and dimethyldiphenyl. It may be ethoxysilane, n-propyltriethoxysilane, or the like.
 エポキシ基含有シランは、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等であってもよい。 The epoxy group-containing silanes are 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3-glycidoxypropylmethyldiethoxy. It may be silane, 3-glycidoxypropyltriethoxysilane, or the like.
 アミノ基含有シランは、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン等であってもよい。 Amino group-containing silanes are N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N- It may be phenyl-3-aminopropyltrimethoxysilane or the like.
 シラザンは、ヘキサメチルジシラザン等であってもよい。シロキサンは、ジメチルシリコーンオイル等であってもよい。これらの片末端又は両末端に、反応性官能基(例えば、カルボキシル基等)を有するものであってもよい。 Cilazan may be hexamethyldisilazan or the like. The siloxane may be dimethyl silicone oil or the like. Those having a reactive functional group (for example, a carboxyl group) at one end or both ends thereof may be used.
 疎水性表面を有する酸化物粒子(表面処理された酸化物粒子)は、公知の方法によって製造したものを用いてもよく、市販品をそのまま用いてもよい。 As the oxide particles having a hydrophobic surface (surface-treated oxide particles), those produced by a known method may be used, or commercially available products may be used as they are.
 酸化物粒子は、一般に、見かけ上の幾何学的形態から判断して、一体的に単一の粒子を形成している一次粒子(二次粒子を構成していない粒子)と、複数の一次粒子が集合することで形成される二次粒子とを含んでいてもよい。 Oxide particles are generally a primary particle (a particle that does not constitute a secondary particle) that integrally forms a single particle and a plurality of primary particles, judging from the apparent geometrical morphology. May include secondary particles formed by the aggregation of.
 酸化物粒子の比表面積は、2~500m/gであってよく、2~400m/g、5~100m/g、10~80m/g、又は15~60m/gであってもよい。比表面積が2~500m/gであると、このような酸化物粒子を含有する電解質層を備える二次電池は、放電特性に優れる傾向にある。同様の観点から、酸化物粒子の比表面積は、2m/g以上、5m/g以上、10m/g以上、15m/g以上、又は50m/g以上であってもよく、500m/g以下、400m/g以下、350m/g以下、300m/g以下、200m/g以下、100m/g以下、90m/g以下、80m/g以下、又は60m/g以下であってもよい。酸化物粒子の比表面積は、一次粒子及び二次粒子を含む酸化物粒子全体の比表面積を意味し、BET法によって測定される。 The specific surface area of the oxide particles may be 2 to 500 m 2 / g, 2 to 400 m 2 / g, 5 to 100 m 2 / g, 10 to 80 m 2 / g, or 15 to 60 m 2 / g. May be good. When the specific surface area is 2 to 500 m 2 / g, the secondary battery provided with the electrolyte layer containing such oxide particles tends to have excellent discharge characteristics. From the same viewpoint, the specific surface area of the oxide particles may be 2 m 2 / g or more, 5 m 2 / g or more, 10 m 2 / g or more, 15 m 2 / g or more, or 50 m 2 / g or more, and may be 500 m. 2 / g or less, 400m 2 / g or less, 350m 2 / g or less, 300m 2 / g or less, 200m 2 / g or less, 100m 2 / g or less, 90m 2 / g or less, 80m 2 / g or less, or 60m 2 It may be less than / g. The specific surface area of the oxide particles means the specific surface area of the entire oxide particles including the primary particles and the secondary particles, and is measured by the BET method.
 酸化物粒子の平均一次粒径(一次粒子の平均粒径)は、二次電池1の導電率を向上させる観点から、好ましくは0.005μm(5nm)以上であり、より好ましくは0.01μm(10nm)以上であり、更に好ましくは0.015μm(15nm)以上である。酸化物粒子の平均一次粒径は、電解質層7を薄くする観点から、好ましくは1μm以下であり、より好ましくは0.1μm以下であり、更に好ましくは0.05μm以下である。酸化物粒子の平均一次粒径は、酸化物粒子を透過型電子顕微鏡等によって観察することによって測定できる。 The average primary particle size of the oxide particles (average particle size of the primary particles) is preferably 0.005 μm (5 nm) or more, more preferably 0.01 μm (from the viewpoint of improving the conductivity of the secondary battery 1). It is 10 nm) or more, and more preferably 0.015 μm (15 nm) or more. The average primary particle size of the oxide particles is preferably 1 μm or less, more preferably 0.1 μm or less, and further preferably 0.05 μm or less from the viewpoint of thinning the electrolyte layer 7. The average primary particle size of the oxide particles can be measured by observing the oxide particles with a transmission electron microscope or the like.
 酸化物粒子の平均粒径は、好ましくは0.005μm以上であり、より好ましくは0.01μm以上であり、更に好ましくは0.03μm以上である。酸化物粒子の平均粒径は、好ましくは5μm以下であり、より好ましくは3μm以下であり、更に好ましくは1μm以下である。酸化物粒子の平均粒径は、レーザー回折法により測定され、体積累積粒度分布曲線を小粒径側から描いた場合に、体積累積が50%となる粒子径に対応する。 The average particle size of the oxide particles is preferably 0.005 μm or more, more preferably 0.01 μm or more, and further preferably 0.03 μm or more. The average particle size of the oxide particles is preferably 5 μm or less, more preferably 3 μm or less, and further preferably 1 μm or less. The average particle size of the oxide particles is measured by the laser diffraction method, and corresponds to the particle size at which the volume accumulation is 50% when the volume cumulative particle size distribution curve is drawn from the small particle size side.
 酸化物粒子の含有量は、電解質スラリ全量基準で、0.5質量%以上、1質量%以上、又は3質量%以上であってよく、また、50質量%以下、40質量%以下、又は30質量%以下であってよい。 The content of the oxide particles may be 0.5% by mass or more, 1% by mass or more, or 3% by mass or more based on the total amount of the electrolyte slurry, and 50% by mass or less, 40% by mass or less, or 30. It may be mass% or less.
 酸化物粒子の含有量は、電解質スラリ中の不揮発分全量を基準として、5質量%以上、10質量%以上、又は15質量%以上であってよく、また、80質量%以下、70質量%以下、又は60質量%以下であってよい。これにより、得られる電解質層中の酸化物粒子の含有量は、当該含有量と同様の含有量となる。 The content of the oxide particles may be 5% by mass or more, 10% by mass or more, or 15% by mass or more, and 80% by mass or less and 70% by mass or less, based on the total amount of the non-volatile content in the electrolyte slurry. , Or 60% by mass or less. As a result, the content of the oxide particles in the obtained electrolyte layer becomes the same as the content.
 電池用スラリ組成物は、他の成分として、セルロース繊維等の繊維などを含有してもよい。 The battery slurry composition may contain fibers such as cellulose fibers as other components.
 電池用スラリ組成物において、塗布により電池用の部材を製造することが可能であり、かつ、含有成分の再析出を抑制する観点から、ポリマ、イオン液体、電解質塩、及び分散媒の含有量の合計に対する、ポリマ、イオン液体、及び電解質塩の含有量の合計の質量比(以下、単に「質量比」と呼ぶことがある。)は、0.1~0.3(ポリマ、イオン液体、及び電解質塩の含有量の合計/ポリマ、イオン液体、電解質塩、及び分散媒の含有量の合計)である。 In the battery slurry composition, the content of the polymer, the ionic liquid, the electrolyte salt, and the dispersion medium can be produced from the viewpoint of being able to produce a member for the battery by coating and suppressing the reprecipitation of the contained components. The mass ratio of the total content of the polymer, the ionic liquid, and the electrolyte salt to the total (hereinafter, may be simply referred to as “mass ratio”) is 0.1 to 0.3 (polymer, ionic liquid, and Total content of electrolyte salt / total content of polyma, ionic liquid, electrolyte salt, and dispersion medium).
 質量比の下限は、電池用スラリ組成物の粘性を高めて塗布しやすくする観点から、0.1以上であり、好ましくは0.12以上、より好ましくは0.14以上、更に好ましくは0.15以上である。質量比の上限は、電池用スラリからの含有成分の再析出を抑制する観点から、0.3以下であり、好ましくは0.29以下、より好ましくは0.27以下、更に好ましくは0.2以下である。質量比は、0.1~0.29、0.1~0.27、0.1~0.2、0.12~0.3、0.12~0.29、0.12~0.27、0.12~0.2、0.14~0.3、0.14~0.29、0.14~0.27、0.14~0.2、0.15~0.3、0.15~0.29、0.15~0.27、又は0.15~0.2であってもよい。 The lower limit of the mass ratio is 0.1 or more, preferably 0.12 or more, more preferably 0.14 or more, still more preferably 0., from the viewpoint of increasing the viscosity of the battery slurry composition and facilitating application. It is 15 or more. The upper limit of the mass ratio is 0.3 or less, preferably 0.29 or less, more preferably 0.27 or less, still more preferably 0.2, from the viewpoint of suppressing reprecipitation of the contained components from the battery slurry. It is as follows. The mass ratios are 0.1 to 0.29, 0.1 to 0.27, 0.1 to 0.2, 0.12 to 0.3, 0.12 to 0.29, 0.12 to 0. 27, 0.12 to 0.2, 0.14 to 0.3, 0.14 to 0.29, 0.14 to 0.27, 0.14 to 0.2, 0.15 to 0.3, It may be 0.15 to 0.29, 0.15 to 0.27, or 0.15 to 0.2.
 電池用スラリ組成物が電極合剤スラリである場合、質量比は、好ましくは0.2以上、より好ましくは0.21以上、更に好ましくは0.22以上であり、また、好ましくは0.3以下、より好ましくは0.29以下、更に好ましくは0.28以下である。電池用スラリ組成物が電極合剤スラリである場合、質量比は、0.2~0.3、0.2~0.29、0.2~0.28、0.21~0.3、0.21~0.29、0.21~0.28、0.22~0.3、0.22~0.29、又は0.22~0.28であってもよい。 When the battery slurry composition is an electrode mixture slurry, the mass ratio is preferably 0.2 or more, more preferably 0.21 or more, still more preferably 0.22 or more, and preferably 0.3. Below, it is more preferably 0.29 or less, still more preferably 0.28 or less. When the battery slurry composition is an electrode mixture slurry, the mass ratios are 0.2 to 0.3, 0.2 to 0.29, 0.2 to 0.28, 0.21 to 0.3, It may be 0.21 to 0.29, 0.21 to 0.28, 0.22 to 0.3, 0.22 to 0.29, or 0.22 to 0.28.
 電池用スラリ組成物が電解質スラリである場合、後述する電解質シートを好適に作製する観点からは、質量比は、好ましくは0.13以上、より好ましくは0.15以上、更に好ましくは0.16以上であり、また、好ましくは、0.3以下、0.29以下、0.28以下、0.25以下、又は0.2以下である。電池用スラリ組成物が電解質スラリである場合、質量比は、0.13~0.3、0.13~0.29、0.13~0.28、0.13~0.25、0.13~0.2、0.15~0.3、0.15~0.29、0.15~0.28、0.15~0.25、0.15~0.2、0.16~0.3、0.16~0.29、0.16~0.28、0.16~0.25、又は0.16~0.2であってもよい。 When the battery slurry composition is an electrolyte slurry, the mass ratio is preferably 0.13 or more, more preferably 0.15 or more, still more preferably 0.16, from the viewpoint of preferably producing an electrolyte sheet described later. It is more than that, and is preferably 0.3 or less, 0.29 or less, 0.28 or less, 0.25 or less, or 0.2 or less. When the battery slurry composition is an electrolyte slurry, the mass ratios are 0.13 to 0.3, 0.13 to 0.29, 0.13 to 0.28, 0.13 to 0.25, 0. 13-0.2, 0.15-0.3, 0.15-0.29, 0.15-0.28, 0.15-0.25, 0.15-0.2, 0.16- It may be 0.3, 0.16 to 0.29, 0.16 to 0.28, 0.16 to 0.25, or 0.16 to 0.2.
 電池用スラリ組成物が電解質スラリである場合、電解質スラリの塗布により電池部材を作製する(詳細は後述)観点からは、好ましくは0.1以上、より好ましくは0.11以上、更に好ましくは0.13以上であり、また、好ましくは0.25以下、より好ましくは0.23以下、更に好ましくは0.2以下である。電池用スラリ組成物が電解質スラリである場合、質量比は、0.1~0.25、0.1~0.23、0.1~0.2、0.11~0.25、0.11~0.23、0.11~0.2、0.13~0.25、0.13~0.23、又は0.13~0.2であってもよい。 When the battery slurry composition is an electrolyte slurry, it is preferably 0.1 or more, more preferably 0.11 or more, still more preferably 0, from the viewpoint of producing a battery member by applying the electrolyte slurry (details will be described later). It is .13 or more, preferably 0.25 or less, more preferably 0.23 or less, still more preferably 0.2 or less. When the battery slurry composition is an electrolyte slurry, the mass ratios are 0.1 to 0.25, 0.1 to 0.23, 0.1 to 0.2, 0.11 to 0.25, 0. It may be 11 to 0.23, 0.11 to 0.2, 0.13 to 0.25, 0.13 to 0.23, or 0.13 to 0.2.
 続いて、上述した電池用スラリ組成物を用いた電極、電解質シート又は電池部材を製造する方法を説明する。 Subsequently, a method for manufacturing an electrode, an electrolyte sheet, or a battery member using the above-mentioned battery slurry composition will be described.
<電極の製造方法>
 上述した電池用スラリ組成物を用いて、集電体、及び電極合剤層をこの順に備える電極(正極6又は負極8)を製造することができる。一実施形態に係る電極の製造方法は、上述した電池用スラリ組成物を、集電体の一面上に塗布して電極合剤層を形成する工程を備える。この電極の製造方法において、電池用スラリ組成物は、上述した電極合剤スラリであってよい。
<Method of manufacturing electrodes>
Using the above-mentioned battery slurry composition, an electrode (positive electrode 6 or negative electrode 8) having a current collector and an electrode mixture layer in this order can be manufactured. The method for manufacturing an electrode according to one embodiment includes a step of applying the above-mentioned battery slurry composition on one surface of a current collector to form an electrode mixture layer. In this method for manufacturing an electrode, the battery slurry composition may be the electrode mixture slurry described above.
 本実施形態に係る電極の製造方法の例として、正極6を製造する方法を説明する。図3は、一実施形態に係る正極6の製造方法を示す模式断面図である。この製造方法では、まず、図3(a)に示すように、正極集電体9を用意する。 As an example of the electrode manufacturing method according to the present embodiment, a method of manufacturing the positive electrode 6 will be described. FIG. 3 is a schematic cross-sectional view showing a method of manufacturing the positive electrode 6 according to the embodiment. In this manufacturing method, first, as shown in FIG. 3A, a positive electrode current collector 9 is prepared.
 正極集電体9は、アルミニウム、チタン、タンタル等の金属、又はそれらの合金であってよい。正極集電体9は、軽量で高い重量エネルギ密度を有するため、好ましくはアルミニウム又はその合金である。正極集電体9の厚さは、10μm以上であってよく、100μm以下であってよい。 The positive electrode current collector 9 may be a metal such as aluminum, titanium, tantalum, or an alloy thereof. Since the positive electrode current collector 9 is lightweight and has a high weight energy density, it is preferably aluminum or an alloy thereof. The thickness of the positive electrode current collector 9 may be 10 μm or more, and may be 100 μm or less.
 次に、図3(b)に示すように、正極集電体9の一面9a上に、正極合剤スラリを塗布して、正極合剤スラリの層10Aを設ける。正極合剤スラリは、上述した電池用スラリ組成物において含有し得る成分を含む。 Next, as shown in FIG. 3B, a positive electrode mixture slurry is applied on one surface 9a of the positive electrode current collector 9 to provide a layer 10A of the positive electrode mixture slurry. The positive electrode mixture slurry contains components that can be contained in the battery slurry composition described above.
 正極合剤スラリを塗布する方法としては、例えばアプリケータを用いて塗布する方法、スプレーにより塗布する方法等が挙げられる。正極合剤スラリの層10Aの厚さは、例えば、5~100μmであってよい。 Examples of the method of applying the positive electrode mixture slurry include a method of applying using an applicator, a method of applying by spraying, and the like. The thickness of the layer 10A of the positive electrode mixture slurry may be, for example, 5 to 100 μm.
 次に、正極合剤スラリの層10Aに含まれる分散媒を揮発させる。分散媒を揮発させる方法は、例えば、加熱により乾燥させる方法、減圧する方法、減圧と加熱を組み合わせる方法等であってよい。分散媒を揮発させることにより、正極合剤層10が形成され、図3(c)に示すような正極6を得ることができる。 Next, the dispersion medium contained in the layer 10A of the positive electrode mixture slurry is volatilized. The method for volatilizing the dispersion medium may be, for example, a method of drying by heating, a method of reducing the pressure, a method of combining the pressure reduction and the heating, and the like. By volatilizing the dispersion medium, the positive electrode mixture layer 10 is formed, and the positive electrode 6 as shown in FIG. 3C can be obtained.
 この製造方法では、上述の電池用スラリ組成物が用いられているため、塗布により正極6を製造でき、また、正極合剤層10が均一な厚さで形成され、正極集電体9に対する密着性にも優れた正極6を製造することもできる。 In this manufacturing method, since the above-mentioned battery slurry composition is used, the positive electrode 6 can be manufactured by coating, and the positive electrode mixture layer 10 is formed with a uniform thickness and adheres to the positive electrode current collector 9. It is also possible to manufacture a positive electrode 6 having excellent properties.
 一実施形態に係る負極8の製造方法は、上述した正極6の製造方法と同様であってよい。すなわち、負極8の製造方法は、上述した正極6の製造方法において、「正極」を「負極」に読み替えた方法である。 The manufacturing method of the negative electrode 8 according to the embodiment may be the same as the manufacturing method of the positive electrode 6 described above. That is, the method for manufacturing the negative electrode 8 is a method in which "positive electrode" is read as "negative electrode" in the above-mentioned manufacturing method for the positive electrode 6.
 負極8の製造方法において用いられる負極集電体11は、アルミニウム、銅、ニッケル、ステンレス等の金属、それらの合金などであってよい。負極集電体11は、軽量で高い重量エネルギ密度を有するため、好ましくはアルミニウム又はその合金である。負極集電体11は、薄膜への加工のしやすさ及びコストの観点から、好ましくは銅である。負極集電体11の厚さは、10μm以上であってよく、100μm以下であってよい。 The negative electrode current collector 11 used in the method for manufacturing the negative electrode 8 may be a metal such as aluminum, copper, nickel, stainless steel, an alloy thereof, or the like. Since the negative electrode current collector 11 is lightweight and has a high weight energy density, it is preferably aluminum or an alloy thereof. The negative electrode current collector 11 is preferably copper from the viewpoint of ease of processing into a thin film and cost. The thickness of the negative electrode current collector 11 may be 10 μm or more, and may be 100 μm or less.
<電解質シートの製造方法>
 上述した電池用スラリ組成物を用いて、電解質シートを製造することができる。電解質シートは、基材と、基材の一面上に形成された電解質層とを備えるシートであり、電解質層7を得るために用いられる。
<Manufacturing method of electrolyte sheet>
An electrolyte sheet can be produced by using the above-mentioned battery slurry composition. The electrolyte sheet is a sheet including a base material and an electrolyte layer formed on one surface of the base material, and is used to obtain the electrolyte layer 7.
 一実施形態に係る電解質シートの製造方法は、上述した電池用スラリ組成物を、基材の一面上に塗布して電解質層を形成する工程を備える。この電解質シートの製造方法において、電池用スラリ組成物は、上述した電解質スラリであってよい。 The method for producing an electrolyte sheet according to one embodiment includes a step of applying the above-mentioned battery slurry composition on one surface of a base material to form an electrolyte layer. In this method for producing an electrolyte sheet, the battery slurry composition may be the above-mentioned electrolyte slurry.
 図4は、一実施形態に係る電解質シートの製造方法を示す模式断面図である。この製造方法では、まず、図4(a)に示すように、基材13を用意する。 FIG. 4 is a schematic cross-sectional view showing a method for manufacturing an electrolyte sheet according to an embodiment. In this manufacturing method, first, as shown in FIG. 4A, the base material 13 is prepared.
 基材13は、分散媒を揮発させる際の加熱に耐えうる耐熱性を有するものであって、電池用スラリ組成物と反応せず、電池用スラリ組成物により膨潤しないものであれば制限されないが、例えば樹脂で形成されている。基材13は、より具体的には、ポリエチレンテレフタレート、ポリ四フッ化エチレン、ポリイミド、ポリエーテルサルフォン、ポリエーテルケトン等の樹脂(汎用のエンジニアプラスチック)からなるフィルムであってよい。基材13の厚さは、例えば、5μm以上であってよく、100μm以下であってよい。 The base material 13 is not limited as long as it has heat resistance that can withstand heating when the dispersion medium is volatilized, does not react with the battery slurry composition, and does not swell due to the battery slurry composition. , For example, made of resin. More specifically, the base material 13 may be a film made of a resin (general-purpose engineering plastic) such as polyethylene terephthalate, polytetrafluoroethylene, polyimide, polyethersulfone, and polyetherketone. The thickness of the base material 13 may be, for example, 5 μm or more and 100 μm or less.
 次に、図4(b)に示すように、基材13の一面13a上に、電解質スラリを塗布して、電解質スラリの層7Aを設ける。電解質スラリは、上述した電池用スラリ組成物である。 Next, as shown in FIG. 4B, an electrolyte slurry is applied onto one surface 13a of the base material 13 to provide a layer 7A of the electrolyte slurry. The electrolyte slurry is the battery slurry composition described above.
 電解質スラリを塗布する方法は、上述した正極合剤スラリを塗布する方法と同様であってよい。電解質スラリの層7Aの厚さは、例えば、5~30μmであってよい。 The method of applying the electrolyte slurry may be the same as the method of applying the positive electrode mixture slurry described above. The thickness of the layer 7A of the electrolyte slurry may be, for example, 5 to 30 μm.
 次に、電解質スラリの層7Aに含まれる分散媒を揮発させる。分散媒を揮発させる方法は、上述した正極合剤スラリの層10Aに含まれる分散媒を揮発させる方法と同様であってよい。分散媒を揮発させることにより、電解質層7が形成され、図4(c)に示すような電解質シート14を得ることができる。 Next, the dispersion medium contained in the layer 7A of the electrolyte slurry is volatilized. The method for volatilizing the dispersion medium may be the same as the method for volatilizing the dispersion medium contained in the layer 10A of the positive electrode mixture slurry described above. By volatilizing the dispersion medium, the electrolyte layer 7 is formed, and the electrolyte sheet 14 as shown in FIG. 4C can be obtained.
 この製造方法では、上述の電池用スラリ組成物が用いられているため、塗布により電解質シート14を製造でき、また、厚さが均一で強度に優れた電解質層7が形成された、自立可能な電解質シート14を製造することができる。また、得られる電解質シート14においては、基材13を容易に剥離することもできる。 Since the above-mentioned battery slurry composition is used in this production method, the electrolyte sheet 14 can be produced by coating, and the electrolyte layer 7 having a uniform thickness and excellent strength is formed and can stand on its own. The electrolyte sheet 14 can be manufactured. Further, in the obtained electrolyte sheet 14, the base material 13 can be easily peeled off.
 電解質シート14は、ロール状に巻き取りながら連続的に製造することもできる。その場合には、電解質層7の表面が基材13の背面に接触して電解質層7の一部が基材13に貼りつくことにより、電解質層7が破損することがある。このような事態を防ぐために、電解質シートは他の実施形態として、電解質層7の基材13と反対側に保護材を設けたものであってもよい。 The electrolyte sheet 14 can be continuously manufactured while being wound into a roll. In that case, the surface of the electrolyte layer 7 may come into contact with the back surface of the base material 13 and a part of the electrolyte layer 7 may adhere to the base material 13 to damage the electrolyte layer 7. In order to prevent such a situation, as another embodiment, the electrolyte sheet may be provided with a protective material on the side opposite to the base material 13 of the electrolyte layer 7.
 保護材は、電解質層7から容易に剥離可能なものであればよく、好ましくはポリエチレン、ポリプロピレン、ポリ四フッ化エチレン等の無極性の樹脂フィルムである。無極性の樹脂フィルムを用いると、電解質層7と保護材とが互いに貼りつかず、保護材を容易に剥離することができる。 The protective material may be any material that can be easily peeled off from the electrolyte layer 7, and is preferably a non-polar resin film such as polyethylene, polypropylene, or polytetrafluoroethylene. When a non-polar resin film is used, the electrolyte layer 7 and the protective material do not stick to each other, and the protective material can be easily peeled off.
 電解質シート14と、正極6及び負極8とを用いて、二次電池1を製造することができる。この製造方法においては、例えば、電解質シート14から基材13を、場合によっては保護材を剥離し、正極6、電解質層7及び負極8を、例えばラミネートにより積層することで二次電池1が得られる。このとき、電解質層7が、正極6の正極合剤層10側かつ負極8の負極合剤層12側に位置するように、すなわち、正極集電体9、正極合剤層10、電解質層7、負極合剤層12及び負極集電体11がこの順で配置されるように積層する。 The secondary battery 1 can be manufactured by using the electrolyte sheet 14, the positive electrode 6 and the negative electrode 8. In this manufacturing method, for example, the secondary battery 1 is obtained by peeling the base material 13 from the electrolyte sheet 14 and, in some cases, the protective material, and laminating the positive electrode 6, the electrolyte layer 7, and the negative electrode 8 by, for example, laminating. Be done. At this time, the electrolyte layer 7 is located on the positive electrode mixture layer 10 side of the positive electrode 6 and on the negative electrode mixture layer 12 side of the negative electrode 8, that is, the positive electrode current collector 9, the positive electrode mixture layer 10, and the electrolyte layer 7. , The negative electrode mixture layer 12 and the negative electrode current collector 11 are laminated in this order.
<電池部材の製造方法>
 上述した電池用スラリ組成物を用いて、集電体、電極合剤層、及び電解質層をこの順に備える電池部材(正極部材又は負極部材)を製造することができる。一実施形態に係る電池部材の製造方法は、集電体の一面上に電極活物質を含有する電極合剤中間層を形成する工程と、電極合剤中間層の集電体とは反対側の面上に、上述した電池用スラリ組成物を塗布する工程と、分散媒を揮発させて、電極合剤層及び電解質層を形成する工程と、を備える。
<Manufacturing method of battery parts>
Using the above-mentioned battery slurry composition, a battery member (positive electrode member or negative electrode member) including a current collector, an electrode mixture layer, and an electrolyte layer in this order can be manufactured. The method for manufacturing the battery member according to one embodiment includes a step of forming an electrode mixture intermediate layer containing an electrode active material on one surface of a current collector and a method on the opposite side of the current collector of the electrode mixture intermediate layer. A step of applying the above-mentioned battery slurry composition on the surface and a step of volatilizing the dispersion medium to form an electrode mixture layer and an electrolyte layer are provided.
 本実施形態に係る電池部材の製造方法の例として、正極部材を製造する方法を説明する。図5は、一実施形態に係る正極部材の製造方法を示す模式断面図である。この製造方法では、まず、図5(a)に示すように、正極集電体9を用意する。 As an example of the method for manufacturing the battery member according to the present embodiment, a method for manufacturing the positive electrode member will be described. FIG. 5 is a schematic cross-sectional view showing a method of manufacturing a positive electrode member according to an embodiment. In this manufacturing method, first, as shown in FIG. 5A, a positive electrode current collector 9 is prepared.
 次に、図5(b)に示すように、正極集電体9の一面9a上に、正極合剤中間層10Bを形成する。 Next, as shown in FIG. 5B, the positive electrode mixture intermediate layer 10B is formed on one surface 9a of the positive electrode current collector 9.
 正極合剤中間層10Bを形成する方法は、一実施形態において、正極合剤前駆体を正極集電体9の一面9a上に塗布する方法である。正極合剤前駆体は、上述した電池用スラリ組成物であってよく、電池用スラリ組成物とは異なる組成物であってもよい。正極合剤前駆体が電池用スラリ組成物とは異なる組成物である場合、正極合剤前駆体は、一実施形態において、正極活物質、ポリマ、及び分散媒を含有する。正極活物質、ポリマ、及び分散媒は、上述した態様と同様のものであってよい。すなわち、正極合剤前駆体は、イオン液体及び電解質塩を含有しなくてもよい。 The method of forming the positive electrode mixture intermediate layer 10B is, in one embodiment, a method of applying the positive electrode mixture precursor onto one surface 9a of the positive electrode current collector 9. The positive electrode mixture precursor may be the above-mentioned battery slurry composition, or may be a composition different from the battery slurry composition. When the positive electrode mixture precursor is a composition different from the battery slurry composition, the positive electrode mixture precursor contains, in one embodiment, a positive electrode active material, a polymer, and a dispersion medium. The positive electrode active material, the polymer, and the dispersion medium may be the same as those described above. That is, the positive electrode mixture precursor does not have to contain an ionic liquid and an electrolyte salt.
 正極合剤前駆体を正極集電体9の一面9a上に塗布する方法は、上述した正極合剤スラリを塗布する方法と同様であってよい。正極合剤前駆体が塗布されることにより、正極合剤中間層10Bが形成される。正極合剤中間層10Bの厚さは、例えば、5~100μmであってよい。 The method of applying the positive electrode mixture precursor on one surface 9a of the positive electrode current collector 9 may be the same as the method of applying the positive electrode mixture slurry described above. By applying the positive electrode mixture precursor, the positive electrode mixture intermediate layer 10B is formed. The thickness of the positive electrode mixture intermediate layer 10B may be, for example, 5 to 100 μm.
 正極合剤前駆体が塗布された後、正極合剤前駆体に含まれる分散媒を揮発させてもよい。つまり、「正極合剤中間層」には、正極合剤前駆体で形成された層、及び、正極極合剤前駆体から一部又は全部の分散媒が揮発して形成された層が含まれる。分散媒を揮発させる方法は、上述した正極合剤スラリの層10Aに含まれる分散媒を揮発させる方法と同様であってよい。 After the positive electrode mixture precursor is applied, the dispersion medium contained in the positive electrode mixture precursor may be volatilized. That is, the "positive electrode mixture intermediate layer" includes a layer formed of the positive electrode mixture precursor and a layer formed by volatilizing a part or all of the dispersion medium from the positive electrode mixture precursor. .. The method for volatilizing the dispersion medium may be the same as the method for volatilizing the dispersion medium contained in the layer 10A of the positive electrode mixture slurry described above.
 次に、図5(c)に示すように、正極合剤中間層10Bの正極集電体9とは反対側の面10a上に、電解質スラリを塗布して、電解質スラリの層7Aを設ける。電解質スラリは、上述した電池用スラリ組成物である。 Next, as shown in FIG. 5C, an electrolyte slurry is applied on the surface 10a of the positive electrode mixture intermediate layer 10B opposite to the positive electrode current collector 9, and the layer 7A of the electrolyte slurry is provided. The electrolyte slurry is the battery slurry composition described above.
 電解質スラリを塗布する方法は、上述した正極合剤スラリを塗布する方法と同様であってよい。電解質スラリの層7Aの厚さは、例えば、5~30μmであってよい。 The method of applying the electrolyte slurry may be the same as the method of applying the positive electrode mixture slurry described above. The thickness of the layer 7A of the electrolyte slurry may be, for example, 5 to 30 μm.
 この製造方法において、正極合剤中間層10Bがイオン液体及び電解質塩を含有しない場合、すなわち、正極合剤前駆体がイオン液体及び電解質塩を含有しない場合には、電解質スラリの層7Aを設けたときに、電解質スラリの層7Aに含まれるイオン液体及び電解質塩が、イオン液体電解液として、電解質スラリの層7Aから正極合剤中間層10Bに移動する。この移動は、正極合剤中間層10Bと電解質スラリの層7Aとの間のイオン液体電解液の濃度差を小さくしようとする作用、重力による作用、又は毛細管現象に基づくと推察される。よって、電解質スラリの層7Aが塗布された後の正極合剤中間層10Bには、イオン液体及び電解質塩が含まれる。 In this production method, when the positive electrode mixture intermediate layer 10B does not contain the ionic liquid and the electrolyte salt, that is, when the positive electrode mixture precursor does not contain the ionic liquid and the electrolyte salt, the electrolyte slurry layer 7A is provided. Occasionally, the ionic liquid and the electrolyte salt contained in the layer 7A of the electrolyte slurry move from the layer 7A of the electrolyte slurry to the positive electrode mixture intermediate layer 10B as the ionic liquid electrolyte. It is presumed that this movement is due to an action of reducing the concentration difference of the ionic liquid electrolytic solution between the positive electrode mixture intermediate layer 10B and the layer 7A of the electrolyte slurry, an action due to gravity, or a capillary phenomenon. Therefore, the positive electrode mixture intermediate layer 10B after the electrolyte slurry layer 7A is applied contains an ionic liquid and an electrolyte salt.
 次に、正極合剤中間層10B、及び電解質スラリの層7Aに含まれる分散媒を揮発させる。分散媒を揮発させる方法は、上述した正極合剤スラリの層10Aに含まれる分散媒を揮発させる方法と同様であってよい。分散媒を揮発させることにより、正極合剤層10、及び電解質層7が形成され、図5(d)に示すような、正極部材15を得ることができる。 Next, the dispersion medium contained in the positive electrode mixture intermediate layer 10B and the electrolyte slurry layer 7A is volatilized. The method for volatilizing the dispersion medium may be the same as the method for volatilizing the dispersion medium contained in the layer 10A of the positive electrode mixture slurry described above. By volatilizing the dispersion medium, the positive electrode mixture layer 10 and the electrolyte layer 7 are formed, and the positive electrode member 15 as shown in FIG. 5D can be obtained.
 この製造方法では、上述の電池用スラリ組成物が用いられているため、正極合剤中間層10B上に均一な厚さで電解質スラリを塗布することができ、また、電解質スラリを正極合剤中間層10Bへ浸透させやすくすることもできる。 In this production method, since the above-mentioned battery slurry composition is used, the electrolyte slurry can be applied on the positive electrode mixture intermediate layer 10B with a uniform thickness, and the electrolyte slurry is applied to the positive electrode mixture intermediate. It can also be facilitated to penetrate layer 10B.
 一実施形態に係る負極部材の製造方法は、上述した正極部材15の製造方法と同様であってよい。すなわち、負極部材の製造方法は、上述した正極部材15の製造方法において、「正極」を「負極」に読み替えた方法である。 The method for manufacturing the negative electrode member according to the embodiment may be the same as the method for manufacturing the positive electrode member 15 described above. That is, the method for manufacturing the negative electrode member is a method in which "positive electrode" is read as "negative electrode" in the above-mentioned manufacturing method for the positive electrode member 15.
 上述の製造方法により得られる正極部材15と、負極部材とを用いて、二次電池1を得ることができる。二次電池1は、正極部材15の電解質層7側の面、及び負極部材の電解質層7側の面を合わせてプレスすること等により、製造することができる。 The secondary battery 1 can be obtained by using the positive electrode member 15 and the negative electrode member obtained by the above-mentioned manufacturing method. The secondary battery 1 can be manufactured by pressing the surface of the positive electrode member 15 on the electrolyte layer 7 side and the surface of the negative electrode member 15 on the electrolyte layer 7 side together.
 以上説明した実施形態は、種々の変形例をとり得る。 The embodiments described above can take various modifications.
 第1の変形例として、電池用スラリ組成物は、いわゆるバイポーラ型二次電池の製造に用いられてもよい。図6は、バイポーラ型二次電池の電極群の一実施形態を示す分解斜視図である。電極群2Bは、正極6と、第1の電解質層7と、バイポーラ電極16と、第2の電解質層7と、負極8とをこの順に備えている。バイポーラ電極16は、バイポーラ電極集電体17と、バイポーラ電極集電体17の負極側の面(正極面)に設けられた正極合剤層10と、バイポーラ電極集電体の正極側の面(負極面)に設けられた負極合剤層12とを備えている。 As a first modification, the battery slurry composition may be used in the manufacture of a so-called bipolar secondary battery. FIG. 6 is an exploded perspective view showing an embodiment of the electrode group of the bipolar type secondary battery. The electrode group 2B includes a positive electrode 6, a first electrolyte layer 7, a bipolar electrode 16, a second electrolyte layer 7, and a negative electrode 8 in this order. The bipolar electrode 16 includes a bipolar electrode current collector 17, a positive electrode mixture layer 10 provided on the negative electrode side surface (positive electrode surface) of the bipolar electrode current collector 17, and a positive electrode side surface (positive electrode surface) of the bipolar electrode current collector. It is provided with a negative electrode mixture layer 12 provided on the negative electrode surface).
 上述した電池用スラリ組成物は、バイポーラ型二次電池における正極6、負極8、電解質層7の製造に用いることができ、バイポーラ電極16における、正極合剤層10の形成、及び負極合剤層12の形成に用いることができる。 The above-mentioned battery slurry composition can be used for producing the positive electrode 6, the negative electrode 8, and the electrolyte layer 7 in the bipolar secondary battery, and forms the positive electrode mixture layer 10 and the negative electrode mixture layer in the bipolar electrode 16. It can be used to form twelve.
 また、バイポーラ型二次電池における電極群2Bには、正極6と、電解質層7とをこの順に備える第1の電池部材、更には、負極8と、電解質層7とをこの順に備える第2の電池部材(負極部材)が含まれていると見ることができる。また、電極群2Bには、電解質層7と、バイポーラ電極16と、電解質層7とをこの順に備える第3の電池部材(バイポーラ電池部材)が含まれていると見ることもできる。上述した電池用スラリ組成物は、これらの電池部材の製造における、正極合剤層10の形成、及び負極合剤層12の形成にも用いることができる。 Further, the electrode group 2B in the bipolar type secondary battery includes a first battery member having a positive electrode 6 and an electrolyte layer 7 in this order, and a second battery member having a negative electrode 8 and an electrolyte layer 7 in this order. It can be seen that the battery member (negative electrode member) is included. Further, it can be seen that the electrode group 2B includes a third battery member (bipolar battery member) including the electrolyte layer 7, the bipolar electrode 16, and the electrolyte layer 7 in this order. The above-mentioned battery slurry composition can also be used for forming the positive electrode mixture layer 10 and the negative electrode mixture layer 12 in the manufacture of these battery members.
 第2の変形例として、電池用スラリ組成物は、界面形成層の形成に用いることもできる。界面形成層は、正極における正極合剤層と電解質層との間、及び/又は負極における負極合剤層と電解質層との間に設けられる層である。界面形成層によって、電極合剤層と電解質層との界面を更に良好に形成することができ、二次電池におけるイオン伝導率を更に高めることが可能となる。界面形成層を形成する方法は、例えば、電解質層の一面上に、上述した電池用スラリ組成物を塗布して、分散媒を揮発させる方法であってよい。界面形成層の形成に用いられる電池用スラリ組成物は、好ましくは、上述した電解質スラリに含まれる成分を含有する。 As a second modification, the battery slurry composition can also be used to form an interface cambium. The interface cambium is a layer provided between the positive electrode mixture layer and the electrolyte layer on the positive electrode and / or between the negative electrode mixture layer and the electrolyte layer on the negative electrode. The interface forming layer makes it possible to form the interface between the electrode mixture layer and the electrolyte layer more satisfactorily, and it becomes possible to further increase the ionic conductivity in the secondary battery. The method of forming the interface forming layer may be, for example, a method of applying the above-mentioned battery slurry composition on one surface of the electrolyte layer to volatilize the dispersion medium. The battery slurry composition used for forming the interface cambium preferably contains the components contained in the above-mentioned electrolyte slurry.
 以下、実施例により本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下において、電解質塩を溶解させたイオン液体(イオン液体電解液)の組成を表す際に、「電解質塩の濃度/電解質塩の種類/イオン液体の種類」のように表記することがある。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. In the following, when expressing the composition of an ionic liquid (ionic liquid electrolyte) in which an electrolyte salt is dissolved, it may be expressed as "concentration of electrolyte salt / type of electrolyte salt / type of ionic liquid". ..
<実施例1-1~1-3、比較例1-1~1-5>
 表1に示す組成に基づいて、層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(NMC、正極活物質)、アセチレンブラック(導電材、平均粒径48nm、製品名:HS-100、デンカ株式会社)、ポリフッ化ビニリデンを分散媒(NMP)に溶解させたポリマ溶液(結着剤、固形分12質量%)、及び、場合により分散媒(NMP)を、混錬装置を用いて混錬した。これに、イオン液体電解液として、電解質塩を溶解させたイオン液体(1.5moL/L/LiFSI/EMI-FSI)を加えて更に混錬し、正極合剤スラリを調製した。
<Examples 1-1 to 1-3, Comparative examples 1-1 to 1-5>
Based on the composition shown in Table 1, layered lithium-nickel-manganese-cobalt composite oxide (NMC, positive electrode active material), acetylene black (conductive material, average particle size 48 nm, product name: HS-100, Denka Co., Ltd.) ), A polymer solution in which polyvinylidene fluoride was dissolved in a dispersion medium (NMP) (binder, solid content 12% by mass), and optionally a dispersion medium (NMP) were kneaded using a kneading device. An ionic liquid (1.5 moL / L / LiFSI / EMI-FSI) in which an electrolyte salt was dissolved was added as an ionic liquid electrolytic solution and further kneaded to prepare a positive electrode mixture slurry.
<実施例1-4~1-5、比較例1-6~1-8>
[ポリマの合成(合成例1)]
 撹拌機、温度計、冷却管及び窒素ガス導入管を装備した3リットルのセパラブルフラスコに、精製水1804gを仕込み、窒素ガス通気量200mL/分の条件下、撹拌しながら、74℃まで昇温した後、窒素ガスの通気を止めた。次いで、重合開始剤の過硫酸アンモニウム0.968gを精製水76gに溶解させた水溶液を添加し、直ちに、ニトリル基含有単量体のアクリロニトリル183.8g、カルボキシル基含有単量体のアクリル酸9.7g(アクリロニトリル1モルに対して0.039モルの割合)、及び単量体のメトキシトリエチレングリコールアクリレート(商品名:NKエステルAM-30G、新中村化学工業株式会社)6.5g(アクリロニトリル1モルに対して0.0085モルの割合)の混合液を、系の温度を74±2℃に保ちながら、2時間かけて滴下した。続いて、懸濁した反応系に、過硫酸アンモニウム0.25gを精製水21.3gに溶解させた水溶液を追加添加し、84℃まで昇温した後、系の温度を84±2℃に保ちながら、2.5時間反応を進めた。その後、1時間かけて40℃まで冷却した後、撹拌を止めて一晩室温で放冷し、ポリアクリロニトリル骨格にアクリル酸及び直鎖エーテル基を付加した共重合体(ポリマA)が沈殿した反応液を得た。この反応液を吸引ろ過し、回収した湿潤状態の沈殿を精製水1800gで3回洗浄した後、80℃で10時間真空乾燥して、単離及び精製し、ポリマAを得た。
<Examples 1-4 to 1-5, Comparative examples 1-6 to 1-8>
[Synthesis of Polymer (Synthesis Example 1)]
1804 g of purified water was placed in a 3 liter separable flask equipped with a stirrer, a thermometer, a cooling tube and a nitrogen gas introduction tube, and the temperature was raised to 74 ° C. while stirring under the condition of a nitrogen gas aeration rate of 200 mL / min. After that, the ventilation of nitrogen gas was stopped. Next, an aqueous solution prepared by dissolving 0.968 g of ammonium persulfate as a polymerization initiator in 76 g of purified water was added, and immediately, 183.8 g of acrylonitrile as a nitrile group-containing monomer and 9.7 g of acrylic acid as a carboxyl group-containing monomer were added. (Ratio of 0.039 mol to 1 mol of acrylonitrile) and 6.5 g of monomeric methoxytriethylene glycol acrylate (trade name: NK ester AM-30G, Shin-Nakamura Chemical Industry Co., Ltd.) (to 1 mol of acrylonitrile) The mixed solution (at a ratio of 0.0085 mol) was added dropwise over 2 hours while maintaining the temperature of the system at 74 ± 2 ° C. Subsequently, an aqueous solution prepared by dissolving 0.25 g of ammonium persulfate in 21.3 g of purified water was additionally added to the suspended reaction system, the temperature was raised to 84 ° C., and then the temperature of the system was maintained at 84 ± 2 ° C. The reaction proceeded for 2.5 hours. Then, after cooling to 40 ° C. over 1 hour, stirring was stopped and the mixture was allowed to cool overnight at room temperature to precipitate a copolymer (polymer A) in which acrylic acid and a linear ether group were added to a polyacrylonitrile skeleton. Obtained liquid. The reaction solution was suction-filtered, and the collected wet precipitate was washed 3 times with 1800 g of purified water and then vacuum-dried at 80 ° C. for 10 hours to isolate and purify the polymer A.
(正極合剤スラリの調製)
 ポリマ溶液におけるポリマを、上記の合成例1により合成したポリマAに変更した以外は、実施例1-1と同様の方法により、正極合剤スラリを調製した。
(Preparation of positive electrode mixture slurry)
A positive electrode mixture slurry was prepared by the same method as in Example 1-1 except that the polymer in the polymer solution was changed to the polymer A synthesized in Synthesis Example 1 above.
<実施例1-6~1-7、比較例1-9~1-11>
 表1に示す組成に基づいて、黒鉛(負極活物質、日立化成株式会社)、炭素繊維(導電材、製品名:VGCF-H、昭和電工株式会社)、ポリフッ化ビニリデンを分散媒(NMP)に溶解させたポリマ溶液(結着剤、固形分13質量%)、場合により分散媒(NMP)を、混錬装置を用いて混錬した。これに、イオン液体電解液として、電解質塩を溶解させたイオン液体(1.5moL/L/LiFSI/EMIFSI)を加えて更に混錬し、負極合剤スラリを調製した。
<Examples 1-6 to 1-7, Comparative Examples 1-9 to 1-11>
Based on the composition shown in Table 1, graphite (negative electrode active material, Hitachi Chemical Co., Ltd.), carbon fiber (conductive material, product name: VGCF-H, Showa Denko Co., Ltd.), and polyvinylidene fluoride as a dispersion medium (NMP) The dissolved polymer solution (binder, solid content 13% by mass), and optionally the dispersion medium (NMP), was kneaded using a kneader. An ionic liquid (1.5 moL / L / LiFSI / EMIFSI) in which an electrolyte salt was dissolved was added as an ionic liquid electrolytic solution and further kneaded to prepare a negative electrode mixture slurry.
<ゲル化の有無>
 混錬装置の容器内の正極合剤スラリ又は負極合剤スラリを目視により観察して、含有成分が再析出することに起因するゲル化の有無を確認した。再析出によりスラリがゲル化したものを+、ゲル化しなかったものを-とした。結果を表1に示す。なお、表1中の「質量比」は、ポリマ、イオン液体電解液、及び分散媒の含有量の合計に対する、ポリマ、及びイオン液体電解液の含有量の合計の質量比であり、以下において同様である。
<Presence / absence of gelation>
The positive electrode mixture slurry or the negative electrode mixture slurry in the container of the kneading apparatus was visually observed to confirm the presence or absence of gelation due to the reprecipitation of the contained components. The gelled slurry by reprecipitation was designated as +, and the non-gelled slurry was designated as-. The results are shown in Table 1. The "mass ratio" in Table 1 is the mass ratio of the total content of the polymer and the ionic liquid electrolytic solution to the total content of the polymer, the ionic liquid electrolytic solution, and the dispersion medium, and the same applies below. Is.
 表1に示すように、ポリマ、イオン液体電解液、及び分散媒の含有量の合計に対する、ポリマ、及びイオン液体電解液の含有量の合計の質量比が、0.1~0.3の範囲内である実施例の電極合剤スラリでは再析出が生じなかった。一方、当該質量比が0.1~0.3の範囲外である比較例の電極合剤スラリでは、ポリマの再析出によるゲル化が生じていた。 As shown in Table 1, the mass ratio of the total content of the polymer and the ionic liquid electrolyte to the total content of the polymer, the ionic liquid electrolyte, and the dispersion medium is in the range of 0.1 to 0.3. Reprecipitation did not occur in the electrode mixture slurry of the example inside. On the other hand, in the electrode mixture slurry of the comparative example in which the mass ratio was outside the range of 0.1 to 0.3, gelation due to reprecipitation of the polymer occurred.
<塗布形成性の評価>
 ゲル化が生じなかった電極合剤スラリについて、集電体(厚さ15μmのアルミニウム箔)に塗布可能か否かを評価し、正常に塗布できたものをA、正常に塗布できなかったものをBとした。正常に塗布できたと判断する要件は、電極合剤スラリの塗布後に電極合剤スラリ側から観察して集電体が見えないこと、及び、目的の塗布幅又は塗布量で塗布できたこととした。結果を表1に示す。その結果、比較例1-5及び比較例1-11の電極合剤スラリでは、粘性が低すぎるために目的の塗布量で塗布しようとすると電極合剤スラリが集電体上から流れ出てしまい、集電体上に正常に塗布することができなかった。
<Evaluation of coating formability>
Regarding the electrode mixture slurry that did not gel, evaluate whether it can be applied to the current collector (aluminum foil with a thickness of 15 μm), and those that could be applied normally are A, and those that could not be applied normally. It was designated as B. The requirements for determining that the coating was successful were that the current collector could not be seen by observing from the electrode mixture slurry side after application of the electrode mixture slurry, and that the coating could be performed with the desired coating width or coating amount. .. The results are shown in Table 1. As a result, the electrode mixture slurry of Comparative Example 1-5 and Comparative Example 1-11 has too low viscosity, so that the electrode mixture slurry flows out from the current collector when the desired coating amount is applied. It could not be applied normally on the current collector.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
<実施例2-1~2-6、比較例2-1~2-3>
 表2に示す組成に基づいて、フッ化ビニリデンとヘキサフルオロピレンとのコポリマ(PVDF-HFP)と、SiO粒子(製品名:AEROSIL RX50、日本アエロジル株式会社製)と、イオン液体電解液として、電解質塩を溶解させたイオン液体(1.5moL/L/LiFSI/EMI-FSI)と、セルロース繊維(平均長さ50μm、平均繊維径0.1μm)とを、分散媒(NMP)に分散させ、混錬装置により混錬することにより電解質スラリを調製した。
<Examples 2-1 to 2-6, Comparative Examples 2-1 to 2-3>
Based on the composition shown in Table 2, as a copolyma (PVDF-HFP) of vinylidene fluoride and hexafluoropyrene, SiO 2 particles (product name: AEROSIL RX50, manufactured by Nippon Aerosil Co., Ltd.), and an ionic liquid electrolyte. An ionic liquid (1.5 moL / L / LiFSI / EMI-FSI) in which an electrolyte salt is dissolved and cellulose fibers (average length 50 μm, average fiber diameter 0.1 μm) are dispersed in a dispersion medium (NMP). An electrolyte slurry was prepared by kneading with a kneading device.
<実施例2-7~2-9>
 分散媒をDMSOに変更した以外は、実施例2-1と同様の方法により、電解質スラリを調製した。
<Examples 2-7 to 2-9>
An electrolyte slurry was prepared by the same method as in Example 2-1 except that the dispersion medium was changed to DMSO.
<ゲル化の有無>
 混錬装置の容器内の電解質スラリを目視により観察して、含有成分の再析出に起因するゲル化の有無を確認した。再析出によりスラリがゲル化したものを+、ゲル化しなかったものを-とした。結果を表2に示す。
<Presence / absence of gelation>
The electrolyte slurry in the container of the kneading apparatus was visually observed to confirm the presence or absence of gelation due to the reprecipitation of the contained components. The gelled slurry by reprecipitation was designated as +, and the non-gelled slurry was designated as-. The results are shown in Table 2.
 表2に示すように、ポリマ、イオン液体電解液、及び分散媒の含有量の合計に対する、ポリマ、及びイオン液体電解液の含有量の合計の質量比が、0.1~0.3の範囲内である実施例の電解質スラリを用いて作製した電解質シートでは、再析出が生じなかった。一方、当該質量比が0.1~0.3の範囲外である比較例の電解質スラリを用いて作製した電解質シートでは、特にポリマの再析出が生じていた。 As shown in Table 2, the mass ratio of the total content of the polymer and the ionic liquid electrolyte to the total content of the polymer, the ionic liquid electrolyte, and the dispersion medium is in the range of 0.1 to 0.3. In the electrolyte sheet prepared using the electrolyte slurry of the example in the above, reprecipitation did not occur. On the other hand, in the electrolyte sheet prepared by using the electrolyte slurry of the comparative example in which the mass ratio is out of the range of 0.1 to 0.3, reprecipitation of the polymer was particularly generated.
<塗布形成性の評価>
 ゲル化が生じなかった電解質スラリについて、ポリエチレンテレフタレート製の基材(製品名:テオネックスR-Q51、帝人デュポンフィルム株式会社製、厚さ38μm)に塗布可能か否かを評価しし、正常に塗布できたものをA、正常に塗布できなかったものをBとした。正常に塗布できたと判断する要件は、電解質スラリの塗布後に電解質スラリ側から観察して基材が見えないこと、及び、目的の塗布幅又は塗布量で塗布できたこととした。結果を表2に示す。その結果、比較例2-3の電極合剤スラリはでは、粘性が低すぎるために目的の塗布量で塗布しようとすると電解質スラリが基材上から流れ出てしまい、基材上に正常に塗布することができなかった。
<Evaluation of coating formability>
It was evaluated whether or not the electrolyte slurry that did not gel could be applied to a polyethylene terephthalate base material (product name: Theonex RQ51, manufactured by Teijin DuPont Film Co., Ltd., thickness 38 μm), and applied normally. The one that was made was designated as A, and the one that could not be applied normally was designated as B. The requirements for determining that the coating was successful were that the substrate could not be seen when observed from the electrolyte slurry side after coating the electrolyte slurry, and that the coating could be performed with the desired coating width or coating amount. The results are shown in Table 2. As a result, in the electrode mixture slurry of Comparative Example 2-3, the viscosity is too low, and when an attempt is made to apply the desired coating amount, the electrolyte slurry flows out from the base material and is normally applied onto the base material. I couldn't.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実施例2-4~2-9の電解質スラリを用いて、電解質シートを作製した。電解質スラリをポリエチレンテレフタレート製の基材(製品名:テオネックスR-Q51、帝人デュポンフィルム株式会社製、厚さ38μm)上にアプリケータを用いて塗布した。塗布した電解質スラリを80℃で1時間加熱乾燥することにより、分散媒を揮発させて、電解質シートを得た。 An electrolyte sheet was prepared using the electrolyte slurry of Examples 2-4 to 2-9. The electrolyte slurry was applied onto a base material made of polyethylene terephthalate (product name: Theonex RQ51, manufactured by Teijin DuPont Film Co., Ltd., thickness 38 μm) using an applicator. The applied electrolyte slurry was heated and dried at 80 ° C. for 1 hour to volatilize the dispersion medium to obtain an electrolyte sheet.
 その結果、実施例2-4~2-9の電解質スラリは、ポリマの再析出が見られなかったため、基材の一面に均一な厚さで塗布することができ、表面状態が良好で欠点の無い、自立可能な電解質シートを作製できた。 As a result, since the electrolyte slurry of Examples 2-4 to 2-9 did not show reprecipitation of the polymer, it could be applied to one surface of the base material with a uniform thickness, and the surface condition was good, which was a drawback. We were able to produce a self-supporting electrolyte sheet.
 1…二次電池、6…正極、7…電解質層、7A…電解質スラリの層、8…負極、9…正極集電体、10…正極合剤層、10A…正極合剤スラリの層、10B…正極合剤中間層、11…負極集電体、12…負極合剤層、13…基材、14…電解質シート、15…正極部材、16…バイポーラ電極、17…バイポーラ電極集電体。 1 ... Secondary battery, 6 ... Positive electrode, 7 ... Electrode layer, 7A ... Electrode slurry layer, 8 ... Negative electrode, 9 ... Positive electrode current collector, 10 ... Positive electrode mixture layer, 10A ... Positive electrode mixture slurry layer, 10B ... Positive electrode mixture intermediate layer, 11 ... Negative electrode current collector, 12 ... Negative electrode mixture layer, 13 ... Base material, 14 ... Electrode sheet, 15 ... Positive electrode member, 16 ... Bipolar electrode, 17 ... Bipolar electrode current collector.

Claims (9)

  1.  ポリマと、
     イオン液体と、
     リチウム塩、ナトリウム塩、カルシウム塩及びマグネシウム塩からなる群より選ばれる少なくとも1種の電解質塩と、
     分散媒と、を含有し、
     前記ポリマ、前記イオン液体、前記電解質塩、及び前記分散媒の含有量の合計に対する、前記ポリマ、前記イオン液体、及び前記電解質塩の含有量の合計の質量比が、0.1~0.3である、電池用スラリ組成物。
    With polymer
    With ionic liquids
    At least one electrolyte salt selected from the group consisting of lithium salt, sodium salt, calcium salt and magnesium salt, and
    Contains a dispersion medium,
    The mass ratio of the total content of the polymer, the ionic liquid, and the electrolyte salt to the total content of the polymer, the ionic liquid, the electrolyte salt, and the dispersion medium is 0.1 to 0.3. Slurry composition for batteries.
  2.  電極活物質を更に含有する、請求項1に記載の電池用スラリ組成物。 The battery slurry composition according to claim 1, further containing an electrode active material.
  3.  前記質量比が0.2~0.3である、請求項2に記載の電池用スラリ組成物。 The battery slurry composition according to claim 2, wherein the mass ratio is 0.2 to 0.3.
  4.  酸化物粒子を更に含有する、請求項1に記載の電池用スラリ組成物。 The battery slurry composition according to claim 1, further containing oxide particles.
  5.  前記質量比が0.13~0.3である、請求項4に記載の電池用スラリ組成物。 The battery slurry composition according to claim 4, wherein the mass ratio is 0.13 to 0.3.
  6.  前記質量比が0.1~0.25である、請求項4に記載の電池用スラリ組成物。 The battery slurry composition according to claim 4, wherein the mass ratio is 0.1 to 0.25.
  7.  集電体と、該集電体の一面上に形成された電極合剤層と、を備える電極の製造方法であって、
     前記製造方法は、請求項1~3のいずれか一項に記載の電池用スラリ組成物を、前記集電体の一面上に塗布して前記電極合剤層を形成する工程を備える、電極の製造方法。
    A method for manufacturing an electrode including a current collector and an electrode mixture layer formed on one surface of the current collector.
    The manufacturing method comprises a step of applying the battery slurry composition according to any one of claims 1 to 3 onto one surface of the current collector to form the electrode mixture layer. Production method.
  8.  基材と、該基材の一面上に形成された電解質層と、を備える電解質シートの製造方法であって、
     前記製造方法は、請求項1、4又は5に記載の電池用スラリ組成物を、前記基材の一面上に塗布して前記電解質層を形成する工程を備える、電解質シートの製造方法。
    A method for producing an electrolyte sheet comprising a base material and an electrolyte layer formed on one surface of the base material.
    The manufacturing method comprises a step of applying the battery slurry composition according to claim 1, 4 or 5 onto one surface of the base material to form the electrolyte layer.
  9.  集電体、電極合剤層、電解質層をこの順に備える電池部材の製造方法であって、
     前記製造方法は、前記集電体の一面上に電極活物質を含有する電極合剤中間層を形成する工程と、
     前記電極合剤中間層の前記集電体とは反対側の面上に、請求項1、4又は6に記載の電池用スラリ組成物を塗布する工程と、
     前記分散媒を揮発させて、前記電極合剤層及び前記電解質層を形成する工程と、を備える、電池部材の製造方法。
    A method for manufacturing a battery member including a current collector, an electrode mixture layer, and an electrolyte layer in this order.
    The manufacturing method includes a step of forming an electrode mixture intermediate layer containing an electrode active material on one surface of the current collector, and a step of forming the electrode mixture intermediate layer.
    The step of applying the battery slurry composition according to claim 1, 4 or 6 on the surface of the electrode mixture intermediate layer opposite to the current collector.
    A method for manufacturing a battery member, comprising a step of volatilizing the dispersion medium to form the electrode mixture layer and the electrolyte layer.
PCT/JP2019/021593 2019-05-30 2019-05-30 Slurry composition for batteries, and methods for producing electrode, electrolyte sheet, and battery member WO2020240786A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/021593 WO2020240786A1 (en) 2019-05-30 2019-05-30 Slurry composition for batteries, and methods for producing electrode, electrolyte sheet, and battery member
JP2021521700A JP7438207B2 (en) 2019-05-30 2019-05-30 Slurry composition for batteries, and methods for producing electrodes, electrolyte sheets, and battery members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/021593 WO2020240786A1 (en) 2019-05-30 2019-05-30 Slurry composition for batteries, and methods for producing electrode, electrolyte sheet, and battery member

Publications (1)

Publication Number Publication Date
WO2020240786A1 true WO2020240786A1 (en) 2020-12-03

Family

ID=73553714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021593 WO2020240786A1 (en) 2019-05-30 2019-05-30 Slurry composition for batteries, and methods for producing electrode, electrolyte sheet, and battery member

Country Status (2)

Country Link
JP (1) JP7438207B2 (en)
WO (1) WO2020240786A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540558A (en) * 2021-07-16 2021-10-22 北京工商大学 Flame-retardant polymer electrolyte with heat shutdown function and preparation method thereof
US20220238914A1 (en) * 2021-01-22 2022-07-28 Global Graphene Group, Inc. Flame-resistant quasi-solid and solid-state electrolytes, lithium batteries and manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193784A (en) * 2008-02-13 2009-08-27 Sony Corp Nonaqueous electrolyte battery and method of manufacturing the same
WO2017209233A1 (en) * 2016-06-03 2017-12-07 富士フイルム株式会社 Solid electrolyte composition, solid electrolyte-containing sheet, electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing solid electrolyte-containing sheet, method for producing electrode sheet for all-solid-state secondary batteries, and method for manufacturing all-solid-state secondary battery
WO2018020827A1 (en) * 2016-07-26 2018-02-01 富士フイルム株式会社 Solid electrolyte composition, solid-electrolyte-containing sheet and all-solid-state secondary battery, production method for solid-electrolyte-containing sheet and all-solid-state secondary battery, segmented polymer, and non-aqueous-solvent dispersion of polymer and segmented polymer
WO2018139580A1 (en) * 2017-01-30 2018-08-02 公立大学法人首都大学東京 Electrode composition, electrode, production method for said electrode, and battery
WO2018221664A1 (en) * 2017-05-31 2018-12-06 住友金属鉱山株式会社 Positive electrode active substance for non-aqueous electrolyte secondary battery and method for producing same, positive electrode mixture paste for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2018220800A1 (en) * 2017-06-01 2018-12-06 日立化成株式会社 Electrolyte composition, secondary battery, and method for producing electrolyte sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193784A (en) * 2008-02-13 2009-08-27 Sony Corp Nonaqueous electrolyte battery and method of manufacturing the same
WO2017209233A1 (en) * 2016-06-03 2017-12-07 富士フイルム株式会社 Solid electrolyte composition, solid electrolyte-containing sheet, electrode sheet for all-solid-state secondary batteries, all-solid-state secondary battery, method for producing solid electrolyte-containing sheet, method for producing electrode sheet for all-solid-state secondary batteries, and method for manufacturing all-solid-state secondary battery
WO2018020827A1 (en) * 2016-07-26 2018-02-01 富士フイルム株式会社 Solid electrolyte composition, solid-electrolyte-containing sheet and all-solid-state secondary battery, production method for solid-electrolyte-containing sheet and all-solid-state secondary battery, segmented polymer, and non-aqueous-solvent dispersion of polymer and segmented polymer
WO2018139580A1 (en) * 2017-01-30 2018-08-02 公立大学法人首都大学東京 Electrode composition, electrode, production method for said electrode, and battery
WO2018221664A1 (en) * 2017-05-31 2018-12-06 住友金属鉱山株式会社 Positive electrode active substance for non-aqueous electrolyte secondary battery and method for producing same, positive electrode mixture paste for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2018220800A1 (en) * 2017-06-01 2018-12-06 日立化成株式会社 Electrolyte composition, secondary battery, and method for producing electrolyte sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220238914A1 (en) * 2021-01-22 2022-07-28 Global Graphene Group, Inc. Flame-resistant quasi-solid and solid-state electrolytes, lithium batteries and manufacturing method
CN113540558A (en) * 2021-07-16 2021-10-22 北京工商大学 Flame-retardant polymer electrolyte with heat shutdown function and preparation method thereof
CN113540558B (en) * 2021-07-16 2023-12-26 北京工商大学 Flame-retardant polymer electrolyte with thermal shutdown function and preparation method thereof

Also Published As

Publication number Publication date
JP7438207B2 (en) 2024-02-26
JPWO2020240786A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
KR102428844B1 (en) Electrolyte composition, secondary cell, and method for manufacturing electrolyte sheet
KR102655290B1 (en) Electrolyte composition and secondary battery
JP7423120B2 (en) Electrolyte slurry composition, electrolyte sheet manufacturing method, and secondary battery manufacturing method
WO2020240786A1 (en) Slurry composition for batteries, and methods for producing electrode, electrolyte sheet, and battery member
WO2018221668A1 (en) Electrolyte composition and rechargeable battery
TWI794473B (en) Method for manufacturing battery member for secondary battery
WO2020017439A1 (en) Electrolyte sheet production method and secondary battery production method
CN108735972B (en) Method for manufacturing battery member for secondary battery
WO2021001970A1 (en) Electrolyte sheet and secondary battery
JP2020113527A (en) Electrolyte slurry composition and manufacturing method thereof, and electrolyte sheet and manufacturing method thereof
TWI794472B (en) Method for manufacturing battery member for secondary battery
WO2021038862A1 (en) Electrolyte sheet, method for producing same and secondary battery
WO2021205550A1 (en) Electrolyte sheet and manufacturing method of secondary battery
JP2020136223A (en) Lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930941

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021521700

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.03.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19930941

Country of ref document: EP

Kind code of ref document: A1