[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TWI794473B - Method for manufacturing battery member for secondary battery - Google Patents

Method for manufacturing battery member for secondary battery Download PDF

Info

Publication number
TWI794473B
TWI794473B TW108112671A TW108112671A TWI794473B TW I794473 B TWI794473 B TW I794473B TW 108112671 A TW108112671 A TW 108112671A TW 108112671 A TW108112671 A TW 108112671A TW I794473 B TWI794473 B TW I794473B
Authority
TW
Taiwan
Prior art keywords
electrolyte
electrode mixture
layer
slurry
ionic liquid
Prior art date
Application number
TW108112671A
Other languages
Chinese (zh)
Other versions
TW201944644A (en
Inventor
五行由磨
Original Assignee
南韓商Lg新能源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南韓商Lg新能源股份有限公司 filed Critical 南韓商Lg新能源股份有限公司
Publication of TW201944644A publication Critical patent/TW201944644A/en
Application granted granted Critical
Publication of TWI794473B publication Critical patent/TWI794473B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本發明的一態樣提供一種二次電池用電池構件的製造方法,其具備下述步驟:在集電體的其中一面上形成含有電極活性物質之電極合劑中間層的步驟;及,在電極合劑中間層的與集電體相反的一側的面上塗佈含有氧化物粒子、聚合物、離子液體及電解質鹽之漿料的步驟;並且,離子液體和電解質鹽的含量的合計量相對於氧化物粒子的含量,以體積比計,大於4/1且小於12/1。One aspect of the present invention provides a method for manufacturing a battery member for a secondary battery, which includes the following steps: forming an electrode mixture intermediate layer containing an electrode active material on one side of the current collector; and, forming an electrode mixture intermediate layer on the electrode mixture A step of coating a slurry containing oxide particles, a polymer, an ionic liquid, and an electrolyte salt on the side of the intermediate layer opposite to the collector; and, the total amount of the content of the ionic liquid and the electrolyte salt is relative to the oxidation The content of substance particles, in terms of volume ratio, is greater than 4/1 and less than 12/1.

Description

二次電池用電池構件的製造方法Method for manufacturing battery member for secondary battery

本發明有關一種二次電池用電池構件的製造方法。The present invention relates to a method for manufacturing a battery component for a secondary battery.

近年,因為可攜式電子機器、電動汽車等的普及,所以需要高性能的二次電池。在其中,鋰二次電池由於具有高能量密度,故作為電動汽車用電池、電力儲藏用電池等的電源備受注目。具體而言,作為電動汽車用電池的鋰二次電池,已被採用於未搭載引擎之零排放電動汽車、搭載了引擎及二次電池雙方之油電混合電動汽車、由電力系統直接充電的插電式油電混合電動汽車等電動汽車。又,作為電力儲藏用電池的鋰二次電池,已被用於定置式電力儲藏系統等,該定置式電力儲藏系統是當電力系統被切斷的緊急時刻,供應預先已儲藏好的電力。In recent years, due to the popularization of portable electronic devices, electric vehicles, and the like, high-performance secondary batteries are required. Among them, lithium secondary batteries have attracted attention as power sources such as batteries for electric vehicles and batteries for power storage because of their high energy density. Specifically, lithium secondary batteries as batteries for electric vehicles have been adopted in zero-emission electric vehicles without engines, hybrid electric vehicles equipped with both engines and secondary batteries, and plug-in batteries directly charged by the power system. Electric vehicles such as electric hybrid electric vehicles. Also, lithium secondary batteries, which are batteries for power storage, have been used in stationary power storage systems that supply pre-stored power in an emergency when the power system is cut off.

為了要使用在如此廣泛的用途中,正尋求更高能量密度的鋰二次電池,其開發正在進行中。尤其是對於電動汽車用的鋰二次電池,由於除了高輸出入功率特性及高能量密度以外,還被要求高安全性,故尋求用以確保安全性的更高端的技術。作為提升鋰二次電池的安全性之方法,已知有將電解液變更成固體電解質的方法等(例如專利文獻1)。 [先前技術文獻] (專利文獻)In order to be used in such a wide range of applications, a lithium secondary battery having a higher energy density is being sought, and its development is in progress. In particular, since lithium secondary batteries for electric vehicles are required to have high safety in addition to high output and output characteristics and high energy density, higher-end technologies for ensuring safety are sought. As a method of improving the safety of a lithium secondary battery, a method of changing an electrolytic solution to a solid electrolyte is known (for example, Patent Document 1). [Prior Art Literature] (patent documents)

專利文獻1:日本特開2004-107641號公報Patent Document 1: Japanese Patent Laid-Open No. 2004-107641

[發明所欲解決的問題] 在使用了固體電解質而得之鋰二次電池中,根據用途,有時在例如以0.2C左右的相對較低電流來進行放電的情況下的放電特性的提升變得重要。因此,本發明的目的在於提供一種二次電池用電池構件的製造方法,其能夠在以相對較低電流來使二次電池放電的情況下提升放電特性。 [解決問題的技術手段][Problem to be solved by the invention] In a lithium secondary battery using a solid electrolyte, it may be important to improve discharge characteristics when discharging is performed at a relatively low current of, for example, about 0.2 C, depending on the application. Accordingly, an object of the present invention is to provide a method of manufacturing a battery member for a secondary battery capable of improving discharge characteristics when the secondary battery is discharged with a relatively low current. [Technical means to solve the problem]

本發明的一態樣提供一種二次電池用電池構件的製造方法,其具備下述步驟:在集電體的其中一面上形成含有電極活性物質之電極合劑中間層的步驟;及,在電極合劑中間層的與集電體相反的一側的面上塗佈含有氧化物粒子、聚合物、離子液體及電解質鹽之漿料的步驟;並且,離子液體和電解質鹽的含量的合計量相對於氧化物粒子的含量,以體積比計,大於4/1且小於12/1。One aspect of the present invention provides a method for manufacturing a battery member for a secondary battery, which includes the following steps: forming an electrode mixture intermediate layer containing an electrode active material on one side of the current collector; and, forming an electrode mixture intermediate layer on the electrode mixture A step of coating a slurry containing oxide particles, a polymer, an ionic liquid, and an electrolyte salt on the side of the intermediate layer opposite to the collector; and, the total amount of the content of the ionic liquid and the electrolyte salt is relative to the oxidation The content of substance particles, in terms of volume ratio, is greater than 4/1 and less than 12/1.

氧化物粒子的比表面積,較佳是2~400m2 /g。The specific surface area of the oxide particles is preferably 2 to 400 m 2 /g.

離子液體的每單位體積的電解質鹽的濃度,較佳是大於0.5mol/L。The concentration of the electrolyte salt per unit volume of the ionic liquid is preferably greater than 0.5 mol/L.

離子液體,較佳是含有N(SO2 F)2 來作為陰離子成分。 [發明的功效]The ionic liquid preferably contains N(SO 2 F) 2 - as an anion component. [Efficacy of the invention]

根據本發明,能夠提供一種二次電池用電池構件的製造方法,其能夠在以相對較低電流來使二次電池放電的情況下提升放電特性。更具體而言,能夠提供一種二次電池用電池構件的製造方法,其能夠在以0.2C進行放電的情況下,提升二次電池的放電特性。According to the present invention, it is possible to provide a method of manufacturing a battery member for a secondary battery capable of improving discharge characteristics when the secondary battery is discharged with a relatively low current. More specifically, it is possible to provide a method for manufacturing a battery member for a secondary battery capable of improving the discharge characteristics of the secondary battery when discharging at 0.2C.

以下,一邊適當參照圖式,一邊說明本發明的實施形態。但是,本發明不限定於以下的實施形態。在以下的實施形態中,其構成要素(亦包含步驟等),除了有特別明示的情況外,否則並非必須。各圖中的構成要素的尺寸為概念性的尺寸,構成要素間的尺寸的相對關係不限定於各圖所示者。Hereinafter, embodiments of the present invention will be described with appropriate reference to the drawings. However, the present invention is not limited to the following embodiments. In the following embodiments, the constituent elements (including steps and the like) are not essential unless otherwise specified. The dimensions of the components in the drawings are conceptual dimensions, and the relative relationship of the dimensions between the components is not limited to those shown in the drawings.

本說明書中的數值及其範圍,並非是用來限制本發明。本說明書中使用「~」來表示的數值範圍,是表示包含了將「~」的前後所記載的數值分別作為最小値及最大値的範圍。在本說明書中階段性地被記載的數值範圍中,在一個數值範圍所記載的上限値或下限値,亦可置換成其他階段性的記載的上限値或下限値。又,在本說明書中所記載的數值範圍中,其數值範圍的上限値或下限値,亦可置換成實施例所顯示的值。The numerical values and their ranges in this specification are not intended to limit the present invention. The numerical range represented by "-" in this specification means the range which includes the numerical value described before and after "-" as a minimum value and a maximum value, respectively. In the numerical ranges described step by step in this specification, the upper limit value or lower limit value described in one numerical range may be replaced with the upper limit value or lower limit value described in other steps. In addition, in the numerical range described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in an Example.

再者,本說明書中有時使用下述簡稱。 [Py13] :N-甲基-N-丙基吡咯啶鎓鹽陽離子 [EMI] :1-乙基-3-甲基咪唑鎓鹽陽離子 [DEME] :N,N-二乙基-N-甲基-N-(2-甲氧基乙基)銨陽離子 [FSI] :N(SO2 F)2 ,雙(氟磺醯)亞胺陰離子 [TFSI] :N(SO2 CF3)2 ,雙(三氟甲磺醯)亞胺陰離子 [f3C] :C(SO2 F)3 ,參(氟磺醯)碳陰離子 [BOB] :B(O2 C2 O2 )2 ,雙草酸硼酸陰離子 [P(DADMA)][Cl]:聚(二烯丙基二甲基氯化銨) [P(DADMA)][TFSI]:聚(二烯丙基二甲基銨雙(三氟甲磺醯)亞胺鹽)In addition, the following abbreviations are sometimes used in this specification. [Py13] + : N-methyl-N-propylpyrrolidinium salt cation [EMI] + : 1-ethyl-3-methylimidazolium salt cation [DEME] + : N,N-diethyl- N-methyl-N-(2-methoxyethyl)ammonium cation [FSI] : N(SO 2 F) 2 , bis(fluorosulfonyl)imide anion [TFSI] : N(SO 2 CF3) 2 , bis(trifluoromethanesulfonyl)imide anion [f3C] : C(SO 2 F) 3 , ginseng(fluorosulfonyl)carbanion [BOB] : B(O 2 C 2 O 2 ) 2 , bisoxalate borate anion [P(DADMA)][Cl]: poly(diallyldimethylammonium chloride) [P(DADMA)][TFSI]: poly(diallyldimethyl Ammonium bis(trifluoromethanesulfonyl)imide salt)

第1圖是顯示一實施形態的二次電池的斜視圖。如第1圖所示,二次電池1具備電極群2與電池外殼體3,該電極群2是由正極、負極及電解質層所構成,該電池外殼體3為袋狀並容置電極群2。在正極和負極,各自設置有正極集電端子(tab)4和負極集電端子5。正極集電端子4和負極集電端子5,各自是以正極和負極能夠與二次電池1的外部電性連接的方式,從電池外殼體3的內部突出至外部。Fig. 1 is a perspective view showing a secondary battery according to an embodiment. As shown in FIG. 1, a secondary battery 1 is provided with an electrode group 2 and a battery case 3. The electrode group 2 is composed of a positive electrode, a negative electrode, and an electrolyte layer. The battery case 3 is bag-shaped and accommodates the electrode group 2. . A positive electrode current collecting terminal (tab) 4 and a negative electrode current collecting terminal 5 are respectively provided on the positive electrode and the negative electrode. The positive electrode current collector terminal 4 and the negative electrode current collector terminal 5 protrude from the inside of the battery case 3 to the outside so that the positive electrode and the negative electrode can be electrically connected to the outside of the secondary battery 1 .

電池外殼體3,可利用例如層合薄膜來形成。層合薄膜,例如可以是以下述的順序積層而成的積層薄膜:聚對苯二甲酸乙二酯(PET)薄膜等的樹脂薄膜;鋁、銅、不鏽鋼等的金屬箔;及,聚丙烯等的密封劑層。The battery case 3 can be formed using, for example, a laminated film. The laminated film may be, for example, a laminated film laminated in the following order: resin films such as polyethylene terephthalate (PET) films; metal foils such as aluminum, copper, and stainless steel; and polypropylene, etc. sealant layer.

第2圖是顯示在第1圖所示的二次電池1的電極群2的一實施形態的分解斜視圖。如第2圖所示,電極群2A依序具備正極6、電解質層7及負極8。正極6具備正極集電體9與正極合劑層10,該正極合劑層10設置在正極集電體9上。在正極6的正極集電體9上,設置有正極集電端子4。負極8具備負極集電體11與負極合劑層12,該負極合劑層12設置在負極集電體11上。在負極8的負極集電體11上,設置有負極集電端子5。FIG. 2 is an exploded perspective view showing an embodiment of the electrode group 2 of the secondary battery 1 shown in FIG. 1 . As shown in FIG. 2 , the electrode group 2A includes a positive electrode 6 , an electrolyte layer 7 , and a negative electrode 8 in this order. The positive electrode 6 includes a positive electrode current collector 9 and a positive electrode mixture layer 10 provided on the positive electrode current collector 9 . On the positive electrode current collector 9 of the positive electrode 6, the positive electrode current collector terminal 4 is provided. The negative electrode 8 includes a negative electrode current collector 11 and a negative electrode mixture layer 12 provided on the negative electrode current collector 11 . On the negative electrode current collector 11 of the negative electrode 8, the negative electrode current collector terminal 5 is provided.

在一實施形態中,能夠視為在電極群2A中包含了第1的二次電池用電池構件(正極構件),該第1的二次電池用電池構件依序具備正極集電體9、正極合劑層10及電解質層7。同樣地,亦能夠視為在電極群2A中包含了第2的二次電池用電池構件(負極構件),該第2的二次電池用電池構件依序具備負極集電體11、負極合劑層12及電解質層7。本發明的各實施形態的二次電池用電池構件(以下亦有時僅稱為「電池構件」)的製造方法,是正極構件或負極構件的製造方法。In one embodiment, it can be considered that the first battery member (positive electrode member) for a secondary battery is included in the electrode group 2A, and the first battery member for a secondary battery is sequentially provided with a positive electrode current collector 9, a positive electrode Mixture layer 10 and electrolyte layer 7 . Similarly, it can also be regarded as including a second battery member for a secondary battery (negative electrode member) in the electrode group 2A, and the second battery member for a secondary battery is sequentially provided with a negative electrode current collector 11, a negative electrode mixture layer 12 and electrolyte layer 7. The method for manufacturing a battery member for a secondary battery (hereinafter sometimes simply referred to as “battery member”) according to each embodiment of the present invention is a method for manufacturing a positive electrode member or a negative electrode member.

第3圖是顯示一實施形態的二次電池用電池構件的製造方法的概略剖面圖。此製造方法,如第3圖(a)所示,是在集電體13(正極集電體9或負極集電體11)的其中一面(主面))13a上形成含有電極活性物質之電極合劑中間層14(正極合劑中間層或負極合劑中間層)(電極合劑中間層形成步驟)。Fig. 3 is a schematic cross-sectional view showing a method of manufacturing a battery member for a secondary battery according to an embodiment. This manufacturing method, as shown in Fig. 3 (a), is to form an electrode containing an electrode active material on one side (primary surface)) 13a of the current collector 13 (the positive electrode current collector 9 or the negative electrode current collector 11). Mixture intermediate layer 14 (positive electrode mixture intermediate layer or negative electrode mixture intermediate layer) (electrode mixture intermediate layer forming step).

在電極合劑中間層形成步驟中,於一實施形態中,在集電體13的其中一面13a上形成電極合劑中間層14的方法,是將電極合劑漿料塗佈在集電體13的其中一面13a上的方法。電極合劑漿料,是使正極合劑層10或負極合劑層12中包含的材料分散於分散介質而得之漿料(正極合劑漿料或負極合劑漿料)。本實施形態的電極合劑漿料,至少含有電極活性物質(正極活性物質或負極活性物質)和分散介質。In the step of forming the electrode mixture intermediate layer, in one embodiment, the method of forming the electrode mixture intermediate layer 14 on one side 13a of the current collector 13 is to apply the electrode mixture slurry on one side of the current collector 13 method on 13a. The electrode mixture slurry is a slurry obtained by dispersing the materials contained in the positive electrode mixture layer 10 or the negative electrode mixture layer 12 in a dispersion medium (positive electrode mixture slurry or negative electrode mixture slurry). The electrode mixture slurry of this embodiment contains at least an electrode active material (a positive electrode active material or a negative electrode active material) and a dispersion medium.

當電池構件為正極構件時,集電體13是正極集電體9。正極集電體9,可以是鋁、鈦、鉭等金屬;或,這些金屬的合金。為了輕量且具有較高的重量能量密度(weight energy density),正極集電體9,較佳是鋁或其合金。正極集電體9的厚度可以是10μm以上,亦可以是100μm以下。When the battery member is a positive electrode member, current collector 13 is positive electrode current collector 9 . The positive electrode current collector 9 may be metal such as aluminum, titanium, tantalum, or an alloy of these metals. In order to be lightweight and have high weight energy density, the positive electrode current collector 9 is preferably aluminum or its alloys. The thickness of positive electrode current collector 9 may be 10 μm or more, or 100 μm or less.

當電池構件為負極構件時,集電體13是負極集電體11。負極集電體11,可以是鋁、銅、鎳、不鏽鋼等金屬、這些金屬的合金等。為了輕量且具有較高的重量能量密度,負極集電體11,較佳是鋁或其合金。從對薄膜進行加工的簡單程度和成本的觀點而言,負極集電體11,較佳是銅。負極集電體11的厚度可以是10μm以上,亦可以是100μm以下。When the battery member is a negative electrode member, current collector 13 is negative electrode current collector 11 . The negative electrode current collector 11 may be a metal such as aluminum, copper, nickel, or stainless steel, an alloy of these metals, or the like. In order to be lightweight and have high gravimetric energy density, the negative electrode current collector 11 is preferably aluminum or its alloy. The negative electrode current collector 11 is preferably copper from the viewpoint of simplicity and cost of processing the thin film. The thickness of negative electrode current collector 11 may be 10 μm or more, or 100 μm or less.

當電池構件為正極構件時,電極活性物質是正極活性物質。正極活性物質,可以是鋰過渡金屬氧化物、鋰過渡金屬磷酸鹽等的鋰過渡金屬化合物。When the battery member is a positive electrode member, the electrode active material is a positive electrode active material. The positive electrode active material may be a lithium transition metal compound such as a lithium transition metal oxide or a lithium transition metal phosphate.

鋰過渡金屬氧化物,例如可以是錳酸鋰、鎳酸鋰、鈷酸鋰等。鋰過渡金屬氧化物,可以是以1種或2種以上的其他過渡金屬或鎂(Mg)、鋁(Al)等金屬(典型元素)來取代錳酸鋰、鎳酸鋰、鈷酸鋰等之中含有的一部分的錳(Mn)、鎳(Ni)、鈷(Co)等的過渡金屬而得之鋰過渡金屬氧化物。亦即,鋰過渡金屬氧化物,可以是由LiM1 O2 或LiM1 O4 (M1 包含至少1種的過渡金屬)表示的化合物。鋰過渡金屬氧化物,具體而言,可以是Li(Co1/3 Ni1/3 Mn1/3 )O2 、LiNi1/2 Mn1/2 O2 、LiNi1/2 Mn3/2 O4 等。Examples of lithium transition metal oxides include lithium manganese oxide, lithium nickel oxide, lithium cobalt oxide, and the like. Lithium transition metal oxides can be replaced by one or two or more other transition metals or metals (typical elements) such as magnesium (Mg) and aluminum (Al) to replace lithium manganate, lithium nickelate, lithium cobaltate, etc. A lithium transition metal oxide obtained from transition metals such as manganese (Mn), nickel (Ni), and cobalt (Co) contained in a part of the metal. That is, the lithium transition metal oxide may be a compound represented by LiM 1 O 2 or LiM 1 O 4 (M 1 contains at least one transition metal). Lithium transition metal oxides, specifically, Li(Co 1/3 Ni 1/3 Mn 1/3 )O 2 , LiNi 1/2 Mn 1/2 O 2 , LiNi 1/2 Mn 3/2 O 4 etc.

從進一步提升能量密度的觀點而言,鋰過渡金屬氧化物,較佳是由下述式(1)表示的化合物。 Lia Nib Coc M2 d O2 e (1) 式(1)中,M2 是選自由Al、Mn、Mg及Ca所組成之群組中的至少1種,a、b、c、d及e各自是滿足0.2≦a≦1.2、0.5≦b≦0.9、0.1≦c≦0.4、0≦d≦0.2、-0.2≦e≦0.2且b+c+d=1的數。From the viewpoint of further improving the energy density, the lithium transition metal oxide is preferably a compound represented by the following formula (1). Li a Ni b Co c M 2 d O 2 + e (1) In formula (1), M 2 is at least one selected from the group consisting of Al, Mn, Mg and Ca, and a, b, c , d, and e are each a number satisfying 0.2≦a≦1.2, 0.5≦b≦0.9, 0.1≦c≦0.4, 0≦d≦0.2, -0.2≦e≦0.2, and b+c+d=1.

鋰過渡金屬磷酸鹽,可以是LiFePO4 、LiMnPO4 、LiMnx M3 1 x PO4 (0.3≦x≦1、M3 是選自由Fe、Ni、Co、Ti、Cu、Zn、Mg及Zr所組成之群組中的至少1種的元素)等。Lithium transition metal phosphate, which can be LiFePO 4 , LiMnPO 4 , LiMn x M 3 1 - x PO 4 (0.3≦x≦1, M 3 is selected from Fe, Ni, Co, Ti, Cu, Zn, Mg and Zr at least one element in the group formed), etc.

正極活性物質可以是未經造粒的初級粒子,亦可以是經造粒的次級粒子。The positive electrode active material may be ungranulated primary particles or granulated secondary particles.

正極活性物質的粒徑,是調整到成為正極合劑層10的厚度以下。當正極活性物質中存在一種具有正極合劑層10的厚度以上的粒徑之粗粒子時,藉由篩分級、風流分級等來預先除去粗粒子,從而篩選具有正極合劑層10的厚度以下的粒徑之正極活性物質。The particle size of the positive electrode active material is adjusted to be equal to or less than the thickness of the positive electrode mixture layer 10 . When there is a kind of coarse particle having a particle size above the thickness of the positive electrode mixture layer 10 in the positive electrode active material, the coarse particles are removed in advance by sieve classification, air flow classification, etc., thereby screening the particle size below the thickness of the positive electrode mixture layer 10 positive active material.

正極活性物質的平均粒徑,較佳是0.1μm以上,更佳是1μm以上。正極活性物質的平均粒徑,較佳是30μm以下,更佳是25μm以下。正極活性物質的平均粒徑,是當相對於正極活性物質整體的體積的比例(體積分率)為50%時的粒徑(D50 )。正極活性物質的平均粒徑(D50 ),是使用雷射散射式粒徑測定裝置(例如Microtrac),並根據雷射散射法來測定懸浮液而獲得,該懸浮液是使正極活性物質懸浮在水中而成。The average particle diameter of the positive electrode active material is preferably at least 0.1 μm, more preferably at least 1 μm. The average particle diameter of the positive electrode active material is preferably 30 μm or less, more preferably 25 μm or less. The average particle diameter of the positive electrode active material is the particle diameter (D 50 ) when the ratio (volume fraction) to the volume of the entire positive electrode active material is 50%. The average particle size (D 50 ) of the positive electrode active material is to use a laser scattering particle size measuring device (such as Microtrac), and to measure the suspension according to the laser scattering method. The suspension is obtained by suspending the positive electrode active material in Made in water.

以正極合劑漿料中的非揮發成分(從正極合劑漿料中將分散介質除外後的成分,以下相同)總量作為基準計,正極活性物質的含量可以是70質量%以上、80質量%以上、或90質量%以上,並且,可以是99質量%以下。藉此,所獲得的正極合劑層中的正極活性物質的含量,能夠達到與上述含量相同的含量。Based on the total amount of non-volatile components in the positive electrode mixture slurry (the components after excluding the dispersion medium from the positive electrode mixture slurry, the same below), the content of the positive electrode active material may be 70 mass % or more, 80 mass % or more , or 90 mass % or more, and may be 99 mass % or less. Thereby, the content of the positive electrode active material in the obtained positive electrode mixture layer can be set to the same content as the above-mentioned content.

當電池構件為負極構件時,電極活性物質是負極活性物質。負極活性物質,能夠使用能源裝置領域中常用的負極活性物質。作為負極活性物質,具體而言,可列舉例如:金屬鋰、鈦酸鋰(Li4 Ti5 O12 )、鋰合金或其他的金屬化合物、碳材料、金屬錯合物、及有機高分子化合物等。負極活性物質,可以是這些負極活性物質的單獨1種、或2種以上之混合物。作為碳材料,可列舉:天然石墨(鱗片狀石墨等)、人造石墨等石墨(graphite);非晶質碳、碳纖維;及,乙炔黑、科琴黑、槽法碳黑、爐法碳黑、燈黑、熱裂碳黑等碳黑等。從獲得更大的理論容量(例如500~1500Ah/kg)的觀點而言,負極活性物質,亦可以是矽、錫或包含這些元素之化合物(氧化物、氮化物、與其他金屬的合金)。When the battery member is a negative electrode member, the electrode active material is a negative electrode active material. As the negative electrode active material, negative electrode active materials commonly used in the field of energy devices can be used. As the negative electrode active material, specifically, for example: metal lithium, lithium titanate (Li 4 Ti 5 O 12 ), lithium alloy or other metal compounds, carbon materials, metal complexes, and organic polymer compounds, etc. . The negative electrode active material may be a single type of these negative electrode active materials or a mixture of two or more types. Examples of carbon materials include: natural graphite (flaky graphite, etc.), artificial graphite and other graphite (graphite); amorphous carbon, carbon fiber; and, acetylene black, Ketjen black, channel black, furnace black, lamp black, etc. Black, thermal black and other carbon black, etc. From the viewpoint of obtaining a larger theoretical capacity (for example, 500-1500Ah/kg), the negative electrode active material can also be silicon, tin or compounds containing these elements (oxides, nitrides, alloys with other metals).

從獲得經抑制伴隨粒徑減少而來的不可逆容量的增加並且提高電解質鹽的保持能力之平衡性佳的負極的觀點而言,負極活性物質的平均粒徑(D50 ),較佳是1μm以上,更佳是5μm以上,進一步更佳是10μm以上,並且,較佳是50μm以下,更佳是40μm以下,進一步更佳是30μm以下。負極活性物質的平均粒徑(D50 ),是根據與上述正極活性物質的平均粒徑(D50 )相同的方法來測定。The average particle diameter (D 50 ) of the negative electrode active material is preferably 1 μm or more from the viewpoint of obtaining a well-balanced negative electrode that suppresses an increase in irreversible capacity accompanying particle size reduction and improves electrolyte salt retention. , more preferably 5 μm or more, further preferably 10 μm or less, and, preferably 50 μm or less, more preferably 40 μm or less, further preferably 30 μm or less. The average particle diameter (D 50 ) of the negative electrode active material is measured by the same method as the average particle diameter (D 50 ) of the above positive electrode active material.

以負極合劑漿料中的非揮發成分(從負極合劑漿料中將分散介質除外後的成分,以下相同)總量作為基準計,負極活性物質的含量可以是60質量%以上、65質量%以上、或70質量%以上,並且,可以是99質量%以下、95質量%以下、或90質量%以下。藉此,所獲得的負極合劑層中的負極活性物質的含量,能夠達到與上述含量相同的含量。Based on the total amount of non-volatile components in the negative electrode mixture slurry (the components after excluding the dispersion medium from the negative electrode mixture slurry, the same below), the content of the negative electrode active material can be 60 mass % or more, 65 mass % or more , or 70% by mass or more, and may be 99% by mass or less, 95% by mass or less, or 90% by mass or less. Thereby, the content of the negative electrode active material in the obtained negative electrode mixture layer can be set to the same content as the above-mentioned content.

分散介質,可以是水或有機溶劑。有機溶劑,可以是N-甲基-2-吡咯啶酮(NMP)、N,N-二甲基乙醯胺、甲乙酮、甲苯、2-丁醇、環己酮、乙酸乙酯、2-丙醇等,較佳是NMP。相對於電極合劑漿料中的非揮發成分(從電極合劑漿料中將分散介質除外後的成分,以下相同)100質量份,電極合劑漿料中的分散介質的含量,例如可以是20質量份以上,亦可以是1000質量份以下。Dispersion medium can be water or organic solvent. Organic solvents, such as N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide, methyl ethyl ketone, toluene, 2-butanol, cyclohexanone, ethyl acetate, 2-propane alcohol etc., preferably NMP. The content of the dispersion medium in the electrode mixture slurry can be, for example, 20 parts by mass relative to 100 parts by mass of the non-volatile components in the electrode mixture slurry (the components except the dispersion medium from the electrode mixture slurry, the same below). The above may be 1000 parts by mass or less.

電極合劑漿料,可進一步包含作為其他成分的導電劑、黏結劑等。此時,能夠形成進一步含有這些材料之電極合劑中間層14。The electrode mixture slurry may further contain a conductive agent, a binder, and the like as other components. In this case, the electrode mixture intermediate layer 14 further containing these materials can be formed.

導電劑,沒有特別限定,可以是石墨、乙炔黑、碳黑、碳纖維、奈米碳管等碳材料。導電劑,可以是2種以上的上述碳材料之混合物。以電極合劑漿料中的非揮發成分總量作為基準計,導電劑的含量,可以是1~70質量%。藉此,所獲得的電極合劑層中的導電劑的含量,能夠達到與上述含量相同的含量。The conductive agent is not particularly limited, and may be carbon materials such as graphite, acetylene black, carbon black, carbon fiber, and carbon nanotubes. The conductive agent may be a mixture of two or more of the above carbon materials. Based on the total amount of non-volatile components in the electrode mixture slurry, the content of the conductive agent may be 1-70% by mass. Thereby, the content of the conductive agent in the obtained electrode mixture layer can be set to the same content as the above-mentioned content.

黏結劑,沒有特別限制,可以是:一種聚合物,其包含選自由四氟乙烯、偏二氟乙烯、六氟丙烯、丙烯酸、馬來酸、甲基丙烯酸乙酯及甲基丙烯酸甲酯所組成之群組中的至少1種來作為單體單元;苯乙烯-丁二烯橡膠、異戊二烯橡膠、丙烯酸系橡膠等橡膠等。黏結劑,較佳是一種共聚物,其包含六氟丙烯與偏二氟乙烯來作為結構單元。以電極合劑漿料中的非揮發成分總量作為基準計,黏結劑的含量,可以是1~70質量%。藉此,所獲得的電極合劑層中的黏結劑的含量,能夠達到與上述含量相同的含量。The binder is not particularly limited, and may be: a polymer consisting of tetrafluoroethylene, vinylidene fluoride, hexafluoropropylene, acrylic acid, maleic acid, ethyl methacrylate and methyl methacrylate At least one of the group of monomers used as a monomer unit; rubber such as styrene-butadiene rubber, isoprene rubber, acrylic rubber, and the like. The binder is preferably a copolymer comprising hexafluoropropylene and vinylidene fluoride as structural units. Based on the total amount of non-volatile components in the electrode mixture slurry, the content of the binder may be 1-70% by mass. Thereby, the content of the binder in the obtained electrode mixture layer can be the same as the content mentioned above.

電極合劑漿料,可進一步包含下述離子液體和電解質鹽,較佳是不包含離子液體和電解質鹽。The electrode mixture slurry may further include the following ionic liquid and electrolyte salt, but preferably does not contain ionic liquid and electrolyte salt.

在電極合劑中間層形成步驟中,作為塗佈電極合劑漿料的方法,可列舉例如:使用塗佈機來塗佈的方法、藉由噴霧來塗佈的方法等。根據這些方法,來在集電體13的其中一面13a上塗佈電極合劑漿料。其結果,如第3圖(a)所示,在集電體13的其中一面13a上形成電極合劑中間層14。In the electrode mixture intermediate layer forming step, examples of the method of applying the electrode mixture slurry include a method of applying using a coater, a method of applying by spraying, and the like. According to these methods, the electrode mixture slurry is coated on one surface 13 a of the current collector 13 . As a result, as shown in FIG. 3( a ), an electrode mixture intermediate layer 14 is formed on one surface 13 a of the current collector 13 .

在電極合劑中間層形成步驟中,塗佈電極合劑漿料後,可使漿料中的分散介質揮發。也就是說,本說明書中的「電極合劑中間層」中,包含由電極合劑所形成的層、及使部分或全部分散介質從電極合劑漿料中揮發而形成的層。使分散介質揮發的方法,例如可以是藉由加熱來乾燥的方法、進行減壓的方法、組合了減壓與加熱的方法等。在進行減壓的方法中,可減壓至真空狀態為止。進行乾燥時的加熱溫度,可以是50~150℃。加熱時間,只要是分散介質能夠充分揮發的時間,根據溫度來加以變化即可,例如可以是1分鐘~48小時。In the step of forming the electrode mixture intermediate layer, after coating the electrode mixture slurry, the dispersion medium in the slurry may be volatilized. That is, the "intermediate layer of the electrode mixture" in this specification includes a layer formed of the electrode mixture and a layer formed by volatilizing part or all of the dispersion medium from the electrode mixture slurry. The method of volatilizing the dispersion medium may be, for example, a method of drying by heating, a method of reducing pressure, or a method of combining pressure reduction and heating. In the method of reducing the pressure, the pressure can be reduced to a vacuum state. The heating temperature at the time of drying may be 50 to 150°C. The heating time may be changed according to the temperature as long as the dispersion medium is sufficiently volatilized, and may be, for example, 1 minute to 48 hours.

電極合劑中間層形成步驟之後,如第3圖(b)所示,在電極合劑中間層14的與集電體13相反的一側的面14a上塗佈含有氧化物粒子16、聚合物17、離子液體、電解質鹽及分散介質之漿料15。以下亦將此漿料稱為「電解質漿料」,亦將塗佈電解質漿料15的步驟稱為「電解質漿料塗佈步驟」。After the electrode mixture intermediate layer forming step, as shown in Fig. 3 (b), on the surface 14a of the side 14a opposite to the current collector 13 of the electrode mixture intermediate layer 14, coatings containing oxide particles 16, polymers 17, Slurry 15 of ionic liquid, electrolyte salt and dispersion medium. Hereinafter, this slurry is also referred to as "electrolyte slurry", and the step of applying the electrolyte slurry 15 is also referred to as "electrolyte slurry coating step".

氧化物粒子16,例如是無機氧化物的粒子。無機氧化物,例如可以是一種無機氧化物,其包含Li、Mg、Al、Si、Ca、Ti、Zr、La、Na、K、Ba、Sr、V、Nb、B、Ge等來作為構成元素。氧化物粒子16,較佳是選自由SiO2 、Al2 O3 、AlOOH、MgO、CaO、ZrO2 、TiO2 、Li7 La3 Zr2 O12 、及BaTiO3 所組成之群組中的至少1種的粒子。氧化物粒子16,具有極性,因此能夠促進電解質中的電解質解離,並提高電池特性。The oxide particles 16 are, for example, inorganic oxide particles. The inorganic oxide, for example, may be an inorganic oxide containing Li, Mg, Al, Si, Ca, Ti, Zr, La, Na, K, Ba, Sr, V, Nb, B, Ge, etc. as constituent elements . The oxide particles 16 are preferably at least _ _ 1 particle. Oxide particles 16 have polarity, so they can promote dissociation of the electrolyte in the electrolyte and improve battery characteristics.

氧化物粒子16,可以是稀土類金屬的氧化物。氧化物粒子16,具體而言,可以是氧化鈧、氧化釔、氧化鑭、氧化鈰、氧化鐠、氧化銣、氧化釤、氧化銪、氧化釓、氧化鋱、氧化鏑、氧化鈥、氧化鉺、氧化銩、氧化鐿、氧化鎦等。The oxide particles 16 may be oxides of rare earth metals. The oxide particles 16, specifically, may be scandium oxide, yttrium oxide, lanthanum oxide, cerium oxide, cerium oxide, rubidium oxide, samarium oxide, europium oxide, cerium oxide, cerium oxide, dysprosium oxide, erbium oxide, erbium oxide, Iron oxide, ytterbium oxide, lutetium oxide, etc.

氧化物粒子16,可具有疏水性表面。氧化物粒子16,通常在其表面具有羥基,從而具有顯示親水性的傾向。相較於不具有疏水性表面的氧化物粒子,具有疏水性表面的氧化物粒子的表面的羥基會減少。因此,如果使用具有疏水性表面的氧化物粒子,則離子液體為疏水性,因此預期氧化物與離子液體的親和性提升。因此,被認為在電解質層7中的離子液體的保液性會進一步提升,作為其結果,電解質層7的離子導電率提升。當使用了具有疏水性表面的氧化物粒子時,不僅在以相對較低電流來使二次電池放電時,在以相對較高電流(例如0.5C左右)來進行放電時亦能夠提升放電特性。The oxide particles 16 may have a hydrophobic surface. Oxide particles 16 generally have a hydroxyl group on their surface and tend to exhibit hydrophilicity. Oxide particles with a hydrophobic surface have fewer hydroxyl groups on the surface than oxide particles without a hydrophobic surface. Therefore, if oxide particles having a hydrophobic surface are used, the ionic liquid will be hydrophobic, and thus the affinity between the oxide and the ionic liquid is expected to be improved. Therefore, it is considered that the liquid retention property of the ionic liquid in the electrolyte layer 7 is further improved, and as a result, the ionic conductivity of the electrolyte layer 7 is improved. When oxide particles having a hydrophobic surface are used, the discharge characteristics can be improved not only when the secondary battery is discharged at a relatively low current but also at a relatively high current (for example, about 0.5C).

具有疏水性表面的氧化物粒子,能夠藉由例如下述方式獲得:以能夠賦予疏水性表面的表面處理劑來對顯示親水性的氧化物粒子進行處理。亦即,具有疏水性表面的氧化物粒子,意指經以表面處理劑進行表面處理後的氧化物粒子。作為表面處理劑,可以是含矽化合物等。The oxide particles having a hydrophobic surface can be obtained, for example, by treating the oxide particles exhibiting hydrophilicity with a surface treatment agent capable of imparting a hydrophobic surface. That is, oxide particles having a hydrophobic surface mean oxide particles surface-treated with a surface treatment agent. As the surface treatment agent, a silicon-containing compound or the like may be used.

氧化物粒子16,可利用含矽化合物進行表面處理。亦即,氧化物粒子16,可經由氧原子來連結氧化物粒子的表面與含矽化合物的矽原子。含矽化合物,較佳是選自由含鹵素之烷基矽烷、烷氧矽烷、含環氧基矽烷、含胺基矽烷、矽氮烷及矽氧烷所組成之群組中的至少1種。The oxide particles 16 can be surface treated with a silicon-containing compound. That is, the oxide particle 16 can connect the surface of the oxide particle and the silicon atoms of the silicon-containing compound via oxygen atoms. The silicon-containing compound is preferably at least one selected from the group consisting of halogen-containing alkylsilanes, alkoxysilanes, epoxy-containing silanes, amino-containing silanes, silazanes, and siloxanes.

含鹵素之烷基矽烷中的鹵素元素,可以是氯、氟等。含有氯的含鹵素之烷基矽烷(烷基氯矽烷),可以是甲基三氯矽烷、二甲基二氯矽烷、三甲基氯矽烷、正辛基二甲基氯矽烷等。含有氟的含鹵素之烷基矽烷(氟烷基矽烷),可以是三氟丙基三甲氧基矽烷、三癸基氟辛基三甲氧基矽烷等。The halogen element in the halogen-containing alkylsilane can be chlorine, fluorine, etc. The chlorine-containing halogen-containing alkylsilane (alkylchlorosilane) can be methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, n-octyldimethylchlorosilane, etc. The fluorine-containing halogen-containing alkylsilane (fluoroalkylsilane) may be trifluoropropyltrimethoxysilane, tridecylfluorooctyltrimethoxysilane, etc.

烷氧矽烷,可以是甲基三甲氧基矽烷、二甲基二甲氧基矽烷、苯基三甲氧基矽烷、苯基三乙氧基矽烷、二甲氧基二苯基矽烷、正丙基三甲氧基矽烷、己基三甲氧基矽烷、四乙氧基矽烷、甲基三乙氧基矽烷、二甲基二乙氧基矽烷、正丙基三乙氧基矽烷等。Alkoxysilane, which can be methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, dimethoxydiphenylsilane, n-propyltrimethylsilane Oxysilane, Hexyltrimethoxysilane, Tetraethoxysilane, Methyltriethoxysilane, Dimethyldiethoxysilane, n-Propyltriethoxysilane, etc.

含環氧基矽烷,可以是2-(3,4-環氧基環己基)乙基三甲氧基矽烷、3-環氧丙氧基丙基甲基二甲氧基矽烷、3-環氧丙氧基丙基三甲氧基矽烷、3-環氧丙氧基丙基甲基二乙氧基矽烷、3-環氧丙氧基丙基三乙氧基矽烷等。Epoxy-containing silane, which can be 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-epoxypropyl Oxypropyltrimethoxysilane, 3-Glycidoxypropylmethyldiethoxysilane, 3-Glycidoxypropyltriethoxysilane, etc.

含胺基矽烷,可以是N-2-(胺乙基)-3-胺丙基甲基二甲氧基矽烷、N-2-(胺乙基)-3-胺丙基三甲氧基矽烷、3-胺丙基三乙氧基矽烷、N-苯基-3-胺丙基三甲氧基矽烷等。Amino-containing silane, which can be N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, etc.

矽氮烷,可以是六甲基二矽氮烷等。矽氧烷,可以是二甲基矽氧油等。可以是該等的單末端或兩末端具有反應性官能基(例如羧基等)之含矽化合物。Silazane can be hexamethyldisilazane or the like. Siloxane can be dimethyl silicone oil and the like. Such silicon-containing compounds having reactive functional groups (such as carboxyl groups) at one or both ends may be used.

具有疏水性表面的氧化物粒子(經表面處理後的氧化物粒子),可使用藉由公知的方法所製造的氧化物粒子,亦可直接使用市售品。As the oxide particles having a hydrophobic surface (surface-treated oxide particles), oxide particles produced by a known method may be used, or commercially available products may be used as they are.

氧化物粒子16,可包含初級粒子(未構成次級粒子的粒子)與由複數個初級粒子集聚而形成之次級粒子,該初級粒子一般是從外觀上的幾何學形態來判斷,一體地形成單一粒子。Oxide particles 16 may include primary particles (particles that do not constitute secondary particles) and secondary particles formed by aggregating a plurality of primary particles. The primary particles are generally integrally formed judging from the geometric shape of the appearance single particle.

氧化物粒子16的比表面積,較佳是2~400m2 /g、5~100m2 /g、10~80m2 /g、或15~60m2 /g。如果比表面積為2~400m2 /g,則具備了含有這種氧化物粒子之電解質層之二次電池,有放電特性更優異的傾向。從相同的觀點而言,氧化物粒子16的比表面積,亦可以是2m2 /g以上、5m2 /g以上、10m2 /g以上、15m2 /g、或50m2 /g以上,亦可以是400m2 /g以下、350m2 /g以下、300m2 /g以下、200m2 /g以下、100m2 /g以下、90m2 /g以下、80m2 /g以下、或60m2 /g以下。氧化物粒子16的比表面積,意指包含初級粒子和次級粒子之氧化物粒子整體的比表面積,是根據BET法來測定。The specific surface area of the oxide particles 16 is preferably 2 to 400 m 2 /g, 5 to 100 m 2 /g, 10 to 80 m 2 /g, or 15 to 60 m 2 /g. When the specific surface area is 2 to 400 m 2 /g, a secondary battery provided with an electrolyte layer containing such oxide particles tends to have better discharge characteristics. From the same viewpoint, the specific surface area of the oxide particles 16 may be 2 m 2 /g or more, 5 m 2 /g or more, 10 m 2 /g or more, 15 m 2 /g, or 50 m 2 /g or more, or may be It is 400m 2 /g or less, 350m 2 /g or less, 300m 2 /g or less, 200m 2 /g or less, 100m 2 / g or less, 90m 2 /g or less, 80m 2 /g or less, or 60m 2 /g or less. The specific surface area of the oxide particle 16 means the specific surface area of the entire oxide particle including primary particles and secondary particles, and is measured by the BET method.

從進一步提升二次電池1的導電率的觀點而言,氧化物粒子16的平均初級粒徑(初級粒子的平均粒徑),較佳是0.005μm(5nm)以上,更佳是0.01μm(10nm)以上,進一步更佳是0.015μm(15nm)以上。從薄化電解質層7的觀點而言,氧化物粒子16的平均初級粒徑,較佳是1μm以下,更佳是0.1μm以下,進一步更佳是0.05μm以下。氧化物粒子16的平均初級粒徑,能夠藉由下述方式測定:利用穿透式電子顯微鏡等,來觀察氧化物粒子16。From the viewpoint of further improving the electrical conductivity of the secondary battery 1, the average primary particle size (average particle size of primary particles) of the oxide particles 16 is preferably 0.005 μm (5 nm) or more, more preferably 0.01 μm (10 nm). ) or more, more preferably 0.015 μm (15 nm) or more. From the viewpoint of thinning the electrolyte layer 7, the average primary particle diameter of the oxide particles 16 is preferably 1 μm or less, more preferably 0.1 μm or less, further preferably 0.05 μm or less. The average primary particle diameter of the oxide particles 16 can be measured by observing the oxide particles 16 with a transmission electron microscope or the like.

氧化物粒子16的平均粒徑,較佳是0.005μm以上,更佳是0.01μm以上,進一步更佳是0.03μm以上。氧化物粒子16的平均粒徑,較佳是5μm以下,更佳是3μm以下,進一步更佳是1μm以下。氧化物粒子16的平均粒徑,是根據雷射繞射法來測定,對應於當從小粒徑側開始描繪體積累積粒度分佈曲線時體積累積達到50%的粒徑。The average particle diameter of the oxide particles 16 is preferably at least 0.005 μm, more preferably at least 0.01 μm, and even more preferably at least 0.03 μm. The average particle diameter of the oxide particles 16 is preferably 5 μm or less, more preferably 3 μm or less, further preferably 1 μm or less. The average particle diameter of the oxide particles 16 is measured by the laser diffraction method, and corresponds to the particle diameter at which the volume accumulation reaches 50% when the volume accumulation particle size distribution curve is drawn from the small particle diameter side.

以電解質漿料15的非揮發成分(從電解質漿料將分散介質除外後的成分,以下相同)總量作為基準計,氧化物粒子16的含量,較佳是1質量%以上,更佳是3質量%以上,進一步更佳是5質量%以上,特佳是7質量%以上,並且,較佳是30質量%以下,更佳是27質量%以下,進一步更佳是25質量%以下。The content of the oxide particles 16 is preferably 1% by mass or more, more preferably 3% by mass, based on the total amount of non-volatile components of the electrolyte slurry 15 (the components of the electrolyte slurry excluding the dispersion medium, the same below). % by mass or more, more preferably at least 5 mass %, particularly preferably at least 7 mass %, and preferably at most 30 mass %, more preferably at most 27 mass %, even more preferably at most 25 mass %.

在電解質漿料15中,以電解質漿料15的非揮發成分總量作為基準計,氧化物粒子16的含量,較佳是5體積%以上,更佳是7體積%以上,進一步更佳是9體積%以上,並且,較佳是20體積%以下,更佳是17體積%以下,進一步更佳是15體積%以下。In the electrolyte slurry 15, based on the total amount of non-volatile components of the electrolyte slurry 15, the content of the oxide particles 16 is preferably 5% by volume or more, more preferably 7% by volume or more, and even more preferably 9% by volume. vol% or more, and preferably 20 vol% or less, more preferably 17 vol% or less, further preferably 15 vol% or less.

聚合物17,較佳是具有選自由四氟乙烯和偏二氟乙烯所組成之群組中的第1結構單元。The polymer 17 preferably has a first structural unit selected from the group consisting of tetrafluoroethylene and vinylidene fluoride.

聚合物17,較佳是1種或2種以上的聚合物。在構成1種或2種以上的聚合物的結構單元中,可包含:上述第1結構單元;及,第2結構單元,其選自由六氟丙烯、丙烯酸、馬來酸、甲基丙烯酸乙酯及甲基丙烯酸甲酯所組成之群組中。亦即,第1結構單元和第2結構單元,可包含於1種聚合物中來構成共聚物,亦可分別包含於不同聚合物中,來構成具有第1結構單元之第1聚合物及具有第2結構單元之第2聚合物的至少2種的聚合物。The polymer 17 is preferably 1 type or 2 or more types of polymers. Among the structural units constituting one or more polymers may include: the above-mentioned first structural unit; and, a second structural unit selected from the group consisting of hexafluoropropylene, acrylic acid, maleic acid, and ethyl methacrylate And in the group consisting of methyl methacrylate. That is, the first structural unit and the second structural unit may be included in one polymer to form a copolymer, or may be included in different polymers to form the first polymer having the first structural unit and the first polymer having A polymer of at least two types of the second polymer of the second structural unit.

聚合物17,具體而言,可以是聚四氟乙烯、聚偏二氟乙烯、偏二氟乙烯與六氟丙烯之共聚物等。Specifically, the polymer 17 may be polytetrafluoroethylene, polyvinylidene fluoride, a copolymer of vinylidene fluoride and hexafluoropropylene, or the like.

以電解質漿料15的非揮發成分總量作為基準計,聚合物17的含量,較佳是3質量%以上,並且,較佳是60質量%以下,更佳是50質量%以下,進一步更佳是40質量%以下。Based on the total amount of non-volatile components in the electrolyte slurry 15, the content of the polymer 17 is preferably at least 3% by mass, and is preferably at most 60% by mass, more preferably at most 50% by mass, and even more preferably It is 40 mass % or less.

離子液體,含有以下陰離子成分和陽離子成分。再者,本說明書中的離子液體,是在-20℃以上呈液狀的物質。在二次電池1中,正極構件和負極構件中包含的離子液體的種類,可以相同亦可以不同。The ionic liquid contains the following anionic components and cationic components. In addition, the ionic liquid in this specification is a substance which becomes liquid at -20 degreeC or more. In the secondary battery 1 , the types of ionic liquid contained in the positive electrode member and the negative electrode member may be the same or different.

離子液體的陰離子成分,沒有特別限定,可以是Cl 、Br 、I 等的鹵素的陰離子;BF4 、N(SO2 F)2 等的無機陰離子;B(C6 H5 )4 、CH3 SO2 O 、CF3 SO2 O 、N(SO2 C4 F9 )2 、N(SO2 CF3 )2 、N(SO2 C2 F5 )2 等的有機陰離子等。離子液體的陰離子成分,較佳是包含由下述通式(2)表示的陰離子成分的至少1種。 N(SO2 Cm F2m 1 )(SO2 Cn F2n 1 ) (2) 式(2)中,m和n各自獨立地表示0~5的整數。m和n可以彼此相同亦可以彼此不同,較佳是彼此相同。The anion component of the ionic liquid is not particularly limited, and it can be the anion of halogen such as Cl - , Br - , I -, etc.; the inorganic anion of BF 4 - , N(SO 2 F) 2 -, etc.; B(C 6 H 5 ) 4 - , CH 3 SO 2 O - , CF 3 SO 2 O - , N(SO 2 C 4 F 9 ) 2 - , N(SO 2 CF 3 ) 2 - , N(SO 2 C 2 F 5 ) 2 - and other organic anions. The anionic component of the ionic liquid preferably contains at least one anionic component represented by the following general formula (2). N(SO 2 C m F 2m + 1 )(SO 2 C n F 2n + 1 ) - (2) In formula (2), m and n each independently represent an integer of 0-5. m and n may be the same or different from each other, and are preferably the same.

由式(2)表示的陰離子成分,例如是N(SO2 C4 F9 )2 、N(SO2 F)2 、N(SO2 CF3 )2 及N(SO2 C2 F5 )2 。從相對較低黏度且進一步提升離子導電度,並且亦進一步提升充放電特性的觀點而言,離子液體的離子成分,更佳是含有選自由N(SO2 C4 F9 )2 、CF3 SO2 O 、N(SO2 F)2 、N(SO2 CF3 )2 、及N(SO2 C2 F5 )2 所組成之群組中的至少1種。Anion components represented by formula (2) are, for example, N(SO 2 C 4 F 9 ) 2 - , N(SO 2 F) 2 - , N(SO 2 CF 3 ) 2 - and N(SO 2 C 2 F 5 ) 2- . From the point of view of relatively low viscosity, further improvement of ionic conductivity, and further improvement of charge-discharge characteristics, the ionic component of the ionic liquid is preferably composed of N(SO 2 C 4 F 9 ) 2 - , CF 3 At least one selected from the group consisting of SO 2 O - , N(SO 2 F) 2 - , N(SO 2 CF 3 ) 2 - , and N(SO 2 C 2 F 5 ) 2 - .

電解質漿料15,進一步更佳是含有N(SO2 F)2 來作為陰離子成分。當含有作為陰離子成分的N(SO2 F)2 時,在所獲得的電池構件中,能夠於電極合劑層和電解質層之間形成良好的界面。此效果在負極構件中特別顯著。亦即,在負極構件的製造方法中,電解質漿料中包含的離子液體,較佳是含有N(SO2 F)2 來作為陰離子成分。The electrolyte slurry 15 further preferably contains N(SO 2 F) 2 as an anion component. When N(SO 2 F) 2 is contained as an anion component, a favorable interface can be formed between the electrode mixture layer and the electrolyte layer in the obtained battery member. This effect is particularly remarkable in the negative electrode member. That is, in the method of manufacturing the negative electrode member, the ionic liquid contained in the electrolyte slurry preferably contains N(SO 2 F) 2 as an anion component.

離子液體的陽離子成分,較佳是選自由鏈狀四級鎓鹽陽離子、哌啶鎓鹽陽離子、吡咯啶鎓鹽陽離子、吡啶鎓鹽陽離子及咪唑鎓鹽陽離子(imidazolium cation)所組成之群組中的至少1種。The cationic component of the ionic liquid is preferably selected from the group consisting of chain quaternary onium salt cations, piperidinium salt cations, pyrrolidinium salt cations, pyridinium salt cations and imidazolium cations (imidazolium cation) at least 1 species of .

鏈狀四級鎓鹽陽離子,例如是由下述式(3)表示的化合物。

Figure 02_image001
式(3)中,R1 ~R4 各自獨立地表示碳數為1~20的鏈狀烷基或由R-O-(CH2 )n -表示的鏈狀烷氧烷基(R表示甲基或乙基,n表示1~4的整數),X表示氮原子或磷原子。由R1 ~R4 表示的烷基的碳數較佳是1~20,更佳是1~10,進一步更佳是1~5。The chain quaternary onium salt cation is, for example, a compound represented by the following formula (3).
Figure 02_image001
In formula (3), R 1 to R 4 each independently represent a chained alkyl group having 1 to 20 carbons or a chained alkoxyalkyl group represented by RO-(CH 2 ) n - (R represents methyl or ethyl group, n represents an integer of 1 to 4), and X represents a nitrogen atom or a phosphorus atom. The number of carbon atoms in the alkyl group represented by R 1 to R 4 is preferably 1-20, more preferably 1-10, and still more preferably 1-5.

哌啶鎓鹽陽離子,例如是由下述式(4)表示的含有氮之六員環環狀化合物。

Figure 02_image002
式(4)中,R5 和R6 各自獨立地表示碳數為1~20的烷基或由R-O-(CH2 )n -表示的烷氧烷基(R表示甲基或乙基,n表示1~4的整數)。由R5 和R6 表示的烷基的碳數較佳是1~20,更佳是1~10,進一步更佳是1~5。The piperidinium salt cation is, for example, a nitrogen-containing six-membered ring compound represented by the following formula (4).
Figure 02_image002
In formula (4), R 5 and R 6 each independently represent an alkyl group with 1 to 20 carbon atoms or an alkoxyalkyl group represented by RO-(CH 2 ) n - (R represents methyl or ethyl, n represents an integer of 1 to 4). The carbon number of the alkyl group represented by R 5 and R 6 is preferably 1-20, more preferably 1-10, further preferably 1-5.

吡咯啶鎓鹽陽離子,例如是由下述式(5)表示的五員環環狀化合物。

Figure 02_image003
式(5)中,R7 和R8 各自獨立地表示碳數為1~20的烷基或由R-O-(CH2 )n -表示的烷氧烷基(R表示甲基或乙基,n表示1~4的整數)。由R7 和R8 表示的烷基的碳數較佳是1~20,更佳是1~10,進一步更佳是1~5。The pyrrolidinium salt cation is, for example, a five-membered ring compound represented by the following formula (5).
Figure 02_image003
In formula (5), R 7 and R 8 each independently represent an alkyl group with 1 to 20 carbon atoms or an alkoxyalkyl group represented by RO-(CH 2 ) n - (R represents methyl or ethyl, n represents an integer of 1 to 4). The number of carbon atoms in the alkyl group represented by R 7 and R 8 is preferably 1-20, more preferably 1-10, and still more preferably 1-5.

吡啶鎓鹽陽離子,例如是由下述式(6)表示的化合物。

Figure 02_image004
式(6)中,R9 ~R13 各自獨立地表示碳數為1~20的烷基、由R-O-(CH2 )n -表示的烷氧烷基(R表示甲基或乙基,n表示1~4的整數)、或氫原子。由R9 ~R13 表示的烷基的碳數較佳是1~20,更佳是1~10,進一步更佳是1~5。The pyridinium salt cation is, for example, a compound represented by the following formula (6).
Figure 02_image004
In formula (6), R 9 to R 13 each independently represent an alkyl group having 1 to 20 carbon atoms, an alkoxyalkyl group represented by RO-(CH 2 ) n - (R represents methyl or ethyl, n represents an integer of 1 to 4), or a hydrogen atom. The number of carbon atoms in the alkyl group represented by R 9 to R 13 is preferably 1-20, more preferably 1-10, and still more preferably 1-5.

咪唑鎓鹽陽離子,例如是由下述式(7)表示的化合物。

Figure 02_image005
式(7)中,R14 ~R18 各自獨立地表示碳數為1~20的烷基、由R-O-(CH2 )n -表示的烷氧烷基(R表示甲基或乙基,n表示1~4的整數)、或氫原子。由R14 ~R18 表示的烷基的碳數較佳是1~20,更佳是1~10,進一步更佳是1~5。The imidazolium salt cation is, for example, a compound represented by the following formula (7).
Figure 02_image005
In formula (7), R 14 to R 18 each independently represent an alkyl group having 1 to 20 carbon atoms, an alkoxyalkyl group represented by RO-(CH 2 ) n - (R represents methyl or ethyl, n represents an integer of 1 to 4), or a hydrogen atom. The number of carbon atoms in the alkyl group represented by R 14 to R 18 is preferably 1-20, more preferably 1-10, still more preferably 1-5.

電解質漿料15中包含的離子液體,較佳是N,N-二乙基-N-甲基-N-(2-甲氧基乙基)銨-雙(三氟甲磺醯)亞胺(DEME-TFSI)、N,N-二乙基-N-甲基-N-(2-甲氧基乙基)銨-雙(氟磺醯)亞胺(DEME-FSI)、1-乙基-3-甲基咪唑鎓-雙(三氟甲磺醯)亞胺(EMI-TFSI)、1-乙基-3-甲基咪唑鎓-雙(氟磺醯)亞胺(EMI-FSI)、N-甲基-N-丙基吡咯啶鎓-雙(三氟甲磺醯)亞胺(Py13-TFSI)、N-甲基-N-丙基吡咯啶鎓-雙(氟磺醯)亞胺(Py13-FSI)、N-乙基-N-甲基吡咯啶鎓-雙(三氟甲磺醯)亞胺(Py12-TFSI)、或N-乙基-N-甲基吡咯啶鎓-雙(氟磺醯)亞胺(Py12-FSI)。從進一步提升在相對較高電流時的放電特性的觀點而言,電解質漿料15中包含的離子液體,更佳是DEME-FSI、EMI-FSI、Py13-FSI、或Py12-FSI。從進一步提升在相對較高電流時的放電特性的觀點而言,電解質漿料15中包含的離子液體,進一步更佳是EMI-FSI。The ionic liquid contained in the electrolyte slurry 15 is preferably N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium-bis(trifluoromethanesulfonyl)imide ( DEME-TFSI), N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium-bis(fluorosulfonyl)imide (DEME-FSI), 1-ethyl- 3-methylimidazolium-bis(trifluoromethanesulfonyl)imide (EMI-TFSI), 1-ethyl-3-methylimidazolium-bis(fluorosulfonyl)imide (EMI-FSI), N -Methyl-N-propylpyrrolidinium-bis(trifluoromethanesulfonyl)imide (Py13-TFSI), N-methyl-N-propylpyrrolidinium-bis(fluorosulfonyl)imide ( Py13-FSI), N-ethyl-N-methylpyrrolidinium-bis(trifluoromethanesulfonyl)imide (Py12-TFSI), or N-ethyl-N-methylpyrrolidinium-bis( Fluorosulfonyl)imine (Py12-FSI). From the viewpoint of further improving the discharge characteristics at a relatively high current, the ionic liquid contained in the electrolyte slurry 15 is more preferably DEME-FSI, EMI-FSI, Py13-FSI, or Py12-FSI. From the viewpoint of further improving the discharge characteristics at a relatively high current, the ionic liquid contained in the electrolyte slurry 15 is further preferably EMI-FSI.

電解質鹽,可以是選自由鋰鹽、鈉鹽、鈣鹽及鎂鹽所組成之群組中的至少1種。The electrolyte salt may be at least one selected from the group consisting of lithium salts, sodium salts, calcium salts, and magnesium salts.

電解質鹽的陰離子成分,可以是鹵化物離子(I 、Cl 、Br 等)、SCN 、BF4 、BF3 (CF3 ) 、BF3 (C2 F5 ) 、PF6 、ClO4 、SbF6 、N(SO2 F)2 、N(SO2 CF3 )2 、N(SO2 C2 F5 )2 、B(C6 H5 )4 、B(O2 C2 H4 )2 、C(SO2 F)3 、C(SO2 CF3 )3 、CF3 COO 、CF3 SO2 O 、C6 F5 SO2 O 、B(O2 C2 O2 )2 等。電解質鹽的陰離子成分,較佳是:N(SO2 F)2 、N(SO2 CF3 )2 等的由上述式(2)表示的陰離子成分;PF6 、BF4 、B(O2 C2 O2 )2 、或ClO4 The anion component of the electrolyte salt can be halide ions (I - , Cl - , Br -, etc.), SCN - , BF 4 - , BF 3 (CF 3 ) - , BF 3 (C 2 F 5 ) - , PF 6 , ClO 4 , SbF 6 , N(SO 2 F) 2 , N(SO 2 CF 3 ) 2 , N(SO 2 C 2 F 5 ) 2 , B(C 6 H 5 ) 4 , B(O 2 C 2 H 4 ) 2 , C(SO 2 F) 3 , C(SO 2 CF 3 ) 3 , CF 3 COO , CF 3 SO 2 O , C 6 F 5 SO 2 O , B(O 2 C 2 O 2 ) 2 , etc. Anion components of the electrolyte salt are preferably: N(SO 2 F) 2 - , N(SO 2 CF 3 ) 2 - and the like represented by the above formula (2); PF 6 - , BF 4 - , B (O 2 C 2 O 2 ) 2 , or ClO 4 .

鋰鹽,可以是選自由LiPF6 、LiBF4 、Li[FSI]、Li[TFSI]、Li[f3C]、Li[BOB]、LiClO4 、LiBF3 (CF3 )、LiBF3 (C2 F5 )、LiBF3 (C3 F7 )、LiBF3 (C4 F9 )、LiC(SO2 CF3 )3 、LiCF3 SO2 O、LiCF3 COO、及LiRCOO(R是碳數為1~4的烷基、苯基、或萘基)所組成之群組中的至少1種。Lithium salt, can be selected from LiPF 6 , LiBF 4 , Li[FSI], Li[TFSI], Li[f3C], Li[BOB], LiClO 4 , LiBF 3 (CF 3 ), LiBF 3 (C 2 F 5 ), LiBF 3 (C 3 F 7 ), LiBF 3 (C 4 F 9 ), LiC(SO 2 CF 3 ) 3 , LiCF 3 SO 2 O, LiCF 3 COO, and LiRCOO (R is carbon number 1-4 at least one of the group consisting of alkyl, phenyl, or naphthyl).

鈉鹽,可以是選自由NaPF6 、NaBF4 、Na[FSI]、Na[TFSI]、Na[f3C]、Na[BOB]、NaClO4 、NaBF3 (CF3 )、NaBF3 (C2 F5 )、NaBF3 (C3 F7 )、NaBF3 (C4 F9 )、NaC(SO2 CF3 )3 、NaCF3 SO2 O、NaCF3 COO、及NaRCOO(R是碳數為1~4的烷基、苯基、或萘基)所組成之群組中的至少1種。The sodium salt may be selected from NaPF 6 , NaBF 4 , Na[FSI], Na[TFSI], Na[f3C], Na[BOB], NaClO 4 , NaBF 3 (CF 3 ), NaBF 3 (C 2 F 5 ), NaBF 3 (C 3 F 7 ), NaBF 3 (C 4 F 9 ), NaC(SO 2 CF 3 ) 3 , NaCF 3 SO 2 O, NaCF 3 COO, and NaRCOO (R is carbon number 1-4 at least one of the group consisting of alkyl, phenyl, or naphthyl).

鈣鹽,可以是選自由Ca(PF6 )2 、Ca(BF4 )2 、Ca[FSI]2 、Ca[TFSI]2 、Ca[f3C]2 、Ca[BOB]2 、Ca(ClO4 )2 、Ca[BF3 (CF3 )]2 、Ca[BF3 (C2 F5 )]2 、Ca[BF3 (C3 F7 )]2 、Ca[BF3 (C4 F9 )]2 、Ca[C(SO2 CF3 )3 ]2 、Ca(CF3 SO2 O)2 、Ca(CF3 COO)2 、及Ca(RCOO)2 (R是碳數為1~4的烷基、苯基、或萘基)所組成之群組中的至少1種。A calcium salt, which may be selected from the group consisting of Ca(PF 6 ) 2 , Ca(BF 4 ) 2 , Ca[FSI] 2 , Ca[TFSI] 2 , Ca[f3C] 2 , Ca[BOB] 2 , Ca(ClO 4 ) 2 , Ca[BF 3 (CF 3 )] 2 , Ca[BF 3 (C 2 F 5 )] 2 , Ca[BF 3 (C 3 F 7 )] 2 , Ca[BF 3 (C 4 F 9 )] 2. Ca[C(SO 2 CF 3 ) 3 ] 2 , Ca(CF 3 SO 2 O) 2 , Ca(CF 3 COO) 2 , and Ca(RCOO) 2 (R is an alkane with 1 to 4 carbons at least one of the group consisting of phenyl, naphthyl, or naphthyl).

鎂鹽,可以是選自由Mg(PF6 )2 、Mg(BF4 )2 、Mg[FSI]2 、Mg[TFSI]2 、Mg[f3C]2 、Mg[BOB]2 、Mg(ClO4 )2 、Mg[BF3 (CF3 )]2 、Mg[BF3 (C2 F5 )]2 、Mg[BF3 (C3 F7 )]2 、Mg[BF3 (C4 F9 )]2 、Mg[C(SO2 CF3 )3 ]2 、Mg(CF3 SO3 )2 、Mg(CF3 COO)2 、及Mg(RCOO)2 (R是碳數為1~4的烷基、苯基、或萘基)所組成之群組中的至少1種。A magnesium salt, which may be selected from Mg(PF 6 ) 2 , Mg(BF 4 ) 2 , Mg[FSI] 2 , Mg[TFSI] 2 , Mg[f3C] 2 , Mg[BOB] 2 , Mg(ClO 4 ) 2 , Mg[BF 3 (CF 3 )] 2 , Mg[BF 3 (C 2 F 5 )] 2 , Mg[BF 3 (C 3 F 7 )] 2 , Mg[BF 3 (C 4 F 9 )] 2. Mg[C(SO 2 CF 3 ) 3 ] 2 , Mg(CF 3 SO 3 ) 2 , Mg(CF 3 COO) 2 , and Mg(RCOO) 2 (R is an alkyl group with 1 to 4 carbons , phenyl, or naphthyl) at least one of the group consisting of.

其中,從解離性和電化學穩定性的觀點而言,電解質鹽,較佳是選自由LiPF6 、LiBF4 、Li[FSI]、Li[TFSI]、Li[f3C]、Li[BOB]、LiClO4 、LiBF3 (CF3 )、LiBF3 (C2 F5 )、LiBF3 (C3 F7 )、LiBF3 (C4 F9 )、LiC(SO2 CF3 )3 、LiCF3 SO2 O、LiCF3 COO、及LiRCOO(R是碳數為1~4的烷基、苯基、或萘基)所組成之群組中的至少1種,更佳是選自由Li[TFSI]、Li[FSI]、LiPF6 、LiBF4 、Li[BOB]、及LiClO4 所組成之群組中的至少1種,進一步更佳是選自由Li[TFSI]和Li[FSI]所組成之群組中的至少1種。Among them, from the standpoint of dissociation and electrochemical stability, the electrolyte salt is preferably selected from LiPF 6 , LiBF 4 , Li[FSI], Li[TFSI], Li[f3C], Li[BOB], LiClO 4. LiBF 3 (CF 3 ), LiBF 3 (C 2 F 5 ), LiBF 3 (C 3 F 7 ), LiBF 3 (C 4 F 9 ), LiC(SO 2 CF 3 ) 3 , LiCF 3 SO 2 O , LiCF 3 COO, and LiRCOO (R is an alkyl group with 1 to 4 carbons, phenyl, or naphthyl), more preferably selected from Li[TFSI], Li[ At least one selected from the group consisting of FSI], LiPF 6 , LiBF 4 , Li[BOB], and LiClO 4 , more preferably selected from the group consisting of Li[TFSI] and Li[FSI] At least 1 species.

電解質漿料,可含有作為將電解質鹽溶於離子液體中而得之「離子液體電解液」的離子液體和電解質鹽。在離子液體電解液中,離子液體的每單位體積的電解質鹽的鹽濃度,較佳是大於0.5mol/L。藉由使離子液體的每單位體積的電解質鹽的鹽濃度大於0.5mol/L,即便在以相對較高電流來使二次電池放電的情況(例如以0.5C進行放電的情況)下,亦能夠提升二次電池的放電特性,其結果,能夠進一步提升二次電池的放電特性。從相同的觀點而言,離子液體的每單位體積的電解質鹽的鹽濃度,更佳是0.7mol/L以上,進一步更佳是1.0mol/L以上。從抑制因包含過多電解質鹽導致離子導電度下降的情形的觀點而言,離子液體的每單位體積的電解質鹽的鹽濃度,較佳是3.0mol/L以下,更佳是2.7mol/L以下,進一步更佳是2.5mol/L以下。The electrolyte slurry may contain an ionic liquid and an electrolyte salt as an "ionic liquid electrolyte solution" obtained by dissolving an electrolyte salt in an ionic liquid. In the ionic liquid electrolyte, the salt concentration of the electrolyte salt per unit volume of the ionic liquid is preferably greater than 0.5 mol/L. By making the salt concentration of the electrolyte salt per unit volume of the ionic liquid greater than 0.5 mol/L, even in the case of discharging the secondary battery with a relatively high current (for example, in the case of discharging at 0.5C), it is possible to The discharge characteristics of the secondary battery are improved, and as a result, the discharge characteristics of the secondary battery can be further improved. From the same viewpoint, the salt concentration of the electrolyte salt per unit volume of the ionic liquid is more preferably 0.7 mol/L or higher, and further preferably 1.0 mol/L or higher. From the viewpoint of suppressing the decrease in ionic conductivity due to the inclusion of too much electrolyte salt, the salt concentration of the electrolyte salt per unit volume of the ionic liquid is preferably 3.0 mol/L or less, more preferably 2.7 mol/L or less, More preferably, it is 2.5 mol/L or less.

從在電解質漿料15中獲得均勻的分散狀態的觀點及良好地形成電極合劑層(正極合劑層10或負極合劑層12)與電解質層7的界面的觀點而言,以電解質漿料15中的非揮發成分總量作為基準計,離子液體電解液的含量(離子液體和電解質鹽的含量的合計量),較佳是20質量%以上,更佳是25質量%以上,進一步更佳是30質量%以上。藉此,能夠提高電解質層7的離子導電度,並進一步提升二次電池的電池特性。以電解質漿料15中的非揮發成分總量作為基準計,離子液體電解液的含量,可以是90質量%以下、85質量%以下、或80質量%以下。From the viewpoint of obtaining a uniform dispersion state in the electrolyte slurry 15 and the excellent formation of the interface between the electrode mixture layer (positive electrode mixture layer 10 or negative electrode mixture layer 12) and the electrolyte layer 7, the Based on the total amount of non-volatile components, the content of the ionic liquid electrolyte (the total amount of the content of the ionic liquid and the electrolyte salt) is preferably 20% by mass or more, more preferably 25% by mass or more, and more preferably 30% by mass %above. Thereby, the ionic conductivity of the electrolyte layer 7 can be improved, and the battery characteristics of the secondary battery can be further improved. Based on the total amount of non-volatile components in the electrolyte slurry 15 , the content of the ionic liquid electrolyte may be 90% by mass or less, 85% by mass or less, or 80% by mass or less.

針對電解質漿料15,從在電解質漿料15中獲得均勻的分散狀態的觀點及良好地形成電極合劑層(正極合劑層10或負極合劑層12)與電解質層7的界面的觀點而言,以電解質漿料15中的非揮發成分總量作為基準計,離子液體電解液的含量(離子液體和電解質鹽的含量的合計量),較佳是35體積%以上,更佳是40體積%以上,進一步更佳是45體積%以上。藉此,能夠提高電解質層7的離子導電度,並進一步提升二次電池的電池特性。以電解質漿料15中的非揮發成分總量作為基準計,離子液體電解液的含量,可以是90體積%以下、85體積%以下、或80體積%以下。For the electrolyte slurry 15, from the viewpoint of obtaining a uniform dispersion state in the electrolyte slurry 15 and the viewpoint of forming the interface between the electrode mixture layer (positive electrode mixture layer 10 or negative electrode mixture layer 12) and the electrolyte layer 7 well, The total amount of non-volatile components in the electrolyte slurry 15 is used as a reference, and the content of the ionic liquid electrolyte (the total amount of the content of the ionic liquid and the electrolyte salt) is preferably 35% by volume or more, more preferably 40% by volume or more, More preferably, it is 45 volume% or more. Thereby, the ionic conductivity of the electrolyte layer 7 can be improved, and the battery characteristics of the secondary battery can be further improved. Based on the total amount of non-volatile components in the electrolyte slurry 15 , the content of the ionic liquid electrolyte may be less than 90% by volume, less than 85% by volume, or less than 80% by volume.

電解質漿料15中的分散介質,可與上述用於電極合劑漿料中的分散介質相同。相對於電極合劑漿料15中的非揮發成分100質量份,電解質漿料15中的分散介質的含量,例如可以是5質量份以上,亦可以是1000質量份以下。The dispersion medium in the electrolyte slurry 15 may be the same as the above-mentioned dispersion medium used in the electrode mixture slurry. The content of the dispersion medium in the electrolyte slurry 15 may be, for example, 5 parts by mass or more and may be 1000 parts by mass or less with respect to 100 parts by mass of non-volatile components in the electrode mixture slurry 15 .

在電解質漿料15中,離子液體和電解質鹽的含量的合計量相對於氧化物粒子16的含量的比值,以體積比(離子液體電解液的體積/氧化物粒子的體積)計,大於4/1且小於12/1。藉此,能夠在以相對較低電流來使二次電池放電的情況(例如以0.2C進行放電的情況)下,提升二次電池的放電特性。離子液體和電解質鹽的含量的合計量,相對於氧化物粒子16的含量的比值,較佳是以體積比計為5/1以上,更佳是6/1以上。為了抑制因離子液體和電解質鹽的含量多而導致電解質漿料的性質惡化的情形、或為了抑制在乾燥後液體從電極漏出的情形,離子液體和電解質鹽的含量的合計量,相對於氧化物粒子16的含量的比值,較佳是以體積比計為11/1以下,更佳是10/1以下,進一步更佳是9/1以下,特佳是8/1以下。In the electrolyte slurry 15, the ratio of the total amount of the content of the ionic liquid and the electrolyte salt to the content of the oxide particles 16 is greater than 4/ 1 and less than 12/1. Thereby, it is possible to improve the discharge characteristics of the secondary battery when the secondary battery is discharged at a relatively low current (for example, at 0.2C). The ratio of the total content of the ionic liquid and the electrolyte salt to the content of the oxide particles 16 is preferably 5/1 or more, more preferably 6/1 or more, in terms of volume ratio. In order to suppress the deterioration of the properties of the electrolyte slurry due to the high content of the ionic liquid and the electrolyte salt, or to suppress the leakage of the liquid from the electrode after drying, the total amount of the content of the ionic liquid and the electrolyte salt, relative to the oxide The ratio of the content of the particles 16 is preferably 11/1 or less, more preferably 10/1 or less, further preferably 9/1 or less, and most preferably 8/1 or less in volume ratio.

在電解質漿料15中,從提升電解質層的強度的觀點而言,氧化物粒子16的含量相對於聚合物17的含量的比值,較佳是以質量比(氧化物粒子的含量/聚合物的含量)計為1/5以上,更佳是1/4以上,進一步更佳是1/3以上,特佳是1/2以上。從提升在相對較高電流時的放電特性的觀點而言,氧化物粒子16的含量相對於聚合物17的含量的比值,較佳是以質量比計為5/1以下,更佳是3/1以下,進一步更佳是1/1以下,特佳是2/3以下。In the electrolyte slurry 15, from the viewpoint of enhancing the strength of the electrolyte layer, the ratio of the content of the oxide particles 16 to the content of the polymer 17 is preferably expressed as a mass ratio (content of oxide particles/polymer content) is 1/5 or more, more preferably 1/4 or more, further preferably 1/3 or more, and most preferably 1/2 or more. From the viewpoint of improving discharge characteristics at a relatively high current, the ratio of the content of the oxide particles 16 to the content of the polymer 17 is preferably 5/1 or less, more preferably 3/1 in terms of mass ratio. 1 or less, more preferably 1/1 or less, and most preferably 2/3 or less.

在電解質漿料15中,氧化物粒子16、聚合物17及離子液體電解液的含量比,以質量比計,可以是氧化物粒子:聚合物:離子液體電解液=7~25:4~60:20~85。In the electrolyte slurry 15, the content ratio of the oxide particles 16, the polymer 17, and the ionic liquid electrolyte may be, in terms of mass ratio, oxide particles:polymer:ionic liquid electrolyte=7~25:4~60 : 20-85.

在電解質漿料塗佈步驟中,將電解質漿料15塗佈在電極合劑中間層14的其中一面(主面)14a上的方法,可與上述將電極合劑漿料塗佈在集電體13的其中一面13a上的方法相同。塗佈電解質漿料15的方法,可與塗佈電極合劑的方法相同,亦可不同。In the electrolyte slurry coating step, the method of coating the electrolyte slurry 15 on one side (main surface) 14a of the electrode mixture intermediate layer 14 can be compared with the above-mentioned method of coating the electrode mixture slurry on the current collector 13. The method on one side 13a is the same. The method of coating the electrolyte slurry 15 may be the same as the method of coating the electrode mixture, or it may be different.

電解質漿料塗佈步驟之後,使電極合劑中間層14和電解質漿料15中包含的分散介質揮發。使分散介質揮發的方法,可與上述使電極合劑漿料中的分散介質揮發的方法相同。使電極合劑中間層14和電解質漿料15的分散介質揮發後的結果,如第3圖(c)所示,能夠獲得一種二次電池用電池構件19(正極構件或負極構件),其依序具備集電體13、電極合劑層18(正極合劑層10或負極合劑層12)及電解質層7。After the electrolyte slurry coating step, the dispersion medium contained in the electrode mixture intermediate layer 14 and the electrolyte slurry 15 is volatilized. The method of volatilizing the dispersion medium may be the same as the above-mentioned method of volatilizing the dispersion medium in the electrode mixture slurry. As a result of volatilizing the dispersion medium of the electrode mixture intermediate layer 14 and the electrolyte slurry 15, as shown in Fig. 3 (c), a battery member 19 (positive electrode member or negative electrode member) for a secondary battery can be obtained, which is sequentially It includes a current collector 13 , an electrode mixture layer 18 (the positive electrode mixture layer 10 or the negative electrode mixture layer 12 ), and the electrolyte layer 7 .

使用了藉由本實施形態的製造方法所獲得的電池構件19而得之二次電池,其在以相對較低電流來使二次電池的情況下的放電特性特別優異。The secondary battery obtained by using the battery member 19 obtained by the manufacturing method of this embodiment is particularly excellent in discharge characteristics when the secondary battery is charged with a relatively low current.

又,在本實施形態的製造方法中,當在電極合劑中間層14上塗佈電解質漿料15時,如第3圖(b)中的箭頭所示,離子液體電解液會與分散介質一起從電解質漿料15移動至電極合劑中間層14。推測此移動是基於要縮小電極合劑中間層14與電解質漿料15之間的離子液體電解液的濃度差異之作用、因重力導致的作用、或毛細現象。Also, in the manufacturing method of this embodiment, when the electrolyte slurry 15 is coated on the electrode mixture intermediate layer 14, as shown by the arrow in Fig. 3 (b), the ionic liquid electrolyte will flow from Electrolyte slurry 15 moves to electrode mixture intermediate layer 14 . It is presumed that this movement is due to the action of reducing the concentration difference of the ionic liquid electrolyte between the electrode mixture intermediate layer 14 and the electrolyte slurry 15 , the action due to gravity, or the capillary phenomenon.

根據本實施形態的製造方法,由於藉由在電極合劑中間層14上塗佈電解質漿料15來形成電解質層7,因此即便在電極合劑中間層14的表面存在微細的凹凸,仍能夠以填埋該凹部並加以平坦化的方式來配置電解質漿料15。其結果,在所獲得的電池構件19中,形成了由電極合劑層18與電解質層7緻密地密接而成的良好界面。又,在電池構件19中,於電解質漿料塗佈步驟中,離子液體電解液能夠在電解質漿料15與電極合劑中間層14之間移動,因此在電極合劑層18中,離子液體電解液變得容易存在於電極活性物質的周圍。因此,在電池構件19中,能夠良好地形成電極活性物質/電解質的界面。According to the production method of this embodiment, since the electrolyte layer 7 is formed by coating the electrolyte slurry 15 on the electrode mixture intermediate layer 14, even if there are fine irregularities on the surface of the electrode mixture intermediate layer 14, they can still be filled. Electrolyte paste 15 is disposed so as to flatten the concave portion. As a result, in the obtained battery member 19 , a favorable interface in which the electrode mixture layer 18 and the electrolyte layer 7 are in close contact is formed. Also, in the battery member 19, in the electrolyte slurry coating step, the ionic liquid electrolyte can move between the electrolyte slurry 15 and the electrode mixture intermediate layer 14, so in the electrode mixture layer 18, the ionic liquid electrolyte becomes It is easy to exist around the electrode active material. Therefore, in the battery member 19 , an electrode active material/electrolyte interface can be favorably formed.

如此一來,在電池構件19中,能夠良好地形成電極活性物質18/電解質7的界面而密接性優異,並且亦能夠良好地形成電極活性物質/電解質的界面。因此,使用了此電池構件19而得之二次電池的電池特性進一步優異。In this way, in the battery member 19, the interface of the electrode active material 18/electrolyte 7 can be formed favorably, and the adhesiveness is excellent, and the interface of the electrode active material/electrolyte can also be formed favorably. Therefore, the battery characteristics of the secondary battery obtained using this battery member 19 are further excellent.

作為另一實施形態,二次電池的製造方法,在塗佈電解質漿料15前,可進一步具備使含有聚合物之溶液(聚合物溶液)浸透於電極合劑中間層14中的步驟(聚合物溶液浸透步驟)。As another embodiment, the manufacturing method of the secondary battery may further include the step of soaking the solution (polymer solution) containing the polymer into the electrode mixture intermediate layer 14 before coating the electrolyte slurry 15 (polymer solution soaking step).

在一實施形態中,聚合物溶液,含有:具有由下述式(8)表示的結構單元之聚合物、離子液體、及電解質鹽。

Figure 02_image006
In one embodiment, the polymer solution contains a polymer having a structural unit represented by the following formula (8), an ionic liquid, and an electrolyte salt.
Figure 02_image006

式(8)中,X 表示相對陰離子。作為X ,可列舉例如:BF4 (四氟硼酸根陰離子)、PF6 (六氟磷酸根陰離子)、[FSI] 、[TFSI] 、[f3C] 、[BOB] 、BF3 (CF3 ) 、BF3 (C2 F5 ) 、BF3 (C3 F7 ) 、BF3 (C4 F9 ) 、C(SO2 CF3 )3 、CF3 SO2 O 、CF3 COO 、RCOO (R是碳數為1~4的烷基、苯基、或萘基)等。其中,X 較佳是選自由BF4 、PF6 、[FSI] 、[TFSI] 、[f3C] 所組成之群組中的至少1種,更佳是[TFSI] 或[FSI]In formula (8), X represents a relative anion. Examples of X - include: BF 4 - (tetrafluoroborate anion), PF 6 - (hexafluorophosphate anion), [FSI] - , [TFSI] - , [f3C] - , [BOB] - , BF 3 (CF 3 ) - , BF 3 (C 2 F 5 ) - , BF 3 (C 3 F 7 ) - , BF 3 (C 4 F 9 ) - , C(SO 2 CF 3 ) 3 - , CF 3 SO 2 O - , CF 3 COO - , RCOO - (R is an alkyl group having 1 to 4 carbon atoms, a phenyl group, or a naphthyl group) and the like. Among them, X - is preferably at least one selected from the group consisting of BF 4 - , PF 6 - , [FSI] - , [TFSI] - , [f3C] - , more preferably [TFSI] - or [FSI] - .

具有由式(8)表示的結構單元之聚合物的黏度平均分子量Mv(g・mol 1 ),沒有特別限制,較佳是1.0×105 以上,更佳是3.0×105 以上。聚合物的黏度平均分子量,較佳是5.0×106 以下,更佳是1.0×106 以下。如果聚合物的黏度平均分子量是5.0×106 以下,則有使聚合物溶液浸透時的處理性更提高的傾向。The viscosity average molecular weight Mv (g・mol −1 ) of the polymer having the structural unit represented by formula ( 8 ) is not particularly limited, but is preferably 1.0×10 5 or more, more preferably 3.0×10 5 or more. The viscosity average molecular weight of the polymer is preferably at most 5.0×10 6 , more preferably at most 1.0×10 6 . When the viscosity average molecular weight of the polymer is 5.0×10 6 or less, the handling property at the time of impregnating the polymer solution tends to be further improved.

在本說明書中,「黏度平均分子量」,是指能夠根據一般的測定方法也就是黏度法來評估,例如能夠由基於日本工業標準(JIS) K 7367-3:1999來測得的極限黏度數[η]來進行計算。In this specification, "viscosity average molecular weight" refers to a general measurement method that can be evaluated by a viscosity method, for example, an intrinsic viscosity number that can be measured based on Japanese Industrial Standards (JIS) K 7367-3:1999[ η] to calculate.

從離子導電性的觀點而言,具有由式(8)表示的結構單元之聚合物,較佳是僅由由式(8)表示的結構單元所構成之聚合物亦即均聚物。From the viewpoint of ion conductivity, the polymer having the structural unit represented by formula (8) is preferably a polymer composed of only the structural unit represented by formula (8), that is, a homopolymer.

具有由式(8)表示的結構單元之聚合物,可以是由式(8A)表示的聚合物。

Figure 02_image007
The polymer having a structural unit represented by formula (8) may be a polymer represented by formula (8A).
Figure 02_image007

式(8A)中,n是300~400,Y 表示相對陰離子。Y 能夠使用與X 所例示的相同的相對陰離子。In the formula (8A), n is 300-400, and Y - represents a relative anion. Y - can use the same relative anion as exemplified by X - .

n是300以上,較佳是400以上,更佳是500以上,並且,可以是4000以下,較佳是3500以下,更佳是3000以下。n是300~4000,較佳是400~3500,更佳是500~3000。n is 300 or more, preferably 400 or more, more preferably 500 or more, and may be 4000 or less, preferably 3500 or less, more preferably 3000 or less. n is 300-4000, preferably 400-3500, more preferably 500-3000.

具有由式(8)表示的結構單元之聚合物的製造方法,沒有特別限制,能夠使用例如Journal of Power Sources 2009,188,558-563中記載的製造 方法。The production method of the polymer having the structural unit represented by formula (8) is not particularly limited, and for example, the production method described in Journal of Power Sources 2009, 188, 558-563 can be used.

具有由式(8)表示的結構單元之聚合物(X =[TFSI] ),能夠藉由例如以下製造方法來獲得。A polymer (X =[TFSI] ) having a structural unit represented by formula (8) can be obtained by, for example, the following production method.

首先,將聚(二烯丙基二甲基氯化銨)([P(DADMA)][Cl])溶於去離子水中並加以攪拌,來製作[P(DADMA)][Cl]水溶液。[P(DADMA)][Cl],例如能夠直接使用市售品。繼而,另外將Li[TFSI]溶於去離子水中,來製作包含Li[TFSI]之水溶液。First, poly(diallyldimethylammonium chloride) ([P(DADMA)][Cl]) was dissolved in deionized water and stirred to prepare an aqueous solution of [P(DADMA)][Cl]. [P(DADMA)][Cl], for example, a commercially available product can be used as it is. Next, Li[TFSI] was separately dissolved in deionized water to prepare an aqueous solution containing Li[TFSI].

然後,以Li[TFSI]相對於[P(DADMA)][Cl]的莫耳比(Li[TFSI]的莫耳量/[P(DADMA)][Cl]的莫耳量)成為1.2~2.0的方式來混合2種水溶液,並加以攪拌2~8小時,使其固體析出,然後過濾回收所獲得的固體。使用去離子水來清洗固體,並進行真空乾燥12~48小時,藉此能夠獲得具有由式(8)表示的結構單元之聚合物([P(DADMA)][TFSI])。Then, the molar ratio of Li[TFSI] to [P(DADMA)][Cl] (molar amount of Li[TFSI]/molar amount of [P(DADMA)][Cl]) is 1.2 to 2.0 The two aqueous solutions were mixed in the same manner and stirred for 2 to 8 hours to precipitate a solid, and then the obtained solid was recovered by filtration. The solid was washed with deionized water and vacuum-dried for 12 to 48 hours, whereby a polymer ([P(DADMA)][TFSI]) having a structural unit represented by formula (8) could be obtained.

以聚合物溶液總量作為基準計,具有由式(8)表示的結構單元之聚合物,較佳是10質量%以上,更佳是20質量%以上,進一步更佳是30質量%以上,並且,較佳是80質量%以下,更佳是75質量%以下,進一步更佳是70質量%以下。Based on the total amount of the polymer solution, the polymer having a structural unit represented by formula (8) is preferably at least 10% by mass, more preferably at least 20% by mass, further preferably at least 30% by mass, and , preferably at most 80% by mass, more preferably at most 75% by mass, further preferably at most 70% by mass.

聚合物溶液中包含的離子液體和電解質,可與上述實施形態中能夠使用的離子液體和電解質相同。聚合物溶液中包含的離子液體和電解質,可與電解質漿料15中包含的離子液體和電解質相互相同,亦可不同。The ionic liquid and electrolyte contained in the polymer solution may be the same as the ionic liquid and electrolyte that can be used in the above-mentioned embodiment. The ionic liquid and electrolyte contained in the polymer solution may be the same as or different from the ionic liquid and electrolyte contained in the electrolyte slurry 15 .

離子液體和電解質,可作成離子液體電解液來添加於聚合物溶液中。此時,在離子液體電解液中,離子液體的每單位體積的電解質鹽的鹽濃度,可以是0.3mol/L以上、0.5mol/L以上、或1.0mol/L以上,亦可以是3.0mol/L以下、2.7mol/L以下、或2.5mol/L以下。Ionic liquids and electrolytes can be made into ionic liquid electrolytes and added to polymer solutions. At this time, in the ionic liquid electrolyte, the salt concentration of the electrolyte salt per unit volume of the ionic liquid may be 0.3 mol/L or more, 0.5 mol/L or more, or 1.0 mol/L or more, or 3.0 mol/L or more. L or less, 2.7 mol/L or less, or 2.5 mol/L or less.

以聚合物溶液總量作為基準計,離子液體電解液的含量,較佳是3質量%以上,更佳是5質量%以上,進一步更佳是10質量%以上,並且,較佳是80質量%以下,更佳是75質量%以下,進一步更佳是70質量%以下。Based on the total amount of the polymer solution, the content of the ionic liquid electrolyte is preferably at least 3% by mass, more preferably at least 5% by mass, further preferably at least 10% by mass, and more preferably 80% by mass It is less than or equal to, more preferably less than or equal to 75% by mass, further preferably less than or equal to 70% by mass.

聚合物液體,可進一步含有分散介質。分散介質,可以是有機溶劑,例如可以是丙酮、甲乙酮、γ-丁內酯等。The polymer liquid may further contain a dispersion medium. The dispersion medium may be an organic solvent, such as acetone, methyl ethyl ketone, γ-butyrolactone, etc.

在聚合物溶液浸透步驟中,使聚合物溶液浸透於電極合劑中間層14中的方法,例如是在電極合劑中間層14的與集電體13相反的一側的面14a上塗佈聚合物溶液的方法。塗佈,可以是藉由塗覆機所實行的塗佈、藉由噴霧所實行的塗佈等。被塗佈於電極合劑中間層14上的聚合物溶液,浸透於電極合劑中間層14中,來形成含有聚合物之電極合劑中間層,該聚合物具有由式(8)表示的結構單元。In the polymer solution soaking step, the method of making the polymer solution soak in the electrode mixture intermediate layer 14 is, for example, coating the polymer solution on the surface 14a of the electrode mixture intermediate layer 14 on the opposite side to the current collector 13 Methods. Coating may be coating by a coater, coating by spraying, or the like. The polymer solution coated on the electrode mixture intermediate layer 14 is impregnated into the electrode mixture intermediate layer 14 to form an electrode mixture intermediate layer containing a polymer having a structural unit represented by formula (8).

使聚合物溶液浸透於電極合劑中間層14中的方法,作為其他方法,可以是使形成有電極合劑中間層14之集電體13浸泡於聚合物溶液中的方法。The method of impregnating the polymer solution into the electrode mixture intermediate layer 14 may be, as another method, a method of soaking the current collector 13 formed with the electrode mixture intermediate layer 14 in a polymer solution.

然後,在電極合劑中間層14(浸透有聚合物溶液之電極合劑中間層)的與集電體13相反的一側的面14a上塗佈電解質漿料15(電解質漿料塗佈步驟)。電解質漿料15的組成和塗佈方法,可與上述實施形態相同。Then, the electrolyte slurry 15 is coated on the surface 14a of the electrode mixture intermediate layer 14 (electrode mixture intermediate layer impregnated with the polymer solution) opposite to the current collector 13 (electrolyte slurry coating step). The composition and coating method of the electrolyte slurry 15 may be the same as those in the above-mentioned embodiment.

在藉由具備聚合物溶液塗佈步驟之製造方法所獲得的電池構件19中,電極合劑層18中包含由上述式(8)表示的聚合物。藉此,能夠提高電極合劑層18的離子導電度,且能夠進一步提高使用了此電池構件19而得之二次電池的電池特性。In the battery member 19 obtained by the production method having the polymer solution coating step, the polymer represented by the above formula (8) is contained in the electrode mixture layer 18 . Thereby, the ion conductivity of the electrode mixture layer 18 can be improved, and the battery characteristic of the secondary battery obtained using this battery member 19 can be further improved.

具備藉由上述製造方法所製造的電池構件之二次電池,能夠採取各種變化例。The secondary battery provided with the battery member manufactured by the above-mentioned manufacturing method can take various modification examples.

作為第1變化例,上述各實施形態的電池構件的製造方法,亦能夠作為用於所謂的雙極型二次電池的電池構件的製造方法來使用。第4圖是顯示變化例的二次電池的電極群的一實施形態的分解斜視圖。本變化例中的二次電池與上述實施形態中的二次電池的不同點,是電極群2B具備了雙極電極21這一點。亦即,如第4圖所示,電極群2B依序具備正極6、第1電解質層7、雙極電極21、第2電解質層7及負極8。雙極電極22具備:雙極電極集電體22;正極合劑層10,其設置在雙極電極集電體22的負極8側的面(正極面)上;及,負極合劑層12,其設置在雙極電極集電體22的正極6側的面(負極面)上。As a first modification, the method for manufacturing a battery member according to each of the above embodiments can also be used as a method for manufacturing a battery member used in a so-called bipolar secondary battery. Fig. 4 is an exploded perspective view showing an embodiment of an electrode group of a secondary battery according to a modified example. The difference between the secondary battery in this modification and the secondary battery in the above-mentioned embodiment is that the electrode group 2B includes bipolar electrodes 21 . That is, as shown in FIG. 4 , electrode group 2B includes positive electrode 6 , first electrolyte layer 7 , bipolar electrode 21 , second electrolyte layer 7 , and negative electrode 8 in this order. The bipolar electrode 22 has: a bipolar electrode current collector 22; a positive electrode mixture layer 10, which is provided on the surface (positive electrode surface) of the negative electrode 8 side of the bipolar electrode current collector 22; and, a negative electrode mixture layer 12, which is provided On the surface (negative electrode surface) of the positive electrode 6 side of the bipolar electrode current collector 22 .

此雙極型二次電池,能夠視為包含了一種二次電池用電池構件(雙極電極構件),該二次電池用電池構件具備第1電解質層7、正極合劑層10、雙極電極集電體22、負極合劑層12、及第2電解質層7。本發明的一實施形態的電池構件的製造方法,是此雙極電極構件的製造方法。This bipolar secondary battery can be regarded as including a battery member (bipolar electrode member) for a secondary battery including a first electrolyte layer 7, a positive electrode mixture layer 10, a bipolar electrode assembly, and a battery member for a secondary battery. Electrode 22 , negative electrode mixture layer 12 , and second electrolyte layer 7 . A method for manufacturing a battery member according to an embodiment of the present invention is a method for manufacturing such a bipolar electrode member.

一實施形態的雙極電池構件的製造方法,具備下述步驟:在雙極集電體22的其中一面(其中一主面)上形成正極合劑中間層的步驟(正極合劑中間層形成步驟);在正極合劑中間層的與雙極集電體22相反的一側的面上塗佈第1電解質漿料的步驟(第1電解質漿料塗佈步驟);在雙極集電體22的另一面(另一主面)上形成負極合劑中間層的步驟(負極合劑中間層形成步驟);及,在負極合劑中間層的與雙極集電體22相反的一側的面上塗佈第2電解質漿料的步驟(第2電解質漿料塗佈步驟)。各個步驟,可藉由與上述實施形態中的各步驟(電極合劑中間層形成步驟、電解質漿料塗佈步驟)相同的材料和方法來實施。再者,第1電解質漿料與第2電解質漿料的組成,可以是相同的組成,亦可以是不同的組成,較佳是相同的組成。A method for manufacturing a bipolar battery member according to an embodiment includes the following steps: a step of forming a positive electrode mixture intermediate layer on one side (one of the main surfaces) of the bipolar current collector 22 (a positive electrode mixture intermediate layer forming step); The step of coating the first electrolyte slurry on the surface of the positive electrode mixture intermediate layer on the side opposite to the bipolar current collector 22 (the first electrolyte slurry coating step); on the other side of the bipolar current collector 22 The step of forming the negative electrode mixture intermediate layer (the negative electrode mixture intermediate layer forming step) on (the other main surface); Step of slurry (second electrolyte slurry coating step). Each step can be implemented using the same materials and methods as the steps in the above embodiments (electrode mixture intermediate layer formation step, electrolyte slurry coating step). Furthermore, the compositions of the first electrolyte slurry and the second electrolyte slurry may be the same composition or different compositions, but are preferably the same composition.

在本實施形態中,於電解質漿料塗佈步驟之前,可進一步具備使含有聚合物之溶液浸透於正極合劑中間層或負極合劑中間層中的步驟(聚合物溶液浸透步驟),該聚合物具有由上述式(8)表示的結構單元。聚合物溶液浸透步驟,可藉由與上述實施形態中的聚合物溶液浸透步驟相同的材料和方法來實施。In this embodiment, before the step of coating the electrolyte slurry, a step of soaking a solution containing a polymer into the positive electrode mixture intermediate layer or the negative electrode mixture intermediate layer (polymer solution soaking step) may be further provided, and the polymer has A structural unit represented by the above formula (8). The step of impregnating the polymer solution can be implemented with the same material and method as the step of impregnating the polymer solution in the above embodiment.

電解質漿料塗佈步驟之後,使正極合劑中間層和第1電解質漿料的分散介質揮發。同樣地使負極合劑中間層和第2電解質漿料的分散介質揮發。使分散介質揮發的方法,可以是與上述實施形態中的方法相同的方法。使分散介質揮發後的結果,能夠獲得一種二次電池用電池構件(雙極電極構件),其依序具備第1電解質層7、正極合劑層10、雙極集電體22、負極合劑層12、及第2電解質層7。After the electrolyte slurry coating step, the positive electrode mixture intermediate layer and the dispersion medium of the first electrolyte slurry are volatilized. Similarly, the negative electrode mixture intermediate layer and the dispersion medium of the second electrolyte slurry were volatilized. The method of volatilizing the dispersion medium may be the same method as in the above-mentioned embodiment. As a result of volatilizing the dispersion medium, a battery member (bipolar electrode member) for a secondary battery can be obtained, which sequentially includes the first electrolyte layer 7, the positive electrode mixture layer 10, the bipolar current collector 22, and the negative electrode mixture layer 12. , and the second electrolyte layer 7.

在使用了以這樣的方式來獲得的雙極電極構件而得之二次電池中,亦能夠在以相對較低電流進行放電的情況下提升二次電池的放電特性。In a secondary battery obtained using the bipolar electrode member obtained in this manner, the discharge characteristics of the secondary battery can be improved even when discharging is performed at a relatively low current.

作為第2變化例,上述各實施形態的電池構件的製造方法,可進一步具備下述步驟:形成電解質層7後,在該電解質層(第1電解質層)7上積層另一電解質層(第2電解質層)。此時,第1電解質層能夠發揮良好地形成電極合劑層與第2電解質層的界面之作用,因此亦能夠將第1電解質層稱為界面形成層。使用了藉由此製造方法所獲得的電池構件而得之二次電池,依序具備作為電極群的正極集電體、正極合劑層、第1界面形成層、電解質層(第2電解質層)、第2界面形成層、負極合劑層及負極集電體。As a second modification example, the manufacturing method of the battery member of each of the above-mentioned embodiments may further include the following steps: after forming the electrolyte layer 7, another electrolyte layer (the second electrolyte layer) is laminated on the electrolyte layer (the first electrolyte layer) 7. electrolyte layer). In this case, the first electrolyte layer can well form the interface between the electrode mixture layer and the second electrolyte layer, so the first electrolyte layer can also be called an interface-forming layer. The secondary battery obtained by using the battery member obtained by this production method is sequentially provided with a positive electrode current collector as an electrode group, a positive electrode mixture layer, a first interface forming layer, an electrolyte layer (second electrolyte layer), A second interface forming layer, a negative electrode mixture layer, and a negative electrode current collector.

在一實施形態中,能夠視為在此電極群中包含了第1電池構件(正極構件),該第1電池構件依序具備正極集電體、第1界面形成層及電解質層。同樣地,亦能夠視為在此電極群中包含了第2電池構件(負極構件),該第2電池構件依序具備負極集電體、負極合劑層、第2界面形成層及電解質層。第2變化例的製造方法,是此正極構件和負極構件的製造方法。In one embodiment, it can be considered that the electrode group includes a first battery member (positive electrode member) that includes a positive electrode current collector, a first interface-forming layer, and an electrolyte layer in this order. Similarly, it can also be considered that this electrode group includes a second battery member (negative electrode member) that includes a negative electrode current collector, a negative electrode mixture layer, a second interface forming layer, and an electrolyte layer in this order. The manufacturing method of the second modification is the manufacturing method of the positive electrode member and the negative electrode member.

界面形成層,可以是與上述各實施形態的電池構件中的電解質層相同的組成。亦即,本變化例的製造方法,是在上述各實施形態中將電解質層替換為界面形成層的方法。The interface forming layer may have the same composition as that of the electrolyte layer in the battery members of the above-mentioned embodiments. That is, the manufacturing method of this modified example is a method in which the electrolyte layer is replaced by an interface-forming layer in each of the above-mentioned embodiments.

在此製造方法中,能夠藉由下述方式來製造電池構件:在正極構件中的第1界面形成層側的面上或負極構件中的第2界面形成層側的面上,配置電解質層。在一實施形態中,此時的電解質層,可以是上述電解質漿料15形成為薄片狀而得的電解質層。亦即,藉由下述方法來製作電解質薄片:準備由樹脂所構成之薄膜等基材,並在此基材上塗佈電解質漿料15後,使分散介質揮發。然後,將基材從此電解質薄片上剝離,藉此能夠獲得電解質層。In this manufacturing method, the battery member can be manufactured by disposing an electrolyte layer on the surface of the positive electrode member on the side of the first interface forming layer or the surface of the negative electrode member on the side of the second interface forming layer. In one embodiment, the electrolyte layer at this time may be formed by forming the above-mentioned electrolyte slurry 15 into a sheet shape. That is, the electrolyte sheet is produced by preparing a substrate such as a thin film made of resin, coating the electrolyte slurry 15 on the substrate, and then volatilizing the dispersion medium. Then, the substrate is peeled off from this electrolyte sheet, whereby an electrolyte layer can be obtained.

在其他實施形態中,第2變化例中的電解質層,可具有與由電解質漿料15所製作的電解質層不同的組成,例如可以是預先將有機高分子固體電解質、無機固體電解質等公知的電解質組成物成形成薄片狀而得的電解質層。此時,有機高分子固體電解質,可以是聚氧化乙烯等;無機固體電解質,可以是Li7 La3 Zr2 O12 、Li6.75 La3 Zr1.75 Nb0.25 O12 (LLZ-Nb)、Li6.75 La3 Zr1.75 Ta0.25 O12 、Li1+c+d Alc (Ti,Ge)2-c Sid P3-d O12 (式中,0≦c>2,0≦d>3。再者,(Ti,Ge)意指Ti或Ge的任一方、或Ti和Ge兩方)、Li10 GeP2 S12 、Li9.54 Si1.74 P1.44 S11.7 Cl0.3 等。In other embodiments, the electrolyte layer in the second variation example may have a different composition from the electrolyte layer made of the electrolyte slurry 15, for example, it may be a known electrolyte such as an organic polymer solid electrolyte or an inorganic solid electrolyte. The composition is formed into a sheet-like electrolyte layer. At this time, the organic polymer solid electrolyte can be polyethylene oxide, etc.; the inorganic solid electrolyte can be Li 7 La 3 Zr 2 O 12 , Li 6.75 La 3 Zr 1.75 Nb 0.25 O 12 (LLZ-Nb), Li 6.75 La 3 Zr 1.75 Ta 0.25 O 12 , Li 1+c+d Al c (Ti, Ge) 2-c Si d P 3-d O 12 (where 0≦c>2, 0≦d>3. Furthermore , (Ti, Ge) means either Ti or Ge, or both of Ti and Ge), Li 10 GeP 2 S 12 , Li 9.54 Si 1.74 P 1.44 S 11.7 Cl 0.3 and the like.

在使用了以這樣的方式來獲得的電池構件而得之二次電池中,亦能夠在以相對較低電流進行放電的情況下提升二次電池的放電特性。進一步,藉由界面形成層中包含離子液體電解液,界面形成層與電解質層之間的離子導電變得更容易。作為結果,使用了本變化例的電池構件而得之二次電池,能夠良好地形成各層之間的界面,因此,電池特性優異。 [實施例]In a secondary battery obtained using the battery member obtained in this manner, the discharge characteristics of the secondary battery can be improved even when discharging is performed at a relatively low current. Further, by containing the ionic liquid electrolyte in the interface-forming layer, ion conduction between the interface-forming layer and the electrolyte layer becomes easier. As a result, the secondary battery obtained by using the battery member of this modified example can form an interface between layers well, and therefore has excellent battery characteristics. [Example]

以下說明本發明的實施形態。但是,本發明不限定於以下的實施形態。再者,在以下表示溶有電解質鹽之離子液體(離子液體電解液)的組成時,有時以「電解質鹽的濃度/電解質鹽的種類/離子液體的種類」的方式標記。Embodiments of the present invention will be described below. However, the present invention is not limited to the following embodiments. In addition, when expressing the composition of the ionic liquid (ionic liquid electrolytic solution) which melt|dissolved an electrolytic salt below, it may express in the form of "concentration of electrolytic salt/kind of electrolytic salt/kind of ionic liquid".

<實施例1> [製作正極構件] 使92.5質量份的層狀型鋰/鎳/錳/鈷複合氧化物(正極活性物質)、2.5質量份的乙炔黑(導電劑,產品名:HS-100,平均粒徑為48nm,Denka股份有限公司製造)、及5質量份的偏二氟乙烯與六氟丙烯之共聚物溶液(固體成分為12質量%)分散於適量的分散介質也就是N-甲基-2-吡咯啶酮(NMP)中,來製備正極合劑漿料。以125g/m2 的塗佈量來將此正極合劑漿料塗佈在正極集電體(厚度為20μm的鋁箔)上,並以80℃加熱12小時來使其乾燥,然後進行壓製,藉此形成合劑密度為2.7g/cm3 的正極合劑中間層。將其切割成寬度30mm、長度45mm後,安裝正極集電端子。<Example 1> [Making positive electrode components] 92.5 parts by mass of layered lithium/nickel/manganese/cobalt composite oxide (positive electrode active material), 2.5 parts by mass of acetylene black (conductive agent, product name: HS-100 , the average particle size is 48nm, manufactured by Denka Co., Ltd.), and 5 parts by mass of a copolymer solution of vinylidene fluoride and hexafluoropropylene (solid content is 12 mass%) dispersed in an appropriate amount of dispersion medium, that is, N-formazan Base-2-pyrrolidone (NMP) to prepare positive electrode mixture slurry. Coat the positive electrode mixture slurry on the positive electrode current collector (aluminum foil with a thickness of 20 μm) with a coating amount of 125 g/m 2 , and heat it at 80° C. for 12 hours to dry it, and then press it, thereby A positive electrode mixture intermediate layer with a mixture density of 2.7 g/cm 3 was formed. After cutting this into a width of 30 mm and a length of 45 mm, a positive electrode current collector terminal was attached.

使25質量份的PVDF-HFP、12質量份的SiO2 粒子(比表面積:50m2 /g,表面處理:六甲基二矽氮烷,平均初級粒徑:40nm,產品名:AEROSIL RX50,日本AEROSIL股份有限公司製造)、及63質量份的離子液體電解液(2.0mol/L/Li[FSI]/EMI-FSI)分散於適量的分散介質也就是NMP中,來製備電解質漿料。以電解質漿料的非揮發成分總量作為基準計,SiO2 粒子的含量是9體積%,離子液體電解液的含量是70體積%。將所獲得的電解質漿料塗佈在正極合劑中間層的與正極集電體相反的一側的面上,並以80℃加熱12小時來使分散介質揮發,從而形成電解質層。藉此,獲得一種正極構件,其依序具備正極集電體、正極合劑層及電解質層。所獲得的正極構件中的電解質層的厚度是15±2μm。Make 25 mass parts of PVDF-HFP, 12 mass parts of SiO 2 particles (specific surface area: 50m 2 /g, surface treatment: hexamethyldisilazane, average primary particle diameter: 40nm, product name: AEROSIL RX50, Japan AEROSIL Co., Ltd.), and 63 parts by mass of an ionic liquid electrolyte (2.0mol/L/Li[FSI]/EMI-FSI) were dispersed in an appropriate amount of dispersion medium, that is, NMP, to prepare an electrolyte slurry. Based on the total non-volatile components of the electrolyte slurry, the content of SiO 2 particles was 9% by volume, and the content of the ionic liquid electrolyte was 70% by volume. The obtained electrolyte slurry was coated on the surface of the positive electrode mixture intermediate layer opposite to the positive electrode current collector, and heated at 80° C. for 12 hours to volatilize the dispersion medium to form an electrolyte layer. Thereby, a positive electrode member including a positive electrode current collector, a positive electrode mixture layer, and an electrolyte layer in this order is obtained. The thickness of the electrolyte layer in the obtained positive electrode member was 15±2 μm.

[製作負極構件] 使92質量份的石墨(負極活性物質,日立化成股份有限公司製造)、3質量份的乙炔黑(導電劑,產品名:HS-100,平均粒徑為48nm,Denka股份有限公司製造)、及5質量份的偏二氟乙烯與六氟丙烯之共聚物溶液(固體成分為12質量%)分散於適量的分散介質也就是NMP中,來製備負極合劑漿料。以60g/m2 的塗佈量來將此負極合劑漿料塗佈在集電體(厚度為10μm的銅箔)上,並以80℃加熱12小時來使其乾燥,然後進行壓製,藉此形成合劑密度為1.8g/cm3 的負極合劑中間層。將其切割成寬度31mm、長度46mm後,安裝負極集電端子。[making the negative electrode member] making 92 parts by mass of graphite (negative electrode active material, manufactured by Hitachi Chemical Co., Ltd.), 3 parts by mass of acetylene black (conductive agent, product name: HS-100, average particle diameter is 48nm, Denka Co., Ltd. manufactured by the company), and 5 parts by mass of a copolymer solution of vinylidene fluoride and hexafluoropropylene (solid content is 12 mass%) are dispersed in an appropriate amount of dispersion medium, that is, NMP, to prepare negative electrode mixture slurry. Coat this negative electrode mixture slurry on the current collector (copper foil with a thickness of 10 μm) with a coating amount of 60 g/m 2 , and heat it at 80° C. for 12 hours to dry it, and then press it, thereby A negative electrode mixture intermediate layer with a mixture density of 1.8 g/cm 3 was formed. After cutting this into a width of 31 mm and a length of 46 mm, a negative electrode current collector terminal was attached.

藉由與正極構件的製造方法相同的方法,來在負極合劑中間層的與負極集電體相反的一側的面上塗佈電解質漿料後,使分散介質揮發,從而形成電解質層。藉此,獲得一種負極構件,其依序具備負極集電體、負極合劑層及電解質層。所獲得的負極構件中的電解質層的厚度是15±2μm。The electrolyte layer is formed by applying the electrolyte slurry on the surface of the negative electrode mixture intermediate layer opposite to the negative electrode current collector by the same method as that of the positive electrode member, and then volatilizing the dispersion medium. Thereby, a negative electrode member including a negative electrode current collector, a negative electrode mixture layer, and an electrolyte layer in this order is obtained. The thickness of the electrolyte layer in the obtained negative electrode member was 15±2 μm.

[製作鋰離子二次電池] 藉由以各自的電解質層彼此接觸的方式來積層所製作的正極構件與負極構件,從而製作電極群。如第1圖所示,將此電極群容置於由鋁製的層合薄膜所構成之電池外殼體內。在此電池外殼體內,將上述正極集電端子與負極集電端子取出到外部並將電池容器的開口部進行封口,而製作鋰離子二次電池。再者,鋁製的層合薄膜,是聚對苯二甲酸乙二酯(PET)薄膜/鋁箔/密封劑層(聚丙烯等)的積層體。所製作的鋰離子二次電池的設計容量是20mAh。[Production of lithium-ion secondary batteries] An electrode group is produced by laminating the produced positive electrode member and negative electrode member such that the respective electrolyte layers are in contact with each other. As shown in Fig. 1, this electrode group is housed in a battery case made of aluminum laminated films. In this battery case, the above-mentioned positive electrode current collector terminal and negative electrode current collector terminal were taken out to the outside, and the opening of the battery container was sealed to produce a lithium ion secondary battery. In addition, the laminated film made of aluminum is a laminated body of polyethylene terephthalate (PET) film/aluminum foil/sealant layer (polypropylene, etc.). The designed capacity of the produced lithium ion secondary battery was 20 mAh.

<實施例2~22、參考例1~2> 針對正極構件和負極構件的製作,除了將電解質漿料的組成變更成如表1所示以外,藉由與實施例1相同的方法來製作鋰離子二次電池。再者,關於氧化物粒子,表中平均初級粒徑為40nm且經表面處理後的氧化物粒子是與實施例1相同的SiO2 粒子,平均初級粒徑為40nm且未進行表面處理的氧化物粒子是日本AEROSIL股份有限公司製造的AEROSIL OX50(產品名),平均初級粒徑為7nm的氧化物粒子是SIGMA-ALDRICH公司製造的S5130(產品名)。<Examples 2 to 22, Reference Examples 1 to 2> Lithium was produced by the same method as in Example 1, except that the composition of the electrolyte slurry was changed as shown in Table 1 for the production of positive electrode members and negative electrode members. ion secondary battery. Furthermore, regarding the oxide particles, the oxide particles in the table with an average primary particle diameter of 40 nm and after surface treatment are the same SiO2 particles as in Example 1, with an average primary particle diameter of 40 nm and without surface treatment. The particles were AEROSIL OX50 (product name) manufactured by Japan Aerosil Co., Ltd., and the oxide particles with an average primary particle diameter of 7 nm were S5130 (product name) manufactured by SIGMA-ALDRICH.

<評估放電特性> 實行0.1C的定電流充電到上限電壓為4.2V為止。然後,以0.1C的電流值來實行終止電壓為2.7V的定電流放電,並將此放電時的容量設為電流值為0.1C時的放電容量。繼而,實行0.1C的定電流充電到上限電壓為4.2V為止,並以0.2C的電流值來實行終止電壓為2.7V的定電流放電,然後將此放電時的容量設為電流值為0.2C時的放電容量。根據以下公式來計算放電容量維持率(0.2C/0.1C)。亦同樣地測定0.5C時的放電容量,並求得放電容量維持率(0.5C/0.1C)。結果如表1所示。 放電容量維持率(%)=(電流值為0.2C或0.5C時的放電容量/電流值為0.1C時的放電容量) ×100<Evaluation of discharge characteristics> Implement constant current charging of 0.1C until the upper limit voltage is 4.2V. Then, a constant current discharge with a cut-off voltage of 2.7V was performed at a current value of 0.1C, and the capacity during this discharge was defined as the discharge capacity at a current value of 0.1C. Then, carry out the constant current charge of 0.1C until the upper limit voltage is 4.2V, and carry out the constant current discharge with the termination voltage of 2.7V at the current value of 0.2C, and then set the capacity at the time of discharge as the current value of 0.2C when the discharge capacity. The discharge capacity maintenance ratio (0.2C/0.1C) was calculated according to the following formula. The discharge capacity at 0.5C was also measured in the same manner, and the discharge capacity retention ratio (0.5C/0.1C) was obtained. The results are shown in Table 1. Discharge capacity maintenance rate (%) = (discharge capacity when the current value is 0.2C or 0.5C/discharge capacity when the current value is 0.1C) × 100

[表1]

Figure 02_image008
[Table 1]
Figure 02_image008

1‧‧‧二次電池 2、2A、2B‧‧‧電極群 3‧‧‧電池外殼體 4‧‧‧正極集電端子 5‧‧‧負極集電端子 6‧‧‧正極 7‧‧‧電解質層 8‧‧‧負極 9‧‧‧正極集電體 10‧‧‧正極合劑層 11‧‧‧負極集電體 12‧‧‧負極合劑層 13‧‧‧集電體 13a、14a‧‧‧面 14‧‧‧電極合劑中間層 15‧‧‧漿料(電解質漿料) 16‧‧‧氧化物粒子 17‧‧‧聚合物 18‧‧‧電極合劑層 19‧‧‧二次電池用電池構件 21‧‧‧雙極電極 22‧‧‧雙極集電體1‧‧‧Secondary battery 2, 2A, 2B‧‧‧electrode group 3‧‧‧Battery case 4‧‧‧Positive collector terminal 5‧‧‧Negative collector terminal 6‧‧‧Positive electrode 7‧‧‧electrolyte layer 8‧‧‧Negative electrode 9‧‧‧Cathode collector 10‧‧‧Positive electrode mixture layer 11‧‧‧Negative electrode collector 12‧‧‧Negative electrode mixture layer 13‧‧‧Collector 13a, 14a‧‧‧face 14‧‧‧Intermediate layer of electrode mixture 15‧‧‧Slurry (electrolyte slurry) 16‧‧‧Oxide particles 17‧‧‧polymer 18‧‧‧Electrode mixture layer 19‧‧‧Battery components for secondary batteries 21‧‧‧bipolar electrode 22‧‧‧Bipolar Current Collector

第1圖是顯示一實施形態的二次電池的斜視圖。 第2圖是顯示在第1圖所示的二次電池的電極群的一實施形態的分解斜視圖。 第3圖是顯示一實施形態的二次電池用電池構件的製造方法的概略剖面圖。 第4圖是顯示變化例的二次電池的電極群的一實施形態的分解斜視圖。Fig. 1 is a perspective view showing a secondary battery according to an embodiment. Fig. 2 is an exploded perspective view showing an embodiment of the electrode group of the secondary battery shown in Fig. 1 . Fig. 3 is a schematic cross-sectional view showing a method of manufacturing a battery member for a secondary battery according to an embodiment. Fig. 4 is an exploded perspective view showing an embodiment of an electrode group of a secondary battery according to a modified example.

國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無Domestic deposit information (please note in order of depositor, date, and number) none

國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無Overseas storage information (please note in order of storage country, organization, date, and number) none

7‧‧‧電解質層 7‧‧‧electrolyte layer

13‧‧‧集電體 13‧‧‧Collector

13a、14a‧‧‧面 13a, 14a‧‧‧face

14‧‧‧電極合劑中間層 14‧‧‧Intermediate layer of electrode mixture

15‧‧‧漿料(電解質漿料) 15‧‧‧Slurry (electrolyte slurry)

16‧‧‧氧化物粒子 16‧‧‧Oxide particles

17‧‧‧聚合物 17‧‧‧polymer

18‧‧‧電極合劑層 18‧‧‧Electrode mixture layer

19‧‧‧二次電池用電池構件 19‧‧‧Battery components for secondary batteries

Claims (3)

一種二次電池用電池構件的製造方法,其具備下述步驟:在集電體的其中一面上形成含有電極活性物質之電極合劑中間層的步驟;及,在前述電極合劑中間層的與前述集電體相反的一側的面上塗佈含有氧化物粒子、聚合物、離子液體及電解質鹽之漿料的步驟;並且,前述離子液體和前述電解質鹽的含量的合計量相對於前述氧化物粒子的含量的比值,以體積比計,大於4/1且小於12/1,前述離子液體的每單位體積的前述電解質鹽的濃度大於0.5mol/L且為3.0mol/L以下。 A method for manufacturing a battery component for a secondary battery, comprising the steps of: forming an electrode mixture intermediate layer containing an electrode active material on one side of a current collector; A step of coating a slurry containing oxide particles, a polymer, an ionic liquid, and an electrolyte salt on the surface opposite to the electrode; The ratio of the content is greater than 4/1 and less than 12/1 in terms of volume ratio, and the concentration of the aforementioned electrolyte salt per unit volume of the aforementioned ionic liquid is greater than 0.5 mol/L and less than 3.0 mol/L. 如請求項1所述之二次電池用電池構件的製造方法,其中,前述氧化物粒子的比表面積是2~400m2/g。 The method for manufacturing a battery member for a secondary battery according to claim 1, wherein the oxide particles have a specific surface area of 2 to 400 m 2 /g. 如請求項1或2所述之二次電池用電池構件的製造方法,其中,前述離子液體含有N(SO2F)2 -來作為陰離子成分。 The method of manufacturing a battery member for a secondary battery according to claim 1 or 2, wherein the ionic liquid contains N(SO 2 F) 2 - as an anion component.
TW108112671A 2018-04-11 2019-04-11 Method for manufacturing battery member for secondary battery TWI794473B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-076287 2018-04-11
JP2018076287 2018-04-11
JP2018121175 2018-06-26
JP2018-121175 2018-06-26

Publications (2)

Publication Number Publication Date
TW201944644A TW201944644A (en) 2019-11-16
TWI794473B true TWI794473B (en) 2023-03-01

Family

ID=68164172

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108112671A TWI794473B (en) 2018-04-11 2019-04-11 Method for manufacturing battery member for secondary battery

Country Status (3)

Country Link
JP (1) JP7416426B2 (en)
TW (1) TWI794473B (en)
WO (1) WO2019198723A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI831180B (en) * 2022-04-14 2024-02-01 鴻海精密工業股份有限公司 Composite cathode for solid-state battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329107A (en) * 2006-06-09 2007-12-20 Arisawa Mfg Co Ltd Lithium ion secondary battery
TW201419634A (en) * 2012-08-29 2014-05-16 Showa Denko Kk Electricity storage device and producing method thereof
CN106159313A (en) * 2015-05-15 2016-11-23 三星电子株式会社 Lithium metal battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595277A (en) * 1979-01-16 1980-07-19 Matsushita Electric Ind Co Ltd Lithium-bromine complex cell
US11462767B2 (en) * 2017-04-21 2022-10-04 Showa Denko Materials Co., Ltd. Electrochemical device electrode. method for producing electrochemical device electrode and electrochemical device
WO2019035190A1 (en) * 2017-08-16 2019-02-21 日立化成株式会社 Battery member for secondary batteries, and secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329107A (en) * 2006-06-09 2007-12-20 Arisawa Mfg Co Ltd Lithium ion secondary battery
TW201419634A (en) * 2012-08-29 2014-05-16 Showa Denko Kk Electricity storage device and producing method thereof
CN106159313A (en) * 2015-05-15 2016-11-23 三星电子株式会社 Lithium metal battery

Also Published As

Publication number Publication date
JP7416426B2 (en) 2024-01-17
WO2019198723A1 (en) 2019-10-17
TW201944644A (en) 2019-11-16
JPWO2019198723A1 (en) 2021-04-15

Similar Documents

Publication Publication Date Title
TWI758486B (en) Electrolyte composition, secondary battery, and method for producing electrolyte sheet
JP7442911B2 (en) Electrolyte composition, secondary battery, and method for producing electrolyte sheet
WO2013146054A1 (en) Nonaqueous electrolyte secondary battery
WO2020145338A1 (en) Electrolytic solution, electrolyte slurry composition, and secondary cell
TWI794470B (en) Electrolyte slurry composition, method of manufacturing electrolyte sheet, and method of manufacturing secondary battery
JP7438207B2 (en) Slurry composition for batteries, and methods for producing electrodes, electrolyte sheets, and battery members
TWI794473B (en) Method for manufacturing battery member for secondary battery
WO2018221668A1 (en) Electrolyte composition and rechargeable battery
CN108735972B (en) Method for manufacturing battery member for secondary battery
TWI784154B (en) Electrode for secondary battery, electrolyte layer for secondary battery, and secondary battery
TWI794472B (en) Method for manufacturing battery member for secondary battery
WO2020017439A1 (en) Electrolyte sheet production method and secondary battery production method
JP2020113527A (en) Electrolyte slurry composition and manufacturing method thereof, and electrolyte sheet and manufacturing method thereof
WO2021001970A1 (en) Electrolyte sheet and secondary battery
WO2021205550A1 (en) Electrolyte sheet and manufacturing method of secondary battery
WO2021038862A1 (en) Electrolyte sheet, method for producing same and secondary battery
JP2020205146A (en) Electrolyte sheet and method for manufacturing the same, and secondary battery
JP2020136223A (en) Lithium secondary battery
JP2021018925A (en) Nonaqueous electrolyte and semi-solid electrolyte sheet using the same, and semi-solid electrolyte composite sheet