[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020138434A1 - Production method for haloalkyl acid halide, production method for haloalkyl acid ester, and production method for haloalkyl acid amide - Google Patents

Production method for haloalkyl acid halide, production method for haloalkyl acid ester, and production method for haloalkyl acid amide Download PDF

Info

Publication number
WO2020138434A1
WO2020138434A1 PCT/JP2019/051479 JP2019051479W WO2020138434A1 WO 2020138434 A1 WO2020138434 A1 WO 2020138434A1 JP 2019051479 W JP2019051479 W JP 2019051479W WO 2020138434 A1 WO2020138434 A1 WO 2020138434A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
reaction
compound represented
production method
Prior art date
Application number
PCT/JP2019/051479
Other languages
French (fr)
Japanese (ja)
Inventor
耀 岩崎
元志 青山
聡史 河口
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2020562505A priority Critical patent/JPWO2020138434A1/en
Publication of WO2020138434A1 publication Critical patent/WO2020138434A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/58Preparation of carboxylic acid halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/38Acyl halides
    • C07C53/46Acyl halides containing halogen outside the carbonyl halide group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/14Preparation of carboxylic acid esters from carboxylic acid halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/62Halogen-containing esters
    • C07C69/63Halogen-containing esters of saturated acids

Definitions

  • the present invention relates to a method for producing a haloalkyl acid halide, a method for producing a haloalkyl acid ester using the same, and a method for producing a haloalkyl acid amide.
  • Haloalkyl acid halides, and haloalkyl acid esters and haloalkyl acid amides derived from haloalkyl acid halides are useful as intermediates for various catalysts, pharmaceuticals, agricultural chemicals, lubricating oils and the like.
  • Patent Document 1 describes that C 2 F 5 CHCl 2 is photooxidized to obtain an acid chloride (haloalkyl acid halide).
  • Patent Document 2 discloses a method for producing difluorobromoacetyl chloride (haloalkyl acid halide) by using 1,1-difluoro-1,2-dibromoethane as a starting compound and irradiating with ultraviolet light in the presence of chlorine and oxygen. Is listed.
  • Patent Document 1 is a method using a raw material compound having a chlorine atom, and a method using a raw material compound having a bromine atom is not described.
  • the starting compound having a bromine atom is more unstable than the starting compound having a chlorine atom, and it is difficult to control the reaction.
  • the method described in Patent Document 2 has a problem that the reaction is slow and it is difficult to obtain a high yield.
  • the present invention provides a production method capable of efficiently producing a haloalkyl acid halide, and a production method of a haloalkyl acid ester and a haloalkyl acid amide using the same.
  • a haloalkyl which is obtained by oxidizing a compound represented by the following formula 1 by irradiating light having a wavelength within a range of 260 to 400 nm in the presence of oxygen and a radical to obtain a compound represented by the following formula 2.
  • [4] The production method of [1] or [2], wherein the oxidation is performed in a liquid phase.
  • [5] The production method according to any one of [1] to [4], wherein the light irradiation is performed in the presence of at least one of a chlorine radical and a bromine radical.
  • [6] The production method according to any one of [1] to [5], wherein Z is a chlorine atom.
  • [7] The method according to any one of [1] to [6], wherein the compound represented by the formula 1 is 1,2-dibromo-2-chloro-1,1-difluoroethane.
  • a compound represented by the formula 2 is obtained by the production method according to any one of [1] to [7], and the compound represented by the formula 2 is reacted with a compound represented by the following formula 3.
  • a method for producing a haloalkyl ester To obtain a compound represented by the following formula 4, a method for producing a haloalkyl ester.
  • R-OH formula 3 CBrX 1 X 2 -(CY 1 Y 2 ) n -C(O)OR Formula 4
  • R represents an alkyl group having 1 to 4 carbon atoms.
  • X 1 , X 2 , Y 1 , Y 2 and n are the same as in the above formulas 1 and 2. ]
  • a haloalkyl acid halide can be efficiently produced.
  • a haloalkyl ester can be efficiently produced.
  • the numerical range represented by “to” means a numerical range in which the numerical values before and after are the lower limit value and the upper limit value.
  • light having a single wavelength means light having a difference between the shortest wavelength and the longest wavelength of 50 nm or less.
  • the compound represented by Formula 1 is also referred to as Compound 1. The compounds represented by other formulas will be described in the same manner.
  • the method for producing a haloalkyl acid halide of the present embodiment is a method for producing a compound 2 which is a haloalkyl acid halide by oxidizing the compound 1 which is a raw material compound.
  • the oxidation reaction of compound 1 is performed by a method of irradiating with light in the presence of oxygen and radicals.
  • Z is a chlorine atom from the viewpoint of easy handling of the reaction product.
  • Preferred examples of compound 1 include 1,2-dibromo-2-chloro-1,1-difluoroethane, 1,2,2-tribromo-1,1-difluoroethane, 1,2-dibromo-1,1,2- Examples include trifluoroethane and 1,2-dibromo-1,1-difluoroethane. Among them, 1,2-dibromo-2-chloro-1,1-difluoroethane (in the formula 1, X 1 and X 2 are fluorine atoms, Z is chlorine atom, and n is Compounds that are zero) are more preferred.
  • Oxygen (O 2 ) used in the oxidation reaction is preferably 0.1 to 10 mol, more preferably 0.3 to 5 mol, and still more preferably 0.5 to 3 mol with respect to 1 mol of the compound 1.
  • the conversion rate tends to be high, and when it is at most the upper limit value, the selectivity rate tends to be high.
  • the oxygen-containing gas may be oxygen gas (O 2 ), or may be a mixed gas containing oxygen and a gas inert to the oxidation reaction (for example, nitrogen, helium, argon, carbon dioxide, etc.).
  • the radical used for the oxidation reaction is preferably 0.01 to 10 mol, more preferably 0.1 to 5 mol, and still more preferably 0.5 to 3 mol, relative to 1 mol of the compound 1.
  • the oxygen/radical molar ratio used in the oxidation reaction is preferably 0.1/1 to 100/1, more preferably 1/1 to 50/1, and further preferably 2/1 to 10/1 mol. Within the above range, the selectivity tends to be high.
  • the radical contains at least one of a chlorine radical and a bromine radical because the selectivity is likely to be high. More preferably, the radical is at least one of a chlorine radical and a bromine radical.
  • the radical source contains at least one of chlorine (Cl 2 ) and bromine (Br 2 ). More preferably, the radical source is at least one of chlorine and bromine.
  • the radical source is chlorine
  • the chlorine (Cl 2 ) used for the oxidation reaction is preferably 0.1 to 10 mol, more preferably 0.3 to 8 mol, and 0.5 to 10 mol with respect to 1 mol of the compound 1. 6 mol is more preferred.
  • the amount of bromine (Br 2 ) used in the oxidation reaction is preferably 0.01 to 10 moles, more preferably 0.1 to 8 moles, and 0.3 to 1 mole of Compound 1. 6 mol is more preferred.
  • the wavelength of light used for the oxidation reaction is in the range of 260 to 400 nm. That is, the light with which the reaction system is irradiated does not include light having a wavelength of less than 260 nm and does not include light having a wavelength of more than 400 nm.
  • the absorption wavelength of the product haloalkyl acid halide exists in the region of wavelength shorter than 260 nm. For this reason, when light having a wavelength shorter than 260 nm is irradiated during the reaction, the product is easily decomposed to generate a side reaction product, and the selectivity of the target product is likely to decrease.
  • the wavelength of light used for the oxidation reaction is 260 nm or more, decomposition of the product can be easily prevented.
  • the wavelength of the light is in the above range, the selectivity tends to be high.
  • the wavelength of the light is more preferably within the range of 350 to 400 nm.
  • the light used for the oxidation reaction is preferably light having a single wavelength because the yield tends to be high.
  • An LED (light emitting diode) is preferable as the light source having a single wavelength.
  • Irradiance of LED is preferably 50 ⁇ 200mW / cm 2, more preferably 80 ⁇ 150mW / cm 2. If the irradiance is above the lower limit of the above range, the conversion rate tends to increase, and if it is below the upper limit, there is no need to install special incidental equipment in the manufacturing equipment, which is preferable.
  • the irradiance of the LED can be measured using an ultraviolet integrating photometer (manufactured by Ushio Inc.).
  • the method for producing a haloalkyl acid halide according to this embodiment can be performed in a gas phase. It is preferable to carry out the reaction in the gas phase because the reaction time tends to be short.
  • the light is irradiated to the mixed gas of the gaseous compound 1, the oxygen-containing gas, and the gaseous radical source in the reaction container.
  • the irradiation of light may be continuous or intermittent.
  • chlorine (Cl 2 ) used in the oxidation reaction is preferably 0.1 to 10 mol, more preferably 0.3 to 5 mol, per 1 mol of the compound 1. , 0.5 to 3 mol is more preferable, and 0.5 to 1 mol is particularly preferable.
  • the amount of bromine (Br 2 ) used in the oxidation reaction is preferably 0.01 to 10 mol, more preferably 0.1 to 5 mol, per 1 mol of the compound 1. , 0.3 to 3 mol is more preferable, and 0.5 to 1 mol is particularly preferable.
  • the pressure in the reaction vessel is preferably atmospheric pressure (atmospheric pressure) to 0.5 MPa (gauge pressure), more preferably atmospheric pressure to 0.3 MPa (gauge pressure). When the pressure is equal to or higher than the lower limit of the above range, it is not necessary to provide special auxiliary equipment to the manufacturing facility, and when the pressure is equal to or lower than the upper limit, the conversion rate tends to be high.
  • reaction temperature The temperature of the gas in the reaction vessel (reaction temperature) is preferably 80 to 200°C, more preferably 90 to 150°C. If the reaction temperature is above the lower limit of the above range, the conversion rate tends to increase, and if it is below the upper limit, the selectivity tends to increase.
  • the time during which the mixed gas is irradiated with light is defined as the reaction time.
  • the reaction time in the case of intermittent irradiation with light is the total time during which the mixed gas is irradiated with light. Regarding the reaction time, it was confirmed by NMR analysis or gas chromatography analysis that the peak derived from the starting compound, Compound 1, was reduced, and the peak derived from the target compound, Compound 2, was generated, and the yield was maximized.
  • the time until it becomes is the time until it becomes.
  • the time until the maximum yield can be estimated in advance by a preliminary test.
  • the reaction time is preferably 1 to 120 minutes, more preferably 5 to 60 minutes. If the reaction time is at least the lower limit of the above range, the conversion rate tends to be high, and if it is at most the upper limit, the yield tends to be high.
  • the liquid compound 2 is obtained by cooling and liquefying the gas after the reaction.
  • the method for producing a haloalkyl acid halide according to this embodiment can be performed in a liquid phase. It is preferable to carry out the reaction in the liquid phase from the viewpoint of the apparatus shape.
  • the reaction liquid containing the compound 1 in the liquid state, the oxygen-containing gas, and the mixed gas of the radical source in the gas state are brought into contact with each other in the liquid phase.
  • the reaction solution after light irradiation contains Compound 2.
  • chlorine (Cl 2 ) used in the oxidation reaction is preferably 0.1 to 10 mol, more preferably 0.3 to 8 mol, per 1 mol of the compound 1. , 0.5 to 6 mol is more preferable.
  • the pressure in the reaction vessel is preferably atmospheric pressure (atmospheric pressure) to 0.5 MPa (gauge pressure), more preferably atmospheric pressure to 0.3 MPa (gauge pressure).
  • the pressure is equal to or higher than the lower limit of the above range, it is not necessary to provide special auxiliary equipment to the manufacturing facility, and when the pressure is equal to or lower than the upper limit, the conversion rate tends to be high.
  • the temperature of the liquid in the reaction vessel (reaction temperature) is preferably 0 to 100°C, more preferably 20 to 80°C. If the reaction temperature is above the lower limit of the above range, the conversion rate tends to increase, and if it is below the upper limit, the selectivity tends to increase.
  • the reaction liquid may contain a solvent, if necessary.
  • the solvent is preferably an organic solvent inert to light, and examples thereof include carbon tetrachloride, tetrachloroethylene, and 1,1,2-trichloro-1,2,2-trifluoroethane. Carbon tetrachloride is preferred because it has a shorter absorption wavelength.
  • the reaction solution preferably does not contain a solvent.
  • the time during which the reaction solution is irradiated with light is defined as the reaction time.
  • the reaction time is the same as above.
  • the reaction time is preferably 10 to 500 minutes, more preferably 60 to 360 minutes. If the reaction time is at least the lower limit of the above range, the conversion rate tends to be high, and if it is at most the upper limit, the yield tends to be high.
  • the method for producing a haloalkyl acid ester of the present embodiment is a haloalkyl acid ester obtained by oxidizing compound 1 to obtain compound 2 by the above-mentioned method for producing a haloalkyl acid halide and subjecting the obtained compound 2 to an esterification reaction. This is a method for obtaining compound 4. In the esterification reaction, compound 2 and compound 3 are reacted.
  • R-OH formula 3 CBrX 1 X 2 -(CY 1 Y 2 ) n -C(O)OR Formula 4
  • R represents an alkyl group having 1 to 4 carbon atoms
  • X 1 , X 2 , Y 1 , Y 2 and n are the same as those in Formulas 1 and 2.
  • R is a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, or a t-butyl group. From the viewpoint that the reaction time tends to be short, a methyl group, an ethyl group, an n-propyl group, or an n-butyl group is preferable, and an ethyl group is more preferable.
  • the liquid compound 2 obtained by the above method is purified, if necessary, and used in the esterification reaction.
  • the purification method include distillation.
  • compound 2 and compound 3 can be reacted by a conventionally known method.
  • the compound 3 used in the esterification reaction is preferably 0.8 to 10 mol, more preferably 0.9 to 5 mol, still more preferably 1 to 2 mol, per 1 mol of the compound 2. If it is at least the lower limit of the above range, the yield tends to be high, and if it is at most the upper limit, purification is easy.
  • the temperature of the reaction liquid (reaction temperature), which is a mixture of compound 2 and compound 3, is preferably 0 to 50°C, more preferably 15 to 40°C. If the reaction temperature is above the lower limit of the above range, the reaction time tends to be short, and if it is below the upper limit, the yield tends to be high.
  • the reaction time is defined as the time during which the reaction solution is maintained at the reaction temperature. The reaction time is preferably the time until the peak derived from the starting compound, Compound 2, disappears by NMR analysis or gas chromatography analysis. The reaction time is preferably 1 to 100 minutes. If the reaction time is at least the lower limit of the above range, the conversion rate tends to be high, and if it is at most the upper limit, the yield tends to be high.
  • the method for producing a haloalkyl acid amide of the present embodiment is a haloalkyl acid amide obtained by oxidizing compound 1 to obtain compound 2 by the above-described method for producing a haloalkyl acid halide, and subjecting the obtained compound 2 to an amidation reaction. This is a method for obtaining compound 6. In the amidation reaction, compound 2 and compound 5 are reacted.
  • R 1 R 2 NH Formula 5 CBrX 1 X 2 —(CY 1 Y 2 ) n —C(O)NR 1 R 2 Formula 6
  • R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and X 1 , X 2 , Y 1 , Y 2 and n are the same as those in Formulas 1 and 2 above. Is.
  • R 1 and R 2 are each independently a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group or a t-butyl group.
  • a methyl group, an ethyl group, an n-propyl group, and an n-butyl group are preferable, and a methyl group or an ethyl group is more preferable, because the reaction time tends to be short.
  • R 1 and R 2 may be the same or different, but are preferably the same.
  • the liquid compound 2 obtained by the above method is purified as needed and used in the amidation reaction.
  • the purification method include distillation.
  • Compound 5 may be a commercially available product, or can be produced by a known method.
  • compound 2 and compound 5 can be reacted by a conventionally known method.
  • the compound 5 used in the amidation reaction is preferably 0.8 to 10 mol, more preferably 0.9 to 5 mol, still more preferably 1 to 2 mol, per 1 mol of the compound 2. If it is at least the lower limit of the above range, the yield tends to be high, and if it is at most the upper limit, purification is easy.
  • the temperature of the reaction liquid (reaction temperature), which is a mixture of the compound 2 and the compound 5, is preferably 0 to 50°C, more preferably 15 to 40°C. If the reaction temperature is above the lower limit of the above range, the reaction time tends to be short, and if it is below the upper limit, the yield tends to be high.
  • the reaction time is defined as the time during which the reaction solution is maintained at the reaction temperature. The reaction time is preferably the time until the peak derived from the starting compound, Compound 2, disappears by NMR analysis or gas chromatography analysis. The reaction time is preferably 1 to 100 minutes. If the reaction time is at least the lower limit of the above range, the conversion rate tends to be high, and if it is at most the upper limit, the yield tends to be high.
  • the compound 2 which is a haloalkyl acid halide can be efficiently produced by a novel method of oxidizing the compound 1 having a specific structure, and a haloalkyl acid ester or a haloalkyl acid amide can be produced using the compound 2.
  • the yield in the production of compound 2 by oxidizing compound 1 can be improved to 30% or more, preferably 45% or more.
  • Haloalkyl acid halides, haloalkyl acid esters derived from haloalkyl acid halides, and haloalkyl acid amides derived from haloalkyl acid halides are useful as intermediates for various catalysts, pharmaceuticals, agricultural chemicals, lubricating oils, etc. is there.
  • Example 1-1, 1-2, 2 to 12 Among these examples, Examples 1-1, 1-2, 2 to 5 are Examples, and Examples 6 to 12 are Comparative Examples.
  • the structural formulas of the following compounds used or produced in each example are shown in Table 1.
  • a haloalkyl acid halide (Compound 2-1) was produced using Compound 1-1 as a raw material compound, oxygen gas (O 2 ) as an oxidizing agent, and chlorine gas (Cl 2 ) as a radical source.
  • a glass reaction vessel with a capacity of 5000 mL equipped with a gas inlet and a gas outlet was preheated to 125°C.
  • An LED light (manufactured by Nitride, wavelength 350-400 nm, installed on the outside of the reaction vessel while adjusting the mixed gas of compound 1-1, O 2 and Cl 2 to 120° C. and introducing the mixture gas into the reaction vessel at normal pressure.
  • Irradiance of 100 mW/cm 2 was applied to the gas in the reaction vessel to carry out a gas phase reaction.
  • the reaction container transmits light having a wavelength of 280 nm or more.
  • the molar ratio of “compound 1-1/O 2 /Cl 2 ”in the mixed gas was 1/2.1/0.57.
  • the mixed gas was continuously supplied into the reaction vessel at a flow rate of 212 mL/min, and the residence time in the reaction vessel was used as the reaction time.
  • the reaction time was 23 minutes.
  • the temperature of the gas in the reaction vessel was maintained at 100°C ⁇ 10°C.
  • the conversion rate is a numerical value obtained by dividing the number of moles of the raw material compound used by the reaction (difference in the number of moles of the raw material compound before and after the reaction) by the number of moles of the raw material compound before the reaction, as a percentage. (Unit: %).
  • the selectivity is a numerical value (unit: %) in which a value obtained by dividing the number of moles of the produced haloalkyl acid halide by the number of moles of the raw material compound used in the reaction is expressed as a percentage.
  • the yield is a value obtained by dividing the number of moles of the produced haloalkyl acid halide by the number of moles of the raw material compound before the reaction, which is expressed as a percentage. The same calculation was performed for Examples 2 to 6 and 8 to 12.
  • Example 1-2 the haloalkyl acid halide (Compound 2-1) obtained in Example 1-1 was esterified to produce a haloalkyl acid ester (Compound 4-1).
  • Example 1-1 74 g of a liquid reaction product was obtained. 62 g (containing 0.12 mol of compound 2-1) of the obtained liquid (25° C.) was transferred to a flask having a volume of 200 mL, and 6 g (0.13 mol) of ethanol was added for esterification. The temperature of the liquid in the flask (reaction temperature) was maintained at 30°C ⁇ 10°C. The reaction time was 10 minutes. The reaction solution immediately after the completion of the reaction was analyzed by 1 H-NMR, 19 F-NMR and gas chromatography. As a result, production of compound 4-1 was confirmed. The conversion, selectivity and yield in the esterification reaction were all 100%.
  • the conversion rate is defined as the number of moles of the haloalkyl acid halide used in the reaction (difference in the number of moles of the haloalkyl acid halide before and after the reaction). It is a numerical value (unit: %) in which the value divided by is expressed as a percentage.
  • the selectivity is a numerical value (unit: %) in which the value obtained by dividing the number of moles of the haloalkyl acid ester formed by the number of moles of the haloalkyl acid halide used in the reaction is expressed as a percentage.
  • the yield is a value obtained by dividing the number of moles of the haloalkyl acid ester formed by the number of moles of the haloalkyl acid halide before the reaction, which is expressed as a percentage.
  • Example 2 the oxidation reaction was performed in the liquid phase.
  • a haloalkyl acid halide (Compound 2-1) was produced using a liquid compound 1-1 as a raw material compound, O 2 as an oxidizing agent, and Cl 2 as a radical source.
  • the liquid crystal reaction was performed by irradiating the inside of the reaction vessel with the above LED light.
  • the reaction container transmits light having a wavelength of 280 nm or more.
  • the reaction time was 300 minutes.
  • the molar ratio of "compound 1-1/O 2 /Cl 2 " used in the reaction was 1/10/5.
  • Table 2 shows the reaction time, conversion rate, selectivity and yield in this example. Table 2 also shows the reaction time, conversion rate, selectivity and yield in each of the following examples.
  • Example 3 In Example 1-1, Br 2 was used instead of Cl 2 as the radical source. The molar ratio of “compound 1-1/O 2 /Br 2 ” in the mixed gas was set to 1/2.1/0.57. A haloalkyl acid halide (Compound 2-1) was produced in the same manner as in Example 1-1 except for the above.
  • Example 4 In Example 1-1, Compound 1-2 was used as the starting compound instead of Compound 1-1. The molar ratio of "compound 1-2/O 2 /Cl 2 "in the mixed gas was 1/2.1/0.57. Otherwise in the same manner as in Example 1-1, a haloalkyl acid halide (Compound 2-2) was produced.
  • Example 5 In Example 1-1, Compound 1-3 was used as the raw material compound instead of Compound 1-1. The molar ratio of “compound 1-3/O 2 /Cl 2 ”in the mixed gas was 1/2.1/0.57. Otherwise, in the same manner as in Example 1-1, a haloalkyl acid halide (Compound 2-3) was produced.
  • Example 6 In Example 1-1, the reaction was carried out without containing O 2 in the mixed gas. The molar ratio of “compound 1-1/Cl 2 ”in the mixed gas was 1/0.57. A haloalkyl acid halide (Compound 2-1) was produced in the same manner as in Example 1-1 except for the above. The method of calculating the conversion rate, selectivity and yield in this example is the same as in Example 1-1.
  • Example 7 In Example 1-1, the reaction was carried out without using O 2 and Cl 2, but using fuming sulfuric acid as the oxidant, and iron(III) oxide as the catalyst.
  • a glass-made reaction vessel having a volume of 200 mL
  • 19 g of fuming sulfuric acid having a concentration of 25% and 0.3 g of Fe 2 O 3 were placed and heated to 120°C.
  • the reaction solution in the reaction vessel was maintained at 120° C., and 10 g of compound 1-1 was added dropwise over 30 minutes.
  • the reaction was carried out by stirring for 4 hours and a half from the start of dropping.
  • the obtained liquid was analyzed by 19 F-NMR and gas chromatography. As a result, production of compound 5 was confirmed. No formation of compound 2-1 was observed.
  • Example 8 In Example 1-1, the reaction was performed without including Cl 2 in the mixed gas. The molar ratio of "compound 1-1/O 2 "in the mixed gas was 1/3.7. A haloalkyl acid halide (Compound 2-1) was produced in the same manner as in Example 1-1 except for the above.
  • Example 9 In Example 1-1, the gas phase reaction was carried out without irradiation of the LED light.
  • a haloalkyl acid halide (Compound 2-1) was produced in the same manner as in Example 1-1 except for the above.
  • Example 10 the gas phase reaction was performed by irradiating light having a wavelength of less than 260 nm.
  • a high pressure mercury lamp (wavelength 245 to 255 nm) was used instead of the LED light.
  • the material of the reaction vessel was changed to quartz glass which transmits light having a wavelength of 250 to 700 nm.
  • a haloalkyl acid halide (Compound 2-1) was produced in the same manner as in Example 1-1 except for the above.
  • Example 11 the gas phase reaction was performed by irradiating light with a wavelength of more than 400 nm.
  • a red LED (wavelength 550 to 700 nm) was used instead of the LED light.
  • a haloalkyl acid halide (Compound 2-1) was produced in the same manner as in Example 1-1 except for the above.
  • Example 12 In Example 1-1, Compound 6 was used as the raw material compound instead of Compound 1-1.
  • the molar ratio of "compound 6 / O 2 / Cl 2" in the mixed gas was 1/2 / 0.56.
  • the temperature of the gas in the reaction vessel was maintained at 100°C ⁇ 10°C.
  • a haloalkyl acid halide (Compound 2-1) was produced in the same manner as in Example 1-1 except for the above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Provided is a production method with which a haloalkyl acid halide can be efficiently produced. In the present invention, a compound represented by formula 1: CBrX1X2-(CY1Y2)n-CHBrZ is irradiated in the presence of oxygen and a radical with light having a wavelength in the range of 260-400 nm to oxidize the compound, whereby a haloalkyl acid halide represented by formula 2: CBrX1X2-(CY1Y2)n-C(O)Z is produced. In formulas 1 and 2, each of X1, X2, Y1, Y2, and Z independently represents a fluorine atom, a chlorine atom, or a bromine atom, and n represents an integer of 0-4.

Description

ハロアルキル酸ハロゲン化物の製造方法、ハロアルキル酸エステルの製造方法、及びハロアルキル酸アミドの製造方法Method for producing haloalkyl acid halide, method for producing haloalkyl acid ester, and method for producing haloalkyl acid amide
 本発明は、ハロアルキル酸ハロゲン化物の製造方法、及び並びにこれを用いたハロアルキル酸エステルの製造方法、及びハロアルキル酸アミドの製造方法に関する。 The present invention relates to a method for producing a haloalkyl acid halide, a method for producing a haloalkyl acid ester using the same, and a method for producing a haloalkyl acid amide.
 ハロアルキル酸ハロゲン化物、並びにハロアルキル酸ハロゲン化物から誘導されるハロアルキル酸エステル及びハロアルキル酸アミドは、各種の触媒、医薬、農薬、潤滑油等の中間体として有用である。 Haloalkyl acid halides, and haloalkyl acid esters and haloalkyl acid amides derived from haloalkyl acid halides are useful as intermediates for various catalysts, pharmaceuticals, agricultural chemicals, lubricating oils and the like.
 特許文献1には、CCHClを光酸化して酸クロライド(ハロアルキル酸ハロゲン化物)を得たことが記載されている。
 特許文献2には、1,1-ジフルオロ-1,2-ジブロモエタンを原料化合物として用い、塩素と酸素の存在下で紫外線照射して、ジフルオロブロモアセチルクロライド(ハロアルキル酸ハロゲン化物)を製造する方法が記載されている。
Patent Document 1 describes that C 2 F 5 CHCl 2 is photooxidized to obtain an acid chloride (haloalkyl acid halide).
Patent Document 2 discloses a method for producing difluorobromoacetyl chloride (haloalkyl acid halide) by using 1,1-difluoro-1,2-dibromoethane as a starting compound and irradiating with ultraviolet light in the presence of chlorine and oxygen. Is listed.
国際公開第95/06629号International Publication No. 95/06629 日本特開平5-320091号公報Japanese Patent Laid-Open No. 5-320091
 特許文献1に記載の方法は、塩素原子を有する原料化合物を用いる方法であり、臭素原子を有する原料化合物を用いる方法は記載されていない。本発明者等の知見によれば、塩素原子を有する原料化合物よりも、臭素原子を有する原料化合物の方が不安定であり、反応の制御が難しい。
 また本発明者等の知見によれば、特許文献2に記載の方法は反応が遅く高収率が得られ難いという課題がある。
The method described in Patent Document 1 is a method using a raw material compound having a chlorine atom, and a method using a raw material compound having a bromine atom is not described. According to the findings of the present inventors, the starting compound having a bromine atom is more unstable than the starting compound having a chlorine atom, and it is difficult to control the reaction.
According to the knowledge of the present inventors, the method described in Patent Document 2 has a problem that the reaction is slow and it is difficult to obtain a high yield.
 本発明は、ハロアルキル酸ハロゲン化物を効率良く製造できる製造方法、並びにこれを用いたハロアルキル酸エステル及びハロアルキル酸アミドの製造方法を提供する。 The present invention provides a production method capable of efficiently producing a haloalkyl acid halide, and a production method of a haloalkyl acid ester and a haloalkyl acid amide using the same.
 本発明は、下記の態様を有する。
[1] 下式1で表される化合物を、酸素及びラジカルの存在下、波長が260~400nmの範囲内である光を照射して酸化し、下式2で表される化合物を得る、ハロアルキル酸ハロゲン化物の製造方法。
 CBrX-(CY-CHBrZ  式1
 CBrX-(CY-C(O)Z  式2
[式1及び式2において、X、X、Y、Y、Zはそれぞれ独立にフッ素原子、塩素原子又は臭素原子を表し、nは0~4の整数を表す。][2] 前記光が、単一波長の光である、[1]の製造方法。[3] 前記酸化を気相で行う、[1]または[2]の製造方法。[4] 前記酸化を液相で行う、[1]または[2]の製造方法。[5] 塩素ラジカル又は臭素ラジカルの少なくとも一方の存在下で、前記光を照射する、[1]~[4]のいずれかの製造方法。[6] 前記Zが塩素原子である、[1]~[5]のいずれかの製造方法。[7] 前記式1で表される化合物が1,2-ジブロモ-2-クロロ-1,1-ジフルオロエタンである、[1]~[6]のいずれかの製造方法。[8] [1]~[7]のいずれかの製造方法により前記式2で表される化合物を得て、前記式2で表される化合物と下式3で表される化合物とを反応させて下式4で表される化合物を得る、ハロアルキル酸エステルの製造方法。
 R-OH  式3
 CBrX-(CY-C(O)OR  式4
[式3及び式4において、Rは炭素数1~4のアルキル基を表す。X、X、Y、Y及びnは前記式1、2と同じである。]
The present invention has the following aspects.
[1] A haloalkyl which is obtained by oxidizing a compound represented by the following formula 1 by irradiating light having a wavelength within a range of 260 to 400 nm in the presence of oxygen and a radical to obtain a compound represented by the following formula 2. Method for producing acid halide.
CBrX 1 X 2 —(CY 1 Y 2 ) n —CHBrZ Formula 1
CBrX 1 X 2 —(CY 1 Y 2 ) n —C(O)Z Formula 2
[In Formula 1 and Formula 2, X 1 , X 2 , Y 1 , Y 2 , and Z each independently represent a fluorine atom, a chlorine atom, or a bromine atom, and n represents an integer of 0 to 4. [2] The method for manufacturing [1], wherein the light has a single wavelength. [3] The method for producing [1] or [2], wherein the oxidation is performed in a gas phase. [4] The production method of [1] or [2], wherein the oxidation is performed in a liquid phase. [5] The production method according to any one of [1] to [4], wherein the light irradiation is performed in the presence of at least one of a chlorine radical and a bromine radical. [6] The production method according to any one of [1] to [5], wherein Z is a chlorine atom. [7] The method according to any one of [1] to [6], wherein the compound represented by the formula 1 is 1,2-dibromo-2-chloro-1,1-difluoroethane. [8] A compound represented by the formula 2 is obtained by the production method according to any one of [1] to [7], and the compound represented by the formula 2 is reacted with a compound represented by the following formula 3. To obtain a compound represented by the following formula 4, a method for producing a haloalkyl ester.
R-OH formula 3
CBrX 1 X 2 -(CY 1 Y 2 ) n -C(O)OR Formula 4
[In the formulas 3 and 4, R represents an alkyl group having 1 to 4 carbon atoms. X 1 , X 2 , Y 1 , Y 2 and n are the same as in the above formulas 1 and 2. ]
 本発明によれば、ハロアルキル酸ハロゲン化物を効率良く製造できる。
 本発明によれば、ハロアルキル酸エステルを効率良く製造できる。
According to the present invention, a haloalkyl acid halide can be efficiently produced.
According to the present invention, a haloalkyl ester can be efficiently produced.
 本明細書および特許請求の範囲において、「~」で表される数値範囲は、~の前後の数値を下限値及び上限値とする数値範囲を意味する。
 本明細書および特許請求の範囲において、「単一波長の光」とは、最短波長と最長波長との差が50nm以下である光を意味する。
 本明細書において、式1で表される化合物を、化合物1とも記す。他の式で表される化合物についてもこれに準じて記す。
In the present specification and claims, the numerical range represented by “to” means a numerical range in which the numerical values before and after are the lower limit value and the upper limit value.
In the present specification and claims, “light having a single wavelength” means light having a difference between the shortest wavelength and the longest wavelength of 50 nm or less.
In the present specification, the compound represented by Formula 1 is also referred to as Compound 1. The compounds represented by other formulas will be described in the same manner.
<ハロアルキル酸ハロゲン化物の製造方法>
 本実施形態のハロアルキル酸ハロゲン化物の製造方法は、原料化合物である化合物1を酸化して、ハロアルキル酸ハロゲン化物である化合物2を製造する方法である。
 化合物1の酸化反応は、酸素及びラジカルの存在下で光を照射する方法で行う。
<Method for producing haloalkyl acid halide>
The method for producing a haloalkyl acid halide of the present embodiment is a method for producing a compound 2 which is a haloalkyl acid halide by oxidizing the compound 1 which is a raw material compound.
The oxidation reaction of compound 1 is performed by a method of irradiating with light in the presence of oxygen and radicals.
 CBrX-(CY-CHBrZ  式1
 CBrX-(CY-C(O)Z  式2
 式1、式2において、X、X、Y、Y、Zはそれぞれ独立にフッ素原子、塩素原子又は臭素原子を表し、nは0~4の整数を表す。
CBrX 1 X 2 —(CY 1 Y 2 ) n —CHBrZ Formula 1
CBrX 1 X 2 —(CY 1 Y 2 ) n —C(O)Z Formula 2
In Formula 1 and Formula 2, X 1 , X 2 , Y 1 , Y 2 , and Z each independently represent a fluorine atom, a chlorine atom, or a bromine atom, and n represents an integer of 0 to 4.
 反応生成物の取り扱い性に優れる点で、Zが塩素原子であることが好ましい。
 化合物1の好ましい例としては、1,2-ジブロモ-2-クロロ-1,1-ジフルオロエタン、1,2,2-トリブロモ-1,1-ジフルオロエタン、1,2-ジブロモ-1,1,2-トリフルオロエタン、又は1,2-ジブロモ-1,1-ジフルオロエタンが挙げられる。なかでも、反応の選択率が高くなりやすい点で、1,2-ジブロモ-2-クロロ-1,1-ジフルオロエタン(式1において、X及びXがフッ素原子、Zが塩素原子、nがゼロである化合物)がより好ましい。
It is preferable that Z is a chlorine atom from the viewpoint of easy handling of the reaction product.
Preferred examples of compound 1 include 1,2-dibromo-2-chloro-1,1-difluoroethane, 1,2,2-tribromo-1,1-difluoroethane, 1,2-dibromo-1,1,2- Examples include trifluoroethane and 1,2-dibromo-1,1-difluoroethane. Among them, 1,2-dibromo-2-chloro-1,1-difluoroethane (in the formula 1, X 1 and X 2 are fluorine atoms, Z is chlorine atom, and n is Compounds that are zero) are more preferred.
 酸化反応に用いる酸素(O)は、化合物1の1モルに対して0.1~10モルが好ましく、0.3~5モルがより好ましく、0.5~3モルがさらに好ましい。上記範囲の下限値以上であると転化率が高くなりやすく、上限値以下であると選択率が高くなりやすい。 Oxygen (O 2 ) used in the oxidation reaction is preferably 0.1 to 10 mol, more preferably 0.3 to 5 mol, and still more preferably 0.5 to 3 mol with respect to 1 mol of the compound 1. When it is at least the lower limit value of the above range, the conversion rate tends to be high, and when it is at most the upper limit value, the selectivity rate tends to be high.
 反応系中に酸素を存在させるために、酸素含有ガスを反応系中に導入することが好ましい。酸素含有ガスは、酸素ガス(O)でもよく、酸素と、酸化反応において不活性なガス(例えば、窒素、ヘリウム、アルゴン、二酸化炭素等)とを含む混合ガスでもよい。 In order to allow oxygen to exist in the reaction system, it is preferable to introduce an oxygen-containing gas into the reaction system. The oxygen-containing gas may be oxygen gas (O 2 ), or may be a mixed gas containing oxygen and a gas inert to the oxidation reaction (for example, nitrogen, helium, argon, carbon dioxide, etc.).
 酸化反応に用いるラジカルは、化合物1の1モルに対して0.01~10モルが好ましく、0.1~5モルがより好ましく、0.5~3モルがさらに好ましい。上記範囲の下限値以上であると転化率が高くなりやすく、上限値以下であると選択率が高くなりやすい。
 酸化反応に用いる酸素/ラジカルのモル比は、0.1/1~100/1が好ましく、1/1~50/1がより好ましく、2/1~10/1モルがさらに好ましい。上記範囲内であると選択率が高くなりやすい。
 選択率が高くなりやすい点で、前記ラジカルが、塩素ラジカル又は臭素ラジカルの少なくとも一方を含むことが好ましい。前記ラジカルが、塩素ラジカル又は臭素ラジカルの少なくとも一方であることがより好ましい。
The radical used for the oxidation reaction is preferably 0.01 to 10 mol, more preferably 0.1 to 5 mol, and still more preferably 0.5 to 3 mol, relative to 1 mol of the compound 1. When it is at least the lower limit value of the above range, the conversion rate tends to be high, and when it is at most the upper limit value, the selectivity rate tends to be high.
The oxygen/radical molar ratio used in the oxidation reaction is preferably 0.1/1 to 100/1, more preferably 1/1 to 50/1, and further preferably 2/1 to 10/1 mol. Within the above range, the selectivity tends to be high.
It is preferable that the radical contains at least one of a chlorine radical and a bromine radical because the selectivity is likely to be high. More preferably, the radical is at least one of a chlorine radical and a bromine radical.
 反応系中にラジカルを存在させるために、光の照射によりラジカルを発生するラジカル源を反応系中に導入することが好ましい。ラジカル源が、塩素(Cl)又は臭素(Br)の少なくとも一方を含むことが好ましい。ラジカル源が、塩素又は臭素の少なくとも一方であることがより好ましい。
 ラジカル源が塩素である場合、酸化反応に用いる塩素(Cl)は、化合物1の1モルに対して0.1~10モルが好ましく、0.3~8モルがより好ましく、0.5~6モルがさらに好ましい。
 ラジカル源が臭素である場合、酸化反応に用いる臭素(Br)は、化合物1の1モルに対して0.01~10モルが好ましく、0.1~8モルがより好ましく、0.3~6モルがさらに好ましい。
In order to allow radicals to exist in the reaction system, it is preferable to introduce a radical source that generates radicals into the reaction system by irradiation with light. It is preferable that the radical source contains at least one of chlorine (Cl 2 ) and bromine (Br 2 ). More preferably, the radical source is at least one of chlorine and bromine.
When the radical source is chlorine, the chlorine (Cl 2 ) used for the oxidation reaction is preferably 0.1 to 10 mol, more preferably 0.3 to 8 mol, and 0.5 to 10 mol with respect to 1 mol of the compound 1. 6 mol is more preferred.
When the radical source is bromine, the amount of bromine (Br 2 ) used in the oxidation reaction is preferably 0.01 to 10 moles, more preferably 0.1 to 8 moles, and 0.3 to 1 mole of Compound 1. 6 mol is more preferred.
 酸化反応に用いる光の波長は260~400nmの範囲内である。すなわち、反応系に照射する光は、波長260nm未満の光を含まず、波長400nm超の光も含まない。
 本実施形態において、生成物であるハロアルキル酸ハロゲン化物の吸収波長は、260nmより短波長の領域に存在する。このため、反応中に260nmより短波長の光が照射されると、生成物が分解されて副反応物が生成しやすく、目的物の選択率が低下しやすい。酸化反応に用いる光の波長が260nm以上であれば、生成物の分解を防止しやすい。特に、光のエネルギーが高く反応効率が良好である点から、260~400nmの光を用いることが好ましい。
The wavelength of light used for the oxidation reaction is in the range of 260 to 400 nm. That is, the light with which the reaction system is irradiated does not include light having a wavelength of less than 260 nm and does not include light having a wavelength of more than 400 nm.
In the present embodiment, the absorption wavelength of the product haloalkyl acid halide exists in the region of wavelength shorter than 260 nm. For this reason, when light having a wavelength shorter than 260 nm is irradiated during the reaction, the product is easily decomposed to generate a side reaction product, and the selectivity of the target product is likely to decrease. When the wavelength of light used for the oxidation reaction is 260 nm or more, decomposition of the product can be easily prevented. In particular, it is preferable to use light having a wavelength of 260 to 400 nm because light energy is high and reaction efficiency is good.
 前記光の波長が上記範囲内であると選択率が高くなりやすい。前記光の波長は350~400nmの範囲内がより好ましい。
 酸化反応に用いる光は、収率が高くなりやすい点で単一波長の光が好ましい。単一波長の光源としてはLED(発光ダイオード)が好ましい。
 LEDの放射照度は50~200mW/cmが好ましく、80~150mW/cmがより好ましい。放射照度が上記範囲の下限値以上であると転化率が高くなりやすく、上限値以下であると製造設備に特殊な付帯設備を設ける必要がない点で好ましい。
 LEDの放射照度は、紫外線積算光量計(ウシオ電機社製)を使用して測定できる。
When the wavelength of the light is in the above range, the selectivity tends to be high. The wavelength of the light is more preferably within the range of 350 to 400 nm.
The light used for the oxidation reaction is preferably light having a single wavelength because the yield tends to be high. An LED (light emitting diode) is preferable as the light source having a single wavelength.
Irradiance of LED is preferably 50 ~ 200mW / cm 2, more preferably 80 ~ 150mW / cm 2. If the irradiance is above the lower limit of the above range, the conversion rate tends to increase, and if it is below the upper limit, there is no need to install special incidental equipment in the manufacturing equipment, which is preferable.
The irradiance of the LED can be measured using an ultraviolet integrating photometer (manufactured by Ushio Inc.).
 本実施形態のハロアルキル酸ハロゲン化物の製造方法は、気相で行うことができる。気相で反応を行うと反応時間が短くなりやすい点で好ましい。
 例えば、反応容器内で、気体状の化合物1と、酸素含有ガスと、気体状のラジカル源との混合ガスに対して、前記光を照射する。光の照射は連続的でもよく、間欠的でもよい。
 気相反応において、ラジカル源として塩素を用いる場合、酸化反応に用いる塩素(Cl)は、化合物1の1モルに対して0.1~10モルが好ましく、0.3~5モルがより好ましく、0.5~3モルがさらに好ましく、0.5~1モルが特に好ましい。
The method for producing a haloalkyl acid halide according to this embodiment can be performed in a gas phase. It is preferable to carry out the reaction in the gas phase because the reaction time tends to be short.
For example, the light is irradiated to the mixed gas of the gaseous compound 1, the oxygen-containing gas, and the gaseous radical source in the reaction container. The irradiation of light may be continuous or intermittent.
When chlorine is used as a radical source in the gas phase reaction, chlorine (Cl 2 ) used in the oxidation reaction is preferably 0.1 to 10 mol, more preferably 0.3 to 5 mol, per 1 mol of the compound 1. , 0.5 to 3 mol is more preferable, and 0.5 to 1 mol is particularly preferable.
 気相反応において、ラジカル源として臭素を用いる場合、酸化反応に用いる臭素(Br)は、化合物1の1モルに対して0.01~10モルが好ましく、0.1~5モルがより好ましく、0.3~3モルがさらに好ましく、0.5~1モルが特に好ましい。
 反応容器内の圧力は常圧(大気圧)~0.5MPa(ゲージ圧)が好ましく、常圧~0.3MPa(ゲージ圧)がより好ましい。圧力が上記範囲の下限値以上であると製造設備に特殊な付帯設備を設ける必要がない点で好ましく、上限値以下であると転化率が高くなりやすい。
When bromine is used as the radical source in the gas phase reaction, the amount of bromine (Br 2 ) used in the oxidation reaction is preferably 0.01 to 10 mol, more preferably 0.1 to 5 mol, per 1 mol of the compound 1. , 0.3 to 3 mol is more preferable, and 0.5 to 1 mol is particularly preferable.
The pressure in the reaction vessel is preferably atmospheric pressure (atmospheric pressure) to 0.5 MPa (gauge pressure), more preferably atmospheric pressure to 0.3 MPa (gauge pressure). When the pressure is equal to or higher than the lower limit of the above range, it is not necessary to provide special auxiliary equipment to the manufacturing facility, and when the pressure is equal to or lower than the upper limit, the conversion rate tends to be high.
 反応容器内の気体の温度(反応温度)は80~200℃が好ましく、90~150℃がより好ましい。反応温度が上記範囲の下限値以上であると転化率が高くなりやすく、上限値以下であると選択率が高くなりやすい。
 前記混合ガスに光が照射されている時間を反応時間とする。光を間欠的に照射する場合の反応時間は、前記混合ガスに光が照射されている時間の合計である。反応時間は、NMR分析又はガスクロマトグラフィー分析により、原料化合物である化合物1に由来するピークが減少し、目的物である化合物2に由来するピークが生成したことを確認し、収率が最大となるまでの時間であることが好ましい。収率が最大となるまでの時間は、予察試験により予め見積もることができる。反応時間は1~120分が好ましく、5~60分がより好ましい。反応時間が上記範囲の下限値以上であると転化率が高くなりやすく、上限値以下であると収率が高くなりやすい。
 反応後の気体を冷却して液化することにより、液状の化合物2が得られる。
The temperature of the gas in the reaction vessel (reaction temperature) is preferably 80 to 200°C, more preferably 90 to 150°C. If the reaction temperature is above the lower limit of the above range, the conversion rate tends to increase, and if it is below the upper limit, the selectivity tends to increase.
The time during which the mixed gas is irradiated with light is defined as the reaction time. The reaction time in the case of intermittent irradiation with light is the total time during which the mixed gas is irradiated with light. Regarding the reaction time, it was confirmed by NMR analysis or gas chromatography analysis that the peak derived from the starting compound, Compound 1, was reduced, and the peak derived from the target compound, Compound 2, was generated, and the yield was maximized. It is preferable that it is the time until it becomes. The time until the maximum yield can be estimated in advance by a preliminary test. The reaction time is preferably 1 to 120 minutes, more preferably 5 to 60 minutes. If the reaction time is at least the lower limit of the above range, the conversion rate tends to be high, and if it is at most the upper limit, the yield tends to be high.
The liquid compound 2 is obtained by cooling and liquefying the gas after the reaction.
 本実施形態のハロアルキル酸ハロゲン化物の製造方法は、液相でも行うことができる。液相で反応を行うと装置形状の点で好ましい。
 例えば、反応容器内で、液体状の化合物1を含む反応液と、酸素含有ガスと、気体状のラジカル源との混合ガスとを液相中で接触させながら、前記光を照射する。光照射後の反応液は化合物2を含む。
 液相反応において、ラジカル源として塩素を用いる場合、酸化反応に用いる塩素(Cl)は、化合物1の1モルに対して0.1~10モルが好ましく、0.3~8モルがより好ましく、0.5~6モルがさらに好ましい。
The method for producing a haloalkyl acid halide according to this embodiment can be performed in a liquid phase. It is preferable to carry out the reaction in the liquid phase from the viewpoint of the apparatus shape.
For example, in the reaction vessel, the light is irradiated while the reaction liquid containing the compound 1 in the liquid state, the oxygen-containing gas, and the mixed gas of the radical source in the gas state are brought into contact with each other in the liquid phase. The reaction solution after light irradiation contains Compound 2.
When chlorine is used as a radical source in the liquid phase reaction, chlorine (Cl 2 ) used in the oxidation reaction is preferably 0.1 to 10 mol, more preferably 0.3 to 8 mol, per 1 mol of the compound 1. , 0.5 to 6 mol is more preferable.
 液相反応において、ラジカル源として臭素を用いる場合、0.1~10モルが好ましく、0.3~8モルがより好ましく、0.5~6モルがさらに好ましい。
 反応容器内の圧力は常圧(大気圧)~0.5MPa(ゲージ圧)が好ましく、常圧~0.3MPa(ゲージ圧)がより好ましい。圧力が上記範囲の下限値以上であると製造設備に特殊な付帯設備を設ける必要がない点で好ましく、上限値以下であると転化率が高くなりやすい。
 反応容器内の液体の温度(反応温度)は0~100℃が好ましく、20~80℃がより好ましい。反応温度が上記範囲の下限値以上であると転化率が高くなりやすく、上限値以下であると選択率が高くなりやすい。
When bromine is used as a radical source in the liquid phase reaction, it is preferably 0.1 to 10 mol, more preferably 0.3 to 8 mol, still more preferably 0.5 to 6 mol.
The pressure in the reaction vessel is preferably atmospheric pressure (atmospheric pressure) to 0.5 MPa (gauge pressure), more preferably atmospheric pressure to 0.3 MPa (gauge pressure). When the pressure is equal to or higher than the lower limit of the above range, it is not necessary to provide special auxiliary equipment to the manufacturing facility, and when the pressure is equal to or lower than the upper limit, the conversion rate tends to be high.
The temperature of the liquid in the reaction vessel (reaction temperature) is preferably 0 to 100°C, more preferably 20 to 80°C. If the reaction temperature is above the lower limit of the above range, the conversion rate tends to increase, and if it is below the upper limit, the selectivity tends to increase.
 前記反応液は、必要に応じて溶媒を含んでいてもよい。溶媒としては、光に対して不活性な有機溶媒が好ましく、例えば、四塩化炭素、テトラクロロエチレン、1,1,2-トリクロロ-1,2,2-トリフルオロエタンが挙げられる。吸収波長がより短波長である点で四塩化炭素が好ましい。前記反応液は溶媒を含まないことが好ましい。
 前記反応液が光の照射を受けている時間を反応時間とする。反応時間は、上記と同様である。反応時間は10~500分が好ましく、60~360分がより好ましい。反応時間が上記範囲の下限値以上であると転化率が高くなりやすく、上限値以下であると収率が高くなりやすい。
The reaction liquid may contain a solvent, if necessary. The solvent is preferably an organic solvent inert to light, and examples thereof include carbon tetrachloride, tetrachloroethylene, and 1,1,2-trichloro-1,2,2-trifluoroethane. Carbon tetrachloride is preferred because it has a shorter absorption wavelength. The reaction solution preferably does not contain a solvent.
The time during which the reaction solution is irradiated with light is defined as the reaction time. The reaction time is the same as above. The reaction time is preferably 10 to 500 minutes, more preferably 60 to 360 minutes. If the reaction time is at least the lower limit of the above range, the conversion rate tends to be high, and if it is at most the upper limit, the yield tends to be high.
<ハロアルキル酸エステルの製造方法>
 本実施形態のハロアルキル酸エステルの製造方法は、上記のハロアルキル酸ハロゲン化物の製造方法により化合物1を酸化して化合物2を得て、得られた化合物2をエステル化反応させてハロアルキル酸エステルである化合物4を得る方法である。
 エステル化反応では、化合物2と化合物3とを反応させる。
 R-OH  式3
 CBrX-(CY-C(O)OR  式4
<Method for producing haloalkyl ester>
The method for producing a haloalkyl acid ester of the present embodiment is a haloalkyl acid ester obtained by oxidizing compound 1 to obtain compound 2 by the above-mentioned method for producing a haloalkyl acid halide and subjecting the obtained compound 2 to an esterification reaction. This is a method for obtaining compound 4.
In the esterification reaction, compound 2 and compound 3 are reacted.
R-OH formula 3
CBrX 1 X 2 -(CY 1 Y 2 ) n -C(O)OR Formula 4
 式3、4において、Rは炭素数1~4のアルキル基を表し、X、X、Y、Y及びnは前記式1、2と同じである。
 Rはメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、又はt-ブチル基である。反応時間が短くなりやすい点で、メチル基、エチル基、n-プロピル基、又はn-ブチル基が好ましく、エチル基がより好ましい。
In Formulas 3 and 4, R represents an alkyl group having 1 to 4 carbon atoms, and X 1 , X 2 , Y 1 , Y 2 and n are the same as those in Formulas 1 and 2.
R is a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, or a t-butyl group. From the viewpoint that the reaction time tends to be short, a methyl group, an ethyl group, an n-propyl group, or an n-butyl group is preferable, and an ethyl group is more preferable.
 本実施形態において、上記の方法で得られた液状の化合物2を、必要に応じて精製して、エステル化反応に用いる。精製方法としては、例えば蒸留が挙げられる。
 エステル化反応は、従来公知の方法で化合物2と化合物3とを反応させることができる。
 エステル化反応で用いる化合物3は、化合物2の1モルに対して0.8~10モルが好ましく、0.9~5モルがより好ましく、1~2モルがさらに好ましい。上記範囲の下限値以上であると収率が高くなりやすく、上限値以下であると精製が容易である。
In the present embodiment, the liquid compound 2 obtained by the above method is purified, if necessary, and used in the esterification reaction. Examples of the purification method include distillation.
In the esterification reaction, compound 2 and compound 3 can be reacted by a conventionally known method.
The compound 3 used in the esterification reaction is preferably 0.8 to 10 mol, more preferably 0.9 to 5 mol, still more preferably 1 to 2 mol, per 1 mol of the compound 2. If it is at least the lower limit of the above range, the yield tends to be high, and if it is at most the upper limit, purification is easy.
 化合物2と化合物3の混合物である反応液の温度(反応温度)は0~50℃が好ましく、15~40℃がより好ましい。反応温度が上記範囲の下限値以上であると反応時間が短くなりやすく、上限値以下であると収率が高くなりやすい。
 反応液が前記反応温度に保持されている時間を反応時間とする。反応時間は、NMR分析又はガスクロマトグラフィー分析により、原料化合物である化合物2に由来するピークが消失するまでの時間であることが好ましい。反応時間は1~100分が好ましい。反応時間が上記範囲の下限値以上であると転化率が高くなりやすく、上限値以下であると収率が高くなりやすい。
The temperature of the reaction liquid (reaction temperature), which is a mixture of compound 2 and compound 3, is preferably 0 to 50°C, more preferably 15 to 40°C. If the reaction temperature is above the lower limit of the above range, the reaction time tends to be short, and if it is below the upper limit, the yield tends to be high.
The reaction time is defined as the time during which the reaction solution is maintained at the reaction temperature. The reaction time is preferably the time until the peak derived from the starting compound, Compound 2, disappears by NMR analysis or gas chromatography analysis. The reaction time is preferably 1 to 100 minutes. If the reaction time is at least the lower limit of the above range, the conversion rate tends to be high, and if it is at most the upper limit, the yield tends to be high.
<ハロアルキル酸アミドの製造方法>
 本実施形態のハロアルキル酸アミドの製造方法は、上記のハロアルキル酸ハロゲン化物の製造方法により化合物1を酸化して化合物2を得て、得られた化合物2をアミド化反応させてハロアルキル酸アミドである化合物6を得る方法である。
 アミド化反応は、化合物2と化合物5とを反応させる。
 R-NH  式5
 CBrX-(CY-C(O)NR  式6
 式5、6において、R及びRはそれぞれ独立に水素原子又は炭素数1~4のアルキル基を表し、X、X、Y、Y及びnは前記式1及び2と同じである。
<Method for producing haloalkyl amide>
The method for producing a haloalkyl acid amide of the present embodiment is a haloalkyl acid amide obtained by oxidizing compound 1 to obtain compound 2 by the above-described method for producing a haloalkyl acid halide, and subjecting the obtained compound 2 to an amidation reaction. This is a method for obtaining compound 6.
In the amidation reaction, compound 2 and compound 5 are reacted.
R 1 R 2 —NH Formula 5
CBrX 1 X 2 —(CY 1 Y 2 ) n —C(O)NR 1 R 2 Formula 6
In Formulas 5 and 6, R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and X 1 , X 2 , Y 1 , Y 2 and n are the same as those in Formulas 1 and 2 above. Is.
 R及びRはそれぞれ独立に、水素原子、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、又はt-ブチル基である。反応時間が短くなりやすい点で、メチル基、エチル基、n-プロピル基、n-ブチル基が好ましく、メチル基又はエチル基がより好ましい。R及びRは同一であっても異なっていてもよいが、同一であることが好ましい。 R 1 and R 2 are each independently a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group or a t-butyl group. A methyl group, an ethyl group, an n-propyl group, and an n-butyl group are preferable, and a methyl group or an ethyl group is more preferable, because the reaction time tends to be short. R 1 and R 2 may be the same or different, but are preferably the same.
 本実施形態において、上記の方法で得られた液状の化合物2を、必要に応じて精製して、アミド化反応に用いる。精製方法としては、例えば蒸留が挙げられる。
 化合物5は、市販品を使用するか、または公知の方法で製造することができる。
 アミド化反応は、従来公知の方法で化合物2と化合物5とを反応させることができる。
 アミド化反応で用いる化合物5は、化合物2の1モルに対して0.8~10モルが好ましく、0.9~5モルがより好ましく、1~2モルがさらに好ましい。上記範囲の下限値以上であると収率が高くなりやすく、上限値以下であると精製が容易である。
In this embodiment, the liquid compound 2 obtained by the above method is purified as needed and used in the amidation reaction. Examples of the purification method include distillation.
Compound 5 may be a commercially available product, or can be produced by a known method.
In the amidation reaction, compound 2 and compound 5 can be reacted by a conventionally known method.
The compound 5 used in the amidation reaction is preferably 0.8 to 10 mol, more preferably 0.9 to 5 mol, still more preferably 1 to 2 mol, per 1 mol of the compound 2. If it is at least the lower limit of the above range, the yield tends to be high, and if it is at most the upper limit, purification is easy.
 化合物2と化合物5の混合物である反応液の温度(反応温度)は0~50℃が好ましく、15~40℃がより好ましい。反応温度が上記範囲の下限値以上であると反応時間が短くなりやすく、上限値以下であると収率が高くなりやすい。
 反応液が前記反応温度に保持されている時間を反応時間とする。反応時間は、NMR分析又はガスクロマトグラフィー分析により、原料化合物である化合物2に由来するピークが消失するまでの時間であることが好ましい。反応時間は1~100分が好ましい。反応時間が上記範囲の下限値以上であると転化率が高くなりやすく、上限値以下であると収率が高くなりやすい。
The temperature of the reaction liquid (reaction temperature), which is a mixture of the compound 2 and the compound 5, is preferably 0 to 50°C, more preferably 15 to 40°C. If the reaction temperature is above the lower limit of the above range, the reaction time tends to be short, and if it is below the upper limit, the yield tends to be high.
The reaction time is defined as the time during which the reaction solution is maintained at the reaction temperature. The reaction time is preferably the time until the peak derived from the starting compound, Compound 2, disappears by NMR analysis or gas chromatography analysis. The reaction time is preferably 1 to 100 minutes. If the reaction time is at least the lower limit of the above range, the conversion rate tends to be high, and if it is at most the upper limit, the yield tends to be high.
 本実施形態によれば、特定の構造を有する化合物1を酸化するという新規な方法で、ハロアルキル酸ハロゲン化物である化合物2を効率良く製造でき、化合物2を用いてハロアルキル酸エステル又はハロアルキル酸アミドを効率良く製造できる。
 例えば、化合物1を酸化して化合物2を製造する際の収率を30%以上、好ましくは45%以上に向上できる。
 ハロアルキル酸ハロゲン化物、ハロアルキル酸ハロゲン化物から誘導されるハロアルキル酸エステル、及びハロアルキル酸ハロゲン化物から誘導されるハロアルキル酸アミドは、例えば、各種の触媒、医薬、農薬、潤滑油等の中間体として有用である。
According to this embodiment, the compound 2 which is a haloalkyl acid halide can be efficiently produced by a novel method of oxidizing the compound 1 having a specific structure, and a haloalkyl acid ester or a haloalkyl acid amide can be produced using the compound 2. Can be manufactured efficiently.
For example, the yield in the production of compound 2 by oxidizing compound 1 can be improved to 30% or more, preferably 45% or more.
Haloalkyl acid halides, haloalkyl acid esters derived from haloalkyl acid halides, and haloalkyl acid amides derived from haloalkyl acid halides are useful as intermediates for various catalysts, pharmaceuticals, agricultural chemicals, lubricating oils, etc. is there.
 以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
<例1-1、1-2、2~12>
 これらの例のうち、例1-1、1-2、2~5は実施例、例6~12は比較例である。各例で使用した又は生成した下記化合物の構造式を表1に示す。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
<Examples 1-1, 1-2, 2 to 12>
Among these examples, Examples 1-1, 1-2, 2 to 5 are Examples, and Examples 6 to 12 are Comparative Examples. The structural formulas of the following compounds used or produced in each example are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[例1-1]
 本例では原料化合物として化合物1-1、酸化剤として酸素ガス(O)、ラジカル源として塩素ガス(Cl)を用いて、ハロアルキル酸ハロゲン化物(化合物2-1)を製造した。
 ガス導入口とガス排出口を備えた、容量5000mLのガラス製の反応容器を、予め125℃に加熱した。化合物1-1、O、及びClの混合ガスを120℃に調整し、反応容器内に常圧で導入しながら、反応容器の外側に設置したLEDライト(Nitride社製、波長350~400nm、放射照度100mW/cm、以下の各例でも同じである。)を反応容器内の気体に照射して気相反応を行った。反応容器は波長280nm以上の光を透過する。前記混合ガスにおける「化合物1-1/O/Cl」のモル比は1/2.1/0.57とした。前記混合ガスは、反応容器内に流量212mL/分で連続的に供給し、反応容器内での滞留時間を反応時間とした。反応時間は23分であった。反応容器内の気体の温度は100℃±10℃に保持した。
 反応容器から排出される気体を、-70℃に温度調節したトラップに回収して、液状の反応生成物を得た。得られた液体を19F-NMRとガスクロマトグラフにより分析した。その結果、化合物2-1の生成を確認した。
 反応時間、転化率、選択率及び収率を表2に示す。
[Example 1-1]
In this example, a haloalkyl acid halide (Compound 2-1) was produced using Compound 1-1 as a raw material compound, oxygen gas (O 2 ) as an oxidizing agent, and chlorine gas (Cl 2 ) as a radical source.
A glass reaction vessel with a capacity of 5000 mL equipped with a gas inlet and a gas outlet was preheated to 125°C. An LED light (manufactured by Nitride, wavelength 350-400 nm, installed on the outside of the reaction vessel while adjusting the mixed gas of compound 1-1, O 2 and Cl 2 to 120° C. and introducing the mixture gas into the reaction vessel at normal pressure. , Irradiance of 100 mW/cm 2 , and the same in each of the following examples) was applied to the gas in the reaction vessel to carry out a gas phase reaction. The reaction container transmits light having a wavelength of 280 nm or more. The molar ratio of “compound 1-1/O 2 /Cl 2 ”in the mixed gas was 1/2.1/0.57. The mixed gas was continuously supplied into the reaction vessel at a flow rate of 212 mL/min, and the residence time in the reaction vessel was used as the reaction time. The reaction time was 23 minutes. The temperature of the gas in the reaction vessel was maintained at 100°C ± 10°C.
The gas discharged from the reaction container was collected in a trap whose temperature was adjusted to -70°C to obtain a liquid reaction product. The obtained liquid was analyzed by 19 F-NMR and gas chromatography. As a result, production of compound 2-1 was confirmed.
Table 2 shows the reaction time, conversion rate, selectivity and yield.
 本例において、転化率は、反応によって使用された原料化合物のモル数(反応前後の原料化合物のモル数の差)を、反応前の原料化合物のモル数で割った値を百分率で表した数値(単位:%)である。
 選択率は、生成したハロアルキル酸ハロゲン化物のモル数を、反応によって使用された原料化合物のモル数で割った値を百分率で表した数値(単位:%)である。
 収率は、生成したハロアルキル酸ハロゲン化物のモル数を、反応前の原料化合物のモル数で割った値を百分率で表した数値である。
 例2~6及び8~12についても同様に算出した。
In this example, the conversion rate is a numerical value obtained by dividing the number of moles of the raw material compound used by the reaction (difference in the number of moles of the raw material compound before and after the reaction) by the number of moles of the raw material compound before the reaction, as a percentage. (Unit: %).
The selectivity is a numerical value (unit: %) in which a value obtained by dividing the number of moles of the produced haloalkyl acid halide by the number of moles of the raw material compound used in the reaction is expressed as a percentage.
The yield is a value obtained by dividing the number of moles of the produced haloalkyl acid halide by the number of moles of the raw material compound before the reaction, which is expressed as a percentage.
The same calculation was performed for Examples 2 to 6 and 8 to 12.
[例1-2]
 本例では、例1-1で得られたハロアルキル酸ハロゲン化物(化合物2-1)をエステル化してハロアルキル酸エステル(化合物4-1)を製造した。
 例1-1では液状の反応生成物74gを得た。得られた液体(25℃)の62g(化合物2-1を0.12モル含む)を容量200mLのフラスコに移し、エタノール6g(0.13モル)を添加して、エステル化した。フラスコ内の液体の温度(反応温度)は30℃±10℃に保持した。反応時間は10分とした。
 反応終了直後の反応液をH-NMRと19F-NMRとガスクロマトグラフィーにより分析した。その結果、化合物4-1の生成を確認した。
 エステル化反応における転化率、選択率及び収率はいずれも100%であった。
[Example 1-2]
In this example, the haloalkyl acid halide (Compound 2-1) obtained in Example 1-1 was esterified to produce a haloalkyl acid ester (Compound 4-1).
In Example 1-1, 74 g of a liquid reaction product was obtained. 62 g (containing 0.12 mol of compound 2-1) of the obtained liquid (25° C.) was transferred to a flask having a volume of 200 mL, and 6 g (0.13 mol) of ethanol was added for esterification. The temperature of the liquid in the flask (reaction temperature) was maintained at 30°C ± 10°C. The reaction time was 10 minutes.
The reaction solution immediately after the completion of the reaction was analyzed by 1 H-NMR, 19 F-NMR and gas chromatography. As a result, production of compound 4-1 was confirmed.
The conversion, selectivity and yield in the esterification reaction were all 100%.
 本例のエステル化反応において、転化率は、反応によって使用されたハロアルキル酸ハロゲン化物のモル数(反応前後のハロアルキル酸ハロゲン化物のモル数の差)を、反応前のハロアルキル酸ハロゲン化物のモル数で割った値を百分率で表した数値(単位:%)である。
 選択率は、生成したハロアルキル酸エステルのモル数を、反応によって使用されたハロアルキル酸ハロゲン化物のモル数で割った値を百分率で表した数値(単位:%)である。
 収率は、生成したハロアルキル酸エステルのモル数を、反応前のハロアルキル酸ハロゲン化物のモル数で割った値を百分率で表した数値である。
In the esterification reaction of this example, the conversion rate is defined as the number of moles of the haloalkyl acid halide used in the reaction (difference in the number of moles of the haloalkyl acid halide before and after the reaction). It is a numerical value (unit: %) in which the value divided by is expressed as a percentage.
The selectivity is a numerical value (unit: %) in which the value obtained by dividing the number of moles of the haloalkyl acid ester formed by the number of moles of the haloalkyl acid halide used in the reaction is expressed as a percentage.
The yield is a value obtained by dividing the number of moles of the haloalkyl acid ester formed by the number of moles of the haloalkyl acid halide before the reaction, which is expressed as a percentage.
[例2]
 本例では液相で酸化反応を行った。原料化合物として液状の化合物1-1、酸化剤としてO、ラジカル源としてClを用いて、ハロアルキル酸ハロゲン化物(化合物2-1)を製造した。
 -80℃に冷却した冷却管とガス導入口とガス排出口とを備えた、容量100mLのガラス製の反応容器を予め60℃に加熱した。25℃の液状の化合物1-1を10g(0.04モル)仕込み、反応容器に、O、及びClをそれぞれ0.2モル/時間、常圧、常温(25℃)で導入しながら、例1-1と同様に上記LEDライトを反応容器内に照射して液相反応を行った。反応容器は波長280nm以上の光を透過する。反応時間は300分であった。反応に使用した「化合物1-1/O/Cl」のモル比は1/10/5であった。
[Example 2]
In this example, the oxidation reaction was performed in the liquid phase. A haloalkyl acid halide (Compound 2-1) was produced using a liquid compound 1-1 as a raw material compound, O 2 as an oxidizing agent, and Cl 2 as a radical source.
A glass reaction container having a capacity of 100 mL and equipped with a cooling tube cooled to −80° C., a gas inlet and a gas outlet was preheated to 60° C. 10 g (0.04 mol) of liquid compound 1-1 at 25° C. was charged, and O 2 and Cl 2 were introduced into the reaction vessel at 0.2 mol/hour, normal pressure and normal temperature (25° C.), respectively. In the same manner as in Example 1-1, the liquid crystal reaction was performed by irradiating the inside of the reaction vessel with the above LED light. The reaction container transmits light having a wavelength of 280 nm or more. The reaction time was 300 minutes. The molar ratio of "compound 1-1/O 2 /Cl 2 " used in the reaction was 1/10/5.
 反応後、反応容器に残った液体を回収して、液状の反応生成物を得た。得られた液体を19F-NMRとガスクロマトグラフにより分析した。その結果、化合物2-1の生成を確認した。
 本例における反応時間、転化率、選択率及び収率を表2に示す。また、以下の各例における反応時間、転化率、選択率及び収率も表2に示す。
After the reaction, the liquid remaining in the reaction vessel was recovered to obtain a liquid reaction product. The obtained liquid was analyzed by 19 F-NMR and gas chromatography. As a result, production of compound 2-1 was confirmed.
Table 2 shows the reaction time, conversion rate, selectivity and yield in this example. Table 2 also shows the reaction time, conversion rate, selectivity and yield in each of the following examples.
[例3]
 例1-1において、ラジカル源としてClの代わりにBrを使用した。前記混合ガスにおける「化合物1-1/O/Br」のモル比は1/2.1/0.57とした。それ以外は例1-1と同様にしてハロアルキル酸ハロゲン化物(化合物2-1)を製造した。
[Example 3]
In Example 1-1, Br 2 was used instead of Cl 2 as the radical source. The molar ratio of “compound 1-1/O 2 /Br 2 ” in the mixed gas was set to 1/2.1/0.57. A haloalkyl acid halide (Compound 2-1) was produced in the same manner as in Example 1-1 except for the above.
[例4]
 例1-1において、原料化合物として化合物1-1の代わりに化合物1-2を使用した。前記混合ガスにおける「化合物1-2/O/Cl」のモル比は1/2.1/0.57とした。それ以外は例1-1と同様にしてハロアルキル酸ハロゲン化物(化合物2-2)を製造した。
[Example 4]
In Example 1-1, Compound 1-2 was used as the starting compound instead of Compound 1-1. The molar ratio of "compound 1-2/O 2 /Cl 2 "in the mixed gas was 1/2.1/0.57. Otherwise in the same manner as in Example 1-1, a haloalkyl acid halide (Compound 2-2) was produced.
[例5]
 例1-1において、原料化合物として化合物1-1の代わりに化合物1-3を使用した。前記混合ガスにおける「化合物1-3/O/Cl」のモル比は1/2.1/0.57とした。それ以外は例1-1と同様にしてハロアルキル酸ハロゲン化物(化合物2-3)を製造した。
[Example 5]
In Example 1-1, Compound 1-3 was used as the raw material compound instead of Compound 1-1. The molar ratio of “compound 1-3/O 2 /Cl 2 ”in the mixed gas was 1/2.1/0.57. Otherwise, in the same manner as in Example 1-1, a haloalkyl acid halide (Compound 2-3) was produced.
[例6]
 例1-1において、前記混合ガスにOを含有させずに反応を行った。
 前記混合ガスにおける「化合物1-1/Cl」のモル比は1/0.57とした。それ以外は例1-1と同様にしてハロアルキル酸ハロゲン化物(化合物2-1)を製造した。
 本例における転化率、選択率及び収率の算出方法は、例1-1と同様である。
[Example 6]
In Example 1-1, the reaction was carried out without containing O 2 in the mixed gas.
The molar ratio of “compound 1-1/Cl 2 ”in the mixed gas was 1/0.57. A haloalkyl acid halide (Compound 2-1) was produced in the same manner as in Example 1-1 except for the above.
The method of calculating the conversion rate, selectivity and yield in this example is the same as in Example 1-1.
[例7]
 例1-1において、O及びClを用いず、その代わり酸化剤として発煙硫酸を用い、さらに触媒として酸化鉄(III)を用いて反応を行った。
 容量200mLのガラス製の反応容器に、25%濃度の発煙硫酸19gとFeの0.3gを入れて120℃に加熱した。反応容器内の反応液を120℃に保持し、化合物1-1の10gを30分間かけて滴下した。滴下開始から4時間半撹拌して反応させた。
 得られた液体を19F-NMRとガスクロマトグラフにより分析した。その結果、化合物5の生成を確認した。化合物2-1の生成は認められなかった。
[Example 7]
In Example 1-1, the reaction was carried out without using O 2 and Cl 2, but using fuming sulfuric acid as the oxidant, and iron(III) oxide as the catalyst.
In a glass-made reaction vessel having a volume of 200 mL, 19 g of fuming sulfuric acid having a concentration of 25% and 0.3 g of Fe 2 O 3 were placed and heated to 120°C. The reaction solution in the reaction vessel was maintained at 120° C., and 10 g of compound 1-1 was added dropwise over 30 minutes. The reaction was carried out by stirring for 4 hours and a half from the start of dropping.
The obtained liquid was analyzed by 19 F-NMR and gas chromatography. As a result, production of compound 5 was confirmed. No formation of compound 2-1 was observed.
[例8]
 例1-1において、前記混合ガスにClを含有させずに反応を行った。
 前記混合ガスにおける「化合物1-1/O」のモル比は1/3.7とした。それ以外は例1-1と同様にしてハロアルキル酸ハロゲン化物(化合物2-1)を製造した。
[Example 8]
In Example 1-1, the reaction was performed without including Cl 2 in the mixed gas.
The molar ratio of "compound 1-1/O 2 "in the mixed gas was 1/3.7. A haloalkyl acid halide (Compound 2-1) was produced in the same manner as in Example 1-1 except for the above.
[例9]
 例1-1において、LEDライトを照射せずに気相反応を行った。それ以外は例1-1と同様にしてハロアルキル酸ハロゲン化物(化合物2-1)を製造した。
[Example 9]
In Example 1-1, the gas phase reaction was carried out without irradiation of the LED light. A haloalkyl acid halide (Compound 2-1) was produced in the same manner as in Example 1-1 except for the above.
[例10]
 本例では、波長260nm未満の光を照射して前記気相反応を行った。
 例1-1において、LEDライトの代わりに高圧水銀灯(波長245~255nm)を用いた。また反応容器の材質を、波長250~700nmの光を透過する石英ガラスに変更した。それ以外は例1-1と同様にしてハロアルキル酸ハロゲン化物(化合物2-1)を製造した。
[Example 10]
In this example, the gas phase reaction was performed by irradiating light having a wavelength of less than 260 nm.
In Example 1-1, a high pressure mercury lamp (wavelength 245 to 255 nm) was used instead of the LED light. Further, the material of the reaction vessel was changed to quartz glass which transmits light having a wavelength of 250 to 700 nm. A haloalkyl acid halide (Compound 2-1) was produced in the same manner as in Example 1-1 except for the above.
[例11]
 本例では、波長400nm超の光を照射して前記気相反応を行った。
 例1-1において、LEDライトの代わりに赤色LED(波長550~700nm)を用いた。それ以外は例1-1と同様にしてハロアルキル酸ハロゲン化物(化合物2-1)を製造した。
[Example 11]
In this example, the gas phase reaction was performed by irradiating light with a wavelength of more than 400 nm.
In Example 1-1, a red LED (wavelength 550 to 700 nm) was used instead of the LED light. A haloalkyl acid halide (Compound 2-1) was produced in the same manner as in Example 1-1 except for the above.
[例12]
 例1-1において、原料化合物として化合物1-1の代わりに化合物6を使用した。前記混合ガスにおける「化合物6/O/Cl」のモル比は1/2/0.56とした。反応容器内の気体の温度は100℃±10℃に保持した。それ以外は例1-1と同様にしてハロアルキル酸ハロゲン化物(化合物2-1)を製造した。
[Example 12]
In Example 1-1, Compound 6 was used as the raw material compound instead of Compound 1-1. The molar ratio of "compound 6 / O 2 / Cl 2" in the mixed gas was 1/2 / 0.56. The temperature of the gas in the reaction vessel was maintained at 100°C ± 10°C. A haloalkyl acid halide (Compound 2-1) was produced in the same manner as in Example 1-1 except for the above.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の結果に示されるように、本実施形態の製造方法でハロアルキル酸ハロゲン化物を製造した例1-1、2~5は、原料化合物の転化率、ハロアルキル酸ハロゲン化物の選択率及び収率が高く、ハロアルキル酸ハロゲン化物を効率良く製造できた。さらに例1-2では、ハロアルキル酸エステルを効率良く製造できた。
 なお、2018年12月28日に出願された日本特許出願2018-247003号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
As shown in the results of Table 2, in Examples 1-1 and 2 to 5 in which the haloalkyl acid halide was produced by the production method of the present embodiment, the conversion rate of the raw material compound, the selectivity of the haloalkyl acid halide and the yield were obtained. And the haloalkyl acid halide could be produced efficiently. Furthermore, in Example 1-2, the haloalkyl ester could be efficiently produced.
In addition, the entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2018-247003 filed on December 28, 2018 are cited herein as disclosure of the specification of the present invention. , Take in.

Claims (15)

  1.  下式1で表される化合物を、酸素及びラジカルの存在下、波長が260~400nmの範囲内である光を照射して酸化し、下式2で表される化合物を得る、ハロアルキル酸ハロゲン化物の製造方法。
     CBrX-(CY-CHBrZ  式1
     CBrX-(CY-C(O)Z  式2
    [式1及び式2において、X、X、Y、Y、Zはそれぞれ独立にフッ素原子、塩素原子又は臭素原子を表し、nは0~4の整数を表す。]
    A haloalkyl acid halide obtained by oxidizing a compound represented by the following formula 1 by irradiation with light having a wavelength in the range of 260 to 400 nm in the presence of oxygen and a radical to obtain a compound represented by the following formula 2. Manufacturing method.
    CBrX 1 X 2 —(CY 1 Y 2 ) n —CHBrZ Formula 1
    CBrX 1 X 2 —(CY 1 Y 2 ) n —C(O)Z Formula 2
    [In Formula 1 and Formula 2, X 1 , X 2 , Y 1 , Y 2 , and Z each independently represent a fluorine atom, a chlorine atom, or a bromine atom, and n represents an integer of 0 to 4. ]
  2.  前記光が、単一波長の光である、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the light has a single wavelength.
  3.  前記光が、放射照度が50~200の発光ダイオード(LED)である、請求項1または2に記載の製造方法。 The manufacturing method according to claim 1 or 2, wherein the light is a light emitting diode (LED) having an irradiance of 50 to 200.
  4.  前記酸化を気相で行う、請求項1~3のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 3, wherein the oxidation is performed in a gas phase.
  5.  圧力(ゲージ圧)が、常圧(大気圧)~0.5MPaで行う、請求項4に記載の製造方法。 The manufacturing method according to claim 4, wherein the pressure (gauge pressure) is from normal pressure (atmospheric pressure) to 0.5 MPa.
  6.  前記酸化を液相で行う、請求項1~3のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 3, wherein the oxidation is performed in a liquid phase.
  7.  前記酸素を、式1で表される化合物の1モルに対して0.1~10モル存在させる、請求項1~6のいずれか一項に記載の製造方法。 7. The production method according to any one of claims 1 to 6, wherein the oxygen is present in an amount of 0.1 to 10 mol with respect to 1 mol of the compound represented by the formula 1.
  8.  前記ラジカルを、式1で表される化合物の1モルに対して0.1~10モル存在させる、請求項1~7のいずれか一項に記載の製造方法。 The method according to any one of claims 1 to 7, wherein the radical is present in an amount of 0.1 to 10 mol per 1 mol of the compound represented by the formula 1.
  9.  前記酸素及びラジカルを、酸素/ラジカルのモル比が0.1/1~100/1で存在させる、請求項1~8のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 8, wherein the oxygen and the radical are present at a molar ratio of oxygen/radical of 0.1/1 to 100/1.
  10.  前記ラジカルが、塩素ラジカル又は臭素ラジカルの少なくとも一方である、請求項1~9のいずれか一項に記載の製造方法。 The method according to any one of claims 1 to 9, wherein the radical is at least one of a chlorine radical and a bromine radical.
  11.  前記Zが塩素原子である、請求項1~10のいずれか一項に記載の製造方法。 The method according to any one of claims 1 to 10, wherein Z is a chlorine atom.
  12.  前記式1で表される化合物が,1,2-ジブロモ-2-クロロ-1,1-ジフルオロエタン、1,2,2-トリブロモ-1,1-ジフルオロエタン、1,2-ジブロモ-1,1,2-トリフルオロエタン、又は1,2-ジブロモ-1,1-ジフルオロエタンである、請求項1~11のいずれか一項に記載の製造方法。 The compound represented by the formula 1 is 1,2-dibromo-2-chloro-1,1-difluoroethane, 1,2,2-tribromo-1,1-difluoroethane, 1,2-dibromo-1,1, The method according to any one of claims 1 to 11, which is 2-trifluoroethane or 1,2-dibromo-1,1-difluoroethane.
  13.  前記式1で表される化合物が1,2-ジブロモ-2-クロロ-1,1-ジフルオロエタンである、請求項1~12のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 12, wherein the compound represented by the formula 1 is 1,2-dibromo-2-chloro-1,1-difluoroethane.
  14.  請求項1~13のいずれか一項に記載の製造方法により前記式2で表される化合物を得て、前記式2で表される化合物と下式3で表される化合物とを反応させて下式4で表される化合物を得る、ハロアルキル酸エステルの製造方法。
     R-OH  式3
     CBrX-(CY-C(O)OR  式4
    [式3及び式4において、Rは炭素数1~4のアルキル基を表す。X、X、Y、Y及びnは前記式1、2における定義と同じである。]
    A compound represented by the formula 2 is obtained by the production method according to any one of claims 1 to 13, and the compound represented by the formula 2 is reacted with a compound represented by the following formula 3. A method for producing a haloalkyl acid ester for obtaining a compound represented by the following formula 4.
    R-OH formula 3
    CBrX 1 X 2 -(CY 1 Y 2 ) n -C(O)OR Formula 4
    [In the formulas 3 and 4, R represents an alkyl group having 1 to 4 carbon atoms. X 1 , X 2 , Y 1 , Y 2 and n have the same definitions as those in the above formulas 1 and 2. ]
  15.  前記式4におけるRが、メチル基、エチル基、n-プロピル基、又はn-ブチル基である、請求項14に記載の製造方法。 15. The production method according to claim 14, wherein R in the formula 4 is a methyl group, an ethyl group, an n-propyl group, or an n-butyl group.
PCT/JP2019/051479 2018-12-28 2019-12-27 Production method for haloalkyl acid halide, production method for haloalkyl acid ester, and production method for haloalkyl acid amide WO2020138434A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020562505A JPWO2020138434A1 (en) 2018-12-28 2019-12-27 A method for producing a haloalkyl acid halide, a method for producing a haloalkyl acid ester, and a method for producing a haloalkyl acid amide.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018247003 2018-12-28
JP2018-247003 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020138434A1 true WO2020138434A1 (en) 2020-07-02

Family

ID=71128798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051479 WO2020138434A1 (en) 2018-12-28 2019-12-27 Production method for haloalkyl acid halide, production method for haloalkyl acid ester, and production method for haloalkyl acid amide

Country Status (2)

Country Link
JP (1) JPWO2020138434A1 (en)
WO (1) WO2020138434A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740434A (en) * 1980-08-26 1982-03-06 Asahi Glass Co Ltd Preparative method of difluorobromoacetyl fluoride
JPH05320091A (en) * 1992-05-20 1993-12-03 Nippon Mektron Ltd Production of difluorobromoacetyl fluoride
WO1995006629A1 (en) * 1993-09-01 1995-03-09 Ag Technology Co., Ltd. Process for producing polyfluoropropionyl halide
JPH0827058A (en) * 1994-07-08 1996-01-30 Asahi Glass Co Ltd Production of bromodifluoroacetyl fluoride
JPH0853388A (en) * 1994-06-08 1996-02-27 Asahi Glass Co Ltd Production of difluoroacetic acid halide and difluoroacetic acid
CN104761446A (en) * 2015-04-15 2015-07-08 江西盛伟实业有限公司 Preparation method of 2-bromo-2,2-difluoroacetyl chloride and 2-bromo-2,2-difluoro acetate and recycling method of waste difluoro trichloroethane
CN109180479A (en) * 2018-09-30 2019-01-11 禾信天成科技(天津)有限公司 A kind of preparation method of difluoro bromacetate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740434A (en) * 1980-08-26 1982-03-06 Asahi Glass Co Ltd Preparative method of difluorobromoacetyl fluoride
JPH05320091A (en) * 1992-05-20 1993-12-03 Nippon Mektron Ltd Production of difluorobromoacetyl fluoride
WO1995006629A1 (en) * 1993-09-01 1995-03-09 Ag Technology Co., Ltd. Process for producing polyfluoropropionyl halide
JPH0853388A (en) * 1994-06-08 1996-02-27 Asahi Glass Co Ltd Production of difluoroacetic acid halide and difluoroacetic acid
JPH0827058A (en) * 1994-07-08 1996-01-30 Asahi Glass Co Ltd Production of bromodifluoroacetyl fluoride
CN104761446A (en) * 2015-04-15 2015-07-08 江西盛伟实业有限公司 Preparation method of 2-bromo-2,2-difluoroacetyl chloride and 2-bromo-2,2-difluoro acetate and recycling method of waste difluoro trichloroethane
CN109180479A (en) * 2018-09-30 2019-01-11 禾信天成科技(天津)有限公司 A kind of preparation method of difluoro bromacetate

Also Published As

Publication number Publication date
JPWO2020138434A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
JP5266902B2 (en) Method for producing fluorine-containing olefin compound
JP2021119113A (en) Method for producing sulfur tetrafluoride
WO2020138434A1 (en) Production method for haloalkyl acid halide, production method for haloalkyl acid ester, and production method for haloalkyl acid amide
JP3918883B2 (en) Method for producing benzoyl chlorides
JP5955187B2 (en) Method for producing hydrogen chloride
JP4923184B2 (en) Method for producing chloroethylene carbonate
JP6028552B2 (en) Peracid composition and method for producing acetoxyphenyl compound using the peracid composition
US6420601B2 (en) Process for the preparation of 3,5-bis(trifluoro-methyl)-benzoyl chlorides and novel 3,5-bis(tri-halogenomethyl)-and 3,5-dimethylbenzoyl halides
JP4984469B2 (en) Method for producing chloroethylene carbonate
US5736012A (en) Process for the preparation of a fluorinated acid
JP2007091603A (en) Method for producing chloroethylene carbonate
JP6032740B2 (en) Method for producing acetoxyphenyl compound
JP4287814B2 (en) Process for producing 2-trifluoromethyl-5-fluorobenzaldehyde and derivatives thereof
US4301092A (en) Preparation of oxalyl chloride
JP4076618B2 (en) Method for producing 3-chlorocycloalkene
JP2016135803A (en) Manufacturing method of perfluoroalkenyl oxy group-containing arene compound
JP2988856B2 (en) Method for producing 1,2-indanediols
JPH0788327B2 (en) Synthesis of perfluoroalkyl bromide by photobromination of the corresponding iodides.
JP2549890B2 (en) Process for producing bis (trichloromethyl) diphenyl ether
EP2789603A1 (en) Method for producing pentafluorosulfanyl benzoic acid
JP2020125282A (en) Method for producing fluorine-containing compound
JP2006206464A (en) Method for producing biphenyl derivative
JPH03181429A (en) Purifying dichloropentafluoropropane
JPH0381239A (en) Production of perfluoroethyl methyl ether and its raw material
JPH04217648A (en) Production of unsaturated quaternary ammonium salt

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903783

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562505

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903783

Country of ref document: EP

Kind code of ref document: A1