[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020136890A1 - 多関節ロボット - Google Patents

多関節ロボット Download PDF

Info

Publication number
WO2020136890A1
WO2020136890A1 PCT/JP2018/048546 JP2018048546W WO2020136890A1 WO 2020136890 A1 WO2020136890 A1 WO 2020136890A1 JP 2018048546 W JP2018048546 W JP 2018048546W WO 2020136890 A1 WO2020136890 A1 WO 2020136890A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm portion
transmission shaft
speed reducer
shaft
transmission mechanism
Prior art date
Application number
PCT/JP2018/048546
Other languages
English (en)
French (fr)
Inventor
慶 早川
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to JP2020562285A priority Critical patent/JP7199450B2/ja
Priority to PCT/JP2018/048546 priority patent/WO2020136890A1/ja
Publication of WO2020136890A1 publication Critical patent/WO2020136890A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/06Programme-controlled manipulators characterised by multi-articulated arms

Definitions

  • the present invention relates to an articulated robot.
  • Patent Document 1 discloses a SCARA robot (horizontal articulated robot) as an example of the articulated robot.
  • the SCARA robot disclosed in Patent Document 1 is capable of rotating at a base portion fixed on a base, a first arm portion rotatably supported by the base portion, and a tip end of the first arm portion.
  • a second arm portion connected to the second arm portion, and an operation shaft held at the tip of the second arm portion so as to be vertically movable and rotatable about a vertical axis.
  • This SCARA robot is provided with a motor and a speed reducer for driving the first arm portion in the base portion, and a motor and a speed reducer for driving the second arm portion in the second arm portion, and an operating shaft.
  • a motor for driving and a speed reducer are provided.
  • An arch-shaped wiring pipe is provided between the base portion and the second arm portion, and wiring of electric parts such as a motor mounted on the second arm portion is provided from the second arm portion to the base through the wiring pipe. Is assigned to the department.
  • the above structure of the SCARA robot is typical of SCARA robots, but it has the following problems. That is, since the motor is mounted on the second arm portion, the weight of the second arm portion is relatively heavy and is easily affected by inertia, and a high-output motor is required to increase the driving speed. Even if the actuating shaft is omitted, it is difficult to make the second arm portion thin (thickness in the vertical direction), and the SCARA robot should be applied for the purpose of performing work by inserting the tip of the arm portion into a narrow space. Is difficult.
  • the present invention has been made in view of the above-described problems, and enables an articulated robot to be driven at a higher speed without increasing the output of a motor, and by making the arm portion thinner.
  • the purpose is to expand the applications.
  • a multi-joint robot including a second arm portion connected to the first arm, the first motor and the second motor respectively provided on the base, and a first reducer, and rotation generated by the first motor.
  • a first power transmission mechanism that transmits a force to the first arm portion and a second speed reducer, and rotational force generated by the second motor is transmitted to the second arm portion via the first arm portion.
  • FIG. 1 is a side view of an industrial robot to which the articulated robot according to the present invention is applied.
  • FIG. 2 is a sectional view of the industrial robot.
  • FIG. 3 is a perspective view of the industrial robot (a state viewed from diagonally below).
  • FIG. 4 is a perspective view of the industrial robot (a state viewed from diagonally below).
  • FIG. 5 is an enlarged cross-sectional view of the industrial robot.
  • FIG. 6 is an enlarged cross-sectional view of the industrial robot.
  • FIG. 7 is an exploded perspective view of the industrial robot.
  • FIG. 8 is a sectional view of the first speed reducer unit.
  • FIG. 7 is a sectional view of the industrial robot showing the wiring structure.
  • FIG. 10 is a bottom view of the industrial robot showing the wiring structure.
  • FIG. 11 is a perspective view from above of the industrial robot showing the wiring structure.
  • FIG. 12 is a detailed view showing the connector portion of the wiring structure.
  • FIG. 1 to 4 show an industrial robot to which an articulated robot according to the present invention is applied.
  • FIG. 1 is a side view
  • FIG. 2 is a sectional view
  • FIGS. 3 and 4 are perspective views. 1 shows an industrial robot.
  • an XYZ rectangular coordinate system is shown for convenience of description.
  • the Z direction is the vertical direction.
  • the industrial robot 1 is a compound robot including a SCARA robot (horizontal articulated robot) 2 which is a kind of an articulated robot, and a single-axis robot 3 that linearly moves the SCARA robot 2. is there.
  • the single-axis robot 3 moves (elevates) the SCARA robot 2 in the Z direction.
  • the uniaxial robot 3 includes a hollow casing 10 including a structure extending in the Z direction, a slider 12 movably supported along the casing 10 in the Z direction, and a drive mechanism 14 for driving the slider 12. Including and
  • the slider 12 is movably supported by a pair of guide rails (not shown) extending in the Z direction fixed to the inner wall surface of the casing 10.
  • a slit-shaped opening 10a extending in the Z direction is formed on the side surface of the casing 10, and the slider 12 is exposed to the outside through the opening 10a.
  • the drive mechanism 14 is a so-called feed screw mechanism, and includes a nut member 12a incorporated in the slider 12, a screw shaft 16 inserted into the nut member 12a and extending parallel to the guide rail, and the screw shaft 16 And an electric motor 18 connected to one end of the. That is, the drive mechanism 14 rotates the screw shaft 16 by the motor 18 and converts the rotational movement of the screw shaft 16 into the linear movement of the slider 12 in the Z direction via the nut member 12a and the guide rail. With this configuration, the slider 12 moves in the Z direction.
  • the SCARA robot 2 includes a base portion 20 and a robot arm 22 connected to the base portion 20.
  • the base unit 20 is fixed to the slider 12 of the single-axis robot 3, and thus the SCARA robot 2 moves in the Z direction together with the slider 12 as the slider 12 moves.
  • the robot arm 22 is rotatably connected to the base unit 20 about a first rotation axis Ax1 and a first arm section 23 is rotatable about the second rotation axis Ax2. It is provided with a connected second arm portion 24 and a tool mounting portion 25 mounted on the second arm portion 24 so as to be rotatable around a third rotation axis Ax3.
  • the tool mounting portion 25 is a portion to which an end effector according to various uses such as a robot hand is detachably mounted, and is provided at the tip end portion of the second arm portion 24.
  • the first rotation axis Ax1, the second rotation axis Ax2, and a third rotation axis Ax3 described later are virtual axes that extend in the Z direction and are parallel to each other.
  • the SCARA robot 2 includes a first motor 31 that is a drive source for the first arm portion 23, and a first power transmission mechanism PT1 that transmits the rotational force generated by the first motor 31 to the first arm portion 23. ing. Further, the SCARA robot 2 includes a second motor 32 that is a drive source of the second arm portion 24, and a second power transmission mechanism PT2 that transmits the rotational force generated by the second motor 32 to the second arm portion 23. Is equipped with. Further, the SCARA robot 2 includes a third motor 33 that is a drive source of the tool mounting portion 25, and a third power transmission mechanism PT3 that transmits the rotational force generated by the third motor 31 to the tool mounting portion 25. There is.
  • the base portion 20 is provided with a casing 201 made of a hollow and box-shaped rigid structure having an opening at the bottom, and the motors 31 to 33 are arranged around the first rotation axis Ax1 as a center, and , Is fixed to the ceiling portion 202 of the casing 201 via the bracket.
  • the first motor 31 is arranged at a position adjacent to the first rotation axis Ax1 in the X direction.
  • the second motor 32 and the third motor 33 are arranged at positions aligned in the Y direction with the first rotation axis Ax1 interposed therebetween. That is, the first to third motors 31, 32, 33 are arranged around the first rotation axis Ax1 at 90° intervals.
  • a cover 203 is detachably fixed to the lower surface of the casing 201.
  • FIG. 5 is a sectional view of an essential part of the industrial robot 1. As shown in this figure, the first power transmission mechanism PT1 rotates the output shaft 31a of the first motor 31 and the first speed reducer 40 interposed between the base portion 20 and the robot arm 22. The first transmission mechanism 46 for transmitting to the first reduction gear 40.
  • the first speed reducer 40 includes a speed reducer body 42 including a wave gear speed reducing mechanism, and a casing 44 including a rigid structure in which the speed reducer body 42 is incorporated, and extends along the first rotation axis Ax1. It has a substantially annular structure penetrating therethrough.
  • the casing 44 includes a ceiling-shaped cylindrical upper casing 45a having a peripheral wall portion and a bottomed cylindrical lower casing 45b having a peripheral wall portion, and a labyrinth-shaped gap 44a is formed between the peripheral wall portions.
  • the upper and lower casings 45a and 45b have a hollow structure in which they are arranged to face each other.
  • the upper casing 45a is fixed to the lower surface 232 of the later-described casing 231 of the first arm portion 23, and the lower casing 45b is fixed to the upper surface of the casing 201 of the base portion 20.
  • the speed reducer main body 42 is a well-known wave gear speed reducing mechanism, and is incorporated inside the casing 44.
  • the speed reducer main body 42 includes a wave generator 43a, a circular spline 43b, a flex spline 43c, and a bearing 43d that connects the circular spline 43b and the flex spline 43c in a relatively rotatable state.
  • the wave generator 43a has a structure in which upper and lower casings 45a and 45b are rotatably held via bearings 43e, and bearings (not shown) are fitted onto the outer circumference of an elliptical cam.
  • the circular spline 43b is an annular rigid body having internal teeth, is arranged radially outside the wave generator 43a, and is fixed to the lower casing 45b.
  • the flex spline 43c is a thin-walled metal elastic body having external teeth that mesh with the internal teeth of the circular spline 43b, is disposed between the wave generator 43a and the circular spline 43b, and is fixed to the upper casing 45a. ing.
  • the wave generator 43a is an input unit for the rotational force of the first motor 31, and the upper casing 45a to which the flex spline 43c is fixed is an output unit for the rotational force after deceleration. That is, the first speed reducer 40 decelerates the rotational speed of the rotational driving force input to the wave generator 43a (input unit) and outputs it from the upper casing 45a (output unit).
  • the first transmission mechanism 46 is a belt transmission mechanism. That is, the first transmission mechanism 46 includes a pulley 47a fixed to the output shaft 31a of the first motor 31, a pulley 47b fixed to the wave generator 43a of the first speed reducer 40, and these pulleys 47a and 47b. And a transmission belt 48 that is stretched around.
  • the rotation of the output shaft 31a of the first motor 31 is transmitted to the input portion (wave generator 43a) of the first speed reducer 40 and is rotated by the first speed reducer 40.
  • the speed is reduced and transmitted to the first arm portion 23.
  • the first arm portion 23 rotates (turns) around the first rotation axis Ax1 at a predetermined rotation speed with respect to the base portion 20.
  • the second power transmission mechanism PT2 includes a second reduction gear 50 provided between the first arm portion 23 and the second arm portion 24, and the base portion 20 to the first arm portion.
  • the rotation of the first transmission shaft 56 extending through the inner side of the first reduction gear 40 over 23 and the rotation of the output shaft 32a (not shown) of the second motor 32 is performed by the first transmission shaft 56 in the base portion 20.
  • a second transmission mechanism 57 that transmits the rotation of the first transmission shaft 56 to the second speed reducer 50 in the first arm portion 23.
  • FIG. 6 is an enlarged cross-sectional view of the industrial robot 1.
  • the second speed reducer 50 includes a speed reducer main body 52 including a wave gear speed reducing mechanism, and a casing 54 including the speed reducer main body 52 and a rigid structure.
  • the basic structure of the second speed reducer 50 is substantially the same as the structure of the first speed reducer 40 as follows.
  • the casing 54 includes a ceiling-shaped cylindrical upper casing 55a having a peripheral wall portion and a bottomed cylindrical lower casing 55b having a peripheral wall portion, and a labyrinth-shaped gap 54a is formed between the peripheral wall portions.
  • the upper and lower casings 55a and 55b have a hollow structure in which they are arranged to face each other.
  • the upper casing 55a is fixed to the lower surface 232 of the later-described casing 231 of the first arm portion 23, and the lower casing 55b is fixed to the upper surface 243 of the later-described casing 241 of the second arm portion 24.
  • the speed reducer main body 52 includes a wave generator 53a rotatably held in upper and lower casings 55a and 55b via bearings 53e, and a circular spline fixed to a lower casing 55b arranged radially outside the wave generator 53a.
  • 53b, a flex spline 53c disposed between the wave generator 53a and the circular spline 53b and fixed to the upper casing 55a, and the circular spline 53b and the flex spline 53c are connected in a relatively rotatable state.
  • a bearing 53d that operates.
  • the wave generator 53a is an input unit of the rotational force of the second motor 32, and the upper casing 55a to which the flex spline 53c is fixed is an output unit of the rotational force after deceleration. That is, the second speed reducer 50 decelerates the rotational speed of the rotational driving force input to the wave generator 53a (input unit) and causes the upper casing 55a (output unit) to output the rotational speed.
  • the second reduction gear 50 since the upper casing 45a is fixed to the first arm portion 23, the lower casing 45b to which the circular spline 53b is fixed is relatively rotated, so that the rotational force is generated by the second arm portion 24. Be transmitted to.
  • the second transmission mechanism 57 is a belt transmission mechanism. That is, as shown in FIGS. 3, 5, and 6, the second transmission mechanism 57 includes a pulley 58 a fixed to the output shaft 32 a of the second motor 32 and a lower end portion of the first transmission shaft 56 in the base portion 20. A pulley 58b fixed to the pulley 58b and a transmission belt 59 wound around the pulleys 58a and 58b. Further, the second transmission mechanism 57 includes a pulley 61 a fixed to the upper end of the first transmission shaft 56 in the first arm portion 23, a pulley 61 b fixed to the wave generator 53 a of the second reduction gear 50, The transmission belt 62 is stretched around the pulleys 61a and 61b.
  • the first transmission shaft 56 is a hollow shaft and extends in the Z direction through the first speed reducer 40 of the first power transmission mechanism PT1 and the pulley 47b of the first transmission mechanism 46.
  • the first transmission shaft 56 is held by the upper casing 45a of the first reduction gear 40 and the pulley 47b of the first transmission mechanism 46 in a relatively rotatable state via bearings 64a and 64b (see FIG. 8). More specifically, a bearing 64a is arranged between the upper casing 45a and the first transmission shaft 56, and a bearing 64b is arranged between the pulley 47b and the first transmission shaft 56.
  • the transmission shaft 56 is secured to the inner rings of the bearings 64a and 64b on the upper and lower sides of the bearings 64a and 64b. It should be noted that the pulley 47b is fixed to the wave generator 43a of the first speed reducer 40, and therefore, the first transmission shaft 56 can be said to be held by the first speed reducer 40 such that relative rotation is possible.
  • the rotation of the output shaft 32a of the second motor 32 is transmitted to the input portion (wave generator 53a) of the second speed reducer 50 through the first arm portion 23, and The rotation speed is reduced by the two reduction gears 50 and transmitted to the second arm portion 24.
  • the second arm portion 24 rotates (turns) around the second rotation axis Ax2 at a predetermined rotation speed with respect to the first arm portion 23.
  • the third power transmission mechanism PT3 is coaxial with the third reduction gear 70 provided between the second arm portion 24 and the tool mounting portion 25 and the first transmission shaft 56.
  • a second transmission shaft 76 that is disposed and extends through the inside of the first speed reducer 40 from the base portion 20 to the first arm portion 23, and from the first arm portion 23 to the second arm portion 24.
  • the rotation of the third transmission shaft 77 extending through the inside of the second reduction gear 50 and the output shaft 33a (not shown) of the third motor 33 is transmitted to the second transmission shaft 76 in the base portion 20.
  • the rotation of the second transmission shaft 76 is transmitted to the third transmission shaft 77 in the first arm portion 23, and the rotation of the third transmission shaft 77 is transmitted to the third reduction gear 70 in the second arm portion.
  • a third transmission mechanism 78 is also transmitted.
  • the third speed reducer 70 includes a speed reducer main body 72 including a wave gear speed reducing mechanism, and a casing 74 including the reducer main body 72 and including a rigid structure. Including, the whole has a substantially annular structure penetrating along the third rotation axis Ax3.
  • the basic structure of the third speed reducer 70 is common to the structure of the first and second speed reducers 40 and 50 as follows.
  • the casing 74 includes a ceiling-shaped cylindrical upper casing 75a having a peripheral wall portion and a bottomed cylindrical lower casing 75b having a peripheral wall portion, and a labyrinth-shaped gap 74a is formed between the peripheral wall portions.
  • the upper and lower casings 75a and 75b have a hollow structure in which they are arranged to face each other.
  • the upper casing 75a is fixed to the lower surface 242 of the later-described casing 241 of the second arm portion 24, and the lower casing 75b is fixed to the upper portion of the tool mounting portion 25.
  • the speed reducer main body 72 includes a wave generator 73a rotatably held in upper and lower casings 75a and 75b via bearings 73e, and a circular spline fixed to a lower casing 75b arranged radially outside the wave generator 73a.
  • 73b, a flex spline 73c arranged between the wave generator 73a and the circular spline 73b and fixed to the upper casing 75a, and the circular spline 73b and the flex spline 73c are connected in a relatively rotatable state.
  • the wave generator 73a is an input unit for the rotational force of the third motor 33, and the upper casing 75a to which the flex spline 73c is fixed is an output unit for the rotational force after deceleration. That is, the third speed reducer 70 decelerates the rotational speed of the rotational driving force input to the wave generator 73a (input unit) and outputs it from the wave generator 73a (output unit).
  • the third reducer 70 since the upper casing 75a is fixed to the second arm portion 24, the lower casing 75b to which the circular spline 73b is fixed is relatively rotated, so that the rotational force is applied to the tool mounting portion 25. Be transmitted to.
  • the third transmission mechanism 78 is a belt transmission mechanism. That is, as shown in FIGS. 3, 5 and 6, the third transmission mechanism 78 includes a pulley 79 a fixed to the output shaft 33 a of the third motor 33 and a lower end portion of the second transmission shaft 76 in the base portion 20. A pulley 79b fixed to the pulley 79b and a transmission belt 80 wound around the pulleys 79a and 79b. Further, the third transmission mechanism 78 includes a pulley 82a fixed to the upper end of the second transmission shaft 76, a pulley 82b fixed to the upper end of the third transmission shaft 77, and these pulleys in the first arm portion 23.
  • the third transmission mechanism 78 includes a pulley 84 a fixed to the lower end of the third transmission shaft 77 in the second arm portion 24, a pulley 84 b fixed to the wave generator 73 a of the third reduction gear 70, The transmission belt 85 is stretched around the pulleys 84a and 84b.
  • the second transmission shaft 76 is a hollow shaft having an outer diameter smaller than the inner diameter of the first transmission shaft 56, and penetrates the inside of the first transmission shaft 56 to extend in the Z direction.
  • the second transmission shaft 76 and the first transmission shaft 56 are arranged concentrically around the first rotation axis Ax1.
  • the second transmission shaft 76 is held on the first transmission shaft 56 via bearings 86a and 86b (see FIG. 8) so as to be capable of relative rotation. More specifically, bearings 86a and 86b are respectively arranged between the first transmission shaft 56 and the second transmission shaft 76 at both ends of the first transmission shaft 56, and the second transmission shaft 76 is provided by a retaining member such as a C ring. On the upper and lower sides of the bearings 86a and 86b, respectively, are prevented from coming off from the inner rings of the bearings 86a and 84b.
  • the third transmission shaft 77 is a hollow shaft and extends in the Z direction through the pulley 61b of the third transmission mechanism 78 of the second power transmission mechanism PT2 and the second reduction gear 50.
  • the third transmission shaft 77 is held by the pulley 61b of the third transmission mechanism 78 and the lower casing 55b of the second speed reducer 50 via bearings 88a, 88b (see FIG. 6) in a relatively rotatable state.
  • a bearing 88a is arranged between the pulley 61b and the third transmission shaft 77
  • a bearing 88b is arranged between the lower casing 55b and the third transmission shaft 77, respectively.
  • the transmission shaft 77 is secured to the inner rings of the bearings 88a and 88b at the upper and lower sides of the bearings 88a and 88b. It should be noted that the pulley 61b is fixed to the wave generator 53a of the second speed reducer 50, and therefore, it can be said that the third transmission shaft 77 is held by the second speed reducer 50 so as to be capable of relative rotation.
  • the rotation of the output shaft 33a of the third motor 33 is changed by the input portion (wave generator 73a) of the third reduction gear 70 through the first arm portion 23 and the second arm portion 24. Is transmitted to the tool mounting portion 25 while the rotational speed is reduced by the third reducer 70. As a result, the tool mounting portion 25 rotates about the third rotation axis Ax3 with respect to the second arm portion 24 at a predetermined rotation speed.
  • a first hollow shaft that penetrates the second transmission shaft 76 and extends from the base portion 20 to the first arm portion 23 is formed inside the second transmission shaft 76 of the third power transmission mechanism PT3, a first hollow shaft that penetrates the second transmission shaft 76 and extends from the base portion 20 to the first arm portion 23 is formed inside the second transmission shaft 76 of the third power transmission mechanism PT3, a first hollow shaft that penetrates the second transmission shaft 76 and extends from the base portion 20 to the first arm portion 23 is formed.
  • One wiring protection shaft 90 is arranged.
  • a second wiring protection shaft 94 which is a hollow shaft, extends through the third transmission shaft 77 and extends from the first arm portion 23 to the second arm portion 24.
  • the first wiring protection shaft 90, the second transmission shaft 76, and the first transmission shaft 56 are hollow shafts (cylindrical bodies) each having a circular cross section, and the first wiring protection shaft 90, the second transmission shaft 76, and the first transmission shaft.
  • the shafts 56 are arranged concentrically around the first rotation axis Ax1 in this order from the inside.
  • the second wiring protection shaft 94 and the third transmission shaft 77 are both hollow shafts (cylindrical bodies) having a circular cross section, and the second wiring protection shaft 94 and the third transmission shaft 77 have the second rotation axis Ax2. It is arranged from the inside in this order in a concentric circle with the center.
  • the first and second wiring protection shafts 90 and 94 protect electric wires and electric wires such as air piping arranged in the SCARA robot 2 as described later.
  • the first wiring protection shaft 90 is rotatably supported by a coupling member 91 fixed to the pulley 79b of the third power transmission mechanism PT3 via a bearing 92, and also has a C ring or the like with respect to the second transmission shaft 76. It is prevented by the retaining member.
  • the second wiring protection shaft 94 is rotatably supported by a connecting member 95 fixed to the pulley 84a of the third power transmission mechanism PT3 via a bearing 96, and is C relative to the second transmission shaft 76. It is retained by a retaining member such as a ring.
  • the upper end of the first wiring protection shaft 90 is provided with a notch cut out in a semicircular shape in plan view.
  • the upper end of the first wiring protection shaft 90 is fitted into a semicircular recess in plan view formed on the lower surface of the cover 234a of the casing 231 of the first arm 23.
  • the first wiring protection shaft 90 rotates together with the first arm portion 23 with respect to the first transmission shaft 56 and the second transmission shaft 76.
  • the upper end of the second wiring protection shaft 94 is also provided with a notch cut out in a semicircular shape in plan view.
  • An upper end portion of the second wiring protection shaft 94 is fitted into a semicircular recess in plan view formed on the lower surface of the cover 234b of the casing 231 of the first arm portion 23.
  • the second wiring protection shaft 94 rotates together with the first arm portion 23 with respect to the third transmission shaft 77.
  • the cutout portions of the first and second wiring protection shafts 90 face each other in the longitudinal direction of the first arm portion 23.
  • the first arm portion 23 has a casing 231 formed of a hollow box-shaped structure that extends in the horizontal direction (direction orthogonal to the Z direction) and has a rectangular rigidity in a side view.
  • the first reduction gear 40 is fixed to a base end portion (right end portion in FIG. 2) of the casing 231. Specifically, the first reduction gear 40 is fixed to the casing 231 by fastening the upper casing 45a of the first reduction gear 40 to the lower surface 232 of the casing 231 with a bolt.
  • the lower surface 232 of the casing 231 has an opening 232a opened at the center of the region where the first speed reducer 40 is fixed, and the first power transmission shaft 56 and the third power transmission of the second power transmission mechanism PT2.
  • the second transmission shaft 76 of the mechanism PT3 is inserted into the casing 231 through the opening 232a together with the pulley 61a and the pulley 82a.
  • the second reduction gear 50 is fixed to the tip portion (the left end portion in FIG. 2) of the casing 231.
  • the upper casing 55a of the second reduction gear 50 is fastened to the lower surface 232 of the casing 231 with a bolt, so that the second reduction gear 50 is fixed to the casing 231.
  • the lower surface 232 of the casing 231 has an opening 232b at the center of the area where the second speed reducer 50 is fixed, and the third transmission shaft 77 of the third power transmission mechanism PT3 is connected to the pulley 82b and the pulley 61b.
  • it is inserted into the casing 231 through the opening 232b.
  • the transmission belt 62 is wound around the pulley 61a and the pulley 61b
  • the transmission belt 83 is wound around the pulley 82a and the pulley 82b.
  • openings 233a and 233b are formed in the upper surface 233 of the casing 231 at the base end portion and the tip end portion of the casing 231.
  • the openings 233a and 233b are closed by covers 234a and 234b that are detachably fastened to the upper surface 233 with bolts.
  • the second arm portion 24 has a casing 241 formed of a hollow box-shaped structure having rigidity extending in the horizontal direction (direction orthogonal to the Z direction).
  • the second reduction gear 50 is fixed to the base end portion (the right end portion in FIG. 2) of the casing 241.
  • the lower casing 45b of the second reduction gear 50 is fastened to the upper surface 243 of the casing 241 with a bolt, so that the second reduction gear 50 is fixed to the casing 231.
  • the upper surface 243 of the casing 241 has an opening 243a opened at the center of the region where the second speed reducer 50 is fixed, and the third transmission shaft 77 of the third power transmission mechanism PT3 together with the pulley 84a. It is inserted into the casing 241 through the opening 243a.
  • the third reduction gear 70 is fixed to the tip portion (left end portion in FIG. 2) of the casing 241.
  • the upper casing 75a of the third reducer 70 is fixed to the lower surface 242 of the casing 241 with a bolt, so that the third reducer 70 is fixed to the casing 241.
  • An opening 242b is opened in the central portion of the lower surface 242 of the casing 241 where the third speed reducer 70 is fixed, and the pulley 84b of the third power transmission mechanism PT3 is inside the casing 241 through the opening 242b.
  • the transmission belt 85 is stretched around the pulley 84a and the pulley 84b.
  • An opening 242a is formed on the lower surface 242 of the base end of the casing 241, and an opening 243b is formed on the upper surface 243 of the tip.
  • the opening 242a is closed by a cover 244 that is detachably bolted to the lower surface 242, and the opening 243b is closed by a cover 245 that is detachably bolted to the upper surface 243.
  • 9 to 11 show a wiring structure in the SCARA robot 2, and mainly show a wiring structure of electric wires and/or pipes for driving the tool.
  • Electric wires and/or pipes (hereinafter, referred to as electric wires 100) for driving the tool are introduced into the casing 201 from the upper portion of the base portion 20 together with the electric wires for driving the first to third motors 31 to 33. Has been done.
  • the electric wires 100 are inserted into the inside from the lower end portion of the first wiring protection shaft 90, and are introduced into the casing 231 of the first arm portion 23 through the first wiring protection shaft 90.
  • the electric wires 100 are arranged in the casing 231 along the longitudinal direction from the base end portion of the first arm portion 23 toward the tip end portion thereof, and are inserted into the inside thereof from the upper end portion of the second wiring protection shaft 94.
  • the second wiring protection shaft 94 is introduced into the casing 241 of the second arm portion 24.
  • a partition plate 236 for partitioning the second and third transmission mechanisms 57, 78 and the space above them is provided inside the casing 231 of the first arm portion 23.
  • the electric wires 100 are arranged in a straight line along the upper surface of the partition plate 236 without any slack, and are fixed to the partition plate 236 by a wire fixing member 237 such as a binding band. ing. As a result, the electric wires 100 are prevented from moving around in the casing 231 and coming into contact with the second and third transmission mechanisms 57 and 78 as the first arm portion 23 turns.
  • the electric wires 100 are arranged along the longitudinal direction from the base end portion of the second arm portion 24 toward the tip end portion thereof, and the electric wires 100 of the pulley 84b and the third reducer 70 are provided. It is introduced into the tool mounting portion 25 through the inside.
  • a guide member 246 for guiding the electric wires 100 is provided inside the casing 241, and the electric wires 100 are arranged along the guide member 246.
  • the electric wires 100 led out from the lower end of the second wiring protection shaft 94 are arranged so as to pass through the inside of the transmission belt 85 from the lower side to the upper side at a position between the pulleys 84a and 84b, The pulley 84b is inserted into the third speed reducer 70 from above.
  • the part of the components including the first reduction gear 40 is constructed as one unitized component (referred to as the first reduction gear unit U1).
  • the second speed reducer 50 is included by pre-assembling a part of the components forming the second and third power transmission mechanisms PT2 and PT3 with respect to the second speed reducer 50.
  • Some of the parts are constructed as one unitized part (referred to as a second reduction gear unit U2).
  • a part of the parts that form the third power transmission mechanism PT3 is assembled in advance to the third speed reducer 70, so that the part of the parts including the third speed reducer 70 is a unitized part.
  • a third speed reducer unit U3 When the SCARA robot 2 is assembled or maintained, the speed reducer units U1 to U3 are attached to and detached from the first arm portion 23 and the second arm portion 24, as shown in FIG. ing.
  • the first reduction gear unit U1 corresponds to the "first assembly" of the present invention
  • the second reduction gear unit U2 corresponds to the "second assembly" of the present invention.
  • FIG. 8 is a sectional view showing the first reduction gear unit U1.
  • the pulley 47b of the first transmission mechanism 46 is fixed to the lower end of the wave generator 43a of the first reduction gear 40.
  • a first transmission shaft 56 is provided so as to pass through the inside of the first speed reducer 40 and the pulley 47b.
  • the first transmission shaft 56 is held in a relatively rotatable state with respect to the upper casing 45a of the first reduction gear 40 and the pulley 47b of the first transmission mechanism 46 via bearings 64a and 64b, and these bearings 64a and 64b.
  • the upper and lower sides of the bearings 64a and 64b are prevented from coming off from the inner rings.
  • the upper end of the first transmission shaft 56 projects above the upper casing 45a, and the pulley 61a of the second transmission mechanism 57 is fixed to this projecting portion.
  • the lower end of the first transmission shaft 56 projects below the pulley 47b, and the pulley 58b of the second transmission mechanism 57 is fixed to this projecting portion.
  • the second transmission shaft 76 is arranged inside the first transmission shaft 56.
  • the second transmission shaft 76 is held by the first transmission shaft 56 via the bearings 86a and 86b so as to be capable of relative rotation. It has been stopped.
  • the upper end of the second transmission shaft 76 protrudes above the pulley 61a, and the pulley 82a of the third transmission mechanism 78 is fixed to this protruding portion.
  • the lower end of the second transmission shaft 76 projects below the pulley 58b, and the pulley 79b of the third transmission mechanism 78 is fixed to this projecting portion.
  • the first wiring protection shaft 90 is arranged inside the second transmission shaft 76.
  • the first wiring protection shaft 90 is rotatably supported by a connecting member 91 fixed to the pulley 79b via a bearing 92, and is prevented from coming off from the second transmission shaft 76.
  • the first reduction gear unit U1 is different from the first reduction gear 40 in that the first and second transmission shafts 56 and 76, the first wiring protection shaft 90, and the pulleys 47b, 58b, 61a, 79b, and 81a. Have a structure assembled in advance. Then, when assembling the SCARA robot 2, as shown in FIG. 7, a portion below the first speed reducer 40, that is, a portion of the pulleys 47b, 58b, 79b is provided on the upper surface of the casing 201 of the base portion 20. The lower casing 45b of the first speed reducer 40 is fastened to the casing 201 with bolts in this state. As a result, the first reduction gear unit U1 is assembled to the base portion 20.
  • the second reducer unit U2 does not show a sectional view of a single unit, as shown in FIGS. 4 and 7, the second reducer unit 50 has a third transmission shaft 77 and a second wiring protection for the second reducer 50.
  • the shaft 94 and the pulleys 61b, 82b, 84a have a structure assembled in advance. That is, the pulley 61b of the second transmission mechanism 57 is fixed to the upper end of the wave generator 53a of the second reduction gear 50, and the third transmission shaft 77 is inserted so as to penetrate the inside of the second reduction gear 50 and the pulley 61b. It is provided.
  • the third transmission shaft 77 is held in a relatively rotatable state via bearings with respect to the lower casing 55b of the second speed reducer 50 and the pulley 61b of the second transmission mechanism 57, and the bearings are provided on the upper and lower sides of these bearings. It is locked against the inner ring of.
  • the upper end of the third transmission shaft 77 protrudes above the pulley 61b, and the pulley 82b of the third transmission mechanism 78 is fixed to this protruding portion.
  • the lower end of the third transmission shaft 77 projects below the lower casing 55b, and the pulley 84a of the third transmission mechanism 78 is fixed to this projecting portion.
  • the second wiring protection shaft 94 is arranged inside the third transmission shaft 77.
  • the second wiring protection shaft 94 is rotatably supported by a coupling member 95 fixed to the pulley 84b via a bearing 96, and is prevented from coming off from the third transmission shaft 77.
  • a portion of the second reduction gear unit U2 above the second reduction gear 50 that is, a portion of the pulleys 61b and 82b is located in the first arm portion 23. It is inserted into the opening 232b of the casing 231, and in this state, the upper casing 55a of the second reduction gear 50 is fastened to the casing 231 with bolts. As a result, the second reduction gear unit U2 is assembled to the first arm portion 23.
  • a portion below the second reduction gear 50 that is, a portion of the pulley 84a is inserted into the opening 243a of the casing 241 of the second arm portion 24, and in this state, the lower casing 55b of the second reduction gear 50 is the casing. It is fastened to 241 with a bolt. As a result, the second reduction gear unit U2 is assembled to the second arm portion 24.
  • the pulley 84b and the tool mounting portion 25 are assembled in advance to the third speed reducer 70, respectively. It has a structured structure. That is, the pulley 84b of the third transmission mechanism 78 is fixed to the upper end of the wave generator 73a of the third reduction gear 70, and the tool mounting portion 25 is fixed to the lower casing 75b of the third reduction gear 70.
  • the first speed reducer 40 is arranged between the base section 20 and the first arm section 23, and the second speed reducer 50 is connected to the first arm section 23 and the second arm section 24.
  • the third speed reducer 70 is disposed between the second arm portion 24 and the tool mounting portion 25. Therefore, while the first to third motors 32 to 33 are all mounted on the base portion 20, the positional accuracy of the first and second arm portions 23 and 24 and the tool mounting portion 25 during operation is kept high. be able to. That is, for example, the second speed reducer 50 is directly connected to the second motor 32, the rotational speed of the rotational force generated by the second motor 32 is reduced to a predetermined speed, and then the rotational force is transmitted to the second arm portion 24 by belt transmission.
  • the first reduction gear 40 is directly fixed to the first arm portion 23, the second reduction gear 50 is directly fixed to the second arm portion 24, and the third reduction gear 70 is directly fixed to the tool mounting portion 25.
  • the rotational force after deceleration is immediately transmitted to the arm portions 23, 24 and the tool mounting portion 25, so that the first and second arm portions 23, 24 and the tool are
  • the mounting portion 25 can be reliably operated at the rotation speed after deceleration. Therefore, it is possible to maintain the positional accuracy of the first and second arm portions 23, 24 and the tool mounting portion 25 during operation at a higher level.
  • the tip portion of the robot arm 22 is thinned (thinned in the Z direction) accordingly. can do. Further, the robot arm 22 can be moved in the Z direction by operating the single-axis robot 3. Therefore, according to the SCARA robot 2, it is possible to make the robot arm 22 penetrate into a narrow area, which is difficult for the SCARA robot of the related art to penetrate, thereby expanding the application of the SCARA robot 2. be able to.
  • the SCARA robot 2 all the electric wires 100 for the tool mounted on the tool mounting portion 25 are routed inside the SCARA robot 2. Therefore, like the conventional SCARA robot in which the electric wires for the tool are installed in the arch-shaped wiring pipe provided over the base portion and the arm portion, the electric wires (wiring Piping) is not swung around. Therefore, it is advantageous in operating the robot arm 22 at a high speed, and is less likely to be restricted by the surrounding environment in which the SCARA robot 2 is used, so that the application of the SCARA robot 2 can be expanded in this respect as well.
  • the wires 100 are routed along the first rotation axis Ax1, the second rotation axis Ax2, and the third rotation axis Ax3 in the joint portion of the robot arm 22, as shown in FIG.
  • the wires 100 need not be provided with an extra length (play), and the wires 100 can be routed from the base portion 20 to the tool mounting portion 25 at a distance as short as possible.
  • the SCARA robot 2 the total length of the electric wires 100 can be shortened, and it is possible to avoid the inconvenience that the extra length portion of the electric wires 100 is rubbed and damaged by the peripheral member inside the robot arm 22. it can.
  • the electric wires 100 are arranged inside the first wiring protection shafts 90 and 94 at the positions of the first and second rotation shafts Ax1 and Ax2, and the electric wires 100 of the third transmission mechanism 78 rotating at a relatively high speed. There is no direct contact with the second and third transmission shafts 76, 77. Therefore, even when the wires 100 are routed along the first and second rotation axes Ax1 and Ax2, the wires 100 do not come into contact with and damage the second and third transmission shafts 76 and 77. ..
  • the upper ends of the first and second wiring protection shafts 90 and 94 are fitted in the recesses of the semicircular shape in plan view formed in the casing 231 (covers 234a and 234b) of the first arm portion 23. Therefore, the first and second wiring protection shafts 90 and 94 themselves do not rotate. Therefore, even if the electric wires 100 come into contact with the first and second wiring protection shafts 90 and 94, they will not be damaged.
  • first speed reducer unit U1 some parts including the first speed reducer 40 are constructed as one unitized part (first speed reducer unit U1) and include the second speed reducer 50. Some of the parts are constructed as one unitized part (second speed reducer unit U2), and some of the parts including the third speed reducer 70 are made into one unitized part (third speed reducer unit). It is built as U3).
  • first to third speed reducer units U1 to U3 are attached to and detached from the first arm unit 23 and the second arm unit 24 in units. It has become. Therefore, according to the SCARA robot 2, there is also an advantage that the assembling property and the maintainability are very good.
  • the aging work is performed in advance so that the unit can adjust the grease to the speed reducer, it is not necessary to test-run the SCARA robot 2 only for the aging work after the SCARA robot 2 is assembled or after maintenance. It is possible to significantly reduce the total assembly time and maintenance time.
  • a connector 110 as shown in FIG. 12 is provided in the middle of the electric wires 100, and the electric wires of the portions corresponding to the units U1 to U3 are provided. It is preferable to be able to separate from the electric wires of the other parts. Specifically, it is preferable to provide the connector 110 at the positions P1 to P5 indicated by the circular frame in FIG. 9 in the electric wires 100.
  • P1 and P2 are positions of both ends of the first wiring protection shaft 90 of the electric wires 100
  • P3 and P4 are positions of both ends of the second wiring protection shaft 94 of the electric wires 100
  • P5. Is the position of the upper part of the pulley 84b. According to this configuration, when the SCARA robot 2 is assembled or maintained, a part of the electric wires 100 can be attached/detached together with the units U1 to U3, so that the SCARA robot 2 can be more easily assembled and maintained. improves.
  • the SCARA robot 2 is fixed to the slider 12 of the single-axis robot 3 so that the SCARA robot 2 moves in the Z direction.
  • the SCARA robot 2 may be one in which the base portion 20 is directly fixed on the ground surface and used.
  • the SCARA robot 2 of the embodiment has a configuration in which the second arm portion 24 is located above the first arm portion 23, but the second arm portion 24 is located below the first arm portion 23. It may be located.
  • the internal/external relationship between the first transmission shaft 56 and the second transmission shaft 76 is reversed from that in the above embodiment, and the upper and lower positions of the second transmission mechanism 57 and the first transmission shaft 56 in the first arm portion 23 are reversed. It may be configured to reverse the relationship.
  • the first and second wiring protection shafts 90 and 94 are cylindrical bodies, but the first wiring protection shaft 90 has the first rotation axis Ax1 in the space where the electric wires 100 are routed.
  • the hollow shaft is not limited to a cylindrical body as long as it can exist.
  • the second wiring protection shaft 94 is not limited to a cylindrical body as long as it is a hollow shaft in which the second rotation axis Ax2 can exist in the space where the electric wires 100 are routed, and a cylinder of any other shape. It may be a shape.
  • a cylindrical body having an irregular shape in which only a portion supported by bearings has a cylindrical shape and the other portions have a polygonal cross section, and It may be made of a tubular body partially provided with a notch.
  • the upper ends of the first and second wiring protection shafts 90 and 94 are fitted into the semicircular recesses in plan view formed in the casing 231 (covers 234a and 234b) of the first arm 23.
  • the first arm portion 23 is non-rotatably connected to the first arm portion 23, but the shape of the connecting portion (the shape of the recess) is not limited to a semicircle, and may be a polygon. Good.
  • connection structure of the first and second wiring protection shafts 90 and 94 to the first arm portion 23 is such that the first and second wiring protection shafts 90 and 94 are non-rotatably connected to the first arm portion 23.
  • the structure is not limited to the structure in which the upper portions of the first and second wiring protection shafts 90 and 94 are fitted in the recesses as in the embodiment, and other structures may be used.
  • the electric wires 100 are arranged inside the SCARA robot 2, but the electric wires 100 may be provided outside the SCARA robot 2 if necessary.
  • the first and second wiring protection shafts 90 and 94 can be omitted.
  • the second transmission shaft 76 and the third transmission shaft 77 do not have to be hollow shafts and may be solid shafts.
  • the first to third transmission mechanisms 46, 57, 78 are belt transmission mechanisms, but any one or all of the first to third transmission mechanisms 46, 57, 78 are gear-transmitted. It is also possible to employ a mechanism.
  • An articulated robot includes a base portion, a first arm portion rotatably connected to the base portion about a first rotation axis, and a second arm portion for the first arm portion.
  • a multi-joint robot including a second arm unit rotatably connected about a rotation axis, the first motor including a first motor and a second motor respectively provided on the base, and the first reducer.
  • a first power transmission mechanism that transmits a rotational force generated by a motor to the first arm portion, and a rotational force generated by the second motor including a second speed reducer are transmitted to the first arm portion via the first arm portion.
  • a second power transmission mechanism that transmits to two arm portions, the first reduction gear is arranged between the base portion and the first arm portion, and the second reduction gear is the first arm. And a second arm portion.
  • the first and second motors that drive the first and second arm parts are all mounted on the base part. Therefore, the weight of the first and second arm portions is reduced, which reduces the inertia of the first and second arm portions. Therefore, it is possible to operate the first and second motors at a relatively high speed without using high-output motors as the first and second motors. Further, since the motor is not mounted on the second arm portion, the tip of the second arm portion can be thinned.
  • the articulated robot includes a tool mounting portion that is rotatably connected to the second arm portion about a third rotation axis, a third motor provided on the base, and a third reducer. And a third power transmission mechanism that transmits the rotational force generated by the three motors to the tool mounting section via the first arm section and the second arm section. It may be arranged between the second arm portion and the tool mounting portion.
  • the first and second arm portions can be operated at a relatively high speed without using high-output motors as the first and second motors. Is possible.
  • the first speed reducer has an annular structure in which a central portion penetrates along the first rotation axis, and the first power transmission mechanism outputs the output of the first motor.
  • the second power transmission mechanism includes a first transmission mechanism that transmits the rotation of the shaft to the first reduction gear, and the second power transmission mechanism extends through the inside of the first reduction gear from the base portion to the first arm portion. The rotation of the extending first transmission shaft and the output shaft of the second motor is transmitted to the first transmission shaft at the base portion, and the rotation of the first transmission shaft is transmitted at the first arm portion. And a second transmission mechanism that is transmitted to the second speed reducer.
  • the second reduction gear has an annular structure in which a central portion penetrates along the second rotation axis.
  • the third power transmission mechanism is disposed concentrically with the first transmission shaft and extends through the inside of the first speed reducer from the base portion to the first arm portion.
  • the rotation of the transmission shaft, the third transmission shaft extending through the inside of the second reduction gear from the first arm portion to the second arm portion, and the rotation of the output shaft of the third motor are The second transmission shaft is transmitted to the base portion, the rotation of the second transmission shaft is transmitted to the third transmission shaft of the first arm portion, and the rotation of the third transmission shaft is transmitted to the second arm portion.
  • a third transmission mechanism that is transmitted to the third speed reducer.
  • the first transmission shaft, the second transmission shaft, and the third transmission shaft are hollow shafts
  • the articulated robot includes the first transmission shaft and the second transmission shaft from the base portion. And electric wires arranged so as to reach the second arm via the one arm portion and the inside of the third transmission shaft.
  • the wires are arranged along the rotation center (first rotation axis) of the first arm portion, so that the wire length from the base portion to the first arm portion is as short as possible. It becomes possible to do.
  • the electric wires are a concept including electric wires and/or flexible pipes (such as air tubes).
  • a hollow first wiring protection shaft that penetrates the insides of the first transmission shaft and the second transmission shaft from the base portion to the first arm portion and surrounds the electric wires is provided. Is preferred.
  • the articulated robot includes a hollow second wiring protection shaft that penetrates the inside of the third transmission shaft from the first arm portion to the second arm portion and surrounds the electric wires. Is preferred.
  • the first reduction gear, the first transmission shaft, the second transmission shaft, and an element fixed to the first reduction gear in the first transmission mechanism are attached to the base portion and the first arm portion. It is preferable to construct a first assembly that is detachably attached to the main body and that is assembled using the first speed reducer as a main member.
  • the first assembly including the first reduction gear can be integrally attached to and detached from the base portion and the first arm portion. Therefore, it contributes to the improvement of the assembling property and the maintainability of the articulated robot.
  • the first wiring protection shaft in the case where the first wiring protection shaft is provided, it is preferable that the first wiring protection shaft further constructs the assembly together with the first speed reducer.
  • the electric wires are to separate a portion of the electric wires arranged inside the first transmission shaft and the second transmission shaft from other portions. It is preferable to have a connector capable of
  • the second reduction gear, the third transmission shaft, an element of the second transmission mechanism fixed to the second reduction gear, and the third transmission mechanism is assembled by using the second speed reducer as a main member, which can be integrally attached to and detached from the first arm portion and the second arm portion.
  • a second assembly is constructed.
  • the second assembly including the second reduction gear can be integrally attached to and detached from the first arm section and the second arm section. Therefore, it contributes to the improvement of the assembling property and the maintainability of the articulated robot.
  • the second wiring protection shaft further constructs the second assembly together with the second speed reducer.
  • the second wiring protection shaft can be attached to and detached from the first arm portion and the second arm portion together with the second speed reducer.
  • the electric wires include a connector capable of separating a portion of the electric wires arranged inside the third transmission shaft from other portions. Is preferred.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

多関節ロボットは、ベース部と、このベース部に回転可能に連結される第1アーム部と、第1アーム部に対して回転可能に連結される第2アーム部とを備える。多関節ロボットは、ベースに各々備えられた第1モータ及び第2モータと、第1減速機を含み、前記第1モータが発生する回転力を前記第1アーム部に伝達する第1動力伝達機構と、第2減速機を含み、前記第2モータが発生する回転力を、前記第1アーム部を経由して前記第2アーム部に伝達する第2動力伝達機構と、を備える、第1減速機は、前記ベース部と前記第1アーム部との間に配置され、第2減速機は、第1アーム部と第2アーム部との間に配置されている。

Description

多関節ロボット
 本発明は、多関節ロボットに関するものである。
 産業用ロボットとして多関節ロボットが公知である。特許文献1には、多関節ロボットの一例として、スカラロボット(水平多関節ロボット)が開示されている。
 特許文献1に開示されるスカラロボットは、基台上に固定されるベース部と、このベース部に対して旋回可能に支持された第1アーム部と、この第1アーム部の先端に旋回可能に連結された第2アーム部と、この第2アーム部の先端に上下方向の移動及び鉛直軸回りの回転が可能に保持された作動軸と、を備えている。
 このスカラロボットは、ベース部に、第1アーム部を駆動するためのモータ及び減速機を備え、第2アーム部に、当該第2アーム部を駆動するためのモータ及び減速機と、作動軸を駆動するためのモータ及び減速機とを備える。そして、ベース部と第2アーム部とに亘ってアーチ状の配線用配管が設けられ、第2アーム部に搭載されるモータなどの電気部品の配線がこの配線用配管を通じて第2アーム部からベース部に配索されている。
 上記のスカラロボットの構造は、スカラロボットの代表的なものであるが、次のような課題を有している。すなわち、第2アーム部にモータが搭載されているため、第2アーム部の重量が比較的重くイナーシャの影響を受け易く、駆動速度を高めるには高出力のモータが必要となる。また、作動軸を省略した場合でも、第2アーム部の薄型化(上下方向の薄型化)は難しく、アーム部先端を狭所に挿入させて作業を行うような用途にスカラロボットを適用することが困難である。
特開2015-85393号公報
 本発明は、上述した課題に鑑みて成されたものであって、多関節ロボットに関して、モータの高出力化を伴うことなくより高速で駆動できるようにすること、また、アーム部の薄型化を通じて用途の拡大を図ることを目的としている。
 そして、本発明は、ベース部と、このベース部に対して第1回転軸回りに回転可能に連結される第1アーム部と、この第1アーム部に対して第2回転軸回りに回転可能に連結される第2アーム部とを備えた多関節ロボットであって、前記ベースに各々備えられた第1モータ及び第2モータと、第1減速機を含み、前記第1モータが発生する回転力を前記第1アーム部に伝達する第1動力伝達機構と、第2減速機を含み、前記第2モータが発生する回転力を、前記第1アーム部を経由して前記第2アーム部に伝達する第2動力伝達機構と、を備え、前記第1減速機は、前記ベース部と前記第1アーム部との間に配置され、前記第2減速機は、前記第1アーム部と前記第2アーム部との間に配置されているものである。
図1は、本発明に係る多関節ロボットが適用された産業用ロボットの側面図である。 図2は、産業用ロボットの断面図である。 図3は、産業用ロボットの斜視図(斜め下から視た状態)である。 図4は、産業用ロボットの斜視図(斜め下から視た状態)である。 図5は、産業用ロボットの断面拡大図である。 図6は、産業用ロボットの断面拡大図である。 図7は、産業用ロボットの分解斜視図である。 図8は、第1減速機ユニットの断面図である。 図7は、配線構造を示す産業用ロボットの断面図である。 図10は、配線構造を示す産業用ロボットの下面図である。 図11は、配線構造を示す産業用ロボットの上方からの斜視図である。 図12は、配線構造のコネクタ部分を示す詳細図である。
 図1~図4は、本発明に係る多関節ロボットが適用された産業用ロボットを示しており、図1は側面図で、図2は断面図で、図3及び図4は斜視図で各々産業用ロボットを示している。なお、各図中には、説明の便宜上、XYZの直角座標系を示している。当例では、Z方向は上下方向である。
 産業用ロボット1は、多関節ロボットの一種であるスカラロボット(水平多関節ロボット)2と、このスカラロボット2を直動(直線的に移動)させる単軸ロボット3とを備えた複合型ロボットである。当例では、単軸ロボット3は、スカラロボット2をZ方向に移動(昇降)させる。
 [単軸ロボット3の構成]
 単軸ロボット3は、Z方向に延在する構造体を含む中空のケーシング10と、このケーシング10に沿ってZ方向に移動可能に支持されるスライダ12と、このスライダ12を駆動する駆動機構14とを含む。
 スライダ12は、ケーシング10の内壁面に固定されたZ方向に延在する一対のガイドレール(図示省略)に移動自在に支持されている。ケーシング10の側面には、Z方向に延在するスリット状の開口部10aが形成されており、スライダ12は、当該開口部10aを介して外部に露出している。
 前記駆動機構14は、いわゆる送りねじ機構であり、スライダ12に組込まれたナット部材12aと、このナット部材12aに挿入されて前記ガイドレールと平行に延在するねじ軸16と、このねじ軸16の一端に連結された電動モータ18とを含む。つまり、駆動機構14は、モータ18によりねじ軸16を回転させ、このねじ軸16の回転運動を、ナット部材12a及びガイドレールを介してスライダ12のZ方向の直線運動に変換する。この構成によりスライダ12がZ方向に移動する。
 [スカラロボット2の構成]
 スカラロボット2は、ベース部20と、このベース部20に連結されたロボットアーム22とを含む。ベース部20は、単軸ロボット3の前記スライダ12に固定されており、これにより、スカラロボット2が、スライダ12の移動に伴い当該スライダ12と共にZ方向に移動する。
 ロボットアーム22は、ベース部20に対して第1回転軸Ax1回りに回転可能に連結された第1アーム部23と、この第1アーム部23に対して第2回転軸Ax2回りに回転可能に連結された第2アーム部24と、この第2アーム部24に対して第3回転軸Ax3回りに回転可能に搭載されたツール装着部25とを備えている。ツール装着部25は、ロボットハンド等などの各種用途に応じたエンドエフェクタが着脱自在に装着される部分であり、第2アーム部24の先端部に設けられている。なお、第1回転軸Ax1、第2回転軸Ax2及び後述する第3回転軸Ax3は、Z方向に延びる互いに平行な仮想軸である。
 スカラロボット2は、第1アーム部23の駆動源である第1モータ31と、この第1モータ31が発生する回転力を前記第1アーム部23に伝達する第1動力伝達機構PT1とを備えている。また、スカラロボット2は、第2アーム部24の駆動源である第2モータ32と、この第2モータ32が発生する回転力を前記第2アーム部23に伝達する第2動力伝達機構PT2とを備えている。また、スカラロボット2は、ツール装着部25の駆動源である第3モータ33と、この第3モータ31が発生する回転力をツール装着部25に伝達する第3動力伝達機構PT3とを備えている。
 第1~第3のモータ31~33は全てベース部20に搭載されている。ベース部20は、下方が開口した中空かつ箱形の剛性を有した構造体からなるケーシング201を備えており、モータ31~33は、第1回転軸Ax1を中心としてその周囲に配置され、各々、ブラケットを介してケーシング201の天井部202に固定されている。具体的には、第1モータ31は、第1回転軸Ax1に対してX方向に隣接する位置に配置されている。第2モータ32及び第3モータ33は、第1回転軸Ax1を挟んでY方向に並ぶ位置に各々配置されている。すなわち、第1~第3のモータ31、32、33は、第1回転軸Ax1の周りに90°間隔で配置されている。ケーシング201の下面には、カバー203が着脱可能に固定されている。
 [第1動力伝達機構PT1の構成]
 図5は産業用ロボット1の要部断面図である。この図に示すように、前記第1動力伝達機構PT1は、ベース部20とロボットアーム22との間に介設された第1減速機40と、第1モータ31の出力軸31aの回転を第1減速機40に伝達する第1伝動機構46とを含む。
 第1減速機40は、波動歯車減速機構からなる減速機本体42と、この減速機本体42が組み込まれた、剛性を有する構造体からなるケーシング44とを含み、第1回転軸Ax1に沿って貫通した概略円環状の構造を有している。
 ケーシング44は、周壁部を備えた有天円筒状の上部ケーシング45aと、周壁部を備えた有底円筒状の下部ケーシング45bとを含み、周壁部同士の間にラビリンス状の隙間44aが形成されるように、これら上、下のケーシング45a、45bが向かい合わせに配置された中空構造を有する。上部ケーシング45aは、第1アーム部23の後記ケーシング231の下面232に固定されており、下部ケーシング45bは、ベース部20の前記ケーシング201の上面に固定されている。
 減速機本体42は、周知の波動歯車減速機構であり、ケーシング44の内側に組み込まれている。減速機本体42は、ウェーブジェネレータ43a、サーキュラスプライン43b、フレクススプライン43c、及び、サーキュラスプライン43bとフレクススプライン43cとを相対的に回転可能な状態で連結するベアリング43dとを備えている。
 ウェーブジェネレータ43aは、上下のケーシング45a、45bにベアリング43eを介して回転自在に保持されかつ楕円形のカムの外周にベアリング(図示省略)が外嵌された構造を有する。サーキュラスプライン43bは、内歯を備えた円環状の剛体であり、ウェーブジェネレータ43aの径方向外側に配置されて下部ケーシング45bに固定されている。フレクススプライン43cは、サーキュラスプライン43bの内歯と噛合する外歯を備えた薄肉の金属弾性体であり、ウェーブジェネレータ43aとサーキュラスプライン43bとの間に配設されて、上部ケーシング45aに固定されている。
 ウェーブジェネレータ43aは、第1モータ31の回転力の入力部であり、フレクススプライン43cが固定された上部ケーシング45aは減速後の回転力の出力部とされる。すなわち、第1減速機40は、ウェーブジェネレータ43a(入力部)に入力される回転駆動力の回転速度を減速して上部ケーシング45a(出力部)から出力させる。
 前記第1伝動機構46はベルト伝動機構である。すなわち、第1伝動機構46は、第1モータ31の出力軸31aに固定されたプーリ47aと、第1減速機40の前記ウェーブジェネレータ43aに固定されたプーリ47bと、これらプーリ47a、47bとに掛け渡された伝動ベルト48とを含む。
 このような第1動力伝達機構PT1の構成により、第1モータ31の出力軸31aの回転は、第1減速機40の入力部(ウェーブジェネレータ43a)に伝達され、この第1減速機40で回転速度が減速されながら第1アーム部23に伝達される。これにより、第1アーム部23が、ベース部20に対して所定の回転速度で第1回転軸Ax1回りに回転(旋回)する。
 [第2動力伝達機構PT2の構成]
 前記第2動力伝達機構PT2は、図2に示すように、第1アーム部23と第2アーム部24との間に介設された第2減速機50と、ベース部20から第1アーム部23に亘って第1減速機40の内側を貫通して延在する第1伝動軸56と、前記第2モータ32の出力軸32a(図示省略)の回転を、ベース部20において第1伝動軸56に伝動するとともに、当該第1伝動軸56の回転を、第1アーム部23において第2減速機50に伝動する第2伝動機構57と、を含む。
 図6は産業用ロボット1の断面拡大図である。この図に示すように、第2減速機50は、波動歯車減速機構からなる減速機本体52と、この減速機本体52が組み込まれた、剛性を有する構造体からなるケーシング54とを含み、全体が第2回転軸Ax2に沿って貫通した概略円環状の構造を有している。この第2減速機50の基本的な構造は、以下の通り、第1減速機40の構造とほぼ共通している。
 ケーシング54は、周壁部を備えた有天円筒状の上部ケーシング55aと、周壁部を備えた有底円筒状の下部ケーシング55bとを含み、周壁部同士の間にラビリンス状の隙間54aが形成されるように、これら上、下のケーシング55a、55bが向かい合わせに配置された中空構造を有する。上部ケーシング55aは、第1アーム部23の後記ケーシング231の下面232に固定されており、下部ケーシング55bは、第2アーム部24の後記ケーシング241の上面243に固定されている。
 減速機本体52は、上下のケーシング55a、55bにベアリング53eを介して回転自在に保持されたウェーブジェネレータ53aと、このウェーブジェネレータ53aの径方向外側に配置されて下部ケーシング55bに固定されたサーキュラスプライン53bと、ウェーブジェネレータ53aとサーキュラスプライン53bとの間に配設されて上部ケーシング55aに固定されたフレクススプライン53cと、サーキュラスプライン53bとフレクススプライン53cとを相対的に回転可能な状態で連結するベアリング53dとを備えている。
 ウェーブジェネレータ53aは、第2モータ32の回転力の入力部であり、フレクススプライン53cが固定された上部ケーシング55aは減速後の回転力の出力部とされる。すなわち、第2減速機50は、ウェーブジェネレータ53a(入力部)に入力される回転駆動力の回転速度を減速して上部ケーシング55a(出力部)から出力させる。なお、第2減速機50では、上部ケーシング45aが第1アーム部23に固定されるため、サーキュラスプライン53bが固定された下部ケーシング45bが相対的に回転することで回転力が第2アーム部24に伝達される。
 前記第2伝動機構57はベルト伝動機構である。すなわち、第2伝動機構57は、図3、図5及び図6に示すように、第2モータ32の出力軸32aに固定されたプーリ58aと、ベース部20において第1伝動軸56の下端部に固定されたプーリ58bと、これらプーリ58a、58bとに掛け渡された伝動ベルト59とを含む。また、第2伝動機構57は、第1アーム部23において、第1伝動軸56の上端部に固定されたプーリ61aと、第2減速機50の前記ウェーブジェネレータ53aに固定されたプーリ61bと、これらプーリ61a、61bとに掛け渡された伝動ベルト62とを含む。
 前記第1伝動軸56は中空軸からなり、第1動力伝達機構PT1の第1減速機40及び第1伝動機構46のプーリ47bを貫通してZ方向に延在している。第1伝動軸56は、第1減速機40の上部ケーシング45a及び第1伝動機構46のプーリ47bにベアリング64a、64b(図8参照)を介して相対回転が可能な状態で保持されている。詳しくは、上部ケーシング45aと第1伝動軸56との間にベアリング64aが、プーリ47bと第1伝動軸56との間にベアリング64bが各々配置され、Cリング等の抜け止め部材により、第1伝動軸56がこれらベアリング64a、64bの上下両側で当該ベアリング64a、64bの内輪に対して抜け止めされている。なお、プーリ47bは第1減速機40のウェーブジェネレータ43aに固定されおり、従って、第1伝動軸56は、第1減速機40に相対回転が可能に保持されていると言える。
 このような第2動力伝達機構PT2の構成により、第2モータ32の出力軸32aの回転が、第1アーム部23を通じて第2減速機50の入力部(ウェーブジェネレータ53a)に伝達され、この第2減速機50で回転速度が減速されながら第2アーム部24に伝達される。これにより、第2アーム部24が第1アーム部23に対して所定の回転速度で第2回転軸Ax2回りに回転(旋回)する。
 [第3動力伝達機構PT3の構成]
 前記第3動力伝達機構PT3は、図2に示すように、第2アーム部24とツール装着部25との間に介設された第3減速機70と、第1伝動軸56と同心上に配置されて、ベース部20から第1アーム部23に亘って第1減速機40の内側を貫通して延在する第2伝動軸76と、第1アーム部23から第2アーム部24に亘って第2減速機50の内側を貫通して延在する第3伝動軸77と、前記第3モータ33の出力軸33a(図示省略)の回転を、ベース部20において第2伝動軸76に伝動し、当該第2伝動軸76の回転を、第1アーム部23において第3伝動軸77に伝動し、当該第3伝動軸77の回転を、第2アーム部において第3減速機70に伝動する第3伝動機構78と、を含む。
 図5及び図6に示すように、第3減速機70は、波動歯車減速機構からなる減速機本体72と、この減速機本体72が組み込まれた、剛性を有する構造体からなるケーシング74とを含み、全体が第3回転軸Ax3に沿って貫通した概略円環状の構造を有している。この第3減速機70の基本的な構造は、以下の通り、第1、第2の減速機40、50の構造と共通している。
 ケーシング74は、周壁部を備えた有天円筒状の上部ケーシング75aと、周壁部を備えた有底円筒状の下部ケーシング75bとを含み、周壁部同士の間にラビリンス状の隙間74aが形成されるように、これら上、下のケーシング75a、75bが向かい合わせに配置された中空構造を有する。上部ケーシング75aは、第2アーム部24の後記ケーシング241の下面242に固定されており、下部ケーシング75bは、ツール装着部25の上部に固定されている。
 減速機本体72は、上下のケーシング75a、75bにベアリング73eを介して回転自在に保持されたウェーブジェネレータ73aと、このウェーブジェネレータ73aの径方向外側に配置されて下部ケーシング75bに固定されたサーキュラスプライン73bと、ウェーブジェネレータ73aとサーキュラスプライン73bとの間に配設されて上部ケーシング75aに固定されたフレクススプライン73cと、サーキュラスプライン73bとフレクススプライン73cとを相対的に回転可能な状態で連結するベアリング73dとを備えている。
 ウェーブジェネレータ73aは、第3モータ33の回転力の入力部であり、フレクススプライン73cが固定された上部ケーシング75aは減速後の回転力の出力部とされる。すなわち、第3減速機70は、ウェーブジェネレータ73a(入力部)に入力される回転駆動力の回転速度を減速してウェーブジェネレータ73a(出力部)から出力させる。なお、第3減速機70では、上部ケーシング75aが第2アーム部24に固定されているため、サーキュラスプライン73bが固定された下部ケーシング75bが相対的に回転することで回転力がツール装着部25に伝達される。
 前記第3伝動機構78はベルト伝動機構である。すなわち、第3伝動機構78は、図3、図5及び図6に示すように、第3モータ33の出力軸33aに固定されたプーリ79aと、ベース部20において第2伝動軸76の下端部に固定されたプーリ79bと、これらプーリ79a、79bとに掛け渡された伝動ベルト80とを含む。また、第3伝動機構78は、第1アーム部23において、第2伝動軸76の上端部に固定されたプーリ82aと、第3伝動軸77の上端部に固定されたプーリ82bと、これらプーリ82a、82bとに掛け渡された伝動ベルト83とを含む。さらに、第3伝動機構78は、第2アーム部24において、第3伝動軸77の下端部に固定されたプーリ84aと、第3減速機70の前記ウェーブジェネレータ73aに固定されたプーリ84bと、これらプーリ84a、84bとに掛け渡された伝動ベルト85とを含む。
 前記第2伝動軸76は、その外径が前記第1伝動軸56の内径よりも小さい中空軸からなり、第1伝動軸56の内側を貫通してZ方向に延在している。第2伝動軸76と第1伝動軸56とは、第1回転軸Ax1を中心とする同心円状に配置されている。
 第2伝動軸76は、第1伝動軸56にベアリング86a、86b(図8参照)を介して相対回転が可能な状態で保持されている。詳しくは、第1伝動軸56の両端において当該第1伝動軸56と第2伝動軸76との間にベアリング86a、86bが各々配置され、Cリング等の抜け止め部材により、第2伝動軸76がこれらベアリング86a、86bの上下両側で当該ベアリング86a、84bの内輪に対して抜け止めされている。
 第3伝動軸77は中空軸からなり、第2動力伝達機構PT2の第3伝動機構78のプーリ61b及び第2減速機50を貫通してZ方向に延在している。第3伝動軸77は、第3伝動機構78のプーリ61b及び第2減速機50の下部ケーシング55bにベアリング88a、88b(図6参照)を介して相対回転が可能な状態で保持されている。詳しくは、プーリ61bと第3伝動軸77との間にベアリング88aが、下部ケーシング55bと第3伝動軸77との間にベアリング88bが各々配置され、Cリング等の抜け止め部材により、第3伝動軸77がこれらベアリング88a、88bの上下両側で当該ベアリング88a、88bの内輪に対して抜け止めされている。なお、プーリ61bは第2減速機50のウェーブジェネレータ53aに固定されおり、従って、第3伝動軸77は、第2減速機50に相対回転が可能に保持されていると言える。
 このような第3動力伝達機構PT3の構成により、第3モータ33の出力軸33aの回転が、第1アーム部23及び第2アーム部24を通じて第3減速機70の入力部(ウェーブジェネレータ73a)に伝達され、この第3減速機70で回転速度が減速されながらツール装着部25に伝達される。これにより、ツール装着部25が第2アーム部24に対して所定の回転速度で第3回転軸Ax3回りに回転する。
 なお、第3動力伝達機構PT3の第2伝動軸76の内側には、当該第2伝動軸76を貫通してベース部20から第1アーム部23に亘って延在する、中空軸からなる第1配線保護軸90が配置されている。また、第3伝動軸77の内側には、当該第3伝動軸77を貫通して第1アーム部23から第2アーム部24に亘って延在する、中空軸からなる第2配線保護軸94が配置されている。第1配線保護軸90、第2伝動軸76及び第1伝動軸56は、共に断面円形の中空軸(円筒体)であり、これら第1配線保護軸90、第2伝動軸76及び第1伝動軸56は、第1回転軸Ax1を中心とする同心円状にこの順番で内側から配置されている。また、第2配線保護軸94及び第3伝動軸77は、共に断面円形の中空軸(円筒体)であり、これら第2配線保護軸94及び第3伝動軸77は、第2回転軸Ax2を中心とする同心円状にこの順番で内側から配置されている。
 これら第1、第2の配線保護軸90、94は、後述する通り、スカラロボット2内に配索される電気配線およびエア配管などの電線類を保護するものである。
 第1配線保護軸90は、第3動力伝達機構PT3のプーリ79bに固定された連結部材91にベアリング92を介して相対回転可能に支持されるとともに、第2伝動軸76に対してCリング等の抜け止め部材により抜け止めされている。また、第2配線保護軸94は、第3動力伝達機構PT3のプーリ84aに固定された連結部材95にベアリング96を介して相対回転可能に支持されるとともに、第2伝動軸76に対してCリング等の抜け止め部材により抜け止めされている。
 第1配線保護軸90の上端部には、平面視半円形に切り欠かれた切欠部が設けられている。第1配線保護軸90の上端部は、第1アーム部23のケーシング231の後記カバー234aの下面に形成された平面視半円形の凹部に嵌合されている。これにより、第1配線保護軸90は第1アーム部23と共に前記第1伝動軸56及び第2伝動軸76に対して相対的に回転する。
 第2配線保護軸94の上端部にも同様に、平面視半円形に切り欠かれた切欠部が設けられている。第2配線保護軸94の上端部は、第1アーム部23のケーシング231の後記カバー234bの下面に形成された平面視半円形の凹部に嵌合されている。これにより、第2配線保護軸94は第1アーム部23と共に前記第3伝動軸77に対して相対的に回転するようになっている。なお、第1、第2の配線保護軸90の切欠部は、第1アーム部23の長手方向において互いに向かい合っている。
 [第1アーム部23及び第2アーム部24の構造]
 第1アーム部23は、水平方向(Z方向と直交する方向)に延在する側面視長方形の剛性を有した中空の箱型構造体からなるケーシング231を有している。このケーシング231の基端部(図2では右端部)に前記第1減速機40が固定されている。詳しくは、第1減速機40の上部ケーシング45aがケーシング231の下面232にボルトで締結されることにより、第1減速機40がケーシング231に固定されている。ケーシング231の下面232のうち当該第1減速機40が固定された領域の中心部には開口部232aが開口されており、第2動力伝達機構PT2の前記第1伝動軸56及び第3動力伝達機構PT3の前記第2伝動軸76が、プーリ61a及びプーリ82aと共に当該開口部232aを通じてケーシング231内に挿入されている。
 一方、ケーシング231の先端部(図2では左端部)には、前記第2減速機50が固定されている。詳しくは、第2減速機50の上部ケーシング55aがケーシング231の下面232にボルトで締結されることにより、第2減速機50がケーシング231に固定されている。ケーシング231の下面232のうち当該第2減速機50が固定された領域の中心部には開口部232bが開口されており、第3動力伝達機構PT3の第3伝動軸77がプーリ82b及びプーリ61bと共に当該開口部232bを通じてケーシング231内に挿入されている。そして、ケーシング231内において、プーリ61aとプーリ61bとに前記伝動ベルト62が、プーリ82aとプーリ82bとに前記伝動ベルト83が各々掛け渡されている。
 なお、ケーシング231の基端部及び先端部において、当該ケーシング231の上面233には、開口部233a、233bが形成されている。これら開口部233a、233bは、上面233に着脱可能にボルトで締結されたカバー234a、234bにより閉鎖されている。
 第2アーム部24は、水平方向(Z方向と直交する方向)に延在する剛性を有した中空の箱型構造体からなるケーシング241を有している。このケーシング241の基端部(図2では右端部)に前記第2減速機50が固定されている。詳しくは、第2減速機50の下部ケーシング45bがケーシング241の上面243にボルトで締結されることにより、第2減速機50がケーシング231に固定されている。ケーシング241の上面243のうち当該第2減速機50が固定された領域の中心部には開口部243aが開口されており、第3動力伝達機構PT3の前記第3伝動軸77がプーリ84aと共に当該開口部243aを通じてケーシング241内に挿入されている。
 一方、ケーシング241の先端部(図2では左端部)には、前記第3減速機70が固定されている。詳しくは、第3減速機70の上部ケーシング75aがケーシング241の下面242にボルトで締結されることにより、第3減速機70がケーシング241に固定されている。ケーシング241の下面242のうち当該第3減速機70が固定された領域の中心部には開口部242bが開口されており、第3動力伝達機構PT3のプーリ84bが当該開口部242bを通じてケーシング241内に挿入されている。そして、ケーシング241内において、プーリ84aとプーリ84bとに前記伝動ベルト85が掛け渡されている。
 なお、ケーシング241の基端部においてその下面242には開口部242aが形成され、先端部においてその上面243には開口部243bが形成されている。開口部242aは、下面242に着脱可能にボルト締結されたカバー244により閉鎖され、開口部243bは、上面243に着脱可能にボルト締結されたカバー245により閉鎖されている。
[スカラロボット2の配線構造]
 スカラロボット2の内部には、第1~第3のモータ31~33の駆動用の電線や、ツール装着部25に装着されるツールの駆動用の電線及び/又は可撓性を有するパイプ(チューブ)が配索されている。パイプは、例えば圧縮空気などの給排に用いられる。
 図9~図11は、スカラロボット2内の配線構造を示しており、主にツールを駆動するための電線及び/又はパイプの配線構造を示している。
 前記ツールを駆動するための電線及び/又はパイプ(以下、電線類100称す)は、第1~第3のモータ31~33の駆動用の電線と共にベース部20の上部からそのケーシング201内に導入されている。
 電線類100は、第1配線保護軸90の下端部からその内部に挿入され、この第1配線保護軸90を通じて第1アーム部23のケーシング231内に導入されている。電線類100は、このケーシング231内において、第1アーム部23の基端部から先端部に向かってその長手方向に沿って配索され、第2配線保護軸94の上端部からその内部に挿入され、この第2配線保護軸94を通じて第2アーム部24のケーシング241内に導入されている。
 第1アーム部23のケーシング231の内部には、第2、第3の伝動機構57、78とその上方の空間とを仕切る仕切板236が設けられている。電線類100は、図9及び図11に示すように、この仕切板236の上面に沿ってほぼ弛み無く直線状に配索され、結束バンド等の配線固定部材237によって当該仕切板236に固定されている。これにより、第1アーム部23の旋回に伴いケーシング231内で電線類100が暴れることや第2、第3の伝動機構57、78に接触することが防止される。
 第2アーム部24のケーシング241内において、電線類100は、第2アーム部24の基端部から先端部に向かってその長手方向に沿って配索され、プーリ84b及び第3減速機70の内側を通じてツール装着部25に導入されている。ケーシング241の内部には、電線類100をガイドするガイド部材246が設けられ、電線類100は、このガイド部材246に沿って配索されている。詳しくは、第2配線保護軸94の下端部から導出された電線類100は、両プーリ84a、84bの間の位置で伝動ベルト85の内側を下側から上側に通過するように配索され、プーリ84bの上側から第3減速機70の内部に挿入されている。
[ユニット構造について]
 上述したスカラロボット2では、第1減速機40を主部品として第1~第3の動力伝達機構PT1~PT3を構成する部品(要素)の一部が当該第1減速機40に予め組み付けられることにより、第1減速機40を含む当該一部の部品が一つのユニット化された部品(第1減速機ユニットU1と称する)として構築されている。また、第2減速機50に対して第2、第3の動力伝達機構PT2、PT3を構成する部品の一部が当該第2減速機50に予め組み付けられることにより、第2減速機50を含む当該一部の部品が一つのユニット化された部品(第2減速機ユニットU2と称する)として構築されている。また、第3減速機70に対して第3動力伝達機構PT3を構成する部品の一部が予め組み付けられることにより、第3減速機70を含む当該一部の部品が一つのユニット化された部品(第3減速機ユニットU3と称する)として構築されている。そして、スカラロボット2の組立時やメンテナンスの際には、図7に示すように、第1アーム部23や第2アーム部24に対して当該減速機ユニットU1~U3が着脱されるようになっている。なお、当例では、第1減速機ユニットU1が本発明の「第1組立体」に相当し、第2減速機ユニットU2が本発明の「第2組立体」に相当する。
 上述した説明と重複するところもあるが、以下、第1~第3の減速機ユニットU1~U3について説明する。
 図8は、第1減速機ユニットU1を示す断面図である。図7及び図8に示すように、第1減速機40のウェーブジェネレータ43aの下端部には、第1伝動機構46のプーリ47bが固定されている。これら第1減速機40及びプーリ47bの内側を貫通するように第1伝動軸56が設けられている。第1伝動軸56は、第1減速機40の上部ケーシング45a及び第1伝動機構46のプーリ47bに対してベアリング64a、64bを介して相対回転が可能な状態で保持され、これらベアリング64a、64bの上下両側で当該ベアリング64a、64bの内輪に対して抜け止めされている。
 第1伝動軸56の上端は、上部ケーシング45aの上方に突出しており、この突出部分に、第2伝動機構57のプーリ61aが固定されている。第1伝動軸56の下端は、プーリ47bの下方に突出しており、この突出部分に、第2伝動機構57のプーリ58bが固定されている。
 そして、第1伝動軸56の内側に第2伝動軸76が配置されている。第2伝動軸76は、ベアリング86a、86bを介して第1伝動軸56に相対回転が可能な状態で保持され、これらベアリング86a、86bの上下両側で当該ベアリング86a、84bの内輪に対して抜け止めされている。
 第2伝動軸76の上端は、プーリ61aの上方に突出しており、この突出部分に、第3伝動機構78のプーリ82aが固定されている。第2伝動軸76の下端は、プーリ58bの下方に突出しており、この突出部分に、第3伝動機構78のプーリ79bが固定されている。
 そして、第2伝動軸76の内側に第1配線保護軸90が配置されている。第1配線保護軸90は、プーリ79bに固定された連結部材91にベアリング92を介して相対回転可能に支持されるとともに、第2伝動軸76に対して抜け止めされている。
 このように、第1減速機ユニットU1は、第1減速機40に対して、第1、第2の伝動軸56、76、第1配線保護軸90及びプーリ47b、58b、61a、79b、81aが予め各々組み付けられた構造を有している。そして、スカラロボット2の組立時などには、図7に示すように、第1減速機40より下側の部分、すなわちプーリ47b、58b、79bの部分が、ベース部20のケーシング201の上面に形成された開口部204に挿入され、この状態で第1減速機40の下部ケーシング45bがケーシング201にボルトで締結される。これにより、第1減速機ユニットU1がベース部20に組み付けられる。また、第1減速機40より上側の部分、すなわちプーリ61a、82aの部分が、第1アーム部23のケーシング231の開口部232aに挿入され、この状態で第1減速機40の上部ケーシング45aがケーシング231にボルトで締結される。これにより、第1減速機ユニットU1が第1アーム部23に組み付けられる。
 第2減速機ユニットU2は、ユニット単体での断面図を省略しているが、図4及び図7に示すように、第2減速機50に対して、第3伝動軸77、第2配線保護軸94及びプーリ61b、82b、84aが予め組み付けられた構造を有している。すなわち、第2減速機50のウェーブジェネレータ53aの上端部に、第2伝動機構57のプーリ61bが固定され、これら第2減速機50及びプーリ61bの内側を貫通するように第3伝動軸77が設けられている。第3伝動軸77は、第2減速機50の下部ケーシング55b及び第2伝動機構57のプーリ61bに対してベアリングを介して相対回転が可能な状態で保持され、これらベアリングの上下両側で当該ベアリングの内輪に対して抜け止めされている。
 第3伝動軸77の上端は、プーリ61bの上方に突出しており、この突出部分に、第3伝動機構78のプーリ82bが固定されている。第3伝動軸77の下端は、下部ケーシング55bの下方に突出しており、この突出部分に、第3伝動機構78のプーリ84aが固定されている。
 そして、第3伝動軸77の内側に第2配線保護軸94が配置されている。第2配線保護軸94は、プーリ84bに固定された連結部材95にベアリング96を介して相対回転可能に支持されるとともに、第3伝動軸77に対して抜け止めされている。
 図7に示すように、スカラロボット2の組立時などには、第2減速機ユニットU2のうち第2減速機50より上側の部分、すなわちプーリ61b、82bの部分が、第1アーム部23のケーシング231の開口部232bに挿入され、この状態で第2減速機50の上部ケーシング55aがケーシング231にボルトで締結される。これにより、第2減速機ユニットU2が第1アーム部23に組み付けられる。また、第2減速機50より下側の部分、すなわちプーリ84aの部分が、第2アーム部24のケーシング241の開口部243aに挿入され、この状態で第2減速機50の下部ケーシング55bがケーシング241にボルトで締結される。これにより、第2減速機ユニットU2が第2アーム部24に組み付けられる。
 第3減速機ユニットU3は、ユニット単体での断面図を省略しているが、図6及び図7に示すように、第3減速機70に対してプーリ84b及びツール装着部25が予め各々組み付けられた構造を有している。すなわち、第3減速機70のウェーブジェネレータ73aの上端部に、第3伝動機構78のプーリ84bが固定され、第3減速機70の下部ケーシング75bにツール装着部25が固定されている。
 そして、スカラロボット2の組立時などには、図7に示すように、第3減速機ユニットU3のうち第3減速機70より上側の部分、すなわちプーリ84bの部分が、第2アーム部24のケーシング241の開口部242bに挿入され、この状態で第3減速機70の上部ケーシング75aがケーシング241にボルトで締結される。
[スカラロボット2の作用効果]
 以上説明した産業用ロボット1に適用されたスカラロボット2によれば、上記の通り、第1、第2のアーム部23、24を駆動する第1、第2のモータ31、32およびツール装着部25を駆動する第3モータ33が全てベース部20に搭載されている。そのため、ロボットアーム22の重量、特に第2アーム部24の重量が軽減され、これによりロボットアーム22のイナーシャが効果的に低減される。従って、第1、第2のモータ31、32として高出力のモータを用いることなく、ロボットアーム22を比較的高速で作動させることが可能となる。
 しかも、このスカラロボット2によれば、第1減速機40がベース部20と第1アーム部23との間に配置され、第2減速機50が第1アーム部23と第2アーム部24との間に配置され、第3減速機70が第2アーム部24とツール装着部25との間に配置されている。そのため、第1~第3の全てのモータ32~33をベース部20に搭載しながらも、第1、第2のアーム部23、24やツール装着部25の作動時の位置精度を高度に保つことができる。すなわち、例えば第2モータ32に第2減速機50を直結し、第2モータ32が発生する回転力の回転速度を所定速度に減速してからベルト伝動により第2アーム部24に回転力を伝達することも考えられる。しかし、この場合には、第2減速機50から第2アーム部24までの回転力の伝達過程において回転速度に誤差が生じ、第2アーム部24の位置精度が低下することが考えられる。これに対して、第1アーム部23に第1減速機40が直接固定され、第2アーム部24に第2減速機50が直接固定され、ツール装着部25に第3減速機70が直接固定されている上記実施形態のスカラロボット2によれば、減速後の回転力が直ちにアーム部23、24やツール装着部25に伝達されるため、第1、第2のアーム部23、24及びツール装着部25を確実に減速後の回転速度で作動させることができる。従って、第1、第2のアーム部23、24やツール装着部25の作動時の位置精度をより高度に保つことが可能となる。
 また、このスカラロボット2によれば、第2アーム部24やツール装着部25にはモータが一切搭載されていないため、その分、ロボットアーム22の先端部分を薄型化(Z方向に薄型化)することができる。また、単軸ロボット3の作動によりロボットアーム22のZ方向の移動も可能である。従って、このスカラロボット2によれば、従来のスカラロボットでは侵入させることが困難であった狭所エリアにロボットアーム22を侵入させることが可能であり、これにより、スカラロボット2の用途を拡大することができる。
 また、このスカラロボット2では、ツール装着部25に装着されるツール用の電線類100は、全てスカラロボット2の内部に配索されている。そのため、ツール用の電線類がベース部とアーム部とに亘って設けられたアーチ状の配線用配管内に配索された従来のスカラロボットのように、ロボットアームの作動に伴い電線類(配線用配管)が振り回されることがない。従って、ロボットアーム22を高速で作動させる上で有利であり、また、スカラロボット2が使用される周辺環境の制約を受け難くなるので、この点でもスカラロボット2の用途を拡大することができる。
 しかも、電線類100は、図9に示したように、ロボットアーム22の関節部分において第1回転軸Ax1、第2回転軸Ax2及び第3回転軸Ax3に沿って配索されているため、当該電線類100に余長(あそび)を殆ど設ける必要がなく、当該電線類100をベース部20からツール装着部25に亘って可及的に短い距離で配索することができる。すなわち、電線類100が第1回転軸Ax1、第2回転軸Ax2及び第3回転軸Ax3からずれた位置で配索されている場合には、その分、ロボットアーム22の動作に追従させるために電線類100に余長(あそび)を設ける必要があるが、電線類100が第1回転軸Ax1、第2回転軸Ax2及び第3回転軸Ax3に沿って配索されている上記のスカラロボット2ではその必要が殆どない。従って、このスカラロボット2によれば、電線類100の全長を短縮でき、また、電線類100の余長部分がロボットアーム22の内部で周辺部材に擦れて損傷すると言った不都合も回避することができる。
 しかも、電線類100は、第1、第2の回転軸Ax1、Ax2の位置では、第1配線保護軸90、94の内部に配置されており、比較的高速で回転する第3伝動機構78の第2、第3の伝動軸76、77に直接接触することがない。従って、第1、第2の回転軸Ax1、Ax2に沿って電線類100を配索しながらも、第2、第3の伝動軸76、77に電線類100が接触して損傷することがない。なお、第1、第2の配線保護軸90、94の上端部は、上述の通り、第1アーム部23のケーシング231(カバー234a、234b)に形成された平面視半円形の凹部に嵌合されており、第1、第2の配線保護軸90、94それ自体が回転することはない。従って、電線類100がこれら第1、第2の配線保護軸90、94に接触しても損傷することはない。
 また、このスカラロボット2では、上記の通り、第1減速機40を含む一部の部品が一つのユニット化された部品(第1減速機ユニットU1)として構築され、第2減速機50を含む当該一部の部品が一つのユニット化された部品(第2減速機ユニットU2)として構築され、第3減速機70を含む一部の部品が一つのユニット化された部品(第3減速機ユニットU3)として構築されている。そして、スカラロボット2の組立時やメンテナンスの際には、第1アーム部23や第2アーム部24に対してこれら第1~第3の減速機ユニットU1~U3がユニット単位で着脱されるようになっている。従って、このスカラロボット2によれば、組立性及びメンテナンス性が非常に良いという利点もある。特に、予めユニット単体で減速機にグリスを馴染ませるエージング作業を実施しておけば、スカラロボット2の組立後やメンテナンス後にエージング作業のためだけにスカラロボット2を試運転する必要がなくなり、これにより、トータル的な組立時間やメンテナンス時間を大幅に短縮することが可能となる。
 なお、図9に示すスカラロボット2の配線構造においては、例えば電線類100の途中部分に、図12に示すようなコネクタ110を設け、各ユニットU1~U3に対応する部分の電線類を其れ以外の部分の電線類から分離できるようにするのが好適である。具体的には、電線類100のうち、図9の丸枠で示す位置P1~P5にコネクタ110を設けるのが好適である。ここで、P1、P2は、電線類100のうち第1配線保護軸90の両端の位置であり、P3、P4は、電線類100のうち第2配線保護軸94の両端の位置であり、P5は、プーリ84bの上部の位置である。この構成によれば、スカラロボット2の組立時やメンテナンス時に、電線類100の一部を各ユニットU1~U3と共に脱着することが可能となるため、スカラロボット2の組立性やメンテナンス性がより一層向上する。
 [変形例]
 以上、本発明に係るスカラロボット2が適用された産業用ロボット1の実施形態について説明したが、上記スカラロボット2は本発明に係る多関節ロボットの好ましい実施形態の例示であって、スカラロボット2やこれを含む産業用ロボット1の具体的な構成は、本発明の要旨を逸脱しない範囲で適宜変更可能である。例えば、以下のような態様を採用することも可能である。
 (1)実施形態では、単軸ロボット3のスライダ12にスカラロボット2が固定され、これによりスカラロボット2がZ方向に移動する構成である。しかし、スカラロボット2は、ベース部20が接地面上に直接固定されて使用されるものであってもよい。
 (2)実施形態のスカラロボット2は、第2アーム部24が第1アーム部23に対して上方に位置する構成であるが、第2アーム部24が第1アーム部23に対して下方に位置する構成であってもよい。この場合には、第1伝動軸56と第2伝動軸76の内外関係を上記実施形態とは逆にし、第1アーム部23内における第2伝動機構57と第1伝動軸56の上下の位置関係を逆にするように構成すればよい。
 (3)実施形態では、第1、第2の配線保護軸90、94は円筒体からなるが、第1配線保護軸90は、電線類100が配索する空間内に第1回転軸Ax1が存在し得る中空軸であれば、円筒体に限定されるものではない。同様に、第2配線保護軸94は、電線類100が配索する空間内に第2回転軸Ax2が存在し得る中空軸であれば、円筒体に限定されるものではなくその他の形状の筒状体であってもよい。例えば、第1、第2の配線保護軸90、94は、ベアリングで支持される部分のみが円筒形でそれ以外の部分が多角形断面とされた変則的な形状の筒状体や、途中に部分的に切欠き部を備えた筒状体からなるものであってもよい。また、実施形態では、第1、第2の配線保護軸90、94は、その上端部が第1アーム部23のケーシング231(カバー234a、234b)に形成された平面視半円形の凹部に嵌合されることで、当該第1アーム部23に対して回転不能に連結されているが、連結部分の形状(前記凹部の形状)は半円形に限定されるものではなく多角形であってもよい。また、第1アーム部23に対する第1、第2の配線保護軸90、94の連結構造は、第1アーム部23に対して第1、第2の配線保護軸90、94を回転不能に連結できれば、実施形態のように第1、第2の配線保護軸90、94の上部を凹部に嵌合させる構造に限定されるものではなく、それ以外の構造であってもよい。
 (4)実施形態では、スカラロボット2の内部に電線類100が配索されているが、必要な場合には、スカラロボット2の外部に電線類100を設けるようにしてもよい。この場合には、第1、第2の配線保護軸90、94は省略可能である。第1、第2の配線保護軸90、94を省略する場合には、第2伝動軸76や第3伝動軸77は中空軸である必要はなく中実軸であってもよい。
 (5)実施形態では、第1~第3の伝動機構46、57、78はベルト伝動機構であるが、第1~第3の伝動機構46、57、78の何れか、又は全についてギア伝動機構を採用することも可能である。
 (6)実施形態では、本発明をスカラロボット2(水平多関節ロボット)に適用した例について説明したが、本発明は、垂直多関節ロボットなど他の多関節ロボットについても適用可能である。
 [本発明のまとめ]
 以上説明した本発明をまとめると以下の通りである。
 本発明の一局面に係る多関節ロボットは、ベース部と、このベース部に対して第1回転軸回りに回転可能に連結される第1アーム部と、この第1アーム部に対して第2回転軸回りに回転可能に連結される第2アーム部とを備えた多関節ロボットであって、前記ベースに各々備えられた第1モータ及び第2モータと、第1減速機を含み前記第1モータが発生する回転力を前記第1アーム部に伝達する第1動力伝達機構と、第2減速機を含み前記第2モータが発生する回転力を、前記第1アーム部を経由して前記第2アーム部に伝達する第2動力伝達機構と、を備え、前記第1減速機は、前記ベース部と前記第1アーム部との間に配置され、前記第2減速機は、前記第1アーム部と前記第2アーム部との間に配置されているものである。
 この多関節ロボットによれば、第1、第2のアーム部を駆動する第1、第2のモータが全てベース部に搭載されている。そのため、第1、第2アーム部の重量が軽減され、これにより第1、第2アーム部のイナーシャが低減される。従って、第1、第2のモータとして高出力のモータを用いることなく、第1、第2のモータを比較的高速で作動させることが可能となる。また、第2アーム部にモータが搭載されてないため第2アーム部の先端を薄型化することが可能となる。
 この多関節ロボットは、前記第2アーム部に対して第3回転軸回りに回転可能に連結されるツール装着部と、前記ベースに備えられた第3モータと、第3減速機を含み前記第3モータが発生する回転力を、前記第1アーム部及び前記第2アーム部を経由して前記ツール装着部に伝達する第3動力伝達機構と、をさらに備え、前記第3減速機は、前記第2アーム部と前記ツール装着部との間に配置されているものであってもよい。
 この多関節ロボットによれば、第1、第2アーム部の重量増大を抑制しながら第2アーム部にツール装着部を設けることが可能となる。従って、第2アーム部にツール装着部を備えた構成においても、第1、第2のモータとして高出力のモータを用いることなく、第1、第2のアーム部を比較的高速で作動させることが可能となる。
 上記各態様の多関節ロボットにおいて、前記第1減速機は、前記第1回転軸に沿って中央部が貫通した円環構造を有し、前記第1動力伝達機構は、前記第1モータの出力軸の回転を前記第1減速機に伝達する第1伝動機構を含み、前記第2動力伝達機構は、前記ベース部から前記第1アーム部に亘って前記第1減速機の内側を貫通して延在する第1伝動軸と、前記第2モータの出力軸の回転を、前記ベース部において前記第1伝動軸に伝動するとともに、当該第1伝動軸の回転を、前記第1アーム部において前記第2減速機に伝動する第2伝動機構と、を含むものであるのが好適である。
 この構成によると、第1減速機の内側を、第2モータから第2アーム部への回転力の伝達経路として利用したコンパクトな構成が達成される。
 この場合、前記ツール装着部、前記第3モータ及び前記第3動力伝達機構を備えるものでは、前記第2減速機は、前記第2回転軸に沿って中央部が貫通した円環構造を有し、前記第3動力伝達機構は、前記第1伝動軸と同心上に配置されて、前記ベース部から前記第1アーム部に亘って前記第1減速機の内側を貫通して延在する第2伝動軸と、前記第1アーム部から前記第2アーム部に亘って前記第2減速機の内側を貫通して延在する第3伝動軸と、前記第3モータの出力軸の回転を、前記ベース部において前記第2伝動軸に伝動し、当該第2伝動軸の回転を、前記第1アーム部において前記第3伝動軸に伝動し、当該第3伝動軸の回転を、前記第2アーム部において前記第3減速機に伝動する第3伝動機構と、を含むのが好適である。
 この構成によると、第1、第2の減速機の内側を、第3モータからツール装着部への回転力の伝達経路として利用したコンパクトな構成が達成される。
 この場合、前記第1伝動軸、前記第2伝動軸及び前記第3伝動軸は中空軸であって、当該多関節ロボットは、前記ベース部から前記第1伝動軸及び前記第2伝動軸の内部と、前記1アーム部と、前記第3伝動軸の内部とを経由して前記第2アームに至るように配索された電線類を備えるものであってもよい。
 この構成によれば、第1アーム部の回転中心(第1回転軸)に沿って電線類が配置されるため、ベース部から第1アーム部に亘る電線類の線長を可及的に短くすることが可能となる。なお、本発明において、電線類とは、電線及び/又は可撓性を有するパイプ(エアチューブなど)を含む概念である。
 この場合には、前記第1伝動軸及び前記第2伝動軸の内部を前記ベース部から前記第1アーム部に亘って貫通し、前記電線類を包囲する中空の第1配線保護軸を備えているのが好適である。
 この構成によると、比較的高速で回転するおそれがある第1伝動軸(又は第2伝動軸)と電線類との接触による当該電線類の損傷を未然に防止することができる。
 また、上記多関節ロボットは、前記第3伝動軸の内部を前記第1アーム部から前記第2アーム部に亘って貫通し、前記電線類を包囲する中空の第2配線保護軸を備えているのが好適である。
 この構成によると、比較的高速で回転するおそれがある第3伝動軸と電線類との接触による当該電線類の損傷を未然に防止することができる。
 上述した各態様の多関節ロボットにおいては、前記第1減速機と、前記第1伝動軸と、前記第2伝動軸と、前記第1伝動機構のうち前記第1減速機に固定される要素と、前記第2伝動機構のうち前記第1伝動軸に固定される要素と、前記第3伝動機構のうち前記第2伝動軸に固定される要素とは、前記ベース部及び前記第1アーム部に対して一体的に着脱することが可能な、前記第1減速機を主部材として組付けられた第1組立体を構築しているのが好適である。
 この構成によると、多関節ロボットの組立時やメンテナンス時には、第1減速機を含む第1組立体を一体的にベース部や第1アーム部に対して着脱することが可能となる。そのため、多関節ロボットの組立性及びメンテナンス性の向上に寄与するものとなる。
 この場合、前記第1配線保護軸を備えるものでは、当該第1配線保護軸がさらに前記第1減速機と共に前記組立体を構築するものであるのが好適である。
 この構成によれば、第1配線保護軸についても、第1減速機など共にベース部や第1アーム部に対して着脱することが可能となる。
 この場合、前記電線類を備えるものについては、当該電線類は、当該電線類のうち前記第1伝動軸及び前記第2伝動軸の内部に配索される部分をそれ以外の部分から分離させることが可能なコネクタを備えているのが好適である。
 この構成によれば、多関節ロボットの組立時やメンテナンス時には、電線類の一部を、第1減速機を含む第1組立体と共に着脱することが可能となる。そのため、より一層、多関節ロボットの組立性やメンテナンス性の向上に寄与するものとなる。
 上述した各態様の多関節ロボットにおいては、前記第2減速機と、前記第3伝動軸と、前記第2伝動機構のうち前記第2減速機に固定される要素と、前記第3伝動機構のうち前記第3伝動軸に固定される要素とは、前記第1アーム部及び前記第2アーム部に対して一体的に着脱することが可能な、前記第2減速機を主部材として組付けられた第2組立体を構築しているのが好適である。
 この構成によると、多関節ロボットの組立時やメンテナンス時には、第2減速機を含む第2組立体を一体的に第1アーム部や第2アーム部に対して着脱することが可能となる。そのため、多関節ロボットの組立性及びメンテナンス性の向上に寄与するものとなる。
 この場合、前記第2配線保護軸を備えるものでは、当該第2配線保護軸がさらに前記第2減速機と共に前記第2組立体を構築するものであるのが好適である。
 この構成によれば、第2配線保護軸についても、第2減速機など共に第1アーム部や第2アーム部に対して着脱することが可能となる。
 この場合、前記電線類を備えるものについては、当該電線類は、当該電線類のうち前記第3伝動軸の内部に配索される部分をそれ以外の部分から分離させることが可能なコネクタを備えているのが好適である。
 この構成によれば、多関節ロボットの組立時やメンテナンス時には、電線類の一部を、第2減速機を含む第2組立体と共に着脱することが可能となる。そのため、より一層、多関節ロボットの組立性やメンテナンス性の向上に寄与するものとなる。

Claims (13)

  1.  ベース部と、このベース部に対して第1回転軸回りに回転可能に連結される第1アーム部と、この第1アーム部に対して第2回転軸回りに回転可能に連結される第2アーム部とを備えた多関節ロボットであって、
     前記ベースに各々備えられた第1モータ及び第2モータと、
     第1減速機を含み、前記第1モータが発生する回転力を前記第1アーム部に伝達する第1動力伝達機構と、
     第2減速機を含み、前記第2モータが発生する回転力を、前記第1アーム部を経由して前記第2アーム部に伝達する第2動力伝達機構と、を備え、
     前記第1減速機は、前記ベース部と前記第1アーム部との間に配置され、
     前記第2減速機は、前記第1アーム部と前記第2アーム部との間に配置されている、ことを特徴とする多関節ロボット。
  2.  請求項1に記載の多関節ロボットにおいて、
     前記第2アーム部に対して第3回転軸回りに回転可能に連結されるツール装着部と、
     前記ベースに備えられた第3モータと、
     第3減速機を含み、前記第3モータが発生する回転力を、前記第1アーム部及び前記第2アーム部を経由して前記ツール装着部に伝達する第3動力伝達機構と、をさらに備え、
     前記第3減速機は、前記第2アーム部と前記ツール装着部との間に配置されている、ことを特徴とする多関節ロボット。
  3.  請求項1又は2に記載の多関節ロボットにおいて、
     前記第1減速機は、前記第1回転軸に沿って中央部が貫通した円環構造を有し、
     前記第1動力伝達機構は、前記第1モータの出力軸の回転を前記第1減速機に伝達する第1伝動機構を含み、
     前記第2動力伝達機構は、
      前記ベース部から前記第1アーム部に亘って前記第1減速機の内側を貫通して延在する第1伝動軸と、
      前記第2モータの出力軸の回転を、前記ベース部において前記第1伝動軸に伝動するとともに、当該第1伝動軸の回転を、前記第1アーム部において前記第2減速機に伝動する第2伝動機構と、を含むことを特徴とする多関節ロボット。
  4.  請求項3に記載の多関節ロボットにおいて、
     前記ツール装着部、前記第3モータ及び前記第3動力伝達機構を備えるものであって、
     前記第2減速機は、前記第2回転軸に沿って中央部が貫通した円環構造を有し、
     前記第3動力伝達機構は、
      前記第1伝動軸と同心上に配置されて、前記ベース部から前記第1アーム部に亘って前記第1減速機の内側を貫通して延在する第2伝動軸と、
     前記第1アーム部から前記第2アーム部に亘って前記第2減速機の内側を貫通して延在する第3伝動軸と、
     前記第3モータの出力軸の回転を、前記ベース部において前記第2伝動軸に伝動し、当該第2伝動軸の回転を、前記第1アーム部において前記第3伝動軸に伝動し、当該第3伝動軸の回転を、前記第2アーム部において前記第3減速機に伝動する第3伝動機構と、を含むことを特徴とする多関節ロボット。
  5.  請求項4に記載の多関節ロボットにおいて、
     前記第1伝動軸、前記第2伝動軸及び前記第3伝動軸は中空軸であって、
     当該多関節ロボットは、前記ベース部から前記第1伝動軸及び前記第2伝動軸の内部と、前記1アーム部と、前記第3伝動軸の内部とを経由して前記第2アームに至るように配索された電線類を備える、ことを特徴とする多関節ロボット。
  6.  請求項5に記載の多関節ロボットにおいて、
     前記第1伝動軸及び前記第2伝動軸の内部を前記ベース部から前記第1アーム部に亘って貫通し、前記電線類を包囲する中空の第1配線保護軸を備えている、ことを特徴とする多関節ロボット。
  7.  請求項5又は6に記載の多関節ロボットであって、
     前記第3伝動軸の内部を前記第1アーム部から前記第2アーム部に亘って貫通し、前記電線類を包囲する中空の第2配線保護軸を備えている、ことを特徴とする多関節ロボット。
  8.  請求項4乃至7の何れか一項に記載の多関節ロボットにおいて、
     前記第1減速機と、前記第1伝動軸と、前記第2伝動軸と、前記第1伝動機構のうち前記第1減速機に固定される要素と、前記第2伝動機構のうち前記第1伝動軸に固定される要素と、前記第3伝動機構のうち前記第2伝動軸に固定される要素とは、前記ベース部及び前記第1アーム部に対して一体的に着脱することが可能な、前記第1減速機を主部材として組付けられた第1組立体を構築している、ことを特徴とする多関節ロボット。
  9.  請求項8に記載の多関節ロボットにおいて、
     前記第1配線保護軸を備えるものであって、当該第1配線保護軸がさらに前記第1減速機と共に前記第1組立体を構築するものである、ことを特徴とする多関節ロボット。
  10.  請求項8又は9に記載の多関節ロボットにおいて、
     前記電線類を備えるものであって、当該電線類は、当該電線類のうち前記第1伝動軸及び前記第2伝動軸の内部に配索される部分をそれ以外の部分から分離させることが可能なコネクタを備えている、ことを特徴とする多関節ロボット。
  11.  請求項4乃至10の何れか一項に記載の多関節ロボットにおいて、
     前記第2減速機と、前記第3伝動軸と、前記第2伝動機構のうち前記第2減速機に固定される要素と、前記第3伝動機構のうち前記第3伝動軸に固定される要素とは、前記第1アーム部及び前記第2アーム部に対して一体的に着脱することが可能な、前記第2減速機を主部材として組付けられた第2組立体を構築している、ことを特徴とする多関節ロボット。
  12.  請求項11に記載の多関節ロボットにおいて、
     前記第2配線保護軸を備えるものであって、当該第2配線保護軸がさらに前記第2減速機と共に前記第2組立体を構築するものである、ことを特徴とする多関節ロボット。
  13.  請求項11又は12に記載の多関節ロボットにおいて、
     前記電線類を備えるものであって、当該電線類は、当該電線類のうち前記第3伝動軸の内部に配索される部分をそれ以外の部分から分離させることが可能なコネクタを備えている、ことを特徴とする多関節ロボット。
PCT/JP2018/048546 2018-12-28 2018-12-28 多関節ロボット WO2020136890A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020562285A JP7199450B2 (ja) 2018-12-28 2018-12-28 多関節ロボット
PCT/JP2018/048546 WO2020136890A1 (ja) 2018-12-28 2018-12-28 多関節ロボット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/048546 WO2020136890A1 (ja) 2018-12-28 2018-12-28 多関節ロボット

Publications (1)

Publication Number Publication Date
WO2020136890A1 true WO2020136890A1 (ja) 2020-07-02

Family

ID=71126007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/048546 WO2020136890A1 (ja) 2018-12-28 2018-12-28 多関節ロボット

Country Status (2)

Country Link
JP (1) JP7199450B2 (ja)
WO (1) WO2020136890A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114800461A (zh) * 2021-01-29 2022-07-29 精工爱普生株式会社 驱动机构以及机器人
WO2023062776A1 (ja) * 2021-10-14 2023-04-20 ヤマハ発動機株式会社 ロボット
WO2023062777A1 (ja) * 2021-10-14 2023-04-20 ヤマハ発動機株式会社 ロボット

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168478A (ja) * 1985-01-22 1986-07-30 株式会社三協精機製作所 多関節ロボツト
JPS61288990A (ja) * 1985-06-17 1986-12-19 新明和工業株式会社 産業用ロボツト
JPS6313689U (ja) * 1986-07-15 1988-01-29
JPH01240289A (ja) * 1988-03-22 1989-09-25 Toshiba Corp スカラ型ロボット
US5064340A (en) * 1989-01-20 1991-11-12 Genmark Automation Precision arm mechanism
JPH06262581A (ja) * 1993-03-16 1994-09-20 Matsushita Electric Ind Co Ltd 産業用ロボット
JP2008141095A (ja) * 2006-12-05 2008-06-19 Tatsumo Kk 半導体製造用搬送装置
JP2009196059A (ja) * 2008-02-25 2009-09-03 Hitachi High-Tech Control Systems Corp 多関節ロボットアームの関節部構造、及びミニエンバイロメント装置
JP2015139853A (ja) * 2014-01-29 2015-08-03 日本電産サンキョー株式会社 産業用ロボット
WO2016103301A1 (ja) * 2014-12-26 2016-06-30 川崎重工業株式会社 多関節ロボット及びそのモジュール
JP2018089764A (ja) * 2016-12-07 2018-06-14 日本電産サンキョー株式会社 産業用ロボットおよび産業用ロボットの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2539796B2 (ja) * 1986-09-22 1996-10-02 ヤマハ発動機株式会社 関節型ロボット
JPH01316184A (ja) * 1988-06-14 1989-12-21 Mitsubishi Electric Corp 産業用ロボット
JP4709436B2 (ja) * 2001-07-13 2011-06-22 株式会社ダイヘン ワーク搬送用ロボット
JP5381265B2 (ja) * 2009-04-13 2014-01-08 株式会社安川電機 多関節ロボット

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168478A (ja) * 1985-01-22 1986-07-30 株式会社三協精機製作所 多関節ロボツト
JPS61288990A (ja) * 1985-06-17 1986-12-19 新明和工業株式会社 産業用ロボツト
JPS6313689U (ja) * 1986-07-15 1988-01-29
JPH01240289A (ja) * 1988-03-22 1989-09-25 Toshiba Corp スカラ型ロボット
US5064340A (en) * 1989-01-20 1991-11-12 Genmark Automation Precision arm mechanism
JPH06262581A (ja) * 1993-03-16 1994-09-20 Matsushita Electric Ind Co Ltd 産業用ロボット
JP2008141095A (ja) * 2006-12-05 2008-06-19 Tatsumo Kk 半導体製造用搬送装置
JP2009196059A (ja) * 2008-02-25 2009-09-03 Hitachi High-Tech Control Systems Corp 多関節ロボットアームの関節部構造、及びミニエンバイロメント装置
JP2015139853A (ja) * 2014-01-29 2015-08-03 日本電産サンキョー株式会社 産業用ロボット
WO2016103301A1 (ja) * 2014-12-26 2016-06-30 川崎重工業株式会社 多関節ロボット及びそのモジュール
JP2018089764A (ja) * 2016-12-07 2018-06-14 日本電産サンキョー株式会社 産業用ロボットおよび産業用ロボットの製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114800461A (zh) * 2021-01-29 2022-07-29 精工爱普生株式会社 驱动机构以及机器人
US20220241960A1 (en) * 2021-01-29 2022-08-04 Seiko Epson Corporation Driving Mechanism And Robot
CN114800461B (zh) * 2021-01-29 2024-02-09 精工爱普生株式会社 驱动机构以及机器人
WO2023062776A1 (ja) * 2021-10-14 2023-04-20 ヤマハ発動機株式会社 ロボット
WO2023062777A1 (ja) * 2021-10-14 2023-04-20 ヤマハ発動機株式会社 ロボット

Also Published As

Publication number Publication date
JPWO2020136890A1 (ja) 2021-09-30
JP7199450B2 (ja) 2023-01-05

Similar Documents

Publication Publication Date Title
US8434387B2 (en) Industrial robot
US7513174B2 (en) Industrial robot
US8047093B2 (en) Parallel robot
JP5546826B2 (ja) 多軸ロボット用の関節構造体およびこのような関節構造体を備えたロボット
WO2020136890A1 (ja) 多関節ロボット
KR101687739B1 (ko) 다관절형 산업용 로봇
JP4232795B2 (ja) 平行リンク機構及び産業用ロボット
JP5434991B2 (ja) ロボット
JP5344315B2 (ja) ロボットの手首構造及びロボット
US20130145892A1 (en) Parallel link mechanism and industrial robot
US20150068349A1 (en) Robot arm and robot
US20110097184A1 (en) Parallel link robot
JP5833836B2 (ja) 多関節型産業用ロボット
US20060201275A1 (en) Link drive mechanism and industrial robot using the same
KR102206699B1 (ko) 산업용 로봇
EP1617976B1 (en) Robot arm with a wrist housing comprising a through duct and a motor space
JP5394358B2 (ja) 3自由度を有する姿勢変更機構を備えたパラレルリンクロボット
US11986952B2 (en) Vertical articulated robot
JP5833901B2 (ja) 多関節型産業用ロボット
WO2020136891A1 (ja) 多関節ロボット
WO2022163789A1 (ja) アームロボット
KR102120791B1 (ko) 로봇 암의 하박 구조체
JP2002370190A (ja) 産業ロボットの手首・アーム構造
KR200274795Y1 (ko) 산업용로보트의 손목부 케이블 배선구조
JP2023098473A (ja) 旋回装置及びロボットアーム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944134

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562285

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944134

Country of ref document: EP

Kind code of ref document: A1