[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020122471A1 - 고흡수성 수지의 제조방법, 및 고흡수성 수지 - Google Patents

고흡수성 수지의 제조방법, 및 고흡수성 수지 Download PDF

Info

Publication number
WO2020122471A1
WO2020122471A1 PCT/KR2019/016486 KR2019016486W WO2020122471A1 WO 2020122471 A1 WO2020122471 A1 WO 2020122471A1 KR 2019016486 W KR2019016486 W KR 2019016486W WO 2020122471 A1 WO2020122471 A1 WO 2020122471A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine powder
polymer
super absorbent
absorbent polymer
weight
Prior art date
Application number
PCT/KR2019/016486
Other languages
English (en)
French (fr)
Inventor
최용석
홍연우
신은지
안태빈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190152657A external-priority patent/KR102568227B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201980010288.1A priority Critical patent/CN111655765B/zh
Priority to EP19895283.0A priority patent/EP3722352A4/en
Priority to US16/968,784 priority patent/US20200398251A1/en
Priority to JP2020542558A priority patent/JP7039108B2/ja
Publication of WO2020122471A1 publication Critical patent/WO2020122471A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • C08L101/14Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity the macromolecular compounds being water soluble or water swellable, e.g. aqueous gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion

Definitions

  • the present invention relates to a super absorbent polymer and a method for manufacturing the same. More particularly, the present invention relates to a superabsorbent polymer comprising fine powder re-assembled material having excellent absorbent properties and a method for manufacturing the same.
  • Super Absorbent Polymer is a synthetic polymer material that has the ability to absorb about 500 to 1,000 times its own weight, and has started to be put into practical use as a physiological tool. In addition to sanitary products such as gardening, it has been widely used as a material for soil repair agents for gardening, civil engineering, construction water supply materials, sheets for raising seedlings, freshness preservatives in the food distribution field, and poultices.
  • the absorption mechanism of these superabsorbent polymers is the interaction between the penetration pressure due to the difference in the electrical suction power indicated by the charge of the polymer electrolyte, the affinity between water and the polymer electrolyte, the molecular expansion due to the repulsive force between the polymer electrolyte ions, and the expansion inhibition due to crosslinking. Is dominated by. That is, the absorbency of the absorbent resin depends on the above-described affinity and molecular expansion, and the rate of absorption is largely dependent on the penetration pressure of the absorbent polymer itself.
  • Korean Patent Publication No. 2014-0063457 discloses a method of manufacturing a superabsorbent polymer comprising the steps of preparing a fine powder reassembly using only fine powder and a base resin without additives, but the physical properties of the fine powder reassembled base There was a problem that the efficiency was lowered because it was lower than resin and the process was complicated.
  • Patent Document 1 Republic of Korea Patent Publication No. 2014-0063457
  • the present invention is to solve the problems of the prior art as described above, the superabsorbent polymer comprising a fine powder re-assembly that does not cause a decrease in physical properties such as water retention capacity (CRC) or pressurized water absorption capacity (AUP) while having excellent absorption rate And to provide a method for manufacturing the same.
  • CRC water retention capacity
  • AUP pressurized water absorption capacity
  • a hydrogel polymer by thermal polymerization or photopolymerization of a monomer composition comprising a water-soluble ethylenically unsaturated monomer and a polymerization initiator;
  • It provides a method for producing a super absorbent polymer comprising the step of preparing a fine powder re-assembled by stirring the aqueous powder solution.
  • the fine powder aqueous solution may include fibers in an amount of 1 part by weight to 20 parts by weight based on 100 parts by weight of the fine powder.
  • the length of the fiber may be 1 to 20 mm.
  • the width of the fiber may be 1 to 100 ⁇ m.
  • the synthetic polymer fiber may be at least one selected from the group consisting of nylon, polypropylene, polyethylene, polyester, polyacrylonitrile, polyvinyl chloride, polyvinyl alcohol, polyacrylate, and acetate.
  • the fine aqueous solution may include water in an amount of 50 to 150 parts by weight based on 100 parts by weight of the fine powder.
  • the manufacturing method of the present invention may further include drying, grinding, and classifying the fine powder re-assembly. In addition, it may further include the step of surface-crosslinking the pulverized and classified fine powder re-assembly.
  • the present invention provides a super absorbent polymer prepared by the above manufacturing method.
  • the present invention is a fine particle having a particle size of less than 150 ⁇ m among polymers containing an acidic group and polymerizing a water-soluble ethylenically unsaturated monomer in which at least a portion of the acidic group is neutralized; And it provides a superabsorbent polymer comprising a fine powder re-assembly reassembled by mixing one or more fibers of the fluff pulp and synthetic polymer fibers.
  • At least a portion of the fibers may be mixed through the fine particles of the reassembled particles.
  • the fine powder re-assembly may include more than 1 part by weight to less than 20 parts by weight of the fiber with respect to 100 parts by weight of the fine powder.
  • the superabsorbent polymer may have a centrifugal water retention capacity (CRC) of 30 to 45 g/g measured according to EDANA method WSP 241.3.
  • CRC centrifugal water retention capacity
  • the super absorbent polymer may have a pressure absorption capacity (AUL) of 0.3 to psi of 25 to 40 g/g measured according to EDANA method WSP 242.3.
  • AUL pressure absorption capacity
  • the superabsorbent polymer may have a vortex time of 60 seconds or less.
  • the superabsorbent polymer according to the present invention and a method for manufacturing the same, it is possible to provide a high quality superabsorbent polymer having an excellent basic absorption ability and an improved absorption rate.
  • a method for preparing a super absorbent polymer according to an embodiment of the present invention includes: preparing a hydrogel polymer by thermal polymerization or photopolymerization of a monomer composition comprising a water-soluble ethylenically unsaturated monomer and a polymerization initiator; Drying, grinding and classifying the hydrogel polymer to classify fine powders having a particle diameter of less than 150 ⁇ m and normal particles having a particle diameter of 150 to 850 ⁇ m; Preparing an aqueous solution of fine powder by mixing one or more fibers of fluff pulp and synthetic polymer fibers with the fine powder and water; And preparing the fine powder reassembly by stirring the fine powder aqueous solution.
  • polymer or “polymer” means that the water-soluble ethylenically unsaturated monomer is in a polymerized state, and covers all water content ranges, all particle size ranges, all surface crosslinking states, or processing states. Can be.
  • a polymer having a water content (moisture content) of about 40% by weight or more as a state after drying after polymerization may be referred to as a hydrogel polymer.
  • polymers having a particle diameter of less than 150 ⁇ m may be referred to as “fine powder”.
  • the fine powder may encompass all of the processes of the superabsorbent polymer manufacturing process, for example, polymerization, drying, pulverization of the dried polymer, or surface crosslinking.
  • fine powder reassembled may mean a particle in which the fine powder is aggregated, a particle size of 150 ⁇ m or more, or a cluster in which a plurality of the particles are gathered.
  • “superabsorbent polymer” means the polymer itself depending on the context, or the polymer has been subjected to further processes, for example, surface crosslinking, fine powder reassembly, drying, grinding, classification, etc., to make it suitable for commercialization. It is used to cover everything.
  • a water-soluble ethylenically unsaturated monomer and a monomer composition containing a polymerization initiator are subjected to thermal polymerization or photopolymerization to form a hydrogel polymer.
  • the monomer composition which is a raw material of the super absorbent polymer, includes a water-soluble ethylenically unsaturated monomer and a polymerization initiator.
  • any monomer commonly used in the production of superabsorbent polymers can be used without particular limitation. Any one or more monomers selected from the group consisting of anionic monomers and salts thereof, nonionic hydrophilic-containing monomers and amino group-containing unsaturated monomers and quaternaries thereof can be used.
  • (meth)acrylic acid maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2-acryloylethanesulfonic acid, 2-methacryloylethanesulfonic acid, 2-(meth)acryloylpropanesulfonic acid or 2- Anionic monomers of (meth)acrylamide-2-methyl propane sulfonic acid and salts thereof; (Meth)acrylamide, N-substituted (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, methoxypolyethylene glycol (meth)acrylate or polyethylene glycol ( Nonionic hydrophilic monomers of meth)acrylate; And an amino group-containing unsaturated monomer of (N,N)-dimethylaminoethyl (meth) acrylate or (N,N)-dimethylaminopropyl (meth)acrylamide, and quaternaries thereof.
  • an acrylic acid or a salt thereof for example, an alkali metal salt such as acrylic acid or a sodium salt thereof may be used, and the use of such a monomer makes it possible to manufacture a super absorbent polymer having better physical properties.
  • an alkali metal salt of acrylic acid is used as a monomer, it can be used by neutralizing acrylic acid with a basic compound such as caustic soda (NaOH).
  • the concentration of the water-soluble ethylenically unsaturated monomer may be about 20 to about 60% by weight, preferably about 40 to about 50% by weight, with respect to the monomer composition containing the raw material and solvent of the superabsorbent polymer, and polymerization It may be an appropriate concentration in consideration of time and reaction conditions. However, if the concentration of the monomer is too low, the yield of the superabsorbent polymer may be low and economic problems may occur. Conversely, if the concentration is too high, a part of the monomer precipitates or the grinding efficiency of the polymerized hydrogel polymer is low. Such problems may occur in the process and physical properties of the super absorbent polymer may be deteriorated.
  • the polymerization initiator used in polymerization in the superabsorbent polymer production method of the present invention is not particularly limited as long as it is generally used for the production of superabsorbent polymers.
  • the photopolymerization initiator is a compound capable of forming radicals by light such as ultraviolet rays
  • the composition may be used without limitation.
  • the photopolymerization initiator includes, for example, benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenyl glyoxylate, and benzyl dimethyl ketal. ketal), acyl phosphine, and alpha-aminoketone ( ⁇ -aminoketone).
  • acylphosphine a commercially available lucirin TPO, that is, 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide (2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide) can be used.
  • 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide
  • the photopolymerization initiator may be included in a concentration of about 0.01 to about 1.0% by weight relative to the monomer composition. If the concentration of the photopolymerization initiator is too low, the polymerization rate may be slow, and if the concentration of the photopolymerization initiator is too high, the molecular weight of the super absorbent polymer may be small and the properties may be uneven.
  • thermal polymerization initiator one or more selected from the initiator group consisting of a persulfate-based initiator, an azo-based initiator, hydrogen peroxide, and ascorbic acid may be used.
  • the persulfate-based initiator are sodium persulfate (Na 2 S 2 O 8 ), potassium persulfate (K 2 S 2 O 8 ), ammonium persulfate (Ammonium persulfate; (NH 4 ) 2 S 2 O 8 )
  • examples of the azo-based initiator are 2, 2-azobis-(2-amidinopropane) dihydrochloride (2, 2-azobis (2-amidinopropane) dihydrochloride), 2 , 2-azobis-(N, N-dimethylene)isobutyramidine dihydrochloride (2-azobis-(N,N-dimethylene)isobutyramidine dihydrochloride), 2-(carbamoyl azo)isobutyronit
  • the thermal polymerization initiator may be included in a concentration of about 0.001 to about 0.5% by weight relative to the monomer composition. If the concentration of the thermal polymerization initiator is too low, the additional thermal polymerization hardly occurs, so the effect of the addition of the thermal polymerization initiator may be negligible. If the concentration of the thermal polymerization initiator is too high, the molecular weight of the super absorbent polymer is small and the physical properties may be uneven. have.
  • the monomer composition may further include an internal crosslinking agent as a raw material of the super absorbent polymer.
  • an internal crosslinking agent while having at least one functional group capable of reacting with the water-soluble substituent of the water-soluble ethylenically unsaturated monomer, a crosslinking agent having at least one ethylenically unsaturated group;
  • a crosslinking agent having two or more functional groups capable of reacting with the water-soluble substituent of the monomer and/or the water-soluble substituent formed by hydrolysis of the monomer may be used.
  • the internal crosslinking agent include bisacrylamide having 8 to 12 carbons, bismethacrylamide, poly(meth)acrylate of polyols having 2 to 10 carbons, or poly(meth)allyl ether of polyols having 2 to 10 carbons, etc. And more specifically, N,N'-methylenebis(meth)acrylate, ethyleneoxy(meth)acrylate, polyethyleneoxy(meth)acrylate, propyleneoxy(meth)acrylate, glycerin diacrylate , Glycerin triacrylate, trimethyrol triacrylate, triallylamine, triaryl cyanurate, triallyl isocyanate, polyethylene glycol, diethylene glycol and propylene glycol.
  • Such an internal crosslinking agent may be included in a concentration of about 0.01 to about 0.5% by weight relative to the monomer composition, thereby crosslinking the polymerized polymer.
  • the monomer composition of the super absorbent polymer may further include additives such as a thickener, a plasticizer, a storage stabilizer, and an antioxidant, if necessary.
  • Raw materials such as the water-soluble ethylenically unsaturated monomer, photopolymerization initiator, thermal polymerization initiator, internal crosslinking agent, and additives described above may be prepared in the form of a solution of a monomer composition dissolved in a solvent.
  • the solvent that can be used at this time can be used without limitation of its composition as long as it can dissolve the above-mentioned components, for example, water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanediol, Propylene glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl ethyl ketone, acetone, methyl amyl ketone, cyclohexanone, cyclopentanone, diethylene glycol monomethyl ether, diethylene glycol Ethyl ether, toluene, xylene, butyrolactone, carbitol, methyl cellosolve acetate and N,N-dimethylacetamide can be used in combination.
  • the solvent may be included in the remaining amount excluding the above-mentioned components with respect to the total content of the monomer composition.
  • the polymerization method is largely divided into thermal polymerization and photopolymerization according to the polymerization energy source, and in general, when performing thermal polymerization, it can be carried out in a reactor having a stirring axis such as a kneader, and when performing photopolymerization, it is movable Although it may be carried out in a reactor equipped with a conveyor belt, the polymerization method described above is an example, and the present invention is not limited to the polymerization method described above.
  • the shape of the hydrogel polymer usually obtained may be a hydrogel polymer on a sheet having a belt width.
  • the thickness of the polymer sheet varies depending on the concentration and the injection rate of the monomer composition to be injected, but it is usually preferable to supply the monomer composition so that a polymer on the sheet having a thickness of about 0.5 to about 5 cm can be obtained.
  • the monomer composition When the monomer composition is supplied to such an extent that the thickness of the polymer on the sheet is too thin, the production efficiency is low, which is undesirable, and when the polymer thickness on the sheet exceeds 5 cm, due to the excessively thick thickness, the polymerization reaction is evenly spread over the entire thickness. It may not happen.
  • the normal water content of the hydrogel polymer obtained in this way may be about 40 to about 80% by weight.
  • water content refers to a value obtained by subtracting the weight of the polymer in a dry state from the weight of the hydrogel polymer as the content of moisture to the total weight of the hydrogel polymer. Specifically, it is defined as a calculated value by measuring the weight loss due to evaporation of water in the polymer during the drying process by raising the temperature of the polymer through infrared heating.
  • the drying condition is a method of raising the temperature from room temperature to about 180° C. and maintaining it at 180° C. The total drying time is set to 20 minutes including 5 minutes of the temperature rising step, and the water content is measured.
  • the hydrogel polymer is coarsely pulverized.
  • the used grinder is not limited in configuration, but specifically, a vertical cutter (Vertical pulverizer), a turbo cutter (Turbo cutter), a turbo grinder (Turbo grinder), a rotary cutting mill (Rotary cutter mill), cutting Cutter mill, disc mill, shred crusher, crusher, chopper, and disc cutter
  • a vertical cutter Very pulverizer
  • turbo cutter Turbo cutter
  • Turbo grinder turbo grinder
  • rotary cutting mill Rotary cutting mill
  • cutting Cutter mill disc mill
  • shred crusher crusher
  • chopper chopper
  • disc cutter rotary cutting mill
  • Coarse pulverization with a particle diameter of less than 2 mm is not technically easy due to the high water content of the hydrogel polymer, and may also cause agglomeration between the crushed particles.
  • the particle size is roughly crushed to more than 20 mm, the effect of increasing the efficiency of the drying step to be performed later may be insignificant.
  • the dried polymer obtained through such a drying step is pulverized.
  • the polymer powder obtained after the grinding step may have a particle size of about 150 to about 850 ⁇ m.
  • the pulverizer used for pulverizing to such a particle size is specifically, a pin mill, a hammer mill, a screw mill, a roll mill, a disc mill or a jog. A mill may be used, but the present invention is not limited to the examples described above.
  • the polymer powder obtained after pulverization is generally classified according to particle size.
  • the fine powder reassembly process a mixture of one or more fibers of fluff pulp and synthetic polymer fibers, and the fine powder and water to prepare a fine powder aqueous solution, and then agitate the prepared fine powder aqueous solution to agglomerate the substances It is made by the method of manufacturing the powder re-assembly.
  • the water content of the fine powder may be 40 to 60%.
  • the higher the water content of the fine powder, the higher the cohesive strength of the fine powder may be, but during the reassembly process, too large a reassembled mass is formed, or a part of the reassembled mass (jelly ball) in a tightly agglomerated state containing a lot of water is formed and subsequently This can cause problems when operating the grinding process.
  • the water content of the fine powder is too low, the reassembly process is easy, but since the cohesive strength is low, it is easy to crush into fine powder again after reassembly, so it is preferable to satisfy the water content range.
  • the fluff pulp is a cellulose fluff pulp, but may be wood fluff pulp such as softwood kraft paper, broadleaf kraft pulp, but is not limited thereto, and fluff pulp used for absorbent articles may be used without limitation.
  • the synthetic polymer fiber may be at least one selected from the group consisting of nylon, polypropylene, polyethylene, polyester, polyacrylonitrile, polyvinyl chloride, polyvinyl alcohol, polyacrylate, and acetate.
  • Such a synthetic polymer fiber is excellent in hygroscopicity, and it is easy to control the width or length of the fiber, so it is possible to easily control the physical properties of the super absorbent polymer.
  • the fiber may be preferably used having a length of 1 to 20 mm.
  • the fiber may preferably have a width of 1 to 100 ⁇ m. If the length of the fiber is too short or too narrow, the effect of improving the absorption rate of the fine powder reassembled body cannot be secured. Conversely, if the length of the fiber is too long or the width is too wide, it may be difficult to introduce the fiber into the fine powder reassembly.
  • the length of the fiber is preferably 2 mm or more, or 3 mm or more, and may be 15 mm or less, or 10 mm or less.
  • the fiber having an average length of 3 to 10 mm may be preferably used.
  • the average length of the fibers can be derived by randomly selecting 100 fibers, measuring the length of individual fibers, and calculating the average value thereof.
  • the width of the fiber may be 5 ⁇ m or more, or 10 ⁇ m or more, and 80 ⁇ m or less, or 50 ⁇ m or less.
  • the aqueous solution of fine powder contains water, and the content of water may be 50 to 150 parts by weight, or 70 to 150 parts by weight based on 100 parts by weight of the fine powder. If the water content exceeds 150 parts by weight with respect to 100 parts by weight of the fine powder, the re-assembled mass may be too large or jelly balls may be generated as described above, and if it is less than 50 parts by weight, the cohesive strength of the re-assembled product may be reduced.
  • the preparation of the aqueous fine powder solution may be by a method of preparing the aqueous fine powder solution by first mixing the powder and the fiber dryly before adding water, and then adding water and stirring.
  • dry water is mixed with the fine powder and the fiber and then water is added, it is preferable because the fiber can be more uniformly dispersed in the fine powder re-assembly.
  • the obtained fine powder re-assembled may further include a step of drying, grinding and classifying.
  • the step of drying the fine powder reassembly may be performed for 20 minutes to 90 minutes at a temperature of 150 to 250°C.
  • the heating means for drying in the above the configuration is not limited.
  • the heating medium may be supplied or directly heated by means such as electricity, but the present invention is not limited to the above-described examples. Examples of heat sources that can be specifically used include steam, electricity, ultraviolet rays, infrared rays, etc., and heated thermal fluids can also be used.
  • the fine powder re-assembly obtained after pulverization may be classified into particles having a particle diameter of less than about 150 ⁇ m, particles having a diameter of about 150 to about 850 ⁇ m, and particles having a particle diameter greater than 850 ⁇ m depending on the particle size.
  • the classified fine powder reassembly may be performed alone or by mixing with other normal particles (particles having a particle size of 150 to 850 ⁇ m) to perform a surface crosslinking process.
  • Surface crosslinking is a step of increasing the crosslinking density near the surface of the superabsorbent polymer particle with respect to the crosslinking density inside the particle.
  • the surface crosslinking agent is applied to the surface of the superabsorbent polymer particles.
  • this reaction takes place on the surface of the superabsorbent polymer particles, which improves the crosslinkability on the surface of the particles without substantially affecting the inside of the particles. Therefore, the surface-crosslinked superabsorbent polymer particles have a higher degree of crosslinking near the surface than from the inside.
  • the surface crosslinking agent is not limited in its structure as long as it is a compound capable of reacting with a functional group of the polymer.
  • a polyhydric alcohol compound as the surface crosslinking agent; Epoxy compounds; Polyamine compounds; Halo epoxy compounds; Condensation products of haloepoxy compounds; Oxazoline compounds; Mono-, di- or polyoxazolidinone compounds; Cyclic urea compounds; Polyvalent metal salts; And it may use one or more selected from the group consisting of alkylene carbonate compounds.
  • examples of the polyhydric alcohol compound include mono-, di-, tri-, tetra- or polyethylene glycol, monopropylene glycol, 1,3-propanediol, dipropylene glycol, 2,3,4-trimethyl-1,3 -Pentanediol, polypropylene glycol, glycerol, polyglycerol, 2-butene-1,4-diol, 1,4-butanediol, 1,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, and One or more selected from the group consisting of 1,2-cyclohexanedimethanol can be used.
  • ethylene glycol diglycidyl ether and glycidol may be used as the epoxy compound, and ethylenediamine, diethylenetriamine, triethylenetetraamine, tetraethylenepentamine, and pentaethylenehexamine may be used as polyamine compounds.
  • Polyethyleneimine and polyamide polyamine may be used one or more selected from the group consisting of.
  • epichlorohydrin, epibromohydrin, and ⁇ -methylepichlorohydrin may be used as haloepoxy compounds.
  • the mono-, di- or polyoxazolidinone compound for example, 2-oxazolidinone and the like can be used.
  • alkylene carbonate compound ethylene carbonate or the like can be used. These may be used alone or in combination with each other. Meanwhile, in order to increase the efficiency of the surface crosslinking process, it is preferable to use one or more polyhydric alcohol compounds among these surface crosslinking agents, and more preferably, polyhydric alcohol compounds having 2 to 10 carbon atoms can be used.
  • the content of the surface crosslinking agent to be added may be appropriately selected depending on the type or reaction conditions of the surface crosslinking agent to be added, but usually, about 100 parts by weight of the polymer, about 0.001 to about 5 parts by weight, preferably about 0.01 to about 3 parts by weight, more preferably from about 0.03 to about 2 parts by weight can be used.
  • the surface crosslinking reaction When the content of the surface crosslinking agent is too small, the surface crosslinking reaction hardly occurs, and when it is more than 5 parts by weight with respect to 100 parts by weight of the polymer, a phenomenon of deterioration of absorption capacity and physical properties may occur due to excessive progress of the surface crosslinking reaction .
  • the surface crosslinking reaction and drying can be simultaneously performed by heating the polymer particles to which the surface crosslinking agent is added.
  • the heating means for the surface crosslinking reaction is not particularly limited.
  • the heating medium may be supplied or a heat source may be directly supplied to heat.
  • a heated fluid such as steam, hot air, and hot oil may be used, but the present invention is not limited to this, and the temperature of the heat medium supplied is the means of the heat medium, the rate of temperature increase, and the temperature increase. It can be appropriately selected in consideration of the target temperature.
  • the heat source directly supplied may include a heating method through electricity or a gas, but the present invention is not limited to the above-described example.
  • the fine powder re-assembly produced by the above-described method includes fibers having excellent hygroscopicity, and has excellent basic absorption properties, but also excellent absorption speed. That is, according to the manufacturing method of the present invention, since the hygroscopic fibers are mixed together with the fine powder in the fine powder re-assembly step, at least a part of the fibers are mixed through the fine powder re-assembled particles, and the mixed fibers rapidly absorb the surrounding moisture. Since it can be transferred to the fine powder re-assembled, it can have a significantly improved absorption rate compared to the complex of simply mixing the fine powder re-assembled with hygroscopic fibers.
  • the fibers may be incorporated through the fine powder reassembled particles. That is, the fibers can be distributed inside and outside the particles of the fine powder re-assembled body, thereby rapidly absorbing surrounding moisture and transferring it to the fine powder re-assembled particles, thereby contributing to the improvement of the absorption rate.
  • the fine powder re-assembly may contain 1 part by weight or more, 2 parts by weight or more, or 5 parts by weight or more, and less than 20 parts by weight, 15 parts by weight or less, or 10 parts by weight or less based on 100 parts by weight of fine powder.
  • the content of the fiber satisfies the above range, it is possible to secure an effect of improving the absorption rate while maintaining excellent basic absorption properties such as water retention capacity and pressure absorption capacity.
  • the super absorbent polymer has a water retention capacity (CRC) measured according to EDANA method WSP 241.3 of about 30 g/g or more, 32 g/g or more, or about 33 g/g or more, and about 45 g/g or less, 40 g/g or less, or about 35 g/g or less.
  • CRC water retention capacity
  • the superabsorbent polymer has a pressure absorption capacity (AUL) of 0.3 psi measured according to EDANA method WSP 242.3 of 25 g/g or more, or 27 g/g or more, and 40 g/g or less, or 30 g/g or less. Can be.
  • AUL pressure absorption capacity
  • the monomer composition was put on a continuously moving conveyor belt and irradiated with ultraviolet rays (irradiation amount: 2 mW/cm 2 ) to undergo UV polymerization for 2 minutes to obtain a hydrogel polymer sheet.
  • the hydrogel polymer sheet After cutting the hydrogel polymer sheet to a size of 3 cm x 3 cm, minced with a meat chopper (hole size 16 mm, speed 60 Hz) to prepare a crumb.
  • the crumb was dried in an oven capable of transferring air volume up and down. Specifically, hot air at 185°C was uniformly dried by flowing from bottom to top for 15 minutes and from top to bottom for 15 minutes, and after drying, the water content of the dried body was 2% or less.
  • the dried polymer was pulverized with a grinder, and then classified for 10 minutes at an amplitude of 1.5 mm (mesh combination, #20 / #30 / #50 / #100), with normal particles having a particle size of 150 ⁇ m to 850 ⁇ m, Fine particles having a particle diameter of less than 150 mu m were obtained.
  • each fiber of Table 1 below was added to the weight of Table 1 and mixed for 1 minute, and then 150 parts by weight of water was added and further mixed for 10 seconds. A fine powder reassembly was prepared.
  • Preparation Example 1 the hydrogel polymer pulverized with a meat chopper (hole size 16 mm) and the fine powder re-assembled were mixed at a weight ratio of 75:25 to obtain a coarsely pulverized hydrogel polymer. Subsequently, the base resin was prepared through drying, grinding, and classification steps in the same manner as in Production Example 1.
  • a superabsorbent polymer comprising a fine powder reassembled was prepared in the same manner as in Example 1, except that no fiber was added when the fine powder reassembled.
  • a superabsorbent polymer containing the finely divided re-assembled was prepared in the same manner as in Example 1, except that the fluff pulp was used in 20 parts by weight based on 100 parts by weight of fine powder when the fine powder was reassembled.
  • the pressure absorption capacity of 0.3 psi of each resin was measured according to EDANA method WSP 242.3. In the measurement of the pressure absorption capacity, the resin classifier for the CRC measurement was used.
  • a 400 mesh wire mesh made of stainless steel was mounted on a cylindrical bottom of a plastic having an inner diameter of 25 mm.
  • a glass filter having a diameter of 90 mm and a thickness of 5 mm was placed inside the petri dish of 150 mm in diameter, and the physiological saline composed of 0.9 wt% sodium chloride was brought to the same level as the top surface of the glass filter.
  • a sheet of filter paper having a diameter of 90 mm was placed thereon. The measuring device was mounted on a filter paper, and the liquid was absorbed for 1 hour under a load. After 1 hour, the measuring device was lifted, and the weight W5 (g) was measured.
  • the absorption rate of each resin was measured in seconds according to the method described in International Patent Publication No. 1987-003208.
  • the absorption rate (or vortex time) of 23 °C to 24 °C 50 g of physiological saline, 2 g of superabsorbent polymer is added, and a magnetic bar (diameter 8 mm, length 31.8 mm) is stirred at 600 rpm. It was calculated by measuring the time until the vortex disappears in seconds.
  • the average length of the fiber is the average value of the length derived by randomly selecting 100 fibers.
  • the superabsorbent polymer prepared according to the present invention has excellent basic properties such as CRC and AUL, but is significantly improved compared to Comparative Example 1 without fibers and Comparative Example 3 with simple mixing of fibers. It can be confirmed that the absorption rate is shown. However, when the fluff pulp content is too high, the absorption rate may be improved, but it can be confirmed through Comparative Example 2 that basic absorption properties such as CRC and AUL are deteriorated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

본 발명은 고흡수성 수지 및 이의 제조방법에 관한 것이다. 보다 자세하게는 우수한 흡수 성능 및 흡수 속도를 나타내는, 미분 재조립체를 포함하는 고흡수성 수지 및 이의 제조방법에 관한 것이다.

Description

고흡수성 수지의 제조방법, 및 고흡수성 수지
관련 출원(들)과의 상호 인용
본 출원은 2018년 12월 11일자 한국 특허 출원 제10-2018-0158920호 및 2019년 11월 25일자 한국 특허출원 제10-2019-0152657호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 고흡수성 수지 및 이의 제조방법에 관한 것이다. 보다 자세하게는 우수한 흡수 특성을 나타내는 미분 재조립체를 포함하는 고흡수성 수지 및 이의 제조방법에 관한 것이다.
고흡수성 수지(Super Absorbent Polymer, SAP)란 자체 무게의 5백 내지 1천 배 정도의 수분을 흡수할 수 있는 기능을 가진 합성 고분자 물질로, 생리용구로 실용화되기 시작해서, 현재는 어린이용 종이 기저귀 등 위생용품 외에 원예용 토양보수제, 토목, 건축용 지수재, 육묘용 시트, 식품 유통분야에서의 신선도 유지제, 및 찜질용 등의 재료로 널리 사용되고 있다.
이러한 고흡수성 수지의 흡수 메카니즘은 고분자 전해질의 전하가 나타내는 전기적 흡인력의 차이에 의한 침투압, 물과 고분자 전해질 사이의 친화력, 고분자 전해질 이온 사이의 반발력에 의한 분자 팽창 및 가교 결합으로 인한 팽창 억제의 상호 작용에 의하여 지배된다. 즉, 흡수성 수지의 흡수성은 전술한 친화력과 분자 팽창에 의존하며, 흡수 속도는 흡수성 고분자 자체의 침투압에 크게 좌우되는 것이다.
이러한 고흡수성 수지의 흡수 속도를 향상시키기 위하여 많은 연구가 진행되고 있다. 예를 들어 대한민국 공개특허 제2014-0063457호에는 첨가제 없이 미분과 베이스 수지만을 사용하여 미분 재조립체를 제조하는 단계를 포함하는 고흡수성 수지의 제조방법이 기재되어 있으나, 미분 재조립체의 물성이 베이스 수지보다 하락하고 공정이 복잡하여 효율성이 떨어지는 문제점이 있었다.
[선행기술문헌]
특허문헌 1: 대한민국 공개특허공보 제2014-0063457호
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위한 것으로, 흡수 속도가 우수하면서도 보수능(CRC)나 가압흡수능(AUP)과 같은 물성의 하락을 초래하지 않는 미분 재조립체를 포함하는 고흡수성 수지 및 이의 제조방법을 제공하기 위한 것이다.
상기 목적을 달성하기 위하여 본 발명은,
수용성 에틸렌계 불포화 단량체 및 중합개시제를 포함하는 단량체 조성물을 열중합 또는 광중합하여 함수겔상 중합체를 제조하는 단계;
상기 함수겔상 중합체를 건조, 분쇄 및 분급하여, 150 ㎛ 미만의 입경을 갖는 미분 및 150 내지 850 ㎛의 입경을 갖는 정상 입자로 분급하는 단계;
플러프 펄프 및 합성 고분자 섬유 중 1 종 이상의 섬유와, 상기 미분 및 물을 혼합하여 미분 수용액을 제조하는 단계; 및
상기 미분 수용액을 교반하여 미분 재조립체를 제조하는 단계를 포함하는 고흡수성 수지의 제조방법을 제공한다.
상기 미분 수용액은 미분 100 중량부에 대하여 섬유를 1 중량부 이상 내지 20 중량부 미만으로 포함할 수 있다.
상기 섬유의 길이는 1 내지 20 mm일 수 있다.
상기 섬유의 너비는 1 내지 100 ㎛일 수 있다.
상기 합성 고분자 섬유는 나일론, 폴리프로필렌, 폴리에틸렌, 폴리에스터, 폴리아크릴로니트릴, 폴리염화비닐, 폴리비닐알콜, 폴리아크릴레이트, 및 아세테이트로 이루어지는 군에서 선택되는 1종 이상일 수 있다.
상기 미분 수용액은 미분 100 중량부에 대하여 물을 50 내지 150 중량부로 포함할 수 있다.
본 발명의 제조방법은, 상기 미분 재조립체를 건조, 분쇄 및 분급하는 단계를 더 포함할 수 있다. 아울러, 상기 분쇄 및 분급한 미분 재조립체를 표면 가교하는 단계를 더 포함할 수 있다.
또, 본 발명은 상기 제조방법에 의하여 제조된 고흡수성 수지를 제공한다.
구체적으로, 본 발명은 산성기를 포함하고 상기 산성기의 적어도 일부가 중화된 수용성 에틸렌계 불포화 단량체를 중합시킨 중합체 중 입경이 150 ㎛ 미만인 미분; 및 플러프 펄프 및 합성 고분자 섬유 중 1 종 이상의 섬유를 혼합하여 재조립된 미분 재조립체를 포함하는 고흡수성 수지를 제공한다.
상기 섬유의 적어도 일부는 미분 재조립체 입자 내부를 관통하여 혼입되어 있을 수 있다.
상기 미분 재조립체는 미분 100 중량부에 대하여 섬유를 1 중량부 이상 내지 20 중량부 미만으로 포함할 수 있다.
상기 고흡수성 수지는 EDANA 법 WSP 241.3에 따라 측정한 원심분리 보수능(CRC)이 30 내지 45 g/g 일 수 있다.
상기 고흡수성 수지는 EDANA 법 WSP 242.3에 따라 측정한 0.3 psi의 가압 흡수능(AUL)이 25 내지 40 g/g 일 수 있다.
상기 고흡수성 수지는 흡수 속도(vortex time)가 60초 이하일 수 있다.
본 발명에 따른 고흡수성 수지 및 이의 제조방법에 의하면, 기본적인 흡수능이 우수하면서도 더욱 향상된 흡수 속도를 갖는 고품질의 고흡수성 수지를 제공할 수 있다.
도 1은 실시예 3에서 제조된 고흡수성 수지의 주사전자현미경(SEM) 사진이다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
이하, 발명의 구체적인 구현예에 따라 고흡수성 수지 및 이의 제조방법에 대해 보다 상세히 설명하기로 한다.
본 발명의 일 구현예에 따른 고흡수성 수지의 제조방법은, 수용성 에틸렌계 불포화 단량체 및 중합개시제를 포함하는 단량체 조성물을 열중합 또는 광중합하여 함수겔상 중합체를 제조하는 단계; 상기 함수겔상 중합체를 건조, 분쇄 및 분급하여, 150 ㎛ 미만의 입경을 갖는 미분 및 150 내지 850 ㎛의 입경을 갖는 정상 입자로 분급하는 단계; 플러프 펄프 및 합성 고분자 섬유 중 1 종 이상의 섬유와, 상기 미분 및 물을 혼합하여 미분 수용액을 제조하는 단계; 및 상기 미분 수용액을 교반하여 미분 재조립체를 제조하는 단계를 포함한다.
참고로, 본 발명의 명세서에서 "중합체", 또는 "고분자"는 수용성 에틸렌계 불포화 단량체가 중합된 상태인 것을 의미하며, 모든 수분 함량 범위, 모든 입경 범위, 모든 표면 가교 상태 또는 가공 상태를 포괄할 수 있다. 상기 중합체 중, 중합 후 건조 전 상태의 것으로 함수율(수분 함량)이 약 40 중량% 이상의 중합체를 함수겔상 중합체로 지칭할 수 있다.
또한, 상기 중합체 중, 입경이 150 ㎛ 미만인 중합체를 "미분"으로 지칭할 수 있다. 미분은 고흡수성 수지 제조 공정의 모든 공정, 예를 들어, 중합 공정, 건조 공정, 건조된 중합체의 분쇄 공정, 또는 표면 가교 공정 등에서 발생한 것을 모두 포괄할 수 있다.
또한, "미분 재조립체"는 상기 미분이 응집된, 입경이 150 ㎛ 이상인 입자, 또는, 상기 입자가 다수 개 모인 군집을 의미할 수 있다.
또한 "고흡수성 수지"는 문맥에 따라 상기 중합체 자체를 의미하거나, 또는 상기 중합체에 대해 추가의 공정, 예를 들어 표면 가교, 미분 재조립, 건조, 분쇄, 분급 등을 거쳐 제품화에 적합한 상태로 한 것을 모두 포괄하는 것으로 사용된다.
본 발명의 고흡수성 수지의 제조방법에서, 먼저 수용성 에틸렌계 불포화 단량체 및 중합개시제를 포함하는 모노머 조성물에 열중합 또는 광중합을 진행하여 함수겔상 중합체를 형성한다.
상기 고흡수성 수지의 원료 물질인 모노머 조성물은 수용성 에틸렌계 불포화 단량체 및 중합 개시제를 포함한다.
상기 수용성 에틸렌계 불포화 단량체는 고흡수성 수지의 제조에 통상 사용되는 임의의 단량체를 별다른 제한없이 사용할 수 있다. 여기에는 음이온성 단량체와 그 염, 비이온계 친수성 함유 단량체 및 아미노기 함유 불포화 단량체 및 그의 4급화물로 이루어진 군에서 선택되는 어느 하나 이상의 단량체를 사용할 수 있다.
구체적으로는 (메타)아크릴산, 무수말레인산, 푸말산, 크로톤산, 이타콘산, 2-아크릴로일에탄 술폰산, 2-메타아크릴로일에탄술폰산, 2-(메타)아크릴로일프로판술폰산 또는 2-(메타)아크릴아미드-2-메틸 프로판 술폰산의 음이온성 단량체와 그 염; (메타)아크릴아미드, N-치환(메타)아크릴레이트, 2-히드록시에틸(메타)아크릴레이트, 2-히드록시프로필(메타)아크릴레이트, 메톡시폴리에틸렌글리콜(메타)아크릴레이트 또는 폴리에틸렌 글리콜(메타)아크릴레이트의 비이온계 친수성 함유 단량체; 및 (N,N)-디메틸아미노에틸(메타) 아크릴레이트 또는 (N,N)-디메틸아미노프로필(메타)아크릴아미드의 아미노기 함유 불포화 단량체 및 그의 4급화물로 이루어진 군에서 선택된 어느 하나 이상을 사용할 수 있다.
더욱 바람직하게는 아크릴산 또는 그 염, 예를 들어, 아크릴산 또는 그 나트륨염 등의 알칼리 금속염을 사용할 수 있는데, 이러한 단량체를 사용하여 보다 우수한 물성을 갖는 고흡수성 수지의 제조가 가능해 진다. 상기 아크릴산의 알칼리 금속염을 단량체로 사용하는 경우, 아크릴산을 가성소다(NaOH)와 같은 염기성 화합물로 중화시켜 사용할 수 있다.
상기 수용성 에틸렌계 불포화 단량체의 농도는, 상기 고흡수성 수지의 원료 물질 및 용매를 포함하는 단량체 조성물에 대해 약 20 내지 약 60 중량%, 바람직하게는 약 40 내지 약 50 중량%로 될 수 있으며, 중합 시간 및 반응 조건 등을 고려해 적절한 농도로 될 수 있다. 다만, 상기 단량체의 농도가 지나치게 낮아지면 고흡수성 수지의 수율이 낮고 경제성에 문제가 생길 수 있고, 반대로 농도가 지나치게 높아지면 단량체의 일부가 석출되거나 중합된 함수겔상 중합체의 분쇄 시 분쇄 효율이 낮게 나타나는 등 공정상 문제가 생길 수 있으며 고흡수성 수지의 물성이 저하될 수 있다.
본 발명의 고흡수성 수지 제조방법에서 중합시 사용되는 중합 개시제는 고흡수성 수지의 제조에 일반적으로 사용되는 것이면 특별히 한정되지 않는다.
구체적으로, 상기 중합 개시제는 중합 방법에 따라 열중합 개시제 또는 UV 조사에 따른 광중합 개시제를 사용할 수 있다. 다만 광중합 방법에 의하더라도, 자외선 조사 등의 조사에 의해 일정량의 열이 발생하고, 또한 발열 반응인 중합 반응의 진행에 따라 어느 정도의 열이 발생하므로, 추가적으로 열중합 개시제를 포함할 수도 있다.
상기 광중합 개시제는 자외선과 같은 광에 의해 라디칼을 형성할 수 있는 화합물이면 그 구성의 한정이 없이 사용될 수 있다.
상기 광중합 개시제로는 예를 들어, 벤조인 에테르(benzoin ether), 디알킬아세토페논(dialkyl acetophenone), 하이드록실 알킬케톤(hydroxyl alkylketone), 페닐글리옥실레이트(phenyl glyoxylate), 벤질디메틸케탈(Benzyl dimethyl ketal), 아실포스핀(acyl phosphine) 및 알파-아미노케톤(α-aminoketone)으로 이루어진 군에서 선택되는 하나 이상을 사용할 수 있다. 한편, 아실포스핀의 구체예로, 상용하는 lucirin TPO, 즉, 2,4,6-트리메틸-벤조일-트리메틸 포스핀 옥사이드(2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide)를 사용할 수 있다. 보다 다양한 광개시제에 대해서는 Reinhold Schwalm 저서인 "UV Coatings: Basics, Recent Developments and New Application(Elsevier 2007년)" p115에 잘 명시되어 있으며, 상술한 예에 한정되지 않는다.
상기 광중합 개시제는 상기 모노머 조성물에 대하여 약 0.01 내지 약 1.0 중량%의 농도로 포함될 수 있다. 이러한 광중합 개시제의 농도가 지나치게 낮을 경우 중합 속도가 느려질 수 있고, 광중합 개시제의 농도가 지나치게 높으면 고흡수성 수지의 분자량이 작고 물성이 불균일해질 수 있다.
또한, 상기 열중합 개시제로는 과황산염계 개시제, 아조계 개시제, 과산화수소 및 아스코르빈산으로 이루어진 개시제 군에서 선택되는 하나 이상을 사용할 수 있다. 구체적으로, 과황산염계 개시제의 예로는 과황산나트륨(Sodium persulfate; Na2S2O8), 과황산칼륨(Potassium persulfate; K2S2O8), 과황산암모늄(Ammonium persulfate;(NH4)2S2O8) 등이 있으며, 아조(Azo)계 개시제의 예로는 2, 2-아조비스-(2-아미디노프로판)이염산염(2, 2-azobis(2-amidinopropane) dihydrochloride), 2, 2-아조비스-(N, N-디메틸렌)이소부티라마이딘 디하이드로클로라이드(2,2-azobis-(N, N-dimethylene)isobutyramidine dihydrochloride), 2-(카바모일아조)이소부티로니트릴(2-(carbamoylazo)isobutylonitril), 2, 2-아조비스[2-(2-이미다졸린-2-일)프로판] 디하이드로클로라이드(2,2-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride), 4,4-아조비스-(4-시아노발레릭 산)(4,4-azobis-(4-cyanovaleric acid)) 등이 있다. 보다 다양한 열중합 개시제에 대해서는 Odian 저서인 'Principle of Polymerization(Wiley, 1981)', p203에 잘 명시되어 있으며, 상술한 예에 한정되지 않는다.
상기 열중합 개시제는 상기 모노머 조성물에 대하여 약 0.001 내지 약 0.5 중량%의 농도로 포함될 수 있다. 이러한 열 중합 개시제의 농도가 지나치게 낮을 경우 추가적인 열중합이 거의 일어나지 않아 열중합 개시제의 추가에 따른 효과가 미미할 수 있고, 열중합 개시제의 농도가 지나치게 높으면 고흡수성 수지의 분자량이 작고 물성이 불균일해질 수 있다.
본 발명의 일 실시예에 따르면, 상기 모노머 조성물은 고흡수성 수지의 원료 물질로서 내부 가교제를 더 포함할 수 있다. 상기 내부 가교제로는 상기 수용성 에틸렌계 불포화 단량체의 수용성 치환기와 반응할 수 있는 관능기를 1개 이상 가지면서, 에틸렌성 불포화기를 1개 이상 갖는 가교제; 혹은 상기 단량체의 수용성 치환기 및/또는 단량체의 가수분해에 의해 형성된 수용성 치환기와 반응할 수 있는 관능기를 2개 이상 갖는 가교제를 사용할 수 있다.
상기 내부 가교제의 구체적인 예로는, 탄소수 8 내지 12의 비스아크릴아미드, 비스메타아크릴아미드, 탄소수 2 내지 10의 폴리올의 폴리(메타)아크릴레이트 또는 탄소수 2 내지 10의 폴리올의 폴리(메타)알릴에테르 등을 들 수 있고, 보다 구체적으로, N,N'-메틸렌비스(메타)아크릴레이트, 에틸렌옥시(메타)아크릴레이트, 폴리에틸렌옥시(메타)아크릴레이트, 프로필렌옥시(메타)아크릴레이트, 글리세린 디아크릴레이트, 글리세린 트리아크릴레이트, 트리메티롤 트리아크릴레이트, 트리알릴아민, 트리아릴시아누레이트, 트리알릴이소시아네이트, 폴리에틸렌글리콜, 디에틸렌글리콜 및 프로필렌글리콜로 이루어진 군에서 선택된 하나 이상을 사용할 수 있다.
이러한 내부 가교제는 상기 모노머 조성물에 대하여 약 0.01 내지 약 0.5 중량%의 농도로 포함되어, 중합된 고분자를 가교시킬 수 있다.
본 발명의 제조방법에서, 고흡수성 수지의 상기 모노머 조성물은 필요에 따라 증점제(thickener), 가소제, 보존안정제, 산화방지제 등의 첨가제를 더 포함할 수 있다.
상술한 수용성 에틸렌계 불포화 단량체, 광중합 개시제, 열중합 개시제, 내부 가교제 및 첨가제와 같은 원료 물질은 용매에 용해된 모노머 조성물 용액의 형태로 준비될 수 있다.
이 때 사용할 수 있는 상기 용매는 상술한 성분들을 용해할 수 있으면 그 구성의 한정이 없이 사용될 수 있으며, 예를 들어 물, 에탄올, 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 1,4-부탄디올, 프로필렌글리콜, 에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노메틸에테르아세테이트, 메틸에틸케톤, 아세톤, 메틸아밀케톤, 시클로헥사논, 시클로펜타논, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜에틸에테르, 톨루엔, 크실렌, 부틸로락톤, 카르비톨, 메틸셀로솔브아세테이트 및 N,N-디메틸아세트아미드 등에서 선택된 1종 이상을 조합하여 사용할 수 있다.
상기 용매는 모노머 조성물의 총 함량에 대하여 상술한 성분을 제외한 잔량으로 포함될 수 있다.
한편, 이와 같은 모노머 조성물을 열중합 또는 광중합하여 함수겔상 중합체를 형성하는 방법 또한 통상 사용되는 중합 방법이면, 특별히 구성의 한정이 없다.
구체적으로, 중합 방법은 중합 에너지원에 따라 크게 열중합 및 광중합으로 나뉘며, 통상 열중합을 진행하는 경우, 니더(kneader)와 같은 교반축을 가진 반응기에서 진행될 수 있으며, 광중합을 진행하는 경우, 이동 가능한 컨베이어 벨트를 구비한 반응기에서 진행될 수 있으나, 상술한 중합 방법은 일 예이며, 본 발명은 상술한 중합 방법에 한정되지는 않는다.
일 예로, 상술한 바와 같이 교반축을 구비한 니더(kneader)와 같은 반응기에, 열풍을 공급하거나 반응기를 가열하여 열중합을 하여 얻어진 함수겔상 중합체는 반응기에 구비된 교반축의 형태에 따라, 반응기 배출구로 배출되는 함수겔상 중합체는 수 센티미터 내지 수 밀리미터 형태일 수 있다. 구체적으로, 얻어지는 함수겔상 중합체의 크기는 주입되는 모노머 조성물의 농도 및 주입속도 등에 따라 다양하게 나타날 수 있는데, 통상 중량 평균 입경이 2 내지 50 mm인 함수겔상 중합체가 얻어질 수 있다.
또한, 상술한 바와 같이 이동 가능한 컨베이어 벨트를 구비한 반응기에서 광중합을 진행하는 경우, 통상 얻어지는 함수겔상 중합체의 형태는 벨트의 너비를 가진 시트 상의 함수겔상 중합체일 수 있다. 이 때, 중합체 시트의 두께는 주입되는 단량체 조성물의 농도 및 주입속도에 따라 달라지나, 통상 약 0.5 내지 약 5 cm의 두께를 가진 시트 상의 중합체가 얻어질 수 있도록 단량체 조성물을 공급하는 것이 바람직하다. 시트 상의 중합체의 두께가 지나치게 얇을 정도로 단량체 조성물을 공급하는 경우, 생산 효율이 낮아 바람직하지 않으며, 시트 상의 중합체 두께가 5 cm를 초과하는 경우에는 지나치게 두꺼운 두께로 인해, 중합 반응이 전 두께에 걸쳐 고르게 일어나지 않을 수가 있다.
이때 이와 같은 방법으로 얻어진 함수겔상 중합체의 통상 함수율은 약 40 내지 약 80 중량%일 수 있다. 한편, 본 명세서 전체에서 "함수율"은 전체 함수겔상 중합체 중량에 대해 차지하는 수분의 함량으로 함수겔상 중합체의 중량에서 건조 상태의 중합체의 중량을 뺀 값을 의미한다. 구체적으로는, 적외선 가열을 통해 중합체의 온도를 올려 건조하는 과정에서 중합체 중의 수분증발에 따른 무게감소분을 측정하여 계산된 값으로 정의한다. 이때, 건조 조건은 상온에서 약 180 ℃까지 온도를 상승시킨 뒤 180 ℃에서 유지하는 방식으로 총 건조시간은 온도상승단계 5분을 포함하여 20분으로 설정하여, 함수율을 측정한다.
다음에, 상기 함수겔상 중합체를 조분쇄한다.
이때, 사용되는 분쇄기는 구성의 한정은 없으나, 구체적으로, 수직형 절단기(Vertical pulverizer), 터보 커터(Turbo cutter), 터보 글라인더(Turbo grinder), 회전 절단식 분쇄기(Rotary cutter mill), 절단식 분쇄기(Cutter mill), 원판 분쇄기(Disc mill), 조각 파쇄기(Shred crusher), 파쇄기(Crusher), 초퍼(chopper) 및 원판식 절단기(Disc cutter)로 이루어진 분쇄 기기 군에서 선택되는 어느 하나를 포함할 수 있으나, 상술한 예에 한정되지는 않는다.
이때 조분쇄 단계는 함수겔상 중합체의 입경이 약 2 내지 약 20 mm가 되도록 분쇄할 수 있다.
입경이 2 mm 미만으로 조분쇄하는 것은 함수겔상 중합체의 높은 함수율로 인해 기술적으로 용이하지 않으며, 또한 분쇄된 입자 간에 서로 응집되는 현상이 나타날 수도 있다. 한편, 입경이 20 mm 초과로 조분쇄하는 경우, 추후 이루어지는 건조 단계의 효율 증대 효과가 미미할 수 있다.
다음에, 얻어진 함수겔상 중합체를 건조한다.
상기와 같이 조분쇄되거나, 혹은 조분쇄 단계를 거치지 않은 중합 직후의 함수겔상 중합체에 대해 건조를 수행한다. 이때 상기 건조 단계의 건조 온도는 약 150 내지 약 250℃일 수 있다. 건조 온도가 150℃ 미만인 경우, 건조 시간이 지나치게 길어지고 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있고, 건조 온도가 250℃를 초과하는 경우, 지나치게 중합체 표면만 건조되어, 추후 이루어지는 분쇄 공정에서 미분이 발생할 수도 있고, 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있다. 따라서 바람직하게 상기 건조는 약 150 내지 약 200 ℃의 온도에서, 더욱 바람직하게는 약 160 내지 약 180 ℃의 온도에서 진행될 수 있다.
한편, 건조 시간의 경우에는 공정 효율 등을 고려하여, 약 20 내지 약 90분 동안 진행될 수 있으나, 이에 한정되지는 않는다.
상기 건조 단계의 건조 방법 역시 함수겔상 중합체의 건조 공정으로 통상 사용되는 것이면, 그 구성의 한정이 없이 선택되어 사용될 수 있다. 구체적으로, 열풍 공급, 적외선 조사, 극초단파 조사, 또는 자외선 조사 등의 방법으로 건조 단계를 진행할 수 있다. 이와 같은 건조 단계 진행 후의 중합체의 함수율은 약 0.1 내지 약 10 중량%일 수 있다.
다음에, 이와 같은 건조 단계를 거쳐 얻어진 건조된 중합체를 분쇄한다.
분쇄 단계 후 얻어지는 중합체 분말은 입경이 약 150 내지 약 850 ㎛ 일 수 있다. 이와 같은 입경으로 분쇄하기 위해 사용되는 분쇄기는 구체적으로, 핀 밀(pin mill), 해머 밀(hammer mill), 스크류 밀(screw mill), 롤 밀(roll mill), 디스크 밀(disc mill) 또는 조그 밀(jog mill) 등을 사용할 수 있으나, 상술한 예에 본 발명이 한정되는 것은 아니다.
이와 같은 분쇄 단계 이후 최종 제품화되는 고흡수성 수지 분말의 물성을 관리하기 위해, 일반적으로 분쇄 후 얻어지는 중합체 분말을 입경에 따라 분급한다. 바람직하게는 입경이 약 150 ㎛ 미만인 입자, 약 150 내지 약 850 ㎛인 입자, 입경이 850 ㎛를 초과하는 입자로 분급하는 단계를 거친다.
본 발명의 명세서에서는 일정 입자 크기 미만, 즉 약 150 ㎛ 미만의 입자 크기를 갖는 미분 입자를 고흡수성 중합체 미분, SAP 미분 또는 미분(fines, fine powder)으로 지칭하며, 입경이 약 150 내지 약 850 ㎛인 입자를 정상 입자로 지칭한다. 상기 미분은 중합 공정, 건조 공정 또는 건조된 중합체의 분쇄 단계 동안 발생될 수 있는데, 최종 제품에 미분이 포함될 경우 취급이 어렵고 겔 블로킹(gel blocking) 현상을 나타내는 등 물성을 저하시키기 때문에 최종 수지 제품에 포함되지 않도록 배제하거나 정상 입자가 되도록 재사용하는 것이 바람직하다.
본 발명에서는 상기 미분들을 정상 입자 크기가 되도록 응집시키는 과정을 거쳐 고흡수성 수지의 미분 재조립체를 형성한다.
보다 구체적으로, 상기 미분 재조립 과정은, 플러프 펄프 및 합성 고분자 섬유 중 1 종 이상의 섬유와, 상기 미분 및 물을 혼합하여 미분 수용액을 제조한 다음, 제조된 미분 수용액을 교반하여 상기 물질들을 응집시켜 미분 재조립체를 제조하는 방법으로 이루어진다.
이때, 상기 미분의 함수율은 40 내지 60 %일 수 있다. 미분의 함수율이 높을수록 미분의 응집 강도가 높아질 수 있으나, 재조립 공정 시 너무 큰 재조립체 덩어리가 생기거나, 부분적으로 수분을 많이 함유하여 단단하게 뭉쳐진 상태의 재조립체 덩어리(젤리볼)가 생겨 후속하는 분쇄 공정 운전 시 문제를 일으킬 수 있다. 또한, 미분의 함수율이 너무 낮으면 재조립 공정은 용이하나 응집 강도가 낮아 재조립 이후 다시 미분으로 파쇄되기 쉬우므로, 상기 함수율 범위를 만족함이 바람직하다.
상기 플러프 펄프는 셀룰로오스 플러프 펄프로서, 침엽수 크라프트 종이, 광엽수 크라프트펄프 등의 목재 플러프 펄프일 수 있으나 이에 제한되는 것은 아니며, 흡수성 물품에 사용되는 플러프 펄프가 제한 없이 사용될 수 있다.
상기 합성 고분자 섬유는 나일론, 폴리프로필렌, 폴리에틸렌, 폴리에스터, 폴리아크릴로니트릴, 폴리염화비닐, 폴리비닐알콜, 폴리아크릴레이트, 및 아세테이트로 이루어지는 군에서 선택되는 1종 이상일 수 있다. 이와 같은 합성 고분자 섬유는 흡습성이 우수하고, 섬유의 너비나 길이를 조절하기 용이하여 고흡수성 수지의 물성 조절이 용이할 수 있다.
상기 섬유는 1 내지 20 mm의 길이를 가지는 것이 바람직하게 사용될 수 있다. 또, 상기 섬유는 너비가 1 내지 100 ㎛인 것이 바람직할 수 있다. 만일 섬유의 길이가 너무 짧거나, 너비가 너무 좁으면 미분 재조립체의 흡수 속도 향상 효과를 확보할 수 없다. 반대로, 섬유의 길이가 너무 길거나, 너비가 너무 넓으면, 미분 재조립체에 섬유가 도입되기 어려울 수 있다.
이러한 측면에서, 상기 섬유의 길이는 바람직하게는 2 mm 이상, 또는 3 mm 이상이면서, 15 mm 이하, 또는 10 mm 이하일 수 있다. 일례로, 상기 섬유 개개의 길이가 1 내지 20 mm를 만족하면서, 평균 길이가 3 내지 10 mm 범위를 만족하는 섬유가 바람직하게 사용될 수 있다. 이때 섬유의 평균 길이는 섬유 100 개를 무작위로 선택하여 개별 섬유의 길이를 측정하고, 이의 평균값을 계산함으로써 도출될 수 있다.
또, 섬유의 너비는 5 ㎛ 이상, 또는 10 ㎛ 이상이면서, 80 ㎛ 이하, 또는 50 ㎛ 이하일 수 있다.
상기 미분 재조립체 형성 단계에서, 미분 수용액에 포함되는 섬유의 함량은 미분 100 중량부에 대하여 1 중량부 이상, 2 중량부 이상, 또는 5 중량부 이상이면서, 20 중량부 미만, 15 중량부 이하, 또는 10 중량부 이하일 수 있다. 만일 섬유가 미분 100 중량부에 대하여 1 중량부 미만이면 플러프 펄프를 포함함에 따른 미분 재조립체의 흡수 속도 향상 효과를 확보할 수 없고, 20 중량부 이상이면 흡수 속도는 향상되지만, 보수능, 가압 흡수능 등 기본적인 흡수 물성이 저하될 수 있다.
한편, 상기 미분 수용액은 물을 포함하며, 물의 함량은 미분 100 중량부에 대하여 50 내지 150 중량부, 또는 70 내지 150 중량부일 수 있다. 물의 함량이 미분 100 중량부에 대해 150 중량부를 초과하면 상술한 바와 같이 재조립체 덩어리가 지나치게 커지거나, 젤리볼이 발생할 수 있고, 50 중량부 미만이면 제조되는 재조립체의 응집 강도가 떨어질 수 있다.
일 실시예에서, 상기 미분 수용액의 제조는, 물을 첨가하기에 앞서 상기 미분과 섬유를 건식으로 먼저 혼합한 다음, 물을 투입하고 교반하여 미분 수용액을 제조하는 방법에 의할 수 있다. 이와 같이 미분과 섬유를 건식 혼합한 다음 물을 투입하는 경우, 섬유가 미분 재조립체에 보다 균일하게 분산될 수 있어 바람직하다.
다음으로, 제조된 미분 수용액을 혼합하여 미분 재조립체를 형성한다. 미분 수용액의 혼합 방법은 특별히 제한되는 것은 아니나, 일례로 25 내지 100 ℃의 온도에서, 200 내지 2000 rpm의 속도로 5 내지 60 초간 교반하는 방식으로 이루어질 수 있다.
본 발명의 일 실시예에 따르면, 수득된 상기 미분 재조립체를 건조, 분쇄 및 분급하는 단계를 추가로 포함할 수 있다.
상기 미분 재조립체를 건조하는 단계는 150 내지 250 ℃의 온도에서, 20 분 내지 90 분 동안 진행할 수 있다. 그리고, 상기에서 건조를 위한 승온 수단으로는, 그 구성의 한정이 없다. 구체적으로, 열매체를 공급하거나, 전기 등의 수단으로 직접 가열할 수 있으나, 본 발명이 상술한 예에 한정되는 것은 아니다. 구체적으로 사용될 수 있는 열원으로는 스팀, 전기, 자외선, 적외선 등이 있으며, 가열된 열유체 등을 사용할 수도 있다.
다음에, 상기 건조된 미분 재조립체를 입경이 약 150 내지 약 850 ㎛가 되도록 분쇄할 수 있다. 이와 같은 입경으로 분쇄하기 위해 사용되는 분쇄기는 구체적으로, 핀 밀(pin mill), 해머 밀(hammer mill), 스크류 밀(screw mill), 롤 밀(roll mill), 디스크 밀(disc mill) 또는 조그 밀(jog mill) 등을 사용할 수 있으나, 상술한 예에 본 발명이 한정되는 것은 아니다.
추가적으로, 분쇄 후 얻어지는 미분 재조립체를 입경에 따라 입경이 약 150 ㎛ 미만인 입자, 약 150 내지 약 850 ㎛인 입자, 입경이 850 ㎛를 초과하는 입자로 분급할 수 있다.
상기 분급된 미분 재조립체는 단독으로, 또는 다른 정상 입자(입경 150 내지 850 ㎛인 입자)와 혼합하여 표면 가교 공정을 수행할 수 있다.
표면 가교는 입자 내부의 가교결합 밀도와 관련하여 고흡수성 고분자 입자 표면 근처의 가교결합 밀도를 증가시키는 단계이다. 일반적으로, 표면 가교 제는 고흡수성 수지 입자의 표면에 도포된다. 따라서, 이 반응은 고흡수성 수지 입자의 표면 상에서 일어나며, 이는 입자 내부에는 실질적으로 영향을 미치지 않으면서 입자의 표면 상에서의 가교 결합성은 개선시킨다. 따라서 표면 가교 결합된 고흡수성 수지 입자는 내부에서보다 표면 부근에서 더 높은 가교 결합도를 갖는다.
이때 상기 표면 가교제로는 중합체가 갖는 관능기와 반응 가능한 화합물이라면 그 구성의 한정이 없다.
바람직하게는 생성되는 고흡수성 수지의 특성을 향상시키기 위해, 상기 표면 가교제로 다가 알콜 화합물; 에폭시 화합물; 폴리아민 화합물; 할로에폭시 화합물; 할로에폭시 화합물의 축합 산물; 옥사졸린 화합물류; 모노-, 디- 또는 폴리옥사졸리디논 화합물; 환상 우레아 화합물; 다가 금속염; 및 알킬렌 카보네이트 화합물로 이루어진 군에서 선택되는 1 종 이상을 사용할 수 있다.
구체적으로, 다가 알콜 화합물의 예로는 모노-, 디-, 트리-, 테트라- 또는 폴리에틸렌 글리콜, 모노프로필렌 글리콜, 1,3-프로판디올, 디프로필렌 글리콜, 2,3,4-트리메틸-1,3-펜탄디올, 폴리프로필렌 글리콜, 글리세롤, 폴리글리세롤, 2-부텐-1,4-디올, 1,4-부탄디올, 1,3-부탄디올, 1,5-펜탄디올, 1,6-헥산디올, 및 1,2-사이클로헥산디메탄올로 이루어진 군에서 선택되는 1 종 이상을 사용할 수 있다.
또한, 에폭시 화합물로는 에틸렌 글리콜 디글리시딜 에테르 및 글리시돌 등을 사용할 수 있으며, 폴리아민 화합물류로는 에틸렌디아민, 디에틸렌트리아민, 트리에틸렌테트라아민, 테트라에틸렌펜타민, 펜타에틸렌헥사민, 폴리에틸렌이민 및 폴리아미드폴리아민로 이루어진 군에서 선택되는 1 종 이상을 사용할 수 있다.
그리고 할로에폭시 화합물로는 에피클로로히드린, 에피브로모히드린 및 α-메틸에피클로로히드린을 사용할 수 있다. 한편, 모노-, 디- 또는 폴리옥사졸리디논 화합물로는 예를 들어 2-옥사졸리디논 등을 사용할 수 있다.
그리고, 알킬렌 카보네이트 화합물로는 에틸렌 카보네이트 등을 사용할 수 있다. 이들을 각각 단독으로 사용하거나 서로 조합하여 사용할 수도 있다. 한편, 표면 가교 공정의 효율을 높이기 위해, 이들 표면 가교제 중에서 1 종 이상의 다가 알코올 화합물을 포함하여 사용하는 것이 바람직하며, 더욱 바람직하게는 탄소수 2 내지 10의 다가 알코올 화합물류를 사용할 수 있다.
상기 첨가되는 표면 가교제의 함량은 구체적으로 추가되는 표면 가교제의 종류나 반응 조건에 따라 적절히 선택될 수 있지만, 통상 중합체 100 중량부에 대해, 약 0.001 내지 약 5 중량부, 바람직하게는 약 0.01 내지 약 3 중량부, 더욱 바람직하게는 약 0.03 내지 약 2 중량부를 사용할 수 있다.
표면 가교제의 함량이 지나치게 적으면, 표면 가교 반응이 거의 일어나지 않으며, 중합체 100 중량부에 대해, 5 중량부를 초과하는 경우, 과도한 표면 가교 반응의 진행으로 인해 흡수능력 및 물성의 저하 현상이 발생할 수 있다.
표면 가교제가 첨가된 중합체 입자에 대해 가열시킴으로써 표면 가교 결합 반응 및 건조가 동시에 이루어질 수 있다.
표면 가교 반응을 위한 승온 수단은 특별히 한정되지 않는다. 열매체를 공급하거나, 열원을 직접 공급하여 가열할 수 있다. 이때, 사용 가능한 열매체의 종류로는 스팀, 열풍, 뜨거운 기름과 같은 승온한 유체 등을 사용할 수 있으나, 본 발명이 이에 한정되는 것은 아니며, 또한 공급되는 열매체의 온도는 열매체의 수단, 승온 속도 및 승온 목표 온도를 고려하여 적절히 선택할 수 있다. 한편, 직접 공급되는 열원으로는 전기를 통한 가열, 가스를 통한 가열 방법을 들 수 있으나, 상술한 예에 본 발명이 한정되는 것은 아니다.
상술한 방법으로 제조된 미분 재조립체는 흡습성이 우수한 섬유를 포함하여 기본적인 흡수 물성이 우수하면서도 흡수 속도가 매우 우수하다. 즉, 본 발명의 제조방법에 따르면 흡습성 섬유가 미분 재조립 단계에서 미분과 함께 혼합되므로, 섬유의 적어도 일부가 미분 재조립체 입자를 관통하여 혼입되고, 이렇게 혼입된 섬유가 주위의 수분을 빠르게 흡수한 후 미분 재조립체로 전달할 수 있어, 단순히 미분 재조립체와 흡습성 섬유를 혼합한 복합체와 비교하여 현저히 향상된 흡수 속도를 가질 수 있다.
이에, 본 발명의 일 구현예 따르면, 산성기를 포함하고 상기 산성기의 적어도 일부가 중화된 수용성 에틸렌계 불포화 단량체를 중합시킨 중합체 중 입경이 150 ㎛ 미만인 미분; 및 플러프 펄프 및 합성 고분자 섬유 중 1 종 이상의 섬유를 혼합하여 재조립된 미분 재조립체를 포함하는 고흡수성 수지가 제공된다.
상기 고흡수성 수지에 포함되는 미분 재조립체에서, 섬유의 적어도 일부는 미분 재조립체 입자 내부를 관통하여 혼입되어 있을 수 있다. 즉, 섬유는 미분 재조립체의 입자 내부 및 외부에 분포하여, 주위의 수분을 빠르게 흡수하고 이를 미분 재조립체 입자에 전달함으로써 흡수 속도 향상에 기여할 수 있다.
상기 미분 재조립체는 미분 100 중량부에 대하여 섬유를 1 중량부 이상, 2 중량부 이상, 또는 5 중량부 이상이면서, 20 중량부 미만, 15 중량부 이하, 또는 10 중량부 이하로 포함 수 있다. 섬유의 함량이 상기 범위를 만족할 때, 보수능, 가압 흡수능 등의 기본적인 흡수 물성이 우수하게 유지되면서도, 흡수 속도 향상 효과를 확보할 수 있다.
상기 고흡수성 수지는, EDANA 법 WSP 241.3에 따라 측정한 보수능(CRC)이 약 30 g/g 이상, 32 g/g 이상, 또는 약 33 g/g 이상이면서, 약 45 g/g 이하, 40 g/g 이하, 또는 약 35 g/g 이하의 범위를 가질 수 있다.
또, 상기 고흡수성 수지는 EDANA 법 WSP 242.3에 따라 측정한 0.3 psi의 가압 흡수능(AUL)이 25 g/g 이상, 또는 27 g/g 이상이면서, 40 g/g 이하, 또는 30 g/g 이하일 수 있다.
또, 상기 고흡수성 수지는 23 °C 내지 24 °C의 50 mL의 생리 식염수에 2 g의 고흡수성 수지를 넣고, 마그네틱 바(직경 8 mm, 길이 31.8 mm)를 600 rpm으로 교반하여 와류(vortex)가 사라질 때까지의 시간(초)으로 측정되는 흡수 속도(vortex time)가 60초 이하, 또는 50초 이하일 수 있다. 상기 흡수 속도는 낮을수록 우수한 것으로서 그 하한값은 제한되지 않으나, 일례로 10초 이상, 또는 20초 이상일 수 있다.
이하 본 발명을 실시예에 기초하여 더욱 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다. 또한, 이하의 실시예, 비교예에서 함유량을 나타내는 "%" 및 "부"는 특별히 언급하지 않는 한 질량 기준이다.
<실시예>
제조예 1
아크릴산 100 g, 가교제로 폴리에틸렌글리콜 디아크릴레이트(PEGDA, Mw = 523) 3.0 g, 광개시제로 페닐비스(2,4,6-트리메틸벤조일)포스핀 옥사이드 0.008 g, 열 개시제로 소듐퍼설페이트(SPS) 0.08 g, 가성소다(NaOH) 128 g, 및 물 63.5 g을 혼합하였다. 여기에, 하기 표 1의 각 섬유를 모노머 조성물 100 중량부 기준으로 각각 5 중량부 투입하여, 모노머 조성물을 제조하였다.
이후, 상기 모노머 조성물을 연속 이동하는 콘베이어 벨트상에 투입하고 자외선을 조사(조사량: 2 mW/cm2)하여 2분 동안 UV 중합을 진행하여 함수겔상 중합체 시트를 얻었다.
상기 함수겔상 중합체 시트를 3 cm x 3 cm 크기로 자른 후, 미트 쵸퍼(홀 크기 16 mm, 속도 60 Hz)로 다져, 가루(crumb)를 제조하였다. 상기 가루(crumb)를 상하로 풍량 전이가 가능한 오븐에서 건조하였다. 구체적으로, 185 °C의 핫 에어(hot air)를 15분은 하방에서 상방으로, 15분은 상방에서 하방으로 흐르게 하여 균일하게 건조하였으며, 건조 후 건조체의 함수량은 2 % 이하가 되도록 하였다.
상기 건조된 중합체를 분쇄기로 분쇄한 다음, amplitude 1.5 mm로 10분간 분급(mesh 조합, #20 / #30 / #50 / #100)하였으며, 150 ㎛ 내지 850 ㎛의 입자 크기를 갖는 정상 입자와, 150㎛ 미만의 입경을 갖는 미분 입자를 수득하였다.
실시예 1 내지 9
(1) 미분 재조립체의 제조
제조예 1에서 수득된 입경 150 ㎛ 미만의 미분 100 중량부에 대하여, 하기 표 1의 각 섬유를 표 1의 중량으로 투입하고 1분간 혼합한 다음, 물 150 중량부를 투입하고 추가로 10초간 혼합하여 미분 재조립체를 제조하였다.
(2) 미분 재조립체를 포함하는 고흡수성 수지의 제조
상기 제조예 1에서 미트 쵸퍼(홀 크기 16 mm)로 분쇄한 함수겔상 중합체와 상기 미분 재조립체를 75:25 중량비로 혼합하여, 조분쇄 함수겔상 중합체를 얻었다. 이후, 제조예 1과 동일한 방법으로 건조, 분쇄, 분급 단계를 거쳐 베이스 수지를 제조하였다.
이후, 상기 제조한 베이스 수지 100 중량부에, 표면 가교액(물 6.2 중량부, 메탄올 6.2 중량부, 에틸렌글리콜 디글리시딜 에테르 0.03 중량부, 실리카 Aerosil200 0.01 중량부)을 고르게 혼합한 후, 140 ℃에서 30분 동안 표면 가교 반응을 진행하였다. 상기 표면 처리 완료 후, 시브(sieve)를 이용하여 평균입경 850 ㎛ 이하인 고흡수성 수지를 얻었다.
비교예 1
미분 재조립체 제조 시 섬유를 투입하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 미분 재조립체를 포함하는 고흡수성 수지를 제조하였다.
비교예 2
미분 재조립체 제조 시 플러프 펄프를 미분 100 중량부에 대하여 20 중량부로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 미분 재조립체를 포함하는 고흡수성 수지를 제조하였다.
비교예 3
상기 비교예 1의 고흡수성 수지 100 중량부에, 실시예 1에서 사용된 플러프 펄프 5 중량부를 첨가하고 혼합하여 고흡수성 수지를 제조하였다.
<실험예>
상기 각 실시예 및 비교예에서 제조된 고흡수성 수지에 대하여 하기 방법으로 물성을 측정하였고, 그 결과를 표 1에 나타내었다.
(1) 원심분리 보수능 (CRC, Centrifugal Retention Capacity)
각 수지의 무하중하 흡수 배율에 의한 보수능을 EDANA WSP 241.3에 따라 측정하였다.
구체적으로, 실시예 및 비교예를 통해 각각 얻은 수지에서, #40-50의 체로 분급한 수지를 얻었다. 이러한 수지 W0(g) (약 0.2g)을 부직포제의 봉투에 균일하게 넣고 밀봉(seal)한 후, 상온에서 생리식염수(0.9 중량%)에 침수시켰다. 30분 경과 후, 원심 분리기를 이용하여 250G의 조건 하에서 상기 봉투로부터 3분간 물기를 빼고, 봉투의 질량 W2(g)을 측정하였다. 또, 수지를 이용하지 않고 동일한 조작을 한 후에 그때의 질량 W1(g)을 측정하였다. 얻어진 각 질량을 이용하여 다음과 같은 식에 따라 CRC(g/g)를 산출하였다.
[수학식 1]
Figure PCTKR2019016486-appb-I000001
(2) 가압 흡수능 (AUL, Absorbency under Load)
각 수지의 0.3 psi의 가압 흡수능을, EDANA법 WSP 242.3에 따라 측정하였다. 가압 흡수능 측정시에는, 상기 CRC 측정시의 수지 분급분을 사용하였다.
구체적으로, 내경 25 mm의 플라스틱의 원통 바닥에 스테인레스제 400 mesh 철망을 장착시켰다. 상온 및 습도 50 %의 조건 하에서 철망 상에 흡수성 수지 W3(g) (0.16 g)을 균일하게 살포하고, 그 위에 0.3 psi의 하중을 균일하게 더 부여할 수 있는 피스톤은 외경 25 mm 보다 약간 작고 원통의 내벽과 틈이 없고 상하 움직임이 방해 받지 않게 하였다. 이때 상기 장치의 중량 W4(g)을 측정하였다.
직경 150 mm의 페트로 접시의 내측에 직경 90mm 및 두께 5mm의 유리 필터를 두고, 0.9 중량% 염화나트륨으로 구성된 생리식염수를 유리 필터의 윗면과 동일 레벨이 되도록 하였다. 그 위에 직경 90mm의 여과지 1장을 실었다. 여과지 위에 상기 측정 장치를 싣고, 액을 하중 하에서 1시간 동안 흡수시켰다. 1시간 후 측정 장치를 들어올리고, 그 중량 W5(g)을 측정하였다.
얻어진 각 질량을 이용하여 다음 식에 따라 가압 흡수능(g/g)을 산출하였다.
[수학식 2]
Figure PCTKR2019016486-appb-I000002
(3) 흡수 속도(vortex)
각 수지의 흡수 속도는 국제특허 공개번호 제1987-003208호에 기재된 방법에 준하여 초 단위로 측정되었다.
구체적으로, 흡수 속도(혹은 vortex time)는 23 °C 내지 24 °C의 50 mL의 생리 식염수에 2 g의 고흡수성 수지를 넣고, 마그네틱 바(직경 8 mm, 길이 31.8 mm)를 600 rpm으로 교반하여 와류(vortex)가 사라질 때까지의 시간을 초 단위로 측정하여 산출되었다.
Figure PCTKR2019016486-appb-T000001
*섬유의 평균 길이는 섬유 100개를 무작위로 선택하여 도출한 길이의 평균 값임.
상기 표 1을 참조하면, 본 발명에 따라 제조된 고흡수성 수지는 CRC, AUL 등 기본적인 물성이 우수하면서도, 섬유를 포함하지 않는 비교예 1 및 섬유를 단순 혼합한 비교예 3과 비교하여 현저히 개선된 흡수 속도를 나타내는 것을 확인할 수 있다. 그러나 플러프 펄프 함량이 지나치게 높을 경우, 흡수 속도는 향상시킬 수 있으나, CRC, AUL 등의 기본적인 흡수 물성이 저하되는 것을 비교예 2를 통하여 확인할 수 있다.

Claims (15)

  1. 수용성 에틸렌계 불포화 단량체 및 중합개시제를 포함하는 단량체 조성물을 열중합 또는 광중합하여 함수겔상 중합체를 제조하는 단계;
    상기 함수겔상 중합체를 건조, 분쇄 및 분급하여, 150 ㎛ 미만의 입경을 갖는 미분 및 150 내지 850 ㎛의 입경을 갖는 정상 입자로 분급하는 단계;
    플러프 펄프 및 합성 고분자 섬유 중 1 종 이상의 섬유와, 상기 미분 및 물을 혼합하여 미분 수용액을 제조하는 단계; 및
    상기 미분 수용액을 교반하여 미분 재조립체를 제조하는 단계를 포함하는 고흡수성 수지의 제조방법.
  2. 제1항에 있어서,
    상기 미분 수용액은 미분 100 중량부에 대하여 섬유를 1 중량부 이상 내지 20 중량부 미만으로 포함하는 고흡수성 수지의 제조방법.
  3. 제1항에 있어서,
    상기 섬유의 길이는 1 내지 20 mm 인 고흡수성 수지의 제조방법.
  4. 제1항에 있어서,
    상기 섬유의 너비는 1 내지 100 ㎛ 인 고흡수성 수지의 제조방법.
  5. 제1항에 있어서,
    상기 합성 고분자 섬유는 나일론, 폴리프로필렌, 폴리에틸렌, 폴리에스터, 폴리아크릴로니트릴, 폴리염화비닐, 폴리비닐알콜, 폴리아크릴레이트, 및 아세테이트로 이루어지는 군에서 선택되는 1종 이상인, 고흡수성 수지의 제조방법.
  6. 제1항에 있어서,
    상기 미분 수용액은 미분 100 중량부에 대하여 물을 50 내지 150 중량부로 포함하는, 고흡수성 수지의 제조방법.
  7. 제1항에 있어서,
    상기 미분 재조립체를 건조, 분쇄 및 분급하는 단계를 더 포함하는, 고흡수성 수지의 제조방법.
  8. 제7항에 있어서,
    상기 분쇄 및 분급한 미분 재조립체를 표면 가교하는 단계를 더 포함하는, 고흡수성 수지의 제조방법.
  9. 제1항 내지 제8항 중 어느 한 항의 제조방법에 의하여 제조된 고흡수성 수지.
  10. 산성기를 포함하고 상기 산성기의 적어도 일부가 중화된 수용성 에틸렌계 불포화 단량체를 중합시킨 중합체 중 입경이 150 ㎛ 미만인 미분; 및 플러프 펄프 및 합성 고분자 섬유 중 1 종 이상의 섬유를 혼합하여 재조립된 미분 재조립체를 포함하는 고흡수성 수지.
  11. 제10항에 있어서,
    상기 섬유의 적어도 일부는 미분 재조립체 입자 내부를 관통하여 혼입되어 있는 것인, 고흡수성 수지.
  12. 제10항에 있어서,
    상기 미분 재조립체는 미분 100 중량부에 대하여 섬유를 1 중량부 이상 내지 20 중량부 미만으로 포함하는, 고흡수성 수지.
  13. 제10항에 있어서,
    EDANA 법 WSP 241.3에 따라 측정한 원심분리 보수능(CRC)이 30 내지 45 g/g 인, 고흡수성 수지.
  14. 제10항에 있어서,
    EDANA 법 WSP 242.3에 따라 측정한 0.3 psi의 가압 흡수능(AUL)이 25 내지 40 g/g 인, 고흡수성 수지.
  15. 제10항에 있어서,
    흡수 속도(vortex time)가 60초 이하인, 고흡수성 수지.
PCT/KR2019/016486 2018-12-11 2019-11-27 고흡수성 수지의 제조방법, 및 고흡수성 수지 WO2020122471A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980010288.1A CN111655765B (zh) 2018-12-11 2019-11-27 制备超吸收性聚合物的方法和超吸收性聚合物
EP19895283.0A EP3722352A4 (en) 2018-12-11 2019-11-27 METHOD OF MANUFACTURING A SUPERABSORBENT POLYMER AND SUPERABSORBENT POLYMER
US16/968,784 US20200398251A1 (en) 2018-12-11 2019-11-27 Method of Preparing Superabsorbent Polymer and Superabsorbent Polymer
JP2020542558A JP7039108B2 (ja) 2018-12-11 2019-11-27 高吸水性樹脂の製造方法、および高吸水性樹脂

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180158920 2018-12-11
KR10-2018-0158920 2018-12-11
KR1020190152657A KR102568227B1 (ko) 2018-12-11 2019-11-25 고흡수성 수지의 제조방법, 및 고흡수성 수지
KR10-2019-0152657 2019-11-25

Publications (1)

Publication Number Publication Date
WO2020122471A1 true WO2020122471A1 (ko) 2020-06-18

Family

ID=71077391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016486 WO2020122471A1 (ko) 2018-12-11 2019-11-27 고흡수성 수지의 제조방법, 및 고흡수성 수지

Country Status (1)

Country Link
WO (1) WO2020122471A1 (ko)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5986657A (ja) 1982-11-09 1984-05-18 Nippon Shokubai Kagaku Kogyo Co Ltd 高吸収性樹脂組成物
JPS6162463A (ja) 1984-08-31 1986-03-31 三洋化成工業株式会社 吸収材およびその製造法
WO1987003208A1 (fr) 1985-11-22 1987-06-04 Beghin-Say Sa Procede de preparation d'une composition absorbant les liquides
JPS6363723A (ja) 1986-09-03 1988-03-22 Kao Corp 吸液性複合体
EP0812873B1 (en) 1995-12-27 2003-10-22 Nippon Shokubai Co., Ltd. Water absorbent and process and equipment for the production thereof
EP0844270B1 (en) 1996-11-20 2004-11-17 Sanyo Chemical Industries, Ltd. Water absorbing agent and method of producing the same
JP2013034942A (ja) * 2011-08-08 2013-02-21 Nippon Shokubai Co Ltd 粒子状吸水剤の製造方法
KR20140063457A (ko) 2012-11-15 2014-05-27 주식회사 엘지화학 고흡수성 수지의 제조 방법 및 이로부터 제조되는 고흡수성 수지
KR20150032045A (ko) * 2013-09-17 2015-03-25 주식회사 엘지화학 고흡수성 수지의 제조 방법
KR20150061270A (ko) * 2013-11-27 2015-06-04 주식회사 엘지화학 고흡수성 수지 및 그 제조 방법
KR20160144902A (ko) * 2015-06-09 2016-12-19 주식회사 엘지화학 고흡수성 수지의 미분 재조립체를 포함하는 고흡수성 수지의 제조 방법 및 이로부터 제조된 고흡수성 수지
KR20170132799A (ko) * 2015-03-31 2017-12-04 가부시키가이샤 닛폰 쇼쿠바이 폴리아크릴산(염)계 흡수성 수지 분말 및 그의 제조 방법, 및 그의 평가 방법

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5986657A (ja) 1982-11-09 1984-05-18 Nippon Shokubai Kagaku Kogyo Co Ltd 高吸収性樹脂組成物
JPS6162463A (ja) 1984-08-31 1986-03-31 三洋化成工業株式会社 吸収材およびその製造法
WO1987003208A1 (fr) 1985-11-22 1987-06-04 Beghin-Say Sa Procede de preparation d'une composition absorbant les liquides
JPS6363723A (ja) 1986-09-03 1988-03-22 Kao Corp 吸液性複合体
EP0812873B1 (en) 1995-12-27 2003-10-22 Nippon Shokubai Co., Ltd. Water absorbent and process and equipment for the production thereof
EP0844270B1 (en) 1996-11-20 2004-11-17 Sanyo Chemical Industries, Ltd. Water absorbing agent and method of producing the same
JP2013034942A (ja) * 2011-08-08 2013-02-21 Nippon Shokubai Co Ltd 粒子状吸水剤の製造方法
KR20140063457A (ko) 2012-11-15 2014-05-27 주식회사 엘지화학 고흡수성 수지의 제조 방법 및 이로부터 제조되는 고흡수성 수지
KR20150032045A (ko) * 2013-09-17 2015-03-25 주식회사 엘지화학 고흡수성 수지의 제조 방법
KR20150061270A (ko) * 2013-11-27 2015-06-04 주식회사 엘지화학 고흡수성 수지 및 그 제조 방법
KR20170132799A (ko) * 2015-03-31 2017-12-04 가부시키가이샤 닛폰 쇼쿠바이 폴리아크릴산(염)계 흡수성 수지 분말 및 그의 제조 방법, 및 그의 평가 방법
KR20160144902A (ko) * 2015-06-09 2016-12-19 주식회사 엘지화학 고흡수성 수지의 미분 재조립체를 포함하는 고흡수성 수지의 제조 방법 및 이로부터 제조된 고흡수성 수지

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BUCHHOLZ FREDRIC L., GRAHAM ANDREW T.: "Modern Superabsorbent Polymer Technology", 1 January 1998, pages: 69 - 103, 150 - 153, 212 - 215, XP055979890
ODIAN: "Principle of Polymerization", 1981, WILEY, pages: 203
REINHOLD SCHWALM: "UV Coatings: Basics, Recent Developments and New Application", 2007, ELSEVIER, pages: 115
See also references of EP3722352A4

Similar Documents

Publication Publication Date Title
WO2015084059A1 (ko) 고흡수성 수지의 제조방법
WO2016200041A1 (ko) 고흡수성 수지의 미분 재조립체를 포함하는 고흡수성 수지의 제조 방법 및 이로부터 제조된 고흡수성 수지
WO2017010660A1 (ko) 고흡수성 수지의 제조 방법 및 이로부터 제조된 고흡수성 수지
US9808787B2 (en) Super absorbent polymer and preparation method thereof
KR101704789B1 (ko) 고흡수성 수지
WO2016175427A1 (ko) 고흡수성 수지의 제조방법
WO2016175428A1 (ko) 고흡수성 수지의 제조방법
WO2020122442A1 (ko) 고흡수성 수지의 제조 방법
KR102555379B1 (ko) 고흡수성 수지의 제조 방법
KR102215025B1 (ko) 고흡수성 수지의 제조 방법 및 이러한 방법으로 얻은 고흡수성 수지
WO2020145533A1 (ko) 고흡수성 수지의 제조 방법
WO2016200010A1 (ko) 내파쇄성 고흡수성 수지 및 그 제조방법
KR101595037B1 (ko) 고흡수성 수지의 제조 방법
KR20140036866A (ko) 고흡수성 수지의 제조 방법
WO2016104926A1 (ko) 파쇄 저항성 고흡수성 수지 및 그 제조 방법
KR20210038081A (ko) 고흡수성 수지의 제조 방법
WO2020067705A1 (ko) 고흡수성 수지의 제조 방법 및 고흡수성 수지
KR102568227B1 (ko) 고흡수성 수지의 제조방법, 및 고흡수성 수지
EP3456760A1 (en) Super absorbent polymer and preparation method therefor
WO2020122471A1 (ko) 고흡수성 수지의 제조방법, 및 고흡수성 수지
WO2015199363A1 (ko) 수용성 염을 포함하는 고흡수성 수지 및 그 제조 방법
KR20210033408A (ko) 고흡수성 수지의 제조 방법
WO2016111446A1 (ko) 미세입자를 포함하는 수분산액으로 처리된 고흡수성 수지의 제조 방법
WO2020122426A1 (ko) 고흡수성 수지 및 이의 제조 방법
WO2020122390A1 (ko) 고흡수성 수지 및 이의 제조 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019895283

Country of ref document: EP

Effective date: 20200708

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19895283

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020542558

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE