WO2020196522A1 - モジュール - Google Patents
モジュール Download PDFInfo
- Publication number
- WO2020196522A1 WO2020196522A1 PCT/JP2020/013022 JP2020013022W WO2020196522A1 WO 2020196522 A1 WO2020196522 A1 WO 2020196522A1 JP 2020013022 W JP2020013022 W JP 2020013022W WO 2020196522 A1 WO2020196522 A1 WO 2020196522A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- view
- module
- plan
- linear conductor
- present
- Prior art date
Links
- 239000004020 conductor Substances 0.000 claims abstract description 196
- 229920005989 resin Polymers 0.000 claims abstract description 79
- 239000011347 resin Substances 0.000 claims abstract description 79
- 238000007789 sealing Methods 0.000 claims abstract description 59
- 239000000758 substrate Substances 0.000 claims abstract description 42
- 230000002093 peripheral effect Effects 0.000 claims abstract description 11
- 239000002344 surface layer Substances 0.000 claims description 12
- 230000004048 modification Effects 0.000 description 63
- 238000012986 modification Methods 0.000 description 63
- 239000010410 layer Substances 0.000 description 48
- 230000000052 comparative effect Effects 0.000 description 23
- 238000004519 manufacturing process Methods 0.000 description 15
- 230000006866 deterioration Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/34—Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
- H01F27/36—Electric or magnetic shields or screens
- H01F27/363—Electric or magnetic shields or screens made of electrically conductive material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/0006—Printed inductances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/32—Insulating of coils, windings, or parts thereof
- H01F27/327—Encapsulating or impregnating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/0006—Printed inductances
- H01F2017/0053—Printed inductances with means to reduce eddy currents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/0006—Printed inductances
- H01F2017/008—Electric or magnetic shielding of printed inductances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/34—Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
- H01F2027/348—Preventing eddy currents
Definitions
- the present invention relates to a module.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2013-38162
- Patent Document 2 Japanese Patent Application Laid-Open No. 2012-9745
- the module described in Patent Document 1 includes a substrate, an electronic component, a resin layer, and a shield layer.
- the electronic components are mounted on the board.
- the resin layer seals the electronic components.
- the shield layer is provided on the upper surface and the side surface of the resin layer.
- the shield layer is provided with a plurality of tubular holes leading to the resin layer on the upper surface side of the resin layer.
- the module described in Patent Document 2 includes a substrate, electronic components, a sealing resin, and a shield layer.
- the electronic components are mounted on the board.
- the sealing resin is formed on the substrate by sealing the electronic components.
- the shield layer has a first predetermined pattern of openings in a plan view so as to cover a part of the sealing resin.
- the shield layers are formed in a grid pattern in a plan view.
- an inductor may be mounted as an electronic component mounted on a board.
- the magnetic field lines generated by the current flowing through the inductor reach the shield layer.
- Eddy currents are generated in the shield layer with these magnetic lines of force as the central axis.
- the eddy current generates a magnetic field that cancels the magnetic field generated by the magnetic field lines. Therefore, the magnetic field generated by the eddy current may deteriorate the electrical characteristics of the inductor.
- the present invention has been made in view of the above problems, and an object of the present invention is to provide a module capable of suppressing a decrease in electrical characteristics of an inductor due to a magnetic field created by an eddy current.
- the module based on the present invention includes a substrate, one or more inductors, a resin sealing portion, a ground conductor portion, and a linear conductor portion.
- the substrate has a main surface, and each of the one or more inductors is arranged on the main surface.
- the resin sealing portion seals one or more inductors and covers the main surface of the substrate.
- the ground conductor portion is arranged on the outer peripheral side of the substrate with respect to the entire one or more inductors in a plan view.
- the plurality of linear conductor portions are electrically connected to the ground conductor portion.
- the plurality of linear conductor portions are formed on the resin sealing portion. In a plan view, the plurality of linear conductor portions are arranged with a gap between them so that one or more inductors overlap with at least one of the plurality of linear conductor portions.
- the present invention it is possible to suppress a decrease in the electrical characteristics of the inductor due to the magnetic field created by the eddy current.
- FIG. 1 It is a top view of the module which concerns on Embodiment 1 of this invention. It is sectional drawing which saw the module of FIG. 1 from the direction of the arrow of line II-II. It is sectional drawing which shows the state which provided the resin sealing part on the substrate which provided the inductor on the main surface in the manufacturing method of the module which concerns on Embodiment 1 of this invention. It is sectional drawing which shows the state which provided the conductive layer in the resin sealing part in the manufacturing method of the module which concerns on Embodiment 1 of this invention. It is sectional drawing which shows the state which provided the through groove in the conductive layer in the manufacturing method of the module which concerns on Embodiment 1 of this invention. It is a top view of the module which concerns on Comparative Example 1. FIG.
- FIG. 6 is a cross-sectional view of the module of FIG. 6 as viewed from the direction of the arrow along line VII-VII.
- FIG. 5 is a schematic perspective view showing a state in which an eddy current is generated in the conductive layer in the module according to Comparative Example 1. It is a top view of the module which concerns on Comparative Example 2.
- 9 is a cross-sectional view of the module of FIG. 9 as viewed from the direction of the XX line arrow.
- FIG. 5 is a schematic perspective view showing a state in which an eddy current is generated in the conductive layer in the module according to Comparative Example 2.
- FIG. 5 is a schematic perspective view showing a state in which an eddy current is generated in the conductive layer in the module according to the first embodiment of the present invention.
- FIG. 15 is a cross-sectional view of the module of FIG. 15 as viewed from the direction of the arrow along the XVI-XVI line. It is a top view of the module which concerns on the 3rd modification of Embodiment 1 of this invention.
- FIG. 17 is a cross-sectional view of the module of FIG. 17 as viewed from the direction of the arrow along the line XVIII-XVIII.
- FIG. 19 is a cross-sectional view of the module of FIG. 19 as viewed from the direction of the XX-XX line arrow. It is a top view of the module which concerns on 5th modification of Embodiment 1 of this invention.
- FIG. 21 is a cross-sectional view of the module of FIG. 21 as viewed from the direction of the arrow along the line XXII-XXII. It is a top view of the module which concerns on Embodiment 2 of this invention. It is sectional drawing which saw the module of FIG. 23 from the direction of the arrow of XXIV-XXIV line.
- FIG. 28 is a cross-sectional view of the module of FIG. 28 as viewed from the direction of the XXIX-XXIX line arrow.
- FIG. 30 is a cross-sectional view of the module of FIG. 30 as viewed from the direction of the arrow along the XXXI-XXXI line. It is a top view of the module which concerns on the 3rd modification of Embodiment 2 of this invention.
- FIG. 32 is a cross-sectional view of the module of FIG. 32 as viewed from the direction of the arrow along the line XXXIII-XXXIII. It is a top view of the module which concerns on 4th modification of Embodiment 2 of this invention.
- FIG. 34 is a cross-sectional view of the module of FIG.
- FIG. 34 is a cross-sectional view of the module of FIG. 36 as viewed from the direction of the arrow along the line XXXVII-XXXVII. It is a top view of the module which concerns on the 6th modification of Embodiment 2 of this invention.
- FIG. 1 is a plan view of the module according to the first embodiment of the present invention.
- FIG. 2 is a cross-sectional view of the module of FIG. 1 as viewed from the direction of the arrow along line II-II.
- the module 100 includes a substrate 110, one or more inductors 120, a resin sealing portion 130, a ground conductor portion 140, and a linear conductor portion. It includes 150 and a resin surface layer portion 160. In FIG. 1, the resin surface layer portion 160 is not shown.
- the substrate 110 has a main surface 111.
- the normal direction of the main surface 111 is the plan view direction of the module 100.
- the substrate 110 is, for example, a multilayer substrate made of ceramic.
- the board 110 may be a printed wiring board.
- a plurality of inductors 120 are arranged on the main surface 111. Further, only one inductor 120 may be arranged on the main surface 111. As described above, in the present embodiment, each of the one or more inductors 120 is arranged on the main surface 111. An electronic component other than the inductor 120 may be provided on the main surface 111.
- At least one of the one or more inductors 120 is a coil having a central axis parallel to the main surface 111 of the substrate 110.
- the shape conductor 121 is included.
- the central axis of the coiled conductor 121 is parallel to the main surface 111 of the substrate 110.
- the central axes of the coiled conductors 121 are arranged so as to be parallel to each other.
- the coiled conductor 121 is schematically shown.
- the coiled conductor 121 may be a pattern wiring or a winding.
- the coiled conductor 121 is electrically connected to and from a mother substrate (not shown) via the substrate 110.
- the resin sealing portion 130 seals one or more inductors 120 and covers the main surface 111 of the substrate 110.
- the resin sealing portion 130 covers the entire main surface 111 of the substrate 110 except for the portion where the inductor 120 is provided.
- a plurality of ridge portions 133 are formed on the upper surface of the resin sealing portion 130.
- the plurality of ridge portions 133 are arranged so as to correspond to the plurality of linear conductor portions 150.
- the plurality of ridge portions 133 are arranged so as to overlap the plurality of linear conductor portions 150.
- the material constituting the resin sealing portion 130 is not particularly limited.
- the resin sealing portion 130 is made of, for example, an epoxy resin.
- the ground conductor portion 140 is arranged on the outer peripheral side of the substrate 110 with respect to the entire one or more inductors 120 in a plan view.
- the ground conductor portion 140 is arranged in the first region 131 located on the outer peripheral side of one or more inductors 120 on the resin sealing portion 130 in a plan view.
- the ground conductor portion 140 has a rectangular annular outer shape along a portion of the first region 131 corresponding to the outer peripheral edge of the substrate 110.
- the ground conductor portion 140 has a side surface portion 141.
- the side surface portion 141 is arranged so as to cover the entire peripheral side surface of each of the substrate 110 and the resin sealing portion 130.
- the ground conductor portion 140 is electrically grounded by being connected to the ground (GND) at the side surface portion 141.
- the ground conductor portion 140 shields electromagnetic waves from the outside of the module 100 to prevent noise from entering the inductor 120 or other electronic components arranged on the main surface 111 of the substrate 110. it can.
- each of the plurality of linear conductor portions 150 is electrically connected to the ground conductor portion 140.
- each of the plurality of linear conductor portions 150 extends so as to connect two different sides of the ground conductor portion 140.
- each of the plurality of linear conductor portions 150 extends so as to connect two opposite sides of the ground conductor portion 140. That is, each of the plurality of linear conductor portions 150 is connected to the ground conductor portion 140 at each of both end portions thereof.
- each of the plurality of linear conductor portions 150 may be configured to be connected to the ground conductor portion 140 only at one end by extending from the ground conductor portion 140 in a plan view.
- each of the linear conductor portions 150 in the present embodiment extends in a direction parallel to the short side of the ground conductor portion 140. Further, in a plan view, each of the linear conductor portions 150 extends in a direction intersecting the central axis of each coiled conductor 121 of all the inductors 120. In the present embodiment, the central axes of the coiled conductors 121 of all the inductors 120 and the extending directions of the linear conductors 150 are orthogonal to each other.
- the plurality of linear conductor portions 150 have gaps 151 with each other so that one or more inductors 120 overlap with at least one of the plurality of linear conductor portions 150 in a plan view. It is arranged while being vacant.
- the plurality of linear conductor portions 150 are arranged with a gap 151 from each other so as to cover the second region 132 surrounded by the first region 131 in a plan view.
- each of the plurality of linear conductor portions 150 is arranged over the entire second region 132 by extending linearly so as to be parallel to each other. .. That is, in a plan view, the plurality of linear conductor portions 150 are arranged so as to overlap all the inductors 120.
- the width W C of the gap 151 in a plan view is designed to be 1/4 or less of the wavelength of the electromagnetic wave to be shielded by the plurality of linear conductor portions 150.
- the width W C of the gap 151 is, for example, 100 ⁇ m or 200 ⁇ m.
- the width W C of the gap 151 is smaller than the line width W L of each of the plurality of linear conductor portions 150.
- the dimensions of each of the line width W L of the plurality of linear conductors 150 is smaller than the size of one or more of the lateral direction of each of the inductors 120 length W I.
- the width of the gap formed between the plurality of linear conductor portions 150 and the ground conductor portion 140 in a plan view is formed so as to be substantially the same as the width W C of the gap 151. Has been done.
- the plurality of linear conductor portions 150 are formed on the resin sealing portion 130. Specifically, each of the plurality of linear conductor portions 150 is arranged on at least the upper end surface of each of the plurality of ridge portions 133. Each of the plurality of linear conductor portions 150 is arranged over the entire surface of the upper end surface, but may be arranged on a part of the upper end surface. Further, each of the plurality of linear conductor portions 150 may be arranged on the side surface of the plurality of ridge portions 133.
- the linear conductor portion 150 is electrically grounded by being electrically connected to the ground conductor portion 140 as described above. Therefore, the linear conductor portion 150 can prevent noise from entering the inductor 120 or other electronic components arranged on the main surface 111 of the substrate 110 by shielding the electromagnetic waves from the outside of the module 100. ..
- the resin surface layer portion 160 is arranged so as to cover at least a part of each of the resin sealing portion 130 and the plurality of linear conductor portions 150.
- the resin surface layer portion 160 is arranged so as to cover the entire upper surface of each of the resin sealing portion 130, the ground conductor portion 140, and the linear conductor portion 150, so that the upper end surface of the module 100 is covered. Consists of.
- the material constituting the resin surface layer 160 is not particularly limited, but the resin surface 160 is made of, for example, an epoxy resin.
- the material constituting the resin surface layer portion 160 may be the same as or different from the material constituting the resin sealing portion 130.
- FIG. 3 is a cross-sectional view showing a state in which a resin sealing portion is provided on a substrate in which an inductor is provided on a main surface in the method for manufacturing a module according to the first embodiment of the present invention.
- a plurality of inductors 120 are provided on the main surface 111 of the substrate 110.
- a resin sealing portion 130 is provided on the main surface 111 of the substrate 110 so as to seal the inductor 120 by molding or the like.
- FIG. 4 is a cross-sectional view showing a state in which a conductive layer is provided on the resin sealing portion in the method for manufacturing a module according to the first embodiment of the present invention.
- the conductive layer 145 is formed so as to cover the upper surface of the resin sealing portion 130 and the peripheral side surfaces of each of the resin sealing portion 130 and the substrate 110 by a sputtering method or the like.
- FIG. 5 is a cross-sectional view showing a state in which a through groove is provided in the conductive layer in the method for manufacturing a module according to the first embodiment of the present invention.
- a through groove is formed by irradiating the conductive layer 145 shown in FIG. 4 with a laser beam or performing a dicing process.
- the through groove forms the gap 151 in the present embodiment. That is, the conductive layer 145 is divided into a linear conductor portion 150 and a ground conductor portion 140 by the step. Further, by the irradiation of the laser beam or the dicing process, the upper surface of the portion of the resin sealing portion 130 located below the gap 151 is scraped. In the second region 132 of the resin sealing portion 130, a portion other than the portion cut by the irradiation of the laser beam or the dicing process becomes the convex portion 133.
- the resin surface layer portion 160 is provided by applying resin to the upper surfaces of each of the resin sealing portion 130, the ground conductor portion 140, and the linear conductor portion 150 and curing the resin.
- the module 100 according to the first embodiment of the present invention as shown in FIG. 2 is manufactured.
- the module 100 according to the first embodiment of the present invention it is possible to suppress the deterioration of the electrical characteristics of the inductor 120 due to the magnetic field generated by the eddy current described later.
- a mechanism for suppressing a decrease in the electrical characteristics of the inductor 120 will be described with reference to the following comparative examples.
- FIG. 6 is a plan view of the module according to Comparative Example 1.
- FIG. 7 is a cross-sectional view of the module of FIG. 6 as viewed from the direction of the arrow along the VII-VII line.
- the module 800 according to Comparative Example 1 is related to the first embodiment of the present invention in that the conductive layer 845 is mainly provided on the upper surface of the resin sealing portion 130. It is different from module 100.
- the conductive layer 845 has a plurality of circular through holes 870.
- Each of the plurality of through holes 870 penetrates the conductive layer 845 in the vertical direction. Further, in a plan view, the plurality of through holes 870 are arranged in a staggered pattern.
- FIG. 8 is a schematic perspective view showing a state in which an eddy current is generated in the conductive layer in the module according to Comparative Example 1.
- the magnetic field line B 0 is generated by the current I 0 flowing through the coiled conductor 121 of the inductor 120.
- the eddy current I 8 is generated along the in-plane direction of the conductive layer 845 by passing the magnetic field line B 0 through the conductive layer 845 in a direction substantially perpendicular to the plane direction of the conductive layer 845.
- the eddy current I 8 flows on a substantially circular path that orbits the central axis with the direction in which the magnetic field line B 0 passing through the conductive layer 845 is directed as the central axis direction.
- the eddy current I 8 generates a magnetic field line B 8 that points in a direction that cancels the magnetic field generated by the magnetic field line B 0 .
- the eddy current I 8 takes a path that bypasses the plurality of through holes 870.
- the relatively large magnetic field line B 8 generated by the eddy current I 8 weakens the magnetic field acting on the inductor 120 and deteriorates the electrical characteristics of the inductor 120.
- FIG. 9 is a plan view of the module according to Comparative Example 2.
- FIG. 10 is a cross-sectional view of the module of FIG. 9 as viewed from the direction of the XX line arrow.
- the module 900 according to Comparative Example 2 is based on the first embodiment of the present invention in that a conductive layer 945 is provided mainly on the upper surface of the resin sealing portion 130. It is different from the module 100.
- the conductive layer 945 has a plurality of rectangular openings 970.
- the conductive layer 945 is not formed in the opening 970. Further, the plurality of openings 970 are arranged so that the conductive layer 945 has a grid-like outer shape in a plan view.
- FIG. 11 is a schematic perspective view showing a state in which an eddy current is generated in the conductive layer in the module according to Comparative Example 2.
- an eddy current I 9 is generated along the in-plane direction of the conductive layer 945.
- the eddy current I 9 generates a magnetic field line B 9 that points in a direction that cancels the magnetic field generated by the magnetic field line B 0 .
- the eddy current I 9 takes a path that bypasses the plurality of openings 970.
- the relatively large magnetic field line B 9 generated by the eddy current I 9 weakens the magnetic field acting on the inductor 120 and deteriorates the electrical characteristics of the inductor 120.
- FIG. 12 is a schematic perspective view showing a state in which an eddy current is generated in the conductive layer in the module according to the first embodiment of the present invention.
- the magnetic field line B 0 passes through the linear conductor portion 150 in a direction substantially perpendicular to the plane direction of the linear conductor portion 150.
- An eddy current I 1 is generated along the in-plane direction of the linear conductor portion 150.
- the eddy current I 1 flows on a substantially circular path that orbits the central axis with the direction in which the magnetic field line B 0 passing through the linear conductor portion 150 is directed as the central axis direction.
- the eddy current I 1 generates a magnetic field line B 1 that cancels the magnetic field generated by the magnetic field line B 0 .
- Embodiment 1 of the present invention eddy current virtual length of the diameter of the substantially circular path of the I 1, each of the line widths of the plurality of linear conductors 0.99 W L It becomes as follows. Therefore, the length of the eddy current I 1 in the present embodiment is shorter than the length of the paths of the eddy currents I 8 and I 9 in Comparative Example 1 and Comparative Example 2. That is, in the present embodiment, the strength of the magnetic field lines B 1 generated by the eddy current I 1 is higher than the strength of the magnetic field lines B 8 and B 9 generated by the eddy currents I 8 and I 9 in Comparative Example 1 and Comparative Example 2, respectively. , Become smaller.
- the strength of the magnetic field line B 1 due to the eddy current I 1 becomes small, so that the deterioration of the inductor characteristics due to the magnetic field line B 1 can be suppressed.
- each of the plurality of linear conductor portions 150 is electrically connected to the ground conductor portion 140. As shown in FIG. 1, the plurality of linear conductor portions 150 leave a gap 151 with each other so that one or more inductors 120 overlap with at least one of the plurality of linear conductor portions 150 in a plan view. Have been placed.
- the ground conductor portion 140 and the linear conductor portion 150 have a function of shielding electromagnetic waves having a predetermined wavelength, and the current path of the eddy current generated in the linear conductor portion 150 by the inductor 120 can be shortened.
- the strength of the magnetic field lines B 1 due to eddy currents I 1 is small, it is possible to suppress deterioration of characteristics of the inductor 120 by the magnetic force lines B 1 to eddy currents I 1 make.
- module 100 in plan view, the size of each of the line width W L of the plurality of linear conductors 150, one or more of the lateral direction of each of the inductors 120 length W Smaller than the dimension of I.
- the current path of the eddy current I 1 can be further shortened, so that the strength of the magnetic field line B 1 due to the eddy current I 1 can be further reduced, and deterioration of the characteristics of the inductor 120 can be suppressed.
- the width W C of the gap 151 is smaller than the line width W L of each of the plurality of linear conductor portions 150 in a plan view.
- the ground conductor portion 140 has a rectangular annular outer shape along the first region 131 in a plan view. In a plan view, each of the plurality of linear conductor portions 150 extends so as to connect two different sides of the ground conductor portion 140.
- the distance from the ground conductor portion 140 at each point of the linear conductor portion 150 can be reduced as compared with the case where only one end of the linear conductor portion 150 is connected to the ground conductor portion 140. Therefore, the function of shielding the electromagnetic wave of a predetermined wavelength in the linear conductor portion 150 can be improved.
- each of the plurality of linear conductor portions 150 extends so as to connect the two opposite sides of the ground conductor portion 140.
- At least one of the one or more inductors 120 includes a coiled conductor 121 having a central axis parallel to the main surface 111 of the substrate 110.
- each of the plurality of linear conductor portions 150 extends linearly so as to be parallel to each other, thereby extending over the entire second region 132. Have been placed.
- the gap between the linear conductor portions 150 can be reduced, and the function of shielding the electromagnetic waves of a predetermined wavelength in the plurality of linear conductor portions 150 can be improved.
- a plurality of ridge portions 133 are formed on the upper surface of the resin sealing portion 130.
- Each of the plurality of linear conductor portions 150 is arranged on at least the upper end surface of each of the plurality of ridge portions 133.
- the linear conductor portion 150 is provided on the upper surface of the resin sealing portion 130 by providing the conductor portion so as to correspond to the upper end surfaces of the plurality of convex portions 133. Can be placed.
- the module 100 according to the first embodiment of the present invention further includes a resin surface layer portion 160 arranged so as to cover at least a part of each of the resin sealing portion 130 and the plurality of linear conductor portions 150.
- the module 100 according to the present embodiment including the linear conductor portion 150 it becomes easy to print on the resin surface layer portion 160 in order to enhance the distinctiveness from other modules.
- each of the plurality of linear conductor portions 150 extends in a direction parallel to the short side of the ground conductor portion 140.
- the extending direction of each of the plurality of linear conductor portions 150 is not particularly limited.
- a module according to each modification of the first embodiment of the present invention, in which the extending directions of the plurality of linear conductor portions are different from the first embodiment of the present invention, will be described.
- the same configuration as the module 100 according to the first embodiment of the present invention will not be repeated.
- FIG. 13 is a plan view of the module according to the first modification of the first embodiment of the present invention.
- FIG. 14 is a cross-sectional view of the module of FIG. 13 as viewed from the direction of the XIV-XIV line arrow.
- the plurality of linear conductor portions 150a have short sides and lengths of the ground conductor portion 140 in a plan view. It extends in the direction of intersection with each of the sides.
- At least one linear conductor portion 150a in the module 100a according to the first modification of the first embodiment of the present invention extends linearly so as to connect two adjacent sides of the ground conductor portion 140 in a plan view. Exists.
- FIG. 15 is a plan view of the module according to the second modification of the first embodiment of the present invention.
- FIG. 16 is a cross-sectional view of the module of FIG. 15 as viewed from the direction of the arrow along the XVI-XVI line.
- each of the plurality of linear conductor portions 150b is adjacent to each other of the ground conductor portion 140. It is bent and extended so as to connect the two matching sides. As a result, the overall strength of the ground conductor portion 140 and the linear conductor portion 150 can be improved.
- each of the plurality of linear conductor portions 150a and 150b in each of the first modification and the second modification of the first embodiment of the present invention has a plurality of inductors 120.
- a plurality of linear conductor portions 150a and 150b are arranged with a gap 151 from each other so as to overlap with at least one of the linear conductor portions 150a and 150b.
- the central axis of the coiled conductors 121 of the plurality of inductors 120 is oriented in a specific direction, but the direction in which the central axis is oriented is There is no particular limitation.
- a module according to each modification of the first embodiment of the present invention, in which the direction in which the central axis of the coiled conductor of the inductor faces is different from that of the first embodiment of the present invention, will be described.
- the same configuration as the module 100 according to the first embodiment of the present invention will not be repeated.
- FIG. 17 is a plan view of the module according to the third modification of the first embodiment of the present invention.
- FIG. 18 is a cross-sectional view of the module of FIG. 17 as viewed from the direction of the arrow along line XVIII-XVIII.
- the central axes of the coiled conductors 121c of all the inductors 120c and all the linear conductors 150 The respective extending directions intersect with each other.
- FIG. 19 is a plan view of the module according to the fourth modification of the first embodiment of the present invention.
- FIG. 20 is a cross-sectional view of the module of FIG. 19 as viewed from the direction of the XX-XX line arrow.
- the central axis of the coiled conductor 121d of all the inductors 120d is the method of the main surface 111 of the substrate 110. It faces the line direction.
- at least one of the one or more inductors 120d includes a coiled conductor 121d having a central axis perpendicular to the main surface 111 of the substrate 110.
- FIG. 21 is a plan view of the module according to the fifth modification of the first embodiment of the present invention.
- FIG. 22 is a cross-sectional view of the module of FIG. 21 as viewed from the direction of the arrow along the line XXII-XII.
- the central axis of the coiled conductor 121 of at least one inductor 120 and the plurality of linear conductor portions 150 The extending directions of each of the above are orthogonal to each other. Further, the central axis of the coiled conductor 121c of at least one inductor 120c different from the inductor 120 and the extending directions of all the linear conductor portions 150 intersect with each other. Further, the central axis of the coiled conductor 121d of at least one inductor 120d different from the inductors 120 and 120c faces the normal direction of the main surface 111 of the substrate 110. Further, the central axis of the coiled conductor 121e of at least one inductor 120e different from the inductors 120, 120c, 120d and the extending direction of each of the plurality of linear conductor portions 150 are parallel to each other.
- the lines of magnetic force generated by the inductors 120c, 120d, 120e in the third modification, the fourth modification, and the fifth modification of the first embodiment of the present invention are in a direction substantially perpendicular to the plane direction of the linear conductor portion 150. Passes through the linear conductor portion 150. Therefore, in each of the third modification, the fourth modification, and the fifth modification of the present invention, an eddy current is generated along the in-plane direction of the linear conductor portion 150 as in the first embodiment of the present invention. appear.
- the plurality of linear conductor portions 150 having the same outer shape as that of the first embodiment of the present invention It is possible to suppress the deterioration of the electrical characteristics of the inductors 120c, 120d, 120e due to the magnetic field created by the eddy current.
- FIG. 23 is a plan view of the module according to the second embodiment of the present invention.
- FIG. 24 is a cross-sectional view of the module of FIG. 23 as viewed from the direction of the XXIV-XXIV line arrow.
- a plurality of concave portions 234 are formed on the upper surface of the resin sealing portion 230.
- Each of the plurality of linear conductor portions 250 is arranged on at least the bottom surface of each of the plurality of recessed portions 234.
- Each of the plurality of linear conductor portions 250 is arranged over the entire surface of the bottom surface of each of the plurality of recessed portions 234, but may be arranged on a part of the bottom surface.
- each of the plurality of linear conductor portions 250 is also arranged on the inner surface of the plurality of recessed portions 234, but the plurality of linear conductor portions 250 are arranged in the recessed portion 234. It may be arranged only on the bottom surface.
- each of the plurality of linear conductor portions 250 is arranged on at least the bottom surface of each of the plurality of recessed portions 234.
- the linear conductor portion 250 can be arranged on the upper surface of the resin sealing portion 230 by providing the conductor portion so as to correspond to the bottom surfaces of the plurality of concave portions 234.
- FIG. 25 is a diagram showing a state in which a plurality of concave portions are provided in the resin sealing portion in the module manufacturing method according to the second embodiment of the present invention.
- the resin sealing portion 230 is provided on the main surface 111 of the substrate 110 while sealing the inductor 120 in the same manner as in the manufacturing method of the module 100 according to the first embodiment of the present invention shown in FIG.
- the upper surface of the resin sealing portion 230 is irradiated with a laser, and a part of the upper surface of the resin sealing portion 230 is scraped to form the concave portion 234.
- FIG. 26 is a cross-sectional view showing a state in which a conductive layer is provided on the resin sealing portion in the method for manufacturing a module according to the second embodiment of the present invention.
- the conductive layer 245 is formed by sputtering so as to cover the entire resin sealing portion 230 and the peripheral side surface of the substrate 110.
- FIG. 27 is a diagram showing a state in which the upper end portion of the conductive layer is ground in the module manufacturing method according to the second embodiment of the present invention.
- the resin surface layer portion 160 is provided by applying resin to the upper surfaces of each of the resin sealing portion 230, the ground conductor portion 140, and the linear conductor portion 250 and curing the resin.
- the module 200 according to the second embodiment of the present invention as shown in FIG. 24 is manufactured.
- FIG. 28 is a plan view of the module according to the first modification of the second embodiment of the present invention.
- FIG. 29 is a cross-sectional view of the module of FIG. 28 as viewed from the direction of the XXIX-XXIX line arrow.
- a plurality of linear conductor portions 250a are shown in FIGS. 13 and 14 in a plan view. It has the same configuration as the plurality of linear conductor portions 150a in the module 100a according to the first modification of the first embodiment.
- FIG. 30 is a plan view of the module according to the second modification of the second embodiment of the present invention.
- FIG. 31 is a cross-sectional view of the module of FIG. 30 as viewed from the direction of the XXXI-XXXI line arrow.
- a plurality of linear conductor portions 250b are shown in FIGS. 15 and 16 in a plan view. It has the same configuration as the plurality of linear conductor portions 150b in the module 100b according to the second modification of the first embodiment.
- the modules 200a and 200b according to the first modification and the second modification of the second embodiment of the present invention are also the same as the modules 100a and 100b according to the first modification and the second modification of the first embodiment of the present invention. , The deterioration of the electrical characteristics of the inductor 120 can be suppressed.
- FIG. 32 is a plan view of the module according to the third modification of the second embodiment of the present invention.
- FIG. 33 is a cross-sectional view of the module of FIG. 32 as viewed from the direction of the arrow along the line XXXIII-XXXIII.
- the inductor 220c in the module 200c according to the third modification of the second embodiment of the present invention is the first embodiment of the first embodiment of the present invention shown in FIGS. 17 and 18 in a plan view. It has the same configuration as the inductor 120c in the module 100c according to the three modifications.
- FIG. 34 is a plan view of the module according to the fourth modification of the second embodiment of the present invention.
- FIG. 35 is a cross-sectional view of the module of FIG. 34 as viewed from the direction of the arrow along the XXXV-XXXV line.
- the inductor 220d in the module 200d according to the fourth modification of the second embodiment of the present invention is the first embodiment of the first embodiment of the present invention shown in FIGS. 19 and 20 in a plan view. 4 It has the same configuration as the inductor 120d in the module 100d according to the modified example.
- FIG. 34 is a plan view of the module according to the fourth modification of the second embodiment of the present invention.
- FIG. 35 is a cross-sectional view of the module of FIG. 34 as viewed from the direction of the arrow along the XXXV-XXXV line.
- FIG. 36 is a plan view of the module according to the fifth modification of the second embodiment of the present invention.
- FIG. 37 is a cross-sectional view of the module of FIG. 36 as viewed from the direction of the arrow along the line XXXVII-XXXVII.
- the inductors 220, 220c, 220d, 220e in the module 200e according to the fifth modification of the second embodiment of the present invention are the present invention shown in FIGS. 21 and 22 in a plan view. It has the same configuration as the inductors 120, 120c, 120d, 120e in the module 100e according to the fifth modification of the first embodiment.
- a plurality of linear conductor portions having the same configuration as the second embodiment of the present invention.
- the 250 it is possible to suppress a decrease in the electrical characteristics of the inductors 220c, 220d, 220e due to the magnetic field created by the eddy current.
- FIG. 38 is a plan view of the module according to the sixth modification of the second embodiment of the present invention.
- a plurality of linear conductor portions 250f extend radially from the central portion of the module 200f in a plan view. Exists. As a result, the overall strength of the ground conductor portion 140 and the linear conductor portion 250f can be improved.
- each of one or more inductors 120 overlaps with at least one of the plurality of linear conductor portions 250f in a plan view.
- the plurality of linear conductor portions 150 are arranged with a gap 151 from each other. As a result, it is possible to suppress a decrease in the electrical characteristics of the inductor 120 due to the magnetic field created by the eddy current.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Coils Or Transformers For Communication (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
Abstract
基板(110)は、主面(111)を有しており、1以上のインダクタ(120)の各々は、主面(111)上に配置されている。樹脂封止部(130)は、1以上のインダクタ(120)を封止するとともに基板(110)の主面(111)を覆っている。接地導体部(140)は、平面視において、1以上のインダクタ(120)の全体に対して、基板(110)の外周側に配置されている。複数の線状導体部(150)は、樹脂封止部(130)上に形成されている。平面視において、1以上のインダクタ(120)が、複数の線状導体部(150)のうちの少なくとも1つと重なるように、複数の線状導体部(150)が互いに隙間(151)を空けつつ配置されている。
Description
本発明は、モジュールに関する。
モジュールの構成を開示した先行文献として、特開2013-38162号公報(特許文献1)および特開2012-9745号公報(特許文献2)がある。
特許文献1に記載されたモジュールは、基板と、電子部品と、樹脂層と、シールド層とを備えている。電子部品は、基板上に実装されている。樹脂層は、電子部品を封止している。シールド層は、樹脂層の上面および側面に設けられている。シールド層は、樹脂層の上面の側において、樹脂層に通じる筒状の穴が複数設けられている。
特許文献2に記載されたモジュールは、基板と、電子部品と、封止樹脂と、シールド層とを備えている。電子部品は、基板に実装されている。封止樹脂は、電子部品を封止して基板上に形成されている。シールド層は、封止樹脂の一部を覆うように、平面視において第1の所定パターンの開口部を有している。そして、シールド層は、平面視において格子状に形成されている。
これら従来のモジュールにおいて、基板に実装される電子部品として、インダクタが実装される場合がある。このとき、インダクタに電流が流れることで発生する磁力線が、シールド層に達する。シールド層には、この磁力線を中心軸として渦電流が発生する。渦電流は、上記磁力線による磁界を打ち消すような磁界を発生させる。このため、渦電流により発生する磁界は、インダクタの電気的特性を低下させてしまう虞がある。
本発明は上記問題点に鑑みてなされたものであり、渦電流が作る磁界による、インダクタの電気的特性の低下を抑制できる、モジュールを提供することを目的とする。
本発明に基づくモジュールは、基板と、1以上のインダクタと、樹脂封止部と、接地導体部と、線状導体部とを備えている。基板は、主面を有しており、1以上のインダクタの各々は、主面上に配置されている。樹脂封止部は、1以上のインダクタを封止するとともに基板の主面を覆っている。接地導体部は、平面視において、1以上のインダクタの全体に対して基板の外周側に配置されている。複数の線状導体部は、接地導体部と電気的に接続されている。複数の線状導体部は、樹脂封止部上に形成されている。平面視において、1以上のインダクタが、複数の線状導体部のうちの少なくとも1つと重なるように、複数の線状導体部が互いに隙間を空けつつ配置されている。
本発明によれば、渦電流が作る磁界による、インダクタの電気的特性の低下を抑制できる。
以下、本発明の各実施形態に係るモジュールについて図を参照して説明する。以下の実施形態の説明においては、図中の同一または同一符号を付して、その説明は繰り返さない。
(実施形態1)
図1は、本発明の実施形態1に係るモジュールの平面図である。図2は、図1のモジュールをII-II線矢印方向から見た断面図である。
図1は、本発明の実施形態1に係るモジュールの平面図である。図2は、図1のモジュールをII-II線矢印方向から見た断面図である。
図1および図2に示すように、本発明の実施形態1に係るモジュール100は、基板110と、1以上のインダクタ120と、樹脂封止部130と、接地導体部140と、線状導体部150と、樹脂表層部160とを備えている。なお、図1において、樹脂表層部160は図示していない。
図2に示すように、基板110は、主面111を有している。本実施形態においては、主面111の法線方向が、モジュール100の平面視の方向である。基板110は、たとえばセラミック製の多層基板である。基板110はプリント配線板であってもよい。
図2に示すように、複数のインダクタ120が、主面111上に配置されている。また、主面111上には、1つのインダクタ120のみが配置されていてもよい。このように、本実施形態においては、1以上のインダクタ120の各々が、主面111上に配置されている。なお、主面111上には、インダクタ120以外の他の電子部品が設けられていてもよい。
図1および図2に示すように、本発明の実施形態1に係るモジュール100においては、1以上のインダクタ120のうち少なくとも1つが、基板110の主面111に対して平行な中心軸を有するコイル状導体121を含んでいる。本実施形態においては、具体的には、全てのインダクタ120において、コイル状導体121の中心軸が基板110の主面111に対して平行である。本実施形態においては、全てのインダクタ120において、コイル状導体121の中心軸が互いに平行となるように、配置されている。
なお、図1および図2において、コイル状導体121は模式的に図示している。コイル状導体121は、パターン配線であってもよいし、巻線であってもよい。コイル状導体121は、基板110を介して図示しないマザー基板と互いに電気的に接続される。
図2に示すように、樹脂封止部130は、1以上のインダクタ120を封止するとともに基板110の主面111を覆っている。本実施形態において、樹脂封止部130は、インダクタ120が設けられている部分を除いて、基板110の主面111全体を覆っている。
図2に示すように、本発明の実施形態1に係るモジュール100においては、樹脂封止部130の上面に、複数の凸条部133が形成されている。本実施形態において、平面視において、複数の凸条部133は、複数の線状導体部150と対応するように配置されている。具体的には、平面視において、複数の凸条部133は、複数の線状導体部150と重なるように配置されている。
樹脂封止部130を構成する材料は、特に限定されない。樹脂封止部130は、たとえばエポキシ樹脂で構成されている。
図1および図2に示すように、接地導体部140は、平面視において、1以上のインダクタ120の全体に対して基板110の外周側に配置されている。本実施形態においては、接地導体部140は、平面視において、樹脂封止部130上のうち、1以上のインダクタ120の全体に対して外周側に位置する第1領域131に配置されている。具体的には、平面視において、接地導体部140が、第1領域131のうち基板110の外周縁にあたる部分に沿った矩形環状の外形を有している。
図2に示すように、接地導体部140は、側面部141を有している。本実施形態において、側面部141は、基板110および樹脂封止部130の各々の周側面の全体を覆うように配置されている。接地導体部140は、側面部141でグランド(GND)接続されていることにより、電気的に接地している。
本実施形態において、接地導体部140は、モジュール100の外部からの電磁波を遮蔽することにより、基板110の主面111上に配置されたインダクタ120または他の電子部品にノイズが侵入することを抑制できる。
図1に示すように、複数の線状導体部150の各々は、接地導体部140と電気的に接続されている。本実施形態においては、平面視において、複数の線状導体部150の各々は、接地導体部140の互いに異なる2辺を繋ぐように延在している。具体的には、平面視において、複数の線状導体部150の各々は、接地導体部140の互いに対向する2辺を繋ぐように延在している。すなわち、複数の線状導体部150の各々は、その両端部の各々において、接地導体部140に接続されている。なお、複数の線状導体部150の各々は、平面視において、接地導体部140から延出することにより、一方端のみで接地導体部140と接続されるように構成されていてもよい。
本実施形態においては、平面視において、本実施形態における線状導体部150の各々が、接地導体部140の短辺に平行な方向に延在している。また、平面視において、線状導体部150の各々は、全てのインダクタ120の各々のコイル状導体121の中心軸と交差する方向に延在している。本実施形態においては、全てのインダクタ120のコイル状導体121の各々の中心軸と、全ての線状導体部150の各々の延在方向とが、互いに直交している。
図1および図2に示すように、平面視において、1以上のインダクタ120が、複数の線状導体部150のうちの少なくとも1つと重なるように、複数の線状導体部150が互いに隙間151を空けつつ配置されている。本実施形態においては、複数の線状導体部150は、平面視において、第1領域131に囲まれた第2領域132を覆うように、互いに隙間151を空けつつ配置されている。また、図1に示すように、平面視において、複数の線状導体部150の各々は、互いに平行となるように直線状に延在することにより、第2領域132の全体にわたって配置されている。すなわち、平面視において、複数の線状導体部150は、全てのインダクタ120と重なるように、配置されている。
本実施形態において、平面視における上記隙間151の幅WCは、複数の線状導体部150による遮蔽の対象となる電磁波の波長の1/4以下となるように設計される。隙間151の幅WCは、たとえば100μmまたは200μmである。また、図1に示すように、平面視において、隙間151の幅WCは、複数の線状導体部150の各々の線幅WLより小さい。平面視において、複数の線状導体部150の各々の線幅WLの寸法は、1以上のインダクタ120の各々の短手方向の長さWIの寸法より小さい。
なお、本実施形態において、平面視において複数の線状導体部150と接地導体部140との間に形成されている隙間の幅は、上記隙間151の幅WCと略同一となるように形成されている。
図2に示すように、複数の線状導体部150は、樹脂封止部130上に形成されている。具体的には、複数の線状導体部150の各々は、複数の凸条部133の各々の少なくとも上端面上に配置されている。複数の線状導体部150の各々は、上記上端面の全面にわたって配置されているが、上端面の一部に配置されていてもよい。また、複数の線状導体部150の各々は、複数の凸条部133の側面に配置されていてもよい。
本実施形態において、線状導体部150は、上記のように接地導体部140と電気的に接続されていることで、電気的に接地されている。このため、線状導体部150は、モジュール100の外部からの電磁波を遮蔽することにより、基板110の主面111上に配置されたインダクタ120または他の電子部品にノイズが侵入することを抑制できる。
図2に示すように、樹脂表層部160は、樹脂封止部130および複数の線状導体部150の各々の少なくとも一部を覆うように配置されている。本実施形態においては、樹脂表層部160は、樹脂封止部130、接地導体部140および線状導体部150の各々の上面の全体を覆うように配置されていることにより、モジュール100の上端面を構成している。
樹脂表層部160を構成する材料は特に限定されないが、樹脂表層部160は、たとえばエポキシ樹脂で構成されている。樹脂表層部160を構成する材料は、樹脂封止部130を構成する材料と同一であってもよいし、異なっていてもよい。
次に、本発明の実施形態1に係るモジュールの製造方法について説明する。
図3は、本発明の実施形態1に係るモジュールの製造方法において、主面上にインダクタを設けた基板に、樹脂封止部を設けた状態を示す断面図である。まず、基板110の主面111上に複数のインダクタ120を設ける。そして、図3に示すように、モールド成形などにより、インダクタ120を封止するように、基板110の主面111上に、樹脂封止部130を設ける。
図3は、本発明の実施形態1に係るモジュールの製造方法において、主面上にインダクタを設けた基板に、樹脂封止部を設けた状態を示す断面図である。まず、基板110の主面111上に複数のインダクタ120を設ける。そして、図3に示すように、モールド成形などにより、インダクタ120を封止するように、基板110の主面111上に、樹脂封止部130を設ける。
図4は、本発明の実施形態1に係るモジュールの製造方法において、樹脂封止部に導電層を設けた状態を示す断面図である。図4に示すように、スパッタリング法などにより、樹脂封止部130の上面、および、樹脂封止部130および基板110の各々の周側面を覆うように、導電層145を形成する。
図5は、本発明の実施形態1に係るモジュールの製造方法において、導電層に貫通溝を設けた状態を示す断面図である。図4に示した導電層145にレーザ光を照射する、またはダイシング加工をすることにより、貫通溝を形成する。図5に示すように、この貫通溝が、本実施形態における上記隙間151を形成する。すなわち、当該工程により、導電層145が、線状導体部150と接地導体部140とに区分される。また、上記レーザ光の照射、またはダイシング加工によって、樹脂封止部130のうち上記隙間151の下方に位置する部分の上面が削られる。樹脂封止部130の第2領域132において、上記レーザ光の照射、またはダイシング加工によって削られた部分以外の部分が、凸条部133となる。
次に、樹脂封止部130、接地導体部140および線状導体部150の各々の上面に樹脂を塗布して硬化させることにより、樹脂表層部160を設ける。上記の工程により、図2に示すような本発明の実施形態1に係るモジュール100が製造される。
本発明の実施形態1に係るモジュール100においては、後述する渦電流が作る磁界によってインダクタ120の電気的特性が低下することを、抑制できる。以下、本発明の実施形態1に係るモジュール100において、インダクタ120の電気的特性の低下が抑制されるメカニズムについて、以下の各比較例を参照して説明する。
図6は、比較例1に係るモジュールの平面図である。図7は、図6のモジュールをVII-VII線矢印方向から見た断面図である。
図6および図7に示すように、比較例1に係るモジュール800は、主に、樹脂封止部130の上面上に導電層845が設けられている点で、本発明の実施形態1に係るモジュール100とは異なっている。
比較例1に係るモジュール800において、導電層845は、複数の円形状の複数の貫通孔870を有している。複数の貫通孔870の各々は、導電層845を上下方向に貫通している。また、平面視において、複数の貫通孔870は、千鳥状に配置されている。
比較例1に係るモジュール800においては、導電層845において、渦電流が発生する。図8は、比較例1に係るモジュールにおいて、導電層に渦電流が発生している様子を示す模式的な斜視図である。
図8に示すように、比較例1に係るモジュール800においては、インダクタ120のコイル状導体121に、電流I0が流れることで、磁力線B0が発生する。磁力線B0が、導電層845の平面方向に対して略垂直方向に導電層845を通過することにより、導電層845の面内方向に沿って渦電流I8が発生する。この渦電流I8は、導電層845を通過する磁力線B0が向いている方向を中心軸方向として、当該中心軸を周回するような略円形状の経路上を流れている。渦電流I8は、上記磁力線B0による磁界を打ち消すような方向を向く磁力線B8を発生させる。
図8に示すように、比較例1に係るモジュール800においては、渦電流I8は複数の貫通孔870を迂回するような経路をとる。これにより、渦電流I8によって発生する比較的大きな磁力線B8が、インダクタ120に作用する磁界を弱めて、インダクタ120の電気的特性を低下させる。
図9は、比較例2に係るモジュールの平面図である。図10は、図9のモジュールをX-X線矢印方向から見た断面図である。
図9および図10に示すように、比較例2に係るモジュール900は、主に、樹脂封止部130の上面上において、導電層945が設けられている点で、本発明の実施形態1に係るモジュール100とは異なっている。
比較例2に係るモジュール900において、導電層945は、複数の矩形状の開口部970を有している。開口部970には、導電層945が形成されていない。また、複数の開口部970は、平面視において導電層945が格子状の外形を有するように配置されている。
比較例2に係るモジュール900においても、比較例1と同様に、導電層945で渦電流が発生する。図11は、比較例2に係るモジュールにおいて、導電層に渦電流が発生している様子を示す模式的な斜視図である。
図11に示すように、比較例1に係るモジュール800と同様に、導電層945の面内方向に沿って渦電流I9が発生する。渦電流I9は、上記磁力線B0による磁界を打ち消すような方向を向く磁力線B9を発生させる。
渦電流I9は、複数の開口部970を迂回するような経路をとる。これにより、渦電流I9によって発生する比較的大きな磁力線B9が、インダクタ120に作用する磁界を弱めて、インダクタ120の電気的特性を低下させる。
本発明の実施形態1に係るモジュール100においては、線状導体部150に、渦電流が発生する。図12は、本発明の実施形態1に係るモジュールにおいて、導電層に渦電流が発生している様子を示す模式的な斜視図である。
図12に示すように、本発明の実施形態1に係るモジュール100においては、磁力線B0が、線状導体部150の平面方向に対して略垂直方向に線状導体部150を通過することにより、線状導体部150の面内方向に沿って渦電流I1が発生する。この渦電流I1は、線状導体部150を通過する磁力線B0が向いている方向を中心軸方向として、当該中心軸を周回するような略円形状の経路上を流れている。渦電流I1は、上記磁力線B0による磁界を打ち消すような磁力線B1を発生させる。
図12に示すように、本発明の実施形態1においては、渦電流I1の略円形状の経路の仮想的な直径の長さは、複数の線状導体部150の各々の線幅WL以下となる。このため、本実施形態における渦電流I1の長さは、比較例1および比較例2における渦電流I8,I9の経路の長さより短くなっている。すなわち、本実施形態において、渦電流I1によって発生する磁力線B1の強さは、比較例1および比較例2における渦電流I8,I9によってそれぞれ発生する磁力線B8,B9の強さより、小さくなる。このように、本発明の実施形態1に係るモジュール100においては、渦電流I1による磁力線B1の強さが小さくなるため、磁力線B1によるインダクタの特性劣化を抑制することができる。
上記のように、本発明の実施形態1に係るモジュール100においては、複数の線状導体部150の各々が、接地導体部140と電気的に接続されている。図1に示したように、平面視において、1以上のインダクタ120が、複数の線状導体部150のうちの少なくとも1つと重なるように、複数の線状導体部150が互いに隙間151を空けつつ配置されている。
これにより、接地導体部140および線状導体部150が所定波長の電磁波を遮蔽する機能を有するとともに、インダクタ120によって線状導体部150に発生する渦電流の電流経路を短くすることができる。これにより、渦電流I1による磁力線B1の強さが小さくなるため、渦電流I1が作る磁力線B1によるインダクタ120の特性劣化を抑制することができる。
本発明の実施形態1に係るモジュール100においては、平面視において、複数の線状導体部150の各々の線幅WLの寸法が、1以上のインダクタ120の各々の短手方向の長さWIの寸法より小さい。
これにより、渦電流I1の電流経路をさらに短くすることができるため、渦電流I1による磁力線B1の強さをより小さくして、インダクタ120の特性劣化を抑制することができる。
本発明の実施形態1に係るモジュール100においては、平面視において、上記隙間151の幅WCが、複数の線状導体部150の各々の線幅WLより小さい。
これにより、線状導体部150に発生する渦電流I1の電流経路の長さを短くしつつ、線状導体部150において所定波長の電磁波を遮蔽する機能を向上させることができる。
本発明の実施形態1に係るモジュール100においては、平面視において、接地導体部140が、第1領域131に沿った矩形環状の外形を有している。平面視において、複数の線状導体部150の各々は、接地導体部140の互いに異なる2辺を繋ぐように延在している。
これにより、線状導体部150の一方端のみが接地導体部140と接続されている場合と比較して、線状導体部150の各地点における接地導体部140からの距離を小さくできる。このため、線状導体部150における所定波長の電磁波を遮蔽する機能を向上させることができる。
本発明の実施形態1に係るモジュール100においては、平面視において、複数の線状導体部150の各々は、接地導体部140の互いに対向する2辺を繋ぐように延在している。
これにより、接地導体部140および線状導体部150の全体の強度を向上させることができる。
本発明の実施形態1に係るモジュール100においては、1以上のインダクタ120のうち少なくとも1つは、基板110の主面111に対して平行な中心軸を有するコイル状導体121を含んでいる。
上記のようなコイル状導体121を含むインダクタ120による磁界によって線状導体部150に渦電流I1が発生しても、本実施形態における渦電流I1の経路は比較的短く、この渦電流I1による磁力線B1の強さは比較的小さいため、インダクタ120の特性劣化を抑制できる。
本発明の実施形態1に係るモジュール100においては、平面視において、複数の線状導体部150の各々は、互いに平行となるように直線状に延在することにより、第2領域132の全体にわたって配置されている。
これにより、線状導体部150同士の隙間を小さくして、複数の線状導体部150における所定波長の電磁波を遮蔽する機能を向上させることができる。
本発明の実施形態1に係るモジュール100においては、樹脂封止部130の上面には、複数の凸条部133が形成されている。複数の線状導体部150の各々は、複数の凸条部133の各々の少なくとも上端面に配置されている。
上記の構成を備える本実施形態に係るモジュール100においては、複数の凸条部133の上端面に対応するように導体部を設けることで、樹脂封止部130の上面に線状導体部150を配置することができる。
本発明の実施形態1に係るモジュール100は、樹脂封止部130および複数の線状導体部150の各々の少なくとも一部を覆うように配置された、樹脂表層部160をさらに備えている。
上記の構成により、線状導体部150を備える本実施形態に係るモジュール100において、他のモジュールとの識別力を高めるために樹脂表層部160上に印字を行うことが容易となる。
図1および図2に示した本発明の実施形態1に係るモジュール100においては、複数の線状導体部150の各々が接地導体部140の短辺に平行な方向に延在しているが、複数の線状導体部150の各々の延在する方向は、特に限定されない。ここで、複数の線状導体部の延在方向が本発明の実施形態1とは異なる、本発明の実施形態1の各変形例に係るモジュールについて説明する。なお、本発明の実施形態1に係るモジュール100と同様である構成については説明を繰り返さない。
図13は、本発明の実施形態1の第1変形例に係るモジュールの平面図である。図14は、図13のモジュールをXIV-XIV線矢印方向から見た断面図である。
図13および図14に示すように、本発明の実施形態1の第1変形例に係るモジュール100aおいて、複数の線状導体部150aは、平面視において、接地導体部140の短辺および長辺の各々と交差する方向に延在している。
本発明の実施形態1の第1変形例に係るモジュール100aにおける少なくとも1つの線状導体部150aは、平面視において、接地導体部140の互いに隣り合う2辺を繋ぐように、かつ直線状に延在している。
図15は、本発明の実施形態1の第2変形例に係るモジュールの平面図である。図16は、図15のモジュールをXVI-XVI線矢印方向から見た断面図である。
図15および図16に示すように、本発明の実施形態1の第2変形例に係るモジュール100bにおいては、平面視において、複数の線状導体部150bの各々は、接地導体部140の互いに隣り合う2辺を繋ぐように、折れ曲がりつつ延在している。これにより、接地導体部140および線状導体部150の全体の強度を向上させることができる。
上記のように、本発明の実施形態1の第1変形例および第2変形例の各々における複数の線状導体部150a,150bは、平面視において、1以上のインダクタ120の各々が、複数の線状導体部150a,150bのうちの少なくとも1つと重なるように、複数の線状導体部150a,150bが互いに隙間151を空けつつ配置されている。これにより、渦電流が作る磁界によるインダクタ120の電気的特性の低下を抑制できる。
図1および図2に示した本発明の実施形態1に係るモジュール100においては、複数のインダクタ120のコイル状導体121の中心軸が特定の方向を向いているが、上記中心軸の向く方向は特に限定されない。ここで、インダクタのコイル状導体の中心軸の向く方向が本発明の実施形態1とは異なる、本発明の実施形態1の各変形例に係るモジュールについて説明する。なお、本発明の実施形態1に係るモジュール100と同様である構成については説明を繰り返さない。
図17は、本発明の実施形態1の第3変形例に係るモジュールの平面図である。図18は、図17のモジュールをXVIII-XVIII線矢印方向から見た断面図である。
図17および図18に示すように、本発明の実施形態1の第3変形例に係るモジュール100cにおいては、全てのインダクタ120cのコイル状導体121cの中心軸と、全ての線状導体部150の各々の延在方向とが、互いに交差している。
図19は、本発明の実施形態1の第4変形例に係るモジュールの平面図である。図20は、図19のモジュールをXX-XX線矢印方向から見た断面図である。
図19および図20に示すように、本発明の実施形態1の第4変形例に係るモジュール100dにおいては、全てのインダクタ120dのコイル状導体121dの中心軸が、基板110の主面111の法線方向を向いている。このように、1以上のインダクタ120dのうち少なくとも1つは、基板110の主面111に対して垂直な中心軸を有するコイル状導体121dを含んでいる。
上記のようなコイル状導体121dを含むインダクタ120dによる磁界によって線状導体部150に渦電流が発生しても、本実施形態における渦電流の経路は小さくなるため、インダクタ120dの特性劣化を抑制できる。
図21は、本発明の実施形態1の第5変形例に係るモジュールの平面図である。図22は、図21のモジュールをXXII-XII線矢印方向から見た断面図である。
図21および図22に示すように、本発明の実施形態1の第5変形例に係るモジュール100eにおいては、少なくとも1つのインダクタ120のコイル状導体121の中心軸と、複数の線状導体部150の各々の延在方向とが、互いに直交している。また、上記インダクタ120とは異なる少なくとも1つのインダクタ120cのコイル状導体121cの中心軸と、全ての線状導体部150の各々の延在方向が、互いに交差している。また、上記インダクタ120,120cとは異なる少なくとも1つのインダクタ120dのコイル状導体121dの中心軸が、基板110の主面111の法線方向を向いている。また、上記インダクタ120,120c,120dとは異なる少なくとも1つのインダクタ120eのコイル状導体121eの中心軸と、複数の線状導体部150の各々の延在方向とが、互いに平行である。
本発明の実施形態1の第3変形例、第4変形例および第5変形例における各々のインダクタ120c,120d,120eが発生させる磁力線は、線状導体部150の平面方向に対して略垂直方向に線状導体部150を通過する。このため、本発明の第3変形例、第4変形例および第5変形例の各々においては、本発明の実施形態1と同様に、線状導体部150の面内方向に沿って渦電流が発生する。これにより、本発明の実施形態1の第3変形例、第4変形例および第5変形例の各々においては、本発明の実施形態1と同一の外形を有する複数の線状導体部150によって、渦電流が作る磁界によるインダクタ120c,120d,120eの電気的特性の低下を抑制できる。
(実施形態2)
次に、本発明の実施形態2に係るモジュールについて説明する。本発明の実施形態2に係るモジュールにおいては、樹脂封止部上で線状導体部が設けられる位置が、本発明の実施形態1に係るモジュール100と異なる。このため、樹脂封止部上において線状導体部が設けられる位置以外の点については、説明を繰り返さない。
次に、本発明の実施形態2に係るモジュールについて説明する。本発明の実施形態2に係るモジュールにおいては、樹脂封止部上で線状導体部が設けられる位置が、本発明の実施形態1に係るモジュール100と異なる。このため、樹脂封止部上において線状導体部が設けられる位置以外の点については、説明を繰り返さない。
図23は、本発明の実施形態2に係るモジュールの平面図である。図24は、図23のモジュールをXXIV-XXIV線矢印方向から見た断面図である。
図23および図24に示すように、本発明の実施形態2に係るモジュール200においては、樹脂封止部230の上面には、複数の凹条部234が形成されている。複数の線状導体部250の各々は、複数の凹条部234の各々の少なくとも底面上に配置されている。複数の線状導体部250の各々は、複数の凹条部234の各々の上記底面の全面にわたって配置されているが、上記底面の一部に配置されていてもよい。また、本実施形態においては、複数の線状導体部250の各々は、複数の凹条部234の内側面にも配置されているが、複数の線状導体部250は、凹条部234の上記底面にのみ配置されていてもよい。
上記のように、本実施形態に係るモジュール200においては、複数の線状導体部250の各々が、複数の凹条部234の各々の少なくとも底面上に配置されている。この構成により、本実施形態においては、複数の凹条部234の底面に対応するように導体部を設けることで、樹脂封止部230の上面に線状導体部250を配置することができる。
次に、本発明の実施形態2に係るモジュール200の製造方法について説明する。
図25は、本発明の実施形態2に係るモジュールの製造方法において、樹脂封止部に複数の凹条部を設けた状態を示す図である。まず、図3に示した本発明の実施形態1に係るモジュール100の製造方法と同様にして、インダクタ120を封止しつつ基板110の主面111上に樹脂封止部230を設ける。そして、図25に示すように、樹脂封止部230の上面にレーザを照射して、樹脂封止部230の上面の一部を削ることにより、凹条部234を形成する。
図25は、本発明の実施形態2に係るモジュールの製造方法において、樹脂封止部に複数の凹条部を設けた状態を示す図である。まず、図3に示した本発明の実施形態1に係るモジュール100の製造方法と同様にして、インダクタ120を封止しつつ基板110の主面111上に樹脂封止部230を設ける。そして、図25に示すように、樹脂封止部230の上面にレーザを照射して、樹脂封止部230の上面の一部を削ることにより、凹条部234を形成する。
図26は、本発明の実施形態2に係るモジュールの製造方法において、樹脂封止部に導電層を設けた状態を示す断面図である。図26に示すように、スパッタリングにより、樹脂封止部230の全体および基板110の周側面を覆うように、導電層245を形成する。
図27は、本発明の実施形態2に係るモジュールの製造方法において、導電層の上端部を研削した状態を示す図である。図26示した導電層245の上端部を上端面側から研削することにより、図27に示すように、樹脂封止部230のうち凹条部234以外の部分を表出させる。すなわち、当該工程により、導電層245が、線状導体部250と接地導体部140とに区分される。
次に、樹脂封止部230、接地導体部140および線状導体部250の各々の上面に樹脂を塗布して硬化させることにより、樹脂表層部160を設ける。上記の工程により、図24に示すような本発明の実施形態2に係るモジュール200が製造される。
以下、本発明の実施形態2の各変形例に係るモジュールについて説明する。本発明の実施形態2の各変形例について、本発明の実施形態2に係るモジュール200と同様である構成は、説明を繰り返さない。
図28は、本発明の実施形態2の第1変形例に係るモジュールの平面図である。図29は、図28のモジュールをXXIX-XXIX線矢印方向から見た断面図である。
図28および図29に示すように、本発明の実施形態2の第1変形例に係るモジュール200aは、平面視において、複数の線状導体部250aが、図13および図14に示した本発明の実施形態1の第1変形例に係るモジュール100aにおける複数の線状導体部150aと同様の構成を有している。
図30は、本発明の実施形態2の第2変形例に係るモジュールの平面図である。図31は、図30のモジュールをXXXI-XXXI線矢印方向から見た断面図である。
図30および図31に示すように、本発明の実施形態2の第2変形例に係るモジュール200bは、平面視において、複数の線状導体部250bが、図15および図16に示した本発明の実施形態1の第2変形例に係るモジュール100bにおける複数の線状導体部150bと同様の構成を有している。
本発明の実施形態2の第1変形例および第2変形例に係るモジュール200a,200bにおいても、本発明の実施形態1の第1変形例および第2変形例に係るモジュール100a,100bと同様に、インダクタ120の電気的特性の低下を抑制できる。
図32は、本発明の実施形態2の第3変形例に係るモジュールの平面図である。図33は、図32のモジュールをXXXIII-XXXIII線矢印方向から見た断面図である。
図32および図33に示すように、本発明の実施形態2の第3変形例に係るモジュール200cにおけるインダクタ220cは、平面視において、図17および図18に示した本発明の実施形態1の第3変形例に係るモジュール100cにおけるインダクタ120cと同様の構成を有している。
図34は、本発明の実施形態2の第4変形例に係るモジュールの平面図である。図35は、図34のモジュールをXXXV-XXXV線矢印方向から見た断面図である。
図34および図35に示すように、本発明の実施形態2の第4変形例に係るモジュール200dにおけるインダクタ220dは、平面視において、図19および図20に示した本発明の実施形態1の第4変形例に係るモジュール100dにおけるインダクタ120dと同様の構成を有している。
図34は、本発明の実施形態2の第4変形例に係るモジュールの平面図である。図35は、図34のモジュールをXXXV-XXXV線矢印方向から見た断面図である。
図36は、本発明の実施形態2の第5変形例に係るモジュールの平面図である。図37は、図36のモジュールをXXXVII-XXXVII線矢印方向から見た断面図である。
図36および図37に示すように、本発明の実施形態2の第5変形例に係るモジュール200eにおけるインダクタ220,220c,220d,220eは、平面視において、図21および図22に示した本発明の実施形態1の第5変形例に係るモジュール100eにおけるインダクタ120,120c,120d,120eと同様の構成を有している。
本発明の実施形態2の第3変形例,第4変形例および第5変形例に係るモジュール200c,200d,200eにおいては、本発明の実施形態2と同一の構成を有する複数の線状導体部250によって、渦電流が作る磁界によるインダクタ220c,220d,220eの電気的特性の低下を抑制できる。
図38は、本発明の実施形態2の第6変形例に係るモジュールの平面図である。図38に示すように、本発明の実施形態2の第6変形例に係るモジュール200fにおいては、平面視において、複数の線状導体部250fが、モジュール200fの中央部から放射状に拡がるように延在している。これにより、接地導体部140および線状導体部250fの全体の強度を向上させることができる。
また、本発明の実施形態2の第6変形例における複数の線状導体部250fは、平面視において、1以上のインダクタ120の各々が、複数の線状導体部250fのうちの少なくとも1つと重なるように、複数の線状導体部150が互いに隙間151を空けつつ配置されている。これにより、渦電流が作る磁界によるインダクタ120の電気的特性の低下を抑制できる。
上述した実施形態の説明において、組み合わせ可能な構成を相互に組み合わせてもよい。
今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
100,100a,100b,100c,100d,100e,200,200a,200b,200c,200d,200e,200f,800,900 モジュール、110 基板、111 主面、120,120c,120d,120e,220,220c,220d,220e インダクタ、121,121c,121d,121e コイル状導体、130,230 樹脂封止部、131 第1領域、132 第2領域、133 凸条部、140 接地導体部、141 側面部、145,245,845,945 導電層、150,150a,150b,250,250a,250b,250f 線状導体部、151 隙間、160 樹脂表層部、234 凹条部、870 貫通孔、970 開口部、B0,B1,B8,B9 磁界、I0 電流、I1,I8,I9 渦電流。
Claims (12)
- 主面を有する基板と、
前記主面上に配置された1以上のインダクタと、
前記1以上のインダクタを封止するとともに前記基板の前記主面を覆う樹脂封止部と、
平面視において、前記1以上のインダクタの全体に対して、前記基板の外周側に配置されている接地導体部と、
前記接地導体部と電気的に接続されている複数の線状導体部とを備え、
前記複数の線状導体部は、前記樹脂封止部上に形成されており、
平面視において、前記1以上のインダクタが、前記複数の線状導体部のうちの少なくとも1つと重なるように、前記複数の線状導体部が互いに隙間を空けつつ配置されている、モジュール。 - 平面視において、前記複数の線状導体部の各々の線幅の寸法が、前記1以上のインダクタの各々の短手方向の長さの寸法より小さい、請求項1に記載のモジュール。
- 平面視において、前記隙間の幅が、前記複数の線状導体部の各々の線幅より小さい、請求項1または請求項2に記載のモジュール。
- 前記接地導体部は、平面視において、前記樹脂封止部上のうち、前記1以上のインダクタの全体に対して外周側に位置する第1領域に配置されており、
前記複数の線状導体部は、平面視において、前記第1領域に囲まれた第2領域を覆うように配置されており、
平面視において、前記接地導体部が、前記第1領域に沿った矩形環状の外形を有しており、
平面視において、前記複数の線状導体部の各々は、前記接地導体部の互いに異なる2辺を繋ぐように延在している、請求項1から請求項3のいずれか1項に記載のモジュール。 - 平面視において、前記複数の線状導体部の各々は、前記接地導体部の互いに対向する2辺を繋ぐように延在している、請求項4に記載のモジュール。
- 平面視において、前記複数の線状導体部の各々は、前記接地導体部の互いに隣り合う2辺を繋ぐように、折れ曲がりつつ延在している、請求項4に記載のモジュール。
- 前記1以上のインダクタのうち少なくとも1つは、前記基板の前記主面に対して平行な中心軸を有するコイル状導体を含んでいる、請求項1から請求項6のいずれか1項に記載のモジュール。
- 前記1以上のインダクタのうち少なくとも1つは、前記基板の前記主面に対して垂直な中心軸を有するコイル状導体を含んでいる、請求項1から請求項7のいずれか1項に記載のモジュール。
- 前記接地導体部は、平面視において、前記樹脂封止部上のうち、前記1以上のインダクタの全体に対して外周側に位置する第1領域に配置されており、
前記複数の線状導体部は、平面視において、前記第1領域に囲まれた第2領域を覆うように配置されており、
平面視において、前記複数の線状導体部の各々は、互いに平行となるように直線状に延在することにより、前記第2領域の全体にわたって配置されている、請求項1から請求項3のいずれか1項に記載のモジュール。 - 前記樹脂封止部の上面には、複数の凸条部が形成されており、
前記複数の線状導体部の各々は、前記複数の凸条部の各々の少なくとも上端面上に配置されている、請求項1から請求項9のいずれか1項に記載のモジュール。 - 前記樹脂封止部の上面には、複数の凹条部が形成されており、
前記複数の線状導体部の各々は、前記複数の凹条部の各々の少なくとも底面上に配置されている、請求項1から請求項9のいずれか1項に記載のモジュール。 - 前記樹脂封止部および前記複数の線状導体部の各々の少なくとも一部を覆うように配置された、樹脂表層部をさらに備える、請求項1から請求項11のいずれか1項に記載のモジュール。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/478,554 US20220005644A1 (en) | 2019-03-26 | 2021-09-17 | Module |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019058198 | 2019-03-26 | ||
JP2019-058198 | 2019-03-26 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/478,554 Continuation US20220005644A1 (en) | 2019-03-26 | 2021-09-17 | Module |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020196522A1 true WO2020196522A1 (ja) | 2020-10-01 |
Family
ID=72612001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/013022 WO2020196522A1 (ja) | 2019-03-26 | 2020-03-24 | モジュール |
Country Status (2)
Country | Link |
---|---|
US (1) | US20220005644A1 (ja) |
WO (1) | WO2020196522A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05299962A (ja) * | 1992-04-16 | 1993-11-12 | Murata Mfg Co Ltd | 高周波用ローパスフィルタ |
JP2006005297A (ja) * | 2004-06-21 | 2006-01-05 | Murata Mfg Co Ltd | 電子部品 |
WO2017122416A1 (ja) * | 2016-01-14 | 2017-07-20 | ソニー株式会社 | 半導体装置 |
JP2017174920A (ja) * | 2016-03-23 | 2017-09-28 | ローム株式会社 | 電極内蔵基板およびその製造方法、インダクタンス素子、インターポーザ、シールド基板およびモジュール |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4947156B2 (ja) * | 2010-01-20 | 2012-06-06 | 株式会社村田製作所 | 弾性波デュプレクサ |
KR101171512B1 (ko) * | 2010-06-08 | 2012-08-06 | 삼성전기주식회사 | 반도체 패키지의 제조 방법 |
JPWO2012023332A1 (ja) * | 2010-08-18 | 2013-10-28 | 株式会社村田製作所 | 電子部品及びその製造方法 |
JP5668627B2 (ja) * | 2011-07-19 | 2015-02-12 | 株式会社村田製作所 | 回路モジュール |
US9230732B2 (en) * | 2012-01-17 | 2016-01-05 | Texas Instruments Incorporated | Wireless power transfer |
JP6460328B2 (ja) * | 2014-05-28 | 2019-01-30 | Tdk株式会社 | Lc複合部品 |
JPWO2016080333A1 (ja) * | 2014-11-21 | 2017-08-24 | 株式会社村田製作所 | モジュール |
WO2016121491A1 (ja) * | 2015-01-30 | 2016-08-04 | 株式会社村田製作所 | 電子回路モジュール |
JP6596942B2 (ja) * | 2015-06-04 | 2019-10-30 | 株式会社Ihi | コイル装置 |
JP6569654B2 (ja) * | 2016-12-14 | 2019-09-04 | 株式会社村田製作所 | チップインダクタ |
JP2018170419A (ja) * | 2017-03-30 | 2018-11-01 | 太陽誘電株式会社 | 電子部品モジュール |
KR102029577B1 (ko) * | 2018-03-27 | 2019-10-08 | 삼성전기주식회사 | 코일 부품 |
US10867934B2 (en) * | 2018-03-27 | 2020-12-15 | Intel IP Corporation | Component magnetic shielding for microelectronic devices |
-
2020
- 2020-03-24 WO PCT/JP2020/013022 patent/WO2020196522A1/ja active Application Filing
-
2021
- 2021-09-17 US US17/478,554 patent/US20220005644A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05299962A (ja) * | 1992-04-16 | 1993-11-12 | Murata Mfg Co Ltd | 高周波用ローパスフィルタ |
JP2006005297A (ja) * | 2004-06-21 | 2006-01-05 | Murata Mfg Co Ltd | 電子部品 |
WO2017122416A1 (ja) * | 2016-01-14 | 2017-07-20 | ソニー株式会社 | 半導体装置 |
JP2017174920A (ja) * | 2016-03-23 | 2017-09-28 | ローム株式会社 | 電極内蔵基板およびその製造方法、インダクタンス素子、インターポーザ、シールド基板およびモジュール |
Also Published As
Publication number | Publication date |
---|---|
US20220005644A1 (en) | 2022-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107535081B (zh) | 高频模块 | |
KR101230448B1 (ko) | 프린트 배선판 및 그 제조 방법 | |
KR102023338B1 (ko) | 프린트 배선판 | |
US10277193B2 (en) | Circuit board and electronic circuit module using the same | |
JP4736988B2 (ja) | 多層プリント基板 | |
JPWO2018101384A1 (ja) | 高周波モジュール | |
US10879142B2 (en) | Electronic component | |
WO2011111313A1 (ja) | 電子装置、配線基板およびノイズ遮蔽方法 | |
WO2011111314A1 (ja) | 配線基板、電子装置およびノイズ遮蔽方法 | |
WO2015194435A1 (ja) | 回路モジュール及びその製造方法 | |
EP2808890A1 (en) | Multilayer printed board | |
WO2017006552A1 (ja) | プリント基板 | |
KR101227750B1 (ko) | 반도체 ic 내장 모듈 | |
JP6965858B2 (ja) | 表面実装インダクタおよびその製造方法 | |
WO2020196522A1 (ja) | モジュール | |
EP2150807A1 (de) | Induktiver leitfähigkeitssensor | |
JP4634883B2 (ja) | シールド付き配線基板とその製造方法 | |
WO2021006141A1 (ja) | モジュールおよびその製造方法 | |
JP4259673B2 (ja) | 回路基板及びその製造方法 | |
JP2019197785A (ja) | プリント配線板 | |
US20220304201A1 (en) | Module | |
JP4728384B2 (ja) | 回路基板の製造方法 | |
WO2011111312A1 (ja) | 構造体および配線基板 | |
DE102014217186A1 (de) | Verfahren zum Herstellen eines Schaltungsträgers und Schaltungsträger für elektronische Bauelemente | |
US20220159825A1 (en) | Module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20778083 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20778083 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |