[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020194558A1 - Wireless communication device, communication system, and wireless communication method - Google Patents

Wireless communication device, communication system, and wireless communication method Download PDF

Info

Publication number
WO2020194558A1
WO2020194558A1 PCT/JP2019/013031 JP2019013031W WO2020194558A1 WO 2020194558 A1 WO2020194558 A1 WO 2020194558A1 JP 2019013031 W JP2019013031 W JP 2019013031W WO 2020194558 A1 WO2020194558 A1 WO 2020194558A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
wireless communication
signal
transmission line
diversity
Prior art date
Application number
PCT/JP2019/013031
Other languages
French (fr)
Japanese (ja)
Inventor
昭範 中島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021508514A priority Critical patent/JP6929486B2/en
Priority to PCT/JP2019/013031 priority patent/WO2020194558A1/en
Publication of WO2020194558A1 publication Critical patent/WO2020194558A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present invention relates to a wireless communication device, a communication system, and a wireless communication method for performing digital wireless communication.
  • a delayed transmission diversity method in which the same signal is transmitted by making the transmission timing different between the plurality of transmitting antennas.
  • Circular delay transmission diversity applicable to block transmission such as OFDM (Orthogonal Frequency Division Multiplexing) using guard interval, spatiotemporal block code (STBC: Space Time Block Coding) and time by Alamouti transmission coding.
  • STBC Space Time Block Coding
  • SFBC Space Frequency Block Coding
  • the delayed transmission diversity method does not provide the transmission diversity gain for the transmitting antenna, but it enables transmission using the simplest and smallest number of pilot signals.
  • the STBC method and the SFBC method have a drawback that the receiving side needs to estimate all the transmission path states between each transmitting antenna and the receiving antenna, and the insertion loss due to the insertion of the pilot signal is large.
  • the transmitting side when the transmitting side knows the transmission line state estimated on the receiving side, precoding using the transmission line state enables high-gain transmission, and simple demodulation processing on the receiving side. Good transmission characteristics can be obtained.
  • precoding as in the STBC method and the SFBC method, it is necessary for the receiving side to estimate all the transmission line states between each transmitting antenna and the receiving antenna, and to inform the transmitting side of the estimation result. That is, there is a drawback that the system is complicated because the receiving side feeds back the estimated value of the transmission line state.
  • the transmission diversity method to be used is one method.
  • the wireless communication device that performs transmission diversity uses the signal received from the wireless communication device of the communication partner. It is desirable to perform transmission diversity control. Therefore, we consider the adoption of the simplest delayed transmission diversity method as the transmission diversity.
  • the transmitting side does not need feedback information from the receiving side.
  • the delayed transmission diversity method there is a problem that the transmission characteristics deteriorate under certain specific conditions. For example, when there are two transmitting antennas and one receiving antenna, if the difference in amplitude of the transmission path value from each transmitting antenna to the receiving antenna becomes small, a sharp drop in gain occurs at a specific frequency within the occupied bandwidth. Occurs. In this state, if the weight of the least squares error is used in frequency domain equalization, intersymbol interference remains in the received signal after equalization in order to give up complete reproduction of spectral distortion and avoid noise enhancement. Transmission characteristics deteriorate.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a wireless communication device capable of improving transmission characteristics in a communication system to which a delayed transmission diversity method is applied.
  • the present invention is a wireless communication device provided with a plurality of antennas and capable of transmission processing using a delayed transmission diversity, and the transmission obtained by the first method.
  • the state estimation unit that estimates the moving state of the wireless communication device based on the road estimated value and the transmission line estimated value obtained by the second method, and the moving state are in a state in which the transmission characteristics deteriorate when delayed transmission diversity is performed.
  • the process of stopping the use of the delayed transmission diversity the process of changing the phase of the signal transmitted from some antennas among multiple antennas, or the process of transmitting from some antennas.
  • a transmission device that performs processing for giving a frequency deviation to a signal is provided.
  • the wireless communication device has an effect that the transmission characteristics in the communication system to which the delayed transmission diversity method is applied can be improved.
  • the figure which shows the configuration example of the mobile station of the communication system which concerns on Embodiment 1. A flowchart showing an example of the operation of the transmission operation control unit included in the transmission device of the mobile station according to the first embodiment.
  • the wireless communication device, communication system, and wireless communication method according to the embodiment of the present invention will be described in detail below with reference to the drawings.
  • the present invention is not limited to this embodiment.
  • an example will be described in which a communication system composed of a base station and a mobile station is assumed and the transmission diversity of the mobile station is controlled based on the reception result of a signal from the base station.
  • the mobile station corresponds to the wireless communication device according to the present invention.
  • the mobile station obtains a two-dimensional transmission line estimation value using a signal received from the base station, that is, obtains two types of transmission line estimation values by different methods.
  • the moving state of the mobile station is estimated based on the obtained two types of transmission line estimated values. Further, the mobile station uses a plurality of carriers to determine whether or not the signal transmitted from each antenna is shielded, and selects an antenna to be turned off when the transmission is turned off based on the determination result.
  • FIG. 1 is a diagram showing a configuration example of a transmission device included in a base station of the communication system according to the first embodiment.
  • the base station includes a receiving device in addition to the transmitting device, the receiving device of the base station is not required in the description of the mobile station which is the wireless communication device according to the first embodiment. Therefore, the receiving device is described in FIG. It is omitted.
  • the transmission device 101 constituting the base station 100 includes a plurality of transmission units 1-1 to 1-N ca , each of which performs transmission processing for single carrier transmission.
  • the transmission unit 1-1 transmits a signal on the first carrier (carrier # 1).
  • the transmission unit 1-N ca transmits a signal with a carrier (carrier #N ca) of the N ca. Since the configurations of the transmission units 1-1 to 1-N ca are the same, the transmission unit 1-1 will be described below.
  • the transmission unit 1-1 of the transmission device 101 includes a plurality of transmission processing units 10-1 to 10-N t .
  • the transmission processing unit 10-1 generates a signal to be transmitted from the first antenna (antenna # 1) among the plurality of antennas 19 included in the transmission device 101.
  • the transmission processing unit 10-N t generates a signal to be transmitted from the antenna of the N t of the plurality of antennas 19 (antennas #N t). Since the configurations of the transmission processing units 10-1 to 10-N t are the same, the transmission processing unit 10-1 will be described below.
  • the transmission processing unit 10-1 includes an error correction coding unit 11, an interleaver 12, a mapping unit 13, an interpolation unit 14, a band limiting unit 15, a DAC (Digital to Analog Converter) 16, and an analog front end 17.
  • An antenna 19 is connected to the analog front end 17.
  • the error correction coding unit 11 error-corrects and encodes the bit sequence of the input transmission information, and inputs the coded bit sequence after the error correction coding to the interleaver 12.
  • the interleaver 12 performs interleaving processing on the input coded bit sequence to change the order of the coded bit sequence.
  • the interleaver 12 inputs the coded bit sequence after changing the order to the mapping unit 13.
  • the mapping unit 13 generates a symbol sequence by performing a mapping process corresponding to the modulation method to be used on the coded bit sequence input from the interleaver 12. Examples of the modulation method used by the transmission device 101 are PSK (Phase Shift Keying), QAM (Quadrature Amplitude Modulation), and the like.
  • the mapping unit 13 inputs the generated symbol sequence to the interpolation unit 14.
  • the interpolation unit 14 performs an interpolation process for raising the sampling frequency of the symbol sequence input from the mapping unit 13, and inputs the obtained upsampled symbol sequence to the band limiting unit 15.
  • the band limiting unit 15 performs band limiting processing on the input symbol sequence, and inputs the band-limited symbol sequence to the DAC 16.
  • the DAC 16 converts the input symbol sequence from a digital signal to an analog signal, and inputs the converted analog signal, which is the symbol sequence, to the analog front end 17.
  • the analog front end 17 up-converts and amplifies the analog signal input from the DAC 16 and inputs it to the antenna 19.
  • the antenna 19 transmits the signal input from the analog front end 17 toward the mobile station.
  • Each transmission processing unit other than the transmission processing unit 10-1 also performs the same processing as the transmission processing unit 10-1, and a plurality of signals are transmitted in parallel from the plurality of antennas 19 of the transmission device 101 toward the mobile station.
  • Each signal transmitted by the transmitting device 101 is received by the mobile station via a channel having fading.
  • the mobile station has a plurality of receiving antennas, when the signal receiving antenna of the n r of the mobile station receives a r nr, the received signal r nr is expressed by the following equation (1).
  • h nr, nt the antenna of the n t of the base station 100 (hereinafter referred to as transmitting antennas of the n t) and the antenna of the n r mobile stations (hereinafter, reception of the n r It is a transmission line value indicating the state of the transmission line to and from (the antenna).
  • d nt is the signal to be transmitted from the transmission antenna of the n t
  • n nr is the noise at the receiving antenna of the n r.
  • the same signal may be transmitted from each antenna of the base station 100, transmission diversity, and spatial multiplexing can be supported, and there are no special restrictions.
  • FIG. 2 is a diagram showing a configuration example of a mobile station of the communication system according to the first embodiment.
  • the mobile station 200 shown in FIG. 2 is composed of a receiving device 201 and a transmitting device 202.
  • the receiving antenna 21 included in the receiving device 201 and the transmitting antenna 49 included in the transmitting device 202 are shown separately, but it is assumed that they are physically shared. That is, the mobile station 200 includes a plurality of antennas, and each antenna transmits and receives a signal.
  • the number of receiving antennas 21 for the mobile station 200 to receive the signal from the base station 100 is N r
  • the receiving device 201 constituting the mobile station 200 includes a plurality of receiving units 2-1 to 2-N ca , each of which performs reception processing for single carrier transmission.
  • the receiving unit 2-1 receives the signal on the first carrier (carrier # 1).
  • the receiving unit 2-N ca receives a signal with a carrier (carrier #N ca) of the N ca. Since the configurations of the receiving units 2-1 to 2-N ca are the same, the receiving unit 2-1 will be described below.
  • Reception unit of the reception apparatus 201 2-1 is provided with a plurality of reception processing units 20-1 ⁇ 20-N r.
  • the reception processing unit 20-1 processes the signal received by the first antenna (reception antenna # 1) among the plurality of reception antennas 21 included in the reception device 201.
  • the reception processing unit 20-N r processes the signals received by the antenna of the N r of the plurality of receiving antennas 21 (receiving antenna #N r) receives. Since the configurations of the reception processing units 20-1 to 20-N r are the same, the reception processing unit 20-1 will be described below.
  • the reception processing unit 20-1 includes an analog front end 22, an ADC (Analog to Digital Converter) 23, a band limiting unit 24, a decimation unit 25, a timing detection unit 26, a frequency correction unit 27, a transmission path estimation unit 28, and a signal reproduction unit. 29, an LLR (Log Likelihood Ratio) calculation unit 30, a deinteraver 31 and an error correction / decoding unit 32 are provided.
  • a receiving antenna 21 is connected to the analog front end 22.
  • the analog front end 22 down-converts the signal input from the receiving antenna 21 and inputs the down-converted signal to the ADC 23.
  • the ADC 23 converts the input analog signal into a digital signal, and inputs the digital signal to the band limiting unit 24.
  • the band limiting unit 24 limits the band of the input digital signal and inputs the limited band digital signal to the decimation unit 25.
  • the decimation unit 25 performs a decimation process for lowering the sampling rate of the input signal, and inputs the obtained downsampled signal to the timing detection unit 26.
  • the timing detection unit 26 detects the symbol timing of the input signal.
  • the timing detection unit 26 detects the symbol timing by performing cross-correlation processing using a known preamble or the like included in the received signal.
  • the received signal whose symbol timing is detected by the timing detection unit 26 is input to the frequency correction unit 27.
  • the frequency correction unit 27 estimates the frequency deviation of the input received signal by using a known preamble or the like, and corrects the frequency of the received signal so that the frequency deviation becomes zero.
  • the frequency correction unit 27 inputs the received signal after correcting the frequency to the transmission line estimation unit 28 and the signal reproduction unit 29.
  • the transmission line estimation unit 28 estimates the transmission line using a known pilot signal included in the received signal input from the frequency correction unit 27, and inputs the obtained transmission line estimation value to the signal reproduction unit 29. ..
  • the signal reproduction unit 29 uses the transmission line estimation value input from the transmission line estimation unit 28 to perform synchronous detection and equalization processing on the received signal input from the frequency correction unit 27, and obtains a signal. Is input to the LLR calculation unit 30.
  • the LLR calculation unit 30 calculates the log-likelihood ratio (LLR) of each bit included in the signal input from the signal reproduction unit 29, and generates an LLR series.
  • the LLR calculation unit 30 inputs the generated LLR series to the deinterleaver 31.
  • the deinterleaver 31 deinterleaves the LLR series input from the LLR calculation unit 30 and rearranges the LLR series. Specifically, the deinterleaver 31 performs a process reverse to the process of changing the order of the coded bit sequences performed by the interleaver 12 of the transmission device 101, and returns the order to the original order.
  • the deinterleaver 31 inputs the deinterleaved LLR sequence to the error correction / decoding unit 32.
  • the error correction / decoding unit 32 error-corrects and decodes the LLR sequence input from the deinterleaver, and acquires the information bit sequence transmitted by the transmission device 101 of the base station 100.
  • the transmission device 202 constituting the mobile station 200 includes a plurality of transmission units 4-1 to 4-N ca , each of which performs transmission processing for single carrier transmission, and a transmission operation control unit 50.
  • the transmission unit 4-1 transmits a signal on the first carrier (carrier # 1).
  • the transmitter 4-N ca transmits a signal with a carrier (carrier #N ca) of the N ca. Since the configurations of the transmission units 4-1 to 4-N ca are the same, the transmission unit 4-1 will be described below.
  • the transmission unit 4-1 of the transmission device 202 includes a plurality of transmission processing units 40-1 to 40-N t .
  • the transmission processing unit 40-1 generates a signal to be transmitted from the first antenna (transmission antenna # 1) among the plurality of transmission antennas 49 included in the transmission device 202.
  • the transmission processing unit 40-N t generates a signal to be transmitted from the antenna of the N t of the plurality of transmit antennas 49 (transmitting antenna #N t). Since the configurations of the transmission processing units 40-1 to 40-N t are the same, the transmission processing unit 40-1 will be described below.
  • the transmission processing unit 40-1 includes an error correction coding unit 41, an interleaver 42, a mapping unit 43, an interpolation unit 44, a band limiting unit 45, a diversity processing unit 46, a DAC 47, and an analog front end 48.
  • a transmitting antenna 49 is connected to the analog front end 48.
  • the error correction coding unit 41 performs error correction coding on the bit sequence of the input transmission information, and inputs the coded bit sequence after the error correction coding to the interleaver 42.
  • the interleaver 42 performs interleaving processing on the input coded bit sequence to change the order of the coded bit sequence.
  • the interleaver 42 inputs the coded bit sequence after changing the order to the mapping unit 43.
  • the mapping unit 43 performs a mapping process corresponding to the modulation method to be used on the coded bit sequence input from the interleaver 42 to generate a symbol sequence.
  • the mapping unit 43 inputs the generated symbol sequence to the interpolation unit 44.
  • the interpolation unit 44 performs an interpolation process for raising the sampling frequency of the symbol sequence input from the mapping unit 43, and inputs the obtained upsampled symbol sequence to the band limiting unit 45.
  • the band limiting unit 45 performs band limiting processing on the input symbol sequence, and inputs the symbol sequence after band limiting to the diversity processing unit 46.
  • a control signal is input to the diversity processing unit 46 from the transmission operation control unit 50.
  • the diversity processing unit 46 performs processing instructed by a control signal input from the transmission operation control unit 50. Specifically, the diversity processing unit 46 delays the band-limited symbol sequence input from the band-limited unit 45 and then outputs the symbol sequence, or band-limits the signal transmission by the transmitting antenna 49.
  • the diversity processing unit 46 holds the input symbol sequence for a time specified by the control signal, and then outputs the delay to the DAC 47.
  • the diversity processing units 46 of the transmission processing units 40-1 to 40-N t give a delay to the input symbol series, the input symbol series are delayed by different delay amounts and output. As a result, delayed transmission diversity is realized.
  • the DAC 47 converts the symbol sequence input from the diversity processing unit 46 from a digital signal to an analog signal, and inputs the converted analog signal, which is the symbol sequence, to the analog front end 48.
  • the analog front end 48 up-converts and amplifies the analog signal input from the DAC 47, and inputs the analog signal to the transmitting antenna 49.
  • the transmitting antenna 49 transmits the signal input from the analog front end 48 toward the base station 100.
  • the transmitting device 202 of the mobile station 200 performs burst transmission according to the frame timing estimated using the received signal from the base station 100. Will do.
  • the mobile station 200 utilizes a plurality of transmitting antennas 49 to perform delayed transmission diversity, for example, when utilizing N t transmission antennas 49, the same transmission signal is transmitted with a delay, so that the base station 100 transmits.
  • the received signal in the time domain is represented by the following equation (2).
  • the transmitting antennas of the n t transmitting giving a delay of tau nt.
  • H nr (f) is the transmission path value has the following formula in the frequency domain of the frequency of the f at the receiving antenna of the n r (4).
  • the H nr (f) is an equivalent transmission line transmission path condition is synthesized between the respective receive antennas of the n r of the plurality of transmit antennas 49.
  • ⁇ nt is the amount of delay given to the signal transmitted by the ntth transmitting antenna
  • N c is the number of FFT (Fast Fourier Transform) points, as described above.
  • the base station 100 confirms the channel quality of the uplink signal and the base station 100 moves to the mobile station 200.
  • the above problem can be easily avoided without giving feedback on the above information.
  • the transmission operation of the mobile station 200 that is, the operation in which the transmission device 202 transmits a signal to the base station 100 will be described.
  • the communication system according to the present embodiment is premised on the use of delayed transmission diversity.
  • the transmission device 202 of the mobile station 200 includes transmission units 4-1 to 4-N ca corresponding to each carrier and transmission operation control unit 50.
  • the transmission processing units 40-1 to 40-N t included in each of the transmission units 4-1 to 4-N ca include a diversity processing unit 46.
  • the transmission operation control unit 50 includes a shielding determination unit 51 and a state estimation unit 52, and determines whether or not to perform delayed transmission diversity transmission.
  • the transmission operation control unit 50 inputs a control signal including information on the amount of delay given to the signal transmitted from the transmission antenna 49 to each diversity processing unit 46.
  • the transmission operation control unit 50 determines from which transmission antenna 49 the transmission is stopped when the delayed transmission diversity transmission is not performed, and inputs a control signal including the determination result to each diversity processing unit 46. ..
  • the shielding determination unit 51 of the transmission operation control unit 50 determines for each transmission antenna 49 whether or not there is an object that shields radio waves between each transmission antenna 49 of the mobile station 200 and each antenna 19 of the base station 100. Further, the state estimation unit 52 of the transmission operation control unit 50 calculates an estimation error corresponding to an assumed moving speed candidate based on the moving state of the mobile station 200, specifically, the received signal from the base station 100. Then, it is estimated whether or not the self is stationary or moving at a low speed.
  • FIG. 3 is a flowchart showing an example of the operation of the transmission operation control unit 50 included in the transmission device 202 of the mobile station 200 according to the first embodiment.
  • the transmission operation control unit 50 first calculates an index value for shielding determination (step S11), and then performs transmission line estimation and interpolation processing (step S12). Next, the transmission operation control unit 50 estimates the moving state of the mobile station 200 by using the obtained transmission line estimation value, the interpolation value, and the index value for shielding determination (step S13). The moving state of the mobile station 200 estimates whether or not the mobile station 200 is stationary or moving at a low speed. In the following description, the state of moving at low speed is referred to as a quasi-stationary state. After that, the transmission operation control unit 50 determines the transmission antenna 49 to be turned off by using the index value for shielding determination (step S14). The determination result in step S14 includes the case where the transmission antenna 49 for turning off transmission does not exist.
  • the shielding determination unit 51 included in the transmission operation control unit 50 of the transmission device 202 estimates the downlink received power and performs the shielding determination.
  • the shielding determination is a determination as to whether or not there is shielding.
  • the shielding determination unit 51 uses the received power of each of the plurality of carriers to prevent the above-mentioned erroneous determination from occurring.
  • the shielding determination unit 51 performs the shielding determination by using a plurality of carriers having a sufficiently small frequency correlation and a large separation frequency, that is, using all the carriers.
  • FIG. 4 is a flowchart showing an example of an operation in which the shielding determination unit 51 of the transmission operation control unit 50 according to the first embodiment performs the shielding determination.
  • the shielding determination unit 51 calculates the quality value of the received signals of the plurality of carriers (step S21). Specifically, the shielding determination unit 51 calculates SINR (Signal to Interference plus Noise Ratio) values Inr, no_ca for the signal of each carrier received by each receiving antenna 21. nr indicates the number of the receiving antenna 21, and no_ca indicates the number of the carrier.
  • SINR Signal to Interference plus Noise Ratio
  • the shielding determination unit 51 synthesizes the quality value of the received signal calculated in step S21 for each receiving antenna 21 and calculates an index value for shielding determination (step S22). Specifically, the shielding determination unit 51 synthesizes the above SINR values according to the following equation (5), and calculates an index value Inr for shielding determination for each receiving antenna 21.
  • the shielding determination unit 51 determines the presence or absence of shielding for each receiving antenna 21 by comparing the index value Inr for shielding determination calculated in step S22 with the threshold value (step S23). It is estimated that the receiving antenna 21 corresponding to the index value Inr below the threshold value is shielded from radio waves. As described above, since each antenna included in the mobile station 200 is used for both transmission and reception of signals, when the transmission antenna 49 corresponding to the reception antenna 21 whose index value Inr is below the threshold value is used. Occurs shielding. Therefore, the transmitting antenna 49 corresponding to the receiving antenna 21 whose index value Inr is below the threshold value is a target for turning off the transmission when the transmitting device 202 turns off the delayed transmission diversity.
  • the shielding determination unit 51 sets RX # 1 TX # 1 corresponding to is targeted for turning off transmission.
  • FIG. 5 is a flowchart showing an example of an operation in which the state estimation unit 52 of the transmission operation control unit 50 according to the first embodiment estimates the state of the transmission line.
  • the state estimation unit 52 estimates the transmission line using the pilot signal included in the signal received by the receiving device 201, and obtains the estimated transmission line value (step S31).
  • the transmission line estimated value obtained in step S31 is represented by h pilot and nr with a hat.
  • h pilot, nr (hat) the h pilot and nr with a hat.
  • the same description method is used when adding a hat to characters other than h pilot and nr .
  • the state estimation unit 52 obtains the estimated value of the transmission line at the position where the pilot signal does not exist by using linear interpolation or the like.
  • the method of obtaining the transmission line estimated value in step S31 is the first method.
  • the transmission line estimated value obtained by the first method is the first transmission line estimated value.
  • the state estimation unit 52 transmits the assumed movement speed, the maximum multipath delay amount, and the received SNR (Signal-Noise Ratio) using a plurality of prepared interpolation tables a tbl as a parameter set of the transmission line parameters.
  • Path interpolation is performed (step S32). Specifically, the state estimation unit 52 acquires the transmission line interpolation value represented by the following equation (6) based on the transmission line estimation value at the position where the pilot signal exists and the interpolation table atbl. ..
  • the transmission line interpolation value is a transmission line estimated value calculated by transmission line interpolation performed using an interpolation table.
  • the method of obtaining the transmission line estimated value in step S32 is the second method.
  • the transmission line estimated value obtained by the second method is the second transmission line estimated value.
  • the transmission line estimation value obtained by the transmission line interpolation in step S32 is referred to as a transmission line interpolation value in order to distinguish it from the transmission line estimation value obtained in step S31.
  • the h int, nr (hat) (t, f) represented by the equation (6) is a transmission line interpolation value calculated using the tbl number interpolation table, and more specifically, the fth frequency at the t time. It is a transmission line interpolation value.
  • the state estimation unit 52 then calculates the interpolation error corresponding to each interpolation table (step S33). Specifically, the state estimation unit 52 calculates the interpolation error et tbl using the following equation (7). As shown in the equation (7), the state estimation unit 52 obtains the interpolation error et bl from the difference between the transmission line interpolation value obtained by the transmission line interpolation and the transmission line estimation value obtained by using the pilot signal.
  • b is a set indicating the position where the pilot signal is inserted.
  • the state estimation unit 52 calculates the interpolation errors of all the interpolation tables, and then selects the interpolation table having the smallest interpolation error.
  • the interpolation table takes into account various situations assumed when the mobile station 200 communicates, that is, the assumed moving speed, maximum multipath delay amount and received SNR of the transmission line parameters. Multiple parameter sets are prepared.
  • the transmission line interpolation values obtained by the state estimation unit 52 in step S32 the transmission line interpolation values obtained by using an interpolation table close to the actual situation of the mobile station 200 are obtained by the state estimation unit 52 in step S31.
  • the difference from the estimated transmission line obtained directly from the pilot signal becomes smaller. Therefore, it can be estimated that the transmission line indicated by the transmission line parameter corresponding to the interpolation table having the smallest interpolation error is the most probable transmission line.
  • the state estimation unit 52 calculates the transmission line interpolation value using the transmission line estimation values by a plurality of pilot signals based on the interpolation table. Since the transmission line interpolation value calculated in this way is noise-reduced while interpolating, the transmission line environment is more accurate than performing autocorrelation processing by directly using the transmission line estimated value obtained from the pilot signal. Can be detected with.
  • FIG. 6 is a flowchart showing an example of an operation in which the state estimation unit 52 of the transmission operation control unit 50 according to the first embodiment estimates the movement state of the mobile station 200.
  • the state estimation unit 52 After executing the above steps S31 to S33 shown in FIG. 5, the state estimation unit 52 synthesizes the interpolation errors of the plurality of carriers in order to improve the estimation accuracy of the transmission line parameters in the interpolation table (step S41). Specifically, the state estimation unit 52 calculates the combined interpolation error e total, tbl , which is the combined result of the interpolation error, using the following equation (8).
  • the synthesis coefficient c no_ca, nr determined by the combination of the receiving antenna 21 and the carrier is multiplied by the interpolation error for synthesis, but the multiplication of the synthesis coefficient does not have to be performed.
  • the combined coefficients c no_ca and nr are calculated based on the received electric field strength and desired signal receiving power of each receiving antenna 21, each carrier, noise power and interference power, and the shielding determination result. For example, the synthesis coefficients c no_ca and nr are calculated using the following equation (9).
  • the state estimation unit 52 synthesizes the interpolation errors of the front and rear frames in order to be able to follow the fluctuation of the moving speed of the mobile station 200 (step S42). Specifically, the state estimation unit 52 performs weighted synthesis using the forgetting coefficient ⁇ for the composite interpolation error calculated in step S41 and the two composite interpolation errors calculated at the times (frames) before and after. .. It should be noted that 0 ⁇ ⁇ 1.
  • the state estimation unit 52 estimates the moving state of the mobile station 200 (step S43). Specifically, the state estimation unit 52 compares each of the combined interpolation errors obtained by executing the processes up to step S42 described above using each interpolation table, and identifies the interpolation table that minimizes the combined interpolation error. To do.
  • the state estimation unit 52 determines that the mobile station 200 is stationary or quasi-stationary. Then, the state estimation unit 52 decides to stop the delayed transmission diversity.
  • the state estimation unit 52 preferentially determines the transmission antenna 49 determined by the occlusion determination unit 51 that the occlusion has occurred to the transmission antenna 49 that stops the transmission.
  • transmission using this is preferentially turned off, so that the delayed transmission diversity is stopped leaving the transmitting antenna 49 with shielding, and transmission is performed. It is possible to prevent the characteristics from deteriorating.
  • the transmission operation control unit 50 obtains the signal power to interference and noise power ratio by utilizing the section where the frequency component is null in the transmission signal, and also obtains the signal power to interference and noise power ratio. It may be used to perform the index value calculation process for shielding determination in step S22 and the interpolation error synthesis process in step S41.
  • the transmission operation control unit 50 receives a reception signal from the reception antenna 21 of the reception device 201, and the shielding determination unit 51 and the state estimation unit 52 obtain necessary information based on the received reception signal. It is not limited to the configuration.
  • the shielding determination unit 51 and the state estimation unit 52 may acquire a part of necessary information from the receiving device 201 and perform the above-described processing.
  • the transmission line estimation unit 28 of the receiving device 201 may calculate the above interpolation error used by the state estimation unit 52 and pass it to the state estimation unit 52. With such a configuration, the effect of reducing the circuit scale can be expected.
  • the mobile station 200 operating as the wireless communication device is a signal transmitted / received to / from the base station 100 based on the quality of each of the plurality of carriers received by each of the plurality of antennas. It is determined for each antenna whether or not the shielding has occurred. Further, the mobile station 200 uses a transmission line estimated value obtained by using the pilot signal and the interpolation processing, and a plurality of interpolation tables prepared in consideration of various situations assumed as the pilot signal. Based on the obtained transmission line estimation value and the transmission line interpolation value, the self-moving state is determined. Then, the mobile station 200 stops the delayed transmission diversity when its moving state is stationary or quasi-stationary.
  • the mobile station 200 when the mobile station 200 stops the delayed transmission diversity, the mobile station 200 preferentially stops the transmission using the antenna in which the occlusion occurs.
  • the mobile station 200 according to the present embodiment can accurately determine its own moving state, and can stop the delayed transmission diversity when the transmission characteristic deteriorates when the delayed transmission diversity is performed. Therefore, according to the mobile station 200 according to the present embodiment, the transmission characteristics can be improved.
  • the mobile station 200 determines at least its own moving state, determines whether or not the transmission characteristics are deteriorated when the delayed transmission diversity is performed, and determines that the delayed transmission diversity should be stopped. That is, the delayed transmission diversity may be stopped when the moving state is stationary or quasi-stationary.
  • the delayed transmission diversity when the mobile environment is in a quasi-stationary state or stationary, the delayed transmission diversity is stopped, and in this case, the transmission antenna that estimates the shielding status of each transmission antenna and turns off the transmission is appropriately selected. I tried to do it, but it is not limited to this.
  • a control of delayed transmission diversity instead of turning off transmission when it is determined that the mobile environment is in a semi-stationary state or stationary, a phase change or waveform power fluctuation is given to the transmitted signal, or a frequency deviation is given. Therefore, deterioration of transmission characteristics may be avoided, and there is no particular limitation.
  • the remaining components excluding the receiving antenna 21 and the transmitting antenna 49 can be realized by a dedicated processing circuit that realizes the mobile station 200.
  • the dedicated processing circuit is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a circuit in which these are combined. ..
  • FIG. 7 is a diagram showing an example of hardware for realizing the mobile station 200 according to the first embodiment.
  • the processor 301 is a CPU (also referred to as a Central Processing Unit, a central processing unit, a processing unit, a computing device, a microprocessor, a microprocessor, a processor, or a DSP (Digital Signal Processor)).
  • the memory 302 is non-volatile, such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EEPROM (Erasable Programmable Read Only Memory), EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory), and the like. Alternatively, it is a volatile semiconductor memory.
  • the processor 301 and the memory 302 shown in FIG. 7 When the remaining components excluding the receiving antenna 21 and the transmitting antenna 49 of the mobile station 200 are realized by the processor 301 and the memory 302 shown in FIG. 7, a program for operating as each of these components is previously provided in the memory 302. Store it.
  • the processor 301 operates as each of the above components by reading and executing the program stored in the memory 302.
  • a part may be realized by a dedicated processing circuit, and the rest may be realized by the processor 301 and the memory 302 shown in FIG. ..
  • the base station 100 can also be realized with the same hardware.
  • Embodiment 2 the delayed transmission diversity is stopped whenever it is determined that the mobile station is stationary or quasi-stationary. In fact, the only case where the delayed transmission diversity should be stopped is when intersymbol interference increases, that is, there is a sharp drop on the frequency axis. In the first embodiment described above, even if it is not necessary to stop the delayed transmission diversity, the transmission may be turned off, so that performance improvement becomes an issue.
  • the present embodiment solves the above-mentioned problems.
  • FIG. 8 is a diagram showing a configuration example of the communication system according to the second embodiment.
  • the communication system according to the present embodiment includes a plurality of mobile stations 400 to 403, a plurality of base stations 406 to 408, a host device 500, and a data storage device 501.
  • it is premised on a communication system in which a mobile station travels back and forth between a limited number of routes.
  • mobile stations 400 and 401 are stationary and mobile stations 402 and 403 are moving.
  • the configurations of the mobile stations 400 to 403 are the same as those of the mobile station 200 described in the first embodiment.
  • the configurations of the base stations 406 to 408 are the same as those of the base station 100 described in the first embodiment.
  • the operation of each device constituting the communication system shown in FIG. 8 will be described.
  • the base stations 406 to 408 use the mobile station 400 based on the received signal from the mobile stations 400 to 403 each time the mobile stations 400 to 403 go back and forth between the fixed routes 404 and 405. It is determined whether or not to stop the delayed transmission diversity by obtaining the frequency response of ⁇ 403. Then, the base stations 406 to 408 generate the delayed transmission diversity ON / OFF information Div OnOff indicating the determination result, and transmit the operation record information 409 together with the position information indicating the positions of the mobile stations 400 to 403 to the host device 500. To do. The method for the base station 406-408 to generate a determination to delay transmission diversity ON / OFF information Div OnOff whether to stop the delay transmit diversity will be described later.
  • base stations 406 to 408 shall periodically acquire position information from mobile stations 400 to 403. That is, the mobile stations 400 to 403 acquire and transmit their own position information at a predetermined cycle while communicating with the base stations 406 to 408.
  • the mobile stations 400 to 403 may acquire the position information by any method.
  • the host device 500 When the host device 500 receives the operation record information 409, that is, the delayed transmission diversity ON / OFF information Div On Off and the position information from the base stations 406 to 408, the host device 500 associates them and stores them in the database held by the data storage device 501. ..
  • the stationary mobile stations 400 and 401 acquire the operation determination information 502 from the host device 500 in advance (that is, before starting the movement) via the base station 406 or 408.
  • the operation determination information 502 is information stored in the database of the data storage device 501, and includes the above-mentioned delayed transmission diversity ON / OFF information Div OnOff and the position information associated therewith .
  • Host device 500 receives the request from the mobile station 400 or 401, reads all of the delay transmit diversity ON / OFF information Div OnOff and location information stored in the database of the data storage device 501, the operation determination information 502 Is transmitted to base station 406 or 408.
  • the host device 500 acquires information on the route on which the mobile station 400 or 401 requesting the operation determination information 502 travels, and the delayed transmission diversity ON / OFF corresponding to the route on which the mobile station 400 or 401 travels.
  • the information Div On Off and the position information may be extracted from the database and transmitted as the operation determination information 502.
  • the base station 406 or 408 transmits the operation determination information 502 received from the host device 500 to the mobile station 400 or the mobile station 401.
  • the mobile stations 400 and 401 receive the operation determination information 502, they hold the operation determination information 502, and after starting the movement, perform a transmission operation based on the held operation determination information 502. That is, the mobile stations 400 and 401 determine whether or not to perform the delayed transmission diversity in the transmission operation after the start of movement based on the operation determination information 502. More specifically, the mobile station 400 and 401, if the self indicating the current location and location information associated with that delay transmit diversity ON / OFF information Div OnOff indicates diversity ON performs delay transmit diversity. Mobile station 400 and 401, if the self indicating the current location and location information associated with that delay transmit diversity ON / OFF information Div OnOff indicates diversity OFF is not performed delay transmit diversity.
  • Delayed transmission diversity ON / OFF information Div OnOff is generated by a receiving device that receives signals from mobile stations 400 to 403 at base stations 406 to 408. Specifically, the receiving devices of the base stations 406 to 408 perform transmission line estimation processing and interpolation processing using the pilot signal included in the reception signal, and calculate the transmission line estimation value H (f) in the frequency domain.
  • the configuration of the receiving device of the base stations 406 to 408 is the same as that of the receiving device 201 of the mobile station 200 described in the first embodiment.
  • the receiving device After calculating the transmission line estimated value H (f) in the frequency domain, the receiving device obtains the maximum value H _abs max and the minimum value H _abs min of the amplitude of the transmission line estimated value H (f). This process can be expressed by, for example, the following equation (10).
  • the receiving device calculates the difference Diff between the maximum value and the minimum value of the amplitude of the transmission line estimated value H (f) as shown in the following equation (11).
  • the receiving device when the difference Diff is equal to or higher than the predetermined threshold value th or more, the receiving device considers that the influence of intersymbol interference at the time of stop is large and determines that the delayed transmission diversity should be turned off, and the difference Diff is performed. If it is less than the threshold value, it is determined that the transmission diversity should be turned ON.
  • This process can be expressed by, for example, the following equation (12). In the formula (12), "0" represents the transmission diversity OFF, and "1" represents the transmission diversity ON.
  • the above difference Diff may be calculated for each receiving antenna and then combined.
  • the above is not limited.
  • the mobile stations 400 to 403 After starting the movement along the route 404 or 405, the mobile stations 400 to 403 determine their own movement state by using the method described in the first embodiment.
  • the delayed transmission diversity ON / OFF information associated with the position information indicating the current position is obtained from the held operation determination information 502.
  • the Div On Off is read, and the transmission operation is performed according to the read Div On Off .
  • the mobile station 400-403 if the read Div OnOff is to stop delay transmit diversity If it shows a delay transmission diversity OFF, read Div OnOff indicates a delayed transmission diversity ON, Delay Transmit Diversity If this is the case, this is continued, and if the delayed transmission diversity is stopped, the delayed transmission diversity is started.
  • the base stations 406 to 408 calculate the transmission line estimated value by using the pilot signal included in the received signal from the mobile stations 400 to 403, and the transmission line estimated value is calculated. Whether or not to stop the delayed transmission diversity is determined based on the maximum amplitude and the minimum amplitude of.
  • the host device 500 stores the determination results of the base stations 406 to 408 in the database of the data storage device 501 in association with the position information indicating the position where the signal used for the determination is transmitted.
  • the mobile stations 400 to 403 acquire the determination result and the position information stored in the database from the host device 500, and based on the acquired determination result and the position information, the delayed transmission diversity ON / Switch off.
  • each mobile station (mobile stations 400 to 403) knows in advance where it is not necessary to turn off the delayed transmission diversity, so that the place where it is not necessary to turn off is erroneous. It is possible to prevent the transmission characteristics from deteriorating due to being turned off by the determination.
  • the mobile station exchanges control signals with the base station 406-408 is unnecessary in the mobile system Can be simplified.
  • the base station 406-408 is a comprise data storage device 501 a database for storing the delay transmit diversity ON / OFF information Div OnOff and position information transmitted by the higher-level device to the database 500 May be prepared.
  • the configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A mobile station (200) is a wireless communication device that is provided with a plurality of antennas and is capable of transmission processing using delay transmission diversity. The mobile station (200) comprises: a state estimation unit (52) for estimating a mobile state of a wireless communication device on the basis of a transmission path estimation value obtained by a first method and a transmission path estimation value obtained by a second method; and a transmission device (202) for performing, if the mobile state is estimated by the state estimation unit (52) to correspond to a state where a transmission characteristic would deteriorate if delay transmission diversity were performed, processing for stopping use of delay transmission diversity, processing for causing the phase of signals to be transmitted from some antennas of a plurality of antennas to change, or processing for providing a frequency deviation to signals to be transmitted from some antennas.

Description

無線通信装置、通信システムおよび無線通信方法Wireless communication devices, communication systems and wireless communication methods
 本発明は、デジタル無線通信を行う無線通信装置、通信システムおよび無線通信方法に関する。 The present invention relates to a wireless communication device, a communication system, and a wireless communication method for performing digital wireless communication.
 近年、デジタル無線通信においては、無線通信品質向上のために、複数の送受信アンテナを用いて送受信ダイバーシチ利得を獲得し、高い信号電力対雑音電力比を確保することが一般的に行われている。 In recent years, in digital wireless communication, in order to improve wireless communication quality, it is generally practiced to acquire transmission / reception diversity gain by using a plurality of transmission / reception antennas to secure a high signal power to noise power ratio.
 送信側の無線通信装置(以下、送信側と記載する)で複数本のアンテナを用いる送信ダイバーシチ方式としては、複数の送信アンテナ間で送信タイミングが異なるようにして同一の信号を送信する遅延送信ダイバーシチ、ガードインターバルを使用するOFDM(Orthogonal Frequency Division Multiplexing)を初めとするブロック伝送に適用可能な循環遅延送信ダイバーシチ、アラモウチ(Alamouti)送信符号化による時空間ブロック符号(STBC:Space Time Block Coding)および時間周波数ブロック符号(SFBC:Space Frequency Block Coding)、などが知られている。これらは、送信側は受信側の無線通信装置(以下、受信側と記載する)までの伝送路状態を知る必要の無い、開ループ型の送信ダイバーシチ方式である。 As a transmission diversity method in which a plurality of antennas are used in a wireless communication device on the transmitting side (hereinafter referred to as a transmitting side), a delayed transmission diversity method in which the same signal is transmitted by making the transmission timing different between the plurality of transmitting antennas. , Circular delay transmission diversity applicable to block transmission such as OFDM (Orthogonal Frequency Division Multiplexing) using guard interval, spatiotemporal block code (STBC: Space Time Block Coding) and time by Alamouti transmission coding. Frequency block codes (SFBC: Space Frequency Block Coding), etc. are known. These are open-loop transmission diversity systems in which the transmitting side does not need to know the state of the transmission path to the receiving side wireless communication device (hereinafter referred to as the receiving side).
 遅延送信ダイバーシチ方式は、送信アンテナ分の送信ダイバーシチ利得は得られないものの、最も簡易かつ少ない数のパイロット信号を使用した伝送が可能である。STBC方式およびSFBC方式は、受信側で各送信アンテナと受信アンテナとの間の全ての伝送路状態を推定する必要があり、パイロット信号挿入に起因する挿入損が大きいのが欠点である。 The delayed transmission diversity method does not provide the transmission diversity gain for the transmitting antenna, but it enables transmission using the simplest and smallest number of pilot signals. The STBC method and the SFBC method have a drawback that the receiving side needs to estimate all the transmission path states between each transmitting antenna and the receiving antenna, and the insertion loss due to the insertion of the pilot signal is large.
 送信ダイバーシチ方式では、受信側で推定される伝送路状態を送信側が既知である場合、伝送路状態を用いたプリコーディングを行うことで、ゲインの高い送信が可能となり、受信側では簡易な復調処理で良好な伝送特性が得られる。しかしながら、プリコーディングを適用する場合、STBC方式およびSFBC方式と同様、受信側で各送信アンテナと受信アンテナとの間の全ての伝送路状態を推定し、推定結果を送信側に知らせる必要がある。すなわち、受信側が伝送路状態の推定値のフィードバック等を行うことからシステムが複雑化する欠点がある。 In the transmission diversity method, when the transmitting side knows the transmission line state estimated on the receiving side, precoding using the transmission line state enables high-gain transmission, and simple demodulation processing on the receiving side. Good transmission characteristics can be obtained. However, when applying precoding, as in the STBC method and the SFBC method, it is necessary for the receiving side to estimate all the transmission line states between each transmitting antenna and the receiving antenna, and to inform the transmitting side of the estimation result. That is, there is a drawback that the system is complicated because the receiving side feeds back the estimated value of the transmission line state.
 このように、各種送信ダイバーシチ方式には一長一短がある。そのため、ダイバーシチ利得を得て通信品質を向上させるには、伝送レート、CNR(Carrier power to Noise power Ratio)動作点等といったシステム要求条件、送信側からみた受信側の移動速度、伝送路状態などに応じて、使用する送信ダイバーシチ方式を選択するのが望ましい。例えば、特許文献1に記載の発明では、受信側の移動速度が高速である場合は時空間伝送ダイバーシチを使用し、低速である場合には位相制御ダイバーシチを使用するようにして通信効率を高めている。 In this way, various transmission diversity methods have advantages and disadvantages. Therefore, in order to obtain diversity gain and improve communication quality, system requirements such as transmission rate, CNR (Carrier power to Noise power Ratio) operating point, movement speed of the receiving side as seen from the transmitting side, transmission path condition, etc. Therefore, it is desirable to select the transmission diversity method to be used. For example, in the invention described in Patent Document 1, spatiotemporal transmission diversity is used when the moving speed of the receiving side is high, and phase control diversity is used when the moving speed is low to improve communication efficiency. There is.
特許第3877713号公報Japanese Patent No. 3877713
 通信システムの簡易化を考慮すると、使用する送信ダイバーシチ方式は1方式であることが望ましい。加えて、無線通信装置間での制御信号のやり取りを通信期間中に行う場合も構成が複雑になるので、送信ダイバーシチを行う無線通信装置は、通信相手の無線通信装置から受信した信号を用いて送信ダイバーシチ制御を行うことが望ましい。そこで、送信ダイバーシチとして最も簡易な遅延送信ダイバーシチ方式の採用を考える。 Considering the simplification of the communication system, it is desirable that the transmission diversity method to be used is one method. In addition, since the configuration is complicated even when the control signal is exchanged between the wireless communication devices during the communication period, the wireless communication device that performs transmission diversity uses the signal received from the wireless communication device of the communication partner. It is desirable to perform transmission diversity control. Therefore, we consider the adoption of the simplest delayed transmission diversity method as the transmission diversity.
 遅延送信ダイバーシチ方式の場合、送信側は受信側からのフィードバック情報が不要となる。しかし、遅延送信ダイバーシチ方式の場合、ある特定の条件において伝送特性が劣化する問題がある。例えば、送信アンテナが2本、受信アンテナが1本の場合、各送信アンテナから受信アンテナへの伝送路値の振幅の差異が小さくなると、占有帯域幅内の特定の周波数において利得の急峻な落ち込みが生じる。この状態のとき、周波数領域等化において誤差最小2乗規範の重みを用いると、スペクトル歪の完全再生を諦めて雑音強調を回避するため、等化後の受信信号に符号間干渉が残留し、伝送特性が劣化する。特に、無線通信装置が静止している環境に近づくと伝送路の変化が極めて緩やかであるため、伝送特性が劣化した状態が長時間継続することになる。この場合、一方の送信アンテナからの送信をOFFにすることで周波数軸上での急峻な落ち込みをなくすことができ、伝送特性が劣化するのを防止することが可能である。しかしながら、無線通信装置が静止しているか否かを高精度に推定する必要があり、推定精度が低い場合には正しいタイミングで送信を停止することができず、却って伝送特性が劣化してしまうという問題がある。 In the case of the delayed transmission diversity method, the transmitting side does not need feedback information from the receiving side. However, in the case of the delayed transmission diversity method, there is a problem that the transmission characteristics deteriorate under certain specific conditions. For example, when there are two transmitting antennas and one receiving antenna, if the difference in amplitude of the transmission path value from each transmitting antenna to the receiving antenna becomes small, a sharp drop in gain occurs at a specific frequency within the occupied bandwidth. Occurs. In this state, if the weight of the least squares error is used in frequency domain equalization, intersymbol interference remains in the received signal after equalization in order to give up complete reproduction of spectral distortion and avoid noise enhancement. Transmission characteristics deteriorate. In particular, when the wireless communication device approaches a stationary environment, the change in the transmission line is extremely gradual, so that the state in which the transmission characteristics are deteriorated continues for a long time. In this case, by turning off the transmission from one of the transmitting antennas, it is possible to eliminate the steep drop on the frequency axis and prevent the transmission characteristics from deteriorating. However, it is necessary to estimate with high accuracy whether or not the wireless communication device is stationary, and if the estimation accuracy is low, transmission cannot be stopped at the correct timing, and the transmission characteristics are deteriorated. There's a problem.
 本発明は、上記に鑑みてなされたものであって、遅延送信ダイバーシチ方式を適用した通信システムにおける伝送特性を向上させることが可能な無線通信装置を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a wireless communication device capable of improving transmission characteristics in a communication system to which a delayed transmission diversity method is applied.
 上述した課題を解決し、目的を達成するために、本発明は、複数のアンテナを備え、遅延送信ダイバーシチを使用した伝送処理が可能な無線通信装置であって、第1の方法で求めた伝送路推定値と第2の方法で求めた伝送路推定値とに基づいて無線通信装置の移動状態を推定する状態推定部と、移動状態が、遅延送信ダイバーシチを行うと伝送特性が劣化する状態に該当すると状態推定部で推定された場合に、遅延送信ダイバーシチの使用を停止する処理、複数のアンテナの中の一部のアンテナから送信する信号の位相を変化させる処理または一部のアンテナから送信する信号に周波数偏差を与える処理を行う送信装置と、を備える。 In order to solve the above-mentioned problems and achieve the object, the present invention is a wireless communication device provided with a plurality of antennas and capable of transmission processing using a delayed transmission diversity, and the transmission obtained by the first method. The state estimation unit that estimates the moving state of the wireless communication device based on the road estimated value and the transmission line estimated value obtained by the second method, and the moving state are in a state in which the transmission characteristics deteriorate when delayed transmission diversity is performed. When it is estimated by the state estimation unit that it is applicable, the process of stopping the use of the delayed transmission diversity, the process of changing the phase of the signal transmitted from some antennas among multiple antennas, or the process of transmitting from some antennas. A transmission device that performs processing for giving a frequency deviation to a signal is provided.
 本発明にかかる無線通信装置は、遅延送信ダイバーシチ方式を適用した通信システムにおける伝送特性を向上させることができる、という効果を奏する。 The wireless communication device according to the present invention has an effect that the transmission characteristics in the communication system to which the delayed transmission diversity method is applied can be improved.
実施の形態1にかかる通信システムの基地局が備える送信装置の構成例を示す図The figure which shows the configuration example of the transmission apparatus provided in the base station of the communication system which concerns on Embodiment 1. 実施の形態1にかかる通信システムの移動局の構成例を示す図The figure which shows the configuration example of the mobile station of the communication system which concerns on Embodiment 1. 実施の形態1にかかる移動局の送信装置が備える送信動作制御部の動作の一例を示すフローチャートA flowchart showing an example of the operation of the transmission operation control unit included in the transmission device of the mobile station according to the first embodiment. 実施の形態1にかかる送信動作制御部の遮蔽判定部が遮蔽判定を行う動作の一例を示すフローチャートA flowchart showing an example of an operation in which the shielding determination unit of the transmission operation control unit according to the first embodiment performs the shielding determination. 実施の形態1にかかる送信動作制御部の状態推定部が伝送路の状態を推定する動作の一例を示すフローチャートA flowchart showing an example of an operation in which the state estimation unit of the transmission operation control unit according to the first embodiment estimates the state of the transmission line. 実施の形態1にかかる送信動作制御部の状態推定部が移動局の移動状態を推定する動作の一例を示すフローチャートA flowchart showing an example of an operation in which the state estimation unit of the transmission operation control unit according to the first embodiment estimates the movement state of the mobile station. 実施の形態1にかかる移動局を実現するハードウェアの一例を示す図The figure which shows an example of the hardware which realizes the mobile station which concerns on Embodiment 1. 実施の形態2にかかる通信システムの構成例を示す図The figure which shows the configuration example of the communication system which concerns on Embodiment 2.
 以下に、本発明の実施の形態にかかる無線通信装置、通信システムおよび無線通信方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。以下の実施の形態では、基地局および移動局で構成される通信システムを想定し、移動局の送信ダイバーシチの制御を基地局からの信号の受信結果に基づいて行う場合の例を説明する。以下の実施の形態では、移動局が本発明にかかる無線通信装置に該当する。詳細については実施の形態1で説明するが、移動局は、基地局から受信した信号を用いて、2次元の伝送路推定値を求め、すなわち、異なる方法で2種類の伝送路推定値を求め、求めた2種類の伝送路推定値に基づいて、移動局の移動状態を推定する。また、移動局は、複数のキャリアを用いて、各アンテナから送信する信号の遮蔽が発生するかを判定し、判定結果を基に、送信をOFFする場合にOFFする対象のアンテナを選択する。 The wireless communication device, communication system, and wireless communication method according to the embodiment of the present invention will be described in detail below with reference to the drawings. The present invention is not limited to this embodiment. In the following embodiment, an example will be described in which a communication system composed of a base station and a mobile station is assumed and the transmission diversity of the mobile station is controlled based on the reception result of a signal from the base station. In the following embodiments, the mobile station corresponds to the wireless communication device according to the present invention. Although the details will be described in the first embodiment, the mobile station obtains a two-dimensional transmission line estimation value using a signal received from the base station, that is, obtains two types of transmission line estimation values by different methods. , The moving state of the mobile station is estimated based on the obtained two types of transmission line estimated values. Further, the mobile station uses a plurality of carriers to determine whether or not the signal transmitted from each antenna is shielded, and selects an antenna to be turned off when the transmission is turned off based on the determination result.
実施の形態1.
 図1は、実施の形態1にかかる通信システムの基地局が備える送信装置の構成例を示す図である。なお、基地局は送信装置の他に受信装置も備えるが、実施の形態1にかかる無線通信装置である移動局の説明では基地局の受信装置は必要ないため、図1では受信装置の記載を省略している。
Embodiment 1.
FIG. 1 is a diagram showing a configuration example of a transmission device included in a base station of the communication system according to the first embodiment. Although the base station includes a receiving device in addition to the transmitting device, the receiving device of the base station is not required in the description of the mobile station which is the wireless communication device according to the first embodiment. Therefore, the receiving device is described in FIG. It is omitted.
 基地局100を構成する送信装置101は、それぞれがシングルキャリア伝送の送信処理を行う複数の送信部1-1~1-Ncaを備える。送信部1-1は第1のキャリア(キャリア#1)で信号を送信する。同様に、送信部1-Ncaは第Ncaのキャリア(キャリア#Nca)で信号を送信する。送信部1-1~1-Ncaの構成は同一であるため、以下では送信部1-1について説明を行う。 The transmission device 101 constituting the base station 100 includes a plurality of transmission units 1-1 to 1-N ca , each of which performs transmission processing for single carrier transmission. The transmission unit 1-1 transmits a signal on the first carrier (carrier # 1). Similarly, the transmission unit 1-N ca transmits a signal with a carrier (carrier #N ca) of the N ca. Since the configurations of the transmission units 1-1 to 1-N ca are the same, the transmission unit 1-1 will be described below.
 送信装置101の送信部1-1は、複数の送信処理部10-1~10-Ntを備える。送信処理部10-1は、送信装置101が備える複数のアンテナ19の中の第1のアンテナ(アンテナ#1)から送信する信号を生成する。同様に、送信処理部10-Ntは、複数のアンテナ19の中の第Ntのアンテナ(アンテナ#Nt)から送信する信号を生成する。送信処理部10-1~10-Ntの構成は同一であるため、以下では送信処理部10-1について説明を行う。 The transmission unit 1-1 of the transmission device 101 includes a plurality of transmission processing units 10-1 to 10-N t . The transmission processing unit 10-1 generates a signal to be transmitted from the first antenna (antenna # 1) among the plurality of antennas 19 included in the transmission device 101. Similarly, the transmission processing unit 10-N t generates a signal to be transmitted from the antenna of the N t of the plurality of antennas 19 (antennas #N t). Since the configurations of the transmission processing units 10-1 to 10-N t are the same, the transmission processing unit 10-1 will be described below.
 送信処理部10-1は、誤り訂正符号化部11、インタリーバ12、マッピング部13、インタポレーション部14、帯域制限部15、DAC(Digital to Analog Converter)16およびアナログフロントエンド17を備える。アナログフロントエンド17にはアンテナ19が接続される。 The transmission processing unit 10-1 includes an error correction coding unit 11, an interleaver 12, a mapping unit 13, an interpolation unit 14, a band limiting unit 15, a DAC (Digital to Analog Converter) 16, and an analog front end 17. An antenna 19 is connected to the analog front end 17.
 誤り訂正符号化部11は、入力される送信情報のビット系列を誤り訂正符号化して、誤り訂正符号化後の符号化ビット系列をインタリーバ12に入力する。インタリーバ12は、入力された符号化ビット系列にインタリーブ処理を行って符号化ビット系列の順番を入れ替える。インタリーバ12は、順番を入れ替えた後の符号化ビット系列をマッピング部13に入力する。 The error correction coding unit 11 error-corrects and encodes the bit sequence of the input transmission information, and inputs the coded bit sequence after the error correction coding to the interleaver 12. The interleaver 12 performs interleaving processing on the input coded bit sequence to change the order of the coded bit sequence. The interleaver 12 inputs the coded bit sequence after changing the order to the mapping unit 13.
 マッピング部13は、インタリーバ12から入力された符号化ビット系列を、使用する変調方式に対応するマッピング処理を行ってシンボル系列を生成する。送信装置101が使用する変調方式の例は、PSK(Phase Shift Keying)、QAM(Quadrature Amplitude Modulation)などである。マッピング部13は、生成したシンボル系列をインタポレーション部14に入力する。 The mapping unit 13 generates a symbol sequence by performing a mapping process corresponding to the modulation method to be used on the coded bit sequence input from the interleaver 12. Examples of the modulation method used by the transmission device 101 are PSK (Phase Shift Keying), QAM (Quadrature Amplitude Modulation), and the like. The mapping unit 13 inputs the generated symbol sequence to the interpolation unit 14.
 インタポレーション部14は、マッピング部13から入力されたシンボル系列のサンプリング周波数を上げるインタポレーション処理を行い、得られたアップサンプリング後のシンボル系列を帯域制限部15に入力する。帯域制限部15は、入力されたシンボル系列に対して帯域制限処理を行い、帯域制限後のシンボル系列をDAC16に入力する。DAC16は、入力されたシンボル系列をデジタル信号からアナログ信号に変換し、変換後のシンボル系列であるアナログ信号をアナログフロントエンド17に入力する。アナログフロントエンド17は、DAC16から入力されたアナログ信号をアップコンバートおよび増幅して、アンテナ19に入力する。アンテナ19は、アナログフロントエンド17から入力された信号を移動局に向けて送信する。 The interpolation unit 14 performs an interpolation process for raising the sampling frequency of the symbol sequence input from the mapping unit 13, and inputs the obtained upsampled symbol sequence to the band limiting unit 15. The band limiting unit 15 performs band limiting processing on the input symbol sequence, and inputs the band-limited symbol sequence to the DAC 16. The DAC 16 converts the input symbol sequence from a digital signal to an analog signal, and inputs the converted analog signal, which is the symbol sequence, to the analog front end 17. The analog front end 17 up-converts and amplifies the analog signal input from the DAC 16 and inputs it to the antenna 19. The antenna 19 transmits the signal input from the analog front end 17 toward the mobile station.
 送信処理部10-1以外の各送信処理部も送信処理部10-1と同様の処理を行い、送信装置101の複数のアンテナ19から移動局に向けて複数の信号が並列に送信される。送信装置101が送信した各信号は、フェージングを有するチャネルを経て移動局で受信される。ここで、移動局が複数の受信アンテナを有する場合、移動局の第nrの受信アンテナが受信する信号をrnrとすると、受信信号rnrは以下の式(1)で表される。 Each transmission processing unit other than the transmission processing unit 10-1 also performs the same processing as the transmission processing unit 10-1, and a plurality of signals are transmitted in parallel from the plurality of antennas 19 of the transmission device 101 toward the mobile station. Each signal transmitted by the transmitting device 101 is received by the mobile station via a channel having fading. Here, if the mobile station has a plurality of receiving antennas, when the signal receiving antenna of the n r of the mobile station receives a r nr, the received signal r nr is expressed by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)において、hnr,ntは、基地局100の第ntのアンテナ(以下、第ntの送信アンテナとする)と移動局の第nrのアンテナ(以下、第nrの受信アンテナとする)との間の伝送路の状態を示す伝送路値である。dntは、第ntの送信アンテナから送信される信号、nnrは第nrの受信アンテナにおける雑音である。ここでは、送信アンテナ毎の信号として表現したが、基地局100の各アンテナから同一信号を送信してもよいし、送信ダイバーシチ、空間多重でも対応可能であり、特別な制約はない。 In the formula (1), h nr, nt, the antenna of the n t of the base station 100 (hereinafter referred to as transmitting antennas of the n t) and the antenna of the n r mobile stations (hereinafter, reception of the n r It is a transmission line value indicating the state of the transmission line to and from (the antenna). d nt is the signal to be transmitted from the transmission antenna of the n t, n nr is the noise at the receiving antenna of the n r. Although expressed as a signal for each transmitting antenna here, the same signal may be transmitted from each antenna of the base station 100, transmission diversity, and spatial multiplexing can be supported, and there are no special restrictions.
 図2は、実施の形態1にかかる通信システムの移動局の構成例を示す図である。図2に示す移動局200は、受信装置201および送信装置202で構成される。なお、図2では、受信装置201が備える受信アンテナ21と送信装置202が備える送信アンテナ49とを別に記載しているが、物理的には共有していることを想定している。すなわち、移動局200は複数のアンテナを備え、各アンテナは信号の送信および受信を行う。移動局200が基地局100からの信号の受信するための受信アンテナ21の数がNr本の場合、信号を送信するための送信アンテナ49の数Ntも同じ(Nt=Nr)である。 FIG. 2 is a diagram showing a configuration example of a mobile station of the communication system according to the first embodiment. The mobile station 200 shown in FIG. 2 is composed of a receiving device 201 and a transmitting device 202. In FIG. 2, the receiving antenna 21 included in the receiving device 201 and the transmitting antenna 49 included in the transmitting device 202 are shown separately, but it is assumed that they are physically shared. That is, the mobile station 200 includes a plurality of antennas, and each antenna transmits and receives a signal. When the number of receiving antennas 21 for the mobile station 200 to receive the signal from the base station 100 is N r , the number N t of the transmitting antennas 49 for transmitting the signal is also the same (N t = N r ). is there.
 移動局200を構成する受信装置201は、それぞれがシングルキャリア伝送の受信処理を行う複数の受信部2-1~2-Ncaを備える。受信部2-1は第1のキャリア(キャリア#1)で信号を受信する。同様に、受信部2-Ncaは第Ncaのキャリア(キャリア#Nca)で信号を受信する。受信部2-1~2-Ncaの構成は同一であるため、以下では受信部2-1について説明を行う。 The receiving device 201 constituting the mobile station 200 includes a plurality of receiving units 2-1 to 2-N ca , each of which performs reception processing for single carrier transmission. The receiving unit 2-1 receives the signal on the first carrier (carrier # 1). Similarly, the receiving unit 2-N ca receives a signal with a carrier (carrier #N ca) of the N ca. Since the configurations of the receiving units 2-1 to 2-N ca are the same, the receiving unit 2-1 will be described below.
 受信装置201の受信部2-1は、複数の受信処理部20-1~20-Nrを備える。受信処理部20-1は、受信装置201が備える複数の受信アンテナ21の中の第1のアンテナ(受信アンテナ#1)が受信する信号を処理する。同様に、受信処理部20-Nrは、複数の受信アンテナ21の中の第Nrのアンテナ(受信アンテナ#Nr)が受信する信号を処理する。受信処理部20-1~20-Nrの構成は同一であるため、以下では受信処理部20-1について説明を行う。 Reception unit of the reception apparatus 201 2-1 is provided with a plurality of reception processing units 20-1 ~ 20-N r. The reception processing unit 20-1 processes the signal received by the first antenna (reception antenna # 1) among the plurality of reception antennas 21 included in the reception device 201. Similarly, the reception processing unit 20-N r processes the signals received by the antenna of the N r of the plurality of receiving antennas 21 (receiving antenna #N r) receives. Since the configurations of the reception processing units 20-1 to 20-N r are the same, the reception processing unit 20-1 will be described below.
 受信処理部20-1は、アナログフロントエンド22、ADC(Analog to Digital Converter)23、帯域制限部24、デシメーション部25、タイミング検出部26、周波数補正部27、伝送路推定部28、信号再生部29、LLR(Log Likelihood Ratio)算出部30、デインタリーバ31および誤り訂正復号部32を備える。アナログフロントエンド22には受信アンテナ21が接続される。 The reception processing unit 20-1 includes an analog front end 22, an ADC (Analog to Digital Converter) 23, a band limiting unit 24, a decimation unit 25, a timing detection unit 26, a frequency correction unit 27, a transmission path estimation unit 28, and a signal reproduction unit. 29, an LLR (Log Likelihood Ratio) calculation unit 30, a deinteraver 31 and an error correction / decoding unit 32 are provided. A receiving antenna 21 is connected to the analog front end 22.
 アナログフロントエンド22は、受信アンテナ21から入力された信号をダウンコンバートしてダウンコンバートした信号をADC23に入力する。ADC23は、入力されたアナログの信号をデジタル信号に変換して、デジタル信号を帯域制限部24に入力する。帯域制限部24は、入力されたデジタル信号の帯域を制限して帯域が制限されたデジタル信号をデシメーション部25に入力する。デシメーション部25は、入力された信号のサンプリングレートを下げるデシメーション処理を行い、得られたダウンサンプリング後の信号をタイミング検出部26に入力する。 The analog front end 22 down-converts the signal input from the receiving antenna 21 and inputs the down-converted signal to the ADC 23. The ADC 23 converts the input analog signal into a digital signal, and inputs the digital signal to the band limiting unit 24. The band limiting unit 24 limits the band of the input digital signal and inputs the limited band digital signal to the decimation unit 25. The decimation unit 25 performs a decimation process for lowering the sampling rate of the input signal, and inputs the obtained downsampled signal to the timing detection unit 26.
 タイミング検出部26は、入力された信号のシンボルタイミングを検出する。タイミング検出部26は、受信信号に含まれる既知のプリアンブルなどを用いて相互相関処理を行うことにより、シンボルタイミングを検出する。タイミング検出部26でシンボルタイミングが検出された受信信号は周波数補正部27への入力となる。周波数補正部27は、既知のプリアンブルなどを用いて、入力された受信信号の周波数偏差を推定し、周波数偏差がゼロとなるよう、受信信号の周波数を補正する。周波数補正部27は、周波数を補正後の受信信号を伝送路推定部28および信号再生部29に入力する。 The timing detection unit 26 detects the symbol timing of the input signal. The timing detection unit 26 detects the symbol timing by performing cross-correlation processing using a known preamble or the like included in the received signal. The received signal whose symbol timing is detected by the timing detection unit 26 is input to the frequency correction unit 27. The frequency correction unit 27 estimates the frequency deviation of the input received signal by using a known preamble or the like, and corrects the frequency of the received signal so that the frequency deviation becomes zero. The frequency correction unit 27 inputs the received signal after correcting the frequency to the transmission line estimation unit 28 and the signal reproduction unit 29.
 伝送路推定部28は、周波数補正部27から入力された受信信号に含まれる既知のパイロット信号を使用して伝送路の推定を行い、得られた伝送路推定値を信号再生部29に入力する。信号再生部29は、伝送路推定部28から入力された伝送路推定値を使用して、周波数補正部27から入力された受信信号に対して同期検波および等化処理を行い、得られた信号をLLR算出部30に入力する。 The transmission line estimation unit 28 estimates the transmission line using a known pilot signal included in the received signal input from the frequency correction unit 27, and inputs the obtained transmission line estimation value to the signal reproduction unit 29. .. The signal reproduction unit 29 uses the transmission line estimation value input from the transmission line estimation unit 28 to perform synchronous detection and equalization processing on the received signal input from the frequency correction unit 27, and obtains a signal. Is input to the LLR calculation unit 30.
 LLR算出部30は、信号再生部29から入力される信号に含まれる各ビットの対数尤度比(LLR)を算出し、LLR系列を生成する。LLR算出部30は、生成したLLR系列をデインタリーバ31に入力する。デインタリーバ31は、LLR算出部30から入力されたLLR系列をデインタリーブして、並べ替えを行う。具体的には、デインタリーバ31は、送信装置101のインタリーバ12で行われた符号化ビット系列の順番を入れ替える処理と逆の処理を行い、元の順番に戻す。デインタリーバ31は、デインタリーブ後のLLR系列を誤り訂正復号部32に入力する。誤り訂正復号部32は、デインタリーバから入力されたLLR系列を誤り訂正復号して、基地局100の送信装置101が送信した情報ビット系列を取得する。 The LLR calculation unit 30 calculates the log-likelihood ratio (LLR) of each bit included in the signal input from the signal reproduction unit 29, and generates an LLR series. The LLR calculation unit 30 inputs the generated LLR series to the deinterleaver 31. The deinterleaver 31 deinterleaves the LLR series input from the LLR calculation unit 30 and rearranges the LLR series. Specifically, the deinterleaver 31 performs a process reverse to the process of changing the order of the coded bit sequences performed by the interleaver 12 of the transmission device 101, and returns the order to the original order. The deinterleaver 31 inputs the deinterleaved LLR sequence to the error correction / decoding unit 32. The error correction / decoding unit 32 error-corrects and decodes the LLR sequence input from the deinterleaver, and acquires the information bit sequence transmitted by the transmission device 101 of the base station 100.
 また、移動局200を構成する送信装置202は、それぞれがシングルキャリア伝送の送信処理を行う複数の送信部4-1~4-Ncaと、送信動作制御部50とを備える。送信部4-1は第1のキャリア(キャリア#1)で信号を送信する。同様に、送信部4-Ncaは第Ncaのキャリア(キャリア#Nca)で信号を送信する。送信部4-1~4-Ncaの構成は同一であるため、以下では送信部4-1について説明を行う。 Further, the transmission device 202 constituting the mobile station 200 includes a plurality of transmission units 4-1 to 4-N ca , each of which performs transmission processing for single carrier transmission, and a transmission operation control unit 50. The transmission unit 4-1 transmits a signal on the first carrier (carrier # 1). Similarly, the transmitter 4-N ca transmits a signal with a carrier (carrier #N ca) of the N ca. Since the configurations of the transmission units 4-1 to 4-N ca are the same, the transmission unit 4-1 will be described below.
 送信装置202の送信部4-1は、複数の送信処理部40-1~40-Ntを備える。送信処理部40-1は、送信装置202が備える複数の送信アンテナ49の中の第1のアンテナ(送信アンテナ#1)から送信する信号を生成する。同様に、送信処理部40-Ntは、複数の送信アンテナ49の中の第Ntのアンテナ(送信アンテナ#Nt)から送信する信号を生成する。送信処理部40-1~40-Ntの構成は同一であるため、以下では送信処理部40-1について説明を行う。 The transmission unit 4-1 of the transmission device 202 includes a plurality of transmission processing units 40-1 to 40-N t . The transmission processing unit 40-1 generates a signal to be transmitted from the first antenna (transmission antenna # 1) among the plurality of transmission antennas 49 included in the transmission device 202. Similarly, the transmission processing unit 40-N t generates a signal to be transmitted from the antenna of the N t of the plurality of transmit antennas 49 (transmitting antenna #N t). Since the configurations of the transmission processing units 40-1 to 40-N t are the same, the transmission processing unit 40-1 will be described below.
 送信処理部40-1は、誤り訂正符号化部41、インタリーバ42、マッピング部43、インタポレーション部44、帯域制限部45、ダイバーシチ処理部46、DAC47およびアナログフロントエンド48を備える。アナログフロントエンド48には送信アンテナ49が接続される。 The transmission processing unit 40-1 includes an error correction coding unit 41, an interleaver 42, a mapping unit 43, an interpolation unit 44, a band limiting unit 45, a diversity processing unit 46, a DAC 47, and an analog front end 48. A transmitting antenna 49 is connected to the analog front end 48.
 誤り訂正符号化部41は、入力される送信情報のビット系列を誤り訂正符号化して、誤り訂正符号化後の符号化ビット系列をインタリーバ42に入力する。インタリーバ42は、入力された符号化ビット系列にインタリーブ処理を行って符号化ビット系列の順番を入れ替える。インタリーバ42は、順番を入れ替えた後の符号化ビット系列をマッピング部43に入力する。 The error correction coding unit 41 performs error correction coding on the bit sequence of the input transmission information, and inputs the coded bit sequence after the error correction coding to the interleaver 42. The interleaver 42 performs interleaving processing on the input coded bit sequence to change the order of the coded bit sequence. The interleaver 42 inputs the coded bit sequence after changing the order to the mapping unit 43.
 マッピング部43は、インタリーバ42から入力された符号化ビット系列を、使用する変調方式に対応するマッピング処理を行ってシンボル系列を生成する。マッピング部43は、生成したシンボル系列をインタポレーション部44に入力する。 The mapping unit 43 performs a mapping process corresponding to the modulation method to be used on the coded bit sequence input from the interleaver 42 to generate a symbol sequence. The mapping unit 43 inputs the generated symbol sequence to the interpolation unit 44.
 インタポレーション部44は、マッピング部43から入力されたシンボル系列のサンプリング周波数を上げるインタポレーション処理を行い、得られたアップサンプリング後のシンボル系列を帯域制限部45に入力する。帯域制限部45は、入力されたシンボル系列に対して帯域制限処理を行い、帯域制限後のシンボル系列をダイバーシチ処理部46に入力する。ダイバーシチ処理部46には、帯域制限部45から入力される帯域制限後のシンボル系列の他に、送信動作制御部50から制御信号が入力される。ダイバーシチ処理部46は、送信動作制御部50から入力される制御信号が指示する処理を行う。具体的には、ダイバーシチ処理部46は、帯域制限部45から入力される帯域制限後のシンボル系列に遅延を与えてから出力する、または、送信アンテナ49による信号送信を停止させるために、帯域制限後のシンボル系列の出力を停止する。ダイバーシチ処理部46は、帯域制限後のシンボル系列に遅延を与える場合、入力されたシンボル系列を制御信号で指定された時間だけ保持した後、DAC47に出力する。なお、送信処理部40-1~40-Ntの各ダイバーシチ処理部46は、入力されたシンボル系列に遅延を与える場合、入力されたシンボル系列をそれぞれ異なる遅延量で遅延させて出力する。これにより、遅延送信ダイバーシチが実現される。DAC47は、ダイバーシチ処理部46から入力されたシンボル系列をデジタル信号からアナログ信号に変換し、変換後のシンボル系列であるアナログ信号をアナログフロントエンド48に入力する。アナログフロントエンド48は、DAC47から入力されたアナログ信号をアップコンバートおよび増幅して、送信アンテナ49に入力する。送信アンテナ49は、アナログフロントエンド48から入力された信号を基地局100に向けて送信する。 The interpolation unit 44 performs an interpolation process for raising the sampling frequency of the symbol sequence input from the mapping unit 43, and inputs the obtained upsampled symbol sequence to the band limiting unit 45. The band limiting unit 45 performs band limiting processing on the input symbol sequence, and inputs the symbol sequence after band limiting to the diversity processing unit 46. In addition to the band-limited symbol sequence input from the band limiting unit 45, a control signal is input to the diversity processing unit 46 from the transmission operation control unit 50. The diversity processing unit 46 performs processing instructed by a control signal input from the transmission operation control unit 50. Specifically, the diversity processing unit 46 delays the band-limited symbol sequence input from the band-limited unit 45 and then outputs the symbol sequence, or band-limits the signal transmission by the transmitting antenna 49. Stops the output of later symbol series. When giving a delay to the symbol sequence after the band limitation, the diversity processing unit 46 holds the input symbol sequence for a time specified by the control signal, and then outputs the delay to the DAC 47. When the diversity processing units 46 of the transmission processing units 40-1 to 40-N t give a delay to the input symbol series, the input symbol series are delayed by different delay amounts and output. As a result, delayed transmission diversity is realized. The DAC 47 converts the symbol sequence input from the diversity processing unit 46 from a digital signal to an analog signal, and inputs the converted analog signal, which is the symbol sequence, to the analog front end 48. The analog front end 48 up-converts and amplifies the analog signal input from the DAC 47, and inputs the analog signal to the transmitting antenna 49. The transmitting antenna 49 transmits the signal input from the analog front end 48 toward the base station 100.
 例えば、時分割多重アクセス(TDMA:Time Division Multiplexing Access)が適用されている場合、移動局200の送信装置202は、基地局100からの受信信号を用いて推定するフレームタイミングに合わせてバースト送信を行うことになる。移動局200が複数の送信アンテナ49を活用して遅延送信ダイバーシチを行う場合、例えば、Nt本の送信アンテナ49を活用する場合、同一の送信信号に遅延を与えて送信するので基地局100の時間領域の受信信号は以下の式(2)で表される。ここでは第ntの送信アンテナではτntの遅延を与えて送信することとしている。 For example, when Time Division Multiplexing Access (TDMA) is applied, the transmitting device 202 of the mobile station 200 performs burst transmission according to the frame timing estimated using the received signal from the base station 100. Will do. When the mobile station 200 utilizes a plurality of transmitting antennas 49 to perform delayed transmission diversity, for example, when utilizing N t transmission antennas 49, the same transmission signal is transmitted with a delay, so that the base station 100 transmits. The received signal in the time domain is represented by the following equation (2). Here to be that the transmitting antennas of the n t transmitting giving a delay of tau nt.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(2)で表される時間領域の受信信号を周波数変換すると、以下の式(3)で表される周波数領域の受信信号となる。 When the received signal in the time domain represented by the formula (2) is frequency-converted, the received signal in the frequency domain represented by the following formula (3) is obtained.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、Hnr(f)は第nrの受信アンテナにおける第fの周波数の周波数領域の伝送路値であり以下の式(4)で表される。このHnr(f)は、複数本の送信アンテナ49のそれぞれと第nrの受信アンテナとの間の伝送路状態が合成された等価伝送路である。 Here, represented by H nr (f) is the transmission path value has the following formula in the frequency domain of the frequency of the f at the receiving antenna of the n r (4). The H nr (f) is an equivalent transmission line transmission path condition is synthesized between the respective receive antennas of the n r of the plurality of transmit antennas 49.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式(4)において、τntは、上述したとおり、第ntの送信アンテナが送信した信号に与えられている遅延量、NcはFFT(Fast Fourier Transform)ポイント数である。 In the equation (4), τ nt is the amount of delay given to the signal transmitted by the ntth transmitting antenna, and N c is the number of FFT (Fast Fourier Transform) points, as described above.
 この送信ダイバーシチ方式によれば、移動環境においてある送信アンテナ49から送信される送信信号の受信電力がフェージングにより減衰したとしても、残りの送信アンテナから送信される同一信号によって多重受信するため減衰の影響を低減することができる。しかしながら、移動が無い場合、伝送路状態はほとんど変化しないため、各送信アンテナにおける伝送路係数の組み合わせによっては、周波数軸上で、受信信号成分が極めて減衰する箇所が存在してしまう。この局所的な減衰により伝送特性が大幅に劣化する課題がある。上述したように、周波数領域で等価伝送路に急峻な落ち込みが生じないように送信アンテナの一部を送信停止すれば、基地局100による上り信号のチャネル品質確認と基地局100から移動局200への情報のフィードバックをすることなしに、容易に上記の問題を回避することができる。 According to this transmission diversity method, even if the reception power of the transmission signal transmitted from a certain transmission antenna 49 in a mobile environment is attenuated by fading, it is repeatedly received by the same signal transmitted from the remaining transmission antennas, so that the influence of the attenuation is achieved. Can be reduced. However, since the transmission line state hardly changes when there is no movement, there may be a place on the frequency axis where the received signal component is extremely attenuated, depending on the combination of the transmission line coefficients in each transmission antenna. There is a problem that the transmission characteristics are significantly deteriorated due to this local attenuation. As described above, if a part of the transmitting antenna is stopped so that the equivalent transmission line does not suddenly drop in the frequency domain, the base station 100 confirms the channel quality of the uplink signal and the base station 100 moves to the mobile station 200. The above problem can be easily avoided without giving feedback on the above information.
 つづいて、移動局200の送信動作、すなわち送信装置202が基地局100に向けて信号を送信する動作について説明する。 Next, the transmission operation of the mobile station 200, that is, the operation in which the transmission device 202 transmits a signal to the base station 100 will be described.
 上述したように、本実施の形態にかかる通信システムでは遅延送信ダイバーシチの使用を前提としている。移動局200の送信装置202は、上述したように、各キャリアに対応する送信部4-1~4-Ncaと、送信動作制御部50とを備える。また、送信部4-1~4-Ncaのそれぞれが備える送信処理部40-1~40-Ntはダイバーシチ処理部46を備える。送信動作制御部50は、遮蔽判定部51および状態推定部52を備え、遅延送信ダイバーシチ送信を行うか否かを判定する。送信動作制御部50は、遅延送信ダイバーシチ送信を行う場合、送信アンテナ49から送信する信号に与える遅延量の情報を含んだ制御信号を、各ダイバーシチ処理部46に入力する。また、送信動作制御部50は、遅延送信ダイバーシチ送信を行わない場合、どの送信アンテナ49からの送信を停止させるかを決定し、決定結果を含んだ制御信号を、各ダイバーシチ処理部46に入力する。 As described above, the communication system according to the present embodiment is premised on the use of delayed transmission diversity. As described above, the transmission device 202 of the mobile station 200 includes transmission units 4-1 to 4-N ca corresponding to each carrier and transmission operation control unit 50. Further, the transmission processing units 40-1 to 40-N t included in each of the transmission units 4-1 to 4-N ca include a diversity processing unit 46. The transmission operation control unit 50 includes a shielding determination unit 51 and a state estimation unit 52, and determines whether or not to perform delayed transmission diversity transmission. When performing delayed transmission diversity transmission, the transmission operation control unit 50 inputs a control signal including information on the amount of delay given to the signal transmitted from the transmission antenna 49 to each diversity processing unit 46. Further, the transmission operation control unit 50 determines from which transmission antenna 49 the transmission is stopped when the delayed transmission diversity transmission is not performed, and inputs a control signal including the determination result to each diversity processing unit 46. ..
 送信動作制御部50の遮蔽判定部51は、移動局200の各送信アンテナ49と基地局100の各アンテナ19との間に電波を遮蔽する物が存在するかを送信アンテナ49ごとに判定する。また、送信動作制御部50の状態推定部52は、移動局200の移動状態、具体的には、基地局100からの受信信号を基に、想定される移動速度候補に対応する推定誤差を算出し、自己が静止中または低速で移動中の状態であるか否かを推定する。 The shielding determination unit 51 of the transmission operation control unit 50 determines for each transmission antenna 49 whether or not there is an object that shields radio waves between each transmission antenna 49 of the mobile station 200 and each antenna 19 of the base station 100. Further, the state estimation unit 52 of the transmission operation control unit 50 calculates an estimation error corresponding to an assumed moving speed candidate based on the moving state of the mobile station 200, specifically, the received signal from the base station 100. Then, it is estimated whether or not the self is stationary or moving at a low speed.
 送信動作制御部50による制御動作について、図3~図6を用いて詳しく説明する。図3は、実施の形態1にかかる移動局200の送信装置202が備える送信動作制御部50の動作の一例を示すフローチャートである。 The control operation by the transmission operation control unit 50 will be described in detail with reference to FIGS. 3 to 6. FIG. 3 is a flowchart showing an example of the operation of the transmission operation control unit 50 included in the transmission device 202 of the mobile station 200 according to the first embodiment.
 図3に示すように、送信動作制御部50は、まず、遮蔽判定用の指標値を算出し(ステップS11)、次に、伝送路推定および補間処理を行う(ステップS12)。送信動作制御部50は、次に、得られた伝送路推定値と補間値と遮蔽判定用の指標値とを用いて、移動局200の移動状態を推定する(ステップS13)。移動局200の移動状態とは、移動局200が静止中または低速で移動中の状態であるか否かを推定する。なお、これ以降の説明では低速で移動中の状態を準静止状態と称する。送信動作制御部50は、その後、遮蔽判定用の指標値を用いて、送信OFFとする送信アンテナ49を決定する(ステップS14)。なお、ステップS14での決定結果には、送信OFFとする送信アンテナ49が存在しない場合も含まれる。 As shown in FIG. 3, the transmission operation control unit 50 first calculates an index value for shielding determination (step S11), and then performs transmission line estimation and interpolation processing (step S12). Next, the transmission operation control unit 50 estimates the moving state of the mobile station 200 by using the obtained transmission line estimation value, the interpolation value, and the index value for shielding determination (step S13). The moving state of the mobile station 200 estimates whether or not the mobile station 200 is stationary or moving at a low speed. In the following description, the state of moving at low speed is referred to as a quasi-stationary state. After that, the transmission operation control unit 50 determines the transmission antenna 49 to be turned off by using the index value for shielding determination (step S14). The determination result in step S14 includes the case where the transmission antenna 49 for turning off transmission does not exist.
 遮蔽に関しては、上り回線と下り回線で使用する周波数が同一である時分割複信(TDD:Time Division Duplex)方式のシステムでなくとも、下り回線のみで把握することが物理的に可能である。この性質を利用して、送信装置202の送信動作制御部50が備える遮蔽判定部51は、下りの受信電力を推定して遮蔽判定を行う。遮蔽判定とは、遮蔽があるか否かの判定である。ここで、下り回線においてフェージングで落ち込んだ状態を遮蔽されたと誤判定することを避ける必要がある。そのため、遮蔽判定部51は、複数のキャリアそれぞれの受信電力を使用して、上記の誤判定が発生するのを防止する。ただし、隣接する複数のキャリアを用いて判定を行う場合は周波数の相関が比較的高いため、フェージングによる受信電力の落ち込みを遮蔽として判定してしまう可能性がある。そこで、遮蔽判定部51は、周波数の相関が十分小さい離間周波数の大きい複数キャリアも用いて、すなわち、全てのキャリアを用いて、遮蔽判定を行う。 Regarding shielding, it is physically possible to grasp only the downlink, even if it is not a Time Division Duplex (TDD) system in which the frequencies used for the uplink and downlink are the same. Utilizing this property, the shielding determination unit 51 included in the transmission operation control unit 50 of the transmission device 202 estimates the downlink received power and performs the shielding determination. The shielding determination is a determination as to whether or not there is shielding. Here, it is necessary to avoid erroneously determining that the state of being depressed by fading on the downlink is shielded. Therefore, the shielding determination unit 51 uses the received power of each of the plurality of carriers to prevent the above-mentioned erroneous determination from occurring. However, when the determination is performed using a plurality of adjacent carriers, the frequency correlation is relatively high, so that the drop in the received power due to fading may be determined as a shield. Therefore, the shielding determination unit 51 performs the shielding determination by using a plurality of carriers having a sufficiently small frequency correlation and a large separation frequency, that is, using all the carriers.
 図4は、実施の形態1にかかる送信動作制御部50の遮蔽判定部51が遮蔽判定を行う動作の一例を示すフローチャートである。 FIG. 4 is a flowchart showing an example of an operation in which the shielding determination unit 51 of the transmission operation control unit 50 according to the first embodiment performs the shielding determination.
 遮蔽判定部51は、まず、複数キャリアの受信信号の品質値を算出する(ステップS21)。具体的には、遮蔽判定部51は、各受信アンテナ21で受信する各キャリアの信号について、SINR(Signal to Interference plus Noise Ratio)値Inr,no_caを算出する。nrは受信アンテナ21の番号を示し、no_caはキャリアの番号を示す。 First, the shielding determination unit 51 calculates the quality value of the received signals of the plurality of carriers (step S21). Specifically, the shielding determination unit 51 calculates SINR (Signal to Interference plus Noise Ratio) values Inr, no_ca for the signal of each carrier received by each receiving antenna 21. nr indicates the number of the receiving antenna 21, and no_ca indicates the number of the carrier.
 遮蔽判定部51は、次に、ステップS21で算出した受信信号の品質値を受信アンテナ21ごとに合成して遮蔽判定用の指標値を算出する(ステップS22)。具体的には、遮蔽判定部51は、以下の式(5)に従って上記のSINR値を合成して、受信アンテナ21ごとに、遮蔽判定用の指標値Inrを算出する。 Next, the shielding determination unit 51 synthesizes the quality value of the received signal calculated in step S21 for each receiving antenna 21 and calculates an index value for shielding determination (step S22). Specifically, the shielding determination unit 51 synthesizes the above SINR values according to the following equation (5), and calculates an index value Inr for shielding determination for each receiving antenna 21.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 遮蔽判定部51は、次に、ステップS22で算出した遮蔽判定用の指標値Inrをしきい値と比較することで、各受信アンテナ21について遮蔽の有無を判定する(ステップS23)。しきい値を下回っている指標値Inrに対応する受信アンテナ21では電波の遮蔽が発生していると推定される。上述したように、移動局200が備える各アンテナは、信号の送信および受信の両方で使用するため、指標値Inrがしきい値を下回った受信アンテナ21に対応する送信アンテナ49を使用した場合は遮蔽が発生する。そのため、指標値Inrがしきい値を下回った受信アンテナ21に対応する送信アンテナ49は、送信装置202が遅延送信ダイバーシチをOFFにする場合に送信をOFFにする対象となる。 Next, the shielding determination unit 51 determines the presence or absence of shielding for each receiving antenna 21 by comparing the index value Inr for shielding determination calculated in step S22 with the threshold value (step S23). It is estimated that the receiving antenna 21 corresponding to the index value Inr below the threshold value is shielded from radio waves. As described above, since each antenna included in the mobile station 200 is used for both transmission and reception of signals, when the transmission antenna 49 corresponding to the reception antenna 21 whose index value Inr is below the threshold value is used. Occurs shielding. Therefore, the transmitting antenna 49 corresponding to the receiving antenna 21 whose index value Inr is below the threshold value is a target for turning off the transmission when the transmitting device 202 turns off the delayed transmission diversity.
 例えば、移動局200の複数の受信アンテナ21をRX#n(n=1,2,3,…)とし、指標値Inrが予め定められたしきい値thを下回る受信アンテナ21がRX#1の場合、RX#1で受信する電波が遮蔽されていると判断できる。ここで、移動局200の複数の送信アンテナ49をTX#n(n=1,2,3,…)とし、RX#nとTX#nが対応する場合、遮蔽判定部51は、RX#1に対応するTX#1を送信OFFにする対象とする。 For example, the plurality of receiving antennas 21 of the mobile station 200 are RX # n (n = 1, 2, 3, ...), And the receiving antenna 21 whose index value Inr is lower than the predetermined threshold value th is RX # 1. In the case of, it can be determined that the radio wave received by RX # 1 is blocked. Here, when the plurality of transmitting antennas 49 of the mobile station 200 are TX # n (n = 1, 2, 3, ...) and RX # n and TX # n correspond to each other, the shielding determination unit 51 sets RX # 1 TX # 1 corresponding to is targeted for turning off transmission.
 図5は、実施の形態1にかかる送信動作制御部50の状態推定部52が伝送路の状態を推定する動作の一例を示すフローチャートである。 FIG. 5 is a flowchart showing an example of an operation in which the state estimation unit 52 of the transmission operation control unit 50 according to the first embodiment estimates the state of the transmission line.
 状態推定部52は、受信装置201が受信した信号に含まれるパイロット信号を使用して伝送路推定を行い、伝送路推定値を求める(ステップS31)。ステップS31で得られる伝送路推定値をハットが付されたhpilot,nrで表す。以下、ハットが付されたhpilot,nrを「hpilot,nr(ハット)」と記載する。hpilot,nr以外の文字にハットを付ける場合も同様の記載方法を用いる。なお、状態推定部52は、パイロット信号が存在しない位置の伝送路推定値については線形補間などを用いて求める。このステップS31で伝送路推定値を求める方法は第1の方法である。第1の方法で求める伝送路推定値は第1の伝送路推定値である。 The state estimation unit 52 estimates the transmission line using the pilot signal included in the signal received by the receiving device 201, and obtains the estimated transmission line value (step S31). The transmission line estimated value obtained in step S31 is represented by h pilot and nr with a hat. Hereinafter, the h pilot and nr with a hat will be referred to as "h pilot, nr (hat)". The same description method is used when adding a hat to characters other than h pilot and nr . The state estimation unit 52 obtains the estimated value of the transmission line at the position where the pilot signal does not exist by using linear interpolation or the like. The method of obtaining the transmission line estimated value in step S31 is the first method. The transmission line estimated value obtained by the first method is the first transmission line estimated value.
 状態推定部52は、次に、想定される移動速度、最大マルチパス遅延量および受信SNR(Signal-Noise Ratio)を伝送路パラメータのパラメータセットとして複数準備された補間テーブルatblを用いて、伝送路補間を行う(ステップS32)。具体的には、状態推定部52は、パイロット信号が存在する位置の伝送路推定値と、補間テーブルatblとに基づいて、以下の式(6)で表される伝送路補間値を取得する。伝送路補間値とは、補間テーブルを用いて行う伝送路補間で算出した伝送路推定値である。このステップS32で伝送路推定値を求める方法は第2の方法である。第2の方法で求める伝送路推定値は第2の伝送路推定値である。本実施の形態では、ステップS31で求めた伝送路推定値と区別するために、ステップS32の伝送路補間で求めた伝送路推定値を伝送路補間値と呼ぶ。式(6)が表すhint,nr(ハット)(t,f)は、第tbl番補間テーブルを用いて算出される伝送路補間値であり、さらに詳しくは、第t時刻における第f周波数の伝送路補間値である。 Next, the state estimation unit 52 transmits the assumed movement speed, the maximum multipath delay amount, and the received SNR (Signal-Noise Ratio) using a plurality of prepared interpolation tables a tbl as a parameter set of the transmission line parameters. Path interpolation is performed (step S32). Specifically, the state estimation unit 52 acquires the transmission line interpolation value represented by the following equation (6) based on the transmission line estimation value at the position where the pilot signal exists and the interpolation table atbl. .. The transmission line interpolation value is a transmission line estimated value calculated by transmission line interpolation performed using an interpolation table. The method of obtaining the transmission line estimated value in step S32 is the second method. The transmission line estimated value obtained by the second method is the second transmission line estimated value. In the present embodiment, the transmission line estimation value obtained by the transmission line interpolation in step S32 is referred to as a transmission line interpolation value in order to distinguish it from the transmission line estimation value obtained in step S31. The h int, nr (hat) (t, f) represented by the equation (6) is a transmission line interpolation value calculated using the tbl number interpolation table, and more specifically, the fth frequency at the t time. It is a transmission line interpolation value.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 状態推定部52は、次に、各補間テーブルに対応する補間誤差を算出する(ステップS33)。具体的には、状態推定部52は、以下の式(7)を用いて補間誤差etblを算出する。式(7)に示すように、状態推定部52は、伝送路補間により求めた伝送路補間値と、パイロット信号を用いて求めた伝送路推定値との差分から補間誤差etblを求める。 The state estimation unit 52 then calculates the interpolation error corresponding to each interpolation table (step S33). Specifically, the state estimation unit 52 calculates the interpolation error et tbl using the following equation (7). As shown in the equation (7), the state estimation unit 52 obtains the interpolation error et bl from the difference between the transmission line interpolation value obtained by the transmission line interpolation and the transmission line estimation value obtained by using the pilot signal.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 式(7)において、bはパイロット信号が挿入された位置を示す集合である。状態推定部52は、全ての補間テーブルの補間誤差を算出した後、最も補間誤差が小さい補間テーブルを選択する。上述したように、補間テーブルは、移動局200が通信を行う際に想定される様々な状況を考慮して、すなわち、想定される移動速度、最大マルチパス遅延量および受信SNRを伝送路パラメータのパラメータセットとして、複数準備されている。状態推定部52が上記のステップS32で求めた伝送路補間値のうち、移動局200の実際の状況に近い補間テーブルを用いて求めた伝送路補間値は、状態推定部52が上記のステップS31でパイロット信号から直接求めた伝送路推定値との差が小さくなる。そのため、補間誤差が最も小さくなる補間テーブルに対応する伝送路パラメータで示される伝送路が最も確からしい伝送路であると推定することができる。 In equation (7), b is a set indicating the position where the pilot signal is inserted. The state estimation unit 52 calculates the interpolation errors of all the interpolation tables, and then selects the interpolation table having the smallest interpolation error. As described above, the interpolation table takes into account various situations assumed when the mobile station 200 communicates, that is, the assumed moving speed, maximum multipath delay amount and received SNR of the transmission line parameters. Multiple parameter sets are prepared. Of the transmission line interpolation values obtained by the state estimation unit 52 in step S32, the transmission line interpolation values obtained by using an interpolation table close to the actual situation of the mobile station 200 are obtained by the state estimation unit 52 in step S31. The difference from the estimated transmission line obtained directly from the pilot signal becomes smaller. Therefore, it can be estimated that the transmission line indicated by the transmission line parameter corresponding to the interpolation table having the smallest interpolation error is the most probable transmission line.
 状態推定部52は、上記ステップS32の伝送路補間では、補間テーブルに基づいて複数のパイロット信号による伝送路推定値を用いて伝送路補間値を算出する。このようにして算出する伝送路補間値は、補間しつつ雑音低減が図れているため、パイロット信号から求めた伝送路推定値を直接用いて自己相関処理を行うよりも、伝送路環境を高い精度で検出することができる。 In the transmission line interpolation in step S32, the state estimation unit 52 calculates the transmission line interpolation value using the transmission line estimation values by a plurality of pilot signals based on the interpolation table. Since the transmission line interpolation value calculated in this way is noise-reduced while interpolating, the transmission line environment is more accurate than performing autocorrelation processing by directly using the transmission line estimated value obtained from the pilot signal. Can be detected with.
 図6は、実施の形態1にかかる送信動作制御部50の状態推定部52が移動局200の移動状態を推定する動作の一例を示すフローチャートである。 FIG. 6 is a flowchart showing an example of an operation in which the state estimation unit 52 of the transmission operation control unit 50 according to the first embodiment estimates the movement state of the mobile station 200.
 状態推定部52は、図5に示した上記のステップS31~S33を実行した後、補間テーブルにおける伝送路パラメータの推定精度を高めるために、複数キャリアの補間誤差を合成する(ステップS41)。具体的には、状態推定部52は、以下の式(8)を用いて、補間誤差の合成結果である合成補間誤差etotal,tblを算出する。 After executing the above steps S31 to S33 shown in FIG. 5, the state estimation unit 52 synthesizes the interpolation errors of the plurality of carriers in order to improve the estimation accuracy of the transmission line parameters in the interpolation table (step S41). Specifically, the state estimation unit 52 calculates the combined interpolation error e total, tbl , which is the combined result of the interpolation error, using the following equation (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 式(8)では、受信アンテナ21とキャリアの組み合わせから決まる合成係数cno_ca,nrを補間誤差に乗算して合成するようにしているが、合成係数の乗算は行わなくてもよい。合成係数cno_ca,nrは、各受信アンテナ21、各キャリアの受信電界強度および希望信号受信電力と、雑音電力および干渉電力と、遮蔽判定結果とを基に算出されるものである。例えば、合成係数cno_ca,nrは、以下の式(9)を用いて算出する。これによれば、遮蔽判定用の指標値Inrがしきい値th未満となる場合には対応するアンテナの合成係数cno_ca,nrが0となり、補間誤差合成処理には累積せずに済むため、雑音による影響を低減できる。 In the equation (8), the synthesis coefficient c no_ca, nr determined by the combination of the receiving antenna 21 and the carrier is multiplied by the interpolation error for synthesis, but the multiplication of the synthesis coefficient does not have to be performed. The combined coefficients c no_ca and nr are calculated based on the received electric field strength and desired signal receiving power of each receiving antenna 21, each carrier, noise power and interference power, and the shielding determination result. For example, the synthesis coefficients c no_ca and nr are calculated using the following equation (9). According to this, the synthesis coefficient c No_ca antenna index value I nr for shielding determination corresponding in the case of less than the threshold value th, nr is 0, since unnecessary to accumulation in interpolation error synthesis process , The influence of noise can be reduced.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 状態推定部52は、次に、移動局200の移動速度の変動にも追従できるようにするため、前後フレームの補間誤差を合成する(ステップS42)。具体的には、状態推定部52は、ステップS41で算出した合成補間誤差と、前後の時刻(フレーム)で算出した2つの合成補間誤差とを対象として、忘却係数αを用いた重み付け合成を行う。なお、0<α<1である。 Next, the state estimation unit 52 synthesizes the interpolation errors of the front and rear frames in order to be able to follow the fluctuation of the moving speed of the mobile station 200 (step S42). Specifically, the state estimation unit 52 performs weighted synthesis using the forgetting coefficient α for the composite interpolation error calculated in step S41 and the two composite interpolation errors calculated at the times (frames) before and after. .. It should be noted that 0 <α <1.
 状態推定部52は、次に、移動局200の移動状態を推定する(ステップS43)。具体的には、状態推定部52は、各補間テーブルを用いて上記のステップS42までの処理を実行して求めた合成補間誤差のそれぞれを比較し、合成補間誤差が最小となる補間テーブルを特定する。状態推定部52は、特定した補間テーブルが、静止中または準静止状態を前提としたものである場合、移動局200が静止中または準静止状態と判断する。そして、状態推定部52は、遅延送信ダイバーシチを停止することに決定する。状態推定部52は、遅延送信ダイバーシチを停止する場合、上記の遮蔽判定部51で遮蔽発生と判定された送信アンテナ49を、送信を停止する送信アンテナ49に優先的に決定する。遮蔽が発生している送信アンテナ49が存在する場合にこれを使用した送信を優先的にOFFとすることで、遮蔽が発生している送信アンテナ49を残して遅延送信ダイバーシチを停止してしまい伝送特性が劣化するのを防止できる。 Next, the state estimation unit 52 estimates the moving state of the mobile station 200 (step S43). Specifically, the state estimation unit 52 compares each of the combined interpolation errors obtained by executing the processes up to step S42 described above using each interpolation table, and identifies the interpolation table that minimizes the combined interpolation error. To do. When the specified interpolation table is premised on a stationary or quasi-stationary state, the state estimation unit 52 determines that the mobile station 200 is stationary or quasi-stationary. Then, the state estimation unit 52 decides to stop the delayed transmission diversity. When the delayed transmission diversity is stopped, the state estimation unit 52 preferentially determines the transmission antenna 49 determined by the occlusion determination unit 51 that the occlusion has occurred to the transmission antenna 49 that stops the transmission. When there is a transmitting antenna 49 with shielding, transmission using this is preferentially turned off, so that the delayed transmission diversity is stopped leaving the transmitting antenna 49 with shielding, and transmission is performed. It is possible to prevent the characteristics from deteriorating.
 ところで、使用している複数キャリアのいずれかの帯域において、干渉が混入する場合、受信電力だけを用いて移動状態を判定すると、誤判定する可能性がある。このような場合を想定し、送信動作制御部50は、送信信号において、周波数成分がヌルとなる区間を活用して信号電力対干渉及び雑音電力比を求め、信号電力対干渉及び雑音電力比も使用して、上記ステップS22の遮蔽判定用の指標値算出処理、および、上記ステップS41の補間誤差合成処理を行うようにしてもよい。 By the way, if interference is mixed in any of the bands of the multiple carriers used, there is a possibility of erroneous judgment if the moving state is judged using only the received power. Assuming such a case, the transmission operation control unit 50 obtains the signal power to interference and noise power ratio by utilizing the section where the frequency component is null in the transmission signal, and also obtains the signal power to interference and noise power ratio. It may be used to perform the index value calculation process for shielding determination in step S22 and the interpolation error synthesis process in step S41.
 なお、送信動作制御部50は、受信装置201の受信アンテナ21から受信信号を受け取り、受け取った受信信号に基づいて、遮蔽判定部51および状態推定部52が必要な情報を求めることとしたがこの構成に限定されない。遮蔽判定部51および状態推定部52は、必要な情報の一部を受信装置201から取得して上述した処理を行うようにしてもよい。例えば、状態推定部52が使用する上記の補間誤差を受信装置201の伝送路推定部28が算出し、状態推定部52に受け渡すようにしてもよい。このような構成とすることにより、回路規模が削減できる効果も期待できる。 The transmission operation control unit 50 receives a reception signal from the reception antenna 21 of the reception device 201, and the shielding determination unit 51 and the state estimation unit 52 obtain necessary information based on the received reception signal. It is not limited to the configuration. The shielding determination unit 51 and the state estimation unit 52 may acquire a part of necessary information from the receiving device 201 and perform the above-described processing. For example, the transmission line estimation unit 28 of the receiving device 201 may calculate the above interpolation error used by the state estimation unit 52 and pass it to the state estimation unit 52. With such a configuration, the effect of reducing the circuit scale can be expected.
 以上のように、本実施の形態にかかる無線通信装置として動作する移動局200は、複数のアンテナのそれぞれで受信する複数のキャリアのそれぞれの品質に基づいて基地局100との間で送受信する信号の遮蔽が発生しているか否かをアンテナ毎に判定する。また、移動局200は、パイロット信号と補間処理とを使用して求めた伝送路推定値と、パイロット信号と想定される様々な状況を考慮して準備された複数の補間テーブルとを使用して求めた伝送路推定値である伝送路補間値とに基づいて、自己の移動状態を判定する。そして、移動局200は、自己の移動状態が静止中または準静止状態の場合、遅延送信ダイバーシチを停止する。また、移動局200は、遅延送信ダイバーシチを停止する際、遮蔽が発生しているアンテナを使用した送信を優先的に停止する。本実施の形態にかかる移動局200は、自己の移動状態を精度よく判定することができ、遅延送信ダイバーシチを行うと伝送特性が劣化する状態のときに遅延送信ダイバーシチを停止することができる。よって、本実施の形態にかかる移動局200によれば、伝送特性を向上させることができる。 As described above, the mobile station 200 operating as the wireless communication device according to the present embodiment is a signal transmitted / received to / from the base station 100 based on the quality of each of the plurality of carriers received by each of the plurality of antennas. It is determined for each antenna whether or not the shielding has occurred. Further, the mobile station 200 uses a transmission line estimated value obtained by using the pilot signal and the interpolation processing, and a plurality of interpolation tables prepared in consideration of various situations assumed as the pilot signal. Based on the obtained transmission line estimation value and the transmission line interpolation value, the self-moving state is determined. Then, the mobile station 200 stops the delayed transmission diversity when its moving state is stationary or quasi-stationary. Further, when the mobile station 200 stops the delayed transmission diversity, the mobile station 200 preferentially stops the transmission using the antenna in which the occlusion occurs. The mobile station 200 according to the present embodiment can accurately determine its own moving state, and can stop the delayed transmission diversity when the transmission characteristic deteriorates when the delayed transmission diversity is performed. Therefore, according to the mobile station 200 according to the present embodiment, the transmission characteristics can be improved.
 なお、信号の遮蔽が発生しているか否かを判定することは必須ではない。移動局200は、少なくとも、自己の移動状態を判定し、遅延送信ダイバーシチを行うと却って伝送特性が劣化している状態か否かを判別して、遅延送信ダイバーシチを停止すべきと判断した場合に、すなわち、移動状態が静止中または準静止状態の場合に、遅延送信ダイバーシチを停止すればよい。 It is not essential to determine whether or not signal occlusion has occurred. When the mobile station 200 determines at least its own moving state, determines whether or not the transmission characteristics are deteriorated when the delayed transmission diversity is performed, and determines that the delayed transmission diversity should be stopped. That is, the delayed transmission diversity may be stopped when the moving state is stationary or quasi-stationary.
 また、本実施の形態では、移動環境が準静止状態または静止中の時に、遅延送信ダイバーシチを停止し、この場合に各送信アンテナの遮蔽状況を推定して送信OFFにする送信アンテナを適切に選択するようにしたが、これに限定されない。遅延送信ダイバーシチの制御として、移動環境が準静止状態または静止中と判断した場合に送信OFFとするのではなく、送信する信号に対して位相変化または波形の電力変動を与えたり、周波数偏差を与えたりして伝送特性の劣化を回避させてもよく、特に制約はない。 Further, in the present embodiment, when the mobile environment is in a quasi-stationary state or stationary, the delayed transmission diversity is stopped, and in this case, the transmission antenna that estimates the shielding status of each transmission antenna and turns off the transmission is appropriately selected. I tried to do it, but it is not limited to this. As a control of delayed transmission diversity, instead of turning off transmission when it is determined that the mobile environment is in a semi-stationary state or stationary, a phase change or waveform power fluctuation is given to the transmitted signal, or a frequency deviation is given. Therefore, deterioration of transmission characteristics may be avoided, and there is no particular limitation.
 つづいて、移動局200のハードウェア構成について説明する。移動局200の受信装置201および送信装置202の各構成要素のうち、受信アンテナ21および送信アンテナ49を除いた残りの各構成要素は、移動局200を実現する専用の処理回路で実現することができる。専用の処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせた回路である。 Next, the hardware configuration of the mobile station 200 will be described. Of the components of the receiving device 201 and the transmitting device 202 of the mobile station 200, the remaining components excluding the receiving antenna 21 and the transmitting antenna 49 can be realized by a dedicated processing circuit that realizes the mobile station 200. it can. The dedicated processing circuit is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a circuit in which these are combined. ..
 上記の各構成要素は、図7に示すプロセッサ301およびメモリ302からなる制御回路で実現してもよい。図7は、実施の形態1にかかる移動局200を実現するハードウェアの一例を示す図である。プロセッサ301は、CPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSP(Digital Signal Processor)ともいう)である。メモリ302は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically Erasable Programmable Read Only Memory)等の、不揮発性または揮発性の半導体メモリである。 Each of the above components may be realized by a control circuit including the processor 301 and the memory 302 shown in FIG. FIG. 7 is a diagram showing an example of hardware for realizing the mobile station 200 according to the first embodiment. The processor 301 is a CPU (also referred to as a Central Processing Unit, a central processing unit, a processing unit, a computing device, a microprocessor, a microprocessor, a processor, or a DSP (Digital Signal Processor)). The memory 302 is non-volatile, such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EEPROM (Erasable Programmable Read Only Memory), EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory), and the like. Alternatively, it is a volatile semiconductor memory.
 移動局200の受信アンテナ21および送信アンテナ49を除いた残りの各構成要素を図7に示すプロセッサ301およびメモリ302で実現する場合、これらの各構成要素として動作するためのプログラムをメモリ302に予め格納しておく。プロセッサ301は、メモリ302に格納されているプログラムを読み出して実行することにより、上記の各構成要素として動作する。 When the remaining components excluding the receiving antenna 21 and the transmitting antenna 49 of the mobile station 200 are realized by the processor 301 and the memory 302 shown in FIG. 7, a program for operating as each of these components is previously provided in the memory 302. Store it. The processor 301 operates as each of the above components by reading and executing the program stored in the memory 302.
 なお、移動局200の受信アンテナ21および送信アンテナ49以外の各構成要素のうち、一部を専用の処理回路で実現し、残りを図7に示したプロセッサ301およびメモリ302で実現してもよい。 Of the components other than the receiving antenna 21 and the transmitting antenna 49 of the mobile station 200, a part may be realized by a dedicated processing circuit, and the rest may be realized by the processor 301 and the memory 302 shown in FIG. ..
 また、移動局200のハードウェア構成について説明したが、基地局100も同様のハードウェアで実現することが可能である。 Although the hardware configuration of the mobile station 200 has been described, the base station 100 can also be realized with the same hardware.
実施の形態2.
 実施の形態1では、移動局が静止中または準静止状態であると判定された場合には必ず、遅延送信ダイバーシチを停止するものであった。実際、遅延送信ダイバーシチを停止すべきケースとしては、符号間干渉が増大する、すなわち、周波数軸上で急峻な落ち込みがある場合のみである。上記の実施の形態1では、遅延送信ダイバーシチを停止しなくともよい場合でも送信をOFFとすることもあるため、性能改善が課題となる。本実施の形態は上記の課題を解決するものである。
Embodiment 2.
In the first embodiment, the delayed transmission diversity is stopped whenever it is determined that the mobile station is stationary or quasi-stationary. In fact, the only case where the delayed transmission diversity should be stopped is when intersymbol interference increases, that is, there is a sharp drop on the frequency axis. In the first embodiment described above, even if it is not necessary to stop the delayed transmission diversity, the transmission may be turned off, so that performance improvement becomes an issue. The present embodiment solves the above-mentioned problems.
 図8は、実施の形態2にかかる通信システムの構成例を示す図である。本実施の形態にかかる通信システムは、複数の移動局400~403と、複数の基地局406~408と、上位装置500と、データ蓄積装置501を含んで構成される。本実施の形態では、図8に示すように、移動局が限られたいくつかの経路を行き来する通信システムを前提とする。図8に示す例では、移動局400および401は静止中、移動局402および403は移動中である。移動局400~403の構成は実施の形態1で説明した移動局200と同様である。また、基地局406~408の構成は実施の形態1で説明した基地局100と同様である。以下、図8に示す通信システムを構成している各装置の動作を説明する。 FIG. 8 is a diagram showing a configuration example of the communication system according to the second embodiment. The communication system according to the present embodiment includes a plurality of mobile stations 400 to 403, a plurality of base stations 406 to 408, a host device 500, and a data storage device 501. In this embodiment, as shown in FIG. 8, it is premised on a communication system in which a mobile station travels back and forth between a limited number of routes. In the example shown in FIG. 8, mobile stations 400 and 401 are stationary and mobile stations 402 and 403 are moving. The configurations of the mobile stations 400 to 403 are the same as those of the mobile station 200 described in the first embodiment. Further, the configurations of the base stations 406 to 408 are the same as those of the base station 100 described in the first embodiment. Hereinafter, the operation of each device constituting the communication system shown in FIG. 8 will be described.
 図8に示す通信システムにおいて、基地局406~408は、移動局400~403が固定された経路404および405を行き来する度に、移動局400~403からの受信信号を基に、移動局400~403の周波数応答を求めて遅延送信ダイバーシチを停止するか否かを判定する。そして、基地局406~408は、判定結果を示す遅延送信ダイバーシチON/OFF情報DivOnOffを生成し、移動局400~403の位置を示す位置情報と一緒に動作実績情報409として上位装置500へ送信する。基地局406~408が遅延送信ダイバーシチを停止するか否かを判定して遅延送信ダイバーシチON/OFF情報DivOnOffを生成する方法については後述する。なお、基地局406~408は、移動局400~403から位置情報を定期的に取得するものとする。すなわち、移動局400~403は、基地局406~408と通信している間は、定められた周期で自己の位置情報を取得して送信する。移動局400~403は、位置情報をどのような方法で取得してもよい。 In the communication system shown in FIG. 8, the base stations 406 to 408 use the mobile station 400 based on the received signal from the mobile stations 400 to 403 each time the mobile stations 400 to 403 go back and forth between the fixed routes 404 and 405. It is determined whether or not to stop the delayed transmission diversity by obtaining the frequency response of ~ 403. Then, the base stations 406 to 408 generate the delayed transmission diversity ON / OFF information Div OnOff indicating the determination result, and transmit the operation record information 409 together with the position information indicating the positions of the mobile stations 400 to 403 to the host device 500. To do. The method for the base station 406-408 to generate a determination to delay transmission diversity ON / OFF information Div OnOff whether to stop the delay transmit diversity will be described later. In addition, base stations 406 to 408 shall periodically acquire position information from mobile stations 400 to 403. That is, the mobile stations 400 to 403 acquire and transmit their own position information at a predetermined cycle while communicating with the base stations 406 to 408. The mobile stations 400 to 403 may acquire the position information by any method.
 上位装置500は、動作実績情報409、すなわち、遅延送信ダイバーシチON/OFF情報DivOnOffおよび位置情報を基地局406~408から受け取ると、これらを関連付けて、データ蓄積装置501が保持するデータベースに蓄積する。 When the host device 500 receives the operation record information 409, that is, the delayed transmission diversity ON / OFF information Div On Off and the position information from the base stations 406 to 408, the host device 500 associates them and stores them in the database held by the data storage device 501. ..
 移動局400~403のうち、静止中の移動局400および401は、事前に(すなわち移動を開始する前に)、基地局406または408を介して、動作判定用情報502を上位装置500から取得する。動作判定用情報502は、データ蓄積装置501のデータベースに蓄積されている情報であり、上記の遅延送信ダイバーシチON/OFF情報DivOnOffと、これに関連付けられている位置情報とが含まれる。上位装置500は、移動局400または401から要求を受けると、データ蓄積装置501内のデータベースに蓄積されている遅延送信ダイバーシチON/OFF情報DivOnOffと位置情報とを全て読み出し、動作判定用情報502として基地局406または408に送信する。なお、上位装置500は、動作判定用情報502を要求している移動局400または401が移動する経路の情報を取得し、移動局400または401が移動する経路に対応する遅延送信ダイバーシチON/OFF情報DivOnOffと位置情報とをデータベースから抽出して動作判定用情報502として送信してもよい。 Of the mobile stations 400 to 403, the stationary mobile stations 400 and 401 acquire the operation determination information 502 from the host device 500 in advance (that is, before starting the movement) via the base station 406 or 408. To do. The operation determination information 502 is information stored in the database of the data storage device 501, and includes the above-mentioned delayed transmission diversity ON / OFF information Div OnOff and the position information associated therewith . Host device 500 receives the request from the mobile station 400 or 401, reads all of the delay transmit diversity ON / OFF information Div OnOff and location information stored in the database of the data storage device 501, the operation determination information 502 Is transmitted to base station 406 or 408. The host device 500 acquires information on the route on which the mobile station 400 or 401 requesting the operation determination information 502 travels, and the delayed transmission diversity ON / OFF corresponding to the route on which the mobile station 400 or 401 travels. The information Div On Off and the position information may be extracted from the database and transmitted as the operation determination information 502.
 基地局406または408は、上位装置500から受信した動作判定用情報502を移動局400または移動局401へ送信する。移動局400および401は、動作判定用情報502を受信するとこれを保持し、移動を開始した後は保持している動作判定用情報502に基づいて送信動作を行う。すなわち、移動局400および401は、移動開始後の送信動作において遅延送信ダイバーシチを行うか否かを動作判定用情報502に基づいて判定する。より詳細には、移動局400および401は、自己の現在位置を示す位置情報と関連付けられている遅延送信ダイバーシチON/OFF情報DivOnOffがダイバーシチONを示す場合は遅延送信ダイバーシチを行う。移動局400および401は、自己の現在位置を示す位置情報と関連付けられている遅延送信ダイバーシチON/OFF情報DivOnOffがダイバーシチOFFを示す場合は遅延送信ダイバーシチを行わない。 The base station 406 or 408 transmits the operation determination information 502 received from the host device 500 to the mobile station 400 or the mobile station 401. When the mobile stations 400 and 401 receive the operation determination information 502, they hold the operation determination information 502, and after starting the movement, perform a transmission operation based on the held operation determination information 502. That is, the mobile stations 400 and 401 determine whether or not to perform the delayed transmission diversity in the transmission operation after the start of movement based on the operation determination information 502. More specifically, the mobile station 400 and 401, if the self indicating the current location and location information associated with that delay transmit diversity ON / OFF information Div OnOff indicates diversity ON performs delay transmit diversity. Mobile station 400 and 401, if the self indicating the current location and location information associated with that delay transmit diversity ON / OFF information Div OnOff indicates diversity OFF is not performed delay transmit diversity.
 つづいて、基地局406~408が遅延送信ダイバーシチを停止するか否かを判定する方法について説明する。 Next, a method of determining whether or not the base stations 406 to 408 stop the delayed transmission diversity will be described.
 遅延送信ダイバーシチON/OFF情報DivOnOffは、基地局406~408において移動局400~403から信号を受信する受信装置が生成する。具体的には、基地局406~408の受信装置は、受信信号に含まれるパイロット信号を用いて伝送路推定処理および補間処理を行い、周波数領域の伝送路推定値H(f)を算出する。なお、基地局406~408の受信装置の構成は、実施の形態1で説明した移動局200の受信装置201と同様である。受信装置は、周波数領域の伝送路推定値H(f)を算出後、伝送路推定値H(f)の振幅の最大値H_absmaxおよび最小値H_absminを求める。この処理は、例えば以下の式(10)で表すことができる。 Delayed transmission diversity ON / OFF information Div OnOff is generated by a receiving device that receives signals from mobile stations 400 to 403 at base stations 406 to 408. Specifically, the receiving devices of the base stations 406 to 408 perform transmission line estimation processing and interpolation processing using the pilot signal included in the reception signal, and calculate the transmission line estimation value H (f) in the frequency domain. The configuration of the receiving device of the base stations 406 to 408 is the same as that of the receiving device 201 of the mobile station 200 described in the first embodiment. After calculating the transmission line estimated value H (f) in the frequency domain, the receiving device obtains the maximum value H _abs max and the minimum value H _abs min of the amplitude of the transmission line estimated value H (f). This process can be expressed by, for example, the following equation (10).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 受信装置は、次に、以下の式(11)に示すように、伝送路推定値H(f)の振幅の最大値と最小値との差分Diffを算出する。 Next, the receiving device calculates the difference Diff between the maximum value and the minimum value of the amplitude of the transmission line estimated value H (f) as shown in the following equation (11).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 そして、受信装置は、差分Diffが予め定められたしきい値th以上の場合は停止時の符号間干渉の影響が大きいとみなして遅延送信ダイバーシチをOFFにすべきと判定し、差分Diffがしきい値未満の場合は送信ダイバーシチをONにすべきと判定する。この処理は、例えば以下の式(12)で表すことができる。式(12)では、「0」が送信ダイバーシチOFFを表し、「1」が送信ダイバーシチONを表す。 Then, when the difference Diff is equal to or higher than the predetermined threshold value th or more, the receiving device considers that the influence of intersymbol interference at the time of stop is large and determines that the delayed transmission diversity should be turned off, and the difference Diff is performed. If it is less than the threshold value, it is determined that the transmission diversity should be turned ON. This process can be expressed by, for example, the following equation (12). In the formula (12), "0" represents the transmission diversity OFF, and "1" represents the transmission diversity ON.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 なお、受信装置が受信ダイバーシチを行っている時は、受信アンテナ毎に上記の差分Diffを算出した後に合成してもよい。複数のシングルキャリアがあるときも同様であり、上記に制約はない。 Note that when the receiving device is performing reception diversity, the above difference Diff may be calculated for each receiving antenna and then combined. The same applies when there are a plurality of single carriers, and the above is not limited.
 つづいて、移動局400~403の動作について説明する。なお、移動局400~403は、上記の動作判定用情報502(遅延送信ダイバーシチON/OFF情報DivOnOffおよび位置情報)を基地局406または408を介して上位装置500から取得済みであるものとする。 Next, the operation of mobile stations 400 to 403 will be described. It is assumed that the mobile stations 400 to 403 have acquired the above-mentioned operation determination information 502 (delayed transmission diversity ON / OFF information Div On Off and position information) from the host device 500 via the base station 406 or 408. ..
 移動局400~403は、経路404または405に沿った移動を開始後、実施の形態1で説明した方法を使用して、自己の移動状態を判定する。移動局400~403は、移動状態が静止中または準静止状態と判定した場合、保持している動作判定用情報502から、現在位置を示す位置情報と関連付けられている遅延送信ダイバーシチON/OFF情報DivOnOffを読み出し、読み出したDivOnOffに従った送信動作を行う。すなわち、移動局400~403は、読み出したDivOnOffが遅延送信ダイバーシチOFFを示している場合は遅延送信ダイバーシチを停止し、読み出したDivOnOffが遅延送信ダイバーシチONを示している場合は、遅延送信ダイバーシチを行っている状態であればこれを継続し、遅延送信ダイバーシチを停止している状態であれば、遅延送信ダイバーシチを開始する。 After starting the movement along the route 404 or 405, the mobile stations 400 to 403 determine their own movement state by using the method described in the first embodiment. When the mobile stations 400 to 403 determine that the moving state is stationary or semi-stationary, the delayed transmission diversity ON / OFF information associated with the position information indicating the current position is obtained from the held operation determination information 502. The Div On Off is read, and the transmission operation is performed according to the read Div On Off . In other words, the mobile station 400-403, if the read Div OnOff is to stop delay transmit diversity If it shows a delay transmission diversity OFF, read Div OnOff indicates a delayed transmission diversity ON, Delay Transmit Diversity If this is the case, this is continued, and if the delayed transmission diversity is stopped, the delayed transmission diversity is started.
 このように、実施の形態2にかかる通信システムにおいて、基地局406~408は、移動局400~403からの受信信号に含まれるパイロット信号を用いて伝送路推定値を算出し、伝送路推定値の最大振幅と最小振幅とに基づいて、遅延送信ダイバーシチを停止するか否かを判定する。上位装置500は、基地局406~408での判定結果を、判定に用いた信号が送信された位置を示す位置情報と関連付けてデータ蓄積装置501のデータベースに蓄積しておく。移動局400~403は、移動を開始する前に、データベースに蓄積されている判定結果および位置情報を上位装置500から取得し、取得した判定結果および位置情報に基づいて、遅延送信ダイバーシチのON/OFFを切り替える。 As described above, in the communication system according to the second embodiment, the base stations 406 to 408 calculate the transmission line estimated value by using the pilot signal included in the received signal from the mobile stations 400 to 403, and the transmission line estimated value is calculated. Whether or not to stop the delayed transmission diversity is determined based on the maximum amplitude and the minimum amplitude of. The host device 500 stores the determination results of the base stations 406 to 408 in the database of the data storage device 501 in association with the position information indicating the position where the signal used for the determination is transmitted. Before starting the movement, the mobile stations 400 to 403 acquire the determination result and the position information stored in the database from the host device 500, and based on the acquired determination result and the position information, the delayed transmission diversity ON / Switch off.
 本実施の形態にかかる通信システムによれば、各移動局(移動局400~403)は、遅延送信ダイバーシチをOFFにする必要のない場所が事前に分かるため、OFFにする必要が無い場所で誤判定によりOFFとしてしまい伝送特性が劣化するのを回避することができる。加えて、事前に必要なデータ(遅延送信ダイバーシチON/OFF情報DivOnOffおよび位置情報)を取得するため、各移動局は移動中に基地局406~408との制御信号のやり取りが不要となり、システムの簡易化を実現することができる。 According to the communication system according to the present embodiment, each mobile station (mobile stations 400 to 403) knows in advance where it is not necessary to turn off the delayed transmission diversity, so that the place where it is not necessary to turn off is erroneous. It is possible to prevent the transmission characteristics from deteriorating due to being turned off by the determination. In addition, in order to obtain the pre-required data (Delay Transmit Diversity ON / OFF information Div OnOff and position information), the mobile station exchanges control signals with the base station 406-408 is unnecessary in the mobile system Can be simplified.
 なお、本実施の形態では、基地局406~408が送信する遅延送信ダイバーシチON/OFF情報DivOnOffおよび位置情報を蓄積するデータベースをデータ蓄積装置501が備えることとしたが、このデータベースを上位装置500が備えるようにしてもよい。 In this embodiment, the base station 406-408 is a comprise data storage device 501 a database for storing the delay transmit diversity ON / OFF information Div OnOff and position information transmitted by the higher-level device to the database 500 May be prepared.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1-1,1-Nca,4-1,4-Nca 送信部、2-1,2-Nca 受信部、10-1,10-Nt,40-1,40-Nt 送信処理部、11,41 誤り訂正符号化部、12,42 インタリーバ、13,43 マッピング部、14,44 インタポレーション部、15,24,45 帯域制限部、16,47 DAC、17,22,48 アナログフロントエンド、19 アンテナ、20-1,20-Nr 受信処理部、21 受信アンテナ、23 ADC、25 デシメーション部、26 タイミング検出部、27 周波数補正部、28 伝送路推定部、29 信号再生部、30 LLR算出部、31 デインタリーバ、32 誤り訂正復号部、46 ダイバーシチ処理部、49 送信アンテナ、50 送信動作制御部、51 遮蔽判定部、52 状態推定部、100,406,407,408 基地局、101,202 送信装置、200,400,401,402,403 移動局、201 受信装置、500 上位装置、501 データ蓄積装置。 1-1,1-N ca , 4-1,4-N ca transmitter, 2-1,2-N ca receiver, 10-1,10-N t , 40-1, 40-N t transmission processing Part, 11,41 Error correction coding part, 12,42 Interleaver, 13,43 Mapping part, 14,44 Antenna part, 15,24,45 Band limiting part, 16,47 DAC, 17,22,48 Analog front-end, 19 antenna, 20-1,20-N r reception processing unit, 21 receiving antennas, 23 ADC, 25 decimation section, 26 timing detector, 27 a frequency correction unit, 28 channel estimation unit, 29 signal reproduction section, 30 LLR calculation unit, 31 deinterleaver, 32 error correction / decoding unit, 46 diversity processing unit, 49 transmission antenna, 50 transmission operation control unit, 51 shielding judgment unit, 52 state estimation unit, 100, 406, 407, 408 base stations, 101,202 transmitter, 200,400,401,402,403 mobile station, 201 receiver, 500 host device, 501 data storage device.

Claims (8)

  1.  複数のアンテナを備え、遅延送信ダイバーシチを使用した伝送処理が可能な無線通信装置であって、
     第1の方法で求めた伝送路推定値と第2の方法で求めた伝送路推定値とに基づいて前記無線通信装置の移動状態を推定する状態推定部と、
     前記移動状態が、遅延送信ダイバーシチを行うと伝送特性が劣化する状態に該当すると前記状態推定部で推定された場合に、遅延送信ダイバーシチの使用を停止する処理、前記複数のアンテナの中の一部のアンテナから送信する信号の位相を変化させる処理または前記一部のアンテナから送信する信号に周波数偏差を与える処理を行う送信装置と、
     を備えることを特徴とする無線通信装置。
    It is a wireless communication device equipped with multiple antennas and capable of transmission processing using delayed transmission diversity.
    A state estimation unit that estimates the moving state of the wireless communication device based on the transmission line estimated value obtained by the first method and the transmission line estimated value obtained by the second method.
    A process of stopping the use of the delayed transmission diversity when the state estimation unit estimates that the moving state corresponds to a state in which the transmission characteristics deteriorate when the delayed transmission diversity is performed, a part of the plurality of antennas. A transmission device that changes the phase of the signal transmitted from the antenna of the above or performs a process of giving a frequency deviation to the signal transmitted from some of the antennas.
    A wireless communication device characterized by comprising.
  2.  前記複数のアンテナのそれぞれが受信した信号の品質を算出し、算出した品質に基づいて、前記複数のアンテナのそれぞれから送信する信号の遮蔽が発生するか否かを判定する遮蔽判定部、
     を備え、
     前記送信装置は、前記遅延送信ダイバーシチの使用を停止する処理を行う場合、送信する信号の遮蔽が発生すると前記遮蔽判定部で判定されたアンテナからの送信を停止する、
     ことを特徴とする請求項1に記載の無線通信装置。
    A shielding determination unit that calculates the quality of the signal received by each of the plurality of antennas and determines whether or not the signal transmitted from each of the plurality of antennas is shielded based on the calculated quality.
    With
    When the transmitting device performs a process of stopping the use of the delayed transmission diversity, the transmission from the antenna determined by the shielding determination unit is stopped when the signal to be transmitted is shielded.
    The wireless communication device according to claim 1.
  3.  前記遮蔽判定部は、前記複数のアンテナのそれぞれについて、周波数の相関が小さい複数のキャリアの受信信号の品質を求め、求めた品質を合成して遮蔽判定用の指標値を算出し、算出した指標値をしきい値と比較して、前記遮蔽が発生するか否かを判定する、
     ことを特徴とする請求項2に記載の無線通信装置。
    The shielding determination unit obtains the quality of the received signals of a plurality of carriers having a small frequency correlation for each of the plurality of antennas, synthesizes the obtained quality, calculates an index value for shielding determination, and calculates the index. The value is compared with the threshold to determine if the occlusion occurs.
    2. The wireless communication device according to claim 2.
  4.  前記状態推定部は、
     前記第1の方法では、受信信号に含まれる既知信号および補間処理を使用して第1の伝送路推定値を求め、
     前記第2の方法では、前記既知信号と、想定される複数の移動状態のそれぞれに対して作成された複数の補間テーブルとを使用して、それぞれが前記複数の補間テーブルの1つと1対1で対応する複数の第2の伝送路推定値を求め、
     求めた複数の第2の伝送路推定値のうち、前記第1の伝送路推定値との誤差が最も小さい第2の伝送路推定値に対応する補間テーブルが想定している移動状態を、前記無線通信装置の移動状態と推定する、
     ことを特徴とする請求項1から3のいずれか一つに記載の無線通信装置。
    The state estimation unit
    In the first method, the known signal included in the received signal and the interpolation process are used to obtain the first transmission line estimated value.
    In the second method, the known signal and a plurality of interpolation tables created for each of the plurality of assumed moving states are used, and each is one-to-one with one of the plurality of interpolation tables. Find the corresponding second transmission line estimates in
    Among the obtained plurality of second transmission line estimated values, the moving state assumed by the interpolation table corresponding to the second transmission line estimated value having the smallest error from the first transmission line estimated value is described. Estimated to be the moving state of the wireless communication device,
    The wireless communication device according to any one of claims 1 to 3, wherein the wireless communication device is characterized.
  5.  前記状態推定部は、
     前記複数のアンテナのそれぞれが受信する複数のキャリアごとに、前記第1の伝送路推定値と前記複数の第2の伝送路推定値のそれぞれとの誤差を求め、求めたキャリアごとの誤差を合成して得られる合成後の誤差が最も小さい第2の伝送路推定値に対応する補間テーブルが想定している移動状態を、前記無線通信装置の移動状態と推定する、
     ことを特徴とする請求項4に記載の無線通信装置。
    The state estimation unit
    For each of the plurality of carriers received by each of the plurality of antennas, the error between the first transmission line estimated value and each of the plurality of second transmission line estimated values is obtained, and the obtained errors for each carrier are combined. The moving state assumed by the interpolation table corresponding to the second transmission line estimated value having the smallest error after synthesis obtained is estimated as the moving state of the wireless communication device.
    The wireless communication device according to claim 4, wherein the wireless communication device is characterized.
  6.  前記複数のアンテナの中に送信信号の遮蔽が発生するアンテナが存在する場合、
     前記状態推定部は、遮蔽が発生するアンテナが受信するキャリアに対応する誤差を除外して、前記求めたキャリアごとの誤差を合成する処理を行う、
     ことを特徴とする請求項5に記載の無線通信装置。
    When there is an antenna that shields the transmitted signal among the plurality of antennas,
    The state estimation unit excludes the error corresponding to the carrier received by the antenna in which the shielding occurs, and performs a process of synthesizing the obtained error for each carrier.
    The wireless communication device according to claim 5.
  7.  基地局および上位装置と、
     遅延送信ダイバーシチを使用した伝送処理が可能な移動局と、
     を備え、
     前記基地局は、前記移動局から信号を受信するごとに、受信した信号に基づいて、遅延送信ダイバーシチを停止するか否かを判定し、判定結果を前記移動局の位置情報と対応付けて前記上位装置へ送信し、
     前記上位装置は、前記基地局から受信して保持している前記判定結果および前記位置情報を、移動を開始する前の前記移動局へ送信し、
     前記移動局は、
     第1の方法で求めた伝送路推定値と第2の方法で求めた伝送路推定値とに基づいて自己の移動状態を推定し、遅延送信ダイバーシチを行うと伝送特性が劣化する移動状態に該当すると推定した場合、前記上位装置から取得した前記判定結果および前記位置情報と、自己の現在位置とに基づいて、遅延送信ダイバーシチを継続するか否かを判定する、
     ことを特徴とする通信システム。
    With base stations and higher-level equipment,
    Mobile stations capable of transmission processing using delayed transmission diversity and
    With
    Each time the base station receives a signal from the mobile station, the base station determines whether or not to stop the delayed transmission diversity based on the received signal, and associates the determination result with the position information of the mobile station. Send to higher-level device,
    The host device transmits the determination result and the position information received and held from the base station to the mobile station before starting the movement.
    The mobile station
    It corresponds to the moving state in which the transmission characteristics deteriorate when the delay transmission diversity is performed by estimating the own moving state based on the transmission line estimated value obtained by the first method and the transmission line estimated value obtained by the second method. Then, based on the determination result and the position information acquired from the higher-level device and the current position of the self, it is determined whether or not to continue the delayed transmission diversity.
    A communication system characterized by that.
  8.  複数のアンテナを備え、遅延送信ダイバーシチを使用した伝送処理が可能な無線通信装置が実行する無線通信方法であって、
     第1の方法で求めた伝送路推定値と第2の方法で求めた伝送路推定値とに基づいて前記無線通信装置の移動状態を推定する第1のステップと、
     前記第1のステップにおいて、前記移動状態が、遅延送信ダイバーシチを行うと伝送特性が劣化する状態に該当すると推定した場合、遅延送信ダイバーシチの使用を停止する処理、前記複数のアンテナの中の一部のアンテナから送信する信号の位相を変化させる処理または前記一部のアンテナから送信する信号に周波数偏差を与える処理を行う第2のステップと、
     を含むことを特徴とする無線通信方法。
    It is a wireless communication method executed by a wireless communication device equipped with multiple antennas and capable of transmission processing using delayed transmission diversity.
    The first step of estimating the moving state of the wireless communication device based on the transmission line estimated value obtained by the first method and the transmission line estimated value obtained by the second method, and
    In the first step, when it is estimated that the moving state corresponds to a state in which the transmission characteristics deteriorate when the delayed transmission diversity is performed, a process of stopping the use of the delayed transmission diversity, a part of the plurality of antennas. The second step of changing the phase of the signal transmitted from the antenna of the above or the process of giving a frequency deviation to the signal transmitted from the part of the antennas.
    A wireless communication method characterized by including.
PCT/JP2019/013031 2019-03-26 2019-03-26 Wireless communication device, communication system, and wireless communication method WO2020194558A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021508514A JP6929486B2 (en) 2019-03-26 2019-03-26 Wireless communication devices, communication systems, wireless communication methods, control circuits and storage media
PCT/JP2019/013031 WO2020194558A1 (en) 2019-03-26 2019-03-26 Wireless communication device, communication system, and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/013031 WO2020194558A1 (en) 2019-03-26 2019-03-26 Wireless communication device, communication system, and wireless communication method

Publications (1)

Publication Number Publication Date
WO2020194558A1 true WO2020194558A1 (en) 2020-10-01

Family

ID=72609358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013031 WO2020194558A1 (en) 2019-03-26 2019-03-26 Wireless communication device, communication system, and wireless communication method

Country Status (2)

Country Link
JP (1) JP6929486B2 (en)
WO (1) WO2020194558A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113965251A (en) * 2021-11-02 2022-01-21 中国人民解放军63920部队 Method and device for determining measurement and control point frequency of aerospace measurement and control network

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009033358A1 (en) * 2007-09-12 2009-03-19 Sharp Kabushiki Kaisha Information feedback method, system, user device, and base station based on space, time and frequency domain
WO2009069305A1 (en) * 2007-11-28 2009-06-04 Panasonic Corporation Receiving device and receiving method
JP2011176450A (en) * 2010-02-23 2011-09-08 Mitsubishi Electric Corp Receiving device
JP2017022459A (en) * 2015-07-07 2017-01-26 日本電信電話株式会社 Radio communication system and radio communication method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009033358A1 (en) * 2007-09-12 2009-03-19 Sharp Kabushiki Kaisha Information feedback method, system, user device, and base station based on space, time and frequency domain
WO2009069305A1 (en) * 2007-11-28 2009-06-04 Panasonic Corporation Receiving device and receiving method
JP2011176450A (en) * 2010-02-23 2011-09-08 Mitsubishi Electric Corp Receiving device
JP2017022459A (en) * 2015-07-07 2017-01-26 日本電信電話株式会社 Radio communication system and radio communication method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAWAHASHI, MAMORU ET AL.: "Multi-antenna wireless transmission technology Part 1 Outline of multi-antenna wireless transmission technology", NTT DOCOMO TECHNICAL JOURNAL, vol. 13, pages 68 - 75, Retrieved from the Internet <URL:https://www.nttdocomo.co.jp/binary/pdf/corporate/technology/rd/technical_journal/bn/voll3_3/vol13_3_068jp.pdf> *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113965251A (en) * 2021-11-02 2022-01-21 中国人民解放军63920部队 Method and device for determining measurement and control point frequency of aerospace measurement and control network
CN113965251B (en) * 2021-11-02 2023-06-02 中国人民解放军63920部队 Method and device for determining measurement and control point frequency of aerospace measurement and control network

Also Published As

Publication number Publication date
JPWO2020194558A1 (en) 2021-09-13
JP6929486B2 (en) 2021-09-01

Similar Documents

Publication Publication Date Title
EP3119021B1 (en) Multi-antenna apparatus using different interleaving patterns
CN100375408C (en) Method for selecting weight in multiple channel receiver
JP4343694B2 (en) How to determine the gain offset between transmission channels
US8170513B2 (en) Data detection and demodulation for wireless communication systems
AU2003285112B2 (en) Data detection and demodulation for wireless communication systems
CN101120520A (en) Calibration method, and base station apparatus, terminal apparatus and radio apparatus utilizing the same
KR101106684B1 (en) Apparatus and method for receiver in multiple antenna system
KR101400240B1 (en) System for generating space frequency block code relay signal and method thereof
US20090296863A1 (en) Interference Estimator
US7729458B2 (en) Signal decoding apparatus, signal decoding method, program, and information record medium
EP2553832B1 (en) Channel quality estimation for mlse receiver
EP1843486B1 (en) Method of decoding a spatially multiplexed signal and its corresponding receiver
JP6929486B2 (en) Wireless communication devices, communication systems, wireless communication methods, control circuits and storage media
US9872294B2 (en) Base station, radio communications system, and processing method in base station
JP4367527B2 (en) COMMUNICATION DEVICE, COMMUNICATION METHOD, COMMUNICATION SYSTEM, AND PROGRAM
US9166841B2 (en) Receiving apparatus and receiving method
US8982866B1 (en) Data channel noise estimation using control channel
WO2014184580A1 (en) Improvements to adaptive modulation
US9042485B2 (en) Method and device for retransmitting data under antenna gain imbalance
KR20150008595A (en) relay apparatus and receiving apparatus and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922000

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508514

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922000

Country of ref document: EP

Kind code of ref document: A1