[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020192434A1 - 终端设备及其显示屏和应用 - Google Patents

终端设备及其显示屏和应用 Download PDF

Info

Publication number
WO2020192434A1
WO2020192434A1 PCT/CN2020/078945 CN2020078945W WO2020192434A1 WO 2020192434 A1 WO2020192434 A1 WO 2020192434A1 CN 2020078945 W CN2020078945 W CN 2020078945W WO 2020192434 A1 WO2020192434 A1 WO 2020192434A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
display screen
camera module
hole
Prior art date
Application number
PCT/CN2020/078945
Other languages
English (en)
French (fr)
Inventor
景燎
吴旭东
刘思远
陈振宇
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910243776.9A external-priority patent/CN111756887A/zh
Priority claimed from CN201920412656.2U external-priority patent/CN210157219U/zh
Priority claimed from CN201910243075.5A external-priority patent/CN111756883B/zh
Priority claimed from CN201910243074.0A external-priority patent/CN111756882B/zh
Priority claimed from CN201920412623.8U external-priority patent/CN209881832U/zh
Priority claimed from CN201910243146.1A external-priority patent/CN111756885A/zh
Priority claimed from CN201920412052.8U external-priority patent/CN209881831U/zh
Priority claimed from CN201910243729.4A external-priority patent/CN111756886B/zh
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Priority to EP20777811.9A priority Critical patent/EP3952259A4/en
Priority to US17/599,411 priority patent/US12132849B2/en
Publication of WO2020192434A1 publication Critical patent/WO2020192434A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0264Details of the structure or mounting of specific components for a camera module assembly
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0266Details of the structure or mounting of specific components for a display module assembly
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2354/00Aspects of interface with display user
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements

Definitions

  • the present invention relates to the field of electronic equipment, in particular to a terminal device with a full screen and its display screen and application.
  • the current measure is to design the camera module as a telescopic camera module to hide and use the camera function.
  • the camera function of the electronic device needs to be used, at least part of the camera module is controlled to extend out of the housing of the electronic device, and when the camera function is used, at least part of the camera module is controlled to retract into the housing of the electronic device .
  • the camera module itself is a relatively precise component, and its service life in high-frequency back and forth movement needs to be tested, and the camera module is easily damaged due to external force during the movement.
  • An object of the present invention is to provide a terminal device and its display screen and application, wherein the camera module of the terminal device can collect enough light and at the same time the screen-to-body ratio of the terminal device can be increased.
  • Another object of the present invention is to provide a terminal device and its display screen and application, wherein the camera module of the terminal device is configured as an under-screen camera module and can receive sufficient light through the light hole of the display screen.
  • Another object of the present invention is to provide a terminal device and its display screen and application, wherein the camera module of the terminal device is configured as an under-screen camera module and can receive enough light through the light hole at the edge of the display screen. Light.
  • Another object of the present invention is to provide a terminal device and its display screen and application, wherein the light passing through the light hole can be guided to the camera module along a preset path to be captured by the camera. Module reception.
  • Another object of the present invention is to provide a terminal device and its display screen and application, wherein the camera module and the display screen can be assembled together to facilitate maintaining the camera module and the display screen. relative position.
  • Another object of the present invention is to provide a terminal device and its display screen and application, wherein the camera module of the terminal device can be designed to have a smaller size, which is beneficial to reduce the display screen and the display screen.
  • the present invention provides an assembly system, which includes a clamping device, a test unit, and a supporting platform, wherein the clamping device is used for clamping at least one camera module, and the supporting platform It is used to support a display screen with a through hole, and the test unit is used to test the imaging effect of the camera module receiving light through a through hole of the display screen.
  • the clamping device clamps the camera module and the camera module is held above the display screen.
  • the test unit includes a light source, a target plate, and a sensing device, wherein the light source and the target plate are located below the display screen, and the sensing device is The imaging effect of the module is tested.
  • the support platform has an installation space and a test hole, wherein the test hole penetrates the installation space, and when the display screen is accommodated in the installation space, the The through hole is aligned with the test hole, and the light emitted by the light source sequentially passes through the test hole and the through hole, and then is received by the camera module.
  • the shape of the test hole is conical, and the smaller the aperture of the test hole is closer to the camera module.
  • the supporting platform includes a platform main body, a fixing component, and an installation space
  • the display screen is accommodated in the installation space, wherein the installation space is formed in the fixing component
  • the fixing assembly is arranged on the platform main body.
  • the fixing assembly is integrally formed on the platform body.
  • the fixing assembly is detachably installed on the platform body.
  • the assembly system further includes a limit mechanism, wherein the limit mechanism is arranged on the display screen, and when the camera module is installed on the display screen, The limit mechanism limits the relative position of the camera module and the display screen.
  • the assembly system further includes a limit mechanism, wherein the limit mechanism is arranged on the camera module, and when the camera module is installed on the display screen, by The limit mechanism limits the relative position of the camera module and the display screen.
  • the assembly system further includes a limit mechanism, wherein the limit mechanism is disposed on a substrate, and the substrate is aligned with the display screen.
  • the camera module is aligned with the display screen.
  • the limiting mechanism is fixed to the display screen by bonding.
  • the limiting mechanism includes a sleeve and a connecting portion, the sleeve having a free end and a connecting end, wherein the connecting portion is from the connecting end of the sleeve It is formed by extending outward along the radial direction of the sleeve.
  • the connecting portion is attached to the back side of the display screen.
  • the limiting mechanism includes a sleeve and at least one connecting leg, wherein the sleeve has a free end and a connecting end, and the connecting leg is from the sleeve
  • the connecting end extends outward along the axial direction of the sleeve, and when the sleeve is installed on the display screen, the connecting foot extends into the inside of the display screen.
  • the display screen has at least one fitting channel, wherein the connecting leg of the limiting mechanism is fitted into the fitting channel, and the display screen includes a cover layer, A touch layer, a polarization layer, an encapsulation layer, a pixel layer and a drive circuit layer, wherein the cover layer, the touch layer, the polarization layer, the encapsulation layer, the pixel layer, and The driving circuit layers overlap each other in the height direction, the driving circuit layer is formed on the bottom side of the pixel layer, and is electrically connected to the pixel layer to drive the pixel layer to work, wherein the encapsulation layer is formed On the top side of the pixel layer, used to encapsulate the pixel layer, wherein the through hole penetrates the touch layer, the polarization layer, the encapsulation layer, the pixel layer, and the drive in the height direction
  • the circuit layer, wherein the driving circuit layer includes a base substrate and a plurality of TFT structures, wherein the TFT structure is disposed on the
  • the display screen has an installation channel, wherein the installation channel is connected to the through hole, and at least part of the limiting mechanism is accommodated in the installation channel.
  • the inner diameter of the mounting channel is larger than the through hole.
  • the present invention provides a terminal device, which includes a terminal device main body, a display screen, a camera module, and a limit mechanism, wherein the display screen is installed on the terminal device main body And the display screen has a through hole penetrating from top to bottom, wherein the camera module is held below the display screen and aligned to the through hole, wherein the limiting mechanism is connected to the The camera module and the display screen, the camera module is fixed to the display screen by the limit mechanism.
  • the limiting mechanism is fixed to the display screen by bonding.
  • the limiting mechanism includes a sleeve and a connecting portion, the sleeve having a free end and a connecting end, wherein the connecting portion is from the connecting end of the sleeve It is formed by extending outward along the radial direction of the sleeve.
  • the connecting portion is attached to the back side of the display screen.
  • the limiting mechanism includes a sleeve and at least one connecting leg, wherein the sleeve has a free end and a connecting end, and the connecting leg is from the sleeve
  • the connecting end extends outward along the axial direction of the sleeve, and when the sleeve is installed on the display screen, the connecting foot extends into the inside of the display screen.
  • the display screen has at least one fitting channel, wherein the connecting leg of the limiting mechanism is fitted into the fitting channel, and the display screen includes a cover layer, A touch layer, a polarization layer, an encapsulation layer, a pixel layer and a drive circuit layer, wherein the cover layer, the touch layer, the polarization layer, the encapsulation layer, the pixel layer, and The driving circuit layers overlap each other in the height direction, the driving circuit layer is formed on the bottom side of the pixel layer, and is electrically connected to the pixel layer to drive the pixel layer to work, wherein the encapsulation layer is formed On the top side of the pixel layer, used to encapsulate the pixel layer, wherein the through hole penetrates the touch layer, the polarization layer, the encapsulation layer, the pixel layer, and the drive in the height direction
  • the circuit layer, wherein the driving circuit layer includes a base substrate and a plurality of TFT structures, wherein the TFT structure is disposed on the
  • the display screen has an installation channel, wherein the installation channel is connected to the through hole, and at least part of the limiting mechanism is accommodated in the installation channel.
  • the present invention provides a camera module assembly method, which includes the following steps:
  • the limiting mechanism is provided on the display screen.
  • the limit mechanism is provided on a substrate, and the camera module is located between the substrate and the display screen.
  • the relative position of the camera module and the display screen is adjusted by adjusting the relative position of the camera module and the limit mechanism.
  • the present invention provides a terminal device, which includes a terminal device body, a display screen, a camera module, and at least one light-through hole, wherein the display screen is installed on the terminal device body ,
  • the camera module is held below the display screen and aligned to the light-passing hole, wherein the light-passing hole passes through at least part of the display screen in a height direction, and the outer side of the display screen
  • the light is transmitted to the camera module below the display screen through the light-passing hole, wherein the light-passing hole is designed as a virtual diaphragm of the camera module.
  • the terminal device further includes a housing, and a gap between the housing and the display screen of the light through hole penetrates from one side of the display screen to the One bottom surface of the display.
  • the camera module includes a photosensitive unit, an optical mechanism, and an aperture, wherein the aperture is mounted on the optical mechanism, and the optical mechanism is held by the photosensitive assembly The photosensitive path and receives the light passing through the light hole.
  • the camera module includes a photosensitive unit and an optical unit, wherein the optical unit is held in the light-passing hole, and the photosensitive unit is aligned with the light-passing hole.
  • the optical unit includes an optical lens, wherein the optical lens includes a lens barrel and a plurality of lenses, wherein the lens barrel includes a lens barrel wall and an extension wall, and the lens is Installed on the lens barrel wall, wherein the extension wall extends vertically upward from an end of the lens barrel wall close to the display screen to form a predetermined distance.
  • the extension wall is configured to extend vertically upward from the lens barrel wall and then extend inward.
  • the extension wall is arranged to extend upward from the lens barrel wall and the closer to the lens barrel wall, the smaller the inner diameter of the extension arm.
  • the inner diameter of each position of the extension wall remains the same.
  • the display screen includes a cover layer, a touch layer, a polarization layer, an encapsulation layer, a pixel layer, and a driving circuit layer, wherein the cover layer, the touch The control layer, the polarization layer, the encapsulation layer, the pixel layer, and the drive circuit layer are superimposed on each other in the height direction.
  • the drive circuit layer is formed on the bottom side of the pixel layer and is electrically connected to The pixel layer is used to drive the pixel layer to work, wherein the encapsulation layer is formed on the top side of the pixel layer to encapsulate the pixel layer, and the polarization layer is used to polarize light passing through, Wherein the light through hole passes through the touch control layer, the polarization layer, the encapsulation layer, the pixel layer, and the drive circuit layer of the display screen except for the cover layer in the height direction .
  • the driving circuit layer includes a base substrate and a plurality of TFT structures, wherein the TFT structure is disposed on the base substrate, and the light-passing hole is located in the adjacent TFT. Structure between.
  • the pixel layer includes a plurality of pixels, and the light-passing hole is located between adjacent pixels.
  • the driving circuit layer includes a base substrate and a plurality of TFT structures, wherein the TFT structure is disposed on the base substrate, and the light-passing hole is located in the adjacent TFT. Structure between.
  • the terminal device is provided with a protective material, wherein the protective material is located in the light through hole and is coated on the pixel layer and/or the driving circuit layer.
  • the pixel layer includes an anode layer, a light emitting layer, a cathode layer, and a protective layer, wherein the anode layer is located above the driving circuit layer, and the light emitting layer is located on the anode. Between the layer and the cathode layer, the cathode layer is located above the light-emitting layer and below the protective layer.
  • the terminal device is provided with a protective material, wherein the protective material is located in the light through hole, and the protective material is extended downward from the protective layer to the cathode layer; Either the protective material extends downward from the protective layer to the light emitting layer; or the protective material extends downward from the protective layer to the anode layer.
  • the terminal device includes a backplane layer, the backplane layer is located below the driving circuit layer and used for emitting light, the pixel layer includes a filter layer and liquid crystal, wherein the The liquid crystal is located between the filter layer and the drive circuit layer, the pixel layer is provided with a sealing material, wherein the sealing material is located between the filter layer and the drive circuit layer, and the liquid crystal is The sealing material blocks so as not to leak to the light through hole.
  • the terminal device is provided with a protective material, wherein the protective material is located in the light through hole, and the protective material is coated on the pixel layer and/or the driving circuit Floor.
  • the terminal device further includes a light guide tube, wherein the light guide tube is accommodated in the light through hole.
  • the light guide tube is made of transparent material.
  • the light guide tube is coated with an opaque material.
  • the terminal device further includes a limit mechanism, wherein one end of the limit mechanism is connected to the camera module, and the other end of the limit mechanism is connected to the display Screen, the camera module is fixed to the display screen by the limiting mechanism.
  • the present invention provides a display unit for cooperating with a camera module.
  • the display unit includes a display screen, a light-filling unit, and a light-passing hole.
  • the height direction penetrates at least part of the display screen, the light supplement unit can radiate light to the outside of the display screen and when the camera module is in the working state, the light supplement unit forms a light hole from the The light outside the display screen is received by the camera module after passing through the light hole and the restriction of the light hole.
  • the supplemental light unit is arranged on the display screen.
  • the supplemental light unit is arranged inside the display screen.
  • the display screen includes a cover layer, a touch layer, a polarization layer, an encapsulation layer, a pixel layer, and a driving circuit layer, wherein the cover layer is located on the top side,
  • the driving circuit layer is formed on the bottom side of the pixel layer, and is electrically connected to the pixel layer to drive the pixel layer to work, wherein the encapsulation layer is formed on the top side of the pixel layer, wherein the The light supplement unit is located on the driving circuit layer.
  • the display screen includes a cover layer, a touch layer, a polarization layer, an encapsulation layer, a pixel layer, a driving circuit layer, and a back plate layer, wherein the cover plate Layer is located on the top side, the backplane layer is located on the bottom side, the driving circuit layer is formed on the bottom side of the pixel layer, and is electrically connected to the pixel layer to drive the pixel layer to work, wherein the package The layer is formed on the top side of the pixel layer, wherein the light supplement unit is located on the backplane layer.
  • the supplementary light unit is held between the display screen and the camera module.
  • the supplemental light unit is detachably installed on the display screen.
  • the supplementary light unit includes a diaphragm structure and a light emitting structure
  • the diaphragm structure includes a diaphragm moving portion and a diaphragm driving portion
  • the diaphragm moving portion is drivable
  • the ground is connected to the diaphragm driving part in a manner of forming a light hole with a variable size, wherein the light emitting structure is located in the diaphragm moving part.
  • the light emitting structure is located on the upper surface of the diaphragm moving part.
  • the lower surface of the aperture moving part is set to be light-shielding.
  • the light supplement unit further includes a reflective structure, wherein the reflective structure is located under the light emitting structure to reflect light from the light emitting structure toward the outside of the display screen.
  • the reflective structure is stretchable to be deformably disposed on the aperture structure, and when the reflective structure deforms with the movement of the aperture moving part, the reflective structure The reflectivity changes.
  • the light-emitting structure includes a light-emitting element
  • the aperture moving part has a hole
  • the aperture of the aperture moving part is driven by the aperture driving part to move.
  • the size is changed to form the light hole of variable size
  • the light-emitting element is provided in the diaphragm moving part.
  • the light emitting structure includes a plurality of pixels, wherein the aperture moving part includes a plurality of blades, and the blades are drivably connected to the aperture driving part, at least one of the pixels Is provided on at least one of the blades.
  • a plurality of said pixels are provided on one said blade.
  • the light emitting structure is located inside the diaphragm moving part.
  • the supplementary light unit includes a diaphragm moving part and a diaphragm driving part, wherein the diaphragm moving part is driven to form a light hole with a variable size connected to the The diaphragm driving section, wherein the diaphragm moving section itself is set to emit light.
  • the present invention provides a terminal device, which includes:
  • a main body of terminal equipment A main body of terminal equipment
  • a camera module wherein the camera module is located below the display unit, the camera module has a front end, and the front end of the camera module is installed on the display screen of the display unit and The camera module is aligned with the light-passing hole of the display screen, so that light outside the display screen is received by the camera module through the light-passing hole.
  • the present invention provides a working method of a display unit, which includes the following steps:
  • a supplementary light unit When the display screen with a light-passing hole is in operation, a supplementary light unit is operated to emit light to supplement the light intensity at the position of the light-passing hole.
  • the working method further includes the following steps:
  • a diaphragm structure of a light supplement unit located above the camera module is operated to form a light hole through which light passes
  • the light-passing hole and the light-filling unit are constrained to reach the camera module.
  • the present invention provides a terminal device, which includes a terminal device main body, a display screen, a camera module, a housing, and a light guide channel, wherein at least part of the light guide channel is located Between the display screen and the housing, at least part of the light guide channel passes through the display screen, the display screen is installed on the terminal device main body, and the camera module is located on the display screen. Below and installed on the display screen, the light guide channel is aligned with the camera module and light can pass through the light guide channel to the camera module for imaging.
  • the light guide channel extends from a side surface of the display screen to a bottom surface of the display screen, and the camera module is mounted on the bottom surface of the display screen.
  • the display screen includes, from top to bottom, a cover layer, a touch layer, a polarization layer, an encapsulation layer, a pixel layer, a driving circuit layer, and a backplane layer, wherein
  • the driving circuit layer is formed on the bottom side of the pixel layer, and is electrically connected to the pixel layer to drive the pixel layer to work
  • the packaging layer is formed on the top side of the pixel layer for packaging
  • the polarization layer is used to polarize light
  • the driving circuit layer is supported on the backplane layer
  • the light guide channel passes through the touch layer, the polarization layer, and the One or more of the packaging layer, the pixel layer, the driving circuit layer, and the backplane layer are multiple.
  • the terminal device includes an optical unit, wherein the optical unit is held in the light guide channel, and the optical unit allows light to pass through.
  • the display screen has a light-through hole penetrating from top to bottom, wherein the light-through hole is aligned with the camera module.
  • the light guide channel and the light through hole at least partially overlap, and the light reaches the image obtained by the camera module through the light guide channel, and the light reaches through the through hole.
  • the images obtained by the same camera module are consistent.
  • the terminal device further includes at least one light guide component, wherein the light guide component forms the light guide pipe, and the light guide component passes through the display screen.
  • the light guide component is made of a light-transmitting material.
  • the light guide component is a light guide tube, wherein the light guide tube is coated with an opaque material.
  • the terminal device includes an optical unit, wherein the optical unit is located in the light guide assembly and held in the light guide channel, and the optical unit allows light to pass through.
  • the display screen has a light-through hole penetrating from top to bottom, wherein the light-through hole is aligned with the camera module.
  • the light guide channel and the light through hole at least partially overlap, and the light reaches the image obtained by the camera module through the light guide channel, and the light reaches through the through hole.
  • the images obtained by the same camera module are consistent.
  • a light guide component is received in the light through hole.
  • the present invention provides a method for manufacturing a display screen, which includes the following steps:
  • a light guide channel extending from the side surface of a display screen to the bottom surface of the display screen is formed.
  • the above method further includes the following steps:
  • Each layer of the display screen is installed so that the corresponding holes form the light guide channel.
  • the above method further includes the following steps:
  • a cover layer, a touch layer, a polarization layer, an encapsulation layer and a pixel layer are respectively arranged above the driving circuit layer to obtain the display screen;
  • the above method further includes the following steps:
  • a cover layer, a touch control layer, a polarization layer and an encapsulation layer are respectively arranged above the pixel layer.
  • the present invention provides a method for manufacturing a display screen, which includes the following steps:
  • a cover layer, a touch layer, a polarization layer, an encapsulation layer and a back plate layer are respectively arranged on both sides of a liquid crystal layer to obtain a display screen;
  • a sealing area aligned with the liquid crystal layer on the side surface or bottom surface of the display screen is subjected to a hole processing for the display screen to obtain a light guide channel passing through the side surface to the bottom surface of the display screen.
  • the method for manufacturing the liquid crystal layer includes the following steps:
  • holes are formed in the liquid crystal layer in advance.
  • Fig. 1 is a schematic diagram of a terminal device according to the prior art.
  • Figure 2 is a schematic diagram of a display screen and a camera module according to the prior art
  • Fig. 3 is a schematic diagram of a display screen according to a preferred embodiment of the present invention.
  • FIG. 4A is a schematic diagram of manufacturing a display screen according to a preferred embodiment of the present invention.
  • FIG. 4B is a schematic diagram of manufacturing a display screen according to a preferred embodiment of the present invention.
  • FIG. 5A is a schematic diagram of manufacturing a display screen according to a preferred embodiment of the present invention.
  • FIG. 5B is a schematic diagram of manufacturing a display screen according to a preferred embodiment of the present invention.
  • Fig. 6A is a schematic diagram of a display screen according to a preferred embodiment of the present invention.
  • 6B is a schematic diagram of the above-mentioned display screen according to the above-mentioned preferred embodiment of the present invention.
  • Fig. 7 is a schematic diagram of a display screen according to a preferred embodiment of the present invention.
  • Fig. 8 is a schematic diagram of a display screen according to a preferred embodiment of the present invention.
  • Fig. 9 is a schematic diagram of a display screen according to a preferred embodiment of the present invention.
  • Fig. 10 is a schematic diagram of a display screen according to a preferred embodiment of the present invention.
  • FIG. 11 is a schematic diagram of manufacturing a display screen according to a preferred embodiment of the present invention.
  • FIG. 12 is a schematic diagram of manufacturing a display screen according to a preferred embodiment of the present invention.
  • Fig. 13 is a schematic diagram of a display screen according to a preferred embodiment of the present invention.
  • FIG. 14A is a schematic diagram of manufacturing a display screen according to a preferred embodiment of the present invention.
  • FIG. 14B is a schematic diagram of manufacturing a display screen according to a preferred embodiment of the present invention.
  • Fig. 15 is a schematic diagram of a display screen according to a preferred embodiment of the present invention.
  • Fig. 16 is a schematic diagram of manufacturing a display screen according to a preferred embodiment of the present invention.
  • Fig. 17 is a schematic diagram of a display screen according to a preferred embodiment of the present invention.
  • 18A is a schematic diagram of the application of a display screen according to a preferred embodiment of the present invention.
  • 18B is a schematic diagram of the application of a display screen according to a preferred embodiment of the present invention.
  • FIG. 19 is a schematic diagram of the application of a display screen according to a preferred embodiment of the present invention.
  • 20 is a schematic diagram of the application of a display screen according to a preferred embodiment of the present invention.
  • 21 is a schematic diagram of the application of a display screen according to a preferred embodiment of the present invention.
  • FIG. 22 is a schematic diagram of the application of a display screen according to a preferred embodiment of the present invention.
  • FIG. 23 is a schematic diagram of the application of a display screen according to a preferred embodiment of the present invention.
  • FIG. 24 is a schematic diagram of the application of a display screen according to a preferred embodiment of the present invention.
  • FIG. 25 is a schematic diagram of the application of a display screen according to a preferred embodiment of the present invention.
  • Fig. 26 is a schematic diagram of the application of a display screen according to a preferred embodiment of the present invention.
  • FIG. 27 is a schematic diagram of the application of a display screen according to a preferred embodiment of the present invention.
  • Fig. 28 is a schematic diagram of a display screen according to a preferred embodiment of the present invention.
  • Fig. 29 is a schematic diagram of a display screen according to a preferred embodiment of the present invention.
  • Fig. 30 illustrates a specific example of a camera module according to an embodiment of the present application.
  • FIG. 31 illustrates another specific example of the camera module according to the embodiment of the present application.
  • FIG. 32 illustrates another specific example of the camera module according to the embodiment of the present application.
  • FIG. 33 illustrates another specific example of the camera module according to the embodiment of the present application.
  • FIG. 34 illustrates another specific example of the camera module according to the embodiment of the present application.
  • FIG. 35 illustrates another specific example of the camera module according to the embodiment of the present application.
  • FIG. 36 illustrates another specific example of the camera module according to the embodiment of the present application.
  • FIG. 37 illustrates another specific example of the camera module according to the embodiment of the present application.
  • FIG. 38 illustrates another specific example of the camera module according to the embodiment of the present application.
  • FIG. 39 illustrates another specific example of the camera module according to the embodiment of the present application.
  • FIG. 40 illustrates another specific example of the camera module according to the embodiment of the present application.
  • FIG. 41 illustrates another specific example of the camera module according to the embodiment of the present application.
  • FIG. 42 illustrates another specific example of the camera module according to the embodiment of the present application.
  • FIG. 43 illustrates a schematic diagram of a conventional camera module based on a molding process.
  • Figure 44 illustrates a specific schematic diagram of the photosensitive chip of the camera module
  • FIG. 45 illustrates another specific schematic diagram of the photosensitive chip of the camera module.
  • FIG. 46 illustrates a specific schematic diagram of the photosensitive layer of the photosensitive chip of the camera module.
  • FIG. 47 illustrates another specific schematic diagram of the photosensitive layer of the photosensitive chip of the camera module.
  • Fig. 48A is a schematic diagram of an assembly system according to a preferred embodiment of the present invention.
  • Fig. 48B is a schematic diagram of an assembly process according to a preferred embodiment of the present invention.
  • Fig. 49 is a schematic diagram of a supporting platform of the assembly system according to a preferred embodiment of the present invention.
  • Figure 50 is a schematic diagram of an assembly process according to a preferred embodiment of the present invention.
  • Figure 51A is a schematic diagram of an assembly process according to a preferred embodiment of the present invention.
  • Fig. 51B is a schematic diagram of an assembly process according to a preferred embodiment of the present invention.
  • Fig. 51C is a schematic diagram of an assembly process according to a preferred embodiment of the present invention.
  • Fig. 52 is a schematic diagram of an assembly process according to a preferred embodiment of the present invention.
  • Fig. 53 is a schematic diagram of an assembly process according to a preferred embodiment of the present invention.
  • Fig. 54 is a schematic diagram of an assembly process according to a preferred embodiment of the present invention.
  • Figure 55 is a schematic diagram of an assembly process according to a preferred embodiment of the present invention.
  • Figure 56 is a schematic diagram of an assembly process according to a preferred embodiment of the present invention.
  • Fig. 57 is a schematic diagram of an assembly process according to a preferred embodiment of the present invention.
  • Fig. 58 is a schematic diagram of an assembly process according to a preferred embodiment of the present invention.
  • Fig. 59 is a schematic diagram of an assembly process according to a preferred embodiment of the present invention.
  • Fig. 60A is a schematic diagram of a lens barrel according to a preferred embodiment of the present invention.
  • FIG. 60B is a schematic diagram of a lens barrel according to a preferred embodiment of the present invention.
  • Fig. 60C is a schematic diagram of a lens barrel according to a preferred embodiment of the present invention.
  • FIG. 60D is a schematic diagram of a lens barrel according to a preferred embodiment of the present invention.
  • Fig. 60E is a schematic diagram of a lens barrel according to a preferred embodiment of the present invention.
  • Fig. 61A is a schematic diagram of a terminal device according to a preferred embodiment of the present invention.
  • FIG. 61B is a schematic diagram of a display unit according to a preferred embodiment of the present invention.
  • FIG. 61C is a partial schematic diagram of another working state of the display unit according to the above-mentioned preferred embodiment of the present invention.
  • FIG. 62A is a partial schematic diagram of a display unit according to a preferred embodiment of the present invention.
  • FIG. 62B is a partial schematic diagram of a display unit according to a preferred embodiment of the present invention.
  • FIG. 62C is a partial schematic diagram of a display unit according to a preferred embodiment of the present invention.
  • FIG. 63 is a schematic diagram of a display unit according to a preferred embodiment of the present invention.
  • FIG. 64 is a schematic diagram of a display unit according to a preferred embodiment of the present invention.
  • FIG. 65 is a schematic diagram of a display unit according to a preferred embodiment of the present invention.
  • FIG. 66 is a schematic diagram of a display unit according to a preferred embodiment of the present invention.
  • FIG. 67 is a schematic diagram of a display unit according to a preferred embodiment of the present invention.
  • FIG. 68 is a schematic diagram of a display unit according to a preferred embodiment of the present invention.
  • FIG. 69 is a schematic diagram of a display unit according to a preferred embodiment of the present invention.
  • FIG. 70 is a schematic diagram of a display unit according to a preferred embodiment of the present invention.
  • FIG. 71 is a schematic diagram of a display unit according to a preferred embodiment of the present invention.
  • ordinal numbers such as “first”, “second”, etc. will be used to describe various components, those components are not limited here. The term is only used to distinguish one component from another.
  • the first component may be referred to as the second component, and likewise, the second component may also be referred to as the first component without departing from the teaching of the inventive concept.
  • the term "and/or” as used herein includes any and all combinations of one or more of the associated listed items.
  • the camera module is kept under the display screen and installed on the motherboard of an electronic device such as a mobile phone, and is limited to the manufacturing process.
  • the light-transmitting area so that the camera module can pass through the light-transmitting area for normal viewing.
  • the size of the light-transmitting area is much larger than a light-receiving area of the camera module, and once the field of view ⁇ of the camera module is set to be larger, the light-transmitting area also needs to be set larger to meet the requirements of the camera.
  • the light-receiving area of the camera module refers to the area where the lens part of the camera module is used to enter light.
  • FIG. 1A and FIG. 1B are schematic diagrams of the existing under-screen camera module 30P.
  • the display screen 20P has a light-transmitting area S, wherein the light-transmitting area S is limited to the previous manufacturing process, and is much larger than the light-receiving area P of the camera module 30P.
  • the transparent area S needs to be made larger.
  • the light-transmitting area S will occupy a larger area of the display screen 20P. Further, since the light-transmitting area S in the prior art ensures the amount of light entering the module, the light-transmitting area S The light area S cannot be used for display, so it is not conducive to increasing the screen-to-body ratio of the entire display screen 20P.
  • the present invention provides a display screen 20P, wherein the display screen 20P can increase the screen-to-body ratio of the display screen 20P as much as possible while meeting the imaging light required by the camera module 30P provided below the display screen 20P .
  • FIG. 2 to FIG. 5B it is a schematic diagram of the display screen 20 and its manufacturing method according to some embodiments of the present invention.
  • the display screen 20 has a light-through hole 200, wherein the light-through hole 200 serves as the light-transmitting area, and the camera module 30 is located under the display screen 20.
  • the camera module 30 receives light passing through the light through hole 200 to form an image.
  • the camera module 30 can be fixed to the display screen 20, so that there is no need to reserve space between the camera module 30 and the display screen 20, so that the overall height can be reduced. Moreover, since the camera module 30 is closely attached to the display screen 20, the requirement of the camera module 30 for the area of the light-transmitting area S can also be reduced. Of course, the camera module 30 can also be moved relative to the display screen 20, but the light-transmitting area of the display screen 20 can be made smaller.
  • the light-transmitting area that is, the light-passing hole 200 can be designed to be smaller, which also puts forward higher requirements for the manufacturing process of the display screen 20.
  • the display screen 20 is implemented as an OLED display screen 20.
  • the display screen 20 includes: a cover layer 21, a touch layer 22, a polarizing layer 23, an encapsulation layer 24, a pixel layer 25, a driving circuit layer 26, and a backplane layer 27 distributed from top to bottom, wherein the backplane
  • the layer 27 is located on the bottom side
  • the cover layer is located on the top side
  • the driving circuit layer 26 is formed on the bottom side of the pixel layer 25 and is electrically connected to the pixel layer 25 for driving the pixel layer 25 Working
  • the encapsulation layer 24 is formed on the top side of the pixel layer 25 for encapsulating the pixel layer 25
  • the pixel layer 25 includes pixels arranged in an array, with a gap between each pixel to The light that sequentially passes through the cover layer 21, the touch layer 22, the polarizing layer 23 and the encapsulation layer 24 can pass through the pixel layer 25 through the gap.
  • the display screen 20 also has the light-passing hole 200, wherein the light-passing hole 200 passes through the touch layer 22, the polarizing layer 23, the encapsulation layer 24, and the pixel layer 25 And the driving circuit layer 26.
  • the light through hole 200 may pass through the cover layer 21 or not through the cover layer 21.
  • the cover layer 21 is generally made of a material with good light transmittance, such as glass, so the cover layer 21 does not need to be punched to allow light to pass through efficiently.
  • cover layer 21 is located above the display screen 20. If the cover layer 21 is a complete structure, the cover layer 21 located above each layer of the display screen 20 can be Other layers play a protective role, such as contaminants such as moisture or dust entering other layers of the display screen 20. In this example, preferably, the light through hole 200 does not pass through the cover layer 21.
  • the camera module 30 can be installed below the display screen 20 and receives sufficient light from above the display screen 20 through the light-passing hole 200.
  • the camera module 30 is fixedly installed on the display screen 20, and the size of the light-passing hole 200 of the display screen 20 can be designed to be small.
  • the display screen 20 is implemented as an OLED (Organic Light-emitting Diode) display screen 20.
  • OLED Organic Light-emitting Diode
  • the OLED display screen 20 has the advantages of self-luminescence, wide viewing angle, high contrast, low power consumption, high response speed, and full color.
  • the cover layer 21 is usually implemented as a glass layer, which is located on the top layer of the display screen 20, and is used to protect the layers below the cover layer 21. It should be understood that the glass layer is made of glass.
  • the glass material is a material with high light transmittance.
  • the touch layer 22 is located below the cover layer 21, and usually the cover layer 21 and the touch layer 22 are connected by an adhesive. Those skilled in the art should know that the touch control layer 22 is an indispensable configuration for realizing that the display screen 20 has a touch function.
  • the polarizing layer 23 is located under the touch layer 22, and the polarizing layer 23 is usually implemented as circularly polarized light or the like.
  • the encapsulation layer 24 is located under the polarizing layer 23, and the function of the encapsulation layer 24 is to encapsulate the pixel layer 25 located under the encapsulation layer 24 so that the pixel layer 25 is in a sealed environment, Therefore, the organic material in the pixel layer 25 is not polluted by the outside or volatilized.
  • the encapsulation layer 24 there are two types of the encapsulation layer 24.
  • the encapsulation layer 24 is made of rigid light-permeable material, such as glass, plastic, etc.;
  • the encapsulation layer 24 is made of a flexible light-permeable material, for example, a PI film (Polyimide Film, polyimide film).
  • the pixel layer 25 is wrapped by the encapsulation layer 24 and is located under the encapsulation layer 24.
  • the pixel units in the pixel layer 25 are implemented as OLEDs, that is, Organic Light-emitting Diodes.
  • the driving circuit layer 26 is located under the pixel layer 25, wherein the driving circuit layer 26 can be electrically connected to the pixel layer 25 to drive the pixel layer 25 to work.
  • the backplane layer 27 is located under the driving circuit layer 26, wherein the backplane layer 27 can strengthen the structural strength of the entire display screen 20.
  • the backplane layer 27 is usually made of plastic material.
  • the driving circuit layer 26 is provided with a circuit structure, and the pixel layer 25 includes a plurality of pixels. Once the light through hole 200 destroys the circuit structure of the driving circuit layer 26 or the pixel structure of the pixel layer 25, It may affect the working performance of the OLED display 20.
  • each layer of the OLED display screen 20 is uniformly opened.
  • One is to perform layer-by-layer opening processing for each layer of the OLED display screen 20, and the other is to perform a layer-by-layer opening process for the OLED display screen 20, for example, the pixel layer 25 and/or the drive circuit layer. 26.
  • the opening treatment is carried out in advance, and then after other layers are installed to form the OLED display screen 20, the opening treatment is carried out uniformly.
  • the opening here not only refers to the actual small hole, but also refers to the area formed by the display screen 20 having a function similar to the hole.
  • the display screen 20 can be opened first, and then a transparent material can be filled in the opening position so that this area can have a light transmission function similar to a hole.
  • an opening may be reserved during the process of manufacturing the driving circuit layer 26 and the pixel layer 25 Area, the circuit structure of the driving circuit layer 26 and the pixels of the pixel layer 25 are not within the opening area, so as to reduce the impact of the light-passing hole 200 on the OLED display screen 20 after subsequent openings. The impact of work efficiency.
  • the pixel layer 25 is formed on the driving circuit layer 26 by evaporation.
  • the pixel layer 25 includes an anode layer 251, a light-emitting layer 252, a cathode layer 253, and a protective layer 254.
  • the anode layer 251 is located above the driving circuit layer 26, and the light-emitting layer 252 is located on the anode.
  • the cathode layer 253 is located above the light-emitting layer 252 and located below the protective layer 254.
  • the light through hole 200 penetrates the pixel layer 25. Specifically, the light through hole 200 penetrates through the pixel layer 25 and each layer of the display screen 20 in a direction perpendicular to each layer of the pixel layer 25, except for the cover plate of the display screen 20 Layer 21.
  • the pixel layer 25 may also include some other film layers, such as a planarization layer, a passivation layer, etc., which are not limited herein.
  • the light-passing hole 200 may be arranged in the display area of the display screen 20. Since the diameter of the light-passing hole 200 involved in the present invention is less than or equal to 3.99 mm, preferably less than or equal to 2 mm, Moreover, the light-passing hole 200 does not affect the normal display of the display screen 20, and the camera module 30 is installed at a predetermined position corresponding to the light-passing hole 200 under the display screen 20.
  • the preset position should be determined according to the diameter of the light hole 200 and the optical path parameters of the camera module 30, that is, the camera module 30 is set at the preset position and can pass through
  • the light-through hole 200 on the display screen 20 receives light and performs normal imaging. Since the light-through hole 200 is smaller in size than the existing light-through hole, the display area is enlarged, which is beneficial to the full screen. The production.
  • the shape of the light through hole 200 may be triangle, rectangle or circle.
  • the light through hole 200 is preferably a circle.
  • FIG. 4A it is illustrated a specific embodiment in which the OLED display screen 20 adopts a single-opening process to make holes in the entire OLED display screen 20.
  • the protective layer 254 of the pixel layer 25 may be removed by etching, or directly punching, to form a groove, wherein the groove
  • the inside may be filled with at least part of the marking substance, and the marking substance may be used to indicate the opening area.
  • the marker substance may be a transparent material, and the position of the marker substance can be determined based on the difference in light transmittance of the marker substance and surrounding materials.
  • the other layers of the OLED display screen 20 are mounted on the driving circuit layer 26 or the pixel layer 25 to obtain the complete OLED display screen 20.
  • the opening area can be determined from above the OLED display screen 20, and then the OLED display screen 20 can be processed for opening.
  • the range of the light-through hole 200 may be larger than the size of the area occupied by the marking substance, so that the marking substance can be completely removed after the hole-opening is completed.
  • the method of using the marker substance to locate the open area is only an example. It should be understood by those skilled in the art that the method of opening the OLED display screen 20 and bypassing the circuit structure of the driving circuit layer 26 and/or the pixel structure of the pixel layer 25 is not limited to the above For example.
  • the OLED display screen 20 adopts a processing method of multiple openings to make holes in the entire OLED display screen 20.
  • the driving circuit layer 26 and the pixel layer 25 are subjected to opening processing, and then the other layers of the OLED display screen 20 are subjected to opening processing to obtain the light-through hole 200.
  • the display screen 20 firstly, the driving circuit layer 26 and the pixel layer 25 are subjected to opening processing, and then the other layers of the OLED display screen 20 are subjected to opening processing to obtain the light-through hole 200.
  • the display screen 20 firstly, the driving circuit layer 26 and the pixel layer 25 are subjected to opening processing, and then the other layers of the OLED display screen 20 are subjected to opening processing to obtain the light-through hole 200.
  • the area enclosed by the dashed frame is the position of the light-passing hole 200, and the light-passing hole 200 penetrates the display screen 20 in a direction perpendicular to the pixel layer 25 and the driving circuit layer 26.
  • the structure of the pixel layer 25 in the figure is only for illustration, each functional layer can be set as required, and the specific penetration position of the light through hole 200 can be set as required, and It is not limited to the position shown in the figure.
  • the driving circuit layer 26 includes a plurality of TFT structures 261 and a base substrate 262, wherein the TFT structures 261 are sequentially disposed on the base substrate 262 to form a TFT array.
  • the base substrate 262 is located under the TFT structure 261, and the TFT structure 261 is located under the pixel layer 25.
  • the light through hole 200 penetrates from the pixel layer 25 to the base substrate 262 of the driving circuit layer 26.
  • the pixel layer 25 further includes a planarization layer 255 and a pixel definition layer 256, wherein the planarization layer 255 is located between the TFT structure 261 and the anode layer 251, and the pixel definition layer 256 is located on the Between the anode layer 251 and the light emitting layer 252.
  • the pixel definition layer 256 has at least one pixel groove 2560, wherein at least part of the light-emitting layer 252 and at least part of the anode layer 251 are formed in the pixel groove 2560 so that the pixel definition layer 256 can be used to define The pixels 257.
  • the light through hole 200 is formed between the two TFT structures 261, thereby reducing the circuit impact on the driving circuit layer 26, and the light through hole 200 is covered with at least a part of the
  • the protective layer 254 prevents the anode layer 251, the light-emitting layer 252, and the cathode layer 253 from being exposed to the outside in the vicinity of the light-passing hole 200, so as to reduce external influence on the anode layer 251 and the light-emitting layer.
  • the influence caused by the layer 252 and the cathode layer 253, such as air and moisture, or dust and other substances.
  • the formation of the light-passing hole 200 may be to design a small hole in advance during the process of manufacturing the driving circuit layer 26, and the position of the small hole may be as far away as possible from the TFT structure 261 to avoid damage to the driver.
  • the method of forming the small holes in the driving circuit layer 26 may be directly laser drilling or etching.
  • the driving circuit layer 26 is formed in the pixel layer 25. At this time, the small holes in the driving circuit layer 26 are covered, and then can be aligned Opening the driving circuit layer 26 and the pixel layer 25 at the position of the small hole of the driving circuit layer 26 so that the driving circuit layer 26 and the pixel layer 25 are penetrated.
  • the encapsulation layer 24 is installed on the driving circuit layer 26 and the pixel layer 25, and the encapsulation layer 24 can be aligned with the driving circuit layer 26 and the pixel layer 25 and punched in the encapsulation layer 24.
  • the polarizing layer 23 the touch layer 22, the cover layer 21 and the back plate layer 27 to the driving circuit layer 26 and the pixel layer 25, and the polarizing layer 23.
  • the touch layer 22 and the backplane layer 27 are perforated layer by layer to obtain the display screen 20 with the light through hole 200.
  • the small holes in the driving circuit layer 26 are covered by the pixel layer 25, and then the packaging layer 24, the polarizing layer 23, and the touch control
  • the layer 22, the cover layer 21 and the back plate layer 27, after obtaining the complete display screen 20, are aligned with the small holes and punched in the thickness direction of the display screen 20 to obtain penetration The light-through hole 200 of the display screen 20.
  • each layer of the display screen 20 may be installed first to obtain a complete display screen 20, and then the layers except the cover layer 21 may be punched in a unified manner. It is also possible to first install each layer of the display screen 20 except for the cover layer 21, then punch holes, and finally install the cover layer 21 to obtain the complete display screen 20. .
  • the formation of the light-through hole 200 may be to design a small hole in advance in the process of manufacturing the driving circuit layer 26, and the position of the small hole
  • the TFT structure 261 can be as far away as possible to avoid damaging the structure of the driving circuit layer 26, and then the pixel layer 25 is formed on the basis of the driving circuit layer 26.
  • the pixel layer 25 may be aligned with the driving circuit layer 26 for drilling, and then the encapsulation layer 24, the polarization layer 23, the touch layer 22, the cover layer 21 and the
  • the back plate layer 27, after obtaining the complete display screen 20, is aligned with the small holes and punched in the thickness direction of the display screen 20, so as to obtain penetrating through the display screen 20 except for the cover plate.
  • each layer of the display screen 20 may be installed first to obtain a complete display screen 20, and then the layers except the cover layer 21 may be punched in a unified manner. It is also possible to first install each layer of the display screen 20 except for the cover layer 21, then punch holes, and finally install the cover layer 21 to obtain the complete display screen 20. .
  • FIG. 5A and FIG. 5B it is a specific embodiment in which the OLED display screen 20 adopts a processing method of multiple openings to make holes in the entire OLED display screen 20.
  • the driving circuit layer 26 and the pixel layer 25 are obtained first, and then the driving circuit layer 26 and the pixel layer 25 are simultaneously processed for opening.
  • the anode layer 251, the light-emitting layer 252, and the cathode layer 253 of the pixel layer 25 are formed on the driving circuit layer 26, and then at least part of the cathode layer is removed by etching. 253 to form an open area in the cathode layer 253.
  • At least part of the pixel layer 25 is exposed to the outside through the opening area. Specifically, at least a part of the pixel definition layer 256 of the pixel layer 25 is exposed to the outside through the opening area.
  • the projection of the opening area in the vertical direction of the pixel layer 25 and the driving circuit layer 26 is located between the adjacent TFT structures 261, so as to reduce the circuit for the display screen 20 as much as possible. Impact.
  • the protective layer 254 After forming the open area, continue to form the protective layer 254 on the cathode layer 253 and at least part of the pixel definition layer 256, wherein the protective material of the protective layer 254 fills the open area and The area around the opening area is also filled with the protective material of the protective layer 254.
  • the light-passing hole 200 is formed in the opening area by drilling or cutting.
  • the specific hole-opening method may be to use a mask with a central opening, and then etch the layers corresponding to the hole-opening area, and cover other parts.
  • what needs to be removed before forming the protective layer 254 is at least part of the cathode layer 253.
  • what needs to be removed before forming the protective layer 254 is the At least part of the cathode layer 253 and at least part of the light-emitting layer 252.
  • it can be removed by dry etching.
  • the dry etching process can be completed by plasma-enhanced chemical vapor deposition and etching equipment, or by inductively coupled plasma etching equipment.
  • the other etching can be some oxygen-containing gas, which can react with the organic matter in the light-emitting layer 252 or the cathode layer 253, such as oxygen, nitrous oxide, or carbon dioxide; or, the etching gas For simultaneous use of oxygen-containing gas and inert gas nitrogen.
  • the size of the aperture area and the aperture 200 may be different.
  • the aperture area is larger than the aperture 200, the aperture 200 is located within the aperture area.
  • the cathode layer 253 located around the light hole 200 can be protected by the protective layer 254 so as not to be exposed.
  • the cathode layer 253 around the aperture 200 will be exposed.
  • the light through hole 200 can penetrate through the driving circuit layer 26 and the pixel layer 25.
  • the encapsulation layer 24, the polarization layer 23, the touch layer 22, and the cover layer 21 can be installed with the pixel layer 25 and the driving circuit layer 26 in a certain order. After the encapsulation layer 24, the polarizing layer 23, the touch layer 22, and the cover layer 21 are fixedly installed on the pixel layer 25 and the driving circuit layer 26, respectively, then drilling or It is cut so that the light-passing hole 200 penetrates through all other layers of the display screen 20 except for the cover layer 21.
  • the backplane layer 27 is mounted on the drive circuit layer 26, and the light-passing hole 200 penetrates the display screen 20 in the height direction. ⁇ 27 ⁇ Backplane layer 27.
  • the encapsulation layer 24, the polarizing layer 23, the touch layer 22, and the back plate layer 27 can be fixedly mounted on the driving circuit layer 26 and the pixel layer 25, respectively. After that, the punching process is performed. In other words, when the packaging layer 24 is mounted on the pixel layer 25, the packaging layer 24 can be aligned with the pixel layer 25 to make holes. After the polarizing layer 23 is installed on the encapsulation layer 24, the polarizing layer 23 can be opened. After the touch control layer 22 is installed on the polarizing layer 23, the touch control layer 22 can be opened. After the backplane layer 27 is installed on the driving circuit layer 26, the backplane layer 27 can be opened.
  • the opening timing of the display screen 20 other than the driving circuit layer 26 and the pixel layer 25 is not limited to the above-mentioned examples.
  • the encapsulation layer 24, the polarizing layer 23, and the touch layer 22 are located on the same side of the pixel layer 25, and can be processed simultaneously.
  • the backplane layer 27 is located on the other side of the pixel layer 25, and can be processed separately or together with the encapsulation layer 24, the polarizing layer 23, and the touch layer 22. .
  • the other layers of the display screen 20 can be drilled or cut layer by layer, and then adjusted by adjusting the The relative positions are such that the small holes located in each layer are aligned so as to be able to penetrate each other.
  • the inner diameter of the portion of the light-passing hole 200 corresponding to each layer of the display screen 20 may be different.
  • the inner diameter of the portion of the light-passing hole 200 corresponding to the touch layer 22 located above may be larger than the inner diameter of the portion of the light-passing hole 200 corresponding to the backplane layer 27 located below.
  • Each of the small holes corresponding to each layer of the display screen 20 may be made independently, so that the inner diameter of the finally formed light-passing hole 200 corresponding to each layer may be different.
  • the small holes of the driving circuit layer 26 may be cylindrical, that is, the small holes are The inner diameters of the driving circuit layer 26 at different height positions are the same.
  • the small holes of the drive circuit layer 26 may also be conical, that is, the inner diameters of the small holes at different height positions of the drive circuit layer 26 are different, for example, the small holes from top to bottom The inner diameter gradually decreases.
  • a protective material 2812 is provided near the position of the light through hole 200 of the display screen 20.
  • the pixel layer 25 and the driving circuit layer 26 correspond to the position of the light-passing hole 200 nearby.
  • the protective material 2812 can be made of the same material as the protective layer 254 of the pixel layer 25, or can be made of a different material from the protective layer 254 of the pixel layer 25.
  • the protective material 2812 is located near the position of the light-passing hole 200 and can protect the internal structure of each layer of the display screen 20 that is exposed. Especially for the pixel layer 25 and the driving circuit layer 26. The internal structures of the pixel layer 25 and the driving circuit layer 26 are exposed in the light-passing hole 200. When dust, moisture or air enters the light-passing hole 200, it may cause damage to the pixel layer. 25 and the driving circuit layer 26 cause damage.
  • the protective material 2812 can cover the exposed portions of the pixel layer 25 and the driving circuit layer 26 at the position of the light-passing hole 200, thereby protecting the pixel layer 25 and the driving circuit layer 26, so that The pixel layer 25 and the driving circuit layer 26 can be in a relatively stable working environment.
  • the protective material 2812 can be poured into the light-passing hole 200 of the display screen 20, and then the protective material 2812 can be opened. It is processed to form a new light-passing hole 200.
  • the protective material 2812 can cover each layer of the display screen 20.
  • the filling height of the protective material 2812 in the light-passing hole 200 can be controlled according to the needs of users, so as to select the covering position of the protective material 2812.
  • the protective material 2812 may not completely fill the light-passing hole 200. For example, the position of the backplane layer 27 corresponding to the light-passing hole 200 may not be protected by the protective material.
  • the cover layer 21 is not perforated.
  • the cover layer 21 is generally made of glass and has good light transmission performance. Therefore, the cover The plate layer 21 may not be subjected to hole opening treatment, and the cover plate layer 21 may also be located above to protect other layers of the display screen 20.
  • the original light-passing hole 200 can be made larger in advance, and then the protective material 2812 is cut or drilled to control the light-passing hole 200 to make the light-passing hole 200 Reach the expected size.
  • the protective material 2812 around the light-passing hole 200 may be the same as the material of the protective layer 254, or may be different from the material of the holding layer.
  • FIG. 6B a specific manufacturing method of the display screen 20 is illustrated.
  • the protective material 2812 is a transparent material.
  • the corresponding position of the light-passing hole 200 of the display screen 20 is filled with the transparent material.
  • the touch layer 22, the polarizing layer 23, the encapsulation layer 24, the pixel layer 25, the driving circuit layer 26, and the backplane layer 27 may be subjected to hole-opening processing respectively. Then, the protective material 2812 is filled at the opening position.
  • the touch layer 22, the polarizing layer 23, the encapsulation layer 24, the pixel layer 25, the driving circuit layer 26, and the backplane layer 27 are aligned and mounted together to form the display ⁇ 20.
  • the display screen 20 can be used as a display screen with "holes".
  • the transparent material corresponding to the touch layer 22, the polarizing layer 23, the encapsulation layer 24, the pixel layer 25, the driving circuit layer 26, and the backplane layer 27 can function as holes.
  • the touch layer 22, the polarizing layer 23, the encapsulation layer 24, the pixel layer 25, the driving circuit layer 26, and the backplane layer 27 can be processed simultaneously, and A part of the protective material 2812 is left around the light through hole 200.
  • the cover layer 21 is then installed to obtain the display screen 20 shown in FIG. 6A.
  • FIG. 7 another specific embodiment of the display screen 20 according to the present invention is illustrated.
  • the protective material 2812 is formed around the light-passing hole 200 of the display screen 20.
  • the protective material 2812 can protect the key layers around the light through hole 200, such as the cathode layer 253, the pixel definition layer 256, the TFT structure 261, and so on.
  • the position of the protective material 2812 around the light through hole 200 can be set as required.
  • the diameter of the light-passing hole 200 may be slightly larger than a desired design value, and then the protective material 2812 is filled into the light-passing hole 200 After the entire light-passing hole 200 is filled, the position of the light-passing hole 200 is cut to obtain the light-passing hole 200 of a desired size as required.
  • the driver circuit layer 26 and the pixel layer 25 in the display screen 20 may be separately protected.
  • the drive circuit layer 26 is first obtained, and the drive circuit layer 26 can be obtained through steps such as film formation on a substrate, photoresist coating, exposure, development, etching, and peeling.
  • a small hole penetrating in the height direction can be prepared in the driving circuit layer 26 by etching or drilling.
  • the small hole is formed between the adjacent TFT structures 261 of the driving circuit layer 26.
  • the pixel layer 25 is formed on the driving circuit layer 26, and the small holes are filled in this process.
  • the material corresponding to the positions of the small holes of the pixel layer 25 and the driving circuit layer 26 may be removed to obtain the light through hole 200.
  • the protective material 2812 is filled toward the light-passing hole 200 corresponding to the pixel layer 25 and the driving circuit layer 26, and then the protective material 2812 in the light-passing hole 200 is opened to re-open A hole slightly smaller than the original light-through hole 200 is obtained.
  • the portions of the pixel layer 25 and the driving circuit layer 26 exposed in the light through hole 200 may be coated by the protective material 2812, so as to be protected by the protective material 2812.
  • the other layers of the display screen 20 are mounted on the driving circuit layer 26 and the pixel layer 25.
  • FIG. 8 and referring to FIG. 2 to FIG. 5B, another specific embodiment of the display screen 20 according to the present invention is illustrated.
  • At least part of the protective material 2812 is filled around the light-passing hole 200 of the display screen 20 corresponding to the pixel layer 25.
  • the manufacturing method of the display screen 20 may include the following steps: sequentially forming the TFT structure 261, the anode layer 251, the light emitting layer 252, and the cathode layer 253 on the base substrate 262, and further After forming the TFT structure 261 on the base substrate 262 and before the anode layer 251, the planarization layer 255 is formed, and at least part of the planarization layer 255 in the thickness direction is removed and formed by a patterning process.
  • the light through hole 200 is formed through the driving circuit layer 26 and the planarization layer 255, and then the anode layer 251, the pixel definition layer 256, and the cathode layer are formed on the planarization layer 255. 253.
  • An etching process is used to remove at least part of the light-emitting layer 252 and the cathode layer 253 corresponding to the open area in the thickness direction. Specifically, an etching process may be used to remove at least part of the pixel definition layer 256, the light emitting layer 252, and the cathode layer 253 corresponding to the open area, so that at least part of the planarization layer 255 Be exposed.
  • a protective material 2812 is used to encapsulate the pixel layer 25, at least a part of the planarization layer 255 is covered by the protective material 2812, and then the light-passing hole 200 is formed in the opening area by cutting or drilling. Therefore, the planarization layer 255 and the pixel definition layer 256 at the edge of the light-passing hole 200 can be covered by the protective material 2812.
  • the pixel layer 25 and the driving circuit layer 26 corresponding to the edge of the light through hole 200 can be selectively covered with a protective material 2812 according to requirements.
  • the protective material 2812 can not only protect the pixel layer 25, but also can control the size of the light through hole 200 by controlling the thickness of the protective material 2812 in the radial direction.
  • the position of the light-passing hole 200 may be set in advance, and is preferably arranged between adjacent TFT structures 261 or between adjacent pixels to avoid setting the light-passing hole 200
  • the hole 200 affects the performance of the entire display screen 20 at the same time.
  • the pixel layer 25 and the driving circuit layer 26 with the light-passing hole 200 may continue to be installed on the basis of requirements.
  • the encapsulation layer 24, the polarizing layer 23, the touch layer 22, and the back plate layer 27 may be made with holes in advance, or they may be installed on the pixel layer 25 and the drive circuit layer 26 The holes are then drilled, or they may be uniformly drilled after the entire display screen 20 is installed.
  • cover layer 21 is not perforated. After the layers of the display screen 20 are installed together, the display screen 20 can be viewed from the back plate layer 27 side. Each layer of the display screen 20 except for the cover layer 21 is uniformly opened.
  • the cover layer 21 may be partially perforated. Specifically, at least a portion of the cover layer 21 in the thickness direction may be opened, for example, on the side of the back plate layer 27 from the display screen 20 for the display screen 20.
  • the back plate layer 27 is subjected to a hole-opening process toward the cover plate layer 21, at least part of the cover plate layer 21 in the thickness direction may also be removed.
  • the cover layer 21 still completely covers the touch layer 22. The cover layer 21 can still protect the other layers of the display screen 20.
  • FIG. 9 a specific embodiment of the display screen 20 with the camera module 30 according to the present invention is illustrated.
  • the camera module 30 is fixedly installed on the display screen 20, and the camera module 30 is aligned with the light through hole 200.
  • the display screen 20 has an installation channel 201, and at least part of the camera module 30 can be accommodated in the installation channel 201.
  • the display screen 20 with the backplane layer 27 Take the display screen 20 with the backplane layer 27 as an example for description.
  • the mounting channel 201 is formed on the backplane layer 27.
  • the mounting channel 201 is located at the position of the light-through hole 200, the mounting channel 201 is connected to the light-through hole 200, and the mounting channel 201 and the light-through hole 200 are located in the height direction of the display screen 20 .
  • the inner diameter of the mounting channel 201 is larger than the inner diameter of other positions of the light-passing hole 200.
  • the cross-sectional size of the light-passing hole 200 of the display screen 20 is not constant.
  • the overall height of the camera module 30 and the display screen 20 can be reduced, which is beneficial to reduce the The height dimension of the mobile terminal.
  • the mounting channel 201 is slightly larger than the camera module 30, and the part of the mounting channel 201 that is not filled by the camera module 30 can be filled with glue so that the camera module 30 can be more firmly fixed to the camera module 30. ⁇ display 20.
  • the side surface of the camera module 30 may be adhered to the backplane layer 27 by glue, so that the camera module 30 is fixed and held in the mounting channel 201.
  • the top surface of the camera module 30 can also be fixed to a back surface of the driving circuit layer 26 by adhesives such as glue, so that the camera module 30 can be firmly held in the mounting channel 201.
  • At least part of the camera module 30 extends into the light-passing hole 200 of the display screen 20.
  • the size of the light-passing hole 200 corresponding to each layer of the display screen 20 can be relative to the depth of the camera module 30 entering the light-passing hole 200 Take control.
  • the camera module 30 is accommodated in the portion of the light-passing hole 200 corresponding to the backplane layer 27, and each layer above the backplane layer 27, such as the drive circuit layer 26.
  • the portion of the light-passing hole 200 corresponding to the pixel layer 25 may be smaller than the portion of the light-passing hole 200 corresponding to the backplane layer 27, so that when viewed from the front side of the display screen 20, the The light through hole 200 occupies a relatively small area of the display screen 20.
  • the front side of the display screen 20 refers to the side facing the user during normal use.
  • the front end portion of the camera module 30 may extend to the driving circuit layer 26, or even a portion of the light-passing hole 200 corresponding to the pixel layer 25.
  • the size of the light-passing hole 200 corresponding to each layer the depth of the camera module 30 extending into the display screen 20 can be controlled, so that by designing the light-passing hole 200 to correspond to the display screen
  • the size of each layer 20 controls the overall size of the camera module 30 and the display screen 20, especially the height size of the camera module 30 and the display screen 20.
  • FIG. 10 a display screen 20A with a light-through hole 200A according to a preferred embodiment of the present invention is illustrated.
  • the display screen 20A is implemented as an LCD display screen 20A.
  • the display screen 20A includes: a cover layer 21A, a touch layer 22A, a polarization layer 23A, an encapsulation layer 24A, a pixel layer 25A, a driving circuit layer 26A, and a backplane layer 27A, wherein the driving circuit layer 26A is formed on the
  • the bottom side of the pixel layer 25A is electrically connected to the pixel layer 25A for driving the pixel layer 25A to work;
  • the encapsulation layer 24A is formed on the top side of the pixel layer 25A and is used for encapsulating the pixel layer 25A;
  • the pixel layer 25A includes pixels distributed in an array, and each of the pixels has a gap for sequentially passing through the cover layer 21A, the touch layer 22A, the polarizing layer 23A and The light from the encapsulation layer 24A can pass through the pixel layer 25A through the gap.
  • the liquid crystals of the pixel layer 25A exhibit an orderly arrangement when energized.
  • the display screen 20A also has the light-passing hole 200A, wherein the light-passing hole 200A passes through the touch layer 22A, the polarization layer 23A, the encapsulation layer 24A, and the pixel layer 25A. And the driving circuit layer 26A.
  • the polarizing layer 23A may be located on both sides of the pixel layer 25A, respectively, and be implemented as a first polarizer and a second polarizer.
  • the pixel layer 25A includes a filter layer 251A (CF) and liquid crystal 252A, and the liquid crystal 252A is located between the filter layer 251A and the driving circuit layer 26A.
  • the driving circuit layer 26A may include a plurality of TFT structures and the base substrate, and the TFT structure is formed on the base substrate through steps such as thin film, yellow light, etching, and film stripping. .
  • the light-passing hole 200A is formed on each layer of the display screen 20A except the cover layer 21A, and penetrates through the display screen 20A except the cover layer in the height direction of the display screen 20A. Each layer between 21A.
  • Light from above the display screen 20A or outside the display screen 20A can pass through the light-passing hole 200A to be located below the display screen 20A or the camera module 30 inside the display screen 20A receive.
  • a sealing material is provided around the light-passing hole 200A, so that the liquid crystal 252A cannot flow into the light-passing hole 200A, thereby avoiding the performance of the camera module 30 or the display performance of the display screen 20A. Make an impact.
  • the LCD display screen 20A includes a liquid crystal layer 28A, wherein the liquid crystal layer 28A includes the liquid crystal 252A, the filter layer 251A, and the driving circuit layer 26A.
  • the LCD display screen 20A There are three main methods for manufacturing the LCD display screen 20A with the light-passing hole 200A. One is that after the layers of the LCD display screen 20A are assembled together, the LCD screen 20A is The second step is to make separate holes for the liquid crystal layer 28A of the LCD display screen 20A, and then install the other layers of the LCD display screen 20A on the liquid crystal layer 28A, and then for the LCD The other layers of the display screen 20A are uniformly opened. The third is to separately open the liquid crystal layer 28A of the LCD display screen 20A, and then install the other layers of the LCD display screen 20A on the liquid crystal layer by layer. Layer 28A, and open holes layer by layer for each layer of the LCD display screen 20A.
  • FIG. 11 a specific manufacturing method of the LCD display screen 20A with the light through hole 200A according to the present invention is illustrated.
  • the LCD display screen 20A with the light through hole 200A can be obtained through a single opening.
  • a sealing area 281A is formed between the driving circuit layer 26A of the liquid crystal layer 28A and the filter layer 251A, wherein the sealing area 281A can be Surrounded by a sealing material 2811A.
  • the liquid crystal 252A of the liquid crystal layer 28A is mainly disposed outside the sealing area 281A.
  • the layers of the LCD display screen 20A are assembled into a complete LCD display screen 20A. Based on the sealing area 281A, the LCD display screen 20A is opened.
  • the LCD display screen 20A has an opening area 282A, wherein the opening area 282A overlaps the sealing area 281A and is not larger than the sealing area 281A. After opening the LCD display screen 20A, at least part of the sealing area 281A is removed, and the liquid crystal 252A located between the sealing areas 281A cannot pass through due to the blocking effect of the sealing material 2811A The sealing material 2811A prevents the liquid crystal 252A from overflowing to the position of the light-passing hole 200A.
  • the LCD display screen 20A can obtain the light-passing hole 200A through a single opening operation.
  • the sealing material 2811A may be disposed at a predetermined position of the driving circuit layer 26A of the liquid crystal layer 28A to form the sealing area 281A, and the shape of the sealing area 281A may be a circle. , Triangle or rectangle. Then, the liquid crystal 252A is filled in a position outside the sealing area 281A of the driving circuit layer 26A.
  • the filter layer 251A can be installed on the driving circuit layer 26A.
  • the liquid crystal 252A is located between the driving circuit layer 26A and the filter layer 251A, and is limited to a fixed area.
  • the opening area 282A is smaller than the sealing area 281A, and at least part of the sealing material 2811A can be held on the driving circuit layer 26A and the filter layer 251A In between, the liquid crystal 252A will not overflow at the position of the sealing material 2811A.
  • the liquid crystal 252A can still be confined in the original fixed area.
  • the opening process for the liquid crystal layer 28A can be completed on the premise that the liquid crystal 252A of the liquid crystal layer 28A does not overflow.
  • the hole can be directly processed, for example, When the sealed area 281A can be observed outside the display screen 20A.
  • sealing material 2811A is an opaque material and the position of the sealing area 281A cannot be determined outside the display screen 20A, then a mark can be set in the sealing area 281A so that the outside of the display screen 20A can be Determine the location of the sealing area 281A.
  • the position of the sealing material 2811A can be set to avoid the circuit portion corresponding to the driving circuit layer 26A in the height direction to reduce the influence on the circuit of the driving circuit layer 26A.
  • FIG. 12 a specific manufacturing method of the LCD display screen 20A with the light through hole 200A according to the present invention is illustrated.
  • the liquid crystal layer 28A is opened first, and then the other layers of the display screen 20A are opened.
  • a sealing area 281A is provided in a predetermined area of the driving circuit layer 26A to prevent the liquid crystal 252A outside the sealing area 281A from flowing into the sealing area 281A during the subsequent filling of the liquid crystal 252A.
  • the driving circuit layer 26A can be opened along an opening area 282A.
  • the opening area 282A is located within the sealing area 281A.
  • the driving circuit layer 26A and the filter layer 251A may be simultaneously opened along the opening region 282A.
  • the order of opening the liquid crystal layer 28A may be that the driving circuit layer 26A is opened first, and then the filter layer 251A is opened.
  • the driving circuit layer 26A within the sealing area 281A is opened, and then liquid crystal 252A is filled in the predetermined area of the driving circuit layer 26A, and then the The filter layer 251A is mounted on the driving circuit layer 26A, and then the filter layer 251A is subjected to hole processing.
  • the area outside the sealing area 281A of the driving circuit layer 26A needs to be filled with liquid crystal 252A to make The display screen 20A described in the above can work normally.
  • an opening treatment may be performed on an opening area 282A of the driving circuit layer 26A, and then a sealing material 2811A is disposed around the opening area 282A to form the seal Area 281A.
  • the liquid crystal 252A is filled outside the sealing area 281A and cannot flow into the sealing area 281A through the sealing material 2811A under the obstruction of the sealing material 2811A. In other words, the liquid crystal 252A cannot flow to the position of the light-passing hole 200A after the hole is opened, so as to help ensure the lighting effect of the light-passing hole 200A in the subsequent steps.
  • the filter layer 251A is mounted on the driving circuit layer 26A, and is aligned with the opening area 282A of the driving circuit layer 26A for opening. At this time, the liquid crystal 252A between the filter layer 251A and the driving circuit layer 26A is still kept outside the sealing area 281A, and will not flow to the position of the light through hole 200A.
  • the other layers of the display screen 20A such as the encapsulation layer 24A, the polarizing layer 23A, the touch layer 22A, and the cover layer 21A, can be respectively mounted on the liquid crystal display in a certain order.
  • Layer 28A the opening treatment can be performed on each layer layer by layer, or after the other layers are installed, the opening treatment can be performed on each layer at the same time.
  • the cover layer 21A of the display screen 20A is not subjected to hole-opening processing, and the way to obtain the display screen 20A with the light-through hole 200A may be to first The layers of the display screen 20A are installed to obtain a complete display screen 20A, and then all layers except for the cover layer 21A are punched in a unified manner. It is also possible to first install each layer of the display screen 20A except for the cover layer 21A, then drill holes, and finally install the cover layer 21A to obtain the complete display screen 20A. .
  • the cover layer 21A of the display screen 20A can also be opened, and then the cover layer 21A is filled with a transparent material, so that contaminants such as dust or moisture can pass through the bottom layer.
  • the portion of the light-passing hole 200A corresponding to the outer cover layer 21A enters the other layers of the display screen 20A.
  • the opening area 282A can be positioned in various ways to facilitate subsequent The accurate opening.
  • the opening area 282A can be located by mechanical identification, and then the other layers can be opened in the same position based on this data.
  • sealing material 2811A for separating the light-passing hole 200A and the liquid crystal 252A may be disposed on the driving circuit layer 26A, or may be disposed on the filter layer 251A, or They are respectively provided on the drive circuit layer 26A and the filter layer 251A.
  • the sealing material 2811A is provided on the filter layer 251A, and after the driving circuit layer 26A is filled with the liquid crystal 252A, the sealing material 2811A will be provided
  • the filter layer 251A covers the driving circuit layer 26A, and the sealing material 2811A separates the liquid crystal 252A within the sealing area 281A and outside the sealing area 281A.
  • the sealing material 2811A provided on the filter layer 251A is in close contact with the driving circuit layer 26A, and the liquid crystal 252A located outside the sealing area 281A cannot pass the sealing material 2811A to the sealing Within area 281A.
  • the driving circuit layer 26A and the filter layer 251A are opened in the sealing area 281A to obtain the light-passing hole 200A that penetrates the driving circuit layer 26A and the filter layer 251A. .
  • the order of opening the liquid crystal layer 28A may be to first perform the opening treatment on the filter layer 251A, and then perform the opening treatment on the driving circuit layer 26A.
  • an opening area 282A of the filter layer 251A can be opened first, and then a sealing material 2811A is disposed around the opening area 282A to form the sealing area 281A.
  • the liquid crystal 252A is filled outside the sealing area 281A and cannot flow into the sealing area 281A through the sealing material 2811A under the obstruction of the sealing material 2811A.
  • the liquid crystal 252A cannot flow to the position of the light-passing hole 200A, so as to help ensure the lighting effect of the light-passing hole 200A in the subsequent steps.
  • the filter layer 251A is opened, the filter layer 251A is mounted on the driving circuit layer 26A, and the sealing material 2811A provided on the filter layer 251A is closely attached to the driving circuit Layer 26A, the sealing material 2811A forms the sealing area 281A.
  • the opening area 282A aligned with the filter layer 251A is subjected to opening processing on the driving circuit layer 26A.
  • the liquid crystal 252A located in the sealing area 281A can flow to the outside.
  • other layers of the display screen 20A such as the encapsulation layer 24A, the polarization layer 23A, the touch layer 22A, and the backplane layer 27A, can be applied to the entire display screen after installing 20A is subjected to a hole-opening process, so that the light-passing hole 200A of the filter layer 251A penetrates through the entire other layers of the display screen 20A except for the cover layer 21A.
  • the holes that have been aligned and installed are processed.
  • the polarizing layer 23A and the touch layer 22A are installed, so that the light-passing hole 200A of the filter layer 251A penetrates the entire display screen 20A except for the cover layer 21A Other layers. Then the cover layer 21A is installed to obtain the complete display screen 20A.
  • the opening sequence of the liquid crystal layer 28A may be to simultaneously perform the opening processing on the filter layer 251A and the driving circuit layer 26A.
  • the sealing material 2811A is disposed between the filter layer 251A and the driving circuit layer 26A.
  • the sealing material 2811A may be provided on the filter layer 251A or the driving circuit layer 26A, or the filter layer 251A and the driving circuit layer 26A.
  • the opening area 282A is formed in the sealing area 281A. After the liquid crystal layer 28A is processed for opening, at least part of the sealing material 2811A remains between the filter layer 251A and the driving circuit layer 26A to avoid the filter layer 251A and the driving circuit layer The liquid crystal 252A between 26A flows out.
  • the process of opening the liquid crystal layer 28A can be as follows: firstly, the sealing material 2811A is disposed on the driving circuit layer 26A, and then the liquid crystal 252A material is filled on the driving circuit layer 26A.
  • the liquid crystal 252A material is located outside the sealing area 281A formed by the sealing material 2811A.
  • the sealing material 2811A may be transparent or have a high light transmittance, which is beneficial to the propagation of light at the position of the light-through hole 200A corresponding to the liquid crystal layer 28A.
  • the sealing material 2811A may also be a light-shielding material to reduce the influence of stray light near the position of the light-passing hole 200A corresponding to the liquid crystal layer 28A on the light-passing effect of the light-passing hole 200A.
  • the type of the sealing material 2811A can be optionally set according to requirements.
  • the filter layer 251A is mounted on the driving circuit layer 26A.
  • the sealing area 281A is formed between the sealing material 2811A, the driving circuit layer 26A, and the filter layer 251A.
  • the liquid crystal 252A outside the sealing area 281A cannot flow into the sealing area 281A.
  • the liquid crystal layer 28A may be subjected to a hole treatment, or it may be installed in the entire display screen 20A. After the completion, aligning with the sealing area 281A to perform hole processing on the entire display screen 20A.
  • the hole sequence of other layers of the display screen 20A can be selected according to requirements.
  • the encapsulation layer 24A may be installed on the liquid crystal layer 28A, and then the encapsulation layer 24A is aligned with the liquid crystal layer 28A to perform hole processing on the encapsulation layer 24A.
  • the touch layer 22A is installed on the encapsulation layer 24A, and then the liquid crystal layer 28A and the encapsulation layer 24A are aligned with the encapsulation layer 24A to perform hole processing on the touch layer 22A.
  • the layers of the display screen 20A can also be drilled in advance, and then aligned and installed on the liquid crystal layer 28A.
  • the polarizing layer 23A is made of opaque material, and the cover layer 21A and the touch control layer 22A can be made of transparent material.
  • the opaque material prevents the sealing area 281A of the liquid crystal layer 28A from being viewed from the outside of the display screen 20A, which is not conducive to aligning with the sealing area 281A for opening holes.
  • the polarizing layer 23A is subjected to opening treatment, and then the cover layer 21A is subjected to opening treatment, so that the opening treatment of the cover layer 21A can be performed based on the light-passing hole 200A portion of the polarizing layer 23A
  • the holes are opened, so that the light-through holes 200A of each layer can be aligned with each other.
  • FIG. 13 a specific embodiment of the LCD display screen 20A of the present invention is illustrated.
  • the inner diameters of the portions of the light-passing holes 200A corresponding to the layers of the LCD display screen 20A are the same.
  • the inner diameters of the parts of the light-passing holes 200A corresponding to the layers of the LCD display screen 20A are different.
  • the encapsulation layer 24A, the polarizing layer 23A, the touch layer 22A, and the cover layer 21A can be installed above the liquid crystal layer 28A.
  • Another polarizing layer 23A and the back plate layer 27A can be installed below 28A.
  • the backplane layer 27A of the LCD display screen 20A is indispensable, and the backplane layer 27A can emit light when energized.
  • the liquid crystal layer 28A may be opened in advance, and then the encapsulation layer 24A, the polarizing layer 23A, the touch layer 22A, and the cover layer 21A are installed, wherein the encapsulation layer 24A, the polarizing layer 23A and the touch layer 22A can be opened in advance, or can be opened uniformly after being installed together.
  • the other polarizing layer 23A installed under the liquid crystal layer 28A may be opened in advance, or may be opened after being installed on the liquid crystal layer 28A.
  • the cover layer 21A may be installed on the touch layer 22A after the other layers of the display screen 20A are perforated, or after the layers including the cover layer 21A are installed together For each layer of the display screen 20A except for the cover layer 21A, an opening process is performed.
  • the inner diameter of the portion of the liquid crystal layer 28A corresponding to the light-passing hole 200A may be different from the inner diameters of the other layers of the display screen 20A.
  • the liquid crystal layer 28A corresponds to the light-passing hole 200A.
  • the inner diameter of the 200A portion is slightly smaller than the encapsulation layer 24A, the polarizing layer 23A, and the touch layer 22A.
  • the touch layer 22A, the polarizing layer 23A, the encapsulation layer 24A, and the liquid crystal layer 28A of the LCD display screen 20A from top to bottom can be cut by laser , Drilling and other processes to obtain the light-through hole 200A with the same inner diameter.
  • the back plate layer 27A located under the liquid crystal layer 28A, the back plate layer 27A can be individually opened, and the inner diameter of the portion of the light through hole 200A corresponding to the back plate layer 27A
  • the inner diameter of the portion of the light through hole 200A corresponding to the liquid crystal layer 28A, the touch control layer 22A, and the polarizing layer 23A may be different.
  • the inner diameter of the portion of the light-passing hole 200A corresponding to the backplane layer 27A is larger than the inner diameter of the portion of the light-passing hole 200A corresponding to the liquid crystal layer 28A.
  • the portion of the light-passing hole 200A corresponding to the backplane layer 27A penetrates the portion of the light-passing hole 200A corresponding to the liquid crystal layer 28A.
  • the display screen 20A has a mounting channel 201A, wherein the mounting channel 201A is formed on the back plate layer 27A and is connected to the light-passing hole 200A.
  • the portion of the light-passing hole 200A corresponding to the backplane layer 27A is larger than the sealing area 281A. At least part of the camera module 30 can be accommodated in the backplane layer 27A, which is beneficial to reduce the height dimension of the camera module 30 and the display screen 20A.
  • a mounting end of the camera module 30 includes a part of a lens and a lens barrel, and the portion of the light-passing hole 200A of the back plate layer 27A can be designed to be large enough to accommodate the The lens and the lens barrel part, and for the liquid crystal layer 28A and the layers above the liquid crystal layer 28A corresponding to the part of the light-passing hole 200A, the aperture of the light-passing hole 200A satisfies the camera module 30 The light demand is sufficient. In other words, when the camera module 30 extends into the LCD display screen 20A, so that the camera module 30 is installed in the LCD display screen 20A, thereby reducing the camera module 30 and the LCD screen 20A.
  • the light-passing hole 200A located above can still be designed to be small enough to make it difficult to observe the light-passing hole 200A on the outside of the display screen 20A.
  • the hole 200A can provide sufficient installation space for the camera module 30.
  • the camera module 30 can also go deeper into the LCD display screen 20A, such as It is said that the camera module 30 can also be accommodated in the portion of the light-passing hole 200A corresponding to the driving circuit layer 26A.
  • FIG. 14A a specific embodiment of the LCD display screen 20A of the present invention is illustrated.
  • the cover layer 21A of the display screen 20A is not subjected to hole opening treatment.
  • the touch layer 22, the polarizing layer 23, the encapsulation layer 24, the pixel layer 25, the drive circuit layer 26, and the backplane layer 27 are respectively subjected to a hole treatment, and then the hole Fill the protective material 2812.
  • the light quality of the camera module 30 is affected by the light hole 200A.
  • the various layers of materials of the LCD display screen 20A around the light-passing hole 200A reflect and refract the light entering the light-passing hole 200A, so that the light entering the camera module 30 It is affected by the material surrounding the light-passing hole 200A.
  • a certain protective material 2812A can be poured into the light-passing hole 200A, wherein the protective material 2812A can be
  • the layers around the light through hole 200A play a protective role, for example, for the driving circuit layer 26A, so as to reduce the possible corrosion of the driving circuit layer 26A caused by water and oxygen.
  • the protective material 2812A is filled in the light-passing hole 200A, at least part of the protective material 2812A can be removed by drilling or laser cutting, so that at least part of the position around the light-passing hole 200A is The protective material 2812A is filled.
  • the protective material 2812A may be a light-transmitting material, and light can pass through the protective material 2812A.
  • the protective material 2812A may be an opaque material, and stray light from around the light-passing hole 200A cannot be received by the camera module 30 through the protective material 2812A.
  • the material of the protective material 2812A can be selected based on requirements, so as to control the light entering quality of the light through hole 200A by controlling the protective material 2812A in the light through hole 200A.
  • the protective material 2812A can be used Certain compensation.
  • FIG. 14B is another embodiment of the LCD display screen 20A of the present invention.
  • the difference from the display screen 20A shown in FIG. 14A is that in this embodiment, each layer of the display screen 20A is individually opened and then filled with a protective material 2812A.
  • the touch layer 22A, the polarizing layer 23A, the encapsulation layer 24A, the pixel layer 25A, the driving circuit layer 26A, and the backplane layer 27A may be respectively subjected to opening processing, Then, the protective material 2812A is filled in the opening position.
  • the touch layer 22A, the polarization layer 23A, the encapsulation layer 24A, the pixel layer 25A, the drive circuit layer 26A, and the backplane layer 27A are aligned and mounted together to form the display ⁇ 20A.
  • the display screen 20A can be used as a display screen with "holes".
  • Transparent materials corresponding to the touch layer 22A, the polarizing layer 23A, the encapsulation layer 24A, the pixel layer 25A, the driving circuit layer 26A, and the backplane layer 27A can function as holes.
  • the touch layer 22A, the polarizing layer 23A, the encapsulation layer 24A, the pixel layer 25A, the driving circuit layer 26A, and the back plate layer 27A can be simultaneously subjected to a hole processing, and Part of the protective material 2812A is left around the light through hole 200A. Then the cover layer 21A is installed to obtain the display screen 20A.
  • FIG. 15 and FIG. 16 a specific implementation of the LCD display screen 20A of the present invention is illustrated.
  • the part of the light-passing hole 200A corresponding to the liquid crystal layer 28A, the part of the light-passing hole 200A corresponding to the polarizing layer 23A, and the part of the light-passing hole 200A corresponding to the cover layer 21A are not aligned. This may be caused by a variety of factors, such as the accuracy control of the opening position during the opening process, or the alignment accuracy during the installation process, or the deviation caused by the fixing during the installation process.
  • the protective material 2812A is poured into the light-passing hole 200A, the protective material 2812A fills the light-passing hole 200A, and then at least part of the protective material 2812A is removed according to a certain opening area 282A to form the Light hole 200A. At this time, the inner diameter of the light through hole 200A can be kept consistent.
  • the entire LCD display screen 20A is reprocessed on the light-passing hole 200A after installation.
  • the light-passing hole 200A may be adjusted after some functional layers of the LCD display screen 20A are installed together.
  • the liquid crystal layer 28A, the polarizing layer 23A, and the touch layer 22A are assembled together, but for the liquid crystal layer 28A, the polarizing layer 23A, and the touch layer 22A corresponding to all
  • Each part of the light-passing hole 200A has a certain deviation.
  • the liquid crystal layer 28A, the polarizing layer 23A, and the part of the light-passing hole 200A corresponding to the touch layer 22A can be filled with a protective material 2812A, and then The light through hole 200A is formed twice. Then, another polarizing layer 23A and the backlight plate are installed on the liquid crystal layer 28A.
  • the protective material 2812A may not cover the portion of the light-passing hole 200A corresponding to the polarizing layer 23A and the back plate layer 27A, as shown in FIG. 15.
  • the protective material 2812A can be selectively covered on each layer of the LCD display screen 20A.
  • FIG. 17 a specific embodiment of the LCD display screen 20A of the present invention is illustrated.
  • the LCD display screen 20A has a light through hole 200A, and a light guide component 50A is disposed in the light through hole 200A.
  • the light guide component 50A has a light guide channel 500A, and light can travel along the light guide channel. 500A passes through the LCD display screen 20A.
  • the LCD display screen 20A includes a cover layer 21A, a touch layer 22A, a polarization layer 23A, an encapsulation layer 24A, a pixel layer 25A, a drive circuit layer 26A, and a back plate layer 27A.
  • the polarizing layer 23A is located on opposite sides of the pixel layer 25A.
  • the cover layer 21A is located at the top of the LCD display screen 20A, the touch layer 22A can transmit signals when touched, the encapsulation layer 24A is used for encapsulation, and the pixel layer 25A includes a filter layer 251A (CF) and liquid crystal 252A, the liquid crystal 252A is located between the filter layer 251A and the driving circuit layer 26A.
  • the driving circuit layer 26A includes a plurality of TFT structures and the base substrate, and the TFT structure is formed on the base substrate through steps such as thin film, yellow light, etching, and film stripping.
  • the backplane layer 27A is used to emit light.
  • the LCD display screen 20A further includes a liquid crystal layer 28A, wherein the liquid crystal layer 28A includes the pixel layer 25A and the driving circuit layer 26A.
  • the liquid crystal 252A is located between the filter layer 251A and the driving circuit layer 26A.
  • the light-passing hole 200A passes through each layer of the LCD display screen 20A, and the light guide component 50A is received in the light-passing hole 200A.
  • the formation method of the light-passing hole 200A may be by opening each layer of the LCD display screen 20A, or by performing a hole treatment on the liquid crystal layer 28A of the LCD display screen 20A, and The liquid crystal layer 28A is sealed to prevent the liquid crystal 252A in the liquid crystal layer 28A from leaking to the outside, and then the other layers of the LCD display screen 20A are formed by opening processing.
  • the liquid crystal layer 28A is pre-processed during the manufacturing process to form a sealed area 281A, wherein the sealed area 281A is not filled with the liquid crystal 252A, and the liquid crystal 252A is located in the sealed area 281A.
  • the sealing area 281A is outside.
  • a sealing material 2811A can be disposed between the filter layer 251A and the driving circuit layer 26A to form the sealing area 281A.
  • the liquid crystal layer 28A is pre-processed during the manufacturing process to form a sealing area 281A, wherein the sealing area 281A is not filled with the liquid crystal 252A, and the liquid crystal 252A is located in the sealing area 281A.
  • the sealing area 281A is outside.
  • a sealing material 2811A can be disposed between the filter layer 251A and the driving circuit layer 26A to form the sealing area 281A.
  • the liquid crystal layer 28A is subjected to an opening treatment based on the sealing area 281A. Then, the other layers of the LCD display screen 20A are aligned with the liquid crystal layer 28A for opening treatment.
  • the inner diameter of the light through hole 200A may be set to be slightly larger to accommodate the light guide assembly 50A. It is worth noting that when the light-through hole 200A corresponding to each layer of the LCD display screen 20A is slightly deviated, the light guide assembly 50A can supplement the LCD display screen 20A during the installation process to a certain extent. The deviation between the layers caused by
  • the portion of the light-passing hole 200A corresponding to each layer of the LCD display screen 20A is slightly deviated, when at least part of the light entering the light-passing hole 200A passes through the light-passing hole 200A Will be lost.
  • the light guide assembly 50A is disposed in the light-through hole 200A, most of the light can directly propagate along the light guide channel 500A of the light guide assembly 50A, thereby reducing the light on the LCD screen 20A. The loss caused by the installation deviation between each layer.
  • the light guide performance of the light guide assembly 50A can be set based on requirements.
  • the light guiding efficiency of the light guiding component 50A is relatively high, the light guiding component 50A can be set as a transparent material.
  • the outer wall of the light guide assembly 50A may be coated with a light-shielding material.
  • FIG. 18A and FIG. 18B an embodiment of the terminal device 1 based on the present invention is explained.
  • the terminal device 1 includes a terminal device main body 10, a display screen 20, and a camera module 30, wherein the display screen 20 and the camera module 30 are respectively disposed on the terminal device main body 10.
  • the display screen 20 is used to display images, and the camera module 30 is held below the display screen 20 to facilitate the design of the display screen 20 as a full screen.
  • the terminal device 1 further includes a housing 40 and a light guide channel 500, wherein the display screen 20 is mounted on the housing 40, and the housing 40 is located on the periphery of the display screen 20. It plays a supporting role for the display screen 20 and on the other hand plays a protective role for the display screen 20.
  • the light guide channel 500 is formed between the display screen 20 and the housing 40, and the light guide channel 500 conducts the outside world and the camera module 30 so that light from outside can pass through the light guide channel 500 is conducted to the camera module 30.
  • the camera module 30 can be arranged below the display screen 20 and does not occupy the display area of the display screen 20, so that the display screen 20 can achieve a full-screen effect.
  • the terminal device 1 has at least one light guide channel 500, wherein at least part of the light guide channel 500 is formed between the display screen 20 and the housing 40, and at least part of the light guide channel 500 A channel 500 is formed in the display screen 20 to transmit light to the camera module 30 located under the display screen 20.
  • the light guide channel 500 may be provided with some light guide elements so that the propagation direction of the light traveling in a straight line can be changed, and the light guide channel 500 is conducted from the outside of the display screen 20 to the The camera module 30 inside the display screen 20.
  • the light guide element may be a reflective film or a mirror.
  • At least part of the light guide channel 500 is located between the display screen 20 and the housing 40, and at least part of the rest may be located below the display screen 20.
  • the light guide channel 500 goes around from the side of the display screen 20 to below the display screen 20 and then guides light to the camera module 30.
  • the light guide channel 500 can be selectively formed in each layer of the OLED display screen 20, such as the pixel layer 25, the driving circuit layer 26, or The backplane layer 27.
  • the light guide channel 500 passes through the pixel layer 25, the light guide channel 500 is arranged between adjacent pixels to reduce the influence on the imaging effect.
  • the light guide channel 500 passes through the drive circuit layer 26, the light guide channel 500 is arranged in the non-circuit part of the drive circuit layer 26 to reduce the work on the drive circuit layer 26. Performance impact.
  • the light guide channel 500 passes through the back plate layer 27, and then transmits light to the camera module 30 located under the display screen 20 through the light guide channel 500.
  • the light guide channel 500 includes a first partial light guide channel 501, a second partial light guide channel 502, and a third partial light guide channel 503, wherein the first partial light guide channel 501 is located between the display screen 20 and the Between the housing 40. It is worth noting that when the display screen 20 is installed in the housing 40, there is a natural gap between the display screen 20 and the housing 40. The design of the edge of the housing 40 obtains the desired first part of the light guide channel 501.
  • the second partial light guide channel 502 is located in the display screen 20, and the third partial light guide channel 503 is located in the display screen 20.
  • the second partial light guide channel 502 is used to transmit light from the outside through the first partial light guide channel 501 into the display screen 20.
  • the third partial light guide channel 503 is used to transmit the light in the display screen 20 to the camera module 30 outwards.
  • the second partial light guide channel 502 can guide light along the length and width directions of the display screen 20, and the third partial light guide channel 503 can guide light along the height direction of the display screen 20.
  • first part of the light guide channel 501 of the light guide channel 500 can play a role of converging light, so that more light can enter the second part of the light guide after passing through the first part of the light guide channel 501 Channel 502.
  • the second part of the light guide channel 502 can function to transmit light.
  • the camera module 30 is installed on the display screen 20 and located below the display screen 20.
  • the camera module 30 forms images based on the light of the light guide channel 500.
  • the third partial light guide channel 503 can be configured to diffuse light so that the diffused light matches the light receiving area of the camera module 30.
  • the first part of the light guide channel 501 can be provided with a micro convex lens to converge light.
  • the second part of the light guide channel 502 may be provided with at least one reflector or other modulation device, so that the light is transmitted to the third part of the light guide channel 503 along the second part of the light guide channel 502.
  • the third part of the light guide channel 503 may be provided with a micro concave lens to enable light to be diffused.
  • the camera module 30 includes an optical unit 31A and a photosensitive unit 32A, wherein the optical unit 31A collects light, and the photosensitive unit 32A receives the light collected by the optical unit 31A, and converts the light based on photoelectric conversion. The signal is converted to an electrical signal for subsequent imaging.
  • the optical unit 31A may include a converging element 311A, a modulating element 312A, and a diffusing element 313A.
  • the converging member 311A can converge the light
  • the modulation member 312A can modulate the light, such as filtering, dispersion, collimation, etc.
  • the diffuser 313A can diffuse the light.
  • the optical unit 31A may be disposed in the light guide channel 500, such as the first partial light guide channel 501, the second partial light guide channel 502, and the third partial light guide channel 503.
  • the photosensitive unit 32A is directly arranged on the display screen 20 and located below the display screen 20. After the optical unit 31A collects light, the photosensitive unit 32A converts the optical signal into an electrical signal.
  • the converging member 311A may be arranged in the first part of the light guide channel 501 for light entering the light guide channel 500 from the outside to enter and converge, so that the inner diameter of the second part of the light guide channel 502 It can be designed to be smaller while transmitting more light.
  • the modulating element 312A may be arranged in the second light guide channel 500.
  • the diffuser 313A may be disposed in the third partial light guide channel 503 to diffuse light to a photosensitive area corresponding to the photosensitive unit 32A of the camera module 30.
  • the size of the light guide channel 500 in the display screen 20 can be set to be smaller, so as to reduce the influence of the light guide channel 500 on the imaging of the display screen 20.
  • the fabrication and formation of the light guide channel 500 in the display screen 20 can refer to the foregoing.
  • the optical unit 31A may include but is not limited to optical components such as the concave lens and the convex lens.
  • the concave lens located in the third partial light guide channel 503 may be disposed on the display screen 20.
  • the The diffuser 313A is disposed on the encapsulation layer 24. The light from the outside is diffused after passing through the diffuser 313A of the encapsulation layer 24, and then is transmitted to the photosensitive unit 32A of the camera module 30 through the third partial light guide channel 503, thereby Is converted into electrical signals.
  • the diffuser 313A may be integrally formed on the encapsulation layer 24, wherein the encapsulation layer 24 is usually made of glass. According to some embodiments of the present invention, the diffuser 313A may be recessed and integrally formed on the top surface of the packaging layer 24.
  • FIG. 19 and FIG. 18A another specific embodiment of the terminal device 1 according to the present invention is illustrated.
  • the terminal device 1 includes a terminal device main body 10, a display screen 20, and a camera module 30, wherein the display screen 20 and the camera module 30 are respectively disposed on the terminal device main body 10.
  • the display screen 20 is used to display images, and the camera module 30 is held below the display screen 20 to facilitate the design of the display screen 20 as a full screen.
  • the terminal device 1 further includes a housing 40 and a light guide channel 500, wherein the display screen 20 is mounted on the housing 40, and the housing 40 is located on the periphery of the display screen 20. It plays a supporting role for the display screen 20 and on the other hand plays a protective role for the display screen 20.
  • At least part of the light guide channel 500 is located between the display screen 20 and the housing 40 and extends to the display screen 20.
  • the light from the outside reaches the display screen 20 after passing through the gap between the display screen 20 and the housing 40, and then is received by the camera module 30 located under the display screen 20.
  • the terminal device 1 further includes an optical unit 31A, wherein the optical unit 31A is disposed in the light guide channel 500.
  • the optical unit 31A can be used to converge, diffuse or collimate light.
  • the camera module 30 includes an optical mechanism 31A' and a photosensitive unit 32A, wherein the optical mechanism 31A' is held in the photosensitive path of the photosensitive unit 32A.
  • the photosensitive unit 32A can convert an optical signal into an electrical signal based on photoelectric conversion.
  • the optical mechanism 31A' may include elements such as an optical lens.
  • the camera module 30 is a single complete camera module 30. Under the premise that the optical unit 31A is not provided in the light guide channel 500, the camera module 30 can still image based on the light passing through the light guide channel 500.
  • the light guide channel 500 may be provided with some light guide elements so that the propagation direction of the light traveling in a straight line can be changed, and the light guide channel 500 is conducted from the outside of the display screen 20 to the The camera module 30 inside the display screen 20.
  • the light guide element may be a reflective film or a mirror.
  • the light guide channel 500 may include a first part of the light guide channel 501, a second part of the light guide channel 502, and a third part of the light guide channel 503, wherein the first part of the light guide channel 501 is located in the housing 40 and Between the display screens 20, the second partial light guide channel 502 guides the light of the first partial light guide channel 501 into the display screen 20, and the third partial light guide channel 503 guides the second The light from the two light guide channels 502 leaves the display screen 20 to be received by the camera module 30.
  • the optical unit 31A may be arranged in the first partial light guide channel 501, the second partial light guide channel 502 and the third partial light guide channel 503.
  • the type and position of the optical unit 31A can be selected according to requirements, so that when light passes through the light guide channel 500 of the light guide assembly 50, it can be used in the optical unit 31A.
  • the bottom is adjusted to meet the light entering requirements of the camera module 30.
  • FIG. 20 and FIG. 18A another preferred embodiment of the terminal device 1 according to the present invention is illustrated.
  • the terminal device 1 includes a terminal device body 10, a display screen 20, a camera module 30, a housing 40, and a light guide assembly 50, wherein the display screen 20 is installed on the The terminal device body 10, the display screen 20 and the terminal device body 10 are mounted on the housing 40, and the camera module 30 is mounted on the display screen 20 and held below the display screen 20 .
  • the light guide component 50 is used to guide light from the outside to the camera module 30 under the display screen 20.
  • the terminal device 1 has a light guide channel 500, wherein at least a part of the light guide channel 500 is formed in the light guide assembly 50.
  • At least part of the light guide channel 500 is located between the display screen 20 and the housing 40 and extends to the display screen 20.
  • the light from the outside reaches the display screen 20 after passing through the gap between the display screen 20 and the housing 40, and then is received by the camera module 30 located under the display screen 20.
  • the light guide assembly 50 includes a light guide tube, wherein the light guide tube has a certain shape and size.
  • the light guide pipe may extend from outside the display screen 20 between the display screen 20 and the housing 40 toward the display screen 20.
  • the entire light guide pipe can be light-transmissive or opaque.
  • the light guide tube may be made of light-transmitting material, and then in order to prevent the stray light around the light guide tube from entering the light guide channel 500, the light guide tube may be coated with a light-shielding material to reduce surrounding impurities. The influence of light.
  • the light guide component 50 when the light guide component 50 needs to pass through the pixel layer 25, the light guide component 50 is disposed between two adjacent pixels of the pixel layer 25.
  • the number of the light guide components 50 may be multiple, the corresponding light guide channels 500 may be multiple, and at least parts of the multiple light guide channels 500 overlap each other .
  • the light guide assembly 50 can conduct multiple locations inside the display screen 20 outside the display screen 20, such as the front of the display screen 20, the left side of the display screen 20, or the display screen 20. The right side of the screen 20 and so on.
  • the light guide channel 500 of the light guide assembly 50 can guide the light passing through the gap between the display screen 20 and the housing 40 to the camera module 30.
  • the amount of light entering the camera module 30 can be increased.
  • FIG. 21 and FIG. 18A another embodiment of the terminal device 1 according to the present invention is illustrated.
  • the terminal device 1 includes a terminal device body 10, a display screen 20, a camera module 30, a housing 40, and a light guide assembly 50, wherein the display screen 20 is installed on the terminal device body 10, The display screen 20 and the terminal device main body 10 are mounted on the housing 40, and the camera module 30 is mounted on the display screen 20 and held below the display screen 20.
  • the light guide component 50 is used to guide light from the outside to the camera module 30 under the display screen 20.
  • the terminal device 1 has at least one light guide channel 500 and a light through hole 200, wherein the light through hole 200 penetrates the display screen 20 of the terminal device 1 from top to bottom, wherein the light guide channel 500 forms ⁇ The light guide assembly 50.
  • the light guide channel 500 extends downward from the gap between the display screen 20 and the housing 40 of the terminal device 1 to the display screen 20.
  • Both the light guide channel 500 and the light through hole 200 can be used to guide light.
  • the light-passing hole 200 penetrates the display screen 20, and the camera module 30 that is aligned with the light-passing hole 200 of the display screen 20 can receive data from the display screen through the light-passing hole 200 20 light outside.
  • the camera module 30 aligned to the light guide channel 500 can receive light from the outside of the display screen 20 through the light guide channel 500.
  • the light guide channel 500 and the light through hole 200 may be independent of each other, and the light guide channel 500 and the light through hole 200 may be respectively aligned to different camera modules 30.
  • a plurality of the camera modules 30 may be installed on the display screen 20 and located below the display screen 20.
  • the light guide channel 500 and the light through hole 200 at least partially overlap each other, so that the light received by the light guide channel 500 and the light through hole 200 can enter the same camera.
  • the module 30 is received by the same photosensitive unit 32A for imaging.
  • At least part of the light guide channel 500 is located between the display screen 20 and the housing 40, and at least part of the light guide channel 500 is located inside the display screen 20.
  • the light guide channel 500 may include a first partial light guide channel 501, a second partial light guide channel 502, and a third partial light guide channel 503, wherein the first partial light guide channel 501 is located between the display screen 20 and Between the housings 40, the second partial light guide channel 502 and the third partial light guide channel 503 are respectively located in the display screen 20.
  • the light guide channel 500 is connected to the light through hole 200, and the third partial light guide channel 503 and the light through hole 200 overlap.
  • the first part of the light guide channel 501 is located on one side of the display screen 20, the second part of the light guide channel 502 extends inward from the side of the display screen 20, and the third part of the light guide channel 503 extends from The inside of the display screen 20 extends toward the back side of the display screen 20.
  • the terminal device 1 further includes an optical unit 31A, and the optical unit 31A is disposed in the light guide channel 500.
  • the optical unit 31A may include a converging member 311A, a modulating member 312A, and a diffuser 313A, wherein the converging member 311A may be disposed in the first part of the light guide channel 501 for converging light from outside,
  • the modulating member 312A can be arranged in the second partial light guide channel 502 for modulating the light from the first partial light guide channel 501, and the diffuser 313A can be arranged in the third partial guide channel 501.
  • the light channel 503 is used to diffuse the light and transmit it to the camera module 30.
  • the optical path formed by the optical unit 31A in the display screen 20 is designed so that the light reaching the camera module 30 can present a consistent image.
  • the camera module 30 includes an optical mechanism 31A' and a photosensitive unit 32A, wherein the optical mechanism 31A' is aligned with the light hole 200 and the light guide channel 500 and the The optical mechanism 31A' is held in the photosensitive path of the photosensitive unit 32A, wherein at least part of the light through hole 200 and the light guide channel 500 are shared with each other.
  • the camera module 30 includes the optical unit 31A and a photosensitive unit 32A, wherein the optical unit 31A is disposed in the light guide channel 500, and the photosensitive unit 32A is Installed on the back side of the display screen 20.
  • the size of the light through hole 200 can be designed more small.
  • the light guide channel 500 cannot be observed from the outside of the display screen 20.
  • the second part of the light guide channel 502 is located on the encapsulation layer 24 of the display screen 20, it is located on the encapsulation layer 24.
  • the light guide channel 500 may not be observed outside the display screen 20, so at least part of the inner diameter of the light guide channel 500 can be designed relative to the inner diameter of the light through hole 200 It is slightly larger so that some optical elements can be placed in the light guide channel 500.
  • the size of the light-passing hole 200 is designed to be smaller, it is more difficult to observe the light-passing hole 200 from the outside of the display screen 20, so as to help increase the screen-to-body ratio of the display screen 20.
  • the inner diameter of the light through hole 200 may be set to gradually increase from top to bottom.
  • Part of the optical elements of the optical unit 31A may be disposed in the light-passing hole 200, such as the diffuser 313A.
  • the diffuser 313A can diffuse the light in the light through hole 200 so that the light through area provided by the light through hole 200 matches the light receiving area of the photosensitive unit 32A.
  • FIG. 22 and FIG. 18A an embodiment of a display screen assembly according to the present invention is illustrated.
  • the present invention provides the display screen assembly, wherein the display screen assembly includes the display screen 20 and the light guide assembly 50.
  • the display screen 20 has a light-passing hole 200 penetrating from top to bottom, and the light guide assembly 50 is partially contained in the light-passing hole 200.
  • the light guide assembly 50 provides a light guide channel 500.
  • the desired light guide channel 500 can be obtained by designing the shape and structure of the light guide assembly 50.
  • the light guide assembly 50 includes two light guide pipes, one of the light guide pipes is accommodated in the light through hole 200, and the other light guide pipe extends from between the display screen 20 and the housing 40 The gap extends to the position of the light hole 200.
  • a light guide tube can guide the light above the display screen 20 to pass through the display screen 20 from top to bottom, and then reach the camera module 30.
  • the other light guide pipe can guide the light between the display screen 20 and the housing 40 to reach the camera module 30.
  • the manufacturing method of the light-passing hole 200 can refer to the foregoing description.
  • the light guide tube may be cylindrical, triangular prism, or quadrangular prism.
  • the inner diameter corresponding to each position of the light guide pipe may be different.
  • the light guide tube may be made of a light-transmitting material, so that the light guide tube is difficult to be observed from the outside of the display screen 20, and at the same time, in order to reduce the influence of stray light, for example, from the display Under the influence of light from the pixel layer 25 of the screen 20, the light guide pipe may be coated with a light-proof material.
  • the light guide assembly 50 includes an optical unit 31A, wherein the optical unit 31A is held in the light passing path of the light passing hole 200.
  • the optical element can be a filter, a diffuser 313A or a modulator 312A.
  • the optical unit 31A may preprocess the light, so that the light entering the camera module 30 meets expectations.
  • the optical path formed by the optical unit 31A in the display screen 20 is designed so that the light reaching the camera module 30 can present a consistent image.
  • FIG. 23 while referring to FIG. 18A and FIG. 10, another embodiment of the display screen assembly according to the present invention is illustrated.
  • the display screen 20 is implemented as an LCD display screen 20A.
  • the LCD display screen 20A has a light guide channel 500, wherein the light guide channel 500 can guide the light from the outside of the LCD display screen 20A to the inside of the LCD display screen 20A or the inside of the LCD display screen 20A.
  • At least part of the light guide channel 500 is located between the LCD display screen 20A and the housing 40, and at least part of the light guide channel 500 is located inside the LCD display screen 20A.
  • the part of the light guide channel 500 located between the LCD display screen 20A and the housing 40 can guide external light from the outside of the LCD display screen 20A to one side of the LCD display screen 20A, and then pass through other
  • the part of the light guide channel 500 leads light into the inside of the LCD display screen 20A, the light passes through the inside of the LCD display screen 20A and then reaches the camera module 30, so that the camera located below the display screen 20A
  • the module 30 can receive light from above the display screen 20A, so that the camera module 30 located below the display screen 20A can use the light to form images, and, further, is located below the display screen 20A
  • the camera module 30 can obtain sufficient light imaging through the light guide channel 500.
  • the light guiding channel 500 includes a first partial light guiding channel 501, a second partial light guiding channel 502, and a third partial light guiding channel 503, wherein the first partial light guiding channel 501 is located in the Between the LCD display screen 20A and the housing 40, the second partial light guide channel 502 is located inside the LCD display screen 20A and guides the light from the first partial light guide channel 501 to the LCD display screen 20A Inside, the third partial light guide channel 503 is located inside the LCD display screen 20A and guides the light from the second partial light guide channel 502 to the outside of the LCD display screen 20A.
  • the LCD display screen 20A further includes at least one optical unit 31A, wherein the optical unit 31A can be arranged in the light guide channel 500 so that light can propagate in the light guide channel 500 along the user's expectations.
  • the optical unit 31A may include a converging element 311A, a modulating element 312A, and a diffusing element 313A.
  • the converging member 311A can converge the light
  • the modulation member 312A can modulate the light, such as filtering, dispersion, collimation, etc.
  • the diffuser 313A can diffuse the light.
  • the converging member 311A may be disposed on the first part of the light guide channel 501 of the light guide channel 500, for example, a light entrance of the light guide channel 500, wherein the converging member 311A is located at the light entrance ⁇ location.
  • the modulating element 312A may be arranged in the second part of the light guide channel 502 of the light guide channel 500 to modulate the light passing through the second part of the light guide channel 502.
  • the diffuser 313A may be disposed in the third part of the light guide channel 503 of the light guide channel 500, for example, a light outlet of the light guide channel 500, wherein the diffuser located at the light outlet 313A can diffuse the light so that it can be adapted to a photosensitive surface of the camera module 30. Therefore, when the photosensitive surface of the camera module 30 is large, the light passes through the diffuser 313A. It can be diffused to increase the photosensitive area of the entire photosensitive surface, so as to help improve the working efficiency of the camera module 30.
  • the camera module 30 has a light inlet and includes a photosensitive unit 32A.
  • the size of the light inlet corresponds to the photosensitive area of the photosensitive unit 32A, so that the photosensitive area of the photosensitive unit 32A receives light as much as possible, and the photosensitive area of the photosensitive unit 32A can be utilized as much as possible.
  • the LCD display screen 20A includes the cover layer 21A, the touch layer 22A, the polarizing layer 23A, the encapsulation layer 24A, the pixel layer 25A, the drive circuit layer 26A, and the The backplane layer 27A.
  • the polarizing layers 23A are respectively disposed on both sides of the pixel layer 25A.
  • the LCD display screen 20A has a side surface, a front surface and a back surface, wherein the front surface of the LCD display screen 20A faces the user, the back surface of the LCD display screen 20A faces away from the user, and the side surfaces are respectively connected to The front side and the back side.
  • the light guide channel 500 extends from the gap between the LCD display screen 20A and the housing 40 to the side surface of the LCD display screen 20A, and then extends to the back surface of the LCD display screen 20A. Light can pass through the light guide channel 500 from the side surface of the LCD display screen 20A through the LCD display screen 20A to the back of the LCD display screen 20A.
  • the LCD display screen 20A is a multilayer structure, and the light guide channel 500 can penetrate the cover layer 21A, the touch layer 22A, the polarization layer 23A, the encapsulation layer 24A, and the pixels
  • One or more of the layer 25A, the driving circuit layer 26A, and the backplane layer 27A are multiple layers.
  • the light guide channel 500 may pass through the cover layer 21A and the back plate layer 27A, for example, sequentially pass through the cover layer 21A, the touch layer 22A, and the polarizing layer 23A from top to bottom.
  • a polarizer, the encapsulation layer 24A, the pixel layer 25A, the driving circuit layer 26A, another polarizer of the polarizing layer 23A, and the back plate layer 27A may be used.
  • the light guide channel 500 may pass through the touch layer 22A and the backplane layer 27A, for example, from top to bottom, the light guide channel 500 sequentially passes through the gap between the display screen 20A and the housing 40, The touch layer 22A, the polarizing layer 23A, the encapsulation layer 24A, the pixel layer 25A, the driving circuit layer 26A, the polarizing layer 23A, and the back plate layer 27A.
  • the touch layer 22A, the polarizing layer 23A, the encapsulation layer 24A, the pixel layer 25A, the driving circuit layer 26A, the polarizing layer 23A, and the back plate layer 27A may be any arrangement of the various layers of the LCD display screen 20A.
  • the light guide channel 500 may pass through the polarizing layer 23A and the back plate layer 27A. For example, from top to bottom, the light guide channel 500 sequentially passes through the gap between the display screen 20A and the housing 40.
  • the polarization layer 23A, the encapsulation layer 24A, the pixel layer 25A, the driving circuit layer 26A, the polarization layer 23A, and the backplane layer 27A are merely illustrative and does not limit the present invention.
  • the light guide channel 500 may pass through the encapsulation layer 24A and the back plate layer 27A, for example, from top to bottom, the light guide channel 500 sequentially passes through the gap between the display screen 20A and the housing 40, The encapsulation layer 24A, the pixel layer 25A, the driving circuit layer 26A, the polarization layer 23A, and the back plate layer 27A.
  • the encapsulation layer 24A, the pixel layer 25A, the driving circuit layer 26A, the polarization layer 23A, and the back plate layer 27A may be used to the arrangement of the various layers of the LCD display screen 20A.
  • the light guide channel 500 may extend from the pixel layer 25A to the back plate layer 27A. For example, from top to bottom, the light guide channel 500 sequentially passes through the gap between the display screen 20A and the housing 40, The pixel layer 25A, the driving circuit layer 26A, the polarization layer 23A, and the back plate layer 27A.
  • the arrangement of the various layers of the LCD display screen 20A is merely illustrative and does not limit the present invention.
  • the light guide channel 500 may extend from the drive circuit layer 26A to the backplane layer 27A. For example, from the bottom, the light guide channel 500 sequentially passes through the gap between the display screen 20A and the housing 40, The driving circuit layer 26A, the polarizing layer 23A, and the back plate layer 27A.
  • the arrangement of the various layers of the LCD display screen 20A is merely illustrative and does not limit the present invention.
  • the light guide channel 500 may extend from the polarizing layer 23A under the pixel layer 25A to the back plate layer 27A. For example, the light guide channel 500 sequentially passes through the polarizing layer from below the pixel layer 25A. Layer 23A and the backplane layer 27A.
  • the light guide channel 500 may pass through the back plate layer 27A, for example, the light guide channel 500 extends from the gap between the back plate layer 27A and the polarizing layer 23A or a connecting medium to the back plate The layer 27A penetrates the backplane layer 27A.
  • the pixel layer 25A includes the filter layer 251A and the liquid crystal 252A.
  • the LCD display screen 20A includes a liquid crystal layer 28A, wherein the liquid crystal layer 28A includes the liquid crystal 252A, the filter layer 251A, and the driving circuit layer 26A.
  • the liquid crystal 252A is held between the filter layer 251A and the driving circuit layer 26A.
  • the light guide channel 500 passes through the liquid crystal layer 28A and the liquid crystal 252A can not be leaked to the light guide channel 500.
  • the liquid crystal layer 28A with holes can be produced first, and the holes are at least part of the light guide channel 500, and then holes are made at the corresponding positions of each layer of the LCD display screen 20A to form at least part of the light guide channel 500.
  • the hole of the liquid crystal layer 28A may be located in the height direction of the liquid crystal layer 28A, and the hole may also be obliquely formed in the liquid crystal layer 28A along a certain inclination angle to adapt to the light guide channel 500 The setting requirements.
  • a sealing material 2811A is provided on the driving circuit layer 26A or the filter layer 251A of the liquid crystal layer 28A, so that when the driving circuit layer 26A and the filter layer 251A communicate with each other During bonding, the sealing material 2811A forms a sealing area 281A, and the liquid crystal 252A cannot enter the sealing area 281A. In the subsequent steps, as long as the liquid crystal layer 28A is opened in the sealing area 281A, the liquid crystal 252A of the liquid crystal layer 28A will not leak outward.
  • the layers mounted on the liquid crystal layer 28A of the LCD display screen 20A may be respectively punched to form a hole extending from the side surface of the LCD display screen 20A toward the back surface of the LCD display screen 20A.
  • the light-through hole 200 In this way, the LCD display screen 20A can be provided with the hole penetrating the side surface of the LCD display screen 20A and the back surface of the LCD display screen 20A.
  • part of the light guide channel 500 is located between the display screen 20A and the housing 40, and a part of the light guide channel 500 is set inside the LCD display screen 20A.
  • the light guide channel 500 cannot be observed on the front side of the display screen 20A, which facilitates the realization of a full screen.
  • the optical unit 31A can be installed in the light guide channel 500.
  • the optical element may be installed in the light guide channel 500 after the entire LCD display screen 20A is manufactured, or it may be during the layer-by-layer installation of the LCD display screen 20A or the During the formation of the light guide channel 500 corresponding to each layer of the LCD display screen 20A, the optical unit 31A is installed at the preset position of each layer of the LCD display screen 20A, and then the functional layers are assembled to form a complete The LCD display screen 20A may also form at least part of the optical unit 31A during the manufacturing process of the LCD display screen 20A.
  • a microlens layer is integrally formed on the encapsulation layer 24A, and then the encapsulation layer 24A is disposed above the pixel layer 25A, wherein the microlens layer is corresponding to the pixel layer 25A.
  • the light through hole 200 is provided with a layer of the driving circuit layer 26A on the bottom side of the pixel layer 25A, and the driving circuit layer 26A is electrically connected to the pixel layer 25A for driving the pixel layer 25A to work.
  • the polarizing layer 23A, the touch layer 22A, and the cover layer 21A are sequentially arranged on the encapsulation layer 24A.
  • the cover layer 21A, the touch layer 22A, the polarizing layer 23A, the encapsulation layer 24A, the pixel layer 25A, and the driving circuit layer 26A form the light guide channel 500 through each other.
  • the micro lens layer is held in the light guide channel 500.
  • the optical unit 31A may be disposed inside the LCD display screen 20A or formed on various layers of the LCD display screen 20A in other ways. Those skilled in the art should understand that the manufacturing method of the optical unit 31A described above is only an example, and is not limited to the above example.
  • FIG. 24 another embodiment of the LCD display screen 20A according to the present invention is illustrated.
  • the camera module 30 includes the photosensitive unit 32A, and the photosensitive unit 32A directly receives light from the light guide channel 500.
  • the light can be received by the photosensitive unit 32A after being processed by the optical unit 31A located in the light guide channel 500.
  • the optical mechanism 31A' of the camera module 30 can be arranged in the light guide channel 500, or the optical unit 31A located in the light guide channel 500 serves as the The optical mechanism 31A' of the camera module 30 reduces the height dimension of the camera module 30, which in turn is beneficial to reduce the height dimension of the LCD display screen 20A and the camera module 30.
  • FIG. 25 another embodiment of the LCD display screen 20A according to the present invention is illustrated.
  • the LCD display screen 20A has at least one light guide channel 500 and the LCD display screen 20A further includes at least one light guide component 50, wherein the light guide channel 500 is formed in the light guide component 50.
  • the LCD display screen 20A provides another light through hole 200A, and the light through hole 200A is used to install the light guide assembly 50.
  • the LCD display screen 20A is a multi-layer structure, and the light through hole 200A can penetrate the cover layer 21A, the touch layer 22A, the polarization layer 23A, the encapsulation layer 24A, and the pixel
  • the layer 25A, the driving circuit layer 26A, and the backplane layer 27A are multiple layers.
  • the light-passing hole 200 may pass through the cover layer 21A and the back plate layer 27A, for example, pass through the cover layer 21A, the touch layer 22A, and the polarizing layer 23A sequentially from top to bottom.
  • One polarizer, the encapsulation layer 24A, the pixel layer 25A, the driving circuit layer 26A, the other polarizer of the polarizing layer 23A, and the back plate layer 27A may pass through the cover layer 21A and the back plate layer 27A, for example, pass through the cover layer 21A, the touch layer 22A, and the polarizing layer 23A sequentially from top to bottom.
  • the light-passing hole 200A may pass through the touch layer 22A and the back plate layer 27A, for example, the light-passing hole 200A sequentially passes through one of the touch layer 22A and the polarizing layer 23A from top to bottom.
  • a polarizer, the encapsulation layer 24A, the pixel layer 25A, the driving circuit layer 26A, another polarizer of the polarizing layer 23A, and the back plate layer 27A may be used to be used.
  • the light-passing hole 200A may pass through the polarizing layer 23A and the back plate layer 27A, for example, from top to bottom, the light-passing hole 200A sequentially passes through a polarizer of the polarizing layer 23A and the encapsulation layer 24A.
  • the pixel layer 25A, the driving circuit layer 26A, the other polarizer of the polarizing layer 23A, and the back plate layer 27A are merely illustrative and does not limit the present invention.
  • the light-passing hole 200A may pass through the encapsulation layer 24A and the backplane layer 27A. For example, from top to bottom, the light-passing hole 200A sequentially passes through the encapsulation layer 24A, the pixel layer 25A, and the driving layer.
  • the circuit layer 26A, the polarizing layer 23A, and the back plate layer 27A are merely illustrative and does not limit the present invention.
  • the light-passing hole 200A may extend from the pixel layer 25A to the back plate layer 27A.
  • the light-passing hole 200A sequentially passes through the pixel layer 25A, the driving circuit layer 26A, and the back plate layer 27A from top to bottom.
  • the polarization layer 23A and the back plate layer 27A are merely illustrative and does not limit the present invention.
  • the light-passing hole 200A may extend from the driving circuit layer 26A to the backplane layer 27A. For example, from the bottom of the light-passing hole 200A through the driving circuit layer 26A, the polarization layer 23A, and the backplane layer 27A.
  • the backplane layer 27A may be any arrangement of the various layers of the LCD display screen 20A.
  • the light-passing hole 200A may extend from the polarizing layer 23A under the pixel layer 25A to the back plate layer 27A. For example, the light-passing hole 200A sequentially passes through the polarizing layer from below the pixel layer 25A. Layer 23A and the backplane layer 27A.
  • the light through hole 200A may pass through the back plate layer 27A.
  • the light through hole 200A extends from the gap between the back plate layer 27A and the polarizing layer 23A or a connecting medium to the back plate.
  • the layer 27A penetrates the backplane layer 27A.
  • the pixel layer 25A includes the liquid crystal 252A and the filter layer 251A.
  • the LCD display screen 20A includes a liquid crystal layer 28A, wherein the liquid crystal layer 28A includes the liquid crystal 252A, the filter layer 251A, and the driving circuit layer 26A.
  • the liquid crystal 252A is held between the filter layer 251A and the driving circuit layer 26A.
  • the light passing hole 200 penetrates the liquid crystal layer 28A and the liquid crystal 252A can not be leaked to the light passing hole 200.
  • the liquid crystal layer 28A with the light-through hole 200 may be fabricated first, and then holes are made at the corresponding positions of each layer of the LCD display screen 20A to form at least part of the light-through hole 200.
  • the portion of the light-through hole 200 of the liquid crystal layer 28A may be located in the height direction of the liquid crystal layer 28A, and the light-through hole 200A may also be formed obliquely along a certain inclination angle in the liquid crystal layer 28A. It can meet the requirements of the light hole 200A.
  • a sealing material 2811 is provided on the driving circuit layer 26A or the filter layer 251A of the liquid crystal layer 28A, so that when the driving circuit layer 26A and the filter layer 251A communicate with each other During bonding, the sealing material 2811A forms a sealing area 281A, and the liquid crystal 252A cannot enter the sealing area 281A. In the subsequent steps, as long as the liquid crystal layer 28A is opened in the sealing area 281A, the liquid crystal 252A of the liquid crystal layer 28A will not leak outward.
  • the layers above the liquid crystal layer 28A of the LCD display screen 20A may be respectively punched to form all the layers from the side surface of the LCD display screen 20A toward the liquid crystal layer 28A of the LCD display screen 20A. ⁇ 200 ⁇ Said light hole 200.
  • the LCD display screen 20A can be provided with the light-passing hole 200A penetrating the side surface of the LCD display screen 20A and the back surface of the LCD display screen 20A.
  • Part of the light guide assembly 50 is installed between the LCD display screen 20A and the housing 40, and part of the light guide assembly 50 is installed in the light through hole 200A of the LCD display screen 20A.
  • the light guide assembly 50 may include at least one light guide pipe.
  • the number of the light guide pipes can be more than one to adapt to the light through holes 200A of different shapes.
  • the light through hole 200A may be straight or curved.
  • the light guide pipes can be installed one by one in a certain order in the light through hole 200A, or the light guide pipes can be installed one by one in a certain order.
  • a light guide pipe may be installed on the liquid crystal layer 28A and the light passing hole corresponding to the polarizing layer 23A.
  • another light guide pipe is installed on the portion of the light-passing hole 200A corresponding to the backplane layer 27A.
  • the shape and position of the entire light-passing hole 200A can be set on the LCD display screen 20A according to user requirements.
  • the shape and position of the light guide assembly 50 can be designed according to the expected demand of the light guide channel 500.
  • the external light travels along the light guide channel 500 to the camera module 30 located on the back side of the LCD display screen 20A. In this process, the light can be reflected, diffused or collimated in the light guide channel 500 of the light guide assembly 50.
  • the optical unit 31A may be arranged in the light guide channel 500 of the light guide assembly 50.
  • the optical unit 31A may be integrally formed with the light guide assembly 50, and the optical unit 31A may also be disposed in the light guide channel 500 of the light guide assembly 50.
  • the light guide assembly 50 may be transparent, for example, made of glass or resin.
  • the light guide assembly 50 may also be opaque.
  • the outer wall of the light guide assembly 50 may be coated with a layer of opaque material to reduce the influence of light outside the light guide assembly 50 on the light guide assembly. 50 of the light in the light guide channel 500.
  • FIG. 26 and referring to FIG. 18A and FIG. 10 at the same time, another embodiment of the LCD display screen 20A according to the present invention is illustrated.
  • the LCD display screen 20A has a light-through hole 200 and a light guide channel 500, wherein the light-through hole 200 penetrates the display screen 20A of the terminal device 1 from top to bottom.
  • the light guide channel 500 extends downward from the gap between the display screen 20A and the housing 40 of the terminal device 1 to the display screen 20A.
  • the number of the light-passing holes 200 can be multiple, the light-passing holes 200 can penetrate the display screen 20A from top to bottom, and the light-passing holes 200 can also extend from the display screen 20A.
  • the side surface of the screen passes through the inside of the display screen 20A to the bottom surface of the display screen 20A.
  • Both the light guide channel 500 and the light through hole 200 can be used to guide light.
  • the light-passing hole 200 penetrates the display screen 20A, and the camera module 30 aligned with the light-passing hole 200 of the display screen 20A can receive data from the display screen through the light-passing hole 200 The light outside 20A.
  • the camera module 30 aligned to the light guide channel 500 can receive light from the outside of the display screen 20A through the light hole 200.
  • the light guide channel 500 and the light through hole 200 may be independent of each other, and the light guide channel 500 and the light through hole 200 may be respectively aligned to different camera modules 30.
  • a plurality of the camera modules 30 may be installed on the display screen 20A and located below the display screen 20A.
  • the light guide channel 500 and the light through hole 200 at least partially overlap each other, so that the light received by the light guide channel 500 and the light through hole 200 can enter the same camera.
  • the module 30 is received by the same photosensitive unit 32A for imaging.
  • At least part of the light guide channel 500 is located between the display screen 20A and the housing 40, and at least part of the light guide channel 500 is located in the display screen 20A.
  • the light guide channel 500 may include a first partial light guide channel 501, a second partial light guide channel 502, and a third partial light guide channel 503, wherein the first partial light guide channel 501 is located in the display screen 20A and Between the casings 40, the second partial light guide channel 502 and the third partial light guide channel 503 are respectively located in the display screen 20A.
  • the light guide channel 500 is connected to the light through hole 200, and the third partial light guide channel 503 and the light through hole 200 overlap.
  • the first part of the light guide channel 501 is located on a side of the display screen 20A, the second part of the light guide channel 502 extends inward from the side of the display screen 20A, and the third part of the light guide channel 503 extends from the side of the display screen 20A.
  • the inside of the display screen 20A extends downward.
  • the terminal device 1 further includes an optical unit 31A, and the optical unit 31A is disposed in the light guide channel 500.
  • the optical unit 31A may include a converging member 311A, a modulating member 312A, and a diffuser 313A, wherein the converging member 311A may be disposed in the first part of the light guide channel 501 for converging light from outside,
  • the modulating member 312A can be arranged in the second partial light guide channel 502 for modulating the light from the first partial light guide channel 501, and the diffuser 313A can be arranged in the third partial guide channel 501.
  • the light channel 503 is used to diffuse the light and transmit it to the camera module 30.
  • the optical path formed by the optical unit 31A in the display screen 20 is designed so that the light reaching the camera module 30 can present a consistent image.
  • the camera module 30 includes an optical mechanism 31A' and a photosensitive unit 32A, wherein the optical mechanism 31A' is aligned with the light-passing hole 200 and the light guide
  • the channel 500 and the optical mechanism 31A' are held in the photosensitive path of the photosensitive unit 32A.
  • the light through hole 200 and at least part of the light guide channel 500 are shared.
  • the camera module 30 includes the optical unit 31A and a photosensitive unit 32A, wherein the optical unit 31A is arranged in the light guide channel 500, and the photosensitive unit 32A is installed in the display The back side of the screen 20A.
  • the size of the light through hole 200 can be designed more small.
  • the light guide channel 500 cannot be observed from the outside of the display screen 20A.
  • the second part of the light guide channel 502 is located on the encapsulation layer 24A of the display screen 20A, it is located on the encapsulation layer 24A.
  • the light guide channel 500 may not be observed outside the display screen 20A, so at least part of the inner diameter of the light guide channel 500 can be designed relative to the inner diameter of the light hole 200 It is slightly larger so that some optical elements can be placed in the light guide channel 500.
  • the size of the light-passing hole 200 is designed to be small, it is more difficult to observe the light-passing hole 200 from the outside of the display screen 20A, so as to help increase the screen-to-body ratio of the display screen 20A.
  • the inner diameter of the light through hole 200 may be set to gradually increase from top to bottom.
  • Part of the optical elements of the optical unit 31A may be disposed in the light-passing hole 200, such as the diffuser 313A.
  • the diffuser 313A can diffuse the light in the light through hole 200 so that the light through area provided by the light through hole 200 matches the light receiving area of the photosensitive unit 32A.
  • FIG. 27 another embodiment of the LCD display screen 20A according to the present invention is illustrated.
  • the LCD display screen 20A has a light-passing hole 200, wherein the light-passing hole 200 penetrates the LCD display screen 20A in the height direction. At least part of the light guide assembly 50 is disposed in the light through hole 200.
  • the light guide assembly 50 provides a light guide channel 500.
  • the desired light guide channel 500 can be obtained by designing the shape and structure of the light guide assembly 50.
  • the light guide assembly 50 includes two light guide pipes, one of the light guide pipes is accommodated in the light through hole 200, and the other light guide pipe extends from between the display screen 20A and the housing 40 The gap extends to the position of the light hole 200.
  • a light guide tube can guide the light above the display screen 20A through the display screen 20A from top to bottom, and then reach the camera module 30.
  • the other light guide pipe can guide the light between the display screen 20A and the housing 40 to reach the camera module 30.
  • the manufacturing method of the light-passing hole 200 can refer to the foregoing description.
  • the light guide tube may be cylindrical, triangular prism, or quadrangular prism.
  • the inner diameter corresponding to each position of the light guide pipe may be different.
  • the light guide tube may be made of a light-transmitting material, so that the light guide tube is difficult to be observed from the outside of the display screen 20A.
  • the light guide pipe may be coated with a light-proof material.
  • the LCD display screen 20A includes an optical unit 31A, wherein the optical unit 31A is held in the light guide channel 500 of the light guide assembly 50, and the optical unit 31A may be a filter, a The diffuser 313A may be a modulating member 312A.
  • the optical unit 31A may preprocess the light, so that the light entering the camera module 30 meets expectations.
  • the optical path formed by the optical unit 31A in the display screen 20 is designed so that the light reaching the camera module 30 can present a consistent image.
  • a camera module 30 having a lower height dimension is used.
  • FIG. 28 illustrates a specific example of the camera module 30 according to the present invention.
  • the camera module 30 includes an optical mechanism 31A′ and a photosensitive unit 32A, wherein the camera module 30 may also include an aperture 33A, wherein the aperture 33A is located at the position of the light through hole 200, and the optical mechanism 31A' is held in the photosensitive path of the photosensitive unit 32A.
  • the diaphragm 33A can restrict the light passing through the optical mechanism 31A'. Specifically, the amount of light entering the optical mechanism 31A' can be controlled by controlling the size of the clear aperture of the diaphragm 33A.
  • the diaphragm 33A may be circular, triangular or rectangular.
  • the size of the diaphragm 33A can limit the light rays entering the optical mechanism 31A' through the diaphragm 33A.
  • the display screen 20 has the light-through hole 200, and the camera module 30 is installed under the display screen 20.
  • the light through hole 200 allows light to pass through the display screen 20 and then reach the camera module 30.
  • the light-passing hole 200 can function as the diaphragm 33A of the camera module 30, so that for the camera module 30 itself, the camera module 30 does not need to separately provide the diaphragm. 33A, the amount of light entering the camera module 30 can be controlled by controlling the size of the light-passing hole 200 of the display screen 20, and the light-passing hole 200 serves as the aperture 33A .
  • the height dimension of the camera module 30 can be reduced, so that the height dimension of the display screen 20 and the camera module 30 can also be reduced, so as to facilitate the thinning of the terminal device 1. .
  • the optical path design of the camera module 30 is fixed, and parameters such as the amount of light entering and the exposure time required by the camera module 30 can be changed It is determined that based on these parameters, the size of the aperture 33A can be determined. Therefore, the display screen 20 can be manufactured according to the requirements of the camera module 30 during the process of manufacturing and forming the light-passing hole 200.
  • the light-through hole 200 Reference may be made to the above-mentioned manufacturing method of the light-passing hole 200, and the aperture size and position of the light-passing hole 200 can be designed according to requirements.
  • the distance between the camera module 30 and the aperture 33A on the photosensitive path of the photosensitive unit 32A is determined based on the optical requirements of the camera module 30 based on the optical path design.
  • the distance between the camera module 30 and the aperture 33A can be adjusted by adjusting the relative position of the camera module 30 and the display screen 20 according to requirements. Meet the optical path requirements of the camera module 30.
  • FIG. 29 illustrates a specific embodiment of the camera module 30 according to the present invention.
  • the camera module 30 includes an optical mechanism 31A', a photosensitive unit 32A, and an aperture 33A', wherein the aperture 33A' is provided in the optical mechanism 31A', and the optical mechanism 31A' is held in the photosensitive unit The photosensitive path of 32A.
  • the size of the diaphragm 33A' By controlling the size of the diaphragm 33A', the amount of light passing through the optical mechanism 31A' can be controlled.
  • the light-passing hole 200 of the display screen 20 allows light to pass through the light-passing hole 200 from the outside of the display screen 20 and then reach the Camera module 30.
  • the light through hole 200 can affect the imaging result of the camera module 30.
  • the light-passing hole 200 functions similar to a diaphragm, and by controlling the aperture of the light-passing hole 200, the imaging beam can be controlled.
  • the light-passing hole 200 of the display screen 20 can restrict the imaging light beam of the camera module 30, and the aperture 33A' of the camera module 30 can also restrict the imaging light beam.
  • the light-passing hole 200 of the display screen 20 and the aperture 33A' of the camera module 30 can work together.
  • the optical path design of the camera module 30 can be roughly determined, so that the size of the light-passing hole 200 of the display screen 20 can be based on the The requirements of the camera module 30 are set.
  • the size of the light-passing hole 200 is fixed, and the relative position between the camera module 30 and the light-passing hole 200 can be fixed.
  • the imaging light beam is further controlled by controlling the aperture 33A' of the camera module 30.
  • the light-passing hole 200 of the display screen 20 can restrict the imaging light beam
  • the aperture 33A' of the camera module 30 can restrict the imaging light beam, or can be set In order to eliminate stray light, the light beam after passing through the light hole 200 is processed to eliminate stray light.
  • the light-passing hole 200 of the display screen 20 and the aperture 33A' of the camera module 30 can cooperate with each other to limit the imaging light beam.
  • the light-passing hole 200 of the display screen 20 and the aperture 33A' of the camera module 30 can also play different roles, and are specially set according to the light path requirements of the camera module 30.
  • the aperture 33A' of the camera module 30 may be an iris diaphragm, and the aperture of the aperture 33A' can be adjusted, so that the aperture of the camera module 30 can be adjusted. Control of the amount of light passing.
  • FIG. 30 illustrates a specific example of the camera module 30 according to the present invention.
  • the camera module 30 includes a circuit board 31, a photosensitive chip 32 and a light-transmitting component 33.
  • the circuit board 31 has a groove 310, and the photosensitive chip 32 It is arranged in the groove 310 and is electrically connected to the circuit board 31, and the light-transmitting component 33 is located on the light-sensing path of the light-sensing chip 32.
  • the imaging light passing through the display screen 20 first reaches the light-transmitting component 33, and then reaches the photosensitive chip 32 to be sensed by the photosensitive chip 32 for imaging reaction.
  • the circuit board has a flat surface, and the photosensitive chip is directly attached and electrically connected to the flat surface of the circuit board. Since each camera module has a preset optical back focus requirement, the mounting reference height of the photosensitive chip directly determines the overall height of the camera module 30.
  • the circuit board 31 is provided with the groove 310 to lower the photosensitive chip 32 through the groove 310.
  • the installation base height In other words, in the present invention, the top surface of the circuit board 31 is a non-flat surface, wherein the area of the circuit board 31 for mounting the photosensitive chip 32 is recessed downward, so that the photosensitive chip 32
  • the installation base height of the machine can be reduced. It should be understood that under the premise that the optical back focus requirement remains unchanged, the installation height of the optical lens 332 relative to the circuit board 31 can be reduced, so that the overall height of the camera module 30 can be reduced.
  • the size of the groove 310 is consistent with the size of the photosensitive chip 32, so that the groove 310 itself can be used to position and limit the photosensitive chip 32.
  • the photosensitive chip 32 can be directly embedded in the groove 310 without the need for conventional COB-based imaging.
  • the module needs to constantly calibrate and locate the installation position of the photosensitive chip on the circuit board. Further, after the photosensitive chip 32 is installed in the groove 310 and electrically connected to the circuit board 31, the photosensitive chip 32 is "detained" in the groove 310 to prevent the The photosensitive chip 32 is separated from the groove 310 or is offset.
  • the camera module 30 further includes a set of leads 34, wherein, after the photosensitive chip 32 is attached to the groove 310 of the circuit board 31, the lead 34 is used to realize the photosensitive The electrical connection between the chip 32 and the circuit board 31. Since the distance between the upper surface of the photosensitive chip 32 and the upper surface of the circuit board 31 is reduced, the arc height of the gold wire connecting the photosensitive chip 32 and the pad of the circuit board 31 is also reduced. , Reducing the difficulty of line-up.
  • each of the lead wires 34 bends and extends between the photosensitive chip 32 and the circuit board 31, so as to connect the photosensitive chip 32 to the circuit board 31 through the lead wires 34, so that,
  • the circuit board 31 can supply power to the photosensitive chip 32 according to the lead 34, and the photosensitive chip 32 can transmit the collected signal according to the lead 34.
  • the type of the lead 34 is not limited by this application.
  • the lead 34 may be a gold wire, a silver wire, or a copper wire.
  • the lead 34 can be installed between the circuit board 31 and the photosensitive chip 32 through a process of "golding wire" to realize electrical connection between the two.
  • the "golden thread” process is generally divided into two types: the “positive gold line” process and the “reverse gold line” process.
  • the “positive gold wire” process means that in the process of laying out the leads 34, first one end of the lead 34 is formed on the conductive end of the circuit board 31, and then the lead 34 is bent and extended, and finally The other end of the lead 34 is formed on the conductive end of the photosensitive chip 32. In this way, the lead 34 is formed between the photosensitive chip 32 and the circuit board 31.
  • the "reverse gold wire” process means that in the process of laying out the leads 34, first one end of the lead 34 is formed on the conductive end of the photosensitive chip 32, and then the lead 34 is bent and extended, and finally The other end of the lead 34 is formed on the conductive end of the circuit board 31. In this way, the lead 34 is formed between the photosensitive chip 32 and the circuit board 31. It is worth mentioning that the height of the upward protrusion of the lead 34 formed by the "reverse gold wire” process is smaller than the height of the upward protrusion of the lead 34 formed by the "positive gold wire” process. Therefore, it is preferable In this specific implementation, the wire 34 is formed by the "reverse gold wire” process.
  • the camera module 30 further includes a base 35 which is disposed on the circuit board 31 and used to support the light-transmitting component 33.
  • the light-transmitting component 33 includes a color filter element 331 and an optical lens 332, and the color filter element 331 and the optical lens 332 are sequentially disposed on the photosensitive path of the photosensitive chip 32. It is worth noting that if the arc height of the lead wire 34 is reduced, the height of the inner cavity of the base 35 can also be appropriately reduced, and the height of the base 35 will also be reduced. Further, the height of the camera module 30 The overall height will also be appropriately reduced.
  • the base 35 can be implemented as a traditional plastic bracket, which is prefabricated and attached to the top surface of the circuit board 31; or, the base 35 can be implemented as a mold.
  • the plastic base can be integrally formed on the circuit board 31 and/or the corresponding position of the photosensitive chip 32 through MOB (Molding on Board) and MOC (Molding on Chip) processes.
  • MOB Manufacturing on Board
  • MOC Molding on Chip
  • the MOC process means that the molded base is integrally molded on the circuit board 31 through a molding process, wherein the molded base after molding except for covering the circuit board 31 and on the circuit board 31
  • at least a part of the lead 34 is also covered, or at least part of the lead 34 and the photosensitive chip 32 are covered (wherein at least a part of the photosensitive chip 32 is The non-photosensitive area of the photosensitive chip 32).
  • the color filter element 331 is provided between the optical lens 332 and the photosensitive element, so that the light entering the camera module 30 from the optical lens 332 is After the color filter element 331 is filtered, it can be received by the photosensitive chip 32 and photoelectrically converted, so as to improve the imaging quality of the camera module 30.
  • the color filter element 331 can be used to filter the infrared part of the light entering the camera module 30 from the optical lens 332.
  • the color filter element 331 can be implemented in different types, including but not limited to, the color filter element 331 can be implemented as an infrared cut filter, a full transmission spectrum filter, and others.
  • the filter or a combination of multiple filters can be Switch to be selectively located on the photosensitive path of the photosensitive chip 32. In this way, when the camera module 30 is used in an environment with sufficient light such as daytime, the infrared cut filter can be switched to the photosensitive path.
  • the light-sensing path of the chip 32 is used to filter the infrared rays in the light reflected by the object entering the camera module 30 through the infrared cut filter, and when the camera module is used in a dark environment such as night In the case of the group 30, the full transmission spectrum filter can be switched to the photosensitive path of the photosensitive chip 32 to allow part of the infrared rays of the light reflected by the object entering the camera module 30 to pass through.
  • the color filter element 331 can also be provided at other positions on the photosensitive path of the photosensitive chip 32.
  • the color filter element 331 is provided at the bottom of the optical lens 332, and the optical The bottom of the lens 332, etc., are not limited by this application.
  • the camera module 30 can be implemented as a fixed focus module or a dynamic focus module, wherein when the camera module 30 is a dynamic focus module
  • the camera module 30 further includes a driver 36 connected to the circuit board 31, and the driver 36 is used to controllably drive the lens to move to realize Auto-Focus.
  • FIG. 31 illustrates another specific example of the camera module 30 according to the present invention, wherein the camera module 30 shown in FIG. 31 is a kind of the camera module 30 shown in FIG. 30 Transformation implementation.
  • the camera module 30 includes a circuit board 31, a photosensitive chip 32, a light-transmitting component 33, and a reinforcing board 37, wherein the circuit board 31 has a through Ground is formed in an opening 310A of the circuit board 31, the reinforcing plate 37 is attached to the bottom surface of the circuit board 31, and the photosensitive chip 32 is disposed at the opening 310A of the circuit board 31 and Attached to the reinforcing plate 37, the photosensitive chip 32 is conductively connected to the circuit board 31, and the light-transmitting component 33 is arranged on the photosensitive path of the photosensitive chip 32.
  • the imaging light passing through the display screen 20 first reaches the light-transmitting component 33, and then reaches the photosensitive chip 32 to be sensed by the photosensitive chip 32 for imaging reaction.
  • the reinforcing plate 37 can be implemented as a steel plate, which has a flatter surface than the circuit board 31. When the photosensitive chip 32 is attached to it, it is flatter and has a better imaging effect. In addition, Metal has better thermal conductivity, and steel plate can play a role in heat dissipation.
  • the circuit board 31 has the opening 310A, which is formed through the circuit board 31 to pass the The opening 310A reduces the mounting reference height of the photosensitive chip 32.
  • the top surface of the circuit board 31 is an uneven surface, wherein the area of the circuit board 31 for mounting the photosensitive chip 32 is recessed downward and penetrates the circuit board 31, In this way, the mounting reference height of the photosensitive chip 32 can be further reduced.
  • each camera module has a preset optical back focus requirement, so that the installation height of the optical lens 332 relative to the circuit board 31 can be further reduced while keeping the optical back focus requirement unchanged. Therefore, the overall height of the camera module 30 can be further reduced.
  • the bottom surface of the photosensitive chip 32 is flush with the bottom surface of the circuit board 31, that is, the mounting reference height of the photosensitive chip 32 is the The height of the bottom surface of the circuit board 31, so that under the premise of ensuring the preset optical back focus, the mounting position of the photosensitive chip 32 can be further reduced, so that the overall height of the camera module 30 is further reduced .
  • the size of the opening 310A is consistent with the size of the photosensitive chip 32, so that the opening 310A itself can be used to position and limit the photosensitive chip 32.
  • the photosensitive chip 32 can be directly fitted into the opening 310A and finally attached to the reinforcing plate 37 , Without the need to constantly calibrate and position the mounting position of the photosensitive chip 32 on the circuit board 31 as in the existing COB-based camera module.
  • the photosensitive chip 32 is "detained" in the opening 310A to prevent the The photosensitive chip 32 detaches from the opening 310A or is offset.
  • the camera module 30 further includes a set of leads 34, wherein after the photosensitive chip 32 is installed in the opening 310A of the circuit board 31, the photosensitive chip is realized by the leads 34 The electrical connection between 32 and the circuit board 31.
  • each of the lead wires 34 bends and extends between the photosensitive chip 32 and the circuit board 31, so as to connect the photosensitive chip 32 to the circuit board 31 through the lead wires 34, so that,
  • the circuit board 31 can supply power to the photosensitive chip 32 according to the lead 34, and the photosensitive chip 32 can transmit the collected signal according to the lead 34.
  • the type of the lead 34 is not limited by this application.
  • the lead 34 may be a gold wire, a silver wire, or a copper wire.
  • the lead 34 can be installed between the circuit board 31 and the photosensitive chip 32 through a process of "golding wire" to realize electrical connection between the two.
  • the "golden thread” process is generally divided into two types: the “positive gold line” process and the “reverse gold line” process.
  • the “positive gold wire” process means that in the process of laying out the leads 34, first one end of the lead 34 is formed on the conductive end of the circuit board 31, and then the lead 34 is bent and extended, and finally The other end of the lead 34 is formed on the conductive end of the photosensitive chip 32. In this way, the lead 34 is formed between the photosensitive chip 32 and the circuit board 31.
  • the "reverse gold wire” process means that in the process of laying out the leads 34, first one end of the lead 34 is formed on the conductive end of the photosensitive chip 32, and then the lead 34 is bent and extended, and finally The other end of the lead 34 is formed on the conductive end of the circuit board 31. In this way, the lead 34 is formed between the photosensitive chip 32 and the circuit board 31. It is worth mentioning that the height of the upward protrusion of the lead 34 formed by the "reverse gold wire” process is smaller than the height of the upward protrusion of the lead 34 formed by the "positive gold wire” process. Therefore, it is preferable In this specific implementation, the wire 34 is formed by the "reverse gold wire” process.
  • the camera module 30 further includes a base 35, which is disposed on the circuit board 31 to support the light-transmitting component 33.
  • the light-transmitting component 33 includes a color filter element 331 and an optical lens 332, and the color filter element 331 and the optical lens 332 are sequentially disposed on the photosensitive path of the photosensitive chip 32.
  • the base 35 can be implemented as a traditional plastic bracket, which is prefabricated and attached to the top surface of the circuit board 31; or, the base 35 can be implemented as a mold.
  • the plastic base can be integrally formed on the circuit board 31 and/or the corresponding position of the photosensitive chip 32 through MOB (Molding on Board) and MOC (Molding on Chip) processes.
  • MOB Manufacturing on Board
  • MOC Molding on Chip
  • the MOC process means that the molded base is integrally molded on the circuit board 31 through a molding process, wherein the molded base after molding except for covering the circuit board 31 and on the circuit board 31
  • at least a part of the lead 34 is also covered, or at least part of the lead 34 and the photosensitive chip 32 are covered (wherein at least a part of the photosensitive chip 32 is The non-photosensitive area of the photosensitive chip 32).
  • the color filter element 331 is provided between the optical lens 332 and the photosensitive element, so that the light entering the camera module 30 from the optical lens 332 is After the color filter element 331 is filtered, it can be received by the photosensitive chip 32 and photoelectrically converted, so as to improve the imaging quality of the camera module 30.
  • the color filter element 331 can be used to filter the infrared part of the light entering the camera module 30 from the optical lens 332.
  • the color filter element 331 can be implemented in different types, including but not limited to, the color filter element 331 can be implemented as an infrared cut filter, a full transmission spectrum filter, and others.
  • the filter or a combination of multiple filters can be Switch to be selectively located on the photosensitive path of the photosensitive chip 32. In this way, when the camera module 30 is used in an environment with sufficient light such as daytime, the infrared cut filter can be switched to the photosensitive path.
  • the light-sensing path of the chip 32 is used to filter the infrared rays in the light reflected by the object entering the camera module 30 through the infrared cut filter, and when the camera module is used in a dark environment such as night In the case of the group 30, the full transmission spectrum filter can be switched to the photosensitive path of the photosensitive chip 32 to allow part of the infrared rays of the light reflected by the object entering the camera module 30 to pass through.
  • the color filter element 331 can also be provided at other positions on the photosensitive path of the photosensitive chip 32.
  • the color filter element 331 is provided at the bottom of the optical lens 332, and the optical The bottom of the lens 332, etc., are not limited by this application.
  • the camera module 30 can be implemented as a fixed-focus camera module or a dynamic-focus camera module, where, when the camera module 30 is a dynamic-focus camera module At this time, the camera module 30 further includes a driver 36 electrically connected to the circuit board 31, and the driver 36 is used to controllably drive the lens to move to achieve auto-focus (Auto-Focus).
  • FIG. 32 illustrates another specific diagram of the camera module 30 according to the present invention, wherein the camera module 30 shown in FIG. 32 is a modification of the camera module 30 shown in FIG. 31 Implement.
  • the base 35 is directly installed on the reinforcing plate 37.
  • the installation reference height of the base 35 is reduced, so that the installation reference height of the optical lens 332 installed on the base 35 is reduced, so that the overall height of the camera module 30 The size can be reduced.
  • the base 35 can be implemented as a traditional plastic bracket, which is prefabricated and attached to the top surface of the reinforcing plate 37; or, the base 35 can be implemented as The molded base can be integrally molded on the reinforcing board 37, the circuit board 31 and/or the corresponding position of the photosensitive chip 32 through MOB (Molding on Board) and MOC (Molding on Chip) processes.
  • MOB Manufacturing on Board
  • MOC Molding on Chip
  • the MOC process means that the molded base is integrally formed on the circuit board 31 through a molding process, wherein the molded base after molding except for covering the reinforcing plate 37, the circuit board 31 and the In addition to the electronic components 312 on the circuit board 31, at least a part of the lead 34 is also covered, or at least a part of the lead 34 and the photosensitive chip 32 (wherein, the photosensitive chip At least a part of the area of the chip 32 is the non-photosensitive area of the photosensitive chip 32).
  • FIG. 33 illustrates another specific example of the camera module 30 according to the present invention, wherein the camera module 30 illustrated in FIG. 33 is another type of the camera module 30 illustrated in FIG. 31 Transformation implementation.
  • the base 35 has at least two positioning posts 351 extending downward, and the circuit board 31 has at least two openings 311
  • the positioning column 351 is disposed on the reinforcing plate 37 through the opening 311. In this way, the installation reference height of the base 35 can be reduced, so that the overall height of the camera module 30 Can be reduced.
  • FIGs 34 and 35 illustrate another specific example of the camera module 30 according to the present invention, wherein the camera module 30 shown in Figures 34 and 35 is the camera module shown in Figure 31 Another modification of the module 30 is implemented.
  • the reinforcing plate 37 has a boss 371A or a groove 371 at the opening 310A of the circuit board 31 to pass the boss 371A.
  • the groove 371 is used to adjust the mounting reference height of the photosensitive chip 32.
  • the bottom surface of the photosensitive chip 32 is not flush with the bottom surface of the circuit board 31.
  • the mounting reference height of the photosensitive chip 32 is further reduced, thereby The overall height of the camera module 30 can be further reduced if the design requirements of the preset optical back focus are met. It should be noted that when the reinforcing plate 37 has a groove 371 at the opening 310A of the circuit board 31, the photosensitive chip 32 is mounted on the reinforcing plate 37. At that time, the photosensitive chip 32 The bottom surface of is lower than the bottom surface of the circuit board 31.
  • the reinforcing plate 37 has a boss 371A at the opening 310A of the circuit board 31, compared with the existing camera module based on the COB process, the The mounting reference height of the photosensitive chip 32 is reduced, so that the overall height of the camera module 30 can be reduced while meeting the design requirements of the preset optical back focus.
  • the reinforcing plate 37 has a boss 371A at the opening 310A of the circuit board 31, the photosensitive chip 32 is mounted on the reinforcing plate 37, then, the photosensitive chip 32 The bottom surface of is higher than the bottom surface of the circuit board 31 but lower than the top surface of the circuit board 31.
  • FIG. 36 illustrates another specific example of the camera module 30 according to the present invention, wherein the camera module 30 illustrated in FIG. 36 is a modification of the camera module 30 illustrated in FIG. 33 Implement.
  • the camera module 30 includes a circuit board 31, a photosensitive chip 32, a base 35, an optical lens 332, a color filter element 331, and a reinforcing plate 37, wherein,
  • the circuit board 31 has an opening 310A formed through the circuit board 31, the reinforcing plate 37 is attached to the bottom surface of the circuit board 31, and the photosensitive chip 32 is disposed on the circuit board 31.
  • the opening 310A of the board 31 is attached to the reinforcing plate 37, the photosensitive chip 32 is conductively connected to the circuit board 31, and the color filter element 331 and the optical lens 332 are sequentially It is arranged on the photosensitive path of the photosensitive chip 32. In this way, the imaging light passing through the display screen 20 first reaches the optical lens 332, and after being filtered by the color filter element 331, reaches the photosensitive chip 32 to be sensed by the photosensitive chip 32 for imaging reaction.
  • the optical lens 332 and the base 35 have an integrated structure, that is, the optical lens 332 and the base 35 have been assembled before participating in the assembly of the camera module 30 Into a whole.
  • the optical lens 332 is an integrated lens 333 which is assembled with the base 35 to form a component unit.
  • the base 35 has at least two positioning posts extending downward
  • the circuit board 31 has at least two openings
  • the positioning posts pass through the openings and are disposed on the reinforcing plate. 37.
  • the integrated lens 333 and the photosensitive chip 32 have the same mounting reference surface (ie, the top surface of the reinforcing plate 37). In this way, the overall height of the camera module 30 can be reduced while meeting the design requirements of the preset optical back focus.
  • the integrated lens 333 may further include the color filter unit 331, that is, in this specific implementation, the optical lens 332, the base 35 and the
  • the color filter unit 331 has an integrated structure, that is, the optical lens 332, the base 35 and the color filter unit 331 have been assembled into a whole before participating in the assembly of the camera module 30. In this way, the assembly method of the camera module 30 can be made more compact, so that the overall height of the camera module 30 can be reduced.
  • FIG. 37 illustrates another specific example of the camera module 30 according to the present invention.
  • the camera module 30 includes an optical lens 332, a base 35, a color filter element 331, a photosensitive chip 32, and a circuit board 31, wherein the photosensitive chip 32 is conductively grounded.
  • the base 35 is disposed on the circuit board 31, the lens and the color filter element 331 are sequentially disposed on the photosensitive path of the photosensitive chip 32, wherein the base 35 is used To support the color filter element 331.
  • the imaging light passing through the display screen 20 first reaches the optical lens 332, is filtered by the color filter element 331, and then reaches the photosensitive chip 32 to be sensed by the photosensitive chip 32 for imaging reaction .
  • the camera module 30 further includes a set of leads 34, wherein after the photosensitive chip 32 is attached to the circuit board, the photosensitive chip 32 and the circuit board 31 are realized by the leads 34 Electrical connection between.
  • each of the lead wires 34 bends and extends between the photosensitive chip 32 and the circuit board 31, so as to connect the photosensitive chip 32 to the circuit board 31 through the lead wires 34, so that,
  • the circuit board 31 can supply power to the photosensitive chip 32 according to the lead 34, and the photosensitive chip 32 can transmit the collected signal according to the lead 34.
  • the type of the lead 34 is not limited by this application.
  • the lead 34 may be a gold wire, a silver wire, or a copper wire.
  • the lead 34 can be installed between the circuit board 31 and the photosensitive chip 32 through a process of "golding wire" to realize electrical connection between the two.
  • the "golden thread” process is generally divided into two types: the “positive gold line” process and the “reverse gold line” process.
  • the “positive gold wire” process means that in the process of laying out the leads 34, first one end of the lead 34 is formed on the conductive end of the circuit board 31, and then the lead 34 is bent and extended, and finally The other end of the lead 34 is formed on the conductive end of the photosensitive chip 32. In this way, the lead 34 is formed between the photosensitive chip 32 and the circuit board 31.
  • the "reverse gold wire” process means that in the process of laying out the leads 34, first one end of the lead 34 is formed on the conductive end of the photosensitive chip 32, and then the lead 34 is bent and extended, and finally The other end of the lead 34 is formed on the conductive end of the circuit board 31. In this way, the lead 34 is formed between the photosensitive chip 32 and the circuit board 31. It is worth mentioning that the height of the upward protrusion of the lead 34 formed by the "reverse gold wire” process is smaller than the height of the upward protrusion of the lead 34 formed by the "positive gold wire” process. Therefore, it is preferable In this specific implementation, the wire 34 is formed by the "reverse gold wire” process.
  • a set of electronic components 312 are also provided on the circuit board 31, wherein each of the electronic components 312 can be mounted on the edge of the circuit board 31 at intervals by a process such as SMT (Surface Mount Technology) Area (compared to the mounting position of the photosensitive chip 32).
  • the electronic components 312 include but are not limited to resistors, capacitors, inductors and the like. It is worth mentioning that the photosensitive chip 32 and each of the electronic components 312 may be located on the same side or the opposite side of the circuit board 31 respectively. For example, the photosensitive chip 32 and each of the electronic components 312 may be respectively located on the same side of the circuit board 31, and each of the electronic components 312 may be mounted on the circuit board 31 at intervals. The edge area.
  • the base 35 is supported on the top surface of the circuit board 31, and the base 35 includes a main body 352 and extends downward along the main body 352.
  • the main body 352 and the side wall 353 define a receiving cavity 354.
  • the side wall 353 is supported by the circuit board 31, and the bottom surface of the base 35, the upper surface of the circuit board 31 and the side wall 353 define together
  • the accommodating cavity 354 is formed, wherein the electronic components 312 provided on the circuit board 31 are accommodated in the accommodating cavity 354.
  • the height dimension of the receiving cavity 354 is less than 0.2 mm, for example, 0.1 mm.
  • the base 35 further has at least one accommodating hole 355, and the accommodating hole 355 penetrates the base 35 to communicate with the accommodating cavity 354 And the external environment.
  • the height of the accommodating cavity 354 is lower than that of the electronic components 312 with higher dimensions, such as capacitors. Therefore, when the base 35 is disposed on the circuit board 31, since the height from the bottom surface of the main body 352 of the base 35 to the top surface of the circuit board 31 is smaller than that of the electronic components 312 with relatively high dimensions such as capacitors, If the accommodating hole 355 is not provided, the aforementioned electronic component 312 cannot be accommodated.
  • the function of the accommodating hole 355 is to avoid high-size electronic components 312, so that when the height of the base 35 is reduced, the electronic components 312 can also be accommodated in the base 35. .
  • the overall design height of the base 35 can be reduced, so that the overall height of the camera module 30 can be reduced.
  • the height of the capacitor in the electronic component 312 is 0.38 mm
  • the height of the receiving cavity 354 is 0.1 mm
  • the thickness of the main body 352 of the base 35 is set to 0.4 mm, that is, The height of the receiving hole 355 is 0.4 mm.
  • the accommodating hole 355 should match the arrangement of the electronic component 312 of the circuit board 31, and the horizontal size of the electronic component 312 determines the size of the accommodating hole 355, namely The electronic component 312 should be able to be accommodated in the accommodating hole 355.
  • the base 35 further has a light through hole 356 formed in the main body 352 of the base 35 and corresponding to the photosensitive chip 32.
  • the light-through hole 356 is used to place the color filter element 331.
  • the main body 352 of the base 35 further has a cantilever 357, the cantilever 357 integrally extends from the main body 352 and defines the size of the light-passing hole 356, wherein the color filter element 331 is placed On the cantilever 357, the light received by the module is filtered.
  • the color filter element 331 can be implemented in different types, including but not limited to the color filter element 331 can be implemented as an infrared cut filter, a full transmission spectrum filter Light sheet and other filters or a combination of multiple filters.
  • the color filter element 331 when the color filter element 331 is implemented as a combination of an infrared cut filter and a full transmission spectrum filter, that is, the infrared cut filter and the full transmission spectrum filter can be Switch to be selectively located on the photosensitive path of the photosensitive chip 32. In this way, when the camera module 30 is used in an environment with sufficient light such as daytime, the infrared cut filter can be switched to the photosensitive path.
  • the light-sensing path of the chip 32 is used to filter the infrared rays in the light reflected by the object entering the camera module 30 through the infrared cut filter, and when the camera module is used in a dark environment such as night In the case of the group 30, the full transmission spectrum filter can be switched to the photosensitive path of the photosensitive chip 32 to allow part of the infrared rays of the light reflected by the object entering the camera module 30 to pass through.
  • the color filter element 331 can also be arranged at other positions on the photosensitive path of the photosensitive chip 32.
  • the color filter element 331 is arranged on the bottom of the optical lens 332, and the bottom of the optical lens 332 And so on, this application is not limited.
  • the base 35 can be implemented as a traditional plastic bracket, which is prefabricated and attached to the top surface of the circuit board 31; or, the base 35 It can be implemented as a molded base, which can be integrally formed by an injection molding process and attached to the top surface of the circuit board 31.
  • the accommodating hole 355 is configured as a light through hole, that is, the accommodating hole 355 is connected to the accommodating cavity 354 and the external environment. It should be conceivable that when the camera module 30 is assembled, dirt can easily enter through the accommodating hole 355 and cause stains on the photosensitive chip 32.
  • the camera module 30 further includes a protective member 38, which extends downwardly from the main body 352.
  • the protective member 38 surrounds the photosensitive chip 32, the protective member 38, the main body 352 of the base 35, and the color filter element 331 disposed on the main body 352 A sealed space is formed to prevent dirt from entering the photosensitive chip 32.
  • the protector 38 can be implemented as a part of the main body 352 of the base 35, which extends downward from the main body 352, wherein, when the base 35 is disposed on the When the circuit board 31 is used, the protective member 38 surrounds the photosensitive chip 32, and the protective member 38, the main body 352 of the base 35, and the color filter element 331 disposed on the main body 352 form a seal Space to prevent dirt from entering the photosensitive chip 32.
  • the protective member 38 and the base 35 are arranged separately, as shown in FIG. 38.
  • the protective member 38 is attached to the base 35 through a process such as bonding, thereby lowering the base. 35 Difficulty in molding.
  • the upper end of the accommodating hole 355 can be sealed with a film or glue, etc., to prevent damage to the electronic components 312 on the one hand, and to further enhance the sealing effect on the other hand to prevent dirt from entering the photosensitive chip 32.
  • the camera module 30 can be implemented as a fixed focus module or a dynamic focus module.
  • the camera module 30 is a dynamic focus module
  • the The camera module 30 further includes a driver 36 electrically connected to the circuit board 31 (for example, but not limited, the driver can be implemented as a motor, etc.).
  • the driver 36 is used to controllably drive the lens to move. To achieve Auto-Focus, as shown in Figure 39.
  • the driver 36 includes at least one positioning column 361 extending at the lower end of the driver 36, and at least one positioning column 361 is formed at a position corresponding to the driver 36 At least one of the accommodating holes 355, so that when the driver 36 is installed on the base 35, the positioning post is engaged with the accommodating hole 355 in a pin manner.
  • the positioning post 361 and the accommodating hole 355 can cooperate to improve the installation accuracy of the driver, and the cooperation between the locating post and the accommodating hole 355 can also improve the reliability of the driver 36 Sex.
  • FIG. 40 illustrates another specific example of the camera module 30 according to the present invention, wherein the camera module 30 shown in FIG. 40 is a kind of the camera module 30 shown in FIG. 37 Transformation implementation.
  • the protective member 38 is implemented as a protective film, which is attached to the upper end of the receiving hole 355 (the top surface of the main body 352) Therefore, when the base 35 is disposed on the circuit board 31, the protective film ensures that the accommodating hole 355 and the accommodating cavity 354 are a closed space, so that dirt can also be prevented from entering the photosensitive chip 32.
  • the protective film can also protect the electronic components 312.
  • the protective film may be implemented as a sticker film, or the protective film may be formed on the upper end of the containing hole 355 by a process such as glue potting, so as to seal the containing hole 355.
  • FIG. 41 illustrates another specific example of the camera module 30 according to the present invention, wherein the camera module 30 shown in FIG. 41 is a modification of the camera module 30 shown in FIG. 37 Implement.
  • the electronic components 312 provided on the circuit board 31 are provided on both sides of the circuit board 31, that is, the photosensitive chip 32 is provided On the circuit board 31, the electronic components 312 are located on both sides of the photosensitive chip 32.
  • the electronic components 312 on the circuit board 31 in the existing camera module are arranged around (or on four sides) of the circuit board 31.
  • the protective member 38 is integrally formed on the main body 352 and extends downward from the main body 352.
  • the protective member 38 extends downward from the main body 352 in parallel with respect to the side wall 353 to form a receiving cavity 358 between the side wall 353 and the protective member 38, and
  • the accommodating hole 355 is formed between the side wall 353 and the protector 38 and is connected to the accommodating cavity 358.
  • the electronic components 312 are arranged on the circuit board 31, so that when the base 35 is attached to the top surface of the circuit board 31, The electronic component 312 is received in the receiving cavity 358, and a part of the electronic component 312 higher than the height of the receiving cavity 358 can be received in the receiving hole 355.
  • the position of the side wall 353 and the protective member 38 should be determined by the arrangement of the electronic component 312 on the circuit board 31.
  • the protective member 38 extends downward from the main body 352 in parallel with respect to the side wall 353, and is formed in The electronic component 312 and the photosensitive chip 32 are used to isolate the photosensitive chip 32 and prevent dirt from entering the photosensitive chip 32 through the containing hole 355.
  • the protective member 38 only needs to be formed between the photosensitive chip 32 and the electronic component 312 to isolate the photosensitive chip 32, that is, the protective member. 38 does not need to be arranged around the photosensitive chip 32, but only needs to be formed on both sides of the photosensitive chip 32.
  • the camera module 30 has an extremely narrow side, wherein the extremely narrow side is formed on the side of the circuit board 31 where the electronic components 312 are not arranged, and the photosensitive chip 32.
  • the installation positions of the optical lens 332 are close to the edge of the circuit board 31.
  • the extremely narrow side allows the camera module 30 to be arranged on the edge of a smartphone.
  • FIG. 42 illustrates another specific example of the camera module 30 according to the present invention.
  • the camera module 30 includes an optical lens 332, a base 35, a color filter element 331, a photosensitive chip 32, and a circuit board 31, wherein the photosensitive chip 32 is conductively grounded.
  • the base 35 is integrally formed on the circuit board 31 through a molding process, the optical lens 332 and the color filter element 331 are sequentially disposed on the photosensitive path of the photosensitive chip 32, Wherein, the base 35 is used to support the color filter element 331.
  • the imaging light passing through the display screen 20 first reaches the optical lens 332, is filtered by the color filter element 331, and then reaches the photosensitive chip 32 to be sensed by the photosensitive chip 32 for imaging reaction .
  • this specific example is an optimized solution of an existing camera module based on a molding process.
  • the photosensitive chip and electronic components are usually mounted on the circuit board first, and then the molding process is formed on the circuit board.
  • the base After attaching the filter to the lens holder, attach the lens to the filter assembly to keep the lens on the light-sensing path of the chip, as shown in Figure 42.
  • this assembly method of the prior art greatly limits the height of the camera module.
  • the filter is usually combined with a support to form a filter assembly, and then the filter assembly is mounted on the molded base, because the support is usually It is made by an injection molding process, and the thickness of the part of the support used to support the filter is basically greater than 0.15mm, and the thickness of the filter itself is usually greater than 0.21mm. Therefore, the filter assembly The thickness must be at least greater than 0.36mm.
  • the distance between the lens and the circuit board 31 is equal to the sum of the height of the mold base and the thickness of the filter assembly (at least greater than 0.76 mm), and subject to all the above factors, the prior art camera module
  • the distance between the lens of the group and the circuit board 31 cannot be further reduced, that is to say, the height of the camera module of the prior art cannot be further reduced, which cannot meet the market’s requirements for the thinning and miniaturization of the camera module Demand.
  • the molded base has a depressed step portion for mounting the color filter element 331 thereon. That is to say, compared to the existing camera module based on the molding process, in this specific example, the top surface of the molding base is a non-flat surface with a sunken step.
  • the color filter element support can be eliminated, and the distance between the color filter element 331 and the circuit board 31 can be reduced, thereby reducing the module Highly effective.
  • the molded base has a stepped peripheral groove 350, wherein the color filter element 331 of the light-transmitting component 33 is disposed in the mold
  • the stepped peripheral groove 350 of the plastic base In this way, the distance between the optical lens 332 and the circuit board 31 is no longer limited by the thickness of the color filter element 331 itself, that is, the distance between the optical lens 332 and the circuit board 31 The distance between the two can be reduced to be smaller than the sum of the thickness of the color filter element 331 and the height of the molded base to reduce the overall height of the camera module 30.
  • FIG. 44 illustrates another specific implementation of the photosensitive chip 32B according to the present invention. As shown in FIG. 44, in this specific example, optimization is performed from the perspective of the structure of the photosensitive chip itself to reduce the overall height of the camera module 30.
  • the camera module 30 can be implemented as the camera module described in any one of FIGS. 39 to 43 and a modified implementation thereof.
  • the camera module 30 uses a quantum dot thin film photosensitive chip 32A to replace the traditional CMOS/CCD photosensitive chip.
  • the quantum dot thin film photosensitive chip 32B has the dual advantages of plane size and height size.
  • the use of the quantum dot film photosensitive chip 32B can reduce the size of the photosensitive chip in the Z-axis direction.
  • the quantum dot film photosensitive chip 32B includes a color filter 321B, a top electrode 322B, a quantum dot film 323B, a bottom electrode 324B, and a pixel circuit 325B from top to bottom, wherein the top electrode 322B, The quantum dot film 323B and the bottom electrode 324B constitute the photosensitive layer of the quantum dot film photosensitive chip 32B.
  • the quantum dot film 323B is electrically connected to two electrodes.
  • the current and/or voltage between the two electrodes is The intensity of the light received by the quantum dot film 323B is related; the pixel circuit 325B includes a charge storage and reading circuit.
  • the color filter can be implemented as a Bayer filter or a Mono filter, which is not limited by this application.
  • the light passing through the color filter 321B is irradiated on the photosensitive layer, and the photosensitive layer generates electric charges between the top electrode and the bottom electrode under a given bias voltage, so that the voltage During the integration period, it accumulates in the charge storage.
  • the pixel circuit 325B reads the electrical signal and transmits it to the chip.
  • the electrical signal reflects the signal of the light intensity absorbed by the photosensitive layer during the integration period.
  • the electrical signal is transmitted through the color filter 321B.
  • the intensity of the light generated by the light so the electrical signal can correspond to the light passed by the color filter 321B, that is, if the color filter 321B is red, it means that only red light can pass through, then the color filter 321B
  • the electrical signal generated by the photosensitive layer corresponding to the bottom represents the intensity of red light in the light at that location.
  • the quantum dot thin film photosensitive chip 32B Compared with existing CMOS or CCD chips, the quantum dot thin film photosensitive chip 32B has a relatively smaller thickness.
  • FIG. 45 illustrates another specific schematic diagram of the photosensitive chip 32B of the camera module 30 according to the present invention, wherein the photosensitive chip 32B shown in FIG. 45 is a kind of the photosensitive chip shown in FIG. 44 Transformation implementation.
  • the quantum dot film 323B of the photosensitive layer is configured to respond to light of a selected color or color group, for example, photoconductive materials and wavelength selection can be combined.
  • the absorbing material (such as the material forming the color filter 321B array) forms a color sensitive pixel to achieve the color sensitivity.
  • the quantum dot film 323B can be configured to be sensitive to three colors of red (R), green (G), and blue (B), respectively, so that the color filter 321B in the photosensitive chip can be directly eliminated.
  • the color-sensitive pixel In the working process, when light passes through the color-sensitive pixel, the color-sensitive pixel absorbs the corresponding light, converts the light intensity of this wavelength or wavelength band into an electrical signal, and transmits it to the chip through the pixel circuit 325B to process imaging , And the rest of the light continues to propagate forward and will not affect the photoelectric conversion of the pixel.
  • this technical solution can not only reduce the Z-direction size of the photosensitive chip, but also because there is no light filtering by the color filter 321B, the photosensitive chip can receive more light, and the imaging of the photosensitive chip is clearer. .
  • the use of the quantum dot thin film photosensitive chip 32B can reduce the size of the photosensitive chip in the XY axis direction. Specifically, due to the high light transmittance of the quantum dot film 323B, after being configured as a material sensitive to a certain wavelength or wavelength band, the quantum dot film 323B can only absorb the corresponding light, while other light It will transmit light through the film and continue to propagate forward. Therefore, a plurality of quantum dot films 323B sensitive to light of a certain wavelength or wavelength band can be vertically arranged.
  • the light intensity information of multiple wavelengths or bands can be obtained at the same time at a pixel position.
  • three quantum dot films 323B of red color-sensitive pixels, green color-sensitive pixels, and blue color-sensitive pixels are arranged vertically.
  • the red color-sensitive pixels When light passes through the red color-sensitive pixels, the red light is absorbed and converted into electrical signals, and the remaining light continues to move forward.
  • Propagation after passing through the green color-sensitive pixels, the green light is absorbed and converted into electrical signals, and the remaining light continues to travel forward.
  • blue light is also absorbed and converted into electrical signals. Therefore, the light intensity information of multiple wavelengths or wavelength bands can be obtained at the same time at a point of the size of a pixel.
  • Each layer of quantum dot film 323B can absorb and transform any kind of light required, and only the quantum dots The film 323B is configured to be sensitive to the required light.
  • the traditional color filter 321B since the traditional color filter 321B is not used, not only a stronger light intensity can be obtained, but also a higher resolution can be obtained for the photosensitive chip of the same specification.
  • the method adopted in this solution can reduce the size of the photosensitive chip in the XY direction, thereby further reducing the plane size of the camera module 30.
  • the quantum dot film 323B in the quantum dot film 323B chip involved in the present application can be prepared by the following process.
  • the quantum dot material can be processed by molten pool casting to form the quantum dot film 323B.
  • the molten pool casting may include depositing the measured quantum dot material onto the substrate and allowing the solution to evaporate, the resulting film may or may not be cracked.
  • the quantum dot material may be processed by electrodeposition to form the quantum dot film 323B.
  • the quantum dot film 323B can be formed by processing the quantum dot material by vapor deposition.
  • the quantum dot film 323B can be formed by spraying the quantum dot material with a spray gun.
  • Spray gun spraying can include treatment from gas.
  • the spray gun spray may include entrainment in the solvent.
  • the quantum dot material can be processed by growth from a solution to form the quantum dot film 323B.
  • the growth of the film from the solution may include cross-linking.
  • the crosslinking agent may be attached to at least part of the substrate to crosslink the quantum dots.
  • the quantum dots can become cross-linked and grow on the substrate where the cross-linking agent is attached, and the growth process can be similar to a seed crystal The process of growth. Since the growth occurs at a position where the crosslinking agent has been attached, the formation of a patterned film on the substrate can be achieved by depositing the crosslinking agent along the patterned substrate.
  • the quantum dot material can be processed by a hydrophobic system to form a film.
  • the hydrophobic system may enable the deposition of a single layer of the quantum dot film 323B of quantum dots, and the single layer of the quantum dot film 323B may be deposited in a pattern.
  • the quantum dot film 323B can be formed by accelerating or evaporating the quantum dot material in the gas phase.
  • the quantum dot film 323B can be formed by processing the quantum dot material by a photoprinting method.
  • the quantum dot film 323B can be formed by processing the quantum dot material by an inkjet printing method.
  • the camera module 30 disposed under the display screen can adopt but not limited to the technical solutions listed above and their modifications, so that the size of the camera module 30 in the height direction can be reduced. Meet the needs of thin smartphones.
  • the photosensitive layer includes the top electrode 322B, the quantum dot film 323B, and the bottom electrode 324B.
  • the top electrode 322B and the bottom electrode 324B of the photosensitive layer are arranged in a horizontal distribution, thereby reducing the influence on light propagation.
  • the photosensitive layer further includes a nanocrystalline film 326B and a substrate 327B, wherein the nanocrystalline film 326B is located above the top electrode 322B and the bottom electrode 324B, and the nanocrystalline film 326B is Transparent material, the substrate 327B is located at the lowest end of the photosensitive layer.
  • the top electrode 322B and the bottom electrode 324B are located between the nanocrystalline film 326B and the substrate 327B, and at least part of the nanocrystalline film 326B extends to the substrate 327B.
  • the entire photosensitive layer may be a lateral stack structure, the top electrode 322B of the photosensitive layer is located between the nanocrystalline film 326B and the substrate 327B, and the bottom electrode 324B of the photosensitive layer is located at the Between the nanocrystalline film 326B and the substrate 327B, the bottom electrode 324B and the top electrode 322B are respectively supported on the substrate 327B.
  • the top electrode 322B and the bottom electrode 324B do not overlap in the height direction.
  • the top electrode 322B and the bottom electrode 324B are horizontally arranged between the nanocrystalline film 326B and the substrate 327B.
  • the substrate 327B may be a glass substrate 327B
  • the top electrode 322B may be a metal contact
  • the bottom electrode 324B may be a metal contact.
  • the quantum dot film 323B covers the top of the substrate 327B and the bottom electrode 324B is located on the top of the quantum dot film 323B.
  • the photosensitive layer includes the top electrode 322B, the quantum dot film 323B, and the bottom electrode 324B.
  • the top electrode 322B and the bottom electrode 324B at least partially overlap in the height direction.
  • the top electrode 322B is located at the top of the photosensitive layer, and the bottom electrode 324B is located below the top electrode 322B.
  • the photosensitive layer further includes a nanocrystalline film 326B and a substrate 327B, wherein the nanocrystalline film 326B is located between the top electrode 322B and the bottom electrode 324B, and the substrate 327B is located on the bottom electrode 324B Below.
  • the top electrode 322B is made of a transparent material, thereby reducing the influence of light passing through the top electrode 322B.
  • the quantum dot film 323B is located between the substrate 327B and the bottom electrode 324B.
  • FIGS. 48A to 51C an assembling method of the camera module 30 and the display screen 20 with the light through hole 200 according to the present invention is illustrated. It is understandable that the display screen 20 may also have the light guide channel 500 and/or the light through hole 200. Here, the light through hole 200 passing through in the height direction is taken as an example for illustration.
  • the present invention provides an assembly system 60, wherein the assembly system 60 includes a clamping device 61, a test unit 62, and a supporting platform 63, wherein the clamping device 61 is located above the supporting platform 63 for clamping
  • the camera module 30 and the display screen 20 are supported on the supporting platform 63.
  • the clamping device 61 can clamp the camera module 30 to drive the camera module 30 to move, thereby changing the relative relationship between the camera module 30 and the display screen 20 supported on the support platform 63. Position, so as to obtain the imaging effect of the camera module 30 when the camera module 30 and the display screen 20 are in each position through the test unit 62, and then determine the camera module 30 and the display screen 20 Installation location.
  • the assembly system 60 further includes a loading unit 64, wherein after the relative position of the camera module 30 and the display screen 20 is determined based on the test unit 62, the loading unit 64 can give the camera module The group 30 and/or the display screen 20 are loaded, so that the camera module 30 and the display screen 20 can be fixed at a confirmed suitable installation position.
  • the test unit 62 includes a light source 621, a target plate 622, and a sensing device 623, wherein the light source 621 is arranged near a light incident position of the camera module 30, and the target plate 622 It may be located in front of the light source 621, that is, the light source 621 is located between the target plate 622 and the camera module 30.
  • the target plate 622 may also be located behind the light source 621, that is, the target plate 622 is located between the light source 621 and the camera module 30.
  • the light source 621 may also be located on the target plate 622 and can provide uniform light to the target plate 622.
  • the light source 621 emits light during operation, and the sensing device 623 obtains a real-time working image of the target plate 622 from the camera module 30, based on the working image of the camera module 30 The position is adjusted until the imaging effect of the camera module 30 meets expectations.
  • the method for assembling the display screen 20 may be as follows: firstly, adjust the distance between the camera module 30 and the display screen 20 to an appropriate value, and then adjust the optical axis of the camera module 30 and the The center of the light-through hole 200 of the display screen 20 overlaps the two.
  • the latter adjustment can be:
  • the sensing device 623 can sense the optimal position of the two, especially the overlap of the optical axis, and then use one of them as a reference ( For example, using the display screen 20 as a reference), calculate another relative adjustment amount (the adjustment amount of the camera module 30 relative to the display screen 20), and make corresponding adjustments according to the adjustment amount. After the adjustment, again Calculate the optical axis of the two, if the detection result is in line with expectations, then assemble the module at this position, otherwise, continue to adjust until the positions of the two reach the best state, that is, the camera module 30 has the best shooting At the same time, the assembly of the camera module 30 and the display screen 20 does not affect the installation and operation of other components.
  • the adjustment of the position of the camera module 30 relative to the display screen 20 is also within the scope of allowing the camera module 30 to be installed.
  • the camera module 30 is located above the display screen 20, and the camera module 30 is located above the supporting platform 63.
  • the light source 621 and the target plate 622 are located below the display screen 20.
  • the display screen 20 is supported on the support platform 63 with its back side facing upward.
  • the camera module 30 is installed on the back side of the display screen 20 in the subsequent steps.
  • the clamping device 61 and the loading unit 64 work above the support platform 63, so that the camera module 30 and the display screen 20 can be observed in time above the support platform 63 Relative position to facilitate operation, especially in the case of manual operation.
  • the assembling process of the camera module 30 and the display screen 20 can be completed by a complete set of automated equipment.
  • the camera module 30 is located below the display screen 20, the light source 621 and the target plate 622 are located above the display screen 20, and the camera module 30 Light from top to bottom is received for photoelectric conversion. At this time, if it is necessary to observe the relative position of the camera module 30 and the display screen 20, it is necessary to observe from below the supporting platform 63.
  • the display screen 20 is located in a horizontal position. Based on the different orientations of the back side of the display screen 20, the camera module 30 may be located above the display screen 20 or the display Below the screen 20.
  • the display screen 20 can be located in an inclined position, for example, the support platform 63 is inclined, and the position of the camera module 30 can be relative to the position of the display screen 20 through the clamp The holding device 61 is adjusted.
  • the display screen 20 may also be located in a vertical position, for example, the support platform 63 is located in a vertical position, and the camera module 30 and the display screen 20 are relatively adjusted in the vertical position respectively.
  • the supporting platform 63 has an installation space 630, wherein the installation space 630 is located on the supporting platform 63, and the display screen 20 can be fixedly accommodated in the installation space 630.
  • the supporting platform 63 has a test hole 6300, wherein the installation space 630 is connected to the test hole 6300.
  • the test hole 6300 is corresponding to the light through hole 200 of the display screen 20, so that light can enter the display screen through the test hole 6300
  • the light-passing hole 200 of 20 then reaches the camera module 30 through the light-passing hole 200.
  • the test hole 6300 penetrates the support platform 63 so that light from one side of the support platform 63 can pass through the test hole 6300 to the other side of the support platform 63.
  • the test hole 6300 can be set in a certain shape according to the needs of the test.
  • the shape of the test hole 6300 is conical. The closer to the display screen 20, the smaller the inner diameter of the test hole 6300, and the farther away from the display screen 20, the larger the inner diameter of the test hole 6300.
  • the test hole 6300 can play a role of concentrating light.
  • the supporting platform 63 includes a platform main body 631 and a fixing assembly 632, wherein the fixing assembly 632 is disposed on the platform main body 631, and the fixing assembly 632 is used to fix the display screen 20.
  • the fixing assembly 632 is integrally formed on the platform body 631, the installation space 630 is formed in the platform body 631, and the fixing assembly 632 is disposed on the platform body 631 and is accommodated in the platform body 631. ⁇ installation space 630.
  • the display screen 20 can be installed on the fixing assembly 632. With the assistance of the fixing assembly 632, the relative position of the display screen 20 and the platform main body 631 is fixed, so that only the camera module 30 is needed. The relative position of the display screen 20 and the camera module 30 can be adjusted to find a position of the camera module 30 with respect to the display screen 20 that has a better imaging effect.
  • the fixing assembly 632 is detachably installed on the platform body 631.
  • the size of the fixing component 632 can be adjusted to suit the size of the display screen 20. For example, if the installation space 630 provides an area of 7 inches, the fixing assembly 632 can provide an area of about 6 inches for installing the display screen 20. If it is necessary to assemble the display screen 20 of 5 inches, the fixing The component 632 can be replaced with the fixed component 632 capable of providing an area of about 5 inches to adapt to the adjustment of the size of the display screen 20.
  • the clamping device 61 clamps the camera module 30 and the display screen 20 respectively, and then changes the camera module 30 and the display screen 20. Find a suitable assembly position based on the relative position.
  • the supporting platform 63 supports the camera module 30, the clamping device 61 clamps the display screen 20, and then the clamping device 61 drives the display screen 20 Movement to change the position of the display screen 20, so that the relative position of the camera module 30 and the display screen 20 is changed under the premise of keeping the camera module 30 fixed, until a satisfactory imaging effect is obtained.
  • the assembling system 60 includes a limiting mechanism 65, wherein the limiting mechanism 65 is disposed on the display screen 20 and located at the light-passing hole 200 of the display screen 20. Location nearby.
  • the limit mechanism 65 is used to limit the position of the camera module 30 to improve the alignment accuracy of the camera module 30 and the display screen 20.
  • the limit mechanism 65 can limit the change of the position of the camera module 30.
  • the position adjustment range of the camera module 30 in a single time is too large, which is beneficial to improve the camera module 30 and the display screen 20.
  • the alignment accuracy is beneficial to improve the camera module 30 and the display screen 20.
  • the limit mechanism 65 is arranged on the back side of the display screen 20 and is aligned with the light-passing hole 200 of the display screen 20, so that when the camera module 30 is installed on the limit After the positioning mechanism 65, the camera module 30 can be aligned with the light-passing hole 200 of the display screen 20.
  • the camera module 30 installed after the limiting mechanism 65 is aligned with the light-passing hole 200 of the display screen 20 and the relative position of the camera module 30 and the limiting mechanism 65 Can be fine-tuned.
  • the relative position of the module 30 and the display screen 20 The adjustment space provided by the limit mechanism 65 is limited, and the relative position adjustment of the camera module 30 and the display screen 20 can only be adjusted within a small range, so that the camera module can be adjusted during this adjustment process.
  • the position of 30 will not be greatly shifted, so as to help improve the alignment accuracy of the camera module 30 and the display screen 20.
  • the camera module 30 After determining the relative position of the camera module 30 and the display screen 20 based on the imaging effect of the camera module 30, fix the relative position of the camera module 30 and the limit mechanism 65 to fix the The relative position of the camera module 30 and the display screen 20.
  • the camera module 30 is assembled to the display screen 20, and the camera module 30 can obtain sufficient light through the light-passing hole 200 of the display screen 20 and obtain the desired imaging effect.
  • the limiting mechanism 65 is provided on the camera module 30. Specifically, first install the limiting mechanism 65 and the camera module 30 to each other, and then fix the limiting mechanism 65 to the display screen 20 so that the limiting mechanism 65
  • the camera module 30 can correspond to the light through hole 200 of the display screen 20.
  • the limiting mechanism 65 provides a certain adjustment space for the camera module 30 installed in the limiting mechanism 65.
  • the relative position of the camera module 30 and the limit mechanism 65 can be adjusted based on the imaging effect of the camera module 30, thereby confirming the The relative position of the camera module 30 and the display screen 20.
  • the camera module 30 has already been installed on the limiting mechanism 65, so it can be based on the camera module 30
  • the imaging effect determines the relative position of the limiting mechanism 65 and the display screen, and then positioning the limiting mechanism 65 on the display screen 20.
  • the fixing method between the limit mechanism 65 and the display screen 20 can be glued or welded.
  • the limit mechanism 65 may be installed on the camera module 30 or the display screen 20 first. Then, based on the imaging effect of the camera module 30, the relative positions of the camera module 30 and the limit mechanism 65 are adjusted within the adjustable range of the limit mechanism 65, thereby adjusting the camera module 30 And the relative position of the display screen 20.
  • the limiting mechanism 65 has a limiting channel 650, and the lens assembly of the camera module 30 can be at least partially accommodated in the limiting channel 650.
  • the limiting channel 650 of the limiting mechanism 65 is aligned with the light-through hole 200 of the display screen 20.
  • the limiting mechanism 65 and the camera module 30 cooperate with each other so that when the camera module 30 is installed on the limiting mechanism 65, the limiting mechanism 65 can act on the camera module 30. At the same time, the camera module 30 can make adjustments within a certain range in the limit channel 650 provided by the limit mechanism 65 to change the camera module 30 and the display screen 20. Relative position.
  • the limiting mechanism 65 may include a sleeve 651 and a limiting component 652, wherein the sleeve 651 surrounds the limiting channel 650.
  • the limiting component 652 includes a first limiting member 6521 and a second limiting member 6522, wherein the first limiting member 6521 is disposed on the inner wall of the sleeve 651, and the second limiting member 6522 is arranged on the outer wall of the lens assembly of the camera module 30.
  • the first limiting member 6521 and the second limiting member 6522 are relatively matched to limit the position of the camera module 30.
  • the first limiting member 6521 may be a directional groove, and the second limiting member 6522 may be a protrusion.
  • the second The limiting member 6522 extends into the first limiting member 6521.
  • the first limiting member 6521 may be a protrusion, and the second limiting member 6522 may be a groove.
  • the first limiting member 65 The positioning member 6521 extends into the second limiting member 6522.
  • the first limiting member 6521 and the second limiting member 6522 are not completely fixed and engaged. There is still a certain moving space between the first limiting member 6521 and the second limiting member 6522, so that the camera module 30 is limited by the limiting component 652 and is relative to the sleeve. The position of 651 can be further adjusted.
  • the inner wall of the sleeve 651 may be provided with a threaded structure
  • the upper outer wall of the camera module 30, that is, the outer wall of the lens barrel of the lens assembly may be at least partially provided with a threaded structure
  • the camera module 30 When the camera module 30 is installed on the limit mechanism 65, not only the relative position of the camera module 30 and the limit mechanism 65, especially the axis of the camera module 30 and the The center of the light-through hole 200 of the display screen 20 can be adjusted relatively, and the distance between the camera module 30 and the display screen 20 can also be adjusted.
  • the limit mechanism 65 can be installed on the display screen 20 through the control station.
  • the distance between the limit mechanism 65 and the display screen 20 is used to adjust the distance between the camera module 30 and the display screen 20.
  • the center of the sleeve 651 of the limiting mechanism 65 is aligned with the center of the light-passing hole 200 of the display screen 20. Further, preferably, the center of the sleeve 651 of the limiting mechanism 65 is aligned with the center of the test hole 6300 of the test platform 63.
  • the limiting mechanism 65 needs to be installed on the display screen 20.
  • the original limit mechanism 65 and the display screen 20 are independent of each other.
  • the assembling method of the camera module 30 includes the following steps: installing the limiting mechanism 65 on the display screen 20, installing the camera module 30 on the limiting mechanism 65, relative to the limiting mechanism 65
  • the mechanism 65 adjusts the position of the camera module 30 to achieve the purpose of adjusting the position of the camera module 30 relative to the display screen 20, and confirms the camera module based on the imaging effect of the camera module 30
  • the relative position of the camera module 30 and the display screen 20 is fixed by fixing the camera module 30 to the limit mechanism 65 to fix the camera module 30 and the display screen 20 in the adjusted position.
  • the limiting mechanism 65 can be installed on the display screen 20 by aligning the limiting mechanism 65 with the light-passing hole 200 of the display screen 20.
  • the limiting mechanism 65 in the process of installing the limiting mechanism 65 on the display screen 20, it may be based on the limiting channel 650 of the limiting mechanism 65 and the light-passing hole of the display screen 20.
  • the degree of alignment of 200 fixes the limiting mechanism 65 to the display screen 20. In this way, in the subsequent adjustment process, the adjustment of the relative position between the camera module 30 and the display screen 20 only needs to adjust the distance between the camera module 30 and the limit mechanism 65 relative position.
  • the method of assembling the camera module 30 can also be implemented as the following steps: installing the camera module 30 on the limiting mechanism 65, installing the limiting mechanism 65 on the display screen 20, and
  • the limit mechanism 65 adjusts the position of the camera module 30 to achieve the purpose of adjusting the position of the camera module 30 relative to the display screen 20, and confirms the position of the camera module 30 based on the imaging effect of the camera module 30.
  • the relative positions of the camera module 30 and the display screen 20 are fixed to the camera module 30 and the adjusted position of the display screen 20 by fixing the camera module 30 to the limiting mechanism 65.
  • the limiting mechanism 65 can be installed on the display screen 20 based on the imaging effect of the camera module 30.
  • the assembly method of the camera module 30 can also be implemented as the following steps: adjust the relative position of the camera module 30 and the display screen 20 to a more satisfactory position, wherein the limit mechanism 65 is Installed on the display screen 20, and then adjust the relative position of the camera module 30 and the limit mechanism 65 within the adjustment range of the limit mechanism 65 for the camera module 30 to adjust the The relative position of the camera module 30 and the display screen 20 mechanism.
  • the limiting mechanism 65 can be fixed to the display screen 20 so that the camera module 30 can pass the limiting mechanism.
  • the mechanism 65 can be adjusted in a relatively small range to improve the adjustment accuracy of the camera module 30 and the limit mechanism 65.
  • the back side of the display screen 20 is implemented as a plane structure, that is, the back plate of the display screen 20 is a plane structure, and the limit mechanism 65 is installed on the The back panel of the display screen 20.
  • the limit mechanism 65 can freely adjust the position on the display screen 20 to the limit of the limit mechanism 65
  • the position channel 650 is aligned with the light-through hole 200 of the display screen 20, or the camera module 30 installed on the position limiting mechanism 65 obtains the expected imaging effect.
  • the relative position of the camera module 30 and the display screen 20 can also be directly adjusted.
  • the The camera module 30 can be directly fixed to the display screen 20 by means of gluing or welding, and the positions of the two are kept in the adjusted position.
  • the position between the limit mechanism 65 and the camera module 30 It can be fixed by glue or welding.
  • the limit mechanism 65 when the camera module 30 is installed on the limit mechanism 65, when the relative position of the camera module 30 and the limit mechanism 65 is adjusted, the limit mechanism 65 There is a gap in the position channel 650 for fine adjustment between the camera module 30 and the limit mechanism 65.
  • the space of the limiting channel 650 of the limiting mechanism 65 not occupied by the camera module 30 can be The gel is filled to fix the relative position of the camera module 30 and the limiting mechanism 65.
  • the limit mechanism 65 when the camera module 30 is installed on the limit mechanism 65, when the relative position of the camera module 30 and the limit mechanism 65 is adjusted, the limit mechanism 65 There is a gap in the position channel 650 for fine adjustment between the camera module 30 and the limit mechanism 65.
  • an insert can be inserted between the camera module 30 and the sleeve 651 of the limiting mechanism 65, To fix the relative position of the camera module 30 and the limiting mechanism 65.
  • the insert restricts the displacement of the camera module 30 relative to the limiting mechanism 65.
  • the limit mechanism 65 when the camera module 30 is installed on the limit mechanism 65, when the relative position of the camera module 30 and the limit mechanism 65 is adjusted, the limit mechanism 65 There is a gap in the position channel 650 for fine adjustment between the camera module 30 and the limit mechanism 65.
  • the relative position between the camera module 30 and the limiting mechanism 65 When the relative position between the camera module 30 and the limiting mechanism 65 is confirmed, it may be outside the lens barrel of the camera module 30 or the sleeve of the limiting mechanism 65 A pad is provided on the inner wall of 651, and then the camera module 30 and the limiting mechanism 65 are fixed by welding.
  • the gel used to fix the camera module 30 and the limiting mechanism 65 may be a thermoplastic fluid.
  • the thermoplastic fluid fills the gap between the camera module 30 and the limiting mechanism 65 After the gap, the thermoplastic fluid of the camera module 30 and the limiting mechanism 65 can be cured by heating.
  • the sleeve 651 of the limiting mechanism 65 is set as an opaque material to reduce the impact of external light on the camera module 30 located in the limiting channel 650 of the limiting mechanism 65 influences.
  • the display screen 20 is an LCD display screen 20
  • the backplane layer 27 can actively emit light
  • the opaque limit mechanism 65 can reduce the effect of the backplane layer 27 on the camera module. Group 30 influence.
  • the limiting mechanism 65 further includes a connecting portion 653 for connecting the sleeve 651 to the display screen 20.
  • the sleeve 651 has a free end 6511 and a connecting end 6512, wherein the free end 6511 and the connecting end 6512 are located at both ends, respectively, and the connecting portion 653 is located at all of the sleeve 651. ⁇ 6512.
  • the connecting portion 653 may be configured to extend outward from the connecting end 6512 of the sleeve 651.
  • the connecting portion 653 of the limiting mechanism 65 can be connected to the display screen 20.
  • the connecting portion 653 increases the size of the area where the limit mechanism 65 can be connected to the display screen 20, so as to facilitate the stable connection between the limit mechanism 65 and the display screen 20. It is advantageous for the camera module 30 to be firmly installed on the display screen 20 through the limiting mechanism 65.
  • a specific embodiment of the limiting mechanism 65 according to the present invention is illustrated.
  • the relative positions of the limiting mechanism 65 and the display screen 20 are fixed in advance, and only the relative positions of the camera module 30 and the limiting mechanism 65 need to be adjusted.
  • the limiting mechanism 65 is combined with the display screen 20 to help enhance the bonding strength of the limiting mechanism 65 and the display screen 20.
  • the limiting mechanism 65 is fitted to the display screen 20.
  • the display screen 20 when the display screen 20 is an OLED display screen 20, the display screen 20 includes the cover layer 21, the touch layer 22, the polarization layer 23, the encapsulation layer 24, and the pixels For the layer 25, the driving circuit layer 26, and the backplane layer 27, please refer to the aforementioned drawings.
  • the back side of the display screen 20 is a plane structure, that is, the backplane layer 27 is a plane structure, and the display screen 20 has the light-through hole 200 penetrating at least part of the display screen.
  • the light through hole 200 penetrates through each layer except the cover layer 21 in the height direction.
  • the light through hole 200 can also penetrate through the layers of the display screen 20 completely in the height direction.
  • At least part of the limiting mechanism 65 is fitted into the driving circuit layer 26 and the backplane layer 27.
  • the limiting mechanism 65 further includes at least one connecting leg 654, wherein the connecting leg 654 extends from the connecting end 6512 of the sleeve 651 along the length direction of the sleeve 651.
  • the number of the connecting pins 654 may be multiple.
  • the display screen 20 has at least one embedding channel 203, wherein the embedding channel 203 is located around the light-passing hole 200 of the display screen 20, and the embedding channel 203 is matched with the limiting mechanism 65 The connecting feet 654.
  • the fitting channel 203 extends from the backplane layer 27 to the driving circuit layer 26.
  • the embedding channel 203 is set to avoid the circuit structure of the driving circuit layer 26 to reduce the impact on the work efficiency of the display screen 20.
  • the connecting leg 654 of the limiting mechanism 65 extends into the fitting channel 203 of the display screen 20. It may be that the connecting leg 654 is fitted into the fitting channel 203. It is also possible that the fitting passage 203 is slightly larger than the connecting leg 654. After the connecting leg 654 extends into the fitting passage 203, the fitting passage 203 still has a gap, which can face inward at this time. Filled with glue so that the connecting leg 654 of the limiting mechanism 65 can be fixed to the fitting channel 203 of the display screen 20, so that the limiting mechanism 65 can be firmly installed on the Display 20.
  • fitting channel 203 may be formed on the backplane layer 27 and the driving circuit layer 26 of the display screen 20 by opening holes. For example, a hole is drilled from the backplane layer 27 of the display screen 20 toward the driving circuit layer 26.
  • the fitting channel 203 may be formed in the sleeve 651 and the connecting leg 654 may be formed in the display screen 20.
  • the connecting feet 654 on the display screen 20 extend into the fitting channel 203 of the sleeve 651, thereby facilitating the limiting Fixing between the positioning mechanism 65 and the display screen 20.
  • the connecting pins 654 can be formed on the display screen 20 by deposition, evaporation, or the like.
  • the connecting pin 654 may be integrally formed on the display screen 20.
  • the fitting channel 203 can be formed in the sleeve 651 and the display screen 20 respectively, and the connecting feet 654 can be respectively fitted in the sleeve 651 And the display screen 20.
  • one end of the connecting leg 654 extends into the fitting channel 203 of the display screen 20, and then the other end of the connecting leg 654 extends into the fitting channel 203 of the sleeve 651, respectively
  • the connecting foot 654 and the display screen 20 and the connecting foot 654 and the sleeve 651 are fixed to fix the sleeve 651 to the display screen 20.
  • FIG. 54 another specific embodiment of the limiting mechanism 65 according to the present invention is illustrated.
  • the display screen 20 has a mounting channel 201, wherein the mounting channel 201 is penetrated through the light through hole 200.
  • the light-passing hole 200 penetrates each layer of the display screen 20 except the cover layer 21 in the height direction, and the mounting channel 201 is exposed on the back side of the display screen 20.
  • the inner diameter of the mounting channel 201 is larger than the inner diameter of the light through hole 200. At least part of the limiting mechanism 65 can be accommodated in the mounting channel 201.
  • the mounting channel 201 formed on the backplane layer 27 of the display screen 20 as an example.
  • the mounting channel 201 penetrates through the backplane layer 27 and the inner diameter of the mounting channel 201 is larger than the inner diameter of the light through hole 200.
  • the mounting channel 201 penetrates the light-passing hole 200 of the backplane layer 27 in the height direction. The light from the outside of the display screen 20 passes through the light through hole 200 and the mounting channel 201, and then is received by the camera module 30.
  • the mounting channel 201 has a certain size, and the limiting mechanism 65 has a certain size.
  • the size of the mounting channel 201 is larger than the size of the limiting mechanism 65 so that at least part of the limiting mechanism 65 can be accommodated in the mounting channel 201.
  • the limiting mechanism 65 needs to be installed on the display screen 20.
  • the original limit mechanism 65 and the display screen 20 are independent of each other.
  • the assembling method of the camera module 30 includes the following steps: installing the limiting mechanism 65 on the mounting channel 201 of the display screen 20, installing the camera module 30 on the limiting mechanism 65, Adjust the position of the camera module 30 relative to the limit mechanism 65 to achieve the purpose of adjusting the position of the camera module 30 relative to the display screen 20, based on the imaging effect of the camera module 30 Confirm the relative position of the camera module 30 and the display screen 20, fix the camera module 30 by fixing the camera module 30 on the limit mechanism 65 and after the display screen 20 is adjusted s position.
  • the limiting mechanism 65 can be limited to a certain extent, so as to facilitate the positioning of the limiting mechanism 65 and the display screen 20. Accuracy.
  • the limit mechanism 65 in the process of installing the limit mechanism 65 on the installation channel 201 of the display screen 20, it may be based on the limit channel 650 of the limit mechanism 65 and the display screen 20.
  • the degree of alignment of the light-passing hole 200 fixes the limiting mechanism 65 to the display screen 20. In this way, in the subsequent adjustment process, the adjustment of the relative position between the camera module 30 and the display screen 20 only needs to adjust the distance between the camera module 30 and the limit mechanism 65 relative position.
  • the method of assembling the camera module 30 can also be implemented as the following steps: installing the camera module 30 on the limiting mechanism 65, and installing the limiting mechanism 65 on the display screen 20.
  • the effect is based on confirming the relative position of the camera module 30 and the display screen 20, and fix the camera module 30 and the display screen by fixing the camera module 30 to the limit mechanism 65. 20 Adjusted position.
  • the limiting mechanism 65 can be limited to a certain extent, so as to facilitate the positioning of the limiting mechanism 65 and the display screen 20. Accuracy.
  • the limiting mechanism 65 can be installed on the display screen 20 based on the imaging effect of the camera module 30.
  • the assembly method of the camera module 30 can also be implemented as the following steps: adjust the relative position of the camera module 30 and the display screen 20 to a more satisfactory position, and install the camera module 30 in
  • the limiting mechanism 65 enables the camera module 30 to be fixed in this position, wherein the limiting mechanism 65 is installed on the mounting channel 201 of the display screen 20, and then the limiting mechanism 65
  • the relative positions of the camera module 30 and the limiting mechanism 65 can be adjusted within the adjustment range of the camera module 30, so as to adjust the relative positions of the camera module 30 and the display screen 20 mechanism.
  • the limiting mechanism 65 can be fixed to the display screen 20 so that the camera module 30 can pass the limiting mechanism.
  • the mechanism 65 can be adjusted in a relatively small range to improve the adjustment accuracy of the camera module 30 and the limit mechanism 65.
  • it is temporarily not fixed to the limiting mechanism 65 on the display screen 20, and the camera module 30 and the display screen are continuously changed. The relative position of the 20 to obtain a satisfactory imaging effect, and then the limit mechanism 65 is fixed to the display screen 20.
  • the back side of the display screen 20 is implemented as a plane structure, that is, the driving circuit layer 26 of the display screen 20 is a plane structure, and the limit mechanism 65 is installed on The driving circuit layer 26 of the display screen 20.
  • the adjustment of the position of the limit mechanism 65 on the display screen 20 is subject to the installation channel 201 of the display screen 20. limits.
  • the relative position of the camera module 30 and the display screen 20 can also be directly adjusted.
  • the The camera module 30 can be directly fixed to the display screen 20 by means of gluing or welding, and the positions of the two are kept in the adjusted position.
  • the position between the limit mechanism 65 and the camera module 30 It can be fixed by glue or welding.
  • the limit mechanism 65 when the camera module 30 is installed on the limit mechanism 65, when the relative position of the camera module 30 and the limit mechanism 65 is adjusted, the limit mechanism 65 There is a gap in the position channel 650 for fine adjustment between the camera module 30 and the limit mechanism 65.
  • the space of the limiting channel 650 of the limiting mechanism 65 not occupied by the camera module 30 can be The gel is filled to fix the relative position of the camera module 30 and the limiting mechanism 65.
  • the limit mechanism 65 when the camera module 30 is installed on the limit mechanism 65, when the relative position of the camera module 30 and the limit mechanism 65 is adjusted, the limit mechanism 65 There is a gap in the position channel 650 for fine adjustment between the camera module 30 and the limit mechanism 65.
  • an insert can be inserted between the camera module 30 and the sleeve 651 of the limiting mechanism 65, To fix the relative position of the camera module 30 and the limiting mechanism 65.
  • the insert restricts the displacement of the camera module 30 relative to the limiting mechanism 65.
  • the limit mechanism 65 when the camera module 30 is installed on the limit mechanism 65, when the relative position of the camera module 30 and the limit mechanism 65 is adjusted, the limit mechanism 65 There is a gap in the position channel 650 for fine adjustment between the camera module 30 and the limit mechanism 65.
  • the relative position between the camera module 30 and the limiting mechanism 65 When the relative position between the camera module 30 and the limiting mechanism 65 is confirmed, it may be outside the lens barrel of the camera module 30 or the sleeve of the limiting mechanism 65 A pad is provided on the inner wall of 651, and then the camera module 30 and the limiting mechanism 65 are fixed by welding.
  • the gel used to fix the camera module 30 and the limiting mechanism 65 may be a thermoplastic fluid.
  • the thermoplastic fluid fills the gap between the camera module 30 and the limiting mechanism 65 After the gap, the thermoplastic fluid of the camera module 30 and the limiting mechanism 65 can be cured by heating.
  • the sleeve 651 of the limiting mechanism 65 is set as an opaque material to reduce the impact of external light on the camera module 30 located in the limiting channel 650 of the limiting mechanism 65 influences.
  • the display screen 20 is an LCD display screen 20
  • the backplane layer 27 can actively emit light
  • the opaque limit mechanism 65 can reduce the effect of the backplane layer 27 on the camera module. Group 30 influence.
  • the limiting mechanism 65 can be fixed to the driving circuit layer 26 by means of gluing or welding.
  • the limiting mechanism 65 further includes a connecting portion 653 for connecting the sleeve 651 to the display screen 20.
  • the sleeve 651 has a free end 6511 and a connecting end 6512, wherein the free end 6511 and the connecting end 6512 are located at both ends, respectively, and the connecting portion 653 is located at all of the sleeve 651. ⁇ 6512.
  • the connecting portion 653 may be configured to extend outward from the connecting end 6512 of the sleeve 651.
  • the connecting portion 653 of the limiting mechanism 65 can be connected to the display screen 20.
  • the connecting portion 653 increases the size of the area where the limit mechanism 65 can be connected to the display screen 20, so as to facilitate the stable connection between the limit mechanism 65 and the display screen 20. It is advantageous for the camera module 30 to be firmly installed on the display screen 20 through the limiting mechanism 65.
  • the driving circuit layer 26 is exposed to the outside.
  • the connecting portion 653 of the limiting mechanism 65 extends horizontally along the surface of the driving circuit layer 26.
  • the mounting channel 201 may be designed to be slightly larger to accommodate the connecting portion 653.
  • the height dimensions of the display screen 20 and the camera module 30 can be reduced, which is beneficial to reduce the thickness dimension of the terminal device.
  • limiting mechanism 65 according to the present invention is illustrated.
  • the relative positions of the limiting mechanism 65 and the display screen 20 are fixed in advance, and only the relative positions of the camera module 30 and the limiting mechanism 65 need to be adjusted.
  • the limiting mechanism 65 is combined with the display screen 20 to help enhance the bonding strength of the limiting mechanism 65 and the display screen 20.
  • the display screen 20 has a mounting channel 201, wherein the mounting channel 201 is penetrated through the light through hole 200.
  • the light through hole 200 penetrates through each layer of the display screen 20 in a height direction, and the mounting channel 201 is exposed on the back side of the display screen 20.
  • the inner diameter of the mounting channel 201 is larger than the inner diameter of the light through hole 200. At least part of the limiting mechanism 65 can be accommodated in the mounting channel 201.
  • the limiting mechanism 65 is fitted to the display screen 20.
  • the display screen 20 when the display screen 20 is an OLED display screen 20, the display screen 20 includes the cover layer 21, the touch layer 22, the polarization layer 23, the encapsulation layer 24, and the pixels Layer 25, the driving circuit layer 26, and the backplane layer 27. Take the mounting channel 201 formed on the backplane layer 27 and at least part of the driving circuit layer 26 is exposed to the mounting channel 201 as an example.
  • At least part of the limiting mechanism 65 passes through the mounting channel 201 and is fitted into the driving circuit layer 26.
  • the limiting mechanism 65 further includes at least one connecting leg 654, wherein the connecting leg 654 extends from the connecting end 6512 of the sleeve 651 along the length direction of the sleeve 651.
  • the number of the connecting pins 654 may be multiple.
  • the display screen 20 has at least one embedding channel 203, wherein the embedding channel 203 is located around the light passing hole 200 of the display screen 20, and the embedding channel 203 is matched with the limiting mechanism 65 The connecting feet 654.
  • the fitting channel 203 extends to the driving circuit layer 26.
  • the embedding channel 203 is set to avoid the circuit structure of the driving circuit layer 26 to reduce the impact on the work efficiency of the display screen 20.
  • the embedding channel 203 may continue to extend upward from the driving circuit layer 26 to other layers of the display screen 20.
  • the connecting leg 654 of the limiting mechanism 65 extends into the fitting channel 203 of the display screen 20. It may be that the connecting leg 654 is fitted into the fitting channel 203. It is also possible that the fitting passage 203 is slightly larger than the connecting leg 654. After the connecting leg 654 extends into the fitting passage 203, the fitting passage 203 still has a gap, which can face inward at this time. Filled with glue so that the connecting leg 654 of the limiting mechanism 65 can be fixed to the fitting channel 203 of the display screen 20, so that the limiting mechanism 65 can be firmly installed on the Display 20.
  • the mounting channel 201 of the display screen 20 is slightly larger than the sleeve 651 of the limiting mechanism 65, the mounting channel 201 can be filled with glue or mounting inserts or welded
  • the limiting mechanism 65 is fixed to the portion of the display screen 20 corresponding to the installation channel 201, for example, the backplane layer 27. In this way, the combination of the limiting mechanism 65 and the display screen 20 can be stronger, which facilitates the stable combination between the limiting mechanism 65 and the camera module 30.
  • the embedding channel 203 may be formed in the driving circuit layer 26 of the display screen 20 by means of openings. For example, a hole is drilled into the driving circuit layer 26 of the display screen 20 in the mounting channel 201.
  • the method of forming the fitting channel 203 may also be by etching.
  • the fitting channel 203 may be formed in the sleeve 651 and the connecting leg 654 may be formed in the display screen 20.
  • the connecting feet 654 on the display screen 20 extend into the fitting channel 203 of the sleeve 651, thereby facilitating the limiting Fixing between the positioning mechanism 65 and the display screen 20.
  • the connecting pins 654 can be formed on the display screen 20 by deposition, evaporation, or the like.
  • the connecting pin 654 may be integrally formed on the display screen 20.
  • the connecting pin 654 may be formed on a portion of the driving circuit layer 26 of the display screen 20 that is exposed to the mounting channel 201.
  • the fitting channel 203 can be formed in the sleeve 651 and the display screen 20 respectively, and the connecting feet 654 can be respectively fitted in the sleeve 651 And the display screen 20.
  • one end of the connecting leg 654 extends into the fitting channel 203 of the display screen 20, and then the other end of the connecting leg 654 extends into the fitting channel 203 of the sleeve 651, respectively
  • the connecting foot 654 and the display screen 20 and the connecting foot 654 and the sleeve 651 are fixed to fix the sleeve 651 to the display screen 20.
  • FIG. 57 another specific embodiment of the limiting mechanism 65 according to the present invention is illustrated.
  • the mobile terminal includes a substrate 70, wherein the substrate 70 is used to mount the camera module 30, and the camera module 30 is located between the substrate 70 and the display screen 20.
  • the position between the substrate 70 and the display screen 20 can be relatively fixed, for example, through the housing 40 of the mobile terminal.
  • the substrate 70 may be installed on the mobile terminal after the camera module 30 is installed on the mobile terminal, then the housing 40 is installed on the mobile terminal, and the camera module is installed At 30 o'clock, the mobile terminal can provide enough operating space.
  • the limiting mechanism 65 is located on the substrate 70, thereby limiting the relative displacement of the camera module 30 and the substrate 70, thereby limiting the relative displacement of the camera module 30 and the display screen 20.
  • the limiting mechanism 65 needs to be installed on the display screen 20.
  • the original limit mechanism 65 and the substrate 70 are independent of each other.
  • the assembling method of the camera module 30 includes the following steps: installing the limiting mechanism 65 on the base plate 70, installing the camera module 30 on the limiting mechanism 65, relative to the limiting mechanism 65 Adjust the position of the camera module 30 to achieve the purpose of adjusting the position of the camera module 30 relative to the display screen 20, and confirm the camera module 30 based on the imaging effect of the camera module 30
  • the position relative to the display screen 20 is fixed to the adjusted position of the camera module 30 on the display screen 20 by fixing the camera module 30 to the limiting mechanism 65. It can be understood that, in the process of installing the limiting mechanism 65 on the substrate 70, it may be based on the limiting channel 650 of the limiting mechanism 65 and the light-passing hole 200 of the display screen 20.
  • the degree of alignment fixes the limit mechanism 65 to the substrate 70. That is, the alignment state of the limiting channel 650 of the limiting mechanism 65 and the light-passing hole 200 of the display screen 20 is used to determine the installation position of the limiting mechanism 65 on the substrate 70 . In this way, in the subsequent adjustment process, the adjustment of the relative position between the camera module 30 and the display screen 20 only needs to adjust the distance between the camera module 30 and the limit mechanism 65 relative position.
  • the method of assembling the camera module 30 can also be implemented as the following steps: installing the camera module 30 on the limiting mechanism 65, installing the limiting mechanism 65 on the substrate 70, relative to the The limit mechanism 65 adjusts the position of the camera module 30 to achieve the purpose of adjusting the position of the camera module 30 relative to the display screen 20, and confirms the position of the camera module 30 based on the imaging effect of the camera module 30.
  • the relative positions of the camera module 30 and the display screen 20 are fixed to the adjusted positions of the camera module 30 and the display screen 20 by fixing the camera module 30 to the limiting mechanism 65.
  • the limiting mechanism 65 may be installed on the substrate 70 based on the imaging effect of the camera module 30.
  • the assembly method of the camera module 30 can also be implemented as the following steps: adjust the relative position of the camera module 30 and the display screen 20 to a more satisfactory position, and install the camera module 30 in
  • the limiting mechanism 65 enables the camera module 30 to be fixed in this position, wherein the limiting mechanism 65 is installed on the base plate 70, and then the limiting mechanism 65 is available for the camera module Adjust the relative position of the camera module 30 and the limiting mechanism 65 within the adjustment range of the group 30, thereby adjusting the relative position of the camera module 30 and the display screen 20.
  • the limiting mechanism 65 can be fixed to the base plate 70 so that the camera module 30 can pass the limiting mechanism 65 can be adjusted in a relatively small range to improve the adjustment accuracy of the camera module 30 and the limit mechanism 65.
  • the limit mechanism 65 is fixed to the substrate 70.
  • one side of the substrate 70 is implemented as a planar structure, and the limiting mechanism 65 is installed on the side of the substrate 70.
  • the limiting mechanism 65 can freely adjust the position on the base plate 70 to the limiting position of the limiting mechanism 65
  • the channel 650 is aligned with the light-through hole 200 of the display screen 20, or the camera module 30 installed on the limiting mechanism 65 obtains the expected imaging effect.
  • the relative position of the camera module 30 and the display screen 20 can also be directly adjusted.
  • the The camera module 30 can be directly fixed to the display screen 20 by means of gluing or welding, and the positions of the two are kept in the adjusted position.
  • the position between the limit mechanism 65 and the camera module 30 It can be fixed by glue or welding.
  • the limit mechanism 65 when the camera module 30 is installed on the limit mechanism 65, when the relative position of the camera module 30 and the limit mechanism 65 is adjusted, the limit mechanism 65 There is a gap in the position channel 650 for fine adjustment between the camera module 30 and the limit mechanism 65.
  • the space of the limiting channel 650 of the limiting mechanism 65 not occupied by the camera module 30 can be The gel is filled to fix the relative position of the camera module 30 and the limiting mechanism 65.
  • the limit mechanism 65 when the camera module 30 is installed on the limit mechanism 65, when the relative position of the camera module 30 and the limit mechanism 65 is adjusted, the limit mechanism 65 There is a gap in the position channel 650 for fine adjustment between the camera module 30 and the limit mechanism 65.
  • an insert can be inserted between the camera module 30 and the sleeve 651 of the limiting mechanism 65, To fix the relative position of the camera module 30 and the limiting mechanism 65.
  • the insert restricts the displacement of the camera module 30 relative to the limiting mechanism 65.
  • the limit mechanism 65 when the camera module 30 is installed on the limit mechanism 65, when the relative position of the camera module 30 and the limit mechanism 65 is adjusted, the limit mechanism 65 There is a gap in the position channel 650 for fine adjustment between the camera module 30 and the limit mechanism 65.
  • the relative position between the camera module 30 and the limiting mechanism 65 When the relative position between the camera module 30 and the limiting mechanism 65 is confirmed, it may be outside the lens barrel of the camera module 30 or the sleeve of the limiting mechanism 65 A pad is provided on the inner wall of 651, and then the camera module 30 and the limiting mechanism 65 are fixed by welding.
  • the gel used to fix the camera module 30 and the limiting mechanism 65 may be a thermoplastic fluid.
  • the thermoplastic fluid fills the gap between the camera module 30 and the limiting mechanism 65 After the gap, the thermoplastic fluid of the camera module 30 and the limiting mechanism 65 can be cured by heating.
  • the sleeve 651 of the limiting mechanism 65 is set as an opaque material to reduce the impact of external light on the camera module 30 located in the limiting channel 650 of the limiting mechanism 65 influences.
  • the display screen 20 is an LCD display screen 20
  • the backplane layer can actively emit light
  • the opaque limit mechanism 65 can reduce the effect of the backplane layer on the camera module 30. Impact.
  • the camera module 30 has a high end and a low end.
  • the limit mechanism 65 When the limit mechanism 65 is located on the display screen 20, the high end of the camera module 30 is installed at the limit.
  • the position mechanism 65, the high end of the camera module 30 is the light incident position of the camera module 30, and the low end of the camera module 30 is the light receiving position of the camera module 30.
  • the limiting mechanism 65 When the limiting mechanism 65 is located on the substrate 70, the bottom end of the camera module 30 is installed on the limiting mechanism 65.
  • the low end of the camera module 30 is mounted on the limit mechanism 65.
  • the relative position of the camera module 30 and the limit mechanism 65 is determined, that is, After the relative positions of the camera module 30 and the display screen 20 are determined, the high end of the camera module 30 can be installed on the display screen 20.
  • the limiting mechanism 65 further includes a connecting portion 653 for connecting the sleeve 651 to the base plate 70.
  • the sleeve 651 has a free end 6511 and a connecting end 6512, wherein the free end 6511 and the connecting end 6512 are located at both ends, respectively, and the connecting portion 653 is located at all of the sleeve 651. ⁇ 6512.
  • the connecting portion 653 may be configured to extend outward from the connecting end 6512 of the sleeve 651.
  • the connecting portion 653 of the limiting mechanism 65 can be connected to the substrate 70.
  • the connecting portion 653 increases the size of the area where the limiting mechanism 65 can be connected to the substrate 70 to facilitate the stable connection between the limiting mechanism 65 and the substrate 70, thereby facilitating passage
  • the limit mechanism 65 firmly installs the camera module 30 on the display screen 20.
  • a specific embodiment of the limiting mechanism 65 according to the present invention is illustrated.
  • the relative positions of the limiting mechanism 65 and the substrate 70 are fixed in advance, and only the relative positions of the camera module 30 and the limiting mechanism 65 need to be adjusted.
  • the limiting mechanism 65 is combined with the substrate 70 to help enhance the bonding strength of the limiting mechanism 65 and the substrate 70.
  • the limiting mechanism 65 is fitted to the substrate 70.
  • the limiting mechanism 65 further includes at least one connecting leg 654, wherein the connecting leg 654 extends from the connecting end 6512 of the sleeve 651 along the height direction of the sleeve 651.
  • the number of the connecting pins 654 may be multiple.
  • the substrate 70 has at least one embedding channel 203, wherein the embedding channel 203 is located around the light-passing hole 200 of the display screen 20, and the embedding channel 203 is matched with the limiting mechanism 65 The connecting feet 654.
  • the fitting channel 203 is set to avoid the circuit structure of the substrate 70 to reduce the influence on the working efficiency of the substrate 70.
  • the connecting leg 654 of the limiting mechanism 65 extends into the fitting channel 203 of the substrate 70. It may be that the connecting leg 654 is fitted into the fitting channel 203. It is also possible that the fitting passage 203 is slightly larger than the connecting leg 654. After the connecting leg 654 extends into the fitting passage 203, the fitting passage 203 still has a gap, which can face inward at this time. Filling with glue, so that the connecting leg 654 of the limiting mechanism 65 can be fixed to the fitting channel 203 of the substrate 70, so that the limiting mechanism 65 can be firmly installed on the substrate 70.
  • fitting channel 203 may be formed on the substrate 70 by opening holes. For example, it is formed by drilling inward from the surface of the substrate 70.
  • the fitting channel 203 may be formed in the sleeve 651 and the connecting leg 654 may be formed in the base plate 70.
  • the connecting legs 654 on the base plate 70 extend into the fitting channel 203 of the sleeve 651, thereby facilitating the limiting mechanism 65 and the substrate 70 are fixed.
  • the connecting pins 654 can be formed on the substrate 70 by deposition, evaporation, or the like.
  • the connecting leg 654 may be integrally formed on the substrate 70.
  • the fitting channel 203 can be formed in the sleeve 651 and the base plate 70 respectively, and the connecting pin 654 can be respectively fitted in the sleeve 651 and the base plate 70.
  • the substrate 70 For example, one end of the connecting leg 654 extends into the fitting channel 203 of the base plate 70, and then the other end of the connecting leg 654 extends into the fitting channel 203 of the sleeve 651 to be fixed respectively.
  • the connecting leg 654 and the base plate 70 as well as the connecting leg 654 and the sleeve 651 fix the sleeve 651 to the base plate 70.
  • the substrate 70 may have at least one mounting channel 201, wherein the substrate 70 is recessed to form the mounting channel 201. At least part of the limiting mechanism 65 can be accommodated in the mounting channel 201, and then the substrate 70 and the limiting mechanism 65 can be fixed by filling the gap between the substrate 70 and the limiting mechanism 65 with glue. Position organization 65.
  • a lens barrel of the camera module 30 is specially designed.
  • the camera module 30 includes an optical mechanism 31A' and a photosensitive unit 32A, wherein the optical mechanism 31A' includes an optical lens 311A' , The optical lens 311A' is held on the photosensitive path of the photosensitive unit 32A.
  • the optical mechanism 31A' may also include components such as a motor, a base, and a filter element.
  • the optical lens 311A' includes the lens barrel 3111A' and a plurality of lenses, wherein the plurality of lenses are held in the lens barrel 3111A'.
  • the lens barrel 3111A' has one end surface.
  • the end surface of the lens barrel 3111A' is adapted to be close to the display screen 20 and then be fixed to the display screen 20.
  • One of the lenses is the first lens 3112A'.
  • the first lens 3112A' is closest to the end surface of the lens barrel 3111A' relative to the other lenses.
  • the first lens 3112A' and the end surface of the lens barrel 3111A' are set to a larger distance.
  • the lens barrel 3111A' includes a lens barrel wall 31111A' and a lens barrel cavity 31110A', wherein the lens 3112A' is accommodated in the lens barrel cavity 31110A', and the lens barrel wall 31111A' The lens barrel cavity 31110A' is formed around.
  • the lens barrel 3111A' further includes an extension wall 31112A', wherein the extension wall 31112A' extends vertically upward from one end of the lens barrel wall 31111A'.
  • the lens barrel wall 31111A' has a high end and a low end, wherein the extension wall 31112A' extends a certain distance upward from the high end of the lens barrel wall 31111A' to enlarge the first lens The distance between 3112A' and the end surface of the lens barrel 3111A'.
  • the camera module 30 can be directly assembled to the display screen 20, and the influence on the first lens 3112A' is avoided.
  • the camera module 30 can be directly supported on the display screen 20 and the relative position between the camera module 30 and the display screen 20 can be adjusted.
  • the extension wall 31112A' is set to extend from the lens barrel wall 31111A' for a certain distance and then horizontally extends inward.
  • the extension wall 31112A" may extend upward from the lens barrel wall 31111A'.
  • the extension wall 31112A' extends from the barrel wall 31111A'
  • the high end extends upward for a certain distance and the inner diameter of the extension wall 31112A' is set to gradually decrease from top to bottom.
  • the closer to the high end of the lens barrel wall 31111A', the smaller the inner diameter of the extension wall 31112A', that is, the closer to the high end of the lens barrel wall 31111A', the lens barrel cavity 31110A' The smaller.
  • the outer diameter of the extension wall 31112A' is also set to gradually decrease from top to bottom.
  • the extension wall 31112A' extends from the barrel wall 31111A'
  • the high end extends upward for a certain distance and the inner diameter of the extension wall 31112A' is set to remain constant from top to bottom, but the outer diameter of the extension wall 31112A' is set to gradually decrease from top to bottom .
  • the extension wall 31112A' is formed from the barrel wall 31111A'
  • the high end extends upward for a certain distance and the inner diameter of the extension wall 31112A' is set to gradually expand from top to bottom, and the outer diameter of the extension wall 31112A' is set to gradually expand from top to bottom.
  • the edge of the light through hole 200 is the display of the display screen 20.
  • the transition area between the screen and the non-display area may have black borders, which affects the normal display of the entire display screen 20.
  • the light through hole 200 penetrates at least part of the display screen 20 in the height direction, for example, a pixel layer of the display screen 20.
  • a terminal device 1 is provided according to the present invention, wherein the terminal device 1 includes a terminal device main body 10, a display unit, and a camera module 30, wherein The camera module 30 is located below the display unit, the camera module 30 has a front end, the front end of the camera module 30 is installed on the display screen 20 of the display unit and the camera The module 30 is aligned with the light-passing hole 200 of the display screen 20 so that the light outside the display screen 20 is received by the camera module 30 through the light-passing hole 200.
  • the display unit includes the display screen 20 with the light hole 200 and a light supplement unit 80, wherein the light supplement unit 80 can illuminate the position of the light hole 200 of the display screen 20 It is supplemented to facilitate the display effect of the entire display screen 20.
  • the supplementary light unit 80 is located between the display screen 20 and the camera module 30, and may be installed on the bottom surface of the display screen 20. The light from the outside of the display screen 20 passes through the through hole 200 of the display screen 20 and the light supplement unit 80, and then reaches the camera module 30.
  • the display screen 20 is an OLED display screen, and the light through hole 200 penetrates through each layer of the display screen except the cover layer 21 as an example for description.
  • the type of the display screen 20 is not limited to the OLED display screen and the position of the light-through hole 200 inside the display screen 20 may not be limited to the above examples.
  • the light-filling unit 80 can not only play a role of light-filling the through hole 200 of the display screen 20, but the light-filling unit 80 can also play a role of controlling the amount of light entering the camera module 30.
  • the light supplement unit 80 includes an aperture structure 81 and a light-emitting structure 82, wherein the light-emitting structure 82 is disposed on the aperture structure 81.
  • the light-emitting structure 82 can radiate light outward, and at least a part of the aperture structure 81 is located in the light-passing hole 200 or is aligned with the light-passing hole 200. At least a part of the light-emitting structure 82 provided in the aperture structure 81 is set to be able to be located near the light-passing hole 200 or the light-passing hole 200 or to be aligned with the light-passing hole 200 , So that when the light-emitting structure 82 emits light, it can compensate for the insufficient illumination of the display area and the non-display area of the display screen 20 corresponding to the position of the light-through hole 200.
  • the aperture structure 81 includes an aperture moving part 811, an aperture carrier 812, and an aperture driving part 813, wherein the aperture moving part 811 is supported by the aperture carrier 812, and the aperture The moving part 811 is drivably connected to the aperture driving part 813, and the aperture moving part 811 can move under the action of the aperture driving part 813 to form a light hole 810 with a variable size.
  • the aperture moving part 811 moves under the driving of the aperture driving part 813, and the optical path size corresponding to the camera module 30 can follow the aperture moving part 811 and the light-passing The relative position of the holes changes.
  • the light emitting structure 82 is provided in the diaphragm moving part 811.
  • the diaphragm moving portion 811 has an upper surface and a lower surface, wherein the upper surface faces the outside of the display screen 20, the lower surface faces the camera module 30, and the light emitting structure 82 is located at The upper surface of the diaphragm moving part 811 can supplement light for the display screen 20 toward the outside when the light emitting structure 82 emits light.
  • the entire diaphragm moving portion 811 may be opaque.
  • the light-emitting structure 82 emits light, it is difficult for the light emitted by the light-emitting structure 82 to reach the camera module 30 located under the display screen 20.
  • the amount of light entering through the diaphragm moving part 811 can be controlled based on the size of the light hole 810.
  • the entire aperture moving part 811 may also be light-transmissive, but the lower surface of the aperture moving part 811 may be provided with an opaque material.
  • the light-emitting structure 82 is emitting light, the light-emitting structure 82 The light emitted by the structure 82 is difficult to reach the camera module 30 located under the display screen 20.
  • the amount of light entering through the diaphragm moving part 811 can be controlled based on the size of the light hole 810.
  • the light passes through the light hole 200 of the display screen 20 and then passes through the light hole 810 of the aperture structure 81 and then is received by the camera module 30.
  • the light hole 810 of the diaphragm structure 81 is aligned with the through hole 200 of the display screen 20. Further, the light hole 810 of the diaphragm structure 81 and the light hole 200 of the display screen 20 may be located on the same axis.
  • the light-emitting structure 82 includes at least one light-emitting element 821, wherein the light-emitting element 821 is arranged on the upper surface of the aperture moving part 811 of the aperture structure 81.
  • the light emitting element 821 may be one pixel (pixel) or multiple pixels. When one of the light-emitting elements 821 is energized, the light-emitting element 821 emits light, and when a plurality of the light-emitting elements 821 are energized, the light intensity of the light-emitting structure 82 is enhanced.
  • the brightness of the light-emitting structure 82 can also be controlled by controlling the magnitude of the energized current of the light-emitting element 821.
  • the diaphragm moving part 811 can be moved under the driving of the diaphragm driving part 813 to form the light hole 810 or to enlarge the light hole 810. At this time, the diaphragm moving part 811 can stop emitting light.
  • the diaphragm moving part 811 is driven by the diaphragm driving part 813 to make at least part of the light emitting structure 82 correspond to The light-through hole 200, so that the light-emitting structure 82 can radiate light outward through the light-through hole 200.
  • the light hole 810 of the diaphragm structure 81 may be completely closed, or it may be that the light hole 810 of the diaphragm structure 81 is opened, and the light can reach the camera module 30, the camera module The group 30 can be activated at any time to work.
  • the light supplement unit 80 is detachably installed on the display screen 20 to facilitate maintenance and replacement of the light supplement unit 80.
  • the light supplement unit 80 includes a control mechanism 83, wherein the aperture structure 81 is controllably connected to the control mechanism 83.
  • the control mechanism 83 can control the movement of the diaphragm moving portion 811 of the diaphragm structure 81 by controlling the diaphragm driving portion 813 to control the size of the optical aperture 810 of the diaphragm structure 81.
  • the control mechanism 83 can also control the luminous intensity, power on and off of the light emitting structure 82 and other working states.
  • the control mechanism 83 may be implemented as a control chip of the terminal device, for example, a control chip of the camera module 30.
  • the present invention provides a working method of a display unit, wherein the working method includes the following steps:
  • the light supplementing unit 80 is operated to emit light to supplement the light intensity at the position of the light-through hole 200.
  • the compensation located above the camera module 30 is operated.
  • the aperture structure 81 of the light unit 80 forms the light hole 810, and the light passes through the light through hole 810 and the restriction of the light supplement unit 80 to reach the camera module 30.
  • FIGS. 62A and 62C it is another implementation manner of the terminal device 1 according to the above-mentioned embodiment of the present invention.
  • the diaphragm moving portion 811 includes a plurality of blades 8111, each of the blades 8111 is supported by the diaphragm carrier 812 and driven by the diaphragm driving portion 813, a plurality of the The distance between the blades 8111 can be changed mutually, so that the diaphragm structure 81 can pass light and can also control the amount of light passing.
  • the light-emitting structure 82 includes a plurality of the light-emitting elements 821, and each of the light-emitting elements 821 corresponds to a blade 8111 of the diaphragm moving part 811.
  • each of the blades 8111 is drivably connected to the diaphragm driving part 813 respectively. It is also possible that all the blades 8111 are simultaneously drivably connected to the diaphragm driving section 813.
  • the position of the light emitting element 821 can move with the movement of the blade 8111. Referring to FIGS. 62A to 62C, as the blade 8111 moves, the aperture size of the light hole 810 of the diaphragm structure 81 of the light supplement unit 80 can be adjusted, and the light hole 810 can be enlarged It can also be reduced to control the amount of light entering the camera module 30.
  • the diaphragm moving portion 811 includes a plurality of blades 8111, and a plurality of the light-emitting elements 821 are provided on one blade 8111.
  • Each of the blades 8111 is installed with a plurality of the light-emitting elements 821.
  • the light-emitting element 821 may be one pixel, and the entire diaphragm moving part 811 may be used as a display part of the display screen 20. Especially when the blades 8111 of the diaphragm moving part 811 are closed to close the light hole 810, the position of the light-passing hole 200 of the display screen 20 appears to be the same as that of the display screen 20. The area is one.
  • FIG. 63 it is another embodiment of the display unit according to the above-mentioned preferred embodiment of the present invention.
  • the supplementary light unit 80 includes the aperture structure 81 and the light-emitting structure 82, and further includes a reflective structure 84, wherein the reflective structure 84 is disposed at all of the aperture structure 81
  • the aperture moving part 811 is located between the light emitting structure 82 and the aperture moving part 811.
  • the light-emitting structure 82 When the light-emitting structure 82 emits light, part of the light emitted by the light-emitting structure 82 is radiated outward to the outside of the display screen 20, and part of the light is radiated inward to the reflective structure 84, and the reflective structure 84 can It radiates toward the outside of the display screen 20.
  • the reflectivity of the reflective structure 84 can be changed.
  • the reflective structure 84 is implemented as a reflective film and is disposed on the upper surface of the diaphragm moving part 811.
  • the reflective film may be a highly elastic film doped with a reflective function or coated with a reflective layer.
  • the reflective film When the reflective film is stretched, the reflectivity of the reflective film decreases, and the light transmittance of the reflective film increases.
  • the deformation of the reflective film is reduced by stretching, the reflectivity of the reflective film increases and the light transmittance decreases.
  • One end of the highly elastic reflective film can be fixed to the diaphragm carrier 812 of the diaphragm structure 81, and the other end can be fixed to the diaphragm moving part 811 of the diaphragm structure 81 close to the diaphragm.
  • One side of the light hole 810. When the light hole 810 of the diaphragm moving part 811 is gradually reduced, the highly elastic reflective film is stretched, so that the reflectance decreases.
  • the highly elastic reflective film is stretched and reduced, so that the reflectivity increases.
  • the brightness and color of the light supplement unit 80 are controlled by controlling the aperture size of the light hole 810 of the diaphragm structure 81.
  • FIG. 64 it is another implementation of the display unit according to the above-mentioned preferred embodiment of the present invention.
  • the supplementary light unit 80 includes a diaphragm structure 81, and the diaphragm structure 81 itself can emit light, and the diaphragm structure 81 itself can be made of a luminescent material. Can radiate light outwards.
  • the diaphragm structure 81 may be an OLED structure, which can emit light and display after being energized.
  • the aperture structure 81 can stop energizing, and the aperture 810 can be controlled by controlling the position of the aperture moving part 811 of the aperture structure 81. Control of aperture.
  • the diaphragm structure 81 can be energized, and then emit light and play a display role, so as to facilitate the display effect of the entire display screen 20.
  • FIG. 65 it is another embodiment of the display unit according to the present invention.
  • the display unit includes a display screen 20 and a light-filling unit 80, wherein the display screen 20 includes a cover layer 21, an encapsulation layer 22, a touch layer 23, and a
  • the pixel layer 25 works, wherein the encapsulation layer 22 is formed on the top side of the pixel layer 25 for encapsulating the pixel layer 25, wherein the light-passing hole 200 penetrates the touch layer 23 in the height direction
  • the display screen 20 is an OLED screen and the light supplement unit 80 is located inside the display screen 20.
  • the light supplement unit 80 is located on the driving circuit layer 26 below the pixel layer 25.
  • the light supplement unit 80 is installed on the driving circuit layer 26 and an aperture structure 81 of the light supplement unit 80 is aligned with the light-passing hole 200 of the display screen 20.
  • the driving circuit layer 26 includes a plurality of TFT structures 261 and a base substrate 262, wherein the TFT structure 261 is disposed on the base substrate 262.
  • the light supplement unit 80 is arranged between the adjacent TFT structures 261.
  • the light outside the display screen 20 needs to pass through the aperture structure 81 to reach the position of the camera module 30 located under the display screen 20.
  • the light-filling unit 80 includes the aperture structure 81 and a light-emitting structure 82, wherein the light-emitting structure 82 is disposed on at least part of the aperture structure 81 to radiate light outward, in particular, toward the The outside of the display screen 20 radiates light to facilitate the display effect of the position of the light-passing hole 200 of the display screen 20.
  • the luminous intensity of the light-emitting structure 82 can be controlled based on requirements, and the light-emitting structure 82 can meet the display requirements of different display areas of the display screen 20, so that the entire display screen 20 is The display effect can achieve the effect of natural transition.
  • the aperture structure 81 includes an aperture moving part 811, an aperture carrier 812 and an aperture driving part 813, wherein the aperture moving part 811 is disposed on the aperture carrier 812.
  • the diaphragm moving part 811 is drivably connected to the diaphragm driving part 813.
  • the aperture structure 81 can form a light hole 810 through which light can pass. Further, the aperture 810 is formed in the aperture moving part 811 and as the aperture moving part 811 is driven by the aperture driving part 813, the aperture size of the aperture 810 can be adjusted.
  • the light emitting structure 82 is provided in the diaphragm moving part 811.
  • the light emitting structure 82 is provided on the upper surface of the diaphragm moving part 811.
  • the light-emitting structure 82 can emit light to supplement light around the light-passing hole 200 of the display screen 20.
  • the light emitting structure 82 can stop emitting light, and the size of the light hole 810 of the aperture structure 81 can be adjusted to control the amount of light entering the camera module 30.
  • the aperture moving part 811 includes a plurality of blades 8111, and the light emitting structure 82 is disposed on the blade 8111 of the aperture moving part 811.
  • the blade 8111 is drivably connected to the diaphragm driving part 813.
  • the diaphragm moving portion 811 of the diaphragm structure 81 is made of a luminescent material and can emit light.
  • the light-emitting structure 82 may cover, fit, or be at least partially buried in the upper surface of the aperture moving part 811 of the aperture structure 81.
  • the diaphragm moving portion 811 of the diaphragm structure 81 may be fully transparent, and the lower surface of the diaphragm moving portion 811 of the diaphragm structure 81 A light-shielding material may be provided, wherein the aperture structure 81 may also be at least partially transparent, and the light-emitting structure 82 may be embedded in the aperture moving part 811 of the aperture structure 81, and then pass The light-transmitting part of the diaphragm moving part 811 radiates light outward.
  • FIG. 66 it is another embodiment of the display unit according to the present invention.
  • the display unit includes a display screen 20 and a light-filling unit 80, wherein the display screen 20 includes a cover layer 21, an encapsulation layer 22, a touch layer 23, and a
  • the pixel layer 25 works, wherein the encapsulation layer 22 is formed on the top side of the pixel layer 25 for encapsulating the pixel layer 25, wherein the light-passing hole 200 penetrates the touch layer 23 in the height direction ,
  • the display screen 20 is an OLED screen and the light supplement unit 80 is located inside the display screen 20.
  • the light supplement unit 80 is located on the backplane layer 27 below the pixel layer 25.
  • the light supplement unit 80 is installed on the back plate layer 27 and an aperture structure 81 of the light supplement unit 80 is aligned with the light through hole 200 of the display screen 20.
  • the aperture structure 81 of the light supplement unit 80 can be installed on the backplane layer 27 by first opening the backplane layer 27.
  • the light outside the display screen 20 needs to pass through the aperture structure 81 to reach the position of the camera module 30 located under the display screen 20.
  • the display screen 20 has an installation channel 201, wherein the installation channel 201 is formed on the backplane layer 27 of the display screen 20 for accommodating at least part of the camera module 30.
  • the light-filling unit 80 includes the aperture structure 81 and a light-emitting structure 82, wherein the light-emitting structure 82 is disposed on at least part of the aperture structure 81 to radiate light outward, in particular, toward the The outside of the display screen 20 radiates light to facilitate the display effect of the position of the light-passing hole 200 of the display screen 20.
  • the luminous intensity of the light-emitting structure 82 can be controlled based on requirements, and the light-emitting structure 82 can meet the display requirements of different display areas of the display screen 20, so that the entire display screen 20 is The display effect can achieve the effect of natural transition.
  • the aperture structure 81 includes an aperture moving part 811, an aperture carrier 812 and an aperture driving part 813, wherein the aperture moving part 811 is disposed on the aperture carrier 812.
  • the diaphragm moving part 811 is drivably connected to the diaphragm driving part 813.
  • the aperture structure 81 can form a light hole 810 through which light can pass. Further, the aperture 810 is formed in the aperture moving part 811 and as the aperture moving part 811 is driven by the aperture driving part 813, the aperture size of the aperture 810 can be adjusted.
  • the light emitting structure 82 is provided in the diaphragm moving part 811.
  • the light emitting structure 82 is provided on the upper surface of the diaphragm moving part 811.
  • the light-emitting structure 82 can emit light to supplement light around the light-passing hole 200 of the display screen 20.
  • the light emitting structure 82 can stop emitting light, and the size of the light hole 810 of the aperture structure 81 can be adjusted to control the amount of light entering the camera module 30.
  • the aperture moving part 811 includes a plurality of blades 8111, and the light emitting structure 82 is disposed on the blade 8111 of the aperture moving part 811.
  • the blade 8111 is drivably connected to the diaphragm driving part 813.
  • FIG. 67 it is another embodiment of the display unit according to the present invention.
  • the display screen 20A is an LCD display screen.
  • the supplementary light unit 80A is located between the display screen 20A and the camera module 30A.
  • the light supplement unit 80A is installed on the bottom surface of the display screen 20A.
  • the light hole 810A of the aperture structure 81A of the light supplement unit 80A can be aligned with the light-passing hole 200A and can be aligned with the light-sensing path of the camera module 30A.
  • the display unit includes the display screen 20A and the light supplement unit 80A, wherein the display screen 20A includes a cover layer 21A, an encapsulation layer 22A, a touch layer 23A, and a polarization layer 24A from top to bottom.
  • the layer 25A works, wherein the encapsulation layer 22A is formed on the top side of the pixel layer 25A for encapsulating the pixel layer 25A, and the light-passing hole 200A penetrates the touch layer 23A, the The polarizing layer 24A, the encapsulation layer 22A, the pixel layer 25A, the driving circuit layer 26A, and the backplane layer 27A, wherein the backplane layer 27A is located at the bottom layer.
  • the pixel layer 25A includes a
  • the light-passing hole 200A penetrates the touch screen layer 23A, the polarizing layer 24A, the pixel layer 25A, and the driving circuit layer 26A except the cover layer 21A of the display screen 20A in the height direction. And the backplane layer 27A.
  • the entire aperture moving portion 811A may be opaque.
  • the light-emitting structure 82A emits light, the light emitted by the light-emitting structure 82A cannot reach the camera module 30A located under the display screen 20A.
  • the amount of light entering the position of the diaphragm moving portion 811A can be controlled based on the size of the light hole 810A.
  • the entire diaphragm moving portion 811A may also be light-transmissive, but the lower surface of the diaphragm moving portion 811A may be provided with an opaque material.
  • the light-emitting structure 82A emits light
  • the light-emitting structure 82A emits light.
  • the light emitted by the structure 82A is difficult to reach the camera module 30A located under the display screen 20A.
  • the amount of light entering the position of the diaphragm moving portion 811A can be controlled based on the size of the light hole 810A.
  • the light passes through the light hole 200A of the display screen 20A and then passes through the light hole 810A of the aperture structure 81A before being received by the camera module 30A.
  • the light hole 810A of the diaphragm structure 81A is aligned with the light through hole 200A of the display screen 20A. Further, the light hole 810A of the diaphragm structure 81A and the light through hole 200A of the display screen 20A may be located on the same axis.
  • the light emitting structure 82A includes at least one light emitting element 821A, wherein the light emitting element 821A is arranged on the upper surface of the aperture moving part 811A of the aperture structure 81A.
  • the light-emitting element 821A may be one pixel (pixel) or multiple pixels. When one of the light-emitting elements 821A is energized, the light-emitting element 821A emits light, and when a plurality of the light-emitting elements 821A are energized, the light intensity of the light-emitting structure 82A is enhanced. It is also possible to control the brightness of the light-emitting structure 82A by controlling the magnitude of the energizing current of the light-emitting element 821A, so as to meet the requirements for the display brightness of different positions around the through hole.
  • the luminous intensity of the light-emitting structure 82 can be controlled based on requirements.
  • the light-emitting structure 82 can meet the display needs of different display areas of the display screen 20, so that the overall display effect of the entire display screen 20 can achieve a natural transition. Effect.
  • the diaphragm moving part 811A can be moved under the driving of the diaphragm driving part 813A to form the light hole 810A or to enlarge the light hole 810A. At this time, the diaphragm moving part 811A can stop emitting light.
  • the diaphragm moving portion 811A is driven by the diaphragm moving portion 811A to make at least part of the light emitting structure 82A It corresponds to the light-passing hole 200A, so that the light-emitting structure 82A can radiate light outward through the light-passing hole 200A.
  • the light hole 810A of the diaphragm structure 81A can be completely closed, or the light hole 810A of the diaphragm structure 81A is opened, and the light can reach the camera module 30A, and the camera module Group 30A can be activated at any time to work.
  • the light supplement unit 80A is detachably installed on the display screen 20A to facilitate the maintenance and replacement of the light supplement unit 80A.
  • the light supplement unit 80A includes a control mechanism 83A, wherein the diaphragm structure 81A is controllably connected to the control mechanism 83A.
  • the control structure may control the movement of the diaphragm moving portion 811A of the diaphragm structure 81A by controlling the diaphragm driving portion 813A to control the size of the optical aperture 810A of the diaphragm structure 81A.
  • the control structure can also control the luminous intensity, power on and off of the light emitting structure 82A and other working states.
  • the diaphragm moving portion 811A includes a plurality of blades 8111A, and each of the blades 8111A is supported on the diaphragm carrier 812A and installed in the diaphragm driver. Driven by the 813A, the distance between the plurality of blades 8111A can be changed mutually, so that the diaphragm structure 81A can pass light and can also control the amount of light passing.
  • the light-emitting structure 82A includes a plurality of the light-emitting elements 821A, and each of the light-emitting elements 821A corresponds to a blade 8111A of the diaphragm moving portion 811A.
  • each of the blades 8111A is respectively driveably connected to the diaphragm driver 813A. It is also possible that all the blades 8111A are simultaneously drivably connected to the diaphragm driver 813A.
  • the position of the light emitting element 821A can move with the movement of the blade 8111A.
  • the aperture moving portion 811A includes a plurality of blades 8111A, and a plurality of the light-emitting elements 821A are disposed on one blade 8111A.
  • Each of the blades 8111A is equipped with a plurality of the light-emitting elements 821A.
  • the light-emitting element 821A may be one pixel, and the entire diaphragm moving part 811A may be used as a display part of the display screen 20A. Especially when the blades 8111A of the diaphragm moving portion 811A are closed to close the light hole 810A, the position of the light-passing hole 200A of the display screen 20A looks similar to that of the display screen 20A. The area is one.
  • FIG. 68 it is another implementation manner of the display unit according to the above-mentioned preferred embodiment of the present invention.
  • the light supplement unit 80A includes the aperture structure 81A and the light-emitting structure 82A, and further includes a reflective structure 84A, wherein the reflective structure 84A is disposed at all of the aperture structure 81A.
  • the diaphragm moving portion 811A is located between the light emitting structure 82A and the diaphragm moving portion 811A.
  • the light-emitting structure 82A When the light-emitting structure 82A emits light, part of the light emitted by the light-emitting structure 82A is radiated outward to the outside of the display screen 20A, and part of the light is radiated inward to the reflective structure 84A, and the reflective structure 84A can radiate the light It radiates toward the outside of the display screen 20A.
  • the reflectivity of the reflective structure 84A can be changed.
  • the reflective structure 84A is implemented as a reflective film and is disposed on the upper surface of the diaphragm moving part 811A.
  • the reflective film may be a highly elastic film doped with a reflective function or coated with a reflective layer.
  • the reflective film When the reflective film is stretched, the reflectivity of the reflective film decreases, and the light transmittance of the reflective film increases.
  • the deformation of the reflective film is reduced by stretching, the reflectivity of the reflective film increases and the light transmittance decreases.
  • One end of the highly elastic reflective film may be fixed to the diaphragm carrier 812A of the diaphragm structure 81A, and the other end may be fixed to the diaphragm moving part 811A of the diaphragm structure 81A close to the diaphragm.
  • One side of the light hole 810A When the light hole 810A of the diaphragm moving part 811A is gradually reduced, the highly elastic reflective film is stretched, so that the reflectance decreases. When the light hole 810A of the diaphragm moving part 811A gradually expands, the highly elastic reflective film is stretched and reduced, so that the reflectivity increases.
  • the brightness and color of the light supplement unit 80A are controlled by controlling the aperture size of the light hole 810A of the diaphragm structure 81A.
  • FIG. 69 it is another implementation of the display unit according to the above-mentioned preferred embodiment of the present invention.
  • the supplementary light unit 80A includes one of the diaphragm structure 81A, and the diaphragm structure 81A itself can emit light, and the diaphragm structure 81A itself can be made of a luminescent material. Can radiate light outwards.
  • the diaphragm structure 81A may be an OLED structure, which can emit light and display after being energized.
  • the aperture structure 81A can stop energizing, and the aperture 810A can be controlled by controlling the position of the aperture moving portion 811A of the aperture structure 81A. Control of aperture.
  • the aperture structure 81A can be energized, and then emit light and play a display role, so as to facilitate the display effect of the entire display screen 20A.
  • FIG. 70 it is another embodiment of the display unit according to the present invention.
  • the display unit includes a display screen 20A and a light supplement unit 80A, wherein the display screen 20A includes a cover layer 21A, a touch layer 23A, a polarization layer 24A, and a The pixel layer 25A, a driving circuit layer 26A, and a backplane layer 27A, wherein the driving circuit layer 26A is formed on the bottom side of the pixel layer 25A, and is electrically connected to the pixel layer 25A to drive the pixel layer 25A Working, wherein the encapsulation layer 22A is formed on the top side of the pixel layer 25A for encapsulating the pixel layer 25A, wherein the light-passing hole 200A penetrates the touch layer 23A and the polarizing layer in the height direction 24A, the encapsulation layer 22A, the pixel layer 25A, the driving circuit layer 26A, and the backplane layer 27A, wherein the backplane layer 27A is located at the bottom layer.
  • the display screen 20A is an LCD screen and the light supplement unit 80A is located inside the display screen 20A.
  • the light supplement unit 80A is located on the driving circuit layer 26A below the pixel layer 25A.
  • the light-filling unit 80A is mounted on the driving circuit layer 26A and an aperture structure 81A of the light-filling unit 80A is aligned with the light-passing hole 200A of the display screen 20A.
  • the driving circuit layer 26A includes a plurality of TFT structures 261A and a base substrate 262A, wherein the TFT structure 261A is disposed on the base substrate 262A.
  • the light supplement unit 80A is arranged between the adjacent TFT structures 261A.
  • the light outside the display screen 20A can reach the position of the camera module 30A under the display screen 20A only after passing through the diaphragm structure 81A.
  • the display screen 20A has an installation channel 201A, wherein the installation channel 201A is formed on the backplane layer 27A of the display screen 20A, and is used to accommodate at least part of the camera module 30A.
  • the light-filling unit 80A includes the aperture structure 81A and a light-emitting structure 82A, wherein the light-emitting structure 82A is disposed on at least part of the aperture structure 81A to radiate light outward, in particular, toward the The outer side of the display screen 20A radiates light to facilitate the display effect of the position of the light-passing hole 200A of the display screen 20A.
  • the aperture structure 81A includes an aperture moving part 811A, an aperture carrier 812A, and an aperture driving part 813A, wherein the aperture moving part 811A is disposed on the aperture carrier 812A.
  • the diaphragm moving part 811A is drivably connected to the diaphragm driving part 813A.
  • the diaphragm structure 81A can form a light hole 810A, and the light hole 810A can allow light to pass through. Further, the aperture 810A is formed in the aperture moving part 811A and as the aperture moving part 811A is driven by the aperture driving part 813A, the aperture size of the aperture 810A can be adjusted.
  • the light emitting structure 82A is provided in the diaphragm moving part 811A.
  • the light emitting structure 82A is disposed on the upper surface of the diaphragm moving part 811A.
  • the light-emitting structure 82A can emit light to supplement light around the light-through hole 200A of the display screen 20A.
  • the light emitting structure 82A can stop emitting light, and the size of the light hole 810A of the aperture structure 81A can be adjusted to control the amount of light entering the camera module 30A.
  • the aperture moving part 811A includes a plurality of blades 8111A, and the light-emitting structure 82A is provided on the blade 8111A of the aperture moving part 811A.
  • the blade 8111A is drivably connected to the diaphragm driving portion 813A.
  • the diaphragm moving portion 811A of the diaphragm structure 81A is made of a luminescent material and can emit light.
  • the light-emitting structure 82A may cover, fit, or be at least partially buried in the upper surface of the aperture moving portion 811A of the aperture structure 81A.
  • the diaphragm moving portion 811A of the diaphragm structure 81A may be fully transparent, and the lower surface of the diaphragm moving portion 811A of the diaphragm structure 81A A light-shielding material may be provided, wherein the aperture structure 81A may also be at least partially transparent, and the light-emitting structure 82A may be embedded in the aperture moving part 811A of the aperture structure 81A, and then pass The light-transmitting part of the diaphragm moving part 811A radiates light outward.
  • FIG. 71 it is another embodiment of the display unit according to the present invention.
  • the display unit includes a display screen 20A and a light supplement unit 80A, wherein the display screen 20A includes a cover layer 21A, a touch layer 23A, a polarization layer 24A, a pixel layer 25A, A driving circuit layer 26A and a backplane layer 27A, wherein the driving circuit layer 26A is formed on the bottom side of the pixel layer 25A and is electrically connected to the pixel layer 25A to drive the pixel layer 25A to work, wherein The encapsulation layer 22A is formed on the top side of the pixel layer 25A and is used to encapsulate the pixel layer 25A, wherein the light through hole 200A penetrates the touch layer 23A, the polarizing layer 24A, and the The encapsulation layer 22A, the pixel layer 25A, the driving circuit layer 26A, and the backplane layer 27A, wherein the backplane layer 27A is located at the bottom layer.
  • the display screen 20A is an LCD screen and the light supplement unit 80A is located inside the display screen 20A.
  • the light supplement unit 80A is located on the backplane layer 27A below the pixel layer 25A.
  • the light supplement unit 80A is installed on the back plate layer 27A and an aperture structure 81A of the light supplement unit 80A is aligned with the light-passing hole 200A of the display screen 20A.
  • the aperture structure 81A of the light supplement unit 80A can be installed on the backplane layer 27A by first opening the backplane layer 27A.
  • the light outside the display screen 20A can reach the position of the camera module 30A under the display screen 20A only after passing through the diaphragm structure 81A.
  • the display screen 20A has an installation channel 201A, wherein the installation channel 201A is formed on the backplane layer 27A of the display screen 20A, and is used to accommodate at least part of the camera module 30A.
  • the light-filling unit 80A includes the aperture structure 81A and a light-emitting structure 82A, wherein the light-emitting structure 82A is disposed on at least part of the aperture structure 81A to radiate light outward, in particular, toward the The outer side of the display screen 20A radiates light to facilitate the display effect of the position of the light-passing hole 200A of the display screen 20A.
  • the aperture structure 81A includes an aperture moving part 811A, an aperture carrier 812A, and an aperture driving part 813A, wherein the aperture moving part 811A is disposed on the aperture carrier 812A.
  • the diaphragm moving part 811A is drivably connected to the diaphragm driving part 813A.
  • the diaphragm structure 81A can form a light hole 810A, and the light hole 810A can allow light to pass through. Further, the aperture 810A is formed in the aperture moving part 811A and as the aperture moving part 811A is driven by the aperture driving part 813A, the aperture size of the aperture 810A can be adjusted.
  • the light emitting structure 82A is provided in the diaphragm moving part 811A.
  • the light emitting structure 82A is disposed on the upper surface of the diaphragm moving part 811A.
  • the light-emitting structure 82A can emit light to supplement light around the light-through hole 200A of the display screen 20A.
  • the light emitting structure 82A can stop emitting light, and the size of the light hole 810A of the aperture structure 81A can be adjusted to control the amount of light entering the camera module 30A.
  • the aperture moving part 811A includes a plurality of blades 8111A, and the light-emitting structure 82A is provided on the blade 8111A of the aperture moving part 811A.
  • the blade 8111A is drivably connected to the diaphragm driving portion 813A.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Signal Processing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明提供了一终端设备及其显示屏和应用,其中所述终端设备包括一终端设备主体、一显示屏以及一摄像模组,其中所述显示屏具有一通光孔,其中所述摄像模组位于所述显示屏的下方,所述摄像模组具有一前端,所述摄像模组的所述前端被固定贴装于所述显示屏并且所述摄像模组被对准于所述显示屏的所述通光孔,以使所述显示屏外侧的光线通过所述通光孔被所述摄像模组接收。

Description

终端设备及其显示屏和应用 技术领域
本发明涉及到电子设备领域,尤其涉及到具有全面屏的终端设备及其显示屏和应用。
背景技术
目前的电子设备通常具有摄像功能,为此,现有的手机终端中,一般具有前后摄像模组,其中前摄像模组通过被设置于显示屏的同侧,用于满足用户自拍等需求。前摄像模组占据了较大的屏幕空间,与目前追求全面屏的趋势相悖。
当前采取的措施是将摄像模组设计为伸缩式的摄像模组从而来隐藏和使用摄像功能。当需要使用电子设备的摄像功能时,控制摄像模组的至少部分伸出电子设备的壳体之外,当使用完毕摄像功能时,控制摄像模组的至少部分缩回电子设备的壳体之内。然而摄像模组本身是一个较为精密的部件,其在高频次的来回运动中的使用寿命有待考验,并且摄像模组在移动过程中容易因外力阻挡而损坏。
因此,如何保证电子设备的前置摄像功能并且兼顾对于全面屏的追求,这仍是一个急需解决的问题。
发明内容
本发明的一目的在于提供一终端设备及其显示屏和应用,其中所述终端设备的摄像模组能够采集到足够的光线并且同时所述终端设备的屏占比能够被提高。
本发明的另一个目的在于提供一终端设备及其显示屏和应用,其中所述终端设备的摄像模组被配置为屏下摄像模组并且能够通过显示屏的通光孔接收足够的光线。
本发明的另一目的在于提供一终端设备及其显示屏和应用,其中所述终端设备的摄像模组被配置为屏下摄像模组并且能够通过位于所述显示屏边缘的通光孔接收足够的光线。
本发明的另一目的在于提供一终端设备及其显示屏和应用,其中穿过所述通 光孔的光线能够沿着预设的路径被导引至所述摄像模组,以被所述摄像模组接收。
本发明的另一目的在于提供一终端设备及其显示屏和应用,其中所述摄像模组和所述显示屏能够被组装在一起,以有利于保持所述摄像模组和所述显示屏的相对位置。
本发明的另一目的在于提供一终端设备及其显示屏和应用,其中所述终端设备的所述摄像模组能够被设计为较小尺寸,以有利于降低所述显示屏和位于所述显示屏下方的所述摄像模组的整体高度。
根据本发明的一方面,本发明提供了一装配系统,其包括一夹持装置、一测试单元以及一支撑平台,其中所述夹持装置用于夹持至少一摄像模组,所述支撑平台用于支撑一带有通孔的显示屏,所述测试单元用于测试通过所述显示屏的一通孔接收光线的所述摄像模组的成像效果。
根据本发明的一实施例,所述夹持装置夹持所述摄像模组并且所述摄像模组被保持于所述显示屏上方。
根据本发明的一实施例,所述测试单元包括一光源、一标板以及一感测设备,其中所述光源和所述标板位于所述显示屏下方,所述感测设备对于所述摄像模组的成像效果进行检测。
根据本发明的一实施例,所述支撑平台具有一安装空间和一测试孔,其中所述测试孔贯通所述安装空间,当所述显示屏被容纳于所述安装空间,所述显示屏的所述通孔被对准于所述测试孔,所述光源发光的光线依次通过所述测试孔和所述通孔,然后被所述摄像模组接收。
根据本发明的一实施例,所述测试孔的形状是圆锥状,并且所述测试孔越靠近所述摄像模组位置的孔径越小。
根据本发明的一实施例,所述支撑平台包括一平台主体、一固定组件以及具有一安装空间,所述显示屏被容纳于所述安装空间,其中所述安装空间形成于所述固定组件,所述固定组件被设置于所述平台主体。
根据本发明的一实施例,所述固定组件被一体成型于所述平台主体。
根据本发明的一实施例,所述固定组件被可拆卸地安装于所述平台主体。
根据本发明的一实施例,所述装配系统进一步包括一限位机构,其中所述限位机构被设置于所述显示屏,当所述摄像模组被安装于所述显示屏,藉由所述限位机构限制所述摄像模组和所述显示屏的相对位置。
根据本发明的一实施例,所述装配系统进一步包括一限位机构,其中所述限位机构被设置于所述摄像模组,当所述摄像模组被安装于所述显示屏,藉由所述限位机构限制所述摄像模组和所述显示屏的相对位置。
根据本发明的一实施例,所述装配系统进一步包括一限位机构,其中所述限位机构被设置于一基板,所述基板被对准于所述显示屏,藉由所述限位机构所述摄像模组被对准于所述显示屏。
根据本发明的一实施例,所述限位机构通过粘合的方式被固定于所述显示屏。
根据本发明的一实施例,所述限位机构包括一套筒和一连接部,所述套筒具有一自由端和一连接端,其中所述连接部自所述套筒的所述连接端沿着所述套筒的径向方向朝外延伸而成,当所述套筒被安装于所述显示屏,所述连接部被贴合于所述显示屏的背侧。
根据本发明的一实施例,所述限位机构包括一套筒和至少一连接脚,其中所述套筒具有一自由端和一连接端,其中所述连接脚自所述套筒的所述连接端沿着所述套筒的轴向方向朝外延伸而成,当所述套筒被安装于所述显示屏,所述连接脚延伸入所述显示屏内部。
根据本发明的一实施例,所述显示屏具有至少一嵌合通道,其中所述限位机构的所述连接脚被嵌合于所述嵌合通道,所述显示屏包括一盖板层、一触控层、一偏振层、一封装层、一像素层以及一驱动电路层,其中所述盖板层、所述触控层、所述偏振层、所述封装层、所述像素层以及所述驱动电路层在高度方向相互叠合,所述驱动电路层形成于所述像素层的底侧,并且被电连接于所述像素层以驱动所述像素层工作,其中所述封装层形成于所述像素层的顶侧,用于封装所述像素层,其中所述通孔在高度方向贯穿所述触控层、所述偏振层、所述封装层、所述像素层以及所述驱动电路层,其中所述驱动电路层包括一衬底基板和多个TFT结构,其中所述TFT结构被设置于所述衬底基板,其中所述嵌合通道位于相邻的所述TFT结构之间。
根据本发明的一实施例,所述显示屏具有一安装通道,其中所述安装通道被连通于所述通孔,其中所述限位机构的至少部分被容纳于所述安装通道。
根据本发明的一实施例,所述安装通道的内径大于所述通孔。
根据本发明的另一方面,本发明提供了一终端设备,其包括一终端设备主体、一显示屏、一摄像模组以及一限位机构,其中所述显示屏被安装于所述终端设备 主体并且所述显示屏具有自上而下贯通的一通孔,其中所述摄像模组被保持于所述显示屏下方并且被对准于所述通孔,其中所述限位机构分别连接于所述摄像模组和所述显示屏,所述摄像模组通过所述限位机构被固定于所述显示屏。
根据本发明的一实施例,所述限位机构通过粘合的方式被固定于所述显示屏。
根据本发明的一实施例,所述限位机构包括一套筒和一连接部,所述套筒具有一自由端和一连接端,其中所述连接部自所述套筒的所述连接端沿着所述套筒的径向方向朝外延伸而成,当所述套筒被安装于所述显示屏,所述连接部被贴合于所述显示屏的背侧。
根据本发明的一实施例,所述限位机构包括一套筒和至少一连接脚,其中所述套筒具有一自由端和一连接端,其中所述连接脚自所述套筒的所述连接端沿着所述套筒的轴向方向朝外延伸而成,当所述套筒被安装于所述显示屏,所述连接脚延伸入所述显示屏内部。
根据本发明的一实施例,所述显示屏具有至少一嵌合通道,其中所述限位机构的所述连接脚被嵌合于所述嵌合通道,所述显示屏包括一盖板层、一触控层、一偏振层、一封装层、一像素层以及一驱动电路层,其中所述盖板层、所述触控层、所述偏振层、所述封装层、所述像素层以及所述驱动电路层在高度方向相互叠合,所述驱动电路层形成于所述像素层的底侧,并且被电连接于所述像素层以驱动所述像素层工作,其中所述封装层形成于所述像素层的顶侧,用于封装所述像素层,其中所述通孔在高度方向贯穿所述触控层、所述偏振层、所述封装层、所述像素层以及所述驱动电路层,其中所述驱动电路层包括一衬底基板和多个TFT结构,其中所述TFT结构被设置于所述衬底基板,其中所述嵌合通道位于相邻的所述TFT结构之间。
根据本发明的一实施例,所述显示屏具有一安装通道,其中所述安装通道被连通于所述通孔,其中所述限位机构的至少部分被容纳于所述安装通道。
根据本发明的另一方面,本发明提供了一摄像模组的装配方法,其包括如下步骤:
安装一摄像模组于一限位机构,所述摄像模组和所述限位机构位于一显示屏的一通孔的下方;
基于所述摄像模组的成像效果调整所述摄像模组位置至达到一预期效果;以及
固定所述摄像模组和所述显示屏于调整后位置。
根据本发明的一实施例,在上述方法中,所述限位机构被设置于所述显示屏。
根据本发明的一实施例,在上述方法中,所述限位机构被设置于一基板,所述摄像模组位于所述基板和所述显示屏之间。
根据本发明的一实施例,在上述方法中,通过调整所述摄像模组和所述限位机构的相对位置的方式调整所述摄像模组和所述显示屏的相对位置。
根据本发明的一方面,本发明提供了一终端设备,其包括一终端设备主体、一显示屏、一摄像模组以及具有至少一通光孔,其中所述显示屏被安装于所述终端设备主体,所述摄像模组被保持于所述显示屏下方并且被对准于所述通光孔,其中所述通光孔在高度方向穿过所述显示屏的至少部分,所述显示屏外侧的光线通过所述通光孔被传导至所述显示屏下方的所述摄像模组,其中所述通光孔被设计为所述摄像模组的一虚拟光阑。
根据本发明的一实施例,所述终端设备进一步包括一壳体,一所述通光孔在所述壳体和所述显示屏之间的间隙自所述显示屏的一侧面穿至所述显示屏的一底面。
根据本发明的一实施例,所述摄像模组包括一感光单元、一光学机构以及一光阑,其中所述光阑被安装于所述光学机构,所述光学机构被保持于所述感光组件的感光路径并且接收通过所述通光孔的光线。
根据本发明的一实施例,所述摄像模组包括一感光单元和一光学单元,其中所述光学单元被保持于所述通光孔,所述感光单元被对准于所述通光孔。
根据本发明的一实施例,所述光学单元包括一光学镜头,其中所述光学镜头包括一镜筒和多个镜片,其中所述镜筒包括一镜筒壁和一延伸壁,所述镜片被安装于所述镜筒壁,其中所述延伸壁自所述镜筒壁的靠近于所述显示屏的一端竖直朝上延伸而成一预设距离而成。
根据本发明的一实施例,所述延伸壁被设置为自所述镜筒壁竖直朝上延伸然后朝内延伸而成。
根据本发明的一实施例,所述延伸壁被设置为自所述镜筒壁朝向朝上延伸并且越靠近于所述镜筒壁,所述延伸臂的内径越小。
根据本发明的一实施例,所述延伸壁各位置的内径保持一致。
根据本发明的一实施例,越靠近于所述镜筒壁,所述延伸壁的外径越小;或 者是,越靠近于所述镜筒壁,所述延伸壁的外径越大。
根据本发明的一实施例,所述显示屏包括一盖板层、一触控层、一偏振层、一封装层、一像素层以及一驱动电路层,其中所述盖板层、所述触控层、所述偏振层、所述封装层、所述像素层以及所述驱动电路层在高度方向相互叠合,所述驱动电路层形成于所述像素层的底侧,并且被电连接于所述像素层以驱动所述像素层工作,其中所述封装层形成于所述像素层的顶侧,用于封装所述像素层,其中所述偏振层用于对于通过的光线进行偏振处理,其中所述通光孔在高度方向穿过所述显示屏除了所述盖板层之外的所述触控层、所述偏振层、所述封装层、所述像素层以及所述驱动电路层。
根据本发明的一实施例,所述驱动电路层包括一衬底基板和多个TFT结构,其中所述TFT结构被设置于所述衬底基板,所述通光孔位于相邻的所述TFT结构之间。
根据本发明的一实施例,所述像素层包括多个像素,所述通光孔位于相邻的所述像素之间。
根据本发明的一实施例,所述驱动电路层包括一衬底基板和多个TFT结构,其中所述TFT结构被设置于所述衬底基板,所述通光孔位于相邻的所述TFT结构之间。
根据本发明的一实施例,所述终端设备被设置一保护材料,其中所述保护材料位于所述通光孔,并且被涂覆于所述像素层和/或所述驱动电路层。
根据本发明的一实施例,所述像素层包括一阳极层、一发光层、一阴极层以及一保护层,其中所述阳极层位于所述驱动电路层上方,所述发光层位于所述阳极层和所述阴极层之间,所述阴极层位于所述发光层上方并且位于所述保护层下方。
根据本发明的一实施例,所述终端设备被设置一保护材料,其中所述保护材料位于所述通光孔,并且所述保护材料被自所述保护层朝下延伸至所述阴极层;或者是所述保护材料自所述保护层朝下延伸至所述发光层;或者是所述保护材料自所述保护层朝下延伸至所述阳极层。
根据本发明的一实施例,所述终端设备包括一背板层,所述背板层位于所述驱动电路层下方并且用于发光,所述像素层包括一滤光层和液晶,其中所述液晶位于所述滤光层和所述驱动电路层之间,所述像素层被设置一密封材料,其中所 述密封材料位于所述滤光层和所述驱动电路层之间,所述液晶被所述密封材料阻挡从而无法泄漏至所述通光孔。
根据本发明的一实施例,所述终端设备被设置一保护材料,其中所述保护材料位于所述通光孔,并且所述保护材料被涂覆于所述像素层和/或所述驱动电路层。
根据本发明的一实施例,所述终端设备进一步包括一导光管道,其中所述导光管道被容纳于所述通光孔。
根据本发明的一实施例,所述导光管道是由透明材质制成的。
根据本发明的一实施例,所述导光管道被涂覆有不透光材料。
根据本发明的一实施例,所述终端设备进一步包括一限位机构,其中所述限位机构的一端被连接于所述摄像模组,所述限位机构的另一端被连接于所述显示屏,所述摄像模组通过所述限位机构被固定于所述显示屏。
根据本发明的一方面,本发明提供了一显示单元,用于配合一摄像模组,所述显示单元包括一显示屏、和一补光单元以及具有一通光孔,其中所述通光孔在高度方向贯穿所述显示屏的至少部分,所述补光单元能够辐射光线至所述显示屏外侧并且当所述摄像模组处于工作状态,所述补光单元形成一光孔,来自于所述显示屏外侧的光线通过所述通光孔和所述光孔的约束后被所述摄像模组接收。
根据本发明的一实施例,所述补光单元被设置于所述显示屏。
根据本发明的一实施例,所述补光单元被设置于所述显示屏内部。
根据本发明的一实施例,所述显示屏包括一盖板层、一触控层、一偏振层、一封装层、一像素层以及一驱动电路层,其中所述盖板层位于顶侧,所述驱动电路层形成于所述像素层的底侧,并且被电连接于所述像素层以驱动所述像素层工作,其中所述封装层形成于所述像素层的顶侧,其中所述补光单元位于所述驱动电路层。
根据本发明的一实施例,所述显示屏包括一盖板层、一触控层、一偏振层、一封装层、一像素层、一驱动电路层以及一背板层,其中所述盖板层位于顶侧,所述背板层位于底侧,所述驱动电路层形成于所述像素层的底侧,并且被电连接于所述像素层以驱动所述像素层工作,其中所述封装层形成于所述像素层的顶侧,其中所述补光单元位于所述背板层。
根据本发明的一实施例,所述补光单元被保持于所述显示屏和所述摄像模组 之间。
根据本发明的一实施例,所述补光单元被可拆卸地安装于所述显示屏。
根据本发明的一实施例,所述补光单元包括一光阑结构和一发光结构,所述光阑结构包括一光阑移动部和一光阑驱动部,所述光阑移动部被可驱动地以形成大小可变的一光孔的方式连接于所述光阑驱动部,其中所述发光结构位于所述光阑移动部。
根据本发明的一实施例,所述发光结构位于所述光阑移动部的上表面。
根据本发明的一实施例,当所述发光结构位于所述光阑移动部的上表面,所述光阑移动部的下表面被设置为遮光的。
根据本发明的一实施例,所述补光单元进一步包括一反射结构,其中所述反射结构位于所述发光结构下方以将所述发光结构的光线朝所述显示屏外侧反射。
根据本发明的一实施例,所述反射结构被可拉伸以形变地设置于所述光阑结构,当所述反射结构随着所述光阑移动部的移动而形变,所述反射结构的反射率变化。
根据本发明的一实施例,所述发光结构包括一发光元件,所述光阑移动部具有一孔并且在所述光阑移动部被所述光阑驱动部驱动以移动过程中所述孔的大小变化以形成大小可变的所述光孔,所述发光元件被设置于所述光阑移动部。
根据本发明的一实施例,所述发光结构包括多个像素,其中所述光阑移动部包括多个叶片,所述叶片被可驱动地连接于所述光阑驱动部,至少一个所述像素被设置于至少一个所述叶片。
根据本发明的一实施例,多个所述像素被设置于一个所述叶片。
根据本发明的一实施例,所述发光结构位于所述光阑移动部的内部。
根据本发明的一实施例,所述补光单元包括一光阑移动部和一光阑驱动部,其中所述光阑移动部被可驱动以形成大小可变的一光孔的方式连接于所述光阑驱动部,其中所述光阑移动部本身被设置为可发光。
根据本发明的另一方面,本发明提供了一终端设备,其包括:
一终端设备主体;
上述的一显示单元;以及
一摄像模组,其中所述摄像模组位于所述显示单元下方,所述摄像模组具有一前端,所述摄像模组的所述前端被安装于所述显示单元的所述显示屏并且所述 摄像模组被对准于所述显示屏的所述通光孔,以使所述显示屏外侧的光线通过所述通光孔被所述摄像模组接收。
根据本发明的另一方面,本发明提供了一显示单元的工作方法,其包括如下步骤:
在带有一通光孔的显示屏工作时,操作一补光单元发光以补充所述通光孔位置光强。
根据本发明的一实施例,所述工作方法进一步包括如下步骤:
在位于所述显示屏下方并且对准于所述通光孔的一摄像模组工作时,操作位于所述摄像模组的上方的一补光单元的一光阑结构形成一光孔,光线通过所述通光孔和所述补光单元的约束后达到所述摄像模组。
根据本发明的一方面,本发明提供了一终端设备,其包括一终端设备主体、一显示屏、一摄像模组、一壳体以及具有一导光通道,其中至少部分所述导光通道位于所述显示屏和所述壳体之间,至少部分所述导光通道穿过所述显示屏,所述显示屏被安装于所述终端设备主体,所述摄像模组位于所述显示屏的下方并且被安装于所述显示屏,所述导光通道被对准于所述摄像模组并且光线能够通过所述导光通道到达所述摄像模组以成像。
根据本发明的一实施例,所述导光通道自所述显示屏的一侧面延伸至所述显示屏的一底面,所述摄像模组被贴装于所述显示屏的所述底面。
根据本发明的一实施例,所述显示屏自上而下包括一盖板层、一触控层、一偏振层、一封装层、一像素层、一驱动电路层以及一背板层,其中所述驱动电路层形成于所述像素层的底侧,并且被电连接于所述像素层以驱动所述像素层工作,其中所述封装层形成于所述像素层的顶侧,用于封装所述像素层,其中所述偏振层用于对于光线进行偏振,所述驱动电路层被支撑于所述背板层,所述导光通道穿过所述触控层、所述偏振层、所述封装层、所述像素层、所述驱动电路层以及所述背板层中的一层或者是多层。
根据本发明的一实施例,所述终端设备包括一光学单元,其中所述光学单元被保持于所述导光通道,所述光学单元允许光线透过。
根据本发明的一实施例,所述显示屏具有自上而下贯穿的一通光孔,其中所述通光孔被对准于所述摄像模组。
根据本发明的一实施例,所述导光通道和所述通光孔的至少部分重合,并且 光线通过所述导光通道达到所述摄像模组获得的像和光线通过所述通孔孔达到同一所述摄像模组获得的像具有一致性。
根据本发明的一实施例,所述终端设备进一步包括至少一导光组件,其中所述导光组件形成所述导光管道,其中所述导光组件穿过所述显示屏。
根据本发明的一实施例,所述导光组件是透光材料制成的。
根据本发明的一实施例,所述导光组件是一导光管道,其中所述导光管道被涂覆不透光材料。
根据本发明的一实施例,所述终端设备包括一光学单元,其中所述光学单元位于所述导光组件并且被保持于所述导光通道,所述光学单元允许光线透过。
根据本发明的一实施例,所述显示屏具有自上而下贯穿的一通光孔,其中所述通光孔被对准于所述摄像模组。
根据本发明的一实施例,所述导光通道和所述通光孔的至少部分重合,并且光线通过所述导光通道达到所述摄像模组获得的像和光线通过所述通孔孔达到同一所述摄像模组获得的像具有一致性。
根据本发明的一实施例,一所述导光组件被容纳于所述通光孔。
根据本发明的另一方面,本发明提供了一显示屏的制造方法,其包括如下步骤:
形成自一显示屏的侧面延伸至所述显示屏的底面的一导光通道。
根据本发明的一实施例,在上述方法中,进一步包括如下步骤:
在所述显示屏的各层的一预设位置对应形成孔;
安装所述显示屏的各层以使对应的各个孔形成所述导光通道。
根据本发明的一实施例,在上述方法中,进一步包括如下步骤:
在一驱动电路层形成贯穿所述驱动电路层的孔;
在所述驱动电路层上方分别设置盖板层、触控层、偏振层、封装层以及像素层以获得所述显示屏;以及
对于所述显示屏对准于所述驱动电路层的孔进行开孔以获得所述导光通道。
根据本发明的一实施例,在上述方法中,进一步包括如下步骤:
在带有孔的所述驱动电路层形成所述像素层;
在所述像素层和所述驱动电路层形成穿过所述像素层和所述驱动电路层的孔;以及
在所述像素层上方分别设置盖板层、触控层、偏振层以及封装层。
根据本发明的另一方面,本发明提供了一显示屏的制造方法,其包括如下步骤:
在一液晶层两侧分别设置盖板层、触控层、偏振层、封装层以及背板层以获得一显示屏;
在所述显示屏的侧面或者是底面对准于所述液晶层的一密封区域对于所述显示屏进行开孔处理以获得穿过所述显示屏的侧面至底面的一导光通道。
根据本发明的一实施例,在上述方法中,所述液晶层的制造方法包括如下步骤:
在一滤光层和一驱动电路层之间设置密封材料以形成所述密封区域;和
填充液晶于所述密封区域之外。
根据本发明的一实施例,在所述液晶层预先形成孔。
附图说明
图1是根据现有技术的一终端设备的示意图。
图2是根据现有技术的一显示屏和一摄像模组的示意图
图3是根据本发明的一较佳实施例的一显示屏的示意图。
图4A是根据本发明的一较佳实施例的一显示屏的制造示意图。
图4B是根据本发明的一较佳实施例的一显示屏的制造示意图。
图5A是根据本发明的一较佳实施例的一显示屏的制造示意图。
图5B是根据本发明的一较佳实施例的一显示屏的制造示意图。
图6A是根据本发明的一较佳实施例的一显示屏的示意图。
图6B是根据本发明的上述较佳实施例的上述显示屏的示意图。
图7是根据本发明的一较佳实施例的一显示屏的示意图。
图8是根据本发明的一较佳实施例的一显示屏的示意图。
图9是根据本发明的一较佳实施例的一显示屏的示意图。
图10是根据本发明的一较佳实施例的一显示屏的示意图。
图11是根据本发明的一较佳实施例的一显示屏的制造示意图。
图12是根据本发明的一较佳实施例的一显示屏的制造示意图。
图13是根据本发明的一较佳实施例的一显示屏的示意图。
图14A是根据本发明的一较佳实施例的一显示屏的制造示意图。
图14B是根据本发明的一较佳实施例的一显示屏的制造示意图。
图15是根据本发明的一较佳实施例的一显示屏的示意图。
图16是根据本发明的一较佳实施例的一显示屏的制造示意图。
图17是根据本发明的一较佳实施例的一显示屏的示意图。
图18A是根据本发明的一较佳实施例的一显示屏的应用示意图。
图18B是根据本发明的一较佳实施例的一显示屏的应用示意图。
图19是根据本发明的一较佳实施例的一显示屏的应用示意图。
图20是根据本发明的一较佳实施例的一显示屏的应用示意图。
图21是根据本发明的一较佳实施例的一显示屏的应用示意图。
图22是根据本发明的一较佳实施例的一显示屏的应用示意图。
图23是根据本发明的一较佳实施例的一显示屏的应用示意图。
图24是根据本发明的一较佳实施例的一显示屏的应用示意图。
图25是根据本发明的一较佳实施例的一显示屏的应用示意图。
图26是根据本发明的一较佳实施例的一显示屏的应用示意图。
图27是根据本发明的一较佳实施例的一显示屏的应用示意图。
图28是根据本发明的一较佳实施例的一显示屏的示意图。
图29是根据本发明的一较佳实施例的一显示屏的示意图。
图30图示了根据本申请实施例的摄像模组的一种具体示例。
图31图示了根据本申请实施例的摄像模组的另一种具体示例。
图32图示了根据本申请实施例的摄像模组的又一种具体示例。
图33图示了根据本申请实施例的摄像模组的又一种具体示例。
图34图示了根据本申请实施例的摄像模组的又一种具体示例。
图35图示了根据本申请实施例的摄像模组的又一种具体示例。
图36图示了根据本申请实施例的摄像模组的又一种具体示例。
图37图示了根据本申请实施例的摄像模组的又一种具体示例。
图38图示了根据本申请实施例的摄像模组的又一种具体示例。
图39图示了根据本申请实施例的摄像模组的又一种具体示例。
图40图示了根据本申请实施例的摄像模组的又一种具体示例。
图41图示了根据本申请实施例的摄像模组的又一种具体示例。
图42图示了根据本申请实施例的摄像模组的又一种具体示例。
图43图示了现有的基于模塑工艺的摄像模组的示意图。
图44图示了所述摄像模组的感光芯片的一种具体示意
图45图示了所述摄像模组的感光芯片的另一种具体示意。
图46图示了所述摄像模组的感光芯片的光敏层的一种具体示意。
图47图示了所述摄像模组的感光芯片的光敏层的另一种具体示意。
图48A是根据本发明的一较佳实施例的一装配系统的示意图。
图48B是根据本发明的一较佳实施例的一装配过程示意图。
图49是根据本发明的一较佳实施例的所述装配系统的支撑平台的示意图。
图50是根据本发明的一较佳实施例的一装配过程示意图。
图51A是根据本发明的一较佳实施例的一装配过程示意图。
图51B是根据本发明的一较佳实施例的一装配过程示意图。
图51C是根据本发明的一较佳实施例的一装配过程示意图。
图52是根据本发明的一较佳实施例的一装配过程示意图。
图53是根据本发明的一较佳实施例的一装配过程示意图。
图54是根据本发明的一较佳实施例的一装配过程示意图。
图55是根据本发明的一较佳实施例的一装配过程示意图。
图56是根据本发明的一较佳实施例的一装配过程示意图。
图57是根据本发明的一较佳实施例的一装配过程示意图。
图58是根据本发明的一较佳实施例的一装配过程示意图。
图59是根据本发明的一较佳实施例的一装配过程示意图。
图60A是根据本发明的一较佳实施例的一镜筒的示意图。
图60B是根据本发明的一较佳实施例的一镜筒的示意图。
图60C是根据本发明的一较佳实施例的一镜筒的示意图。
图60D是根据本发明的一较佳实施例的一镜筒的示意图。
图60E是根据本发明的一较佳实施例的一镜筒的示意图。
图61A是根据本发明的一较佳实施例的一终端设备的示意图。
图61B是根据本发明的一较佳实施例的一显示单元的示意图。
图61C是根据本发明的上述较佳实施例的所述显示单元的另一工作状态的局部示意图。
图62A是根据本发明的一较佳实施例的一显示单元的局部示意图。
图62B是根据本发明的一较佳实施例的一显示单元的局部示意图。
图62C是根据本发明的一较佳实施例的一显示单元的局部示意图。
图63是根据本发明的一较佳实施例的一显示单元的示意图。
图64是根据本发明的一较佳实施例的一显示单元的示意图。
图65是根据本发明的一较佳实施例的一显示单元的示意图。
图66是根据本发明的一较佳实施例的一显示单元的示意图。
图67是根据本发明的一较佳实施例的一显示单元的示意图。
图68是根据本发明的一较佳实施例的一显示单元的示意图。
图69是根据本发明的一较佳实施例的一显示单元的示意图。
图70是根据本发明的一较佳实施例的一显示单元的示意图。
图71是根据本发明的一较佳实施例的一显示单元的示意图。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
可以理解的是,术语“一”应理解为“至少一”或“一个或多个”,即在一个实施例中,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个,术语“一”不能理解为对数量的限制。
虽然比如“第一”、“第二”等的序数将用于描述各种组件,但是在这里不限制那些组件。该术语仅用于区分一个组件与另一组件。例如,第一组件可以被称为 第二组件,且同样地,第二组件也可以被称为第一组件,而不脱离发明构思的教导。在此使用的术语“和/或”包括一个或多个关联的列出的项目的任何和全部组合。
在这里使用的术语仅用于描述各种实施例的目的且不意在限制。如在此使用的,单数形式意在也包括复数形式,除非上下文清楚地指示例外。另外将理解术语“包括”和/或“具有”当在该说明书中使用时指定所述的特征、数目、步骤、操作、组件、元件或其组合的存在,而不排除一个或多个其它特征、数目、步骤、操作、组件、元件或其组的存在或者附加。
包括技术和科学术语的在这里使用的术语具有与本领域技术人员通常理解的术语相同的含义,只要不是不同地限定该术语。应当理解在通常使用的词典中限定的术语具有与现有技术中的术语的含义一致的含义。
下面结合附图和具体实施方式对本发明作进一步详细的说明:
申请概述:
近年来,提出了一种屏下摄像模组的技术方案,将摄像模组保持于显示屏的下方,安装于电子设备比如说手机的主板,并且限制于制造工艺,显示屏预留一较大的透光区域,以使摄像模组能够通过所述透光区域正常的取景。所述透光区域的大小远大于摄像模组的一受光区域,并且一旦摄像模组的视场角θ被设置的更大时,所述透光区域也需要被设置的更大,以满足摄像模组在来回移动过程中的取景需求。所述摄像模组的受光区域是指所述摄像模组的镜头部分用于进光的区域。
可以参考附图1A和附图1B所示,是现有的屏下摄像模组30P的示意图。如图1所示,所述显示屏20P具有一透光区域S,其中所述透光区域S限制于早前制作工艺,远大于所述摄像模组30P的所述受光区域P,并且当所述摄像模组30P需要相对于所述显示屏20P来回移动时所述透光区域S需要被制作的更大。
从所述显示屏20P上方观察,所述透光区域S将占据所述显示屏20P较大的区域,进一步,由于现有技术所述透光区域S为了确保模组的进光量,所述透光区域S不能用来显示,故不利于提高整个所述显示屏20P的屏占比。
本发明提供了一种显示屏20P,其中所述显示屏20P能够在满足设于所述显示屏20P下方的摄像模组30P需要的成像光线的同时尽可能提高所述显示屏20P的屏占比。
参考附图2至附图5B所示,是根据本发明的一些实施例的所述显示屏20及其制作方式的示意图。
所述显示屏20具有一通光孔200,其中所述通光孔200作为所述透光区域,所述摄像模组30位于所述显示屏20下方。所述摄像模组30通过接收穿过所述通光孔200的光线从而成像。
值得一提的是,所述摄像模组30能够被固定于所述显示屏20,从而所述摄像模组30和所述显示屏20之间不需要预留空间,使得整体的高度能够缩小,并且由于所述摄像模组30紧贴于所述显示屏20,所述摄像模组30对于所述透光区域S的面积大小的需求也可以被缩小。当然,所述摄像模组30也能够被相对于所述显示屏20移动,但是所述显示屏20的所述透光区域可以被制作的更小。
所述透光区域,即,所述通光孔200能够被设计的更小,对于所述显示屏20的制作工艺也提出了更高的要求。
在本示例中,所述显示屏20被实施为OLED显示屏20。所述显示屏20包括:自上而下分布的盖板层21、触控层22、偏振层23、封装层24、像素层25、驱动电路层26以及背板层27,其中所述背板层27位于底侧,所述盖板层位于顶侧,所述驱动电路层26形成于所述像素层25的底侧,并电连接于所述像素层25,用于驱动所述像素层25工作;所述封装层24形成于所述像素层25的顶侧,用于封装所述像素层25;以及所述像素层25包括呈阵列分布的像素,各所述像素之间具有间隙,以供依序透过所述盖板层21、所述触控层22、所述偏振层23和所述封装层24的光线能够藉由所述间隙穿过所述像素层25。
特别地,所述显示屏20还具有所述通光孔200,其中所述通光孔200穿过所述触控层22、所述偏振层23、所述封装层24、所述像素层25以及所述驱动电路层26。值得注意的是,所述通光孔200可以穿过所述盖板层21,也可以不穿过所述盖板层21。所述盖板层21一般是由透光率较好的材料制成的,比如说玻璃,因此所述盖板层21不需要打孔就可以允许光线高效地穿过。
进一步地,所述盖板层21位于所述显示屏20的上方,如果所述盖板层21是一个完整的结构,位于所述显示屏20的各层上方的所述盖板层21可以对于其他层起到保护作用,比如水分或者是灰尘等污染物进入到所述显示屏20的其他各层。在本示例中,优选地,所述通光孔200没有穿过所述盖板层21。
所述摄像模组30能够被安装于所述显示屏20的下方,并且通过所述通光孔 200接收来自于所述显示屏20上方足量的光线。
进一步地,所述摄像模组30被固定安装于所述显示屏20,所述显示屏20的所述通光孔200的尺寸能够被设计的较小。
如图3A和附图3B所示,在本实施例中,所述显示屏20被实施为OLED(Organic Light-emitting Diode,有机发光二级管)显示屏20。本领域技术人员应道知晓的是,OLED显示屏20具有自发光性、广视角、高对比、低耗电、高反应速度、全彩化等优点。
所述盖板层21通常被实施为玻璃层,其位于所述显示屏20的最顶层,用于对位于所述盖板层21下方的各层进行保护,应当理解的是,玻璃层由玻璃材料制备而成,玻璃材料为高透光率的材料。
所述触控层22位于所述盖板层21下方,通常所述盖板层21和所述触控层22通过粘合剂相连。本领域技术人员应当知晓的是,所述触控层22是实现显示屏20具有触控功能不可缺少的配置。
所述偏振层23位于所述触控层22下方,其中所述偏振层23通常被实施为圆偏振光等。
所述封装层24位于所述偏振层23下方,其中所述封装层24的作用是对于位于所述封装层24下方的所述像素层25进行封装,以使得所述像素层25处于密封环境,使得所述像素层25中的有机材料不被外界污染或者是挥发出去。具体来说,所述封装层24有两种类型,其中,当所述显示屏20为刚性屏时,所述封装层24由刚性可透光材料制备而成,例如,玻璃、塑料等;当所述显示屏20为柔性屏时,所述封装层24由柔性可透光材料制备而成,例如,PI膜(Polyimide Film,聚酰亚胺薄膜)。
所述像素层25被所述封装层24包裹并且位于所述封装层24下方。对于所述OLED显示屏20而言,所述像素层25中的像素单元被实施为OLED,即,Organic Light-emitting Diode,有机发光二级管。
所述驱动电路层26位于所述像素层25下方,其中所述驱动电路层26能够电连接于所述像素层25以驱动所述像素层25工作。
所述背板层27位于所述驱动电路层26下方,其中所述背板层27能够加强整个所述显示屏20的结构强度。所述背板层27通常由塑料材料制成。
对于所述OLED显示屏20而言,在开孔过程中需要注意的是所述像素层25 和所述驱动电路层26的避让。所述驱动电路层26被设置有电路结构,所述像素层25包括多个像素,一旦所述通光孔200破坏所述驱动电路层26的电路结构或者是所述像素层25的像素结构,很可能会对于所述OLED显示屏20的工作效能造成影响。
在所述OLED显示屏20开孔的方式主要有三种形式,一种是在所述OLED显示屏20的各层组装完毕之后,对于所述OLED显示屏20的各层统一进行开孔处理,一种是对于所述OLED显示屏20的各层进行逐层的开孔处理,另一种是对于所述OLED显示屏20的某些层比如说所述像素层25和/或所述驱动电路层26预先进行开孔处理,然后在安装其他层以组成所述OLED显示屏20之后,再统一进行开孔处理。
值得注意的是,此处的开孔不仅是指实际的小孔,也可以指所述显示屏20形成具有类似于孔的功能的区域。比如说可以先对于所述显示屏20进行开孔处理,然后在开孔位置填充透明材料以使这一区域能够拥有类似于孔的通光功能。
值得一提的是,在采用第一种方式获得带有一通光孔200的所述显示屏20时,可以在制造所述驱动电路层26和所述像素层25的过程中预留一开孔区域,所述驱动电路层26的电路结构和所述像素层25的像素并不在所述开孔区域之内,以减少在后续开孔后所述通光孔200对于所述OLED显示屏20的工作效能造成的影响。
所述像素层25采用蒸镀的方式形成于所述驱动电路层26。所述像素层25包括一阳极层251、一发光层252、一阴极层253以及一保护层254,其中所述阳极层251位于所述驱动电路层26上方,所述发光层252位于所述阳极层251和所述阴极层253之间,所述阴极层253位于所述发光层252上方并且位于所述保护层254下方。
所述通光孔200贯穿所述像素层25。具体地,所述通光孔200在垂直于所述像素层25的各层的方向上贯穿所述像素层25和所述显示屏20的各层,除所述显示屏20的所述盖板层21。
所述像素层25还可以包括其他的一些膜层,比如说平坦化层、钝化层等,在此不做限定。而在本示例中可以将所述通光孔200设置于所述显示屏20的显示区域,由于本发明涉及到的所述通光孔200直径小于或等于3.99mm,优选地小于或等于2mm,且所述通光孔200不影响所述显示屏20正常显示,所述摄像模 组30被安装于对应于所述通光孔200的位于所述显示屏20下方的一预设位置。
值得一提的是该预设位置,应当是根据所述通光孔200的直径和所述摄像模组30的光路参数确定的,即所述摄像模组30被设置于预设位置可通过所述显示屏20上的所述通光孔200接收光,并进行正常成像,由于所述通光孔200相对现有通光孔来讲尺寸较小,从而增大显示区域,进而有利于全面屏的制作。
值得注意的是,所述通光孔200的形状可以是三角形,矩形或者是圆形,在本示例中,所述通光孔200优选为圆形。
参考附图4A所示,是对于所述OLED显示屏20采用单次开孔的处理方式以在整个所述OLED显示屏20开孔的一种具体实施方式被示意。
在所述驱动电路层26形成所述像素层25之后,可以采取蚀刻、或直接打孔等方式去除所述像素层25的至少部分所述保护层254以形成一凹槽,其中所述凹槽内可以被填充至少部分标志物质,所述标志物质可以用于提示所述开孔区域。所述标志物质可以是透明材料,基于所述标志物质和周围材质的透光率的不同可以确定所述标志物质的位置。
安装所述OLED显示屏20的其他各层于所述驱动电路层26或所述像素层25,以获得完整的所述OLED显示屏20。基于所述标志物质可以从所述OLED显示屏20的上方确定所述开孔区域,然后对于所述OLED显示屏20进行开孔处理。在开孔过程中,所述通光孔200的范围可以比所述标志物质占据的面积的尺寸较大,从而在开孔完毕后,所述标志物质可以被完整除去。
可以理解的是,此时采用所述标志物质定位所述开孔区域的方式仅为举例说明。本领域技术人员应当理解的是,对于所述OLED显示屏20进行开孔并且绕开所述驱动电路层26的电路结构和/或所述像素层25的像素结构的方式并不限制于上述的举例。
参考附图4B所示,是对于所述OLED显示屏20采用多次开孔的处理方式以在整个所述OLED显示屏20开孔的一种具体实施方式被示意。
在本示例中,首先对于所述驱动电路层26和所述像素层25进行开孔处理,然后对于所述OLED显示屏20的其他各层进行开孔处理以获得带有所述通光孔200的所述显示屏20。
用虚线框所圈的区域为所述通光孔200的位置,所述通光孔200在垂直于所述像素层25和所述驱动电路层26的方向上,贯穿所述显示屏20。本领域技术 人员应当知晓的是,图中的所述像素层25的结构仅为示意,各个功能层可以根据需要设置,并且所述通光孔200具体贯穿的位置,可以根据需求被设置,并不限制于图中所示的位置。
进一步地,所述驱动电路层26包括多个TFT结构261和一衬底基板262,其中所述TFT结构261被依次设置于所述衬底基板262以形成一TFT阵列。所述衬底基板262位于所述TFT结构261的下方,所述TFT结构261位于所述像素层25下方。
所述通光孔200自所述像素层25贯穿至所述驱动电路层26的所述衬底基板262。
所述像素层25还包括一平坦化层255和一像素定义层256,其中所述平坦化层255位于所述TFT结构261和所述阳极层251之间,所述像素定义层256位于所述阳极层251和所述发光层252之间。所述像素定义层256具有至少一像素槽2560,其中至少部分所述发光层252和至少部分所述阳极层251下陷地形成于所述像素槽2560,从而所述像素定义层256能够用于界定所述像素257。
在本示例中,所述通光孔200形成于两个所述TFT结构261之间,从而减少了对于所述驱动电路层26的电路影响,并且所述通光孔200周围覆盖有至少部分所述保护层254,以使所述通光孔200附近的所述阳极层251、所述发光层252以及所述阴极层253不被暴露在外,以减少外界对于所述阳极层251、所述发光层252以及所述阴极层253造成的影响,比如说空气和水分,或者是灰尘等物质。
所述通光孔200的形成方式可以是先在制作所述驱动电路层26的过程中预先设计一个小孔,所述小孔的位置可以尽可能远离所述TFT结构261以避免破坏所述驱动电路层26的结构。在所述驱动电路层26形成所述小孔的方式可以是直接采取激光钻孔或者是蚀刻等。
在所述驱动电路层26形成所述小孔后,在所述驱动电路层26形成于所述像素层25,此时位于所述驱动电路层26的所述小孔被覆盖,然后可以对准于所述驱动电路层26的所述小孔位置对于所述驱动电路层26和所述像素层25进行开孔以使所述驱动电路层26和所述像素层25被贯通。
在所述驱动电路层26和所述像素层25安装所述封装层24,可以对准于所述驱动电路层26和所述像素层25在所述封装层24打孔。继续安装所述偏振层23、 所述触控层22、所述盖板层21以及所述背板层27至所述驱动电路层26和所述像素层25,并且在所述偏振层23、所述触控层22以及所述背板层27逐层打孔,得到带有所述通光孔200的所述显示屏20。
根据本发明的另一些实施例,此时位于所述驱动电路层26的所述小孔被所述像素层25覆盖,再继续安装所述封装层24、所述偏振层23、所述触控层22、所述盖板层21以及所述背板层27,在获得完整的所述显示屏20后,对准于所述小孔在所述显示屏20的厚度方向打孔,从而获得贯穿所述显示屏20的所述通光孔200。可以理解的是,可以先对于所述显示屏20的各层进行安装以获得一个完整的所述显示屏20,然后对于除所述盖板层21之外的各层统一进行打孔。也可以是先对于所述显示屏20的除了所述盖板层21之外的各层进行安装,然后打孔,最后再将所述盖板层21安装,以获得完整的所述显示屏20。
根据本发明的另一些实施例,当然可以理解的是,所述通光孔200的形成方式可以是先在制作所述驱动电路层26的过程中预先设计一小孔,所述小孔的位置可以尽可能远离所述TFT结构261以避免破坏所述驱动电路层26的结构,然后在所述驱动电路层26的基础上形成所述像素层25。可以在所述像素层25对准于所述驱动电路层26进行打孔,然后安装所述封装层24、所述偏振层23、所述触控层22、所述盖板层21以及所述背板层27,在获得完整的所述显示屏20后,对准于所述小孔在所述显示屏20的厚度方向打孔,从而获得贯穿于所述显示屏20的除了所述盖板层21之外的其他各层的所述通光孔200。可以理解的是,可以先对于所述显示屏20的各层进行安装以获得一个完整的所述显示屏20,然后对于除所述盖板层21之外的各层统一进行打孔。也可以是先对于所述显示屏20的除了所述盖板层21之外的各层进行安装,然后打孔,最后再将所述盖板层21安装,以获得完整的所述显示屏20。
参考附图5A和附图5B所示,是对于所述OLED显示屏20采用多次开孔的处理方式以在整个所述OLED显示屏20开孔的一种具体实施方式被示意。
在本示例中,先获得所述驱动电路层26和所述像素层25,然后对于所述驱动电路层26和所述像素层25同时进行开孔处理。
具体地说,在所述驱动电路层26上形成所述像素层25的所述阳极层251、所述发光层252以及所述阴极层253,然后通过刻蚀的手段去除至少部分所述阴极层253以在所述阴极层253形成一开孔区域。
至少部分所述像素层25通过所述开孔区域被暴露在外。具体地,所述像素层25的至少部分所述像素定义层256通过所述开孔区域被暴露在外。优选地,所述开孔区域在所述像素层25和所述驱动电路层26垂直方向上的投影位于相邻的所述TFT结构261之间,以尽可能减少对于所述显示屏20的电路的影响。
在形成所述开孔区域后,继续在所述阴极层253和至少部分所述像素定义层256之上形成所述保护层254,其中所述保护层254的保护材质填充所述开孔区域并且所述开孔区域周围的区域也被所述保护层254的保护材质填充。
然后通过钻孔或者是切割的方法在所述开孔区域形成至少部分所述通光孔200。比如说采用激光切割工艺,在所述开孔区域沿着所述驱动电路层26的高度方向上,切割掉至少部分所述像素层25和所述驱动电路层26,以使所述像素层25上方的光线经过所述像素层25和所述驱动电路层26达到所述驱动电路层26的下方。具体的开孔方法可以是借助一张中心开口的掩膜版,然后将所述开孔区域对应的各层刻蚀,其他部位遮盖起来。
在本示例中,在形成所述保护层254之前需要去除的是所述阴极层253的至少部分,在本发明的另一些实施例中,在形成所述保护层254之前需要去除的是所述阴极层253的至少部分和所述发光层252的至少部分。具体地说,可以采取干刻蚀的方式来去除,例如,干刻蚀工艺可以通过等离子体增强化学的气相沉积刻蚀设备完成,也可以通过电感耦合等离子体刻蚀设备完成。而刻蚀其他可以是一些含氧气体,其能够和所述发光层252中的有机物或者是所述阴极层253反应,比如说氧气、一氧化二氮或者是二氧化碳等;又或者,刻蚀气体为含氧气体和惰性气体氮气同时使用。
值得注意的是,所述开孔区域和所述通光孔200的大小可以不一致,当所述开孔区域大于所述通光孔200,所述通光孔200位于所述开孔区域之内时,位于所述通光孔200周围的所述阴极层253能够被所述保护层254保护从而不被暴露在外。所述开孔区域和所述通光孔200的大小一致或者是所述通光孔200大于所述开孔区域时,所述通光孔200周围的所述阴极层253会被暴露在外。
在所述驱动电路层26上形成所述像素层25后,所述通光孔200能够贯穿于所述驱动电路层26和所述像素层25。
进一步地,所述封装层24、所述偏振层23、所述触控层22以及所述盖板层21能够按照一定的顺序被安装所述像素层25和所述驱动电路层26。在所述封装 层24、所述偏振层23、所述触控层22以及所述盖板层21被分别固定安装于所述像素层25和所述驱动电路层26之后,然后钻孔或者是切割以使所述通光孔200贯通整个所述显示屏20的除了所述盖板层21之外的其他各层。
当所述显示屏20包括所述背板层27时,所述背板层27被安装于所述驱动电路层26,并且所述通光孔200在所述显示屏20的高度方向贯通所述背板层27。
当然,可以理解的是,所述封装层24、所述偏振层23、所述触控层22以及所述背板层27可以在分别固定安装于所述驱动电路层26和所述像素层25之后就进行打孔处理。换句话说,当所述封装层24被安装于所述像素层25,就可以对于所述封装层24对准于所述像素层25进行开孔。当所述偏振层23被安装于所述封装层24之后,就可以对于所述偏振层23进行开孔。当所述触控层22被安装于所述偏振层23之后,就可以对于所述触控层22进行开孔。当所述背板层27被安装于所述驱动电路层26之后,就可以对于所述背板层27进行开孔。
除所述驱动电路层26和所述像素层25之外的所述显示屏20的开孔时机并不限制于上述的举例说明。比如说所述封装层24、所述偏振层23以及所述触控层22位于所述像素层25的同一侧,可以同时进行开孔处理。所述背板层27位于所述像素层25的另一侧,可以单独进行开孔处理,也可以和所述封装层24、所述偏振层23以及所述触控层22一同进行开孔处理。
值得一提的是,在所述驱动电路层26形成所述像素层25之前或者是之后,所述显示屏20的其他各层可以被逐层钻孔或者是被切割,然后通过调整各层的相对位置以使位于各层的所述小孔对准,从而能够相互贯通。
进一步地,所述显示屏20的各层对应的所述通光孔200部分的内径可以是不同的。比如说位于上方的所述触控层22对应的所述通光孔200部分的内径可以大于位于下方的所述背板层27对应的所述通光孔200部分的内径。所述显示屏20的各层对应的各个所述小孔可以被独立制作,从而最后形成的所述通光孔200对应于各层的内径可以是不同的。
进一步地,对于所述显示屏20的每一层而言,以所述驱动电路层26为例,所述驱动电路层26的所述小孔可以是圆柱状的,即,所述小孔在所述驱动电路层26不同高度位置的内径相同。所述驱动电路层26的所述小孔也可以是圆锥状的,即,所述小孔在所述驱动电路层26不同高度位置的内径是不同的,比如说 自上而下所述小孔的内径逐渐减小。
本领域技术人员应当理解的是,所述小孔的形状并不限制于上述的举例。
参考附图6A和附图6B所示,并且参考附图5A和附图5B,是根据本发明的所述显示屏20的另一种具体实施方式被示意。在本示例中,所述显示屏20的所述通光孔200位置附近被设置有保护材料2812。特别是所述像素层25和所述驱动电路层26对应的所述通光孔200位置附近。所述保护材料2812可以和所述像素层25的所述保护层254采用相同的材质,也可以和所述像素层25的所述保护层254采用不同的材质。
所述保护材料2812位于所述通光孔200位置附近,能够对于暴露的所述显示屏20的各层的内部结构起到保护作用。尤其是对于所述像素层25和所述驱动电路层26而言。所述像素层25和所述驱动电路层26的内部结构被暴露在所述通光孔200中,当所述通光孔200内进入灰尘、水分或者是空气时,可能会对于所述像素层25和所述驱动电路层26造成损害。而所述保护材料2812能够覆盖所述像素层25和所述驱动电路层26在所述通光孔200位置的暴露部分,从而保护所述像素层25和所述驱动电路层26,以使所述像素层25和所述驱动电路层26能够处于一个较为稳定的工作环境中。
在获得带有所述通光孔200的所述显示屏20之后,可以在所述显示屏20的所述通光孔200内灌注所述保护材料2812,然后对于所述保护材料2812进行开孔处理以形成新的所述通光孔200。所述保护材料2812能够覆盖所述显示屏20的每一层。当然,可以根据用户的需求控制所述保护材料2812在所述通光孔200内的填充高度,从而选择所述保护材料2812的覆盖位置。所述保护材料2812可以不完全填充所述通光孔200,比如说所述背板层27对应于所述通光孔200的位置可以不被所述保护材料所保护。
值得注意的是,在本示例中,所述盖板层21并没有进行打孔处理,所述盖板层21一般是由玻璃制成的,本身具有较好的透光性能,因此所述盖板层21可以不做开孔处理,并且所述盖板层21还可以位于上方对于所述显示屏20的其他各层起到保护作用。
通过这样的方式,原先的所述通光孔200可以被预先制作的较大,然后在后期对于保护材料2812进行切割或者是钻孔来控制所述通光孔200以使所述通光孔200达到预期的大小。值得注意的是,所述通光孔200周围的保护材料2812 可以和所述保护层254的材料相同,也可以和所述保持层的材料不同。
参考附图6B所示,是所述显示屏20的具体的一种制作方法被阐明。
在本示例中,首先对于组成所述显示屏20的各层进行开孔,然后填充所述保护材料2812。所述保护材料2812是透明材料。也就说原先所述显示屏20的对应的所述通光孔200位置被所述透明材料填充。
具体地说,可以对于所述触控层22、所述偏振层23、所述封装层24、所述像素层25、所述驱动电路层26以及所述背板层27分别进行开孔处理,然后在开孔位置填充所述保护材料2812。
然后将所述触控层22、所述偏振层23、所述封装层24、所述像素层25、所述驱动电路层26以及所述背板层27对准地安装在一起形成所述显示屏20。此时所述显示屏20可以当作一个带有“孔”的显示屏使用。所述触控层22、所述偏振层23、所述封装层24、所述像素层25、所述驱动电路层26以及所述背板层27对应的透明材料可以起到孔的作用。
进一步地,可以对于所述触控层22、所述偏振层23、所述封装层24、所述像素层25、所述驱动电路层26以及所述背板层27同时进行开孔处理,并且留下部分所述保护材料2812于所述通光孔200周围。然后安装所述盖板层21,以获得附图6A中所示的所述显示屏20。
参考附图7所示,是根据本发明的所述显示屏20的另一种具体实施方式被阐明。
在本示例中,所述显示屏20的所述通光孔200周围形成至少部分所述保护材料2812。所述保护材料2812能够对于所述通光孔200周围的关键层进行保护,比如说所述阴极层253、所述像素定义层256、所述TFT结构261等。
所述保护材料2812在所述通光孔200周围的位置可以根据需要被设置。举例说明,在获得带有所述通光孔200的所述显示屏20之后,所述通光孔200的直径可以比期望的设计值略大,然后朝所述通光孔200填充保护材料2812至整个所述通光孔200被填充完毕,再对于所述通光孔200所在位置进行切割,以根据需要获得预期大小的所述通光孔200。
在本示例中,可以选择对于所述显示屏20中的所述驱动电路层26和所述像素层25单独进行保护。
具体地说,首先获得所述驱动电路层26,所述驱动电路层26可以通过在基 板成膜、光刻胶涂布、曝光、显影、蚀刻、剥离等步骤获得。在制备完所述驱动电路层26之后,可以通过蚀刻或者是钻孔等方式在所述驱动电路层26制备在高度方向贯通的一个小孔。优选地,所述小孔形成于所述驱动电路层26的相邻的所述TFT结构261之间。
然后在所述驱动电路层26形成所述像素层25,所述小孔在这个过程中被填充。可以去除所述像素层25和所述驱动电路层26的小孔位置对应的材料,以获得所述通光孔200。
然后朝向所述像素层25和所述驱动电路层26对应的所述通光孔200填充所述保护材料2812,然后对于所述通光孔200内的所述保护材料2812进行开孔处理以重新获得略小于原先的所述通光孔200的一个孔。此时所述像素层25和所述驱动电路层26暴露在所述通光孔200内的部分可以被所述保护材料2812涂覆,从而能够被所述保护材料2812保护。
然后将所述显示屏20的其他各层安装于所述驱动电路层26和所述像素层25。可以选择在安装完毕之后对于各层进行钻孔或者是切割以使所述通光孔200贯穿所述显示屏20,或者是在每安装完毕一层之后就对准于所述小孔进行钻孔或者是切割以使所述通光孔200贯穿所述显示屏20的各层。
参考附图8所示,以及参考附图2至附图5B,是根据本发明的所述显示屏20的另一种具体实施方式被阐明。
在本示例中,所述显示屏20的对应于所述像素层25的所述通光孔200周围填充有至少部分保护材料2812。
所述显示屏20的制造方法可以包括如下步骤:在所述衬底基板262上依次形成所述TFT结构261、所述阳极层251、所述发光层252以及所述阴极层253,并且进一步地,在所述衬底基板262形成所述TFT结构261之后和所述阳极层251之前形成所述平坦化层255,利用一次构图工艺,去除所述平坦化层255在厚度方向的至少部分并且形成一所述通光孔200。所述通光孔200贯通地形成于所述驱动电路层26和所述平坦化层255,然后在所述平坦化层255形成所述阳极层251和所述像素定义层256、所述阴极层253。,
采用刻蚀工艺,去除掉对应于所述开孔区域的所述发光层252和所述阴极层253的在厚度方向的至少部分。具体的说,可以采用刻蚀工艺去除掉对应于所述开孔区域的所述像素定义层256、所述发光层252和所述阴极层253的至少部分, 使得至少部分所述平坦化层255被暴露在外。
然后采用保护材料2812封装所述像素层25,至少部分所述平坦化层255被保护材料2812所覆盖,再采用切割或者是钻孔等方式在所述开孔区域形成所述通光孔200,从而所述通光孔200边缘的所述平坦化层255和所述像素定义层256可以被保护材料2812覆盖。
通过这样的方式,所述通光孔200边缘对应的所述像素层25和所述驱动电路层26可以根据需求被选择性地覆盖保护材料2812。所述保护材料2812不仅能够起到保护所述像素层25的作用,还可以通过控制保护材料2812的径向方向的厚度来控制所述通光孔200的大小。
在本示例中,所述通光孔200的位置可以被预先设置,并且优选地设置在相邻的所述TFT结构261之间或者是相邻的像素之间,以避免在设置所述通光孔200的同时对于整个所述显示屏20的性能造成影响。
进一步地,在带有所述通光孔200的所述像素层25和所述驱动电路层26被制作完毕之后,可以基于需求在所述像素层25和所述驱动电路层26继续安装所述封装层24、所述偏振层23、所述触控层22以及所述盖板层21或者是所述背板层27。所述封装层24、所述偏振层23、所述触控层22以及所述背板层27可以是事先制作有孔,也可以是在安装于所述像素层25和所述驱动电路层26之后被开孔,也可以是在整个所述显示屏20被安装完毕之后统一被开孔。
值得注意的是,所述盖板层21并没有被开孔,在所述显示屏20的各层被安装在一起之后,可以从所述显示屏20的所述背板层27一侧对于所述显示屏20的除了所述盖板层21之外的各层统一进行开孔。
进一步地,所述盖板层21可以进行部分开孔。具体地说,可以对于所述盖板层21的在厚度方向上的至少部分进行开孔,比如说在从所述显示屏20的所述背板层27一侧对于所述显示屏20自所述背板层27朝向所述盖板层21进行开孔处理时,所述盖板层21在厚度方向上的至少部分也可以被去除。但是从所述显示屏20的所述盖板层21一侧朝内观察时,所述盖板层21依然完整地覆盖于所述触控层22。所述盖板层21依然可以对于所述显示屏20的其他各层起到保护作用。
参考附图9所示,是根据本发明的带有所述摄像模组30的所述显示屏20的一种具体实施方式被示意。
所述摄像模组30被固定安装于所述显示屏20,并且所述摄像模组30被对准于所述通光孔200。
具体地说,所述显示屏20具有一安装通道201,其中至少部分所述摄像模组30能够被容纳于所述安装通道201。以带有所述背板层27的所述显示屏20为例进行说明。所述安装通道201形成于所述背板层27。
所述安装通道201位于所述通光孔200位置,所述安装通道201被连通于所述通光孔200并且所述安装通道201和所述通光孔200位于所述显示屏20的高度方向。优选地,所述安装通道201的内径大于所述通光孔200其他位置的内径,此时,所述显示屏20的所述通光孔200的横截面尺寸是非恒定的。
当所述摄像模组30被安装于所述显示屏20并且部分被容纳于所述安装通道201,所述摄像模组30和所述显示屏20的整体高度能够被降低,从而有利于降低所述移动终端的高度尺寸。
所述安装通道201略大于所述摄像模组30,未被所述摄像模组30填充的所述安装通道201部分可以被填充胶体以使所述摄像模组30能够被更加稳固地固定于所述显示屏20。
比如说,所述摄像模组30的侧面可以通过胶水被粘接于所述背板层27,以使所述摄像模组30被固定保持于所述安装通道201。所述摄像模组30的顶面也可以通过胶水等粘接物质被固定于所述驱动电路层26的一背面,以有利于所述摄像模组30被稳固地保持于所述安装通道201。
所述摄像模组30的至少部分伸入所述显示屏20的所述通光孔200。当所述摄像模组30伸入所述通光孔200,所述通光孔200对应于所述显示屏20各层的大小可以对于所述摄像模组30进入所述通光孔200的深度进行控制。
在本示例中,至少部分所述摄像模组30被容纳于所述背板层27对应的所述通光孔200部分,所述背板层27以上的各层,比如说所述驱动电路层26和所述像素层25对应的所述通光孔200部分可以小于所述背板层27对应的所述通光孔200部分,从而当自所述显示屏20的正侧观察时,所述通光孔200占据所述显示屏20的面积较小。此处所述显示屏20的正侧是指在正常使用时朝向用户的一侧。
在本发明的另一些实施例中,所述摄像模组30的前端部分可以延伸至所述驱动电路层26,甚至是部分所述像素层25对应的所述通光孔200部分。通过对 于各层对应的所述通光孔200大小的控制,所述摄像模组30伸入所述显示屏20的深度可以被控制,从而通过设计所述通光孔200对应于所述显示屏20各层的大小,来控制所述摄像模组30和所述显示屏20的整体尺寸,尤其是所述摄像模组30和所述显示屏20的高度尺寸。
参考附图10所示,是根据本发明的一较佳实施例的带有通光孔200A的一显示屏20A被阐明。
在本示例中,所述显示屏20A被实施为一LCD显示屏20A。所述显示屏20A包括:盖板层21A、触控层22A、偏振层23A、封装层24A、像素层25A、驱动电路层26A以及背板层27A,其中所述驱动电路层26A形成于所述像素层25A的底侧,并电连接于所述像素层25A,用于驱动所述像素层25A工作;所述封装层24A形成于所述像素层25A的顶侧,用于封装所述像素层25A;以及所述像素层25A包括呈阵列分布的像素,各所述像素之间具有间隙,以供依序透过所述盖板层21A、所述触控层22A、所述偏振层23A和所述封装层24A的光线能够藉由所述间隙穿过所述像素层25A。
对于所述LCD显示屏20A而言,所述像素层25A的液晶在通电时呈现有序的排列。
特别地,所述显示屏20A还具有所述通光孔200A,其中所述通光孔200A穿过所述触控层22A、所述偏振层23A、所述封装层24A、所述像素层25A以及所述驱动电路层26A。
所述偏振层23A可以分别位于所述像素层25A的两侧,被实施为第一偏光片和第二偏光片。
所述像素层25A包括滤光层251A(CF)和液晶252A,所述液晶252A位于所述滤光层251A和所述驱动电路层26A之间。以TFT-LCD为例,所述驱动电路层26A可以包括多个TFT结构和所述衬底基板,所述TFT结构通过薄膜、黄光、蚀刻、剥膜等步骤后形成于所述衬底基板。
所述通光孔200A形成于所述显示屏20A的除了所述盖板层21A之外的各层,并且在所述显示屏20A的高度方向贯穿所述显示屏20A的除了所述盖板层21A之间的各层。
来自于所述显示屏20A上方或者是所述显示屏20A外侧的光线可以通过所述通光孔200A以被位于所述显示屏20A下方或者是所述显示屏20A内侧的所 述摄像模组30接收。
所述通光孔200A周围具有密封材料,以使所述液晶252A无法流至所述通光孔200A内,从而避免对于所述摄像模组30的工作性能或者对于所述显示屏20A的显示性能造成影响。
进一步地,所述LCD显示屏20A包括一液晶层28A,其中所述液晶层28A包括所述液晶252A、所述滤光层251A以及所述驱动电路层26A。
带有所述通光孔200A的所述LCD显示屏20A的制作方法主要有三种方式,一是在所述LCD显示屏20A的各层被组装在一起后,对于所述LCD显示屏20A的各层进行统一开孔,二是对于所述LCD显示屏20A的所述液晶层28A进行单独开孔,然后安装所述LCD显示屏20A的其他各层于所述液晶层28A,然后对于所述LCD显示屏20A的其他各层进行统一开孔,三是对于所述LCD显示屏20A的所述液晶层28A进行单独开孔,然后逐层安装所述LCD显示屏20A的其他各层于所述液晶层28A,并且对于所述LCD显示屏20A的各层进行逐层开孔。
本领域技术人员应当知晓的是,上述仅为举例说明,带有所述通光孔200A的所述LCD显示屏20A的制作方法并不限制于上述的举例。
参考附图11所示,是根据本发明的带有所述通光孔200A的所述LCD显示屏20A的一种具体制作方法被阐明。
在本示例中,通过单次开孔就可以获得带有所述通光孔200A的所述LCD显示屏20A。
具体地说,在制造所述液晶层28A的过程中,在所述液晶层28A的所述驱动电路层26A和所述滤光层251A之间形成一密封区域281A,其中所述密封区域281A可以通过密封材料2811A围绕形成。所述液晶层28A的所述液晶252A主要被设置在所述密封区域281A之外。
然后组装所述LCD显示屏20A的各层为一完整的所述LCD显示屏20A。基于所述密封区域281A对于所述LCD显示屏20A进行开孔处理。
所述LCD显示屏20A具有一开孔区域282A,其中所述开孔区域282A重叠于所述密封区域281A并且不大于所述密封区域281A。在对于所述LCD显示屏20A进行开孔处理后,至少部分所述密封区域281A被去除,并且位于所述密封区域281A之间的所述液晶252A由于所述密封材料2811A的阻挡作用,无法越过所述密封材料2811A,从而所述液晶252A无法溢出至所述通光孔200A位置。
通过这样的方式,所述LCD显示屏20A可以通过单次开孔操作就获得所述通光孔200A。
更加具体地说,可以在所述液晶层28A的所述驱动电路层26A的一预设位置设置所述密封材料2811A以形成所述密封区域281A,所述密封区域281A的形状可以是一圆形、三角形或者是矩形。然后在所述驱动电路层26A的所述密封区域281A之外的位置填充所述液晶252A。
在所述液晶252A填充完毕之后,可以在所述驱动电路层26A上安装所述滤光层251A。所述液晶252A位于所述驱动电路层26A和所述滤光层251A之间,并且被限制在一个固定区域。
在对于所述液晶层28A进行开孔处理后,所述开孔区域282A小于所述密封区域281A,至少部分所述密封材料2811A能够被保持在所述驱动电路层26A和所述滤光层251A之间,从而所述液晶252A不会在所述密封材料2811A位置溢出。所述液晶252A仍然能够被限制在原先的固定区域内。
通过这样的方式,能够在保持所述液晶层28A的所述液晶252A不溢出的前提下,完成对于所述液晶层28A的开孔处理。
值得注意的是,在所述显示屏20A安装完毕之后,如果能够在所述显示屏20A之外对准于所述密封区域281A进行开孔,那么就可以直接进行开孔处理,比如说在所述显示屏20A之外可以观察到所述密封区域281A的情况下。
如果所述密封材料2811A是不透光材料,在所述显示屏20A外无法确定所述密封区域281A的位置,那么可以在所述密封区域281A内设置标识以使在所述显示屏20A外侧可以确定所述密封区域281A的位置。
值得注意的是,所述密封材料2811A的位置可以被设置为在高度方向避开所述驱动电路层26A对应的电路部分,以减少对于所述驱动电路层26A电路的影响。
参考附图12所示,是根据本发明的带有所述通光孔200A的所述LCD显示屏20A的一种具体制作方法被阐明。
在本示例中,首先对所述液晶层28A进行开孔,然后对所述显示屏20A的其他各层进行开孔。
具体地说,在所述驱动电路层26A的一预设区域设置密封区域281A,以在后续填充液晶252A的过程中避免所述密封区域281A之外的液晶252A流至所 述密封区域281A内。可以在设置完所述密封区域281A之后对于所述驱动电路层26A沿着一开孔区域282A进行开孔处理。所述开孔区域282A位于所述密封区域281A之内。也可以在所述滤光层251A被安装于所述驱动电路层26A之后对于所述驱动电路层26A和所述滤光层251A同时沿着所述开孔区域282A进行开孔处理。
根据本发明的一些实施例,所述液晶层28A开孔的顺序可以是先对于所述驱动电路层26A进行开孔处理,然后对于所述滤光层251A进行开孔处理。
举例说明,先基于所述密封区域281A,对于所述密封区域281A之内的所述驱动电路层26A进行开孔处理,然后在所述驱动电路层26A的预设区域填充液晶252A,然后将所述滤光层251A安装于所述驱动电路层26A之上,再对所述滤光层251A进行开孔处理。
进一步地,在所述密封区域281A之内对于所述驱动电路层26A进行开孔处理后,在所述驱动电路层26A的所述密封区域281A之外的区域需要填充液晶252A以使在后续步骤中所述显示屏20A能够正常工作。
进一步地,根据本发明的另一些实施例,可以对于所述驱动电路层26A的一开孔区域282A进行开孔处理,然后在所述开孔区域282A周围设置一密封材料2811A以形成所述密封区域281A。液晶252A被填充于所述密封区域281A之外并且在所述密封材料2811A的阻碍下无法通过所述密封材料2811A流至所述密封区域281A内。也就是说,在开孔后液晶252A无法流至所述通光孔200A位置,以有利于在后续的步骤中保证所述通光孔200A的采光效果。
然后将所述滤光层251A安装于所述驱动电路层26A,对准于所述驱动电路层26A的所述开孔区域282A进行开孔。此时所述滤光层251A和所述驱动电路层26A之间的所述液晶252A仍被保持在所述密封区域281A之外,不会流至所述通光孔200A位置。
然后可以将所述显示屏20A的其他各层,比如说所述封装层24A、所述偏振层23A、所述触控层22A以及所述盖板层21A分别按照一定的顺序安装至所述液晶层28A。可以在每一功能层被安装的过程中,对于每一层逐层进行开孔处理,也可以是在其他各层被安装完毕之后,对于每一层同时进行开孔处理。
优选地,在本示例中,对于所述显示屏20A的所述盖板层21A并不进行开孔处理,获得带有所述通光孔200A的所述显示屏20A的方式可以是先对于所述 显示屏20A的各层进行安装以获得一个完整的所述显示屏20A,然后对于除所述盖板层21A之外的各层统一进行打孔。也可以是先对于所述显示屏20A的除了所述盖板层21A之外的各层进行安装,然后打孔,最后再将所述盖板层21A安装,以获得完整的所述显示屏20A。
值得注意的是,也可以是对于所述显示屏20A的所述盖板层21A进行开孔处理,然后用透明材料对于所述盖板层21A进行填充,以灰尘或者水分等污染物通过位于最外侧的所述盖板层21A对应的所述通光孔200A的部分进入到所述显示屏20A的其他各层。
值得注意的是,在各层安装完毕以待统一进行开孔之前,或者是对于每一层逐层进行开孔处理之前,可以通过各种方式对于所述开孔区域282A进行定位以有利于后续的准确开孔。比如说可以通过机械识别定位所述开孔区域282A,然后基于这一数据在相同的位置对于其他的各层进行开孔处理。
值得注意的是,用于分隔所述通光孔200A和所述液晶252A的所述密封材料2811A可以被设置于所述驱动电路层26A,也可以是被设置于所述滤光层251A,或者是分别被设置于所述驱动电路层26A和所述滤光层251A。
根据本发明的另一些实施例,举例说明,所述密封材料2811A被设置于所述滤光层251A,在所述驱动电路层26A被填充所述液晶252A之后,将设置有所述密封材料2811A的所述滤光层251A覆盖于所述驱动电路层26A,借助所述密封材料2811A分隔所述液晶252A于所述密封区域281A之内和所述密封区域281A之外。被设置于所述滤光层251A的所述密封材料2811A紧贴于所述驱动电路层26A,位于所述密封区域281A之外的所述液晶252A无法通过所述密封材料2811A越至所述密封区域281A之内。然后在所述密封区域281A之内对于所述驱动电路层26A和所述滤光层251A进行开孔处理以获得贯通所述驱动电路层26A和所述滤光层251A的所述通光孔200A。
根据本发明的另一些实施例,所述液晶层28A开孔的顺序可以是先对于所述滤光层251A进行开孔处理,然后对于所述驱动电路层26A进行开孔处理。
举例说明,可以先对于所述滤光层251A的一开孔区域282A进行开孔处理,然后在所述开孔区域282A周围设置一密封材料2811A以形成所述密封区域281A。液晶252A被填充于所述密封区域281A之外并且在所述密封材料2811A的阻碍下无法通过所述密封材料2811A流至所述密封区域281A内。也就是说, 在开孔后液晶252A无法流至所述通光孔200A位置,以有利于在后续的步骤中保证所述通光孔200A的采光效果。
在所述滤光层251A被开孔之后,安装所述滤光层251A于所述驱动电路层26A,同时被设置于所述滤光层251A的所述密封材料2811A紧贴于所述驱动电路层26A,所述密封材料2811A形成所述密封区域281A。
然后对准于所述滤光层251A的所述开孔区域282A对于所述驱动电路层26A进行开孔处理。在所述驱动电路层26A被开孔后,位于所述密封区域281A的液晶252A能够流至外界。
进一步地,可以在安装所述显示屏20A的其他各层,比如说所述封装层24A、所述偏振层23A、所述触控层22A以及所述背板层27A之后对于整个所述显示屏20A进行开孔处理,以使所述滤光层251A的所述通光孔200A贯通整个所述显示屏20A的除了所述盖板层21A之外的其他各层。
也可以是在安装所述显示屏20A的其他各层的过程中,对于已经对准安装的各层进行开孔处理,比如说在安装所述偏振层23A和所述触控层22A之后,就对于所述偏振层23A和所述触控层22A进行开孔处理,以使所述滤光层251A的所述通光孔200A贯通整个所述显示屏20A的除了所述盖板层21A之外的其他各层。然后在安装所述盖板层21A,以获得完整的所述显示屏20A。
根据本发明的另一些实施例,所述液晶层28A开孔的顺序可以是同时对于所述滤光层251A和所述驱动电路层26A进行开孔处理。
举例说明,设置所述密封材料2811A于所述滤光层251A和所述驱动电路层26A之间。所述密封材料2811A可以被设置于所述滤光层251A或者是所述驱动电路层26A或者是所述滤光层251A和所述驱动电路层26A。
所述开孔区域282A形成于所述密封区域281A之内。当所述液晶层28A被开孔处理后,至少部分所述密封材料2811A残留于所述滤光层251A和所述驱动电路层26A之间以避免所述滤光层251A和所述驱动电路层26A之间的液晶252A流出。
所述液晶层28A开孔的流程可以是,首先将所述密封材料2811A设置于所述驱动电路层26A,然后填充液晶252A材料于所述驱动电路层26A。所述液晶252A材料位于所述密封材料2811A形成的所述密封区域281A之外。
可以理解的是,所述密封材料2811A可以是透明的或者是透光度较高的,有 利于所述液晶层28A对应的所述通光孔200A位置光线的传播。所述密封材料2811A也可以是遮光材料,以减少所述液晶层28A对应的所述通光孔200A位置附近的杂光对于所述通光孔200A的通光效果造成影响。也就是说,所述密封材料2811A的类型可以根据需求被可选择地设置。
然后安装所述滤光层251A于所述驱动电路层26A。所述密封材料2811A、所述驱动电路层26A以及所述滤光层251A之间形成一个所述密封区域281A。对于所述密封区域281A而言,所述密封区域281A之外的液晶252A无法流入所述密封区域281A之内。
在所述滤光层251A和所述驱动电路层26A被安装在一起形成所述液晶层28A之后,可以对于所述液晶层28A进行开孔处理,也可以是在整个所述显示屏20A被安装完毕之后,对准于所述密封区域281A对于整个所述显示屏20A进行开孔处理。
进一步地,可以理解的是,在对于所述液晶层28A进行开孔处理后,所述显示屏20A的其他各层的开孔顺序可以根据需求被选择。可以是在所述液晶层28A安装所述封装层24A,然后对准于所述液晶层28A对于所述封装层24A进行开孔处理。继而在所述封装层24A安装所述触控层22A,然后对准于所述液晶层28A和所述封装层24A对于所述触控层22A进行开孔处理。
也可以是位于所述液晶层28A上方的各层在安装完毕之后,统一对于所述液晶层28A上方的各层进行开孔处理。然后在位于所述液晶层28A下方的各层在安装完毕之后,统一对于所述液晶层28A下方的各层进行开孔处理。
所述显示屏20A的各层也可以被事先钻好孔,然后被对准于所述液晶层28A安装。
更进一步地,如果是需要对于整个所述LCD显示屏20A进行开孔处理,也就是说,对于所述盖板层21A也进行开孔处理的情况下,在对于整个所述LCD显示屏20A进行开孔处理时,所述偏振层23A由不透光材料制成,所述盖板层21A和所述触控层22A可以用透光材料制成。不透光的材料阻碍了从所述显示屏20A外侧观察到所述液晶层28A的所述密封区域281A,从而不利于对准于所述密封区域281A进行开孔,因此可以对于所述偏振层23A进行开孔处理,然后再对所述盖板层21A进行开孔处理,以使所述盖板层21A在进行开孔处理时能够基于所述偏振层23A的所述通光孔200A部分进行开孔,从而使得各层的所述 通光孔200A部分能够相互对准。
参考附图13所示,是本发明的所述LCD显示屏20A的一种具体实施方式被示意。在上述实施例中,所述LCD显示屏20A的各层对应的所述通光孔200A部分的内径大小相同。
在本实施例中,所述LCD显示屏20A的各层对应的所述通光孔200A部分的内径大小不同。
在形成所述液晶层28A之后,在所述液晶层28A的上方可以安装所述封装层24A、所述偏振层23A、所述触控层22A以及所述盖板层21A,在所述液晶层28A的下方可以安装另一所述偏振层23A和所述背板层27A。所述LCD显示屏20A的所述背板层27A是不可或缺的,所述背板层27A在通电的情况下能够发光。
所述液晶层28A可以是事先开孔,然后安装所述封装层24A、所述偏振层23A、所述触控层22A以及所述盖板层21A,其中所述封装层24A、所述偏振层23A以及所述触控层22A可以事先开孔,也可以被安装在一起之后统一开孔。在所述液晶层28A的下方被安装的另一所述偏振层23A也可以是事先开孔,也可以是被安装于所述液晶层28A之后开孔。所述盖板层21A可以在所述显示屏20A的其他各层被开孔之后然后被安装于所述触控层22A,也可以是包括所述盖板层21A的各层被安装在一起之后,对于所述显示屏20A的除了所述盖板层21A之外的各层进行开孔处理。
所述液晶层28A对应所述通光孔200A部分的内径可以和所述显示屏20A的其他各层的内径不同,比如说,在本示例中,所述液晶层28A的对应所述通光孔200A部分的内径略小于所述封装层24A、所述偏振层23A以及所述触控层22A。
在本发明的另一些实施例中,自上至下所述LCD显示屏20A的所述触控层22A、所述偏振层23A、所述封装层24A以及所述液晶层28A,可以通过激光切割、钻孔等工艺获得内径一致的所述通光孔200A。
对位于所述液晶层28A下方的所述背板层27A而言,所述背板层27A可以被单独进行开孔处理,并且所述背板层27A对应的所述通光孔200A部分的内径可以和所述液晶层28A、所述触控层22A以及所述偏振层23A对应的所述通光孔200A部分的内径不同。
在本示例中,所述背板层27A对应的所述通光孔200A部分的内径大于所述 液晶层28A对应的所述通光孔200A部分的内径。所述背板层27A对应的所述通光孔200A部分贯通于所述液晶层28A对应的所述通光孔200A部分。
所述显示屏20A具有一安装通道201A,其中所述安装通道201A形成于所述背板层27A并且被连通于所述通光孔200A。
可选地,所述背板层27A对应的所述通光孔200A部分大于所述密封区域281A。所述摄像模组30的至少部分可以被容纳于所述背板层27A,从而有利于降低所述摄像模组30和所述显示屏20A的高度尺寸。
进一步地,可以参考附图9,所述摄像模组30的一安装端包括部分镜片和镜筒,所述背板层27A的所述通光孔200A部分可以被设计的足够大以容纳所述镜片和所述镜筒部分,而对于所述液晶层28A以及所述液晶层28A以上的各层对应所述通光孔200A部分而言,通光孔200A的孔径大小满足所述摄像模组30的进光需求即可。换句话说,当所述摄像模组30延伸至所述LCD显示屏20A内,以使所述摄像模组30被安装于所述LCD显示屏20A内,从而降低所述摄像模组30和所述LCD显示屏20A的安装高度,位于上方的所述通光孔200A仍然能够被设计的足够小,以使在所述显示屏20A外侧不易观察到所述通光孔200A,同时所述通光孔200A可以为所述摄像模组30提供足够的安装空间。
可以理解的是,所述摄像模组30不仅能够被容纳于所述背板层27A对应的所述通光孔200A部分,所述摄像模组30还能够更加深入所述LCD显示屏20A,比如说所述摄像模组30还可以被容纳于所述驱动电路层26A对应的所述通光孔200A部分。
参考附图14A所示,是本发明的所述LCD显示屏20A的一种具体实施方式被示意。
在本实施例中,所述显示屏20A的所述盖板层21A不做开孔处理。对于所述触控层22、所述偏振层23、所述封装层24、所述像素层25、所述驱动电路层26以及所述背板层27分别进行开孔处理,然后在开孔位置填充所述保护材料2812。
所述摄像模组30的进光质量受到所述通光孔200A的影响。具体地说,所述通光孔200A周围的所述LCD显示屏20A的各层材料会对于进入所述通光孔200A的光线进行反射、折射,从而进入到所述摄像模组30内的光线受到了所述通光孔200A周围材质的影响。
基于各层材质的不同,以及所述通光孔200A位置的不同,在生产线上每个所述通光孔200A周围的材质较难做到同一水平,也就是说,所述通光孔200A的进光质量较难保持一致,需要在后期进行调试处理。
在本示例中,在获得带有所述通光孔200A的所述LCD显示屏20A之后,可以对于朝向所述通光孔200A内灌注一定的保护材料2812A,其中所述保护材料2812A可以对于所述通光孔200A周围的各层起到保护作用,比如说对于所述驱动电路层26A,以减少水氧对所述驱动电路层26A可能产生的腐蚀。
在所述通光孔200A内被填充所述保护材料2812A之后,可以采用钻孔或者是激光切割的方式去除至少部分所述保护材料2812A,以使所述通光孔200A周围的至少部分位置被所述保护材料2812A填充。
所述保护材料2812A可以是一透光材料,光线可以透过所述保护材料2812A。所述保护材料2812A可以是一不透光材料,来自于所述通光孔200A周围的杂光不可以通过所述保护材料2812A被所述摄像模组30接受。所述保护材料2812A的材质可以基于需求被选择,以通过控制所述通光孔200A内的所述保护材料2812A来控制所述通光孔200A的进光质量。
值得一提的是,当各层对应的所述通光孔200A部分由于加工工艺或者是安装工艺使得各层的所述通光孔200A部分存在一定的偏差时,可以通过所述保护材料2812A进行一定的补偿。
附图14B是本发明的所述LCD显示屏20A的另一实施方式。和附图14A中所示的所述显示屏20A的不同之处在于在本实施方式中,所述显示屏20A的各层被单独开孔,然后被填充保护材料2812A。
具体地说,可以对于所述触控层22A、所述偏振层23A、所述封装层24A、所述像素层25A、所述驱动电路层26A以及所述背板层27A分别进行开孔处理,然后在开孔位置填充所述保护材料2812A。
然后将所述触控层22A、所述偏振层23A、所述封装层24A、所述像素层25A、所述驱动电路层26A以及所述背板层27A对准地安装在一起形成所述显示屏20A。此时所述显示屏20A可以当作一个带有“孔”的显示屏使用。所述触控层22A、所述偏振层23A、所述封装层24A、所述像素层25A、所述驱动电路层26A以及所述背板层27A对应的透明材料可以起到孔的作用。
进一步地,可以对于所述触控层22A、所述偏振层23A、所述封装层24A、 所述像素层25A、所述驱动电路层26A以及所述背板层27A同时进行开孔处理,并且留下部分所述保护材料2812A于所述通光孔200A周围。然后安装所述盖板层21A,以获得所述显示屏20A。
参考附图15和附图16所示,是本发明的所述LCD显示屏20A的一种具体实施方式被示意。
所述液晶层28A对应的所述通光孔200A部分、所述偏振层23A对应的所述通光孔200A部分、所述盖板层21A对应的所述通光孔200A部分并没有对准,这可能是由多种因素导致的,比如说开孔过程中对于开孔位置精度控制的因素,或者是安装过程中对准精度的因素,或者是安装过程中固定时产生偏差等因素。
向所述通光孔200A内灌注所述保护材料2812A,所述保护材料2812A填充满所述通光孔200A,然后按照一定的开孔区域282A去除至少部分所述保护材料2812A以重新形成所述通光孔200A。此时所述通光孔200A的所述内径能够保持一致。
当然可以理解的是,在本示例中,整个所述LCD显示屏20A在安装完毕之后对于所述通光孔200A重新进行处理。在本发明的另一些实施例,可以在所述LCD显示屏20A的一些功能层安装在一起后就对于所述通光孔200A进行调整。
举例说明,当所述液晶层28A、所述偏振层23A以及所述触控层22A被组装在一起,但是对于所述液晶层28A、所述偏振层23A以及所述触控层22A对应的所述通光孔200A的各部分存在一定的偏差,可以对于所述液晶层28A、所述偏振层23A以及所述触控层22A对应的所述通光孔200A部分进行保护材料2812A的填充,然后二次形成所述通光孔200A。然后安装另一所述偏振层23A和所述背光板于所述液晶层28A。
所述保护材料2812A可以不覆盖所述偏振层23A和所述背板层27A对应的所述通光孔200A部分,可以参考附图15所示。
通过这样的方式,所述保护材料2812A可以被可选择地覆盖于所述LCD显示屏20A的各层。
参考附图17所示,是本发明的所述LCD显示屏20A的一种具体实施方式被示意。
所述LCD显示屏20A具有一通光孔200A,并且一导光组件50A被设置于所述通光孔200A,所述导光组件50A具有一导光通道500A,光线能够沿着所 述导光通道500A穿过所述LCD显示屏20A。
具体地说,所述LCD显示屏20A包括一盖板层21A、一触控层22A、一偏振层23A、一封装层24A、一像素层25A、一驱动电路层26A以及一背板层27A,其中所述偏振层23A分别位于所述像素层25A相反两侧。
所述盖板层21A位于所述LCD显示屏20A的顶端,所述触控层22A在被触控时能够传递信号,所述封装层24A用于封装,所述像素层25A包括滤光层251A(CF)和液晶252A,所述液晶252A位于所述滤光层251A和所述驱动电路层26A之间。所述驱动电路层26A包括多个TFT结构和所述衬底基板,所述TFT结构通过薄膜、黄光、蚀刻、剥膜等步骤后形成于所述衬底基板。所述背板层27A用于发出光线。
所述LCD显示屏20A进一步包括一液晶层28A,其中所述液晶层28A包括所述像素层25A和所述驱动电路层26A。所述液晶252A位于所述滤光层251A和所述驱动电路层26A之间。
所述通光孔200A穿过所述LCD显示屏20A的各层,并且所述导光组件50A被容纳于所述通光孔200A。
所述通光孔200A的形成方式可以是通过对于所述LCD显示屏20A的各层进行开孔形成,也可以是对于所述LCD显示屏20A的所述液晶层28A进行开孔处理,并且对于所述液晶层28A进行封闭处理以避免所述液晶层28A中的所述液晶252A泄漏至外界,然后再对于所述LCD显示屏20A的其他各层进行开孔处理的方式形成。
对于前一种方式,具体地说,所述液晶层28A在制作过程中预先被处理以形成一密封区域281A,其中所述密封区域281A内未被填充所述液晶252A,所述液晶252A位于所述密封区域281A之外。比如说可以设置密封材料2811A于所述滤光层251A和所述驱动电路层26A之间以形成所述密封区域281A。
对于后一种方式,具体地说,所述液晶层28A在制造过程中预先被处理以形成一密封区域281A,其中所述密封区域281A内未被填充所述液晶252A,所述液晶252A位于所述密封区域281A之外。比如说可以设置密封材料2811A于所述滤光层251A和所述驱动电路层26A之间以形成所述密封区域281A。
然后以所述密封区域281A为基础对于所述液晶层28A进行开孔处理。再将所述LCD显示屏20A的其他层对准于所述液晶层28A进行开孔处理。
在本示例中,所述通光孔200A的内径可以被设置的略大以容纳所述导光组件50A。值得注意的是,当所述LCD显示屏20A的各层对应的所述通光孔200A部分略有偏差时,所述导光组件50A能够在一定程度上补充所述LCD显示屏20A在安装过程中造成的各层之间的偏差。
具体地说,当所述LCD显示屏20A的各层对应的所述通光孔200A部分略有偏差时,进入所述通光孔200A的光线的至少部分在所述通光孔200A内传递时会被损失。当所述导光组件50A被设置于所述通光孔200A时,大部分光线能够直接沿着所述导光组件50A的所述导光通道500A传播,从而减少光线在所述LCD显示屏20A内由于各层之间的安装偏差造成的损失。
所述导光组件50A的导光性能可以基于需求被设置。当对于所述导光组件50A的导光效率要求较高时,所述导光组件50A可以被设置为透明材料,当需要减少外界杂光对于所述导光通道500A内的光线的影响时,所述导光组件50A的外壁可以被涂覆遮光材料。
参考附图18A和附图18B所示,是基于本发明的所述终端设备1的一种实施方式被阐明。
所述终端设备1包括一终端设备主体10、一显示屏20以及一摄像模组30,其中所述显示屏20和所述摄像模组30被分别设置于所述终端设备主体10。所述显示屏20用于显示图像,所述摄像模组30被保持于所述显示屏20下方,以有利于所述显示屏20被设计为全面屏。
所述终端设备1进一步包括一壳体40和具有一导光通道500,其中所述显示屏20被安装于所述壳体40,所述壳体40位于所述显示屏20的周边,一方面对于所述显示屏20起到支撑作用,另一方面对于所述显示屏20起到保护作用。
所述导光通道500形成于所述显示屏20和所述壳体40之间,所述导光通道500导通外界和所述摄像模组30,以使外界的光线通过所述导光通道500被传导至所述摄像模组30。
通过这样的方式,所述摄像模组30能够被设置于所述显示屏20下方并且不占据所述显示屏20的显示区域,从而所述显示屏20能够实现全面屏的效果。
具体地说,所述终端设备1具有至少一所述导光通道500,其中至少部分所述导光通道500形成于所述显示屏20和所述壳体40之间,至少部分所述导光通道500形成于所述显示屏20内,以将光线传递至位于所述显示屏20下方的所述 摄像模组30。所述导光通道500内可以被设置有一些导光元件以使直线传播的光线的传播方向能够被改变,并且经过所述导光通道500自所述显示屏20的外侧被传导至位于所述显示屏20内侧的所述摄像模组30。所述导光元件可以是反射膜或者是反射镜。
在本发明的另一些实施例中,所述导光通道500的至少部分位于所述显示屏20和所述壳体40之间,其余至少部分可以位于所述显示屏20的下方。也就是说,所述导光通道500自所述显示屏20的侧面绕至所述显示屏20的下方,然后将光线引导至所述摄像模组30。
在本示例中,以OLED显示屏20为例,所述导光通道500可选择地形成于所述OLED显示屏20的各层,比如说所述像素层25、所述驱动电路层26或者是所述背板层27。优选地,当所述导光通道500经过所述像素层25时,所述导光通道500被设置于相邻的所述像素之间以减少对于成像效果的影响。优选地,当所述导光通道500经过所述驱动电路层26时,所述导光通道500被设置于所述驱动电路层26的非电路部分,以减少对于所述驱动电路层26的工作性能的影响。
在本示例中,所述导光通道500经过所述背板层27,然后通过所述导光通道500将光线传递至位于所述显示屏20下方的所述摄像模组30。
所述导光通道500包括一第一部分导光通道501、一第二部分导光通道502以及一第三部分导光通道503,其中所述第一部分导光通道501位于所述显示屏20和所述壳体40之间。值得注意的是,所述显示屏20在安装于所述壳体40时,所述显示屏20和所述壳体40之间天然存在间隙,可以通过对于所述显示屏20边缘或者是所述壳体40边缘的设计获得期望的所述第一部分导光通道501。
第二部分导光通道502位于所述显示屏20内,所述第三部分导光通道503位于所述显示屏20内。第二部分导光通道502用于将来自于外界的通过所述第一部分导光通道501的光线传递至所述显示屏20内。所述第三部分导光通道503用于将所述显示屏20内的光线朝外传递至所述摄像模组30。
第二部分导光通道502可以沿着所述显示屏20的长宽方向传导光线,所述第三部分导光通道503可以沿着所述显示屏20的高度方向传导光线。
进一步地,所述导光通道500的所述第一部分导光通道501可以起到汇聚光线的作用,以使更多的光线通过所述第一部分导光通道501之后可以进入到第二 部分导光通道502。第二部分导光通道502可以起到传递光线的作用。
在本示例中,所述摄像模组30被安装于所述显示屏20并且位于所述显示屏20的下方。所述摄像模组30基于所述导光通道500的光线成像。所述第三部分导光通道503可以被设置为能够对于光线起到扩散作用以使扩散后的光线和所述摄像模组30的受光区域相匹配。
所述第一部分导光通道501可以被设置一微型凸透镜,以对于光线起到汇聚作用。第二部分导光通道502可以被设置至少一反射镜或者是其他的调制设备,以使光线沿着第二部分导光通道502被传递至所述第三部分导光通道503。所述第三部分导光通道503可以被设置一微型凹透镜,以使光线能够被扩散。
进一步地,所述摄像模组30包括一光学单元31A和一感光单元32A,其中所述光学单元31A采集光线,所述感光单元32A接收所述光学单元31A采集的光线,并基于光电转换将光信号转换至电信号以供后续的成像。所述光学单元31A可以包括一汇聚件311A、一调制件312A以及一扩散件313A。所述汇聚件311A对于光线能够起到汇聚作用,所述调制件312A能够对于光线起到调制作用,比如说过滤,色散、准直等,所述扩散件313A能够对于光线起到扩散作用。
所述光学单元31A可以被设置于所述导光通道500,比如说所述第一部分导光通道501、第二部分导光通道502以及所述第三部分导光通道503。所述感光单元32A直接被设置于所述显示屏20并且位于所述显示屏20下方。在所述光学单元31A对于光线进行收集后,所述感光单元32A将光信号转换为电信号。
具体地说,所述汇聚件311A可以被设置于所述第一部分导光通道501,用于自外界进入到所述导光通道500的光线进入汇聚,以使第二部分导光通道502的内径能够被设计的较小的同时能够传递较多的光线。所述调制件312A可以被设置于所述第二导光通道500。所述扩散件313A可以被设置于所述第三部分导光通道503,以将光线扩散至对应于所述摄像模组30的所述感光单元32A的一感光区域。
通过这样的方式,所述显示屏20内的所述导光通道500部分尺寸可以被设置的较小,以减少所述导光通道500对于所述显示屏20的成像的影响。所述显示屏20内所述导光通道500的制作和形成可以参考前述。
所述光学单元31A可以包括但是并不限制于所述凹透镜、所述凸透镜等光学部件。
进一步地,在本发明的另一些实施例中,位于所述第三部分导光通道503的所述凹透镜可以被设置于所述显示屏20,比如说以所述封装层24为例,所述扩散件313A被设置于所述封装层24。来自于外界的光线在经过所述封装层24的所述扩散件313A后被扩散,然后通过所述第三部分导光通道503被传递至所述摄像模组30的所述感光单元32A,从而被转换为电信号。
所述扩散件313A可以一体成型于所述封装层24,其中所述封装层24通常采用玻璃材质。根据本发明的一些实施例,所述扩散件313A可以凹陷地一体成型于所述封装层24的顶表面。
参考附图19所示,同时参考附图18A,是根据本发明的所述终端设备1的另一种具体实施方式被阐明。
在本示例中,所述终端设备1包括一终端设备主体10、一显示屏20以及一摄像模组30,其中所述显示屏20和所述摄像模组30被分别设置于所述终端设备主体10。所述显示屏20用于显示图像,所述摄像模组30被保持于所述显示屏20下方,以有利于所述显示屏20被设计为全面屏。
所述终端设备1进一步包括一壳体40和具有一导光通道500,其中所述显示屏20被安装于所述壳体40,所述壳体40位于所述显示屏20的周边,一方面对于所述显示屏20起到支撑作用,另一方面对于所述显示屏20起到保护作用。
所述导光通道500的至少部分位于所述显示屏20和所述壳体40之间并且延伸至所述显示屏20。来自于外界的光线通过所述显示屏20和所述壳体40之间的间隙后到达所述显示屏20,然后被位于所述显示屏20下方的所述摄像模组30所接收。
所述终端设备1进一步包括一光学单元31A,其中所述光学单元31A被设置于所述导光通道500。所述光学单元31A可以是对于光线起到汇聚、扩散或者是准直等作用。
所述摄像模组30包括一光学机构31A'和一感光单元32A,其中所述光学机构31A'被保持于所述感光单元32A的感光路径。所述感光单元32A基于光电转换能够将光信号转变为电信号。所述光学机构31A'可以包括光学镜头等元件。
在本示例中,所述摄像模组30是一单独的完整的摄像模组30。在所述导光通道500内不被设置所述光学单元31A的前提下,所述摄像模组30仍然可以基于穿过所述导光通道500的光线成像。
所述导光通道500内可以被设置有一些导光元件以使直线传播的光线的传播方向能够被改变,并且经过所述导光通道500自所述显示屏20的外侧被传导至位于所述显示屏20内侧的所述摄像模组30。所述导光元件可以是反射膜或者是反射镜。
所述导光通道500可以包括一第一部分导光通道501、一第二部分导光通道502以及一第三部分导光通道503,其中所述第一部分导光通道501位于所述壳体40和所述显示屏20之间,所述第二部分导光通道502引导所述第一部分导光通道501的光线进入所述显示屏20之内,所述第三部分导光通道503引导所述第二部分导光通道502的光线离开所述显示屏20以被所述摄像模组30接收。
所述光学单元31A可以被设置于所述第一部分导光通道501、所述第二部分导光通道502以及所述第三部分导光通道503。
可以理解的是,所述光学单元31A的类型和设置位置可以根据需求被选择,以使光线在通过所述导光组件50的所述导光通道500时,能够在所述光学单元31A的作用下被调整至符合所述摄像模组30的进光需求。
参考附图20所示,同时参考附图18A,根据本发明的所述终端设备1的另一较佳实施方式被阐明。
在本示例中,所述终端设备1包括一终端设备主体10、一显示屏20、一摄像模组30、一壳体40以及一导光组件50,其中所述显示屏20被安装于所述终端设备主体10,所述显示屏20和所述终端设备主体10被安装于所述壳体40,所述摄像模组30被安装于所述显示屏20并且被保持于所述显示屏20下方。所述导光组件50用于将来自于外界的光线传导至所述显示屏20下方的所述摄像模组30。
具体地说,所述终端设备1具有一导光通道500,其中至少部分所述导光通道500形成于所述导光组件50。
所述导光通道500的至少部分位于所述显示屏20和所述壳体40之间并且延伸至所述显示屏20。来自于外界的光线通过所述显示屏20和所述壳体40之间的间隙后到达所述显示屏20,然后被位于所述显示屏20下方的所述摄像模组30所接收。
所述导光组件50包括一导光管道,其中所述导光管道具有一定的形状和尺寸。所述导光管道可以自所述显示屏20之外在所述显示屏20和所述壳体40之 间朝向所述显示屏20延伸。
整个所述导光管道可以是透光的,也可以是不透光的。所述导光管道可以采用透光材料制成,然后为了避免所述导光管道周围的杂光进入到所述导光通道500,可以采用遮光材料涂覆所述导光管道,以减少周围杂光的影响。
优选地,当所述导光组件50需要穿过所述像素层25时,所述导光组件50被设置于所述像素层25的相邻两个所述像素之间。
对于同一所述显示屏20而言,所述导光组件50的数目可以是多个,对应的所述导光通道500可以是多条,并且多条所述导光通道500的至少部分相互重合。
所述导光组件50可以导通所述显示屏20内部于所述显示屏20外部的多个位置,比如说所述显示屏20的前方、所述显示屏20的左侧或者是所述显示屏20的右侧等。所述导光组件50的导光通道500能够将穿过所述显示屏20和所述壳体40之间的间隙的光线传导至所述摄像模组30。
当所述导光通道500的数量是多个时,所述摄像模组30的进光量可以被增加。
参考附图21所示,同时参考附图18A,根据本发明的所述终端设备1的另一实施方式被阐明。
所述终端设备1包括一终端设备主体10、一显示屏20、一摄像模组30、一壳体40以及一导光组件50,其中所述显示屏20被安装于所述终端设备主体10,所述显示屏20和所述终端设备主体10被安装于所述壳体40,所述摄像模组30被安装于所述显示屏20并且被保持于所述显示屏20下方。所述导光组件50用于将来自于外界的光线传导至所述显示屏20下方的所述摄像模组30。
所述终端设备1具有至少一导光通道500和一通光孔200,其中所述通光孔200自上而下贯穿所述终端设备1的所述显示屏20,其中所述导光通道500形成于所述导光组件50。所述导光通道500自所述终端设备1的所述显示屏20和所述壳体40之间的间隙朝下延伸至所述显示屏20。
所述导光通道500和所述通光孔200都可以用于传导光线。所述通光孔200贯穿所述显示屏20,被对准于所述显示屏20的所述通光孔200的所述摄像模组30能够通过所述通光孔200接收来自所述显示屏20外侧的光线。被对准于所述导光通道500的所述摄像模组30能够通过所述导光通道500接收来自所述显示 屏20外侧的光线。
值得注意的是,所述导光通道500和所述通光孔200可以相互独立,所述导光通道500和所述通光孔200可以被分别对准于不同的所述摄像模组30。换句话说,多个所述摄像模组30可以被安装于所述显示屏20并且位于所述显示屏20的下方。
在本示例中,所述导光通道500和所述通光孔200至少部分相互重合,以使所述导光通道500和所述通光孔200接收到的光线都可以进入同一个所述摄像模组30,被同一所述感光单元32A接收,从而成像。
具体地说,至少部分所述导光通道500位于所述显示屏20和所述壳体40之间,至少部分所述导光通道500位于所述显示屏20内。
所述导光通道500可以包括一第一部分导光通道501、一第二部分导光通道502以及一第三部分导光通道503,其中所述第一部分导光通道501位于所述显示屏20和所述壳体40之间,第二部分导光通道502和所述第三部分导光通道503分别位于所述显示屏20之内。
所述导光通道500被连通于所述通光孔200,并且所述第三部分导光通道503和所述通光孔200重合。
所述第一部分导光通道501位于所述显示屏20的一侧,第二部分导光通道502自所述显示屏20的所述侧面朝内延伸,所述第三部分导光通道503自所述显示屏20的内部朝所述显示屏20的背侧延伸。
所述终端设备1进一步包括一光学单元31A,所述光学单元31A被设置于所述导光通道500。所述光学单元31A可以包括一汇聚件311A、一调制件312A以及一扩散件313A,其中所述汇聚件311A可以被设置于所述第一部分导光通道501,用于汇聚来自于外界的光线,其中所述调制件312A可以被设置于第二部分导光通道502,用于调制来自于所述第一部分导光通道501的光线,其中所述扩散件313A可以被设置于所述第三部分导光通道503,用于将光线扩散后传递至所述摄像模组30。
值得注意的是,由于通过所述导光通道500和所述通光孔200进入到所述摄像模组30成像的光线的路径不同,因此不同路径的光线在达到所述摄像模组30时具有光程差,同时达到所述摄像模组30的一感光芯片的光束具有不同的相位,可能最后呈现不同的像。为了避免出现这一问题,所述显示屏20内的所述光学 单元31A构成的光路经过一定的设计以使达到所述摄像模组30的光线可以呈现一致的图像。
在本示例中,所述摄像模组30包括一光学机构31A'和一感光单元32A,其中所述光学机构31A'被对准于所述通光孔200和所述导光通道500并且所述光学机构31A'被保持于所述感光单元32A的感光路径,其中所述通光孔200和所述导光通道500的至少部分相互共用。
在本发明的另一些实施例中,所述摄像模组30包括所述光学单元31A和一感光单元32A,其中所述光学单元31A被设置于所述导光通道500,所述感光单元32A被安装于所述显示屏20的背侧。
在所述导光通道500和所述通光孔200并存的情况下,由于所述摄像模组30可以通过所述导光通道500接收光线,所述通光孔200的尺寸可以被设计的更小。
所述导光通道500从所述显示屏20外侧可以无法被观察到,比如说当第二部分导光通道502位于所述显示屏20的所述封装层24时,由于位于所述封装层24上方的所述偏光层,所述导光通道500可以不在所述显示屏20外侧被观察到,因此至少部分所述导光通道500的内径可以被设计的相对于所述通光孔200的内径稍大,以使部分光学元件可以被放置于所述导光通道500。
所述通光孔200的尺寸被设计的较小时,从所述显示屏20外侧越难以观察到所述通光孔200,以有利于提高所述显示屏20的屏占比。
进一步地,对于所述通光孔200而言,所述通光孔200的内径可以被设置为自上而下逐渐增大的。所述光学单元31A的部分光学元件可以被设置于所述通光孔200,比如说所述扩散件313A。
举例说明,当所述通光孔200提供的通光区域小于所述摄像模组30的所述感光单元32A的受光区域时,一个所述扩散件313A可以被设置于所述通光孔200,所述扩散件313A可以将所述通光孔200内的光线扩散以使所述通光孔200提供的通光区域和所述感光单元32A的受光区域匹配。
参考附图22所示,同时参考附图18A,根据本发明的一显示屏组件的一实施方式被阐明。
在本实施例中,本发明提供了一所述显示屏组件,其中所述显示屏组件包括所述显示屏20和所述导光组件50。所述显示屏20具有自上而下贯通的一通光 孔200,并且所述导光组件50部分被容纳于所述通光孔200。
所述导光组件50提供一导光通道500。可以通过对于所述导光组件50形状和结构的设计从而获得预期的所述导光通道500。
所述导光组件50包括二导光管道,其中一所述导光管道被容纳于所述通光孔200,另一所述导光管道自所述显示屏20和所述壳体40之间的间隙延伸至所述通光孔200位置。也就是说,一所述导光管道能够引导所述显示屏20上方光线自上而下通过所述显示屏20,然后到达所述摄像模组30。另一所述导光管道能够引导所述显示屏20和所述壳体40之间的光线达到所述摄像模组30。所述通光孔200的制作方式可以参考前述的说明。
所述导光管道可以是圆柱状的、三角棱柱状的、四棱柱状的。所述导光管道的各个位置对应的内径可以是不同的。
所述导光管道可以是透光材料制成的,以使所述导光管道从所述显示屏20的外侧难以被观察到,同时,为了减少杂光的影响,比如说来自于所述显示屏20的所述像素层25的光线的影响,所述导光管道可以被涂覆避光材料。
进一步地,所述导光组件50包括一光学单元31A,其中所述光学单元31A被保持于所述通光孔200的通光路径。所述光学元件可以是一过滤件、一扩散件313A或者是一调制件312A。所述光学单元31A可以对于光线进行预处理,以使进入所述摄像模组30的光线达到预期。
值得注意的是,由于通过不同的所述导光通道500进入到所述摄像模组30成像的光线的路径不同,因此不同路径的光线在达到所述摄像模组30时具有光程差,同时达到所述摄像模组30的一感光芯片的光束具有不同的相位,可能最后呈现不同的像。为了避免出现这一问题,所述显示屏20内的所述光学单元31A构成的光路经过一定的设计以使达到所述摄像模组30的光线可以呈现一致的图像。
参考附图23所示,同时参考附图18A和附图10,是根据本发明的所述显示屏组件的另一实施方式被阐明。
在本示例中,所述显示屏20被实施为一LCD显示屏20A。所述LCD显示屏20A具有一导光通道500,其中所述导光通道500能够将所述LCD显示屏20A外侧的光线引导至所述LCD显示屏20A内部或者是所述LCD显示屏20A内侧。
具体地说,至少部分所述导光通道500位于所述LCD显示屏20A和所述壳 体40之间,至少部分所述导光通道500位于所述LCD显示屏20A内部。
位于所述LCD显示屏20A和所述壳体40之间的所述导光通道500部分可以将外界光线自所述LCD显示屏20A外侧引导至所述LCD显示屏20A的一侧面,然后通过其他的所述导光通道500部分将光线导入所述LCD显示屏20A的内部,光线通过所述LCD显示屏20A内部后到达所述摄像模组30,从而位于所述显示屏20A下方的所述摄像模组30能够接收到来自于所述显示屏20A上方的光线,以使位于所述显示屏20A下方的所述摄像模组30能够利用光线成像,并且,进一步地,位于所述显示屏20A下方的所述摄像模组30能够通过所述导光通道500获得足够的光线成像。
更具体地说,所述导光通道500包括一第一部分导光通道501、一第二部分导光通道502以及一第三部分导光通道503,其中所述第一部分导光通道501位于所述LCD显示屏20A和所述壳体40之间,第二部分导光通道502位于所述LCD显示屏20A内部并且将来自于所述第一部分导光通道501的光线引导至所述LCD显示屏20A内部,所述第三部分导光通道503位于所述LCD显示屏20A内部并且将来自于第二部分导光通道502的光线引导至所述LCD显示屏20A外部。
所述LCD显示屏20A进一步包括至少一光学单元31A,其中所述光学单元31A可以被设置于所述导光通道500,以使光线能够沿着用户的预期在所述导光通道500内传播。所述光学单元31A可以包括一汇聚件311A、一调制件312A以及一扩散件313A。所述汇聚件311A对于光线能够起到汇聚作用,所述调制件312A能够对于光线起到调制作用,比如说过滤,色散、准直等,所述扩散件313A能够对于光线起到扩散作用。
所述汇聚件311A可以被设置于所述导光通道500的所述第一部分导光通道501,比如说所述导光通道500的一入光口,其中所述汇聚件311A位于所述入光口位置。所述调制件312A可以被设置于所述导光通道500的第二部分导光通道502,以对于通过第二部分导光通道502的光线进行调制。所述扩散件313A可以被设置于所述导光通道500的所述第三部分导光通道503,比如说所述导光通道500的一出光口,其中位于所述出光口的所述扩散件313A可以对于光线进行扩散,以使其能够适应于所述摄像模组30的一感光面,从而,当所述摄像模组30的所述感光面较大时,通过所述扩散件313A,光线可以被扩散以提高整个 所述感光面的感光区域,以有利于提高所述摄像模组30的工作效能。
所述摄像模组30具有一进光口并且包括一感光单元32A。所述进光口的尺寸对应于所述感光单元32A的感光区域,以使得所述感光单元32A的感光区域尽可能接受到光线,并且所述感光单元32A的感光区域能够被尽可能利用。
进一步地,所述LCD显示屏20A包括所述盖板层21A、所述触控层22A、所述偏振层23A、所述封装层24A、所述像素层25A、所述驱动电路层26A以及所述背板层27A。所述偏振层23A被分别设置于所述像素层25A的两侧。
所述LCD显示屏20A具有一侧面、一正面和一背面,其中所述LCD显示屏20A的所述正面朝向用户,所述LCD显示屏20A的所述背面背向用户,所述侧面分别连接于所述正面和所述背面。所述导光通道500自所述LCD显示屏20A和所述壳体40之间的间隙延伸至所述LCD显示屏20A的所述侧面,然后延伸至所述LCD显示屏20A的所述背面。光线能够通过所述导光通道500自所述LCD显示屏20A的所述侧面穿过所述LCD显示屏20A至所述LCD显示屏20A的所述背面。
所述LCD显示屏20A是一多层结构,所述导光通道500可以穿透所述盖板层21A、所述触控层22A、所述偏振层23A、所述封装层24A、所述像素层25A、所述驱动电路层26A以及所述背板层27A中的一层或者是多层。
所述导光通道500可以经过所述盖板层21A和所述背板层27A,比如说自上而下依次通过所述盖板层21A、所述触控层22A、所述偏振层23A的一偏光片、所述封装层24A、所述像素层25A、所述驱动电路层26A、所述偏振层23A的另一偏光片以及所述背板层27A。本领域技术人员应当理解的是,此处所述LCD显示屏20A的各层设置仅为示意说明,并不对于本发明造成限制。
所述导光通道500可以经过所述触控层22A和所述背板层27A,比如说自上而下所述导光通道500依次通过所述显示屏20A和所述壳体40的间隙、所述触控层22A、所述偏振层23A、所述封装层24A、所述像素层25A、所述驱动电路层26A、所述偏振层23A以及所述背板层27A。本领域技术人员应当理解的是,此时所述LCD显示屏20A的各层设置仅为示意说明,并不对于本发明造成限制。
所述导光通道500可以经过所述偏振层23A和所述背板层27A,比如说自上而下所述导光通道500依次通过所述显示屏20A和所述壳体40的间隙、所述偏振层23A、所述封装层24A、所述像素层25A、所述驱动电路层26A、所述偏振 层23A以及所述背板层27A。本领域技术人员应当理解的是,此时所述LCD显示屏20A的各层设置仅为示意说明,并不对于本发明造成限制。
所述导光通道500可以经过所述封装层24A和所述背板层27A,比如说自上而下所述导光通道500依次通过所述显示屏20A和所述壳体40的间隙、所述封装层24A、所述像素层25A、所述驱动电路层26A、所述偏振层23A以及所述背板层27A。本领域技术人员应当理解的是,此时所述LCD显示屏20A的各层设置仅为示意说明,并不对于本发明造成限制。
所述导光通道500可以自所述像素层25A延伸至所述背板层27A,比如说自上而下所述导光通道500依次通过所述显示屏20A和所述壳体40的间隙、所述像素层25A、所述驱动电路层26A、所述偏振层23A以及所述背板层27A。本领域技术人员应当理解的是,此时所述LCD显示屏20A的各层设置仅为示意说明,并不对于本发明造成限制。
所述导光通道500可以自所述驱动电路层26A延伸至所述背板层27A,比如说自而下所述导光通道500依次通过所述显示屏20A和所述壳体40的间隙、所述驱动电路层26A、所述偏振层23A以及所述背板层27A。本领域技术人员应当理解的是,此时所述LCD显示屏20A的各层设置仅为示意说明,并不对于本发明造成限制。
所述导光通道500可以自位于所述像素层25A下方的所述偏振层23A延伸至所述背板层27A,比如说所述导光通道500自所述像素层25A下方依次通过所述偏振层23A和所述背板层27A。
所述导光通道500可以通过所述背板层27A,比如说所述导光通道500自所述背板层27A和所述偏振层23A之间的间隙或者是连接介质延伸至所述背板层27A并且贯穿所述背板层27A。
以所述导光通道500穿过所述像素层25A为例进行说明。所述像素层25A包括所述滤光层251A和所述液晶252A。所述LCD显示屏20A包括一液晶层28A,其中所述液晶层28A包括所述液晶252A、所述滤光层251A以及所述驱动电路层26A。
所述液晶252A被保持于所述滤光层251A和所述驱动电路层26A之间。所述导光通道500穿过所述液晶层28A并且所述液晶252A能够不被泄漏至所述导光通道500。
可以先制作具有孔的所述液晶层28A,所述孔是所述导光通道500的至少部分,然后在所述LCD显示屏20A各层对应位置进行开孔以形成至少部分所述导光通道500。
所述液晶层28A的所述孔可以是位于所述液晶层28A的高度方向的,所述孔也可以沿着一定的倾斜角度倾斜地形成于所述液晶层28A以适应所述导光通道500的设置需求。
具体地说,在所述液晶层28A的所述驱动电路层26A或者是所述滤光层251A上设置密封材料2811A,以使当所述驱动电路层26A和所述滤光层251A之间相互贴合时,所述密封材料2811A形成一密封区域281A,所述液晶252A无法进入到所述密封区域281A之内。在后续步骤中,只要在所述密封区域281A之内对于所述液晶层28A进行开孔即可,所述液晶层28A的所述液晶252A不会朝外泄露。
安装在所述LCD显示屏20A的所述液晶层28A之上的各层可以被分别开孔以形成自所述LCD显示屏20A的所述侧面朝向所述LCD显示屏20A的所述背面延伸的所述通光孔200。通过这样的方式,所述LCD显示屏20A可以被设置贯通所述LCD显示屏20A的所述侧面和所述LCD显示屏20A的所述背面的所述孔。
进一步地,部分所述导光通道500位于所述显示屏20A和所述壳体40之间,部分所述导光通道500被设置于所述LCD显示屏20A内部,可以做到从所述LCD显示屏20A的所述正面一侧无法观察到所述导光通道500,从而有利于实现全面屏。
进一步地,在所述LCD显示屏20A内形成部分所述导光通道500后,可以安装所述光学单元31A于所述导光通道500。
可以理解的是,可以是在整个所述LCD显示屏20A制作完毕之后安装所述光学元件于所述导光通道500,也可以是在所述LCD显示屏20A逐层安装过程中或者是所述LCD显示屏20A的各层对应的所述导光通道500部分形成的过程中将所述光学单元31A安装于所述LCD显示屏20A的各层的预设位置,然后组装各功能层以组成完整的所述LCD显示屏20A,也可以是所述LCD显示屏20A在制造过程中就形成至少部分所述光学单元31A。
举例说明,首先在所述封装层24A一体成型一微透镜层,然后将所述封装层 24A设置于所述像素层25A的上方,其中所述微透镜层被对应于所述像素层25A的所述通光孔200,在所述像素层25A的底侧设有一层所述驱动电路层26A,所述驱动电路层26A电连接于所述像素层25A,用于驱动所述像素层25A工作。在所述封装层24A依次设置所述偏振层23A、所述触控层22A以及所述盖板层21A。
所述盖板层21A、所述触控层22A、所述偏振层23A、所述封装层24A、所述像素层25A以及所述驱动电路层26A之间形成贯通的所述导光通道500。所述微透镜层被保持于所述导光通道500。
所述光学单元31A可以通过其他的方式被设置于所述LCD显示屏20A内部或者是形成于所述LCD显示屏20A的各层。本领域技术人员应当理解的是,上述的所述光学单元31A的制作方法仅为举例说明,并不限制于上述的举例。
参考附图24所示,是根据本发明的所述LCD显示屏20A的另一实施方式被阐明。
在本示例中,所述摄像模组30包括所述感光单元32A,所述感光单元32A直接接收来自于所述导光通道500的光线。所述光线可以经过位于所述导光通道500的所述光学单元31A处理后被所述感光单元32A接收。
通过这样的方式,所述摄像模组30的所述光学机构31A'可以被设置于所述导光通道500内,或者是,位于所述导光通道500内的所述光学单元31A充当所述摄像模组30的所述光学机构31A',从而降低所述摄像模组30的高度尺寸,进而有利于降低所述LCD显示屏20A和所述摄像模组30的高度尺寸。
参考附图25所示,是根据本发明的所述LCD显示屏20A的另一实施方式被阐明。
在本示例中,所述LCD显示屏20A具有至少一导光通道500并且所述LCD显示屏20A进一步包括至少一导光组件50,其中所述导光通道500形成于所述导光组件50。
所述LCD显示屏20A提供另一通光孔200A,所述通光孔200A用于安装所述导光组件50。
所述LCD显示屏20A是一多层结构,所述通光孔200A可以穿透所述盖板层21A、所述触控层22A、所述偏振层23A、所述封装层24A、所述像素层25A、所述驱动电路层26A以及所述背板层27A中的一层或者是多层。
所述通光孔200可以经过所述盖板层21A和所述背板层27A,比如说自上而下依次通过所述盖板层21A、所述触控层22A、所述偏振层23A的一个偏光片、所述封装层24A、所述像素层25A、所述驱动电路层26A、所述偏振层23A的另一个偏光片以及所述背板层27A。本领域技术人员应当理解的是,此处所述LCD显示屏20A的各层设置仅为示意说明,并不对于本发明造成限制。
所述通光孔200A可以经过所述触控层22A和所述背板层27A,比如说自上而下所述通光孔200A依次通过所述触控层22A、所述偏振层23A的一个偏光片、所述封装层24A、所述像素层25A、所述驱动电路层26A、所述偏振层23A的另一个偏光片以及所述背板层27A。本领域技术人员应当理解的是,此时所述LCD显示屏20A的各层设置仅为示意说明,并不对于本发明造成限制。
所述通光孔200A可以经过所述偏振层23A和所述背板层27A,比如说自上而下所述通光孔200A依次通过所述偏振层23A的一个偏光片、所述封装层24A、所述像素层25A、所述驱动电路层26A、所述偏振层23A的另一个偏光片以及所述背板层27A。本领域技术人员应当理解的是,此时所述LCD显示屏20A的各层设置仅为示意说明,并不对于本发明造成限制。
所述通光孔200A可以经过所述封装层24A和所述背板层27A,比如说自上而下所述通光孔200A依次通过所述封装层24A、所述像素层25A、所述驱动电路层26A、所述偏振层23A以及所述背板层27A。本领域技术人员应当理解的是,此时所述LCD显示屏20A的各层设置仅为示意说明,并不对于本发明造成限制。
所述通光孔200A可以自所述像素层25A延伸至所述背板层27A,比如说自上而下所述通光孔200A依次通过所述像素层25A、所述驱动电路层26A、所述偏振层23A以及所述背板层27A。本领域技术人员应当理解的是,此时所述LCD显示屏20A的各层设置仅为示意说明,并不对于本发明造成限制。
所述通光孔200A可以自所述驱动电路层26A延伸至所述背板层27A,比如说自而下所述通光孔200A依次通过所述驱动电路层26A、所述偏振层23A以及所述背板层27A。本领域技术人员应当理解的是,此时所述LCD显示屏20A的各层设置仅为示意说明,并不对于本发明造成限制。
所述通光孔200A可以自位于所述像素层25A下方的所述偏振层23A延伸至所述背板层27A,比如说所述通光孔200A自所述像素层25A下方依次通过所述 偏振层23A和所述背板层27A。
所述通光孔200A可以通过所述背板层27A,比如说所述通光孔200A自所述背板层27A和所述偏振层23A之间的间隙或者是连接介质延伸至所述背板层27A并且贯穿所述背板层27A。
以所述通光孔200A穿过所述像素层25A为例进行说明。所述像素层25A包括所述液晶252A和所述滤光层251A。所述LCD显示屏20A包括一液晶层28A,其中所述液晶层28A包括所述液晶252A、所述滤光层251A以及所述驱动电路层26A。
所述液晶252A被保持于所述滤光层251A和所述驱动电路层26A之间。所述通光孔200穿过所述液晶层28A并且所述液晶252A能够不被泄漏至所述通光孔200。
可以先制作具有通光孔200的所述液晶层28A,然后在所述LCD显示屏20A各层对应位置进行开孔以形成至少部分所述通光孔200。
所述液晶层28A的所述通光孔200部分可以是位于所述液晶层28A的高度方向的,所述通光孔200A也可以沿着一定的倾斜角度倾斜地形成于所述液晶层28A以适应所述通光孔200A的设置需求。
具体地说,在所述液晶层28A的所述驱动电路层26A或者是所述滤光层251A上设置密封材料2811,以使当所述驱动电路层26A和所述滤光层251A之间相互贴合时,所述密封材料2811A形成一密封区域281A,所述液晶252A无法进入到所述密封区域281A之内。在后续步骤中,只要在所述密封区域281A之内对于所述液晶层28A进行开孔即可,所述液晶层28A的所述液晶252A不会朝外泄露。
所述LCD显示屏20A的所述液晶层28A之上的各层可以被分别开孔以形成自所述LCD显示屏20A的所述侧面朝向所述LCD显示屏20A的所述液晶层28A的所述通光孔200。通过这样的方式,所述LCD显示屏20A可以被设置贯通所述LCD显示屏20A的所述侧面和所述LCD显示屏20A的所述背面的所述通光孔200A。
部分所述导光组件50被安装于所述LCD显示屏20A和所述壳体40之间,部分所述导光组件50被安装于所述LCD显示屏20A的所述通光孔200A内。
所述导光组件50可以包括至少一导光管道。所述导光管道的数目可以是多 个,以适应于不同形状的所述通光孔200A。所述通光孔200A可以是直线状的,也可以是弯曲的。
所述导光管道的数目是多个时,所述导光管道可以逐个按照一定的次序被安装于所述通光孔200A,或者是所述导光管道可以逐个按照一定的次序被安装于所述LCD显示屏20A,比如说在安装所述液晶层28A于所述偏振层23A时,可以安装一个所述导光管道于所述液晶层28A和所述偏振层23A对应的所述通光孔200部分,然后安装所述背板层27A于所述液晶层28A时,再安装一个所述导光管道于所述背板层27A对应的所述通光孔200A部分。
整个所述通光孔200A的形状和位置可以根据用户的需求被设置于所述LCD显示屏20A。所述导光组件50的形状和位置可以根据所述导光通道500的预期需求被设计。
外界光线沿着所述导光通道500传播至位于所述LCD显示屏20A的所述背面一侧的所述摄像模组30。在这个过程中,光线可以在所述导光组件50的所述导光通道500内被反射、扩散或者是准直。
进一步地,所述光学单元31A可以被设置于所述导光组件50的所述导光通道500内。所述光学单元31A可以和所述导光组件50一体成型,所述光学单元31A也可以被设置于所述导光组件50的所述导光通道500内。
所述导光组件50可以是透明的,比如说玻璃材质或者是树脂材质的。所述导光组件50也可以是不透明,比如说所述导光组件50的外壁可以被涂覆一层不透光材料,以减少所述导光组件50之外的光线对于所述导光组件50的所述导光通道500内的光线的影响。
参考附图26所示,同时参考附图18A和附图10,是根据本发明的所述LCD显示屏20A的另一实施方式被阐明。
在本示例中,所述LCD显示屏20A具有一通光孔200和一导光通道500,其中所述通光孔200自上而下贯穿所述终端设备1的所述显示屏20A。所述导光通道500自所述终端设备1的所述显示屏20A和所述壳体40之间的间隙朝下延伸至所述显示屏20A。可以理解的是,所述通光孔200的数目可以是多个,所述通光孔200可以自上而下贯穿所述显示屏20A,所述通光孔200也可以从所述显示屏20A的侧面穿过所述显示屏20A内部至所述显示屏20A的底面。
所述导光通道500和所述通光孔200都可以用于传导光线。所述通光孔200 贯穿所述显示屏20A,被对准于所述显示屏20A的所述通光孔200的所述摄像模组30能够通过所述通光孔200接收来自所述显示屏20A外侧的光线。被对准于所述导光通道500的所述摄像模组30能够通过所述通光孔200接收来自所述显示屏20A外侧的光线。
值得注意的是,所述导光通道500和所述通光孔200可以相互独立,所述导光通道500和所述通光孔200可以被分别对准于不同的所述摄像模组30。换句话说,多个所述摄像模组30可以被安装于所述显示屏20A并且位于所述显示屏20A的下方。
在本示例中,所述导光通道500和所述通光孔200至少部分相互重合,以使所述导光通道500和所述通光孔200接收到的光线都可以进入同一个所述摄像模组30,被同一所述感光单元32A接收,从而成像。
具体地说,至少部分所述导光通道500位于所述显示屏20A和所述壳体40之间,至少部分所述导光通道500位于所述显示屏20A内。
所述导光通道500可以包括一第一部分导光通道501、一第二部分导光通道502以及一第三部分导光通道503,其中所述第一部分导光通道501位于所述显示屏20A和所述壳体40之间,第二部分导光通道502和所述第三部分导光通道503分别位于所述显示屏20A之内。
所述导光通道500被连通于所述通光孔200,并且所述第三部分导光通道503和所述通光孔200重合。
所述第一部分导光通道501位于所述显示屏20A的一侧面,第二部分导光通道502自所述显示屏20A的所述侧面朝内延伸,所述第三部分导光通道503自所述显示屏20A的内部朝下延伸。
所述终端设备1进一步包括一光学单元31A,所述光学单元31A被设置于所述导光通道500。所述光学单元31A可以包括一汇聚件311A、一调制件312A以及一扩散件313A,其中所述汇聚件311A可以被设置于所述第一部分导光通道501,用于汇聚来自于外界的光线,其中所述调制件312A可以被设置于第二部分导光通道502,用于调制来自于所述第一部分导光通道501的光线,其中所述扩散件313A可以被设置于所述第三部分导光通道503,用于将光线扩散后传递至所述摄像模组30。
值得注意的是,由于通过所述导光通道500和所述通光孔200进入到所述摄 像模组30成像的光线的路径不同,因此不同路径的光线在达到所述摄像模组30时具有光程差,同时达到所述摄像模组30的一感光芯片的光束具有不同的相位,可能最后呈现不同的像。为了避免出现这一问题,所述显示屏20内的所述光学单元31A构成的光路经过一定的设计以使达到所述摄像模组30的光线可以呈现一致的图像。
在本发明的另一些实施例中,所述摄像模组30包括一光学机构31A'和一感光单元32A,其中所述光学机构31A'被对准于所述通光孔200和所述导光通道500并且所述光学机构31A'被保持于所述感光单元32A的感光路径。所述通光孔200和所述导光通道500的至少部分共用。
在本示例中,所述摄像模组30包括所述光学单元31A和一感光单元32A,其中所述光学单元31A被设置于所述导光通道500,所述感光单元32A被安装于所述显示屏20A的背侧。
在所述导光通道500和所述通光孔200并存的情况下,由于所述摄像模组30可以通过所述导光通道500接收光线,所述通光孔200的尺寸可以被设计的更小。
所述导光通道500从所述显示屏20A外侧可以无法被观察到,比如说当第二部分导光通道502位于所述显示屏20A的所述封装层24A时,由于位于所述封装层24A上方的所述偏光层,所述导光通道500可以不在所述显示屏20A外侧被观察到,因此至少部分所述导光通道500的内径可以被设计的相对于所述通光孔200的内径稍大,以使部分光学元件可以被放置于所述导光通道500。
所述通光孔200的尺寸被设计的较小时,从所述显示屏20A外侧越难以观察到所述通光孔200,以有利于提高所述显示屏20A的屏占比。
进一步地,对于所述通光孔200而言,所述通光孔200的内径可以被设置为自上而下逐渐增大的。所述光学单元31A的部分光学元件可以被设置于所述通光孔200,比如说所述扩散件313A。
举例说明,当所述通光孔200提供的通光区域小于所述摄像模组30的所述感光单元32A的受光区域时,一个所述扩散件313A可以被设置于所述通光孔200,所述扩散件313A可以将所述通光孔200内的光线扩散以使所述通光孔200提供的通光区域和所述感光单元32A的受光区域匹配。
参考附图27所示,同时参考附图18A,是根据本发明的所述LCD显示屏 20A的另一实施方式被阐明。
在本示例中,所述LCD显示屏20A具有一通光孔200,其中所述通光孔200在高度方向贯通所述LCD显示屏20A。至少部分所述导光组件50被设置于所述通光孔200内。
所述导光组件50提供一导光通道500。可以通过对于所述导光组件50形状和结构的设计从而获得预期的所述导光通道500。
所述导光组件50包括二导光管道,其中一所述导光管道被容纳于所述通光孔200,另一所述导光管道自所述显示屏20A和所述壳体40之间的间隙延伸至所述通光孔200位置。也就是说,一所述导光管道能够引导所述显示屏20A上方光线自上而下通过所述显示屏20A,然后到达所述摄像模组30。另一所述导光管道能够引导所述显示屏20A和所述壳体40之间的光线达到所述摄像模组30。所述通光孔200的制作方式可以参考前述的说明。
所述导光管道可以是圆柱状的、三角棱柱状的、四棱柱状的。所述导光管道的各个位置对应的内径可以是不同的。
所述导光管道可以是由透光材料制成的,以使所述导光管道从所述显示屏20A的外侧难以被观察到,同时,为了减少杂光的影响,比如说来自于所述显示屏20A的所述像素层25A的光线的影响,所述导光管道可以被涂覆避光材料。
进一步地,所述LCD显示屏20A包括一光学单元31A,其中所述光学单元31A被保持于所述导光组件50的所述导光通道500,所述光学单元31A可以是一过滤件、一扩散件313A或者是一调制件312A。所述光学单元31A可以对于光线进行预处理,以使进入所述摄像模组30的光线达到预期。
值得注意的是,由于通过不同的所述导光通道500进入到所述摄像模组30成像的光线的路径不同,因此不同路径的光线在达到所述摄像模组30时具有光程差,同时达到所述摄像模组30的一感光芯片的光束具有不同的相位,可能最后呈现不同的像。为了避免出现这一问题,所述显示屏20内的所述光学单元31A构成的光路经过一定的设计以使达到所述摄像模组30的光线可以呈现一致的图像。
为了进一步地降低所述终端设备1的整体高度尺寸,优选地,在本发明中,采用具有较低高度尺寸的摄像模组30。
图28图示了根据本发明的所述摄像模组30的一种具体示例。所述摄像模组 30包括光学机构31A’和感光单元32A,其中所述摄像模组30还可以包括一光阑33A,其中所述光阑33A位于所述通光孔200位置,所述光学机构31A’被保持于所述感光单元32A的感光路径。
所述光阑33A可以对于通过所述光学机构31A’的光线起到约束作用。具体地说,可以通过控制所述光阑33A通光孔径的大小从而实现对于所述光学机构31A’的进光量的控制。
所述光阑33A可以是圆形、三角形或者是矩形的。所述光阑33A的尺寸能够限制通过所述光阑33A进入到所述光学机构31A’的光线。
在本示例中,所述显示屏20带有所述通光孔200,所述摄像模组30被安装于所述显示屏20下方。所述通光孔200允许光线穿过所述显示屏20,然后达到所述摄像模组30。
所述通光孔200能够起到所述摄像模组30的所述光阑33A的作用,从而对于所述摄像模组30本身而言,所述摄像模组30不需要单独设置所述光阑33A,可以通过对于所述显示屏20的所述通光孔200的尺寸控制实现对于进入所述摄像模组30的光线量的控制,所述通光孔200充当了所述光阑33A的作用。
通过这样的方式,所述摄像模组30的高度尺寸可以被降低,从而所述显示屏20和所述摄像模组30的高度尺寸也可以被降低,以有利于所述终端设备1的轻薄化。
进一步地,在所述摄像模组30被安装于所述显示屏20之前,所述摄像模组30的光路设计固定,所述摄像模组30所需的进光量、曝光时间等参数都可以被确定,基于这些参数,可以确定所述光阑33A的尺寸,因此所述显示屏20在制造形成所述通光孔200的过程中,可以根据所述摄像模组30的需求制造获得满足需求的所述通光孔200。可以参考上述的所述通光孔200的制造方法,所述通光孔200的孔径大小和位置可以根据需求被设计。
更进一步地,所述摄像模组30和所述光阑33A在所述感光单元32A的感光路径上的距离是基于所述摄像模组30的光学需求基于光路设计确定的,在组装所述摄像模组30于所述显示屏20时,可以根据需求通过调整所述摄像模组30 和所述显示屏20的相对位置,从而调整所述摄像模组30和所述光阑33A的距离,以满足所述摄像模组30的光路需求。
图29示意了根据本发明的所述摄像模组30的一种具体实施例。
所述摄像模组30包括光学机构31A’、感光单元32A和光阑33A’,其中所述光阑33A’被设置于所述光学机构31A’,所述光学机构31A’被保持于所述感光单元32A的感光路径。通过控制所述光阑33A’的尺寸可以控制所述光学机构31A’通光量的大小。
当所述摄像模组30被安装于所述显示屏20,所述显示屏20的所述通光孔200允许光线自所述显示屏20的外侧穿过所述通光孔200然后达到所述摄像模组30。所述通光孔200能够对于所述摄像模组30的成像结果造成影响。
所述通光孔200起到类似于光阑的作用,通过控制所述通光孔200的孔径,可以控制成像光束。所述显示屏20的所述通光孔200可以对于所述摄像模组30的成像光束起到约束作用,所述摄像模组30的所述光阑33A’也对于成像光束起到约束作用。所述显示屏20的所述通光孔200和所述摄像模组30的所述光阑33A’可以协同作业。
当所述摄像模组30被安装于所述显示屏20之前,所述摄像模组30的光路设计可以被大致确定,从而所述显示屏20的所述通光孔200的尺寸可以基于所述摄像模组30的需求被设置。在所述摄像模组30被安装于所述显示屏20后,所述通光孔200的尺寸固定,所述摄像模组30和所述通光孔200之间的相对位置可以被固定,可以通过控制所述摄像模组30的所述光阑33A’来进一步对于成像光束进行控制。
进一步地,所述显示屏20的所述通光孔200可以对于成像光束起到约束作用,所述摄像模组30的所述光阑33A’可以对于成像光束起到约束作用,也可以被设置为可消除杂光的光阑,以对于通过所述通光孔200后的光束进行消除杂光的处理。换句话说,所述显示屏20的所述通光孔200和所述摄像模组30的所述光阑33A’可以相互合作,对于成像光束起到限制作用。所述显示屏20的所述通光孔200和所述摄像模组30的所述光阑33A’也可以起到不同的作用,根据所述摄像模组30的光路需求被特别地设置。
值得注意的是,所述摄像模组30的所述光阑33A’可以是一可变光阑,所述光阑33A’的孔径可调节,从而通过调节其孔径实现对于所述摄像模组30的通光量的控制。
图30图示了根据本发明的所述摄像模组30的一种具体示例。如图30所示,在该具体实施中,所述摄像模组30包括线路板31、感光芯片32和透光组件33,其中,所述线路板31具有一凹槽310,所述感光芯片32被设置于所述凹槽310内并电连接于所述线路板31,所述透光组件33位于所述感光芯片32的感光路径上。这样,透过所述显示屏20的成像光线先到达所述透光组件33,再到达所述感光芯片32以被所述感光芯片32所感知,用于进行成像反应。
本领域的技术人员应知晓,在现有的基于COB工艺的摄像模组中,线路板具有平整表面,并且,感光芯片直接贴附并电连接于所述线路板的平整表面上。由于每一摄像模组具有预设的光学后焦要求,因此,感光芯片的安装基准高度直接决定了所述摄像模组30的整体高度尺寸。
相应地,相较于现有的基于COB工艺的摄像模组,在该具体示例中,所述线路板31上设有所述凹槽310,以通过所述凹槽310降低所述感光芯片32的安装基准高度。换言之,在本发明中,所述线路板31的顶表面为非平整的表面,其中,所述线路板31中用以安装所述感光芯片32的区域向下凹陷,以使得所述感光芯片32的安装基准高度得以降低。应可以理解,在光学后焦要求保持不变的前提下,所述光学镜头332相对于所述线路板31的安装高度可被降低,从而所述摄像模组30的整体高度尺寸可被降低。
优选地,在该具体示例中,所述凹槽310的尺寸与所述感光芯片32的尺寸相一致,从而所述凹槽310自身可用于定位并限位所述感光芯片32。具体来说,在将所述感光芯片32安装于所述凹槽310的过程中,所述感光芯片32可直接契合地嵌入至所述凹槽310内,而无需像现有的基于COB工艺摄像模组中需不断去校准和定位感光芯片于线路板的安装位置。进一步地,在将所述感光芯片32安装于所述凹槽310内并电连接于所述线路板31之后,所述感光芯片32被“拘禁”在所述凹槽310内,以防止所述感光芯片32从所述凹槽310内脱离或产生 偏移。
进一步地,所述摄像模组30还包括一组引线34,其中,在所述感光芯片32贴附于所述线路板31的所述凹槽310内之后,通过所述引线34实现所述感光芯片32与所述线路板31之间的电气连接。由于降低了所述感光芯片32上表面到所述线路板31上表面之间的距离,所以,连接所述感光芯片32和所述线路板31的焊盘之间的金线的弧高也降低,降低了打线的难度。
具体来说,每一所述引线34弯曲地延伸于所述感光芯片32和所述线路板31之间,以通过所述引线34将所述感光芯片32连接于所述线路板31,从而,所述线路板31可依据所述引线34对所述感光芯片32进行供电,以及,所述感光芯片32可依据所述引线34将所采集到的信号传输出去。
值得一提的是,在该具体示例中,所述引线34的类型并不为本申请所局限,例如,所述引线34可以是金线、银线、铜线。并且,所述引线34可通过“打金线”的工艺安装于所述线路板31和所述感光芯片32之间,以用于实现两者之间的电连接。
具体来说,“打金线”工艺一般分为两种类型:“正打金线”工艺和“反打金线”工艺。“正打金线”工艺指的是在布设所述引线34的过程中,首先在所述线路板31的导电端上形成所述引线34的一端,进而弯曲地延伸所述引线34,并最终在所述感光芯片32的导电端上形成所述引线34的另一端,通过这样的方式,在所述感光芯片32和所述线路板31之间形成所述引线34。“反打金线”工艺指的是在布设所述引线34的过程中,首先在所述感光芯片32的导电端上形成所述引线34的一端,进而弯曲地延伸所述引线34,并最终在所述线路板31的导电端上形成所述引线34的另一端,通过这样的方式,在所述感光芯片32和所述线路板31之间形成所述引线34。值得一提的是,通过“反打金线”工艺所形成的所述引线34向上突起的高度小于相对“正打金线”工艺所形成的所述引线34向上突起的高度,因此,优选地,在该具体实施中,采用“反打金线”工艺形成所述引线34。
进一步,所述摄像模组30还包括底座35,所述底座35被设置于所述线路 板31,用以支撑所述透光组件33。所述透光组件33包括一滤色元件331和一光学镜头332,所述滤色元件331和所述光学镜头332依次被设置于所述感光芯片32的感光路径上。值得注意的是,所述引线34的弧高降低,则所述底座35的内腔高度也可以适当的降低,进而所述底座35的高度也会降低,进一步地,所述摄像模组30的整体高度也会适当的降低。
具体来说,在该具体示例中,所述底座35可被实施为传统的塑料支架,其预制成型并贴附于所述线路板31的顶表面;或者,所述底座35可被实施为模塑底座,其可通过MOB(Molding on Board)、MOC(Molding on Chip)工艺一体地成型于所述线路板31和/或所述感光芯片32的相应位置。本领域的技术人员应知晓,MOB(Molding on Board)工艺指的是,在所述线路板31上通过模塑工艺一体成型所述模塑底座,其中,成型之后的所述模塑底座一体包覆所述线路板31、位于所述线路板31上的电子元器件312以及所述引线34。MOC工艺指的是,在所述线路板31上通过模塑工艺一体成型所述模塑底座,其中,成型之后的模塑底座除了包覆所述线路板31和位于所述线路板31上的电子元器件312之外,还包覆了所述引线34的至少一部分,或者,包覆了所述引线34和所述感光芯片32的至少一部分(其中,所述感光芯片32的至少一部分区域为所述感光芯片32的非感光区域)。
在该具体示例中,所述滤色元件331设于所述光学镜头332和所述感光元件之间,以使自所述光学镜头332进入所述摄像模组30的内部的光线在被所述滤色元件331的过滤后,才能够被所述感光芯片32接收和进行光电转化,以改善所述摄像模组30的成像品质。例如,所述滤色元件331可以用来过滤自所述光学镜头332进入所述摄像模组30的内部的光线中的红外线部分。
本领域的技术人员应知晓,所述滤色元件331能够被实施为不同的类型,包括但不限于所述滤色元件331能够被实施为红外截止滤光片、全透光谱滤光片以及其他的滤光片或者多个滤光片的组合。具体来说,例如,当所述滤色元件331被实施为红外截止滤光片和全透光谱滤光片的组合,即,所述红外截止滤光片和所述全透光谱滤片能够被切换以选择性地位于所述感光芯片32的感光路径 上,这样,在白天等光线较为充足的环境下使用所述摄像模组30时,可以将所述红外截止滤光片切换至所述感光芯片32的感光路径,以藉由所述红外截止滤光片过滤进入所述摄像模组30的被物体反射的光线中的红外线,并且,当夜晚等光线较暗的环境中使用所述摄像模组30时,可以将所述全透光谱滤光片切换至所述感光芯片32的感光路径,以允许进入所述摄像模组30的被物体反射的光线中的红外线部分透光。
值得一提的是,所述滤色元件331还可设于所述感光芯片32的感光路径上的其他位置,例如,所述滤色元件331设于所述光学镜头332的底部,所述光学镜头332的底部等,对此,并不为本申请所局限。
此外,还值得一提的是,在该具体示例中,所述摄像模组30可被实施为定焦模组或者动焦模组,其中,当所述摄像模组30为动焦模组时,所述摄像模组30进一步包括一连接于所述线路板31的驱动器36,所述驱动器36用于可控制地驱动所述镜头移动,以实现自动对焦(Auto-Focus)。
图31图示了根据本发明的所述摄像模组30的另一种具体示例,其中,图31所示意的所述摄像模组30为图30所示意的所述摄像模组30的一种变形实施。
具体来说,如图31所示,在该具体示例中,所述摄像模组30包括线路板31、感光芯片32、透光组件33和补强板37,其中,所述线路板31具有贯穿地形成于所述线路板31的一开孔310A,所述补强板37贴附于所述线路板31底表面,所述感光芯片32被设置于所述线路板31的开孔310A处并贴附于所述补强板37,所述感光芯片32可导通地连接于所述线路板31,所述透光组件33被设置于所述感光芯片32的感光路径上。这样,透过所述显示屏20的成像光线先到达所述透光组件33,再到达所述感光芯片32以被所述感光芯片32所感知,用于进行成像反应。
所述补强板37可以被实施为钢板,其具有比所述线路板31更为平整的表面,在所述感光芯片32贴附在其上时,更为平整,成像效果更好,另,金属的导热性能更好,钢板可以起到散热的作用。
换言之,相较于图30所示意的所述摄像模组30,在该具体示例中,所述线路板31具有所述开孔310A,其贯穿地形成于所述线路板31,以通过所述开孔310A降低所述感光芯片32的安装基准高度。换言之,在本发明中,所述线路板31的顶表面为非平整的表面,其中,所述线路板31中用以安装所述感光芯片32的区域向下凹陷并贯穿所述线路板31,以使得所述感光芯片32的安装基准高度得以进一步地降低。应可以理解,每一摄像模组具有预设的光学后焦要求,从而在保持光学后焦要求不变的前提下,所述光学镜头332相对于所述线路板31的安装高度可进一步地降低,从而所述摄像模组30的整体高度尺寸可被进一步地降低。
如图31所示,应特别注意到,在该具体示例中,所述感光芯片32的底表面与所述线路板31底表面齐平,即,所述感光芯片32的安装基准高度为所述线路板31底表面所在高度,从而在保证预设光学后焦的前提下,可使得所述感光芯片32的安装位置进一步地得以降低,以使得所述摄像模组30的整体高度尺寸进一步的降低。
优选地,在该具体示例中,所述开孔310A的尺寸与所述感光芯片32的尺寸相一致,从而所述开孔310A自身可用于定位并限位所述感光芯片32。具体来说,在将所述感光芯片32安装于所述开孔310A的过程中,所述感光芯片32可直接契合地嵌入至所述开孔310A内并最终贴附于所述补强板37,而无需像现有的基于COB工艺摄像模组中需不断去校准和定位感光芯片32于线路板31的安装位置。进一步地,在将所述感光芯片32安装于所述开孔310A内并电连接于所述线路板31之后,所述感光芯片32被“拘禁”在所述开孔310A内,以防止所述感光芯片32从所述开孔310A内脱离或产生偏移。
进一步地,所述摄像模组30还包括一组引线34,其中,在所述感光芯片32安装于所述线路板31的所述开孔310A内之后,通过所述引线34实现所述感光芯片32与所述线路板31之间的电气连接。具体来说,每一所述引线34弯曲地延伸于所述感光芯片32和所述线路板31之间,以通过所述引线34将所述感光芯片32连接于所述线路板31,从而,所述线路板31可依据所述引线 34对所述感光芯片32进行供电,以及,所述感光芯片32可依据所述引线34将所采集到的信号传输出去。
值得一提的是,在该具体示例中,所述引线34的类型并不为本申请所局限,例如,所述引线34可以是金线、银线、铜线。并且,所述引线34可通过“打金线”的工艺安装于所述线路板31和所述感光芯片32之间,以用于实现两者之间的电连接。
具体来说,“打金线”工艺一般分为两种类型:“正打金线”工艺和“反打金线”工艺。“正打金线”工艺指的是在布设所述引线34的过程中,首先在所述线路板31的导电端上形成所述引线34的一端,进而弯曲地延伸所述引线34,并最终在所述感光芯片32的导电端上形成所述引线34的另一端,通过这样的方式,在所述感光芯片32和所述线路板31之间形成所述引线34。“反打金线”工艺指的是在布设所述引线34的过程中,首先在所述感光芯片32的导电端上形成所述引线34的一端,进而弯曲地延伸所述引线34,并最终在所述线路板31的导电端上形成所述引线34的另一端,通过这样的方式,在所述感光芯片32和所述线路板31之间形成所述引线34。值得一提的是,通过“反打金线”工艺所形成的所述引线34向上突起的高度小于相对“正打金线”工艺所形成的所述引线34向上突起的高度,因此,优选地,在该具体实施中,采用“反打金线”工艺形成所述引线34。
进一步,所述摄像模组30还包括底座35,所述底座35被设置于所述线路板31,用以支撑所述透光组件33。所述透光组件33包括一滤色元件331和一光学镜头332,所述滤色元件331和所述光学镜头332依次被设置于所述感光芯片32的感光路径上。
具体来说,在该具体示例中,所述底座35可被实施为传统的塑料支架,其预制成型并贴附于所述线路板31的顶表面;或者,所述底座35可被实施为模塑底座,其可通过MOB(Molding on Board)、MOC(Molding on Chip)工艺一体地成型于所述线路板31和/或所述感光芯片32的相应位置。本领域的技术人员应知晓,MOB(Molding on Board)工艺指的是,在所述线路板31上通过模 塑工艺一体成型所述模塑底座,其中,成型之后的所述模塑底座一体包覆所述线路板31、位于所述线路板31上的电子元器件312以及所述引线34。MOC工艺指的是,在所述线路板31上通过模塑工艺一体成型所述模塑底座,其中,成型之后的模塑底座除了包覆所述线路板31和位于所述线路板31上的电子元器件312之外,还包覆了所述引线34的至少一部分,或者,包覆了所述引线34和所述感光芯片32的至少一部分(其中,所述感光芯片32的至少一部分区域为所述感光芯片32的非感光区域)。
在该具体示例中,所述滤色元件331设于所述光学镜头332和所述感光元件之间,以使自所述光学镜头332进入所述摄像模组30的内部的光线在被所述滤色元件331的过滤后,才能够被所述感光芯片32接收和进行光电转化,以改善所述摄像模组30的成像品质。例如,所述滤色元件331可以用来过滤自所述光学镜头332进入所述摄像模组30的内部的光线中的红外线部分。
本领域的技术人员应知晓,所述滤色元件331能够被实施为不同的类型,包括但不限于所述滤色元件331能够被实施为红外截止滤光片、全透光谱滤光片以及其他的滤光片或者多个滤光片的组合。具体来说,例如,当所述滤色元件331被实施为红外截止滤光片和全透光谱滤光片的组合,即,所述红外截止滤光片和所述全透光谱滤片能够被切换以选择性地位于所述感光芯片32的感光路径上,这样,在白天等光线较为充足的环境下使用所述摄像模组30时,可以将所述红外截止滤光片切换至所述感光芯片32的感光路径,以藉由所述红外截止滤光片过滤进入所述摄像模组30的被物体反射的光线中的红外线,并且,当夜晚等光线较暗的环境中使用所述摄像模组30时,可以将所述全透光谱滤光片切换至所述感光芯片32的感光路径,以允许进入所述摄像模组30的被物体反射的光线中的红外线部分透光。
值得一提的是,所述滤色元件331还可设于所述感光芯片32的感光路径上的其他位置,例如,所述滤色元件331设于所述光学镜头332的底部,所述光学镜头332的底部等,对此,并不为本申请所局限。
同样值得一提的是,在该具体示例中,所述摄像模组30可被实施为定焦摄 像模组或者动焦摄像模组,其中,当所述摄像模组30为动焦摄像模组时,所述摄像模组30进一步包括电连接于所述线路板31的驱动器36,所述驱动器36用于可控制地驱动所述镜头移动,以实现自动对焦(Auto-Focus)。
图32图示了根据本发明的所述摄像模组30的又一种具体示意,其中,图32所示意的所述摄像模组30为图31示意的所述摄像模组30的一种变形实施。
具体来说,相较于图31所示意的所述摄像模组30,在该具体示例中,所述底座35直接被设置安装于所述补强板37。换言之,在该具体示例中,所述底座35的安装基准高度得以缩减,从而安装于所述底座35的所述光学镜头332的安装基准高度得以缩减,以使得所述摄像模组30的整体高度尺寸可得以缩减。
相应地,在该具体实施例中,所述底座35可被实施为传统的塑料支架,其预制成型并贴附于所述补强板37的顶表面;或者,所述底座35可被实施为模塑底座,其可通过MOB(Molding on Board)、MOC(Molding on Chip)工艺一体地成型于所述补强板37、所述线路板31和/或所述感光芯片32的相应位置。本领域的技术人员应知晓,MOB(Molding on Board)工艺指的是,在所述线路板31上通过模塑工艺一体成型所述模塑底座,其中,成型之后的所述模塑底座一体包覆所述补强板37、所述线路板31、位于所述线路板31上的电子元器件312以及所述引线34。MOC工艺指的是,在所述线路板31上通过模塑工艺一体成型所述模塑底座,其中,成型之后的模塑底座除了包覆所述补强板37、所述线路板31和位于所述线路板31上的电子元器件312之外,还包覆了所述引线34的至少一部分,或者,包覆了所述引线34和所述感光芯片32的至少一部分(其中,所述感光芯片32的至少一部分区域为所述感光芯片32的非感光区域)。
图33图示了根据本发明的所述摄像模组30的又一种具体示例,其中,图33所示意的所述摄像模组30为图31示意的所述摄像模组30的另一种变形实施。
具体来说,相较于图31所示意的所述摄像模组30,在该具体示例中,所述底座35具有向下延伸的至少二定位柱351,所述线路板31具有至少二开口 311,所述定位柱351穿过所述开口311被设置于所述补强板37,通过这样的方式,使得所述底座35的安装基准高度得以缩减,以使得所述摄像模组30的整体高度可得以缩减。
图34和图35图示了根据本发明的所述摄像模组30的又一种具体示例,其中,图34和图35所示意的所述摄像模组30为图31所示意的所述摄像模组30的又一种变形实施。
如图34和图35所示,在该具体示例中,所述补强板37在所述线路板31的所述开孔310A处具有凸台371A或凹槽371,以通过所述凸台371A或所述凹槽371来调节所述感光芯片32的安装基准高度。换言之,在该具体示例中,所述感光芯片32底表面与所述线路板31底表面不齐平。
具体来说,如图34所示,当所述补强板37在所述线路板31的开孔310A处具有凹槽371时,所述感光芯片32的安装基准高度被进一步地降低,从而在满足预设光学后焦的设计要求下,所述摄像模组30的整体高度尺寸得以进一步地降低。应注意到,当所述补强板37在所述线路板31的开孔310A处具有凹槽371时,所述感光芯片32贴装于所述补强板37,届时,所述感光芯片32的底表面低于所述线路板31的底表面。
具体来说,如图35所示,当所述补强板37在所述线路板31的开孔310A处具有凸台371A时,相较于现有的基于COB工艺的摄像模组,所述感光芯片32的安装基准高度降低,从而在满足预设光学后焦的设计要求下,所述摄像模组30的整体高度尺寸得以降低。应注意到,当所述补强板37在所述线路板31的开孔310A处具有凸台371A时,所述感光芯片32贴装于所述补强板37,届时,所述感光芯片32的底表面高于所述线路板31底表面但低于所述线路板31的顶表面。
图36图示了根据本发明的所述摄像模组30的又一种具体示例,其中,图36所示意的所述摄像模组30为图33示意的所述摄像模组30的一种变形实施。
具体来说,如图36所示,在该具体示例中,所述摄像模组30包括线路板31、感光芯片32、底座35、光学镜头332、滤色元件331和补强板37,其中, 所述线路板31具有贯穿地形成于所述线路板31的一开孔310A,所述补强板37贴附于所述线路板31的底表面,所述感光芯片32被设置于所述线路板31的开孔310A处并贴附于所述补强板37,所述感光芯片32可导通地连接于所述线路板31,所述滤色元件331和所述光学镜头332被依次被设于所述感光芯片32的感光路径上。这样,透过所述显示屏20的成像光线先到达所述光学镜头332,被所述滤色元件331过滤之后,到达所述感光芯片32以被所述感光芯片32所感知,用于进行成像反应。
特别地,在该具体实施中,所述光学镜头332和所述底座35具有一体式结构,即,所述光学镜头332和所述底座35在参与到所述摄像模组30组装之前已被组装成一整体。换言之,在该具体示例中,所述光学镜头332为一体式镜头333,其与所述底座35组装形成一个元件单元。进一步地,在该具体示例中,所述底座35具有向下延伸的至少二定位柱,所述线路板31具有至少二开口,所述定位柱穿过所述开口被设置于所述补强板37,通过这样的方式,使得所述一体式镜头333和所述感光芯片32具有相同的安装基准面(即,所述补强板37的顶表面)。这样,在满足预设光学后焦的设计要求下,所述摄像模组30的整体高度尺寸得以降低。
值得一提的是,在申请该具体示例中,所述一体式镜头333可进一步地包括所述滤色单元331,即,在该具体实施中,所述光学镜头332、所述底座35和所述滤色单元331具有一体式结构,即,所述光学镜头332、所述底座35和所述滤色单元331在参与到所述摄像模组30组装之前已被组装成一整体。这样,可使得所述摄像模组30的组装方式更为紧凑,以使得所述摄像模组30的整体高度尺寸得以降低。
图37图示了根据本发明的所述摄像模组30的又一种具体示例。如图37所示,在该具体示例中,所述摄像模组30包括光学镜头332、底座35、滤色元件331、感光芯片32和线路板31,其中,所述感光芯片32可导通地设置于所述线路板31,所述底座35设置于所述线路板31,所述镜头和所述滤色元件331依次设置于所述感光芯片32的感光路径上,其中,所述底座35用于支撑所述 滤色元件331。这样,透过所述显示屏20的成像光线先到达光学镜头332,经所述滤色元件331过滤之后,再到达所述感光芯片32以被所述感光芯片32所感知,用于进行成像反应。
进一步地,所述摄像模组30还包括一组引线34,其中,在所述感光芯片32贴附于所述线路板之后,通过所述引线34实现所述感光芯片32与所述线路板31之间的电气连接。具体来说,每一所述引线34弯曲地延伸于所述感光芯片32和所述线路板31之间,以通过所述引线34将所述感光芯片32连接于所述线路板31,从而,所述线路板31可依据所述引线34对所述感光芯片32进行供电,以及,所述感光芯片32可依据所述引线34将所采集到的信号传输出去。
值得一提的是,在该具体示例中,所述引线34的类型并不为本申请所局限,例如,所述引线34可以是金线、银线、铜线。并且,所述引线34可通过“打金线”的工艺安装于所述线路板31和所述感光芯片32之间,以用于实现两者之间的电连接。
具体来说,“打金线”工艺一般分为两种类型:“正打金线”工艺和“反打金线”工艺。“正打金线”工艺指的是在布设所述引线34的过程中,首先在所述线路板31的导电端上形成所述引线34的一端,进而弯曲地延伸所述引线34,并最终在所述感光芯片32的导电端上形成所述引线34的另一端,通过这样的方式,在所述感光芯片32和所述线路板31之间形成所述引线34。“反打金线”工艺指的是在布设所述引线34的过程中,首先在所述感光芯片32的导电端上形成所述引线34的一端,进而弯曲地延伸所述引线34,并最终在所述线路板31的导电端上形成所述引线34的另一端,通过这样的方式,在所述感光芯片32和所述线路板31之间形成所述引线34。值得一提的是,通过“反打金线”工艺所形成的所述引线34向上突起的高度小于相对“正打金线”工艺所形成的所述引线34向上突起的高度,因此,优选地,在该具体实施中,采用“反打金线”工艺形成所述引线34。
在所述线路板31上还设有一组电子元器件312,其中,每个所述电子元器 件312可以通过诸如SMT(Surface Mount Technology)工艺被相互间隔地贴装于所述线路板31的边缘区域(相较于感光芯片32的贴装位置)。所述电子元器件312包括但不限于电阻、电容、电感等。值得一提的是,所述感光芯片32和每个所述电子元器件312可以分别位于所述线路板31的同侧或者相反侧。例如,所述感光芯片32和每个所述电子元器件312可以分别位于所述线路板31的同一侧,并且每个所述电子元器件312分被相互间隔地贴装于所述线路板31的边缘区域。
特别地,如图37所示,在该具体示例中,所述底座35支持于所述线路板31的顶表面,并且,所述底座35包括一主体352和沿着所述主体352往下延伸的侧壁353,所述主体352和所述侧壁353界定形成一容纳腔354。当所述底座35被设置于所述线路板31时,所述侧壁353支持于所述线路板31,所述底座35底表面、所述线路板31上表面和所述侧壁353一起界定形成所述容纳腔354,其中,设置于所述线路板31的电子元器件312被容纳于所述容纳腔354内。优选地,所述容纳腔354的高度尺寸小于0.2mm,例如0.1mm。
进一步地,如图37所示,在该具体示例中,所述底座35还具有至少一容置孔355,所述容置孔355贯设于所述底座35,以连通于所述容纳腔354与外部环境。值得理解的是,在该具体实施例中,所述容纳腔354高度低于尺寸较高的电子元器件312,例如电容等。因此,当所述底座35被设置于所述线路板31时,由于所述底座35的所述主体352底表面至所述线路板31顶表面高度小于电容等尺寸较高的电子元器件312,如果没有设置所述容置孔355,上述电子元器件312无法被容纳。也就是说,所述容置孔355的作用在于为了避让高尺寸的电子元器件312,以使得在所述底座35高度降低情况下,所述电子元器件312还可以被容纳于所述底座35。换言之,通过在所述底座35上设置所述容置孔355,可将降低所述底座35的整体设计高度,以使得所述摄像模组30的整体高度尺寸得以下降。
举例但不限定,例如,所述电子元器件312中电容的高度为0.38mm,所述容纳腔354高度为0.1mm,所述底座35的所述主体352厚度被设置为0.4mm, 即,所述容置孔355高度为0.4mm。这样,当所述底座35被设置于所述线路板31时,所述电子元器件312中的电容无法完全被容纳于所述容纳腔354内,相应地,所述电子元器件312中的电容的上端延伸至所述容置孔355内,并被容纳于所述容置孔355。应可以理解,在本发明中,所述容置孔355应当匹配于所述线路板31的所述电子元器件312设置,所述电子元器件312水平大小决定所述容置孔355尺寸,即所述电子元器件312应当确保可被容纳于所述容置孔355。
进一步地,如图37所示,在该具体示例中,所述底座35进一步具有一通光孔356,所述通光孔356形成于所述底座35的所述主体352并对应于所述感光芯片32,其中,所述通光孔356用于放置所述滤色元件331。相应地,所述底座35的所述主体352还具有一悬臂357,所述悬臂357一体延伸于所述主体352并界定所述通光孔356的尺寸,其中,所述滤色元件331被放置于所述悬臂357,并对所述模组接收的光进行过滤。特别注意到,在该具体示例中,当所述底座35被设置于所述线路板31,再将所述滤色元件331放置于所述主体352的所述悬臂357,至少一所述电子元器件312上端被容纳于所述容置孔355内时,可观察到部分所述电子元器件312的顶表面高于所述滤色元件331的底表面。
值得一提的是,在该具体示例中,所述滤色元件331能够被实施为不同的类型,包括但不限于所述滤色元件331能够被实施为红外截止滤光片、全透光谱滤光片以及其他的滤光片或者多个滤光片的组合。具体来说,例如,当所述滤色元件331被实施为红外截止滤光片和全透光谱滤光片的组合,即,所述红外截止滤光片和所述全透光谱滤片能够被切换以选择性地位于所述感光芯片32的感光路径上,这样,在白天等光线较为充足的环境下使用所述摄像模组30时,可以将所述红外截止滤光片切换至所述感光芯片32的感光路径,以藉由所述红外截止滤光片过滤进入所述摄像模组30的被物体反射的光线中的红外线,并且,当夜晚等光线较暗的环境中使用所述摄像模组30时,可以将所述全透光谱滤光片切换至所述感光芯片32的感光路径,以允许进入所述摄像模组30的被物体 反射的光线中的红外线部分透光。
当然,所述滤色元件331还可设于所述感光芯片32的感光路径上的其他位置,例如,所述滤色元件331设于所述光学镜头332的底部,所述光学镜头332的底部等,对此,并不为本申请所局限。
特别地,如图37所示,在该具体示例中,所述底座35可被实施为传统的塑料支架,其预制成型并贴附于所述线路板31的顶表面;或者,所述底座35可被实施为模塑底座,其可通过注塑工艺一体成型并贴附于所述线路板31的顶表面。然而,由于受限于所述底座35成型工艺,所述容置孔355被设置为通光孔,即,所述容置孔355连通于所述容纳腔354和外界环境。应可以想到,在组装所述摄像模组30时,脏污容易通过所述容置孔355进入,对所述感光芯片32造成污点。
因此,如图37所示,在该具体示例中,所述摄像模组30进一步包括一保护件38,所述保护件38从所述主体352一体往下延伸,当所述底座35被设置于所述线路板31时,所述保护件38围绕于所述感光芯片32周围,所述保护件38、所述底座35的所述主体352和设置于所述主体352的所述滤色元件331形成密封空间,预防脏污进入所述感光芯片32。
在具体实施中,所述保护件38可被实施为所述底座35的所述主体352的一部分,其自所述主体352一体地往下延伸,其中,当所述底座35被设置于所述线路板31时,所述保护件38围绕于所述感光芯片32周围,所述保护件38、所述底座35的所述主体352和设置于所述主体352的所述滤色元件331形成密封空间,预防脏污进入所述感光芯片32。或者,所述保护件38和所述底座35为分体设置,如图38所示,例如,所述保护件38是通过粘接等工艺,贴附于所述底座35,从而降低所述底座35成型难度。
优选地,所述容置孔355上端可再用膜或者灌胶等实现密封,以一方面防止电子元器件312受到损坏,另一方面进一步地增强密封效果,以预防脏污进入所述感光芯片32。
值得一提的是,在该具体示例中,所述摄像模组30可被实施为定焦模组或 者动焦模组,其中,当所述摄像模组30为动焦模组时,所述摄像模组30进一步包括电接于所述线路板31的一驱动器36(举例但不限定,所述驱动件可实施为马达等),所述驱动器36用于可控制地驱动所述镜头移动,以实现自动对焦(Auto-Focus),如图39所示。
特别地,如图39所示,所述驱动器36包括至少一定位柱361,所述定位柱延伸于所述驱动器36下端,并且,至少一所述定位柱361形成于所述驱动器36的位置对应于至少一所述容置孔355,以使得当所述驱动器36安装于所述底座35时,所述定位柱采取插销方式卡合于所述容置孔355。这样,通过所述定位柱361和所述容置孔355配合可提高所述驱动件安装精度,同时所述定位柱和所述容置孔355之间的配合也可提高所述驱动器36的可靠性。
图40图示了根据本发明的所述摄像模组30的又一种具体示例,其中,图40所示意的所述摄像模组30为图37所示意的所述摄像模组30的一种变形实施。
具体来说,如图40所示,在该具体示例中,所述保护件38被实施为一保护膜,所述保护膜贴于所述容置孔355上端(所述主体352的顶表面),从而当所述底座35被设置于所述线路板31时,所述保护膜确保所述容置孔355和所述容纳腔354是一密闭空间,因此同样可预防脏污进入所述感光芯片32,并且,所述保护膜也可以保护电子元器件312。例如,所述保护膜可实施为贴膜,或者,通过灌胶等工艺在所述容置孔355的上端形成所述保护膜,以对所述容置孔355进行密封。
图41图示了根据本发明的所述摄像模组30的又一种具体示例,其中,图41所示意的所述摄像模组30为图37所示意的所述摄像模组30一种变形实施。
具体来说,如图41所示,在该具体示例中,设置于所述线路板31的所述电子元器件312被设置于所述线路板31两侧,即,所述感光芯片32被设置于所述线路板31,所述电子元器件312位于所述感光芯片32两侧。本领域的技术人员应知晓,现有的摄像模组中位于线路板31上的所述电子元器件312大多数布设于所述线路板31的四周(或四侧)。
进一步地,如图41所示,在该具体示例中,所述保护件38一体成型于所述主体352并自所述主体352向下延伸。优选地,所述保护件38相对于所述侧壁353平行地自所述主体352向下延伸,以在所述侧壁353和所述保护件38之间形成一收容腔358,并且,所述容置孔355形成于所述侧壁353与所述保护件38之间并与所述收容腔358导通。
特别地,如图41所示,在该具体示例中,所述电子元器件312布设于所述线路板31上的位置,使得当所述底座35附着于所述线路板31的顶表面时,所述电子元器件312被收容于所述收容腔358,并且,高于所述收容腔358高度的部分所述电子元器件312可被收容于所述容置孔355。
应可以理解,在该具体示例中,所述侧壁353与所述保护件38的位置应当由所述电子元器件312于所述线路板31布设方式决定。例如,当所述电子元器件312成一矩阵排布于所述线路板31的两侧时,所述保护件38相对于所述侧壁353平行地自所述主体352向下延伸,并形成于所述电子元器件312和所述感光芯片32之间,用于隔离所述感光芯片32并预防脏污通过所述容置孔355进入到所述感光芯片32。
值得指出的是,在该具体示例中,所述保护件38只需分别成型于所述感光芯片32与所述电子元器件312之间,用于隔离所述感光芯片32,即所述保护件38无需设置于所述感光芯片32四周,只需形成于所述感光芯片32两侧。换言之,在该具体示例中,所述摄像模组30拥有一极窄侧,其中,所述极窄侧形成于所述线路板31不布置所述电子元器件312的一侧,所述感光芯片32、所述光学镜头332的安装位置都靠近于所述线路板31的边缘。特别地,所述极窄侧可使得所述摄像模组30可被设置于智能手机的边缘。
图42图示了根据本发明的所述摄像模组30的又一种具体示例。如图42所示,在该具体示例中,所述摄像模组30包括光学镜头332、底座35、滤色元件331、感光芯片32和线路板31,其中,所述感光芯片32可导通地设置于所述线路板31,所述底座35通过模塑工艺一体成型于所述线路板31,所述光学镜头332和所述滤色元件331依次设置于所述感光芯片32的感光路径上,其中, 所述底座35用于支持所述滤色元件331。这样,透过所述显示屏20的成像光线先到达光学镜头332,经所述滤色元件331过滤之后,再到达所述感光芯片32以被所述感光芯片32所感知,用于进行成像反应。
特别地,该具体示例为现有的基于模塑工艺的摄像模组的一种优化方案。本领域的技术人员应知晓,在现有的基于模塑工艺的摄像模组中,通常先将感光芯片和电子元器件贴装在线路板上,再通过模塑工艺在线路板上形成模塑基座,接着在将滤光片贴装于镜座之后,再将镜头贴装于滤光组件上,以使镜头被保持在芯片的感光路径上,如图42所示。但现有技术的这种组装方式对摄像模组的高度有极大地限制。
详细地说,虽然通过模塑基座来替代传统的镜座,可减小摄像模组的横向尺寸和高度,但是由于在模塑工艺中,所使用的模具需要避让线路板上的电容、电阻等电子元器件(特别是电容的尺寸较大,目前最小的电容的高度也有0.38mm),并且还要在模具和各种电子元器件之间预留一定的安全距离,因此,模塑基座的高度至少也要大于0.4mm;另一方面,滤光片通常与一支撑件组成一滤光片组件,而后再将滤光片组件贴装在该模塑基座上,由于该支撑件通常由注塑工艺制成,要求该支撑件上用以支撑该滤光片的部分的厚度基本上要大于0.15mm,而该滤光片自身的厚度通常在0.21mm以上,因此,该滤光片组件的厚度至少要大于0.36mm。
也就是说,镜头和线路板31之间的距离等于模塑基座的高度和滤光片组件的厚度之和(至少大于0.76mm),而受到上述所有因素的限制,现有技术的摄像模组的镜头与线路板31之间的距离无法再进一步减小,也就是说,现有技术的摄像模组的高度无法再进一步减小,从而无法满足市场对摄像模组的轻薄化和小型化的需求。
相应地,如图43所示,在该具体示例中,所述模塑基座具有下陷的台阶部,用于安装所述滤色元件331于其上。也就是说,相较于现有的的基于模塑工艺的摄像模组,在该具体示例中,所述模塑基座的顶表面为非平整表面,其具有下陷的台阶部。相应地,通过将所述滤色元件331安装于所述模塑基座的下陷台阶部 上,可取消滤色元件支撑件、降低滤色元件331与线路板31的间距,从而实现降低模组高度的效果。
具体来说,如图43所示,在该具体示例中,所述模塑基座具有阶梯式周缘槽350,其中,所述透光组件33的所述滤色元件331被设置于所述模塑基座的所述阶梯式周缘槽350。通过这样的方式,所述光学镜头332和所述线路板31之间的距离不再受到所述滤色元件331自身厚度的限制,也就是说,所述光学镜头332和所述线路板31之间的距离能被减小,以小于所述滤色元件331的厚度与所述模塑基座的高度之和,以减小所述摄像模组30的整体高度尺寸。
图44图示了根据本发明的所述感光芯片32B的又一具体实施。如图44所示,在该具体示例中,从所述感光芯片自身结构的角度进行优化,以降低所述摄像模组30的整体高度尺寸。换言之,在该具体实施中,所述摄像模组30可被实施为如图39至图43中任一所述的摄像模组及其变形实施。
具体来说,在该具体示例中,所述摄像模组30采用量子点薄膜感光芯片32A替代传统的CMOS/CCD感光芯片。相较于传统CMOS/CCD感光芯片,所述量子点薄膜感光芯片32B拥有平面尺寸和高度尺寸的双重优势。
首先,采用所述量子点薄膜感光芯片32B可使得感光芯片在Z轴方向的尺寸减小。如图44所示,所述量子点薄膜感光芯片32B从上到下分别包括滤色器321B,顶部电极322B,量子点薄膜323B,底部电极324B和像素电路325B,其中,所述顶部电极322B、所述量子点薄膜323B、所述底部电极324B组成所述量子点薄膜感光芯片32B的光敏层,所述量子点薄膜323B电连接两个电极,两个电极之间的电流和/或电压与所述量子点薄膜323B所接收的光的强度有关;所述像素电路325B包括电荷存储和读取电路。特别地,所述滤色其可被实施为Bayer滤镜或者Mono滤镜,对此,并不为本申请所局限。
在工作过程中,经过所述滤色器321B的光照射在所述光敏层上,所述光敏层在给定的偏压下在所述顶电极和所述底电极之间产生电荷,使得电压在积分时段在电荷存储中累积,像素电路325B读取电信号传送给芯片,该电信号反应了在积分周期内光敏层吸收的光强度的信号,该电信号是经由所述滤色器321B的 光所产生的光强,因此该电信号能与所述滤色器321B所通过的光对应,即,如果该滤色器321B为红色,表示只有红光能透过,那么该滤色器321B下所对应的所述光敏层所产生的电信号代表了该位置光线中红光的强度。
相较于现有的CMOS或CCD芯片,所述量子点薄膜感光芯片32B具有相对较小的厚度尺寸。
图45图示了根据本发明的所述摄像模组30的感光芯片32B又一种具体示意,其中,图45所示意的所述感光芯片32B为图44所示意的所述感光芯片的一种变形实施。
具体来说,如图45所示,在该具体示例中,所述光敏层的所述量子点薄膜323B配置成响应所选择的颜色或颜色组的光,例如,可以组合光电导材料和波长选择吸收材料(诸如形成滤色器321B阵列的材料)形成一色敏像素来实现所述颜色的敏感度。相应地,可将所述量子点薄膜323B分别配置成对红(R)、绿(G)、蓝(B)三种颜色敏感,这样,可以直接取消所述感光芯片中的滤色器321B。
在工作过程中,当光经过该色敏像素时,色敏像素会吸收所对应的光,将该种波长或者波段的光的光强转化为电信号,经过像素电路325B传送到芯片,处理成像,而其余的光继续向前传播,不会影响该像素点的光电转换。相应地,这种技术方案不仅可以减小感光芯片的Z向尺寸,同时由于没有滤色器321B对光的过滤,所述感光芯片可以接受到更多的光,所述感光芯片的成像更清晰。
进一步地,采用所述量子点薄膜感光芯片32B可使得所述感光芯片在XY轴方向的尺寸减小。具体来说,由于所述量子点薄膜323B的透光率高,在配置成能对某一波长或波段敏感的材料后,所述量子点薄膜323B可以只吸收所对应的光,而其他的光则会透光该层薄膜,继续向前传播,因此,可以将多个对某一波长或波段光敏感的量子点薄膜323B垂直排列。
换言之,在一个像素点位置即可同时获取多种波长或波段的光强信息。例如,将红色色敏像素、绿色色敏像素、蓝色色敏像素三种量子点薄膜323B垂直排列,当光经过红色色敏像素后红光被吸收并转化成电信号,剩余的光线继续向前传播, 经过绿色色敏像素后,绿光被吸收并转化成电信号,剩余的光线继续向前传播,到蓝色色敏像素后,蓝光也被吸收,转化成电信号。因此,在一个像素点大小的点可以同时获取多种波长或波段光的光强信息。
值得一提的是,在本申请该具体示例中所介绍的RGB三种颜色并不是限制,每一层量子点薄膜323B可以对任意一种所需要的光进行吸收转化,只需要将该量子点薄膜323B配置为对所需要的光敏感。
并且,在该具体示例中,由于不使用传统的滤色器321B,这样不仅可以获得更强的光强,还能使同样规格的感光芯片获得更高的分辨率。换言之,在同样的分辨率下,本方案所采用的方法可以使感光芯片的XY方向尺寸减小,从而进一步减小所述摄像模组30的平面尺寸。
并且,本申请所涉及的所述量子点薄膜323B芯片中的所述量子点薄膜323B可通过如下工艺制备而成。
在一个形成方式中,可以通过熔潭铸来处理量子点材料以形成所述量子点薄膜323B。熔潭铸可以包括将测量的量子点材料沉积到衬底上并且允许溶液蒸发,所产生的膜可以裂开或者可以不裂开。
在一个形成方式中,可以通过电沉积来处理量子点材料以形成所述量子点薄膜323B。
在一个形成方式中,可以通过气相沉积处理量子点材料来形成所述量子点薄膜323B。
在一个形成方式中,可以通过喷枪喷射处理量子点材料来形成所述量子点薄膜323B。喷枪喷射可以包括从气体处理。喷枪喷射可包括溶剂中的夹带。
在一个形成方式中,可以通过来自溶液的生长来处理量子点材料以形成所述量子点薄膜323B。来自溶液的膜的生长可以包括交联(cross-linking)。交联剂可以附连到衬底的至少部分以交联量子点。当将具有附连的交联剂的衬底浸入量子点溶液中时,量子点可以变成交联的并且在衬底上交联剂所附连的位置生长,生长的过程可以类似于晶种生长的过程。由于生长发生在交联剂已经附连的位置,因此可以通过沿着具有图案的衬底沉积交联剂来实现在衬底上的图案化膜的形 成。
在一个形成方式中,可以通过疏水系统处理量子点材料来形成膜。疏水系统可以使得能够沉积量子点的单层所述量子点薄膜323B,可以以图案沉积单层所述量子点薄膜323B。
在一个形成方式中,可以通过气相下的加速或蒸发处理量子点材料来形成所述量子点薄膜323B。
在一个形成方式中,可以通过影印方法处理量子点材料来形成所述量子点薄膜323B。
在一个形成方式中,可以通过喷墨打印方法处理量子点材料来形成所述量子点薄膜323B。
综上,设置于所述显示屏下方的所述摄像模组30能采用但不限于如上列举的技术方案及其变形实施,使得所述摄像模组30在其高度方向上的尺寸得以缩减,以满足智能手机薄型化的需求。
参考附图46示出了上述的感光芯片32B的所述光敏层的一种具体示意。所述光敏层包括所述顶部电极322B、所述量子点薄膜323B以及所述底部电极324B。
在本示例中,所述光敏层的所述顶部电极322B和所述底部电极324B被设置为水平分布,从而减少对于光线传播的影响。
具体地说,所述光敏层进一步包括一纳米晶体膜326B和一衬底327B,其中所述纳米晶体膜326B位于所述顶部电极322B和所述底部电极324B的上方,所述纳米晶体膜326B为透明材料,所述衬底327B位于所述光敏层的最低端。
所述顶部电极322B和所述底部电极324B位于所述纳米晶体膜326B和所述衬底327B之间,并且至少部分所述纳米晶体膜326B延伸至所述衬底327B。
整个所述光敏层可以是一横向堆叠结构,所述光敏层的所述顶部电极322B位于所述纳米晶体膜326B和所述衬底327B之间,所述光敏层的所述底部电极324B位于所述纳米晶体膜326B和所述衬底327B之间,所述底部电极324B和所述顶部电极322B被分别支撑于所述衬底327B。所述顶部电极322B和所述底部电极324B在高度方向上没有重叠。所述顶部电极322B和所述底部电极324B被水平设置于所述纳米晶体膜326B和所述衬底327B之间。所述衬底327B可以 是一玻璃衬底327B,所述顶部电极322B可以是一金属接触,所述底部电极324B可以是一金属接触。
所述量子点薄膜323B覆盖于所述衬底327B的顶部并且所述底部电极324B位于所述量子点薄膜323B的顶部。
参考附图47示出了上述的感光芯片32B的所述光敏层的一种具体示意。所述光敏层包括所述顶部电极322B、所述量子点薄膜323B、所述底部电极324B。
所述顶部电极322B和所述底部电极324B在高度方向上至少部分重叠。
在本示例中,所述顶部电极322B位于所述光敏层的顶端,所述底部电极324B位于所述顶部电极322B的下方。
所述光敏层进一步包括一纳米晶体膜326B和一衬底327B,其中所述纳米晶体膜326B位于所述顶部电极322B和所述底部电极324B之间,所述衬底327B位于所述底部电极324B下方。
所述顶部电极322B被设置为透明材料,从而减少对于光线通过所述顶部电极322B的影响。
进一步地,所述量子点薄膜323B位于所述衬底327B和所述底部电极324B之间。
参考附图48A至附图51C所示,是根据本发明的所述摄像模组30和带有所述通光孔200的所述显示屏20的一种装配方法被阐明。可以理解的是,所述显示屏20也可以是带有所述导光通道500和/或所述通光孔200。此处以高度方向贯通的所述通光孔200为例进行举例说明。
本发明提供一装配系统60,其中所述装配系统60包括一夹持装置61、一测试单元62以及一支撑平台63,其中所述夹持装置61位于所述支撑平台63上方,用于夹持所述摄像模组30,所述显示屏20被支撑于所述支撑平台63。
所述夹持装置61能够夹持所述摄像模组30以带动所述摄像模组30运动,从而改变所述摄像模组30和被支撑于所述支撑平台63的所述显示屏20的相对位置,从而通过所述测试单元62获得所述摄像模组30和所述显示屏20在各个位置时所述摄像模组30的成像效果,进而确定所述摄像模组30和所述显示屏20的安装位置。
所述装配系统60进一步包括一上料单元64,其中基于所述测试单元62确定所述摄像模组30和所述显示屏20的相对位置后,所述上料单元64可以给所述 摄像模组30和/或所述显示屏20上料,以使所述摄像模组30和所述显示屏20能够固定在被确认的一适宜安装的位置。
进一步地,所述测试单元62包括一光源621、一标板622以及一感测设备623,其中所述光源621被设置于所述摄像模组30的一入光位置附近,所述标板622可以位于所述光源621的前方,即所述光源621位于所述标板622和所述摄像模组30之间。所述标板622也可以位于所述光源621的后方,即所述标板622位于所述光源621和所述摄像模组30之间。所述光源621也可以位于所述标板622,能够提供均匀的光线给所述标板622。
所述光源621在工作时发出光线,所述感测设备623自所述摄像模组30获得的关于所述标板622的一实时工作图像,基于所述工作图像对于所述摄像模组30的位置进行调整至所述摄像模组30的成像效果达到预期。
具体地说,所述显示屏20的装配方法可以是,首先,调整所述摄像模组30至所述显示屏20的距离至一合适数值,然后调整所述摄像模组30光轴与所述显示屏20的所述通光孔200的中心,使两者重合。其中,后者的调节可以是:
当所述摄像模组30相对于所述显示屏20的位于一位置时,所述感测设备623可以感知两者的位置优适度,特别是光轴的重合情况,然后以其中一个为基准(比如以所述显示屏20为基准),计算出另一个相对的调整量(所述摄像模组30相对所述显示屏20的调整量),并根据调整量作出相应的调整,调整之后,再次计算两者的光轴情况,如果检测结果符合预期,则在此位置组装模组,否则,继续调整,直至两者的位置达到最佳状态,即所述摄像模组30的拍摄具有最佳的状态,同时所述摄像模组30和所述显示屏20的装配不影响其他部件的安装和工作。当然,所述摄像模组30相对所述显示屏20位置的调整,也是在允许安装所述摄像模组30的范围内调整。
进一步地,在本示例中,所述摄像模组30位于所述显示屏20的上方,并且所述摄像模组30位于所述支撑平台63的上方。所述光源621和所述标板622位于所述显示屏20的下方。换句话说,所述显示屏20以其背侧朝上的方式被支撑于所述支撑平台63。所述摄像模组30在后续的步骤中被安装于所述显示屏20的背侧。
所述夹持装置61和所述上料单元64在所述支撑平台63的上方作业,以使在所述支撑平台63的上方可以及时观察到所述摄像模组30和所述显示屏20的 相对位置,从而方便操作,尤其是在人工操作的情况下。当然,本领域技术人员可以理解的是,所述摄像模组30和所述显示屏20的装配过程可以借助一整套的自动化设备完成。
在本发明的另一些实施例中,所述摄像模组30位于所述显示屏20的下方,所述光源621和所述标板622位于所述显示屏20的上方,所述摄像模组30接收自上而下的光线从而进行光电转换。此时如果需要观察所述摄像模组30和所述显示屏20的相对位置,那么则需要从所述支撑平台63的下方进行观察。
进一步地,优选地,所述显示屏20位于一水平位置,基于所述显示屏20的背侧的朝向的不同,所述摄像模组30可以位于所述显示屏20的上方或者是所述显示屏20的下方。
当然可以理解的是,所述显示屏20可以位于一倾斜位置,比如说所述支撑平台63是倾斜的,所述摄像模组30的位置可以相对于所述显示屏20的位置通过所述夹持装置61被调整。所述显示屏20也可以位于一竖直位置,比如说所述支撑平台63位于竖直位置,所述摄像模组30和所述显示屏20分别在竖直位置被相对调整。
进一步地,所述支撑平台63具有一安装空间630,其中所述安装空间630位于所述支撑平台63,所述显示屏20能够被固定容纳于所述安装空间630。
所述支撑平台63具有一测试孔6300,其中所述安装空间630被连通于所述测试孔6300。当所述显示屏20固定于所述安装空间630,所述测试孔6300被对应于所述显示屏20的所述通光孔200,从而光线能够通过所述测试孔6300进入到所述显示屏20的所述通光孔200,然后通过所述通光孔200达到所述摄像模组30。
所述测试孔6300贯通所述支撑平台63,以使所述支撑平台63一侧的光线能够通过所述测试孔6300达到所述支撑平台63的另一侧。
所述测试孔6300可以根据测试的需要被设置成一定的形状,比如说在本示例中,所述测试孔6300的形状是圆锥状的。越靠近所述显示屏20,所述测试孔6300的内径越小,越远离所述显示屏20,所述测试孔6300的内径越大。
所述测试孔6300可以起到汇聚光线的作用。
所述支撑平台63包括一平台主体631和一固定组件632,其中所述固定组件632被设置于所述平台主体631,所述固定组件632用于固定所述显示屏20。
在本示例中,所述固定组件632一体成型于所述平台主体631,所述安装空间630形成于所述平台主体631,所述固定组件632被设置于所述平台主体631并且被容纳于所述安装空间630。
所述显示屏20能够被安装于所述固定组件632,在所述固定组件632的协助下,所述显示屏20和所述平台主体631的相对位置固定,从而只需要所述摄像模组30的位置就可以实现所述显示屏20和所述摄像模组30的相对位置的调整,至寻找到所述摄像模组30相对于所述显示屏20的具有较好成像效果的一位置。
在本发明的另一些实施例中,所述固定组件632被可拆卸地安装于所述平台主体631。所述固定组件632的尺寸可以适于所述显示屏20的尺寸被调整。比如说所述安装空间630提供7寸面积,那么所述固定组件632可以提供6寸左右的面积供安装所述显示屏20,如果需要对于5寸的所述显示屏20进行装配,所述固定组件632可以被更换为能够提供5寸左右的面积的所述固定组件632以适应于所述显示屏20尺寸的调整。
进一步地,在本发明的另一些实施例中,所述夹持装置61分别夹持所述摄像模组30和所述显示屏20,然后通过改变所述摄像模组30和所述显示屏20的相对位置寻找适合的装配位置。
在本发明的另一些实施例中,所述支撑平台63支撑所述摄像模组30,所述夹持装置61夹持所述显示屏20,然后所述夹持装置61带动所述显示屏20运动以改变所述显示屏20的位置,从而在保持所述摄像模组30固定的前提下,改变所述摄像模组30和所述显示屏20的相对位置,直到获得满意的成像效果。
进一步地,在本示例中,所述装配系统60包括一限位机构65,其中所述限位机构65被设置于所述显示屏20,并且位于所述显示屏20的所述通光孔200位置附近。
所述限位机构65用于限制所述摄像模组30的位置,以提高所述摄像模组30和所述显示屏20的对位精度。
具体地说,当所述摄像模组30和所述显示屏20的相对位置被改变以测试成像效果时,所述限位机构65可以对于所述摄像模组30的位置改变起到限制作用,以使所述摄像模组30的位置调整被控制在一定范围内,避免单次所述摄像模组30的位置调整幅度过大,从而有利于提高所述摄像模组30和所述显示屏20的对位精度。
所述限位机构65被设置于所述显示屏20的背侧并且被对准于所述显示屏20的所述通光孔200,以使当所述摄像模组30被安装于所述限位机构65后,所述摄像模组30能够被对准于所述显示屏20的所述通光孔200。
然后安装所述摄像模组30于所述限位机构65。被安装于所述限位机构65后的所述摄像模组30被对准于所述显示屏20的所述通光孔200并且所述摄像模组30和所述限位机构65的相对位置能够被微调。
然后通过所述测试设备获取所述摄像模组30成像的图像,并且基于所述摄像模组30的成像效果对所述摄像模组30和所述限位机构65进行调整,从而改变所述摄像模组30和所述显示屏20的相对位置。所述限位机构65提供的调整空间有限,所述摄像模组30和所述显示屏20的相对位置调整仅仅能够在一个较小范围内进行调整,从而在这个调整过程中所述摄像模组30的位置不会发生较大的偏移,以有利于提高所述摄像模组30和所述显示屏20的对位精度。
基于所述摄像模组30的成像效果确定所述摄像模组30和所述显示屏20的相对位置后,固定所述摄像模组30和所述限位机构65的相对位置,从而固定所述摄像模组30和所述显示屏20的相对位置。所述摄像模组30被装配于所述显示屏20,所述摄像模组30能够通过所述显示屏20的所述通光孔200获得足够的光线并且获得预期的成像效果。
进一步地,在本发明的另一些实施例中,所述限位机构65被设置于所述摄像模组30。具体地说,首先将所述限位机构65和所述摄像模组30相互安装,然后将所述限位机构65固定于所述显示屏20,并且使得位于所述限位机构65的所述摄像模组30能够对应于所述显示屏20的所述通光孔200。
所述限位机构65为被安装于所述限位机构65的所述摄像模组30提供了一定的调整空间。
当所述限位机构65被安装于所述显示屏20后,可以基于所述摄像模组30的成像效果调整所述摄像模组30和所述限位机构65的相对位置,从而确认所述摄像模组30和所述显示屏20的相对位置。
值得一提的是,当所述限位机构65被安装于所述显示屏20时,所述摄像模组30已经被安装于所述限位机构65,因此可以基于所述摄像模组30的成像效果确定所述限位机构65和所述显示屏的相对位置,然后将所述限位机构65定位于所述显示屏20。所述限位机构65和所述显示屏20之间的固定方式可以采取 胶粘或者是焊接的方式。
换句话说,在所述摄像模组30被安装于所述显示屏20之前,所述限位机构65可以被先安装于所述摄像模组30或者是所述显示屏20。然后基于所述摄像模组30的成像效果在所述限位机构65的可供调整范围内调整所述摄像模组30和所述限位机构65的相对位置,从而调整所述摄像模组30和所述显示屏20的相对位置。
进一步地,所述限位机构65具有一限位通道650,所述摄像模组30的所述镜头组件可以至少部分被容纳于所述限位通道650。
当所述限位机构65位于所述显示屏20,所述限位机构65的所述限位通道650被对准于所述显示屏20的所述通光孔200。
所述限位机构65和所述摄像模组30相互配合以使当所述摄像模组30被安装于所述限位机构65时,所述限位机构65可以对于所述摄像模组30起到限位作用,同时所述摄像模组30可以在所述限位机构65提供的所述限位通道650做出一定范围之内的调整以改变所述摄像模组30和所述显示屏20的相对位置。
具体地说,所述限位机构65可以包括一套筒651和一限位组件652,其中所述套筒651环绕形成所述限位通道650。所述限位组件652包括一第一限位件6521和一第二限位件6522,其中所述第一限位件6521被设置于所述套筒651的内壁,所述第二限位件6522被设置于所述摄像模组30的所述镜头组件的外壁。
当所述摄像模组30被安装于所述限位机构65,所述第一限位件6521和所述第二限位件6522相对配合以限定所述摄像模组30的位置。
所述第一限位件6521可以是一定向凹槽,所述第二限位件6522可以是一凸起,当所述摄像模组30被安装于所述限位机构65,所述第二限位件6522延伸进入所述第一限位件6521。
所述第一限位件6521可以是一凸起,所述第二限位件6522可以是一凹槽,当所述摄像模组30被安装于所述限位机构65,所述第一限位件6521延伸进入所述第二限位件6522。
值得注意的是,当所述摄像模组30被安装于所述限位机构65,所述第一限位件6521和所述第二限位件6522之间并不完全固定卡合,所述第一限位件6521和所述第二限位件6522之间还留有一定的活动空间,以使所述摄像模组30被所述限位组件652限位的同时相对于所述套筒651的位置还可以被进一步调整。
进一步地,所述套筒651内壁可以被设置为螺纹结构,所述摄像模组30的上部的外壁,即所述镜头组件的镜筒外壁可以被至少部分设置为螺纹结构。
当所述摄像模组30被安装于所述限位机构65时,不仅所述摄像模组30和所述限位机构65的相对位置,尤其是所述摄像模组30的轴心和所述显示屏20的所述通光孔200的中心可以被相对调整,而且所述摄像模组30和所述显示屏20之间的距离也可以被调整。
当然可以理解的是,如果是在所述限位机构65需要被安装于所述显示屏20的情况下,可以在所述限位机构65被安装于所述显示屏20的过程中通过控制所述限位机构65和所述显示屏20之间的距离来调整所述摄像模组30和所述显示屏20之间的距离。
优选地,所述限位机构65的所述套筒651的中心被对准于所述显示屏20的所述通光孔200的中心。进一步地,优选地,所述限位机构65的所述套筒651的中心被对准于所述测试平台63的所述测试孔6300的中心。
参考附图51A至51C所示,是根据本发明的所述限位机构65的一种具体实施方式被示意。在本示例中,所述限位机构65需要被安装于所述显示屏20。也就是说,原先所述限位机构65和所述显示屏20相互独立。
所述摄像模组30的所述装配方法包括如下步骤:安装所述限位机构65于所述显示屏20,安装所述摄像模组30于所述限位机构65,相对于所述限位机构65调整所述摄像模组30的位置从而达到调整所述摄像模组30相对于所述显示屏20的位置的目的,以所述摄像模组30的成像效果为基础确认所述摄像模组30和所述显示屏20的相对位置,通过固定所述摄像模组30于所述限位机构65的方式来固定所述摄像模组30和所述显示屏20于调整后位置。
值得注意的是,可以通过将所述限位机构65对准于所述显示屏20的所述通光孔200的方式将所述限位机构65安装于所述显示屏20。
可以理解的是,在安装所述限位机构65于所述显示屏20的过程中,可以基于所述限位机构65的所述限位通道650和所述显示屏20的所述通光孔200的对准程度将所述限位机构65固定于所述显示屏20。通过这样的方式,在后续调整的过程中,所述摄像模组30和所述显示屏20之间相对位置的调整,只需要调整所述摄像模组30和所述限位机构65之间的相对位置。
所述摄像模组30的所述装配方法也可以被实施为如下步骤:安装所述摄像 模组30于所述限位机构65,安装所述限位机构65于所述显示屏20,相对所述限位机构65调整所述摄像模组30的位置从而达到调整所述摄像模组30相对于所述显示屏20的位置的目的,以所述摄像模组30的成像效果为基础确认所述摄像模组30和所述显示屏20的相对位置,通过固定所述摄像模组30于所述限位机构65的方式固定所述摄像模组30和于所述显示屏20调整后位置。
可以理解的是,在安装所述限位机构65于所述显示屏20的过程中,可以基于所述摄像模组30的成像效果将所述限位机构65安装于所述显示屏20。
所述摄像模组30的所述装配方法也可以被实施为如下步骤:调整所述摄像模组30和所述显示屏20的相对位置至一较为满意的位置,其中所述限位机构65被安装于所述显示屏20,然后在所述限位机构65的可供所述摄像模组30的调整范围内调整所述摄像模组30和所述限位机构65的相对位置,从而调整所述摄像模组30和所述显示屏20机构的相对位置。
可以理解的是,安装所述摄像模组30于所述限位机构65之后,可以将所述限位机构65固定于所述显示屏20,以使所述摄像模组30通过所述限位机构65能够在一个相对小的范围进行调整,以提高所述摄像模组30和所述限位机构65的调整精度。也可以是,安装所述摄像模组30于所述限位机构65之后,暂时不固定所述限位机构65于所述显示屏20,继续改变所述摄像模组30和所述显示屏20的相对位置至获得较为满意的成像效果,然后将所述限位机构65固定于所述显示屏20。
进一步地,在本示例中,所述显示屏20的背侧被实施为一平面结构,即所述显示屏20的所述背板为一平面结构,所述限位机构65被安装于所述显示屏20的所述背板。当所述限位机构65和所述显示屏20之间的相对位置需要调整时,所述限位机构65在所述显示屏20上自由地调整位置至所述限位机构65的所述限位通道650被对准于所述显示屏20的所述通光孔200,或者被安装于所述限位机构65的所述摄像模组30获得预期的成像效果。
当然可以理解的,所述摄像模组30和所述显示屏20的相对位置也可以被直接调整,当所述摄像模组30和所述显示屏20之间的相对位置被确定时,所述摄像模组30通过胶粘或者是焊接等方式可以直接被固定于所述显示屏20并且两者的位置保持在调整后位置。
更进一步地,在所述限位机构65和所述摄像模组30的相对位置基于所述摄 像模组30的成像效果被确认后,所述限位机构65和所述摄像模组30之间可以胶粘、或者是焊接等方式固定。
举例说明,当所述摄像模组30被安装于所述限位机构65,在调整所述摄像模组30和所述限位机构65的相对位置时,所述限位机构65的所述限位通道650存在间隙以供所述摄像模组30和所述限位机构65之间的微调。
当所述摄像模组30和所述限位机构65之间的相对位置被确认后,所述限位机构65的所述限位通道650的未被所述摄像模组30占据的空间可以被填充胶体以固定所述摄像模组30和所述限位机构65的相对位置。
举例说明,当所述摄像模组30被安装于所述限位机构65,在调整所述摄像模组30和所述限位机构65的相对位置时,所述限位机构65的所述限位通道650存在间隙以供所述摄像模组30和所述限位机构65之间的微调。
当所述摄像模组30和所述限位机构65之间的相对位置被确认后,可以在所述摄像模组30和所述限位机构65的所述套筒651之间插入插片,以固定所述摄像模组30和所述限位机构65的相对位置。所述插片限制了所述摄像模组30相对于所述限位机构65的位移。
举例说明,当所述摄像模组30被安装于所述限位机构65,在调整所述摄像模组30和所述限位机构65的相对位置时,所述限位机构65的所述限位通道650存在间隙以供所述摄像模组30和所述限位机构65之间的微调。
当所述摄像模组30和所述限位机构65之间的相对位置被确认后,可以在所述摄像模组30的所述镜筒外侧或者是所述限位机构65的所述套筒651内壁设置一焊盘,然后通过焊接的方式固定所述摄像模组30和所述限位机构65。
可以理解的是,用于固定所述摄像模组30和所述限位机构65的胶体可以是热塑性流体、当所述热塑性流体填充所述摄像模组30和所述限位机构65之间的间隙后,可以通过加热的方式固化所述摄像模组30和所述限位机构65的所述热塑性流体。
进一步地,所述限位机构65的所述套筒651被设置为不透光材质,以减少外界光线对于位于所述限位机构65的所述限位通道650的所述摄像模组30的影响。尤其是当所述显示屏20为LCD显示屏20时,所述背板层27能够主动发光,不透光的所述限位机构65能够减少发光的所述背板层27对于所述摄像模组30的影响。
参考附图52所示,是根据本发明的所述限位机构65的一种具体实施方式被示意。在本示例中,所述限位机构65进一步包括一连接部653,所述连接部653用于将所述套筒651连接于所述显示屏20。
具体地说,所述套筒651具有一自由端6511和一连接端6512,其中所述自由端6511和所述连接端6512分别位于两端,所述连接部653位于所述套筒651的所述连接端6512。
所述连接部653可以被设置为自所述套筒651的所述连接端6512朝外延伸而成。当所述限位机构65和所述显示屏20被安装时,所述限位机构65的所述连接部653能够连接于所述显示屏20。同时,所述连接部653使得所述限位机构65可供连接于所述显示屏20的面积尺寸增大,以有利于所述限位机构65和所述显示屏20的稳固连接,从而有利于通过所述限位机构65将所述摄像模组30稳固地安装于所述显示屏20。
参考附图53所示,是根据本发明的所述限位机构65的一种具体实施方式被示意。在本示例中,所述限位机构65和所述显示屏20的相对位置被事先固定,只需要调整所述摄像模组30和所述限位机构65的相对位置即可。
所述限位机构65被结合于所述显示屏20,以有利于增强所述限位机构65和所述显示屏20的结合强度。
在本示例中,所述限位机构65被嵌合于所述显示屏20。
举例说明,所述显示屏20为OLED显示屏20时,所述显示屏20包括所述盖板层21、所述触控层22、所述偏振层23、所述封装层24、所述像素层25、所述驱动电路层26以及所述背板层27,此处可参考前述附图。所述显示屏20的背侧是一平面结构,也就是说,所述背板层27是一平面结构,并且所述显示屏20具有贯穿所述显示屏的至少部分的所述通光孔200,比如说所述通光孔200在高度方向贯穿除所述盖板层21之外的其他各层。当然,所述通光孔200也可以完全在高度方向贯穿所述显示屏20的各层。
至少部分所述限位机构65嵌合于所述驱动电路层26和所述背板层27。
所述限位机构65进一步包括至少一连接脚654,其中所述连接脚654自所述套筒651的所述连接端6512沿着所述套筒651的长度方向延伸而成。优选地,所述连接脚654的数目可以是多个。
所述显示屏20具有至少一嵌合通道203,其中所述嵌合通道203位于所述显 示屏20的所述通光孔200周围,并且所述嵌合通道203匹配于所述限位机构65的所述连接脚654。
所述嵌合通道203自所述背板层27延伸至所述驱动电路层26。优选地,所述嵌合通道203被设置为避开所述驱动电路层26的电路结构,以减少对于所述显示屏20工作效能的影响。
当所述限位机构65被安装于所述显示屏20,所述限位机构65的所述连接脚654伸入所述显示屏20的所述嵌合通道203。可以是,所述连接脚654被嵌合于所述嵌合通道203。也可以是,所述嵌合通道203略大于所述连接脚654,当所述连接脚654伸入所述嵌合通道203后,所述嵌合通道203还留有空隙,此时可以朝内填充胶体,以使所述限位机构65的所述连接脚654能够被固定于所述显示屏20的所述嵌合通道203,从而有利于所述限位机构65被稳固地安装于所述显示屏20。
进一步地,所述嵌合通道203可以通过开孔的方式形成于所述显示屏20的所述背板层27和所述驱动电路层26。比如说自所述显示屏20的所述背板层27朝向所述驱动电路层26钻孔。
本领域技术人员应当理解的是,所述嵌合通道203的形成方式或者是所述嵌合通道203的位置并不限制于上述的举例。
更进一步地,根据本发明的另一些实施例,所述嵌合通道203可以形成于所述套筒651,所述连接脚654形成于所述显示屏20。
当所述限位机构65被安装于所述显示屏20时,位于所述显示屏20的所述连接脚654伸入所述套筒651的所述嵌合通道203,从而有利于所述限位机构65和所述显示屏20之间的固定。
所述连接脚654可以沉积、蒸镀等方式形成于所述显示屏20。所述连接脚654可以一体成型于所述显示屏20。
更进一步地,根据本发明的另一些实施例,所述嵌合通道203可以分别形成于所述套筒651和所述显示屏20,所述连接脚654能够分别嵌合于所述套筒651和所述显示屏20。举例说明,所述连接脚654的一端伸入所述显示屏20的所述嵌合通道203,然后所述连接脚654的另一端伸入所述套筒651的所述嵌合通道203,分别固定所述连接脚654和所述显示屏20以及所述连接脚654和所述套筒651,从而将所述套筒651固定于所述显示屏20。
参考附图54所示,是根据本发明的所述限位机构65的另一具体实施方式被阐明。
在本示例中,所述显示屏20具有一安装通道201,其中所述安装通道201被贯通于所述通光孔200。所述通光孔200在高度方向贯通所述显示屏20的除了所述盖板层21之外的各层,所述安装通道201被暴露在所述显示屏20的背侧。
所述安装通道201的内径大于所述通光孔200的内径。所述限位机构65的至少部分能够被容纳于所述安装通道201。
举例说明,以所述安装通道201形成于所述显示屏20的所述背板层27为例进行说明。
所述安装通道201贯通所述背板层27并且所述安装通道201的内径大于所述通光孔200的内径。所述安装通道201在高度方向贯通于所述背板层27的所述通光孔200。来自所述显示屏20外侧的光线穿过所述通光孔200和所述安装通道201,然后被所述摄像模组30接收。
所述安装通道201具有一定的尺寸,所述限位机构65具有一定的尺寸。所述安装通道201的尺寸大于所述限位机构65的尺寸以使至少部分所述限位机构65能够被容纳于所述安装通道201。
在本示例中,所述限位机构65需要被安装于所述显示屏20。也就是说,原先所述限位机构65和所述显示屏20相互独立。
所述摄像模组30的所述装配方法包括如下步骤:安装所述限位机构65于所述显示屏20的所述安装通道201,安装所述摄像模组30于所述限位机构65,相对于所述限位机构65调整所述摄像模组30的位置从而达到调整所述摄像模组30相对于所述显示屏20的位置的目的,以所述摄像模组30的成像效果为基础确认所述摄像模组30和所述显示屏20的相对位置,通过固定所述摄像模组30于所述限位机构65的方式固定所述摄像模组30和于所述显示屏20调整后的位置。
通过对于所述显示屏20的所述安装通道201的尺寸控制可以对于所述限位机构65起到一定的限位作用,以有利于提供所述限位机构65和所述显示屏20的定位精度。
可以理解的是,在安装所述限位机构65于所述显示屏20的所述安装通道201的过程中,可以基于所述限位机构65的所述限位通道650和所述显示屏20 的所述通光孔200的对准程度将所述限位机构65固定于所述显示屏20。通过这样的方式,在后续调整的过程中,所述摄像模组30和所述显示屏20之间相对位置的调整,只需要调整所述摄像模组30和所述限位机构65之间的相对位置。
所述摄像模组30的所述装配方法也可以被实施为如下步骤:安装所述摄像模组30于所述限位机构65,安装所述限位机构65于所述显示屏20的所述安装通道201,相对所述限位机构65调整所述摄像模组30的位置从而达到调整所述摄像模组30相对于所述显示屏20的位置的目的,以所述摄像模组30的成像效果为基础确认所述摄像模组30和所述显示屏20的相对位置,通过固定所述摄像模组30于所述限位机构65的方式固定所述摄像模组30和于所述显示屏20调整后位置。
通过对于所述显示屏20的所述安装通道201的尺寸控制可以对于所述限位机构65起到一定的限位作用,以有利于提供所述限位机构65和所述显示屏20的定位精度。
可以理解的是,在安装所述限位机构65于所述显示屏20的过程中,可以基于所述摄像模组30的成像效果将所述限位机构65安装于所述显示屏20。
所述摄像模组30的所述装配方法也可以被实施为如下步骤:调整所述摄像模组30和所述显示屏20的相对位置至一较为满意的位置,安装所述摄像模组30于所述限位机构65以使所述摄像模组30能够固定于该位置,其中所述限位机构65被安装于所述显示屏20的所述安装通道201,然后在所述限位机构65的可供所述摄像模组30的调整范围内调整所述摄像模组30和所述限位机构65的相对位置,从而调整所述摄像模组30和所述显示屏20机构的相对位置。
可以理解的是,安装所述摄像模组30于所述限位机构65之后,可以将所述限位机构65固定于所述显示屏20,以使所述摄像模组30通过所述限位机构65能够在一个相对小的范围进行调整,以提高所述摄像模组30和所述限位机构65的调整精度。也可以是,安装所述摄像模组30于所述限位机构65之后,暂时不固定于所述限位机构65于所述显示屏20,继续改变所述摄像模组30和所述显示屏20的相对位置至获得较为满意的成像效果,然后将所述限位机构65固定于所述显示屏20。
进一步地,在本示例中,所述显示屏20的背侧被实施为一平面结构,即所述显示屏20的所述驱动电路层26为一平面结构,所述限位机构65被安装于所述 显示屏20的所述驱动电路层26。当所述限位机构65和所述显示屏20之间的相对位置需要调整时,所述限位机构65在所述显示屏20上位置的调整受到所述显示屏20的所述安装通道201的限制。
当然可以理解的,所述摄像模组30和所述显示屏20的相对位置也可以被直接调整,当所述摄像模组30和所述显示屏20之间的相对位置被确定时,所述摄像模组30通过胶粘或者是焊接等方式可以直接被固定于所述显示屏20并且两者的位置保持在调整后位置。
更进一步地,在所述限位机构65和所述摄像模组30的相对位置基于所述摄像模组30的成像效果被确认后,所述限位机构65和所述摄像模组30之间可以胶粘、或者是焊接等方式固定。
举例说明,当所述摄像模组30被安装于所述限位机构65,在调整所述摄像模组30和所述限位机构65的相对位置时,所述限位机构65的所述限位通道650存在间隙以供所述摄像模组30和所述限位机构65之间的微调。
当所述摄像模组30和所述限位机构65之间的相对位置被确认后,所述限位机构65的所述限位通道650的未被所述摄像模组30占据的空间可以被填充胶体以固定所述摄像模组30和所述限位机构65的相对位置。
举例说明,当所述摄像模组30被安装于所述限位机构65,在调整所述摄像模组30和所述限位机构65的相对位置时,所述限位机构65的所述限位通道650存在间隙以供所述摄像模组30和所述限位机构65之间的微调。
当所述摄像模组30和所述限位机构65之间的相对位置被确认后,可以在所述摄像模组30和所述限位机构65的所述套筒651之间插入插片,以固定所述摄像模组30和所述限位机构65的相对位置。所述插片限制了所述摄像模组30相对于所述限位机构65的位移。
举例说明,当所述摄像模组30被安装于所述限位机构65,在调整所述摄像模组30和所述限位机构65的相对位置时,所述限位机构65的所述限位通道650存在间隙以供所述摄像模组30和所述限位机构65之间的微调。
当所述摄像模组30和所述限位机构65之间的相对位置被确认后,可以在所述摄像模组30的所述镜筒外侧或者是所述限位机构65的所述套筒651内壁设置一焊盘,然后通过焊接的方式固定所述摄像模组30和所述限位机构65。
可以理解的是,用于固定所述摄像模组30和所述限位机构65的胶体可以是 热塑性流体、当所述热塑性流体填充所述摄像模组30和所述限位机构65之间的间隙后,可以通过加热的方式固化所述摄像模组30和所述限位机构65的所述热塑性流体。
进一步地,所述限位机构65的所述套筒651被设置为不透光材质,以减少外界光线对于位于所述限位机构65的所述限位通道650的所述摄像模组30的影响。尤其是当所述显示屏20为LCD显示屏20时,所述背板层27能够主动发光,不透光的所述限位机构65能够减少发光的所述背板层27对于所述摄像模组30的影响。
所述限位机构65可以通过胶粘或者是焊接等方式被固定于所述驱动电路层26。
参考附图55所示,是根据本发明的所述限位机构65的一种具体实施方式被示意。在本示例中,所述限位机构65进一步包括一连接部653,所述连接部653用于将所述套筒651连接于所述显示屏20。
具体地说,所述套筒651具有一自由端6511和一连接端6512,其中所述自由端6511和所述连接端6512分别位于两端,所述连接部653位于所述套筒651的所述连接端6512。
所述连接部653可以被设置为自所述套筒651的所述连接端6512朝外延伸而成。当所述限位机构65和所述显示屏20被安装时,所述限位机构65的所述连接部653能够连接于所述显示屏20。同时,所述连接部653使得所述限位机构65可供连接于所述显示屏20的面积尺寸增大,以有利于所述限位机构65和所述显示屏20的稳固连接,从而有利于通过所述限位机构65将所述摄像模组30稳固地安装于所述显示屏20。
更加具体地说,以所述安装通道201形成于所述背板层27为例,至少所述驱动电路层26被暴露在外。所述限位机构65的所述连接部653沿着所述驱动电路层26的表面水平延伸,通过固定所述连接部653和所述显示屏20的所述驱动电路层26就可以固定所述限位机构65和所显示屏20。
所述安装通道201可以被设计的略大以容纳所述连接部653。
值得一提的是,通过这样的方式,所述显示屏20和所述摄像模组30的高度尺寸能够被降低,以有利于降低所述终端设备的厚度尺寸。
参考附图56所示,是根据本发明的所述限位机构65的一种具体实施方式被 示意。在本示例中,所述限位机构65和所述显示屏20的相对位置被事先固定,只需要调整所述摄像模组30和所述限位机构65的相对位置即可。
所述限位机构65被结合于所述显示屏20,以有利于增强所述限位机构65和所述显示屏20的结合强度。
在本示例中,所述显示屏20具有一安装通道201,其中所述安装通道201被贯通于所述通光孔200。所述通光孔200在高度方向贯通所述显示屏20的各层,所述安装通道201被暴露在所述显示屏20的背侧。
所述安装通道201的内径大于所述通光孔200的内径。所述限位机构65的至少部分能够被容纳于所述安装通道201。
在本示例中,所述限位机构65被嵌合于所述显示屏20。
举例说明,所述显示屏20为OLED显示屏20时,所述显示屏20包括所述盖板层21、所述触控层22、所述偏振层23、所述封装层24、所述像素层25、所述驱动电路层26以及所述背板层27。以所述安装通道201形成于所述背板层27并且至少部分所述驱动电路层26被暴露于所述安装通道201为例。
至少部分所述限位机构65穿过所述安装通道201并且嵌合于所述驱动电路层26。
所述限位机构65进一步包括至少一连接脚654,其中所述连接脚654自所述套筒651的所述连接端6512沿着所述套筒651的长度方向延伸而成。优选地,所述连接脚654的数目可以是多个。
所述显示屏20具有至少一嵌合通道203,其中所述嵌合通道203位于所述显示屏20的所述通光孔200周围,并且所述嵌合通道203匹配于所述限位机构65的所述连接脚654。
所述嵌合通道203延伸于所述驱动电路层26。优选地,所述嵌合通道203被设置为避开所述驱动电路层26的电路结构,以减少对于所述显示屏20工作效能的影响。
当然本领域技术人员可以理解的是,所述嵌合通道203可以自所述驱动电路层26继续朝上延伸至所述显示屏20的其他各层。
当所述限位机构65被安装于所述显示屏20,所述限位机构65的所述连接脚654伸入所述显示屏20的所述嵌合通道203。可以是,所述连接脚654被嵌合于所述嵌合通道203。也可以是,所述嵌合通道203略大于所述连接脚654,当所 述连接脚654伸入所述嵌合通道203后,所述嵌合通道203还留有空隙,此时可以朝内填充胶体,以使所述限位机构65的所述连接脚654能够被固定于所述显示屏20的所述嵌合通道203,从而有利于所述限位机构65被稳固地安装于所述显示屏20。
进一步地,当所述显示屏20的所述安装通道201略大于所述限位机构65的所述套筒651时,可以在所述安装通道201内填充胶体或者是安装插片或者是焊接的方式将所述限位机构65固定于所述安装通道201对应的所述显示屏20部分,比如说所述背板层27。通过这样的方式,所述限位机构65和所述显示屏20的结合能够更加牢固,以有利于所述限位机构65和所述摄像模组30之间的稳固结合。
进一步地,所述嵌合通道203可以通过开孔的方式形成于所述显示屏20的所述驱动电路层26。比如说在所述安装通道201内向所述显示屏20的所述驱动电路层26钻孔。所述嵌合通道203的形成方式也可以是通过蚀刻的方式。
本领域技术人员应当理解的是,所述嵌合通道203的形成方式或者是所述嵌合通道203的位置并不限制于上述的举例。
更进一步地,根据本发明的另一些实施例,所述嵌合通道203可以形成于所述套筒651,所述连接脚654形成于所述显示屏20。
当所述限位机构65被安装于所述显示屏20时,位于所述显示屏20的所述连接脚654伸入所述套筒651的所述嵌合通道203,从而有利于所述限位机构65和所述显示屏20之间的固定。
所述连接脚654可以沉积、蒸镀等方式形成于所述显示屏20。所述连接脚654可以一体成型于所述显示屏20。所述连接脚654可以形成于所述显示屏20的所述驱动电路层26的被暴露于所述安装通道201的部分。
更进一步地,根据本发明的另一些实施例,所述嵌合通道203可以分别形成于所述套筒651和所述显示屏20,所述连接脚654能够分别嵌合于所述套筒651和所述显示屏20。举例说明,所述连接脚654的一端伸入所述显示屏20的所述嵌合通道203,然后所述连接脚654的另一端伸入所述套筒651的所述嵌合通道203,分别固定所述连接脚654和所述显示屏20以及所述连接脚654和所述套筒651,从而将所述套筒651固定于所述显示屏20。
参考附图57所示,是根据本发明的所述限位机构65的另一种具体实施方式 被阐明。
所述移动终端包括一基板70,其中所述基板70用于安装所述摄像模组30,所述摄像模组30位于所述基板70和所述显示屏20之间。
所述基板70和所述显示屏20之间的位置能够被相对固定,比如说通过所述移动终端的所述壳体40。所述基板70可以是在安装所述摄像模组30于所述移动终端之后再被安装于所述移动终端,然后安装所述壳体40于所述移动终端,并且在安装所述摄像模组30时,所述移动终端可提供足够的操作空间。
所述限位机构65位于所述基板70,从而通过限制所述摄像模组30和所述基板70的相对位移,进而限制所述摄像模组30和所述显示屏20的相对位移。
在本示例中,所述限位机构65需要被安装于所述显示屏20。也就是说,原先所述限位机构65和所述基板70相互独立。
所述摄像模组30的所述装配方法包括如下步骤:安装所述限位机构65于所述基板70,安装所述摄像模组30于所述限位机构65,相对于所述限位机构65调整所述摄像模组30的位置从而达到调整所述摄像模组30相对于所述显示屏20的位置的目的,以所述摄像模组30的成像效果为基础确认所述摄像模组30和所述显示屏20的相对位置,通过固定所述摄像模组30于所述限位机构65的方式固定所述摄像模组30于所述显示屏20调整后位置。可以理解的是,在安装所述限位机构65于所述基板70的过程中,可以基于所述限位机构65的所述限位通道650和所述显示屏20的所述通光孔200的对准程度将所述限位机构65固定于所述基板70。即,以所述限位机构65的所述限位通道650和所述显示屏20的所述通光孔200的对准状态以依据判断所述限位机构65在所述基板70的安装位置。通过这样的方式,在后续调整的过程中,所述摄像模组30和所述显示屏20之间相对位置的调整,只需要调整所述摄像模组30和所述限位机构65之间的相对位置。
所述摄像模组30的所述装配方法也可以被实施为如下步骤:安装所述摄像模组30于所述限位机构65,安装所述限位机构65于所述基板70,相对于所述限位机构65调整所述摄像模组30的位置从而达到调整所述摄像模组30相对于所述显示屏20的位置的目的,以所述摄像模组30的成像效果为基础确认所述摄像模组30和所述显示屏20的相对位置,通过固定所述摄像模组30于所述限位机构65的方式固定所述摄像模组30和所述显示屏20于调整后位置。
可以理解的是,在安装所述限位机构65于所述基板70的过程中,可以基于所述摄像模组30的成像效果将所述限位机构65安装于所述基板70。
所述摄像模组30的所述装配方法也可以被实施为如下步骤:调整所述摄像模组30和所述显示屏20的相对位置至一较为满意的位置,安装所述摄像模组30于所述限位机构65以使所述摄像模组30能够固定于该位置,其中所述限位机构65被安装于所述基板70,然后在所述限位机构65的可供所述摄像模组30的调整范围内调整所述摄像模组30和所述限位机构65的相对位置,从而调整所述摄像模组30和所述显示屏20的相对位置。
可以理解的是,安装所述摄像模组30于所述限位机构65之后,可以将所述限位机构65固定于所述基板70,以使所述摄像模组30通过所述限位机构65能够在一个相对小的范围进行调整,以提高所述摄像模组30和所述限位机构65的调整精度。也可以是,安装所述摄像模组30于所述限位机构65之后,暂时不固定于所述限位机构65于所述基板70,继续改变所述摄像模组30和所述显示屏20的相对位置至获得较为满意的成像效果,然后将所述限位机构65固定于所述基板70。
进一步地,在本示例中,所述基板70的一侧被实施为一平面结构,所述限位机构65被安装于所述基板70的该侧。当所述限位机构65和所述显示屏20之间的相对位置需要调整时,所述限位机构65在所述基板70上自由地调整位置至所述限位机构65的所述限位通道650被对准于所述显示屏20的所述通光孔200,或者被安装于所述限位机构65的所述摄像模组30获得预期的成像效果。
当然可以理解的,所述摄像模组30和所述显示屏20的相对位置也可以被直接调整,当所述摄像模组30和所述显示屏20之间的相对位置被确定时,所述摄像模组30通过胶粘或者是焊接等方式可以直接被固定于所述显示屏20并且两者的位置保持在调整后位置。
更进一步地,在所述限位机构65和所述摄像模组30的相对位置基于所述摄像模组30的成像效果被确认后,所述限位机构65和所述摄像模组30之间可以胶粘、或者是焊接等方式固定。
举例说明,当所述摄像模组30被安装于所述限位机构65,在调整所述摄像模组30和所述限位机构65的相对位置时,所述限位机构65的所述限位通道650存在间隙以供所述摄像模组30和所述限位机构65之间的微调。
当所述摄像模组30和所述限位机构65之间的相对位置被确认后,所述限位机构65的所述限位通道650的未被所述摄像模组30占据的空间可以被填充胶体以固定所述摄像模组30和所述限位机构65的相对位置。
举例说明,当所述摄像模组30被安装于所述限位机构65,在调整所述摄像模组30和所述限位机构65的相对位置时,所述限位机构65的所述限位通道650存在间隙以供所述摄像模组30和所述限位机构65之间的微调。
当所述摄像模组30和所述限位机构65之间的相对位置被确认后,可以在所述摄像模组30和所述限位机构65的所述套筒651之间插入插片,以固定所述摄像模组30和所述限位机构65的相对位置。所述插片限制了所述摄像模组30相对于所述限位机构65的位移。
举例说明,当所述摄像模组30被安装于所述限位机构65,在调整所述摄像模组30和所述限位机构65的相对位置时,所述限位机构65的所述限位通道650存在间隙以供所述摄像模组30和所述限位机构65之间的微调。
当所述摄像模组30和所述限位机构65之间的相对位置被确认后,可以在所述摄像模组30的所述镜筒外侧或者是所述限位机构65的所述套筒651内壁设置一焊盘,然后通过焊接的方式固定所述摄像模组30和所述限位机构65。
可以理解的是,用于固定所述摄像模组30和所述限位机构65的胶体可以是热塑性流体、当所述热塑性流体填充所述摄像模组30和所述限位机构65之间的间隙后,可以通过加热的方式固化所述摄像模组30和所述限位机构65的所述热塑性流体。
进一步地,所述限位机构65的所述套筒651被设置为不透光材质,以减少外界光线对于位于所述限位机构65的所述限位通道650的所述摄像模组30的影响。尤其是当所述显示屏20为LCD显示屏20时,所述背板层能够主动发光,不透光的所述限位机构65能够减少发光的所述背板层对于所述摄像模组30的影响。
值得注意的是,所述摄像模组30具有一高端和一低端,当所述限位机构65位于所述显示屏20时,所述摄像模组30的所述高端被安装于所述限位机构65,所述摄像模组30的所述高端为所述摄像模组30的入光位置,所述摄像模组30的所述低端为所述摄像模组30的感光位置。当所述限位机构65位于所述基板70时,所述摄像模组30的底端被安装于所述限位机构65。
在本实施例中,所述摄像模组30的所述低端被安装于所述限位机构65,当所述摄像模组30和所述限位机构65的相对位置被确定后,即,所述摄像模组30和所述显示屏20的相对位置被确定后,可以将所述摄像模组30的所述高端安装于所述显示屏20。
参考附图58所示,是根据本发明的所述限位机构65的一种具体实施方式被示意。在本示例中,所述限位机构65进一步包括一连接部653,所述连接部653用于将所述套筒651连接于所述基板70。
具体地说,所述套筒651具有一自由端6511和一连接端6512,其中所述自由端6511和所述连接端6512分别位于两端,所述连接部653位于所述套筒651的所述连接端6512。
所述连接部653可以被设置为自所述套筒651的所述连接端6512朝外延伸而成。当所述限位机构65和所述基板70被安装时,所述限位机构65的所述连接部653能够连接于所述基板70。同时,所述连接部653使得所述限位机构65可供连接于所述基板70的面积尺寸增大,以有利于所述限位机构65和所述基板70的稳固连接,从而有利于通过所述限位机构65将所述摄像模组30稳固地安装于所述显示屏20。
参考附图59所示,是根据本发明的所述限位机构65的一种具体实施方式被示意。在本示例中,所述限位机构65和所述基板70的相对位置被事先固定,只需要调整所述摄像模组30和所述限位机构65的相对位置即可。
所述限位机构65被结合于所述基板70,以有利于增强所述限位机构65和所述基板70的结合强度。
在本示例中,所述限位机构65被嵌合于所述基板70。
所述限位机构65进一步包括至少一连接脚654,其中所述连接脚654自所述套筒651的所述连接端6512沿着所述套筒651的高度方向延伸而成。优选地,所述连接脚654的数目可以是多个。
所述基板70具有至少一嵌合通道203,其中所述嵌合通道203位于所述显示屏20的所述通光孔200周围,并且所述嵌合通道203匹配于所述限位机构65的所述连接脚654。
优选地,所述嵌合通道203被设置为避开所述基板70的电路结构,以减少对于所述基板70工作效能的影响。
当所述限位机构65被安装于所述基板70,所述限位机构65的所述连接脚654伸入所述基板70的所述嵌合通道203。可以是,所述连接脚654被嵌合于所述嵌合通道203。也可以是,所述嵌合通道203略大于所述连接脚654,当所述连接脚654伸入所述嵌合通道203后,所述嵌合通道203还留有空隙,此时可以朝内填充胶体,以使所述限位机构65的所述连接脚654能够被固定于所述基板70的所述嵌合通道203,从而有利于所述限位机构65被稳固地安装于所述基板70。
进一步地,所述嵌合通道203可以通过开孔的方式形成于所述基板70。比如说自所述基板70表面朝内钻孔而成。
本领域技术人员应当理解的是,所述嵌合通道203的形成方式或者是所述嵌合通道203的位置并不限制于上述的举例。
更进一步地,根据本发明的另一些实施例,所述嵌合通道203可以形成于所述套筒651,所述连接脚654形成于所述基板70。
当所述限位机构65被安装于所述基板70时,位于所述基板70的所述连接脚654伸入所述套筒651的所述嵌合通道203,从而有利于所述限位机构65和所述基板70之间的固定。
所述连接脚654可以沉积、蒸镀等方式形成于所述基板70。所述连接脚654可以一体成型于所述基板70。
更进一步地,根据本发明的另一些实施例,所述嵌合通道203可以分别形成于所述套筒651和所述基板70,所述连接脚654能够分别嵌合于所述套筒651和所述基板70。举例说明,所述连接脚654的一端伸入所述基板70的所述嵌合通道203,然后所述连接脚654的另一端伸入所述套筒651的所述嵌合通道203,分别固定所述连接脚654和所述基板70以及所述连接脚654和所述套筒651,从而将所述套筒651固定于所述基板70。
更进一步地,在本发明的另一些实施例中,所述基板70可以具有至少一安装通道201,其中所述基板70内陷地形成所述安装通道201。至少部分所述限位机构65可以被容纳于所述安装通道201,然后通过在所述基板70和所述限位机构65的间隙之间填充胶体的方式来固定所述基板70和所述限位机构65。
为了降低对于所述摄像模组30和所述显示屏20的组装精度的要求,优选地,所述摄像模组30的一镜筒进行了专门的设计。
参考附图60A和附图60B所示,以及参考前述的附图28,所述摄像模组30包括一光学机构31A’和一感光单元32A,其中所述光学机构31A’包括一光学镜头311A’,所述光学镜头311A’被保持于所述感光单元32A的所述感光路径。
所述光学机构31A’还可以包括马达、基座、滤光元件等部件。
所述光学镜头311A’包括所述镜筒3111A’和多个镜片,其中多个所述镜片被保持于所述镜筒3111A’。
所述镜筒3111A’具有一端面。当所述摄像模组30被安装于所述显示屏20时,所述镜筒3111A’的所述端面适于靠近于所述显示屏20,然后被固定于所述显示屏20。
一所述镜片为第一镜片3112A’,一般来说,所述第一镜片3112A’相对于其他所述镜片最靠近所述镜筒3111A’的所述端面。
在本示例中,所述第一镜片3112A’和所述镜筒3111A’的所述端面被设置为一较大的距离。
具体地说,所述镜筒3111A’包括一镜筒壁31111A’和具有一镜筒腔31110A’,其中所述镜片3112A’被容纳于所述镜筒腔31110A’,所述镜筒壁31111A’围绕形成所述镜筒腔31110A’。
所述镜筒3111A’进一步包括一延伸壁31112A’,其中所述延伸壁31112A’自所述镜筒壁31111A’的一端竖直朝上延伸而成。所述镜筒壁31111A’具有一高端和一低端,其中所述延伸壁31112A’自所述镜筒壁31111A’的所述高端朝上方向延伸一定的距离以在增大所述第一镜片3112A’和所述镜筒3111A’的所述端面之间的距离。
所述摄像模组30能够被直接组装于所述显示屏20,并且避免了对于所述第一镜片3112A’造成影响。
通过这样的方式,对于所述摄像模组30和所述显示屏20之间的组装精度的要求可以被降低。所述摄像模组30可以被直接支撑于所述显示屏20然后调整所述摄像模组30和所述显示屏20之间的相对位置。
进一步地,在附图60A所示的示例中,所述延伸壁31112A’被设置为自所述镜筒壁31111A’延伸一定距离之后然后朝内水平延伸而成,在附图60B所示的示例中,所述延伸壁31112A”可以是自所述镜筒壁31111A’一直朝上延伸而成。
参考附图60C所示,是根据本发明的上述实施例的所述光学机构31A’的另 一种实施方式,在本实施例中,所述延伸壁31112A’自所述镜筒壁31111A’的所述高端朝上延伸一定的距离并且所述延伸壁31112A’的内径被设置为自上到下逐渐缩小的。越靠近于所述所述镜筒壁31111A’的高端,所述延伸壁31112A’的内径越小,也就是说,越靠近于所述镜筒壁31111A’的高端,所述镜筒腔31110A’越小。同时,所述延伸壁31112A’的外径也被设置为自上到下逐渐缩小的。
参考附图60D所示,是根据本发明的上述实施例的所述光学机构31A’的另一种实施方式,在本实施例中,所述延伸壁31112A’自所述镜筒壁31111A’的所述高端朝上延伸一定的距离并且所述延伸壁31112A’的内径被设置为自上到下保持不变的,但是所述延伸壁31112A’的外径被设置为自上到下逐渐缩小的。越靠近于所述镜筒壁31111A’的高端,所述延伸壁31112A’的外径越小。
参考附图60E所示,是根据本发明的上述实施例的所述光学机构31A’的另一种实施方式,在本实施例中,所述延伸壁31112A’自所述镜筒壁31111A’的所述高端朝上延伸一定的距离并且所述延伸壁31112A’的内径被设置为自上到下逐渐扩大的,并且所述延伸壁31112A’的外径被设置为自上到下逐渐扩大的。越靠近于所述镜筒壁31111A’的高端,所述延伸壁31112A’的内径和外径皆扩大。
进一步地,对于带有所述通光孔200的所述显示屏20而言,因为所述通孔孔200的存在,使得所述通光孔200的边缘,也就是所述显示屏20的显示屏和非显示区域的过渡区域,可能存在黑边的情况,影响到整个所述显示屏20的正常显示。所述通光孔200在高度方向贯穿所述显示屏20的至少部分,比如说所述显示屏20的一像素层。
根据本发明的另一方面,参考附图61A至61C所示,根据本发明提供一终端设备1,其中所述终端设备1包括一终端设备主体10、一显示单元以及一摄像模组30,其中所述摄像模组30位于所述显示单元下方,所述摄像模组30具有一前端,所述摄像模组30的所述前端被安装于所述显示单元的所述显示屏20并且所述摄像模组30被对准于所述显示屏20的所述通光孔200,以使所述显示屏20外侧的光线通过所述通光孔200被所述摄像模组30接收。
所述显示单元包括带有所述通光孔200的所述显示屏20和一补光单元80,其中所述补光单元80能够对于所述显示屏20的所述通光孔200位置进行光照补充以有利于整个所述显示屏20的显示效果。
在本实施中,所述补光单元80位于所述显示屏20和所述摄像模组30之间, 可以是被安装于所述显示屏20的底面。来自于所述显示屏20外侧的光线通过所述显示屏20的所述通光孔200和所述补光单元80,然后到达所述摄像模组30。
进一步地,在本示例中,以所述显示屏20为OLED显示屏为例,并且所述通光孔200贯穿所述显示屏除了所述盖板层21之外的各层为例进行说明。当然,本领域技术人员可以理解的是,所述显示屏20的类型并不限制于OLED显示屏并且所述通光孔200在所述显示屏20内部的位置可以并不限制于上述的举例。
所述补光单元80不仅能够对于所述显示屏20的所述通孔200起到补光作用,所述补光单元80还可以对于所述摄像模组30的进光量起到控制作用。
具体地说,所述补光单元80包括一光阑结构81和一发光结构82,其中所述发光结构82被设置于所述光阑结构81。
所述发光结构82能够朝外辐射光线,所述光阑结构81的至少部分位于所述通光孔200或者是被对准于所述通光孔200。被设置于所述光阑结构81的所述发光结构82的至少部分被设置为能够位于所述通光孔200或者是所述通光孔200附近或者是被对准于所述通光孔200,以使所述发光结构82在发光时,能够弥补对应于所述通光孔200位置的所述显示屏20的显示区域和非显示区域光照不足的问题。
所述光阑结构81包括一光阑移动部811、一光阑载体812以及一光阑驱动部813,其中所述光阑移动部811被支撑于所述光阑载体812,并且所述光阑移动部811被可驱动地连接于所述光阑驱动部813,所述光阑移动部811在所述光阑驱动部813的作用下能够移动以形成大小可变的一光孔810。
具体地说,所述光阑移动部811在所述光阑驱动部813的驱动下移动,对应于所述摄像模组30的光路大小能够随着所述光阑移动部811和所述通光孔相对位置的改变而改变。
所述发光结构82被设置于所述光阑移动部811。具体地说,所述光阑移动部811具有一上表面和一下表面,其中所述上表面朝向所述显示屏20外侧,所述下表面朝向所述摄像模组30,所述发光结构82位于所述光阑移动部811的所述上表面,以在所述发光结构82发光时,可以为所述显示屏20朝向外界一侧补充光线。
整个所述光阑移动部811可以是不透光的,当所述发光结构82在发光时,所述发光结构82发出的光线难以达到位于所述显示屏20下方的所述摄像模组 30。当所述摄像模组30在工作时,通过所述光阑移动部811的进光量可以基于所述光孔810的大小被控制。
整个所述光阑移动部811也可以是透光的,但是所述光阑移动部811的所述下表面可以被设置有不透光材料,当所述发光结构82在发光时,所述发光结构82发出的光线难以到达位于所述显示屏20下方的所述摄像模组30。当所述摄像模组30在工作时,通过所述光阑移动部811的进光量可以基于所述光孔810的大小被控制。
光线通过所述显示屏20的所述通光孔200后再经过所述光阑结构81的所述光孔810后被所述摄像模组30接收。所述光阑结构81的所述光孔810被对准于所述显示屏20的所述通孔200。进一步地,所述光阑结构81的所述光孔810和所述显示屏20的所述通光孔200可以位于同一轴线。
所述发光结构82包括至少一发光元件821,其中所述发光元件821被布置于所述光阑结构81的所述光阑移动部811的所述上表面。所述发光元件821可以是一个像素(pixel),或者是多个像素。当一个所述发光元件821被通电时,所述发光元件821发光,当多个所述发光元件821被通电时,所述发光结构82的光照幅度增强。也可以是通过控制所述发光元件821通电电流的大小来控制所述发光结构82的亮度。
当所述摄像模组30需要进行工作时,所述光阑移动部811在所述光阑驱动部813的驱动下可以移动,以形成所述光孔810或者是扩大所述光孔810。此时所述光阑移动部811可以停止发光。
当所述摄像模组30不进行工作,所述显示屏20起到显示作用时,所述光阑移动部811在所述光阑驱动部813的驱动下使得至少部分所述发光结构82对应于所述通光孔200,从而所述发光结构82能够通过所述通光孔200朝外辐射光线。此时所述光阑结构81的所述光孔810可以完全闭合,也可以是,所述光阑结构81的所述光孔810打开,光线可以达到所述摄像模组30,所述摄像模组30可以被随时启动以工作。
进一步地,所述补光单元80被可拆卸地安装于所述显示屏20,以有利于所述补光单元80的维修和更换。
所述补光单元80包括一控制机构83,其中所述光阑结构81被可控制地连接于所述控制机构83。所述控制机构83可以通过控制所述光阑驱动部813以控制 所述光阑结构81的所述光阑移动部811的移动,以控制所述光阑结构81的所述光孔810大小。所述控制机构83也可以控制所述发光结构82的发光强度、通断电等工作状态。所述控制机构83可以被实施为所述终端设备的一控制芯片,比如说所述摄像模组30的一控制芯片。
根据本发明的另一方面,本发明提供了一显示单元的工作方法,其中所述工作方法包括如下步骤:
在带有所述通光孔200的所述显示屏20工作时,操作所述补光单元80发光以补充所述通光孔200位置光强。
根据本发明的一些实施例,在位于所述显示屏20下方并且对准于所述通光孔200的所述摄像模组30工作时,操作位于所述摄像模组30的上方的所述补光单元80的所述光阑结构81形成所述光孔810,光线通过所述通光孔810和所述补光单元80的约束后到达所述摄像模组30。
参考附图62A和62C所示,以及参考附图61A至61C,是根据本发明的上述实施例的所述终端设备1的另一实施方式。
在本示例中,所述光阑移动部811包括多个叶片8111,每一所述叶片8111被支撑于所述光阑载体812并且在所述光阑驱动部813的驱动下,多个所述叶片8111之间的距离能够相互改变,从而使得所述光阑结构81能够供光线通过,也可以控制通光量。
所述发光结构82包括多个所述发光元件821,并且每一所述发光元件821对应于所述光阑移动部811的一所述叶片8111。
可以是,每一所述叶片8111被分别可驱动地连接于所述光阑驱动部813。也可以是,所有的所述叶片8111被同时可驱动地连接于所述光阑驱动部813。
所述发光元件821的位置能够随着所述叶片8111的移动而移动。参考附图62A至62C,随着所述叶片8111的移动,所述补光单元80的所述光阑结构81的所述光孔810的孔径大小可以被调整,所述光孔810可以被扩大也可以被缩小,以控制所述摄像模组30的进光量。
根据本发明的另一些实施例,所述光阑移动部811包括多个叶片8111,并且多个所述发光元件821被设置于一个所述叶片8111。每一所述叶片8111被安装多个所述发光元件821。
所述发光元件821可以是一个所述像素,整个所述光阑移动部811可以当作 所述显示屏20的显示部分使用。尤其是当所述光阑移动部811的所述叶片8111相互合拢以使所述光孔810闭合时,所述显示屏20的所述通光孔200位置看起来和所述显示屏20的显示区域是一体的。
参考附图63所示,是根据本发明的上述较佳实施例的所述显示单元的另一实施方式。
在本示例中,所述补光单元80包括所述光阑结构81和所述发光结构82,并且进一步包括一反射结构84,其中所述反射结构84被设置于所述光阑结构81的所述光阑移动部811并且位于所述发光结构82和所述光阑移动部811之间。
当所述发光结构82在发光时,所述发光结构82发出的部分光线朝外辐射至所述显示屏20外侧,部分光线朝内辐射至所述反射结构84,所述反射结构84能够将光线朝所述显示屏20外侧辐射。
进一步地,所述反射结构84的反射率是可以变化的。举例说明,所述反射结构84被实施为一反射膜,并且被设置于所述光阑移动部811的所述上表面。
所述反射膜可以是掺杂具有反射功能的物质或者是镀上反射层的高弹性膜。当所述反射膜被拉伸时,所述反射膜的反射率下降,所述反射膜的透光率上升。当所述反射膜被拉伸形变减小时,所述反射膜的反射率上升,透光率会下降。
所述高弹性反射膜的一端可以被固定于所述光阑结构81的所述光阑载体812,另一端可以被固定于所述光阑结构81的所述光阑移动部811的靠近于所述光孔810的一侧。当所述光阑移动部811的所述光孔810逐渐缩小时,所述高弹性反射膜被拉伸,从而反射率下降。当所述光阑移动部811的所述光孔810逐渐扩大时,所述高弹性反射膜被拉伸减小,从而反射率上升。
通过控制所述光阑结构81的所述光孔810孔径大小的方式实现对于所述补光单元80的亮度和色彩的控制。
参考附图64所示,是根据本发明的上述较佳实施例的所述显示单元的另一实施方式。
在本示例中,所述补光单元80包括一个所述光阑结构81,并且所述光阑结构81本身能够发光,所述光阑结构81本身可以由发光材料制成,在通电情况下就可以朝外辐射光线。
所述光阑结构81可以是一OLED结构,在通电后能够发光并且显示。当所述摄像模组30在工作时,所述光阑结构81可以停止通电,通过对于所述光阑结 构81的所述光阑移动部811的位置的控制来实现对于所述光孔810的孔径的控制。当所述摄像模组30没有在工作时,所述光阑结构81可以被通电,然后发光并且起到显示作用,以有利于整个所述显示屏20的显示效果。
参考附图65所示,是根据本发明的所述显示单元的另一实施方式。
在本示例中,所述显示单元包括一显示屏20和一补光单元80,其中所述显示屏20自上而下包括一盖板层21、一封装层22、一触控层23、一偏振层24、一像素层25、一驱动电路层26以及一背板层27,其中所述驱动电路层26形成于所述像素层25底侧,并且被电连接于所述像素层25以驱动所述像素层25工作,其中所述封装层22形成于所述像素层25的顶侧,用于封装所述像素层25,其中所述通光孔200在高度方向贯穿所述触控层23、所述偏振层24、所述封装层22、所述像素层25、所述驱动电路层26以及所述背板层27,其中所述背板层27位于最底层。
所述显示屏20是一OLED屏并且所述补光单元80位于所述显示屏20内部。
具体地说,所述补光单元80位于所述像素层25下方的所述驱动电路层26。所述补光单元80被安装于所述驱动电路层26并且所述补光单元80的一光阑结构81被对准于所述显示屏20的所述通光孔200。所述驱动电路层26包括多个TFT结构261和一衬底基板262,其中所述TFT结构261被设置于所述衬底基板262。优选地,所述补光单元80被设置于相邻的所述TFT结构261之间。
所述显示屏20外侧的光线需要通过所述光阑结构81后才能够达到位于所述显示屏20下方的所述摄像模组30所在位置。
所述补光单元80包括所述光阑结构81和一发光结构82,其中所述发光结构82被设置于所述光阑结构81的至少部分,以朝外辐射光线,尤其是,朝向所述显示屏20外侧辐射光线,以有利于所述显示屏20的所述通光孔200位置的显示效果。
值得一提的是,所述发光结构82的发光强度可以基于需求被控制,所述发光结构82能够配合于所述显示屏20的不同显示区域的显示需要,使得整个所述显示屏20的整体显示效果能够达到自然过渡的效果。
所述光阑结构81包括一光阑移动部811、一光阑载体812以及一光阑驱动部813,其中所述光阑移动部811被设置于所述光阑载体812。所述光阑移动部811被可驱动地连接于所述光阑驱动部813。
所述光阑结构81能够形成一光孔810,所述光孔810能够供光线通过。进一步地,所述光孔810形成于所述光阑移动部811并且随着所述光阑移动部811被所述光阑驱动部813驱动,所述光孔810的孔径大小可以被调节。
所述发光结构82被设置于所述光阑移动部811。优选地,所述发光结构82被设置于所述光阑移动部811的上表面。当所述显示屏20需要显示时,所述发光结构82可以发光从而对于所述显示屏20的所述通光孔200周围起到补光作用。当所述摄像模组30工作时,所述发光结构82可以停止发光,所述光阑结构81的所述光孔810大小可以被调节,以控制所述摄像模组30的进光量。
在本实施例中,所述光阑移动部811包括多个叶片8111,所述发光结构82被设置于所述光阑移动部811的所述叶片8111。所述叶片8111被可驱动地连接于所述光阑驱动部813。
根据本发明的另一些实施例,所述光阑结构81的所述光阑移动部811本身就由发光材料制成,可以发光。
根据本发明的另一些实施例,所述发光结构82可以覆盖、嵌合、至少部分埋于所述光阑结构81的所述光阑移动部811的所述上表面。
根据本发明的另一些实施例,其中所述光阑结构81的所述光阑移动部811可以是全透明的,并且所述光阑结构81的所述光阑移动部811的所述下表面可以被设置一遮光材料,其中所述光阑结构81也可以是至少部分透光的,所述发光结构82可以被包埋于所述光阑结构81的所述光阑移动部811,然后通过所述光阑移动部811的透光部分朝外辐射光线。
参考附图66所示,是根据本发明的所述显示单元的另一实施方式。
在本示例中,所述显示单元包括一显示屏20和一补光单元80,其中所述显示屏20自上而下包括一盖板层21、一封装层22、一触控层23、一偏振层24、一像素层25、一驱动电路层26以及一背板层27,其中所述驱动电路层26形成于所述像素层25底侧,并且被电连接于所述像素层25以驱动所述像素层25工作,其中所述封装层22形成于所述像素层25的顶侧,用于封装所述像素层25,其中所述通光孔200在高度方向贯穿所述触控层23、所述偏振层24、所述封装层22、所述像素层25以及所述驱动电路层26,其中所述背板层27位于最底层。
所述显示屏20是一OLED屏并且所述补光单元80位于所述显示屏20内部。
具体地说,所述补光单元80位于所述像素层25下方的所述背板层27。所述 补光单元80被安装于所述背板层27并且所述补光单元80的一光阑结构81被对准于所述显示屏20的所述通光孔200。可以通过先对于所述背板层27进行开孔的方式,然后将所述补光单元80的所述光阑结构81安装于所述背板层27。
所述显示屏20外侧的光线需要通过所述光阑结构81后才能够达到位于所述显示屏20下方的所述摄像模组30所在位置。所述显示屏20具有一安装通道201,其中所述安装通道201形成于所述显示屏20的所述背板层27,用于容纳至少部分所述摄像模组30。
所述补光单元80包括所述光阑结构81和一发光结构82,其中所述发光结构82被设置于所述光阑结构81的至少部分,以朝外辐射光线,尤其是,朝向所述显示屏20外侧辐射光线,以有利于所述显示屏20的所述通光孔200位置的显示效果。
值得一提的是,所述发光结构82的发光强度可以基于需求被控制,所述发光结构82能够配合于所述显示屏20的不同显示区域的显示需要,使得整个所述显示屏20的整体显示效果能够达到自然过渡的效果。
所述光阑结构81包括一光阑移动部811、一光阑载体812以及一光阑驱动部813,其中所述光阑移动部811被设置于所述光阑载体812。所述光阑移动部811被可驱动地连接于所述光阑驱动部813。
所述光阑结构81能够形成一光孔810,所述光孔810能够供光线通过。进一步地,所述光孔810形成于所述光阑移动部811并且随着所述光阑移动部811被所述光阑驱动部813驱动,所述光孔810的孔径大小可以被调节。
所述发光结构82被设置于所述光阑移动部811。优选地,所述发光结构82被设置于所述光阑移动部811的上表面。当所述显示屏20需要显示时,所述发光结构82可以发光从而对于所述显示屏20的所述通光孔200周围起到补光作用。当所述摄像模组30工作时,所述发光结构82可以停止发光,所述光阑结构81的所述光孔810大小可以被调节,以控制所述摄像模组30的进光量。
在本实施例中,所述光阑移动部811包括多个叶片8111,所述发光结构82被设置于所述光阑移动部811的所述叶片8111。所述叶片8111被可驱动地连接于所述光阑驱动部813。
参考附图67所示,是根据本发明的所述显示单元的另一实施方式。
本实施例中,所述显示屏20A是一LCD显示屏。所述补光单元80A位于所 述显示屏20A和所述摄像模组30A之间。比如说所述补光单元80A被安装于所述显示屏20A的底面。
所述补光单元80A的所述光阑结构81A的所述光孔810A能够被对准于所述通光孔200A并且能够被对准于所述摄像模组30A的感光路径。
所述显示单元包括所述显示屏20A和所述补光单元80A,其中所述显示屏20A自上而下包括一盖板层21A、一封装层22A、一触控层23A、一偏振层24A、一像素层25A、一驱动电路层26A以及一背板层27A,其中所述驱动电路层26A形成于所述像素层25A底侧,并且被电连接于所述像素层25A以驱动所述像素层25A工作,其中所述封装层22A形成于所述像素层25A的顶侧,用于封装所述像素层25A,其中所述通光孔200A在高度方向贯穿所述触控层23A、所述偏振层24A、所述封装层22A、所述像素层25A、所述驱动电路层26A以及所述背板层27A,其中所述背板层27A位于最底层。所述像素层25A包括一滤光层251A和液晶252A,其中所述液晶252A位于所述滤光层251A和所述驱动电路层26A之间。
所述通光孔200A在高度方向贯通所述显示屏20A除了所述盖板层21A之外的所述触控层23A、所述偏振层24A、所述像素层25A、所述驱动电路层26A以及所述背板层27A。
整个所述光阑移动部811A可以是不透光的,当所述发光结构82A在发光时,所述发光结构82A发出的光线难以达到位于所述显示屏20A下方的所述摄像模组30A。当所述摄像模组30A在工作时,所述光阑移动部811A位置的进光量可以基于所述光孔810A的大小被控制。
整个所述光阑移动部811A也可以是透光的,但是所述光阑移动部811A的所述下表面可以被设置有不透光材料,当所述发光结构82A在发光时,所述发光结构82A发出的光线难以到达位于所述显示屏20A下方的所述摄像模组30A。当所述摄像模组30A在工作时,所述光阑移动部811A位置的进光量可以基于所述光孔810A的大小被控制。
光线通过所述显示屏20A的所述通光孔200A后再经过所述光阑结构81A的所述光孔810A后被所述摄像模组30A接收。
所述光阑结构81A的所述光孔810A被对准于所述显示屏20A的所述通光孔200A。进一步地,所述光阑结构81A的所述光孔810A和所述显示屏20A的所 述通光孔200A可以位于同一轴线。
所述发光结构82A包括至少一发光元件821A,其中所述发光元件821A被布置于所述光阑结构81A的所述光阑移动部811A的所述上表面。所述发光元件821A可以是一个像素(pixel),或者是多个像素。当一个所述发光元件821A被通电时,所述发光元件821A发光,当多个所述发光元件821A被通电时,所述发光结构82A的光照幅度增强。也可以是通过控制所述发光元件821A通电电流的大小来控制所述发光结构82A的亮度,以满足通孔周围不同位置对于显示亮度的要求。
所述发光结构82的发光强度可以基于需求被控制,所述发光结构82能够配合于所述显示屏20的不同显示区域的显示需要,使得整个所述显示屏20的整体显示效果能够达到自然过渡的效果。
当所述摄像模组30A需要进行工作时,所述光阑移动部811A在所述光阑驱动部813A的驱动下可以移动,以形成所述光孔810A或者是扩大所述光孔810A。此时所述光阑移动部811A可以停止发光。
当所述摄像模组30A不进行工作,所述显示屏20A起到显示屏20A作用时,所述光阑移动部811A在所述光阑移动部811A的驱动下使得至少部分所述发光结构82A对应于所述通光孔200A,从而所述发光结构82A能够通过所述通光孔200A朝外辐射光线。此时所述光阑结构81A的所述光孔810A可以完全闭合,也可以是,所述光阑结构81A的所述光孔810A打开,光线可以达到所述摄像模组30A,所述摄像模组30A可以被随时启动以工作。
进一步地,所述补光单元80A被可拆卸地安装于所述显示屏20A,以有利于所述补光单元80A的维修和更换。
所述补光单元80A包括一控制机构83A,其中所述光阑结构81A被可控制地连接于所述控制机构83A。所述控制结构可以通过控制所述光阑驱动部813A以控制所述光阑结构81A的所述光阑移动部811A的移动,以控制所述光阑结构81A的所述光孔810A大小。所述控制结构也可以控制所述发光结构82A的发光强度、通断电等工作状态。
根据本发明的一些实施例,比如同时参考附图62,所述光阑移动部811A包括多个叶片8111A,每一所述叶片8111A被支撑于所述光阑载体812A并且在所述光阑驱动器813A的驱动下,多个所述叶片8111A之间的距离能够相互改变, 从而使得所述光阑结构81A能够供光线通过,也可以控制通光量。
所述发光结构82A包括多个所述发光元件821A,并且每一所述发光元件821A对应于所述光阑移动部811A的一所述叶片8111A。
可以是,每一所述叶片8111A被分别可驱动地连接于所述光阑驱动器813A。也可以是,所有的所述叶片8111A被同时可驱动地连接于所述光阑驱动器813A。
所述发光元件821A的位置能够随着所述叶片8111A的移动而移动。
根据本发明的一些实施例,比如同时参考附图62,所述光阑移动部811A包括多个叶片8111A,并且多个所述发光元件821A被设置于一个所述叶片8111A。每一所述叶片8111A被安装多个所述发光元件821A。
所述发光元件821A可以是一个所述像素,整个所述光阑移动部811A可以当作所述显示屏20A的显示部分使用。尤其是当所述光阑移动部811A的所述叶片8111A相互合拢以使所述光孔810A闭合时,所述显示屏20A的所述通光孔200A位置看起来和所述显示屏20A的显示区域是一体的。
参考附图68所示,是根据本发明的上述较佳实施例的所述显示单元的另一实施方式。
在本示例中,所述补光单元80A包括所述光阑结构81A和所述发光结构82A,并且进一步包括一反射结构84A,其中所述反射结构84A被设置于所述光阑结构81A的所述光阑移动部811A并且位于所述发光结构82A和所述光阑移动部811A之间。
当所述发光结构82A在发光时,所述发光结构82A发出的部分光线朝外辐射至所述显示屏20A外侧,部分光线朝内辐射至所述反射结构84A,所述反射结构84A能够将光线朝所述显示屏20A外侧辐射。
进一步地,所述反射结构84A的反射率是可以变化的。举例说明,所述反射结构84A被实施为一反射膜,并且被设置于所述光阑移动部811A的所述上表面。
所述反射膜可以是掺杂具有反射功能的物质或者是镀上反射层的高弹性膜。当所述反射膜被拉伸时,所述反射膜的反射率下降,所述反射膜的透光率上升。当所述反射膜被拉伸形变减小时,所述反射膜的反射率上升,透光率会下降。
所述高弹性反射膜的一端可以被固定于所述光阑结构81A的所述光阑载体812A,另一端可以被固定于所述光阑结构81A的所述光阑移动部811A的靠近 于所述光孔810A的一侧。当所述光阑移动部811A的所述光孔810A逐渐缩小时,所述高弹性反射膜被拉伸,从而反射率下降。当所述光阑移动部811A的所述光孔810A逐渐扩大时,所述高弹性反射膜被拉伸减小,从而反射率上升。
通过控制所述光阑结构81A的所述光孔810A孔径大小的方式实现对于所述补光单元80A的亮度和色彩的控制。
参考附图69所示,是根据本发明的上述较佳实施例的所述显示单元的另一实施方式。
在本示例中,所述补光单元80A包括一个所述光阑结构81A,并且所述光阑结构81A本身能够发光,所述光阑结构81A本身可以由发光材料制成,在通电情况下就可以朝外辐射光线。
所述光阑结构81A可以是一OLED结构,在通电后能够发光并且显示。当所述摄像模组30A在工作时,所述光阑结构81A可以停止通电,通过对于所述光阑结构81A的所述光阑移动部811A的位置的控制来实现对于所述光孔810A的孔径的控制。当所述摄像模组30A没有在工作时,所述光阑结构81A可以被通电,然后发光并且起到显示作用,以有利于整个所述显示屏20A的显示效果。
参考附图70所示,是根据本发明的所述显示单元的另一实施方式。
在本示例中,所述显示单元包括一显示屏20A和一补光单元80A,其中所述显示屏20A自上而下包括一盖板层21A、一触控层23A、一偏振层24A、一像素层25A、一驱动电路层26A以及一背板层27A,其中所述驱动电路层26A形成于所述像素层25A底侧,并且被电连接于所述像素层25A以驱动所述像素层25A工作,其中所述封装层22A形成于所述像素层25A的顶侧,用于封装所述像素层25A,其中所述通光孔200A在高度方向贯穿所述触控层23A、所述偏振层24A、所述封装层22A、所述像素层25A、所述驱动电路层26A以及所述背板层27A,其中所述背板层27A位于最底层。
所述显示屏20A是一LCD屏并且所述补光单元80A位于所述显示屏20A内部。
具体地说,所述补光单元80A位于所述像素层25A下方的所述驱动电路层26A。所述补光单元80A被安装于所述驱动电路层26A并且所述补光单元80A的一光阑结构81A被对准于所述显示屏20A的所述通光孔200A。所述驱动电路层26A包括多个TFT结构261A和一衬底基板262A,其中所述TFT结构261A 被设置于所述衬底基板262A。优选地,所述补光单元80A被设置于相邻的所述TFT结构261A之间。
所述显示屏20A外侧的光线需要通过所述光阑结构81A后才能够达到位于所述显示屏20A下方的所述摄像模组30A所在位置。所述显示屏20A具有一安装通道201A,其中所述安装通道201A形成于所述显示屏20A的所述背板层27A,用于容纳至少部分所述摄像模组30A。
所述补光单元80A包括所述光阑结构81A和一发光结构82A,其中所述发光结构82A被设置于所述光阑结构81A的至少部分,以朝外辐射光线,尤其是,朝向所述显示屏20A外侧辐射光线,以有利于所述显示屏20A的所述通光孔200A位置的显示效果。
所述光阑结构81A包括一光阑移动部811A、一光阑载体812A以及一光阑驱动部813A,其中所述光阑移动部811A被设置于所述光阑载体812A。所述光阑移动部811A被可驱动地连接于所述光阑驱动部813A。
所述光阑结构81A能够形成一光孔810A,所述光孔810A能够供光线通过。进一步地,所述光孔810A形成于所述光阑移动部811A并且随着所述光阑移动部811A被所述光阑驱动部813A驱动,所述光孔810A的孔径大小可以被调节。
所述发光结构82A被设置于所述光阑移动部811A。优选地,所述发光结构82A被设置于所述光阑移动部811A的上表面。当所述显示屏20A需要显示时,所述发光结构82A可以发光从而对于所述显示屏20A的所述通光孔200A周围起到补光作用。当所述摄像模组30A工作时,所述发光结构82A可以停止发光,所述光阑结构81A的所述光孔810A大小可以被调节,以控制所述摄像模组30A的进光量。
在本实施例中,所述光阑移动部811A包括多个叶片8111A,所述发光结构82A被设置于所述光阑移动部811A的所述叶片8111A。所述叶片8111A被可驱动地连接于所述光阑驱动部813A。
根据本发明的另一些实施例,所述光阑结构81A的所述光阑移动部811A本身就由发光材料制成,可以发光。
根据本发明的另一些实施例,所述发光结构82A可以覆盖、嵌合、至少部分埋于所述光阑结构81A的所述光阑移动部811A的所述上表面。
根据本发明的另一些实施例,其中所述光阑结构81A的所述光阑移动部811A 可以是全透明的,并且所述光阑结构81A的所述光阑移动部811A的所述下表面可以被设置一遮光材料,其中所述光阑结构81A也可以是至少部分透光的,所述发光结构82A可以被包埋于所述光阑结构81A的所述光阑移动部811A,然后通过所述光阑移动部811A的透光部分朝外辐射光线。
参考附图71所示,是根据本发明的所述显示单元的另一实施方式。
在本示例中,所述显示单元包括一显示屏20A和一补光单元80A,其中所述显示屏20A包括一盖板层21A、一触控层23A、一偏振层24A、一像素层25A、一驱动电路层26A以及一背板层27A,其中所述驱动电路层26A形成于所述像素层25A底侧,并且被电连接于所述像素层25A以驱动所述像素层25A工作,其中所述封装层22A形成于所述像素层25A的顶侧,用于封装所述像素层25A,其中所述通光孔200A在高度方向贯穿所述触控层23A、所述偏振层24A、所述封装层22A、所述像素层25A、所述驱动电路层26A以及所述背板层27A,其中所述背板层27A位于最底层。
所述显示屏20A是一LCD屏并且所述补光单元80A位于所述显示屏20A内部。
具体地说,所述补光单元80A位于所述像素层25A下方的所述背板层27A。所述补光单元80A被安装于所述背板层27A并且所述补光单元80A的一光阑结构81A被对准于所述显示屏20A的所述通光孔200A。可以通过先对于所述背板层27A进行开孔的方式,然后将所述补光单元80A的所述光阑结构81A安装于所述背板层27A。
所述显示屏20A外侧的光线需要通过所述光阑结构81A后才能够达到位于所述显示屏20A下方的所述摄像模组30A所在位置。所述显示屏20A具有一安装通道201A,其中所述安装通道201A形成于所述显示屏20A的所述背板层27A,用于容纳至少部分所述摄像模组30A。
所述补光单元80A包括所述光阑结构81A和一发光结构82A,其中所述发光结构82A被设置于所述光阑结构81A的至少部分,以朝外辐射光线,尤其是,朝向所述显示屏20A外侧辐射光线,以有利于所述显示屏20A的所述通光孔200A位置的显示效果。
所述光阑结构81A包括一光阑移动部811A、一光阑载体812A以及一光阑驱动部813A,其中所述光阑移动部811A被设置于所述光阑载体812A。所述光 阑移动部811A被可驱动地连接于所述光阑驱动部813A。
所述光阑结构81A能够形成一光孔810A,所述光孔810A能够供光线通过。进一步地,所述光孔810A形成于所述光阑移动部811A并且随着所述光阑移动部811A被所述光阑驱动部813A驱动,所述光孔810A的孔径大小可以被调节。
所述发光结构82A被设置于所述光阑移动部811A。优选地,所述发光结构82A被设置于所述光阑移动部811A的上表面。当所述显示屏20A需要显示时,所述发光结构82A可以发光从而对于所述显示屏20A的所述通光孔200A周围起到补光作用。当所述摄像模组30A工作时,所述发光结构82A可以停止发光,所述光阑结构81A的所述光孔810A大小可以被调节,以控制所述摄像模组30A的进光量。
在本实施例中,所述光阑移动部811A包括多个叶片8111A,所述发光结构82A被设置于所述光阑移动部811A的所述叶片8111A。所述叶片8111A被可驱动地连接于所述光阑驱动部813A。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (109)

  1. 一终端设备,其特征在于,包括:
    一终端设备主体;
    一显示屏,其中所述显示屏具有一通光孔;以及
    一摄像模组,其中所述摄像模组位于所述显示屏的下方,所述摄像模组具有一前端,所述摄像模组的所述前端被安装于所述显示屏并且所述摄像模组被对准于所述显示屏的所述通光孔,以使所述显示屏外侧的光线通过所述通光孔被所述摄像模组接收。
  2. 根据权利要求1所述的终端设备,其中所述显示屏包括一盖板层、一触控层、一偏振层、一封装层、一像素层以及一驱动电路层,其中所述驱动电路层形成于所述像素层的底侧,并且被电连接于所述像素层以驱动所述像素层工作,其中所述封装层形成于所述像素层的顶侧,用于封装所述像素层,其中所述通光孔在高度方向贯穿所述触控层、所述偏振层、所述封装层、所述像素层以及所述驱动电路层。
  3. 根据权利要求2所述的终端设备,其中所述驱动电路层包括一衬底基板和多个TFT结构,其中所述TFT结构被设置于所述衬底基板,所述通光孔位于相邻的所述TFT结构之间。
  4. 根据权利要求2所述的终端设备,其中所述像素层包括多个像素,所述通光孔位于相邻的所述像素之间。
  5. 根据权利要求4所述的终端设备,其中所述驱动电路层包括一衬底基板和多个TFT结构,其中所述TFT结构被设置于所述衬底基板,所述通光孔位于相邻的所述TFT结构之间。
  6. 根据权利要求2至5任一所述的终端设备,其中所述终端设备被设置一保护材料,其中所述保护材料位于所述通光孔,并且被涂覆于所述像素层和/或所述驱动电路层。
  7. 根据权利要求2至5任一所述的终端设备,其中所述像素层包括一阳极层、一发光层、一阴极层以及一保护层,其中所述阳极层位于所述驱动电路层上方,所述发光层位于所述阳极层和所述阴极层之间,所述阴极层位于所述发光层上方并且位于所述保护层下方。
  8. 根据权利要求7所述的终端设备,其中所述终端设备被设置一保护材料,其中所述保护材料位于所述通光孔,并且所述保护材料被自所述保护层朝下延伸至所述阴极层;或者是所述保护材料自所述保护层朝下延伸至所述发光层;或者是所述保护材料自所述保护层朝下延伸至所述阳极层。
  9. 根据权利要求2至5任一所述的终端设备,其中所述终端设备包括一背板层,所述背板层位于所述驱动电路层下方并且用于发光,所述像素层包括一滤光层和液晶,其中所述液晶位于所述滤光层和所述驱动电路层之间,所述像素层被设置一密封材料,其中所述密封材料位于所述滤光层和所述驱动电路层之间,所述液晶被所述密封材料阻挡从而无法泄漏至所述通光孔。
  10. 根据权利要求9所述的终端设备,其中所述终端设备被设置一保护材料,其中所述保护材料位于所述通光孔,并且所述保护材料被涂覆于所述像素层和/或所述驱动电路层。
  11. 一带有通光孔的显示屏的制作方法,其特征在于,包括如下步骤:
    在一驱动电路层形成在高度方向贯通所述驱动电路层的一孔;
    在所述驱动电路层上方分别设置盖板层、触控层、偏振层、封装层以及像素层;以及
    沿着所述驱动电路层的所述孔形成贯通所述显示屏的所述触控层、所述偏振层、所述封装层以及所述像素层的一通光孔。
  12. 根据权利要求11所述的制作方法,其中通过钻孔或者是切割的方式形成所述通光孔。
  13. 根据权利要求11所述的制作方法,其中在上述方法中,进一步包括如下步骤:
    在带有所述孔的所述驱动电路层形成所述像素层;
    在所述像素层和所述驱动电路层形成贯通所述像素层和所述驱动电路层的孔;以及
    在所述驱动电路层上方分别设置盖板层、触控层、偏振层以及封装层。
  14. 根据权利要求11所述的制作方法,其中在上述方法中,进一步包括如下步骤:
    在带有所述孔的所述驱动电路层设置带有孔的所述像素层,并且所述驱动电路层被对准于所述像素层;
    在所述驱动电路层上方分别设置盖板层、触控层、偏振层以及封装层。
  15. 根据权利要求14所述的制作方法,其中在上述方法中,先形成所述像素层于带有所述孔的所述驱动电路层,然后在所述像素层和所述驱动电路层形成在高度方向贯通所述像素层和所述驱动电路层的孔。
  16. 一带有孔的显示屏的制作方法,其特征在于,包括如下步骤:
    在一液晶层两侧分别设置盖板层、触控层、偏振层、封装层以及背板层;和
    对准于所述液晶层的一密封区域对于所述显示屏的各层进行开孔以获得在高度方向贯通所述显示屏的所述触控层、所述偏振层、所述封装层以及所述背板层的一通光孔。
  17. 根据权利要求16所述的制作方法,其中所述液晶层具有贯通的一孔。
  18. 根据权利要求16所述的制作方法,其中在上述方法中,所述液晶层形成高度方向贯通的一密封区域,在对于所述液晶层进行开孔时,开孔区域位于所述密封区域之间并且小于所述密封区域。
  19. 根据权利要求18所述的制作方法,其中在上述方法中,带有孔的所述液晶层的制造方法包括如下步骤:
    在一滤光层和一驱动电路层之间设置密封材料以形成所述密封区域;和
    填充液晶于所述密封区域之外。
  20. 根据权利要求19所述的制作方法,其中在上述方法中,带有孔的所述液晶的制造方法进一步包括如下步骤:
    在一驱动电路层表面设置一定高度的密封材料以形成所述密封区域;
    填充液晶于所述密封区域之外;以及
    覆盖于一滤光层于液晶上方并且所述滤光层贴合于所述驱动电路层。
  21. 一装配系统,其特征在于,包括一夹持装置、一测试单元以及一支撑平台,其中所述夹持装置用于夹持至少一摄像模组,所述支撑平台用于支撑一带有通孔的显示屏,所述测试单元用于测试通过所述显示屏的一通孔接收光线的所述摄像模组的成像效果。
  22. 根据权利要求21所述的装配系统,其中所述夹持装置夹持所述摄像模组并且所述摄像模组被保持于所述显示屏上方。
  23. 根据权利要求22所述的装配系统,其中所述测试单元包括一光源、一标板以及一感测设备,其中所述光源和所述标板位于所述显示屏下方,所述感测 设备对于所述摄像模组的成像效果进行检测。
  24. 根据权利要求23所述的装配系统,其中所述支撑平台具有一安装空间和一测试孔,其中所述测试孔贯通所述安装空间,当所述显示屏被容纳于所述安装空间,所述显示屏的所述通孔被对准于所述测试孔,所述光源发光的光线依次通过所述测试孔和所述通孔,然后被所述摄像模组接收。
  25. 根据权利要求24所述的装配系统,其中所述测试孔的形状是圆锥状,并且所述测试孔越靠近所述摄像模组位置的孔径越小。
  26. 根据权利要求21所述的装配系统,其中所述支撑平台包括一平台主体、一固定组件以及具有一安装空间,所述显示屏被容纳于所述安装空间,其中所述安装空间形成于所述固定组件,所述固定组件被设置于所述平台主体。
  27. 根据权利要求26所述的装配系统,其中所述固定组件被一体成型于所述平台主体。
  28. 根据权利要求26所述的装配系统,其中所述固定组件被可拆卸地安装于所述平台主体。
  29. 根据权利要求21至28任一所述的装配系统,其中所述装配系统进一步包括一限位机构,其中所述限位机构被设置于所述显示屏,当所述摄像模组被安装于所述显示屏,藉由所述限位机构限制所述摄像模组和所述显示屏的相对位置。
  30. 根据权利要求21至28任一所述的装配系统,其中所述装配系统进一步包括一限位机构,其中所述限位机构被设置于所述摄像模组,当所述摄像模组被安装于所述显示屏,藉由所述限位机构限制所述摄像模组和所述显示屏的相对位置。
  31. 根据权利要求21至28任一所述的装配系统,其中所述装配系统进一步包括一限位机构,其中所述限位机构被设置于一基板,所述基板被对准于所述显示屏,藉由所述限位机构所述摄像模组被对准于所述显示屏。
  32. 根据权利要求29所述的装配系统,其中所述限位机构通过粘合的方式被固定于所述显示屏。
  33. 根据权利要求29所述的装配系统,其中所述限位机构包括一套筒和一连接部,所述套筒具有一自由端和一连接端,其中所述连接部自所述套筒的所述连接端沿着所述套筒的径向方向朝外延伸而成,当所述套筒被安装于所述显示屏,所述连接部被贴合于所述显示屏的背侧。
  34. 根据权利要求29所述的装配系统,其中所述限位机构包括一套筒和至少一连接脚,其中所述套筒具有一自由端和一连接端,其中所述连接脚自所述套筒的所述连接端沿着所述套筒的轴向方向朝外延伸而成,当所述套筒被安装于所述显示屏,所述连接脚延伸入所述显示屏内部。
  35. 根据权利要求34所述的装配系统,其中所述显示屏具有至少一嵌合通道,其中所述限位机构的所述连接脚被嵌合于所述嵌合通道,所述显示屏包括一盖板层、一触控层、一偏振层、一封装层、一像素层以及一驱动电路层,其中所述盖板层、所述触控层、所述偏振层、所述封装层、所述像素层以及所述驱动电路层在高度方向相互叠合,所述驱动电路层形成于所述像素层的底侧,并且被电连接于所述像素层以驱动所述像素层工作,其中所述封装层形成于所述像素层的顶侧,用于封装所述像素层,其中所述通孔在高度方向贯穿所述触控层、所述偏振层、所述封装层、所述像素层以及所述驱动电路层,其中所述驱动电路层包括一衬底基板和多个TFT结构,其中所述TFT结构被设置于所述衬底基板,其中所述嵌合通道位于相邻的所述TFT结构之间。
  36. 根据权利要求29所述的装配系统,其中所述显示屏具有一安装通道,其中所述安装通道被连通于所述通孔,其中所述限位机构的至少部分被容纳于所述安装通道。
  37. 根据权利要求36所述的装配系统,其中所述安装通道的内径大于所述通孔。
  38. 一终端设备,其特征在于,包括一终端设备主体、一显示屏、一摄像模组以及一限位机构,其中所述显示屏被安装于所述终端设备主体并且所述显示屏具有自上而下贯通的一通孔,其中所述摄像模组被保持于所述显示屏下方并且被对准于所述通孔,其中所述限位机构分别连接于所述摄像模组和所述显示屏,所述摄像模组通过所述限位机构被固定于所述显示屏。
  39. 根据权利要求38所述的终端设备,其中所述限位机构通过粘合的方式被固定于所述显示屏。
  40. 根据权利要求38所述的终端设备,其中所述限位机构包括一套筒和一连接部,所述套筒具有一自由端和一连接端,其中所述连接部自所述套筒的所述连接端沿着所述套筒的径向方向朝外延伸而成,当所述套筒被安装于所述显示屏,所述连接部被贴合于所述显示屏的背侧。
  41. 根据权利要求38所述的终端设备,其中所述限位机构包括一套筒和至少一连接脚,其中所述套筒具有一自由端和一连接端,其中所述连接脚自所述套筒的所述连接端沿着所述套筒的轴向方向朝外延伸而成,当所述套筒被安装于所述显示屏,所述连接脚延伸入所述显示屏内部。
  42. 根据权利要求41所述的终端设备,其中所述显示屏具有至少一嵌合通道,其中所述限位机构的所述连接脚被嵌合于所述嵌合通道,所述显示屏包括一盖板层、一触控层、一偏振层、一封装层、一像素层以及一驱动电路层,其中所述盖板层、所述触控层、所述偏振层、所述封装层、所述像素层以及所述驱动电路层在高度方向相互叠合,所述驱动电路层形成于所述像素层的底侧,并且被电连接于所述像素层以驱动所述像素层工作,其中所述封装层形成于所述像素层的顶侧,用于封装所述像素层,其中所述通孔在高度方向贯穿所述触控层、所述偏振层、所述封装层、所述像素层以及所述驱动电路层,其中所述驱动电路层包括一衬底基板和多个TFT结构,其中所述TFT结构被设置于所述衬底基板,其中所述嵌合通道位于相邻的所述TFT结构之间。
  43. 根据权利要求38所述的终端设备,其中所述显示屏具有一安装通道,其中所述安装通道被连通于所述通孔,其中所述限位机构的至少部分被容纳于所述安装通道。
  44. 一摄像模组的装配方法,其特征在于,包括如下步骤:
    安装一摄像模组于一限位机构,所述摄像模组和所述限位机构位于一显示屏的一通孔的下方;
    基于所述摄像模组的成像效果调整所述摄像模组位置至达到一预期效果;以及
    固定所述摄像模组和所述显示屏于调整后位置。
  45. 根据权利要求44所述的装配方法,其中在上述方法中,所述限位机构被设置于所述显示屏。
  46. 根据权利要求44所述的装配方法,其中在上述方法中,所述限位机构被设置于一基板,所述摄像模组位于所述基板和所述显示屏之间。
  47. 根据权利要求45所述的装配方法,其中在上述方法中,通过调整所述摄像模组和所述限位机构的相对位置的方式调整所述摄像模组和所述显示屏的相对位置。
  48. 一终端设备,其特征在于,包括一终端设备主体、一显示屏、一摄像模组以及具有至少一通光孔,其中所述显示屏被安装于所述终端设备主体,所述摄像模组被保持于所述显示屏下方并且被对准于所述通光孔,其中所述通光孔在高度方向穿过所述显示屏的至少部分,所述显示屏外侧的光线通过所述通光孔被传导至所述显示屏下方的所述摄像模组,其中所述通光孔被设计为所述摄像模组的一虚拟光阑。
  49. 根据权利要求48所述的终端设备,其中所述终端设备进一步包括一壳体,一所述通光孔在所述壳体和所述显示屏之间的间隙自所述显示屏的一侧面穿至所述显示屏的一底面。
  50. 根据权利要求48或49所述的终端设备,其中所述摄像模组包括一感光单元、一光学机构以及一光阑,其中所述光阑被安装于所述光学机构,所述光学机构被保持于所述感光组件的感光路径并且接收通过所述通光孔的光线。
  51. 根据权利要求48或49所述的终端设备,其中所述摄像模组包括一感光单元和一光学单元,其中所述光学单元被保持于所述通光孔,所述感光单元被对准于所述通光孔。
  52. 根据权利要求51所述的终端设备,其中所述光学单元包括一光学镜头,其中所述光学镜头包括一镜筒和多个镜片,其中所述镜筒包括一镜筒壁和一延伸壁,所述镜片被安装于所述镜筒壁,其中所述延伸壁自所述镜筒壁的靠近于所述显示屏的一端竖直朝上延伸而成一预设距离而成。
  53. 根据权利要求52所述的终端设备,其中所述延伸壁被设置为自所述镜筒壁竖直朝上延伸然后朝内延伸而成。
  54. 根据权利要求52所述的终端设备,其中所述延伸壁被设置为自所述镜筒壁朝向朝上延伸并且越靠近于所述镜筒壁,所述延伸臂的内径越小。
  55. 根据权利要求52所述的终端设备,其中所述延伸壁各位置的内径保持一致。
  56. 根据权利要求54或55所述的终端设备,其中越靠近于所述镜筒壁,所述延伸壁的外径越小;或者是,越靠近于所述镜筒壁,所述延伸壁的外径越大。
  57. 根据权利要求48或49所述的终端设备,其中所述显示屏包括一盖板层、一触控层、一偏振层、一封装层、一像素层以及一驱动电路层,其中所述盖板层、所述触控层、所述偏振层、所述封装层、所述像素层以及所述驱动电路层 在高度方向相互叠合,所述驱动电路层形成于所述像素层的底侧,并且被电连接于所述像素层以驱动所述像素层工作,其中所述封装层形成于所述像素层的顶侧,用于封装所述像素层,其中所述偏振层用于对于通过的光线进行偏振处理,其中所述通光孔在高度方向穿过所述显示屏除了所述盖板层之外的所述触控层、所述偏振层、所述封装层、所述像素层以及所述驱动电路层。
  58. 根据权利要求57所述的终端设备,其中所述驱动电路层包括一衬底基板和多个TFT结构,其中所述TFT结构被设置于所述衬底基板,所述通光孔位于相邻的所述TFT结构之间。
  59. 根据权利要求57所述的终端设备,其中所述像素层包括多个像素,所述通光孔位于相邻的所述像素之间。
  60. 根据权利要求59所述的终端设备,其中所述驱动电路层包括一衬底基板和多个TFT结构,其中所述TFT结构被设置于所述衬底基板,所述通光孔位于相邻的所述TFT结构之间。
  61. 根据权利要求58至60任一所述的终端设备,其中所述终端设备被设置一保护材料,其中所述保护材料位于所述通光孔,并且被涂覆于所述像素层和/或所述驱动电路层。
  62. 根据权利要求57所述的终端设备,其中所述像素层包括一阳极层、一发光层、一阴极层以及一保护层,其中所述阳极层位于所述驱动电路层上方,所述发光层位于所述阳极层和所述阴极层之间,所述阴极层位于所述发光层上方并且位于所述保护层下方。
  63. 根据权利要求62所述的终端设备,其中所述终端设备被设置一保护材料,其中所述保护材料位于所述通光孔,并且所述保护材料被自所述保护层朝下延伸至所述阴极层;或者是所述保护材料自所述保护层朝下延伸至所述发光层;或者是所述保护材料自所述保护层朝下延伸至所述阳极层。
  64. 根据权利要求58至60任一所述的终端设备,其中所述终端设备包括一背板层,所述背板层位于所述驱动电路层下方并且用于发光,所述像素层包括一滤光层和液晶,其中所述液晶位于所述滤光层和所述驱动电路层之间,所述像素层被设置一密封材料,其中所述密封材料位于所述滤光层和所述驱动电路层之间,所述液晶被所述密封材料阻挡从而无法泄漏至所述通光孔。
  65. 根据权利要求64所述的终端设备,其中所述终端设备被设置一保护材 料,其中所述保护材料位于所述通光孔,并且所述保护材料被涂覆于所述像素层和/或所述驱动电路层。
  66. 根据权利要求48或49所述的终端设备,其中所述终端设备进一步包括一导光管道,其中所述导光管道被容纳于所述通光孔。
  67. 根据权利要求66所述的终端设备,其中所述导光管道是由透明材质制成的。
  68. 根据权利要求66所述的终端设备,其中所述导光管道被涂覆有不透光材料。
  69. 根据权利要求48或49所述的终端设备,其中所述终端设备进一步包括一限位机构,其中所述限位机构的一端被连接于所述摄像模组,所述限位机构的另一端被连接于所述显示屏,所述摄像模组通过所述限位机构被固定于所述显示屏。
  70. 一显示单元,用于配合一摄像模组,其特征在于,包括一显示屏、和一补光单元以及具有一通光孔,其中所述通光孔在高度方向贯穿所述显示屏的至少部分,所述补光单元能够辐射光线至所述显示屏外侧并且当所述摄像模组处于工作状态,所述补光单元形成一光孔,来自于所述显示屏外侧的光线通过所述通光孔和所述光孔的约束后被所述摄像模组接收。
  71. 根据权利要求70所述的显示单元,其中所述补光单元被设置于所述显示屏。
  72. 根据权利要求71所述的显示单元,其中所述补光单元被设置于所述显示屏内部。
  73. 根据权利要求72所述的显示单元,其中所述显示屏包括一盖板层、一触控层、一偏振层、一封装层、一像素层以及一驱动电路层,其中所述盖板层位于顶侧,所述驱动电路层形成于所述像素层的底侧,并且被电连接于所述像素层以驱动所述像素层工作,其中所述封装层形成于所述像素层的顶侧,其中所述补光单元位于所述驱动电路层。
  74. 根据权利要求72所述的显示单元,其中所述显示屏包括一盖板层、一触控层、一偏振层、一封装层、一像素层、一驱动电路层以及一背板层,其中所述盖板层位于顶侧,所述背板层位于底侧,所述驱动电路层形成于所述像素层的底侧,并且被电连接于所述像素层以驱动所述像素层工作,其中所述封装层形成 于所述像素层的顶侧,其中所述补光单元位于所述背板层。
  75. 根据权利要求70所述的显示单元,其中所述补光单元被保持于所述显示屏和所述摄像模组之间。
  76. 根据权利要求70至75任一所述的显示单元,其中所述补光单元被可拆卸地安装于所述显示屏。
  77. 根据权利要求70至75任一所述的显示单元,其中所述补光单元包括一光阑结构和一发光结构,所述光阑结构包括一光阑移动部和一光阑驱动部,所述光阑移动部被可驱动地以形成大小可变的一光孔的方式连接于所述光阑驱动部,其中所述发光结构位于所述光阑移动部。
  78. 根据权利要求77所述的显示单元,其中所述发光结构位于所述光阑移动部的上表面。
  79. 根据权利要求78所述的显示单元,其中当所述发光结构位于所述光阑移动部的上表面,所述光阑移动部的下表面被设置为遮光的。
  80. 根据权利要求79所述的显示单元,其中所述补光单元进一步包括一反射结构,其中所述反射结构位于所述发光结构下方以将所述发光结构的光线朝所述显示屏外侧反射。
  81. 根据权利要求80所述的显示单元,其中所述反射结构被可拉伸以形变地设置于所述光阑结构,当所述反射结构随着所述光阑移动部的移动而形变,所述反射结构的反射率变化。
  82. 根据权利要求77所述的显示单元,其中所述发光结构包括一发光元件,所述光阑移动部具有一孔并且在所述光阑移动部被所述光阑驱动部驱动以移动过程中所述孔的大小变化以形成大小可变的所述光孔,所述发光元件被设置于所述光阑移动部。
  83. 根据权利要求82所述的显示单元,其中所述发光结构包括多个像素,其中所述光阑移动部包括多个叶片,所述叶片被可驱动地连接于所述光阑驱动部,至少一个所述像素被设置于至少一个所述叶片。
  84. 根据权利要求83所述的显示单元,其中多个所述像素被设置于一个所述叶片。
  85. 根据权利要求77所述的显示单元,其中所述发光结构位于所述光阑移动部的内部。
  86. 根据权利要求70至75任一所述的显示单元,其中所述补光单元包括一光阑移动部和一光阑驱动部,其中所述光阑移动部被可驱动以形成大小可变的一光孔的方式连接于所述光阑驱动部,其中所述光阑移动部本身被设置为可发光。
  87. 一终端设备,其特征在于,包括:
    一终端设备主体;
    根据权利要求70至86任一所述的一显示单元;以及
    一摄像模组,其中所述摄像模组位于所述显示单元下方,所述摄像模组具有一前端,所述摄像模组的所述前端被安装于所述显示单元的所述显示屏并且所述摄像模组被对准于所述显示屏的所述通光孔,以使所述显示屏外侧的光线通过所述通光孔被所述摄像模组接收。
  88. 一显示单元的工作方法,其特征在于,包括如下步骤:
    在带有一通光孔的显示屏工作时,操作一补光单元发光以补充所述通光孔位置光强。
  89. 根据权利要求88所述的工作方法,进一步包括如下步骤:
    在位于所述显示屏下方并且对准于所述通光孔的一摄像模组工作时,操作位于所述摄像模组的上方的一补光单元的一光阑结构形成一光孔,光线通过所述通光孔和所述补光单元的约束后达到所述摄像模组。
  90. 一终端设备,其特征在于,包括一终端设备主体、一显示屏、一摄像模组、一壳体以及具有一导光通道,其中至少部分所述导光通道位于所述显示屏和所述壳体之间,至少部分所述导光通道穿过所述显示屏,所述显示屏被安装于所述终端设备主体,所述摄像模组位于所述显示屏的下方并且被安装于所述显示屏,所述导光通道被对准于所述摄像模组并且光线能够通过所述导光通道到达所述摄像模组以成像。
  91. 根据权利要求90所述的终端设备,其中所述导光通道自所述显示屏的一侧面延伸至所述显示屏的一底面,所述摄像模组被贴装于所述显示屏的所述底面。
  92. 根据权利要求91所述的终端设备,其中所述显示屏自上而下包括一盖板层、一触控层、一偏振层、一封装层、一像素层、一驱动电路层以及一背板层,其中所述驱动电路层形成于所述像素层的底侧,并且被电连接于所述像素层以驱动所述像素层工作,其中所述封装层形成于所述像素层的顶侧,用于封装所述像 素层,其中所述偏振层用于对于光线进行偏振,所述驱动电路层被支撑于所述背板层,所述导光通道穿过所述触控层、所述偏振层、所述封装层、所述像素层、所述驱动电路层以及所述背板层中的一层或者是多层。
  93. 根据权利要求92所述的终端设备,其中所述终端设备包括一光学单元,其中所述光学单元被保持于所述导光通道,所述光学单元允许光线透过。
  94. 根据权利要求90至93任一所述的终端设备,其中所述显示屏具有自上而下贯穿的一通光孔,其中所述通光孔被对准于所述摄像模组。
  95. 根据权利要求94所述的终端设备,其中所述导光通道和所述通光孔的至少部分重合,并且光线通过所述导光通道达到所述摄像模组获得的像和光线通过所述通孔孔达到同一所述摄像模组获得的像具有一致性。
  96. 根据权利要求90至92任一所述的终端设备,其中所述终端设备进一步包括至少一导光组件,其中所述导光组件形成所述导光管道,其中所述导光组件穿过所述显示屏。
  97. 根据权利要求96所述的终端设备,其中所述导光组件是透光材料制成的。
  98. 根据权利要求96所述的终端设备,其中所述导光组件是一导光管道,其中所述导光管道被涂覆不透光材料。
  99. 根据权利要求96所述的终端设备,其中所述终端设备包括一光学单元,其中所述光学单元位于所述导光组件并且被保持于所述导光通道,所述光学单元允许光线透过。
  100. 根据权利要求99所述的终端设备,其中所述显示屏具有自上而下贯穿的一通光孔,其中所述通光孔被对准于所述摄像模组。
  101. 根据权利要求100所述的终端设备,其中所述导光通道和所述通光孔的至少部分重合,并且光线通过所述导光通道达到所述摄像模组获得的像和光线通过所述通孔孔达到同一所述摄像模组获得的像具有一致性。
  102. 根据权利要求100所述的终端设备,其中一所述导光组件被容纳于所述通光孔。
  103. 一显示屏的制造方法,其特征在于,包括如下步骤:
    形成自一显示屏的侧面延伸至所述显示屏的底面的一导光通道。
  104. 根据权利要求103所述的制造方法,其中在上述方法中,进一步包括 如下步骤:
    在所述显示屏的各层的一预设位置对应形成孔;
    安装所述显示屏的各层以使对应的各个孔形成所述导光通道。
  105. 根据权利要求103所述的制造方法,其中在上述方法中,进一步包括如下步骤:
    在一驱动电路层形成贯穿所述驱动电路层的孔;
    在所述驱动电路层上方分别设置盖板层、触控层、偏振层、封装层以及像素层以获得所述显示屏;以及
    对于所述显示屏对准于所述驱动电路层的孔进行开孔以获得所述导光通道。
  106. 根据权利要求105所述的制造方法,其中在上述方法中,进一步包括如下步骤:
    在带有孔的所述驱动电路层形成所述像素层;
    在所述像素层和所述驱动电路层形成穿过所述像素层和所述驱动电路层的孔;以及
    在所述像素层上方分别设置盖板层、触控层、偏振层以及封装层。
  107. 一显示屏的制造方法,其特征在于,包括如下步骤:
    在一液晶层两侧分别设置盖板层、触控层、偏振层、封装层以及背板层以获得一显示屏;
    在所述显示屏的侧面或者是底面对准于所述液晶层的一密封区域对于所述显示屏进行开孔处理以获得穿过所述显示屏的侧面至底面的一导光通道。
  108. 根据权利要求107所述的制造方法,其中在上述方法中,所述液晶层的制造方法包括如下步骤:
    在一滤光层和一驱动电路层之间设置密封材料以形成所述密封区域;和
    填充液晶于所述密封区域之外。
  109. 根据权利要求107所述的制造方法,其中在所述液晶层预先形成孔。
PCT/CN2020/078945 2019-03-28 2020-03-12 终端设备及其显示屏和应用 WO2020192434A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20777811.9A EP3952259A4 (en) 2019-03-28 2020-03-12 TERMINAL DEVICE, AND DISPLAY SCREEN AND ASSOCIATED APPLICATION
US17/599,411 US12132849B2 (en) 2019-03-28 2020-03-12 Terminal device, and display screen and application thereof

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
CN201920412052.8 2019-03-28
CN201910243776.9 2019-03-28
CN201910243729.4 2019-03-28
CN201910243776.9A CN111756887A (zh) 2019-03-28 2019-03-28 终端设备及其显示屏和应用
CN201910243146.1 2019-03-28
CN201910243074.0 2019-03-28
CN201920412656.2U CN210157219U (zh) 2019-03-28 2019-03-28 终端设备及其显示屏和应用
CN201920412623.8 2019-03-28
CN201910243075.5A CN111756883B (zh) 2019-03-28 2019-03-28 终端设备及其显示屏和应用
CN201910243074.0A CN111756882B (zh) 2019-03-28 终端设备及其显示屏和应用
CN201910243075.5 2019-03-28
CN201920412623.8U CN209881832U (zh) 2019-03-28 2019-03-28 终端设备及其显示屏和应用
CN201910243146.1A CN111756885A (zh) 2019-03-28 2019-03-28 终端设备及其显示屏和应用
CN201920412656.2 2019-03-28
CN201920412052.8U CN209881831U (zh) 2019-03-28 2019-03-28 终端设备及其显示单元
CN201910243729.4A CN111756886B (zh) 2019-03-28 2019-03-28 终端设备及其显示屏和应用

Publications (1)

Publication Number Publication Date
WO2020192434A1 true WO2020192434A1 (zh) 2020-10-01

Family

ID=72610200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078945 WO2020192434A1 (zh) 2019-03-28 2020-03-12 终端设备及其显示屏和应用

Country Status (3)

Country Link
US (1) US12132849B2 (zh)
EP (1) EP3952259A4 (zh)
WO (1) WO2020192434A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112558693A (zh) * 2020-12-16 2021-03-26 惠州Tcl移动通信有限公司 一种外置补光装置、保护套、键盘及移动终端

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102657027B1 (ko) * 2019-05-02 2024-04-15 삼성전자주식회사 카메라 모듈을 포함하는 전자 장치
CN111885286B (zh) * 2020-07-13 2021-09-24 武汉华星光电半导体显示技术有限公司 显示屏及显示装置
JP1715714S (ja) * 2020-09-29 2022-05-24 スマートフォン
CN116129749A (zh) * 2023-02-17 2023-05-16 京东方科技集团股份有限公司 显示模组、制备显示模组的方法和显示装置
CN116699904A (zh) * 2023-06-19 2023-09-05 厦门天马微电子有限公司 一种显示模组及显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110304759A1 (en) * 2010-06-15 2011-12-15 Fujifilm Corporation Image pickup lens, image pickup apparatus, and portable terminal device
CN106506742A (zh) * 2016-11-16 2017-03-15 广东欧珀移动通信有限公司 一种移动终端的前置摄像头安装结构及移动终端
CN106603766A (zh) * 2016-12-21 2017-04-26 维沃移动通信有限公司 一种补光组件及电子设备
CN107451542A (zh) * 2017-07-14 2017-12-08 广东欧珀移动通信有限公司 虹膜识别模组排列结构及移动终端
CN107589615A (zh) * 2017-08-14 2018-01-16 维沃移动通信有限公司 一种补光组件和移动终端
CN108519657A (zh) * 2018-04-16 2018-09-11 维沃移动通信有限公司 一种镜头模组及移动终端
CN209881831U (zh) * 2019-03-28 2019-12-31 宁波舜宇光电信息有限公司 终端设备及其显示单元
CN209881832U (zh) * 2019-03-28 2019-12-31 宁波舜宇光电信息有限公司 终端设备及其显示屏和应用

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9143668B2 (en) 2010-10-29 2015-09-22 Apple Inc. Camera lens structures and display structures for electronic devices
WO2014141893A1 (ja) * 2013-03-15 2014-09-18 シャープ株式会社 電子機器
KR20180132684A (ko) 2016-03-12 2018-12-12 닝보 써니 오포테크 코., 엘티디. 카메라 모듈, 그 감광성 부품 및 그 제조방법
KR20170111827A (ko) 2016-03-29 2017-10-12 삼성전자주식회사 디스플레이 및 카메라를 포함하는 전자 장치
CN106843389B (zh) 2017-01-09 2022-08-05 Oppo广东移动通信有限公司 电子装置
US10587738B2 (en) 2017-01-26 2020-03-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Display module and electronic device
CN206932243U (zh) 2017-04-14 2018-01-26 珠海市魅族科技有限公司 一种前置摄像模组及移动终端
CN106935144B (zh) 2017-04-17 2019-07-23 Oppo广东移动通信有限公司 显示模组和终端设备
EP4243004B1 (en) 2017-04-25 2025-02-26 Huawei Technologies Co., Ltd. Electronic device with lcd display
CN107229148B (zh) 2017-05-05 2021-03-09 Oppo广东移动通信有限公司 显示屏、显示装置及移动终端
CN107658332A (zh) 2017-10-25 2018-02-02 京东方科技集团股份有限公司 一种显示面板、显示装置及制作方法
CN207530869U (zh) 2017-11-06 2018-06-22 维沃移动通信有限公司 一种移动终端
CN207652494U (zh) 2017-11-27 2018-07-24 珠海格力电器股份有限公司 一种移动终端
CN108010441A (zh) 2017-12-06 2018-05-08 广东欧珀移动通信有限公司 显示屏组件及电子设备
CN208623755U (zh) 2018-06-14 2019-03-19 Oppo广东移动通信有限公司 电子设备、保护盖板和显示屏
CN108628043B (zh) 2018-06-22 2019-12-31 Oppo广东移动通信有限公司 屏幕组件及电子装置
CN108681131B (zh) 2018-07-27 2021-07-30 厦门天马微电子有限公司 显示装置
CN109273494A (zh) 2018-09-21 2019-01-25 云谷(固安)科技有限公司 一种oled显示面板、其制作方法及显示装置
CN109283736B (zh) 2018-12-06 2021-10-22 华勤技术股份有限公司 一种显示屏及电子设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110304759A1 (en) * 2010-06-15 2011-12-15 Fujifilm Corporation Image pickup lens, image pickup apparatus, and portable terminal device
CN106506742A (zh) * 2016-11-16 2017-03-15 广东欧珀移动通信有限公司 一种移动终端的前置摄像头安装结构及移动终端
CN106603766A (zh) * 2016-12-21 2017-04-26 维沃移动通信有限公司 一种补光组件及电子设备
CN107451542A (zh) * 2017-07-14 2017-12-08 广东欧珀移动通信有限公司 虹膜识别模组排列结构及移动终端
CN107589615A (zh) * 2017-08-14 2018-01-16 维沃移动通信有限公司 一种补光组件和移动终端
CN108519657A (zh) * 2018-04-16 2018-09-11 维沃移动通信有限公司 一种镜头模组及移动终端
CN209881831U (zh) * 2019-03-28 2019-12-31 宁波舜宇光电信息有限公司 终端设备及其显示单元
CN209881832U (zh) * 2019-03-28 2019-12-31 宁波舜宇光电信息有限公司 终端设备及其显示屏和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3952259A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112558693A (zh) * 2020-12-16 2021-03-26 惠州Tcl移动通信有限公司 一种外置补光装置、保护套、键盘及移动终端

Also Published As

Publication number Publication date
US12132849B2 (en) 2024-10-29
EP3952259A4 (en) 2022-05-18
US20220217226A1 (en) 2022-07-07
EP3952259A1 (en) 2022-02-09

Similar Documents

Publication Publication Date Title
WO2020192434A1 (zh) 终端设备及其显示屏和应用
US11942580B2 (en) Compact opto-electronic modules and fabrication methods for such modules
CN108594524B (zh) 显示装置
TWI601244B (zh) 光電模組和包含該光電模組的用品
EP3072155B1 (en) Compact optoelectronic modules
US8194182B2 (en) Solid-state image pickup apparatus with positioning mark indicating central part of light-receiving section of solid-state image sensing device and electronic device comprising the same
CN112385057A (zh) 显示面板、包括其的电子设备以及制造显示面板的方法
US8866949B2 (en) Optical element module and manufacturing method thereof, electronic element module and manufacturing method thereof, and electronic information device
US20110096213A1 (en) Wafer-shaped optical apparatus and manufacturing method thereof, electronic element wafer module, sensor wafer module, electronic element module,sensor module, and electronic information device
KR20050006092A (ko) 촬상모듈 및 촬상장치
CN113485054A (zh) 减少杂散光的摄像模组及其感光组件
US20040256687A1 (en) Optical module, method of manufacturing the same, and electronic instrument
CN209928406U (zh) 终端设备及其显示屏
JP2007300428A (ja) カメラモジュール
CN209881832U (zh) 终端设备及其显示屏和应用
CN210157219U (zh) 终端设备及其显示屏和应用
CN209881831U (zh) 终端设备及其显示单元
TWI706180B (zh) 減少雜散光的攝像模組及其感光組件和電子設備
CN111756883B (zh) 终端设备及其显示屏和应用
CN111756886B (zh) 终端设备及其显示屏和应用
WO2020192436A1 (zh) 终端设备及其显示屏和显示屏制备方法
CN111756885A (zh) 终端设备及其显示屏和应用
CN111756887A (zh) 终端设备及其显示屏和应用
CN111756882A (zh) 终端设备及其显示屏和应用
CN211349378U (zh) 屏下指纹识别装置及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20777811

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020777811

Country of ref document: EP

Effective date: 20211028