[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020189692A1 - 回路基板の製造方法 - Google Patents

回路基板の製造方法 Download PDF

Info

Publication number
WO2020189692A1
WO2020189692A1 PCT/JP2020/011829 JP2020011829W WO2020189692A1 WO 2020189692 A1 WO2020189692 A1 WO 2020189692A1 JP 2020011829 W JP2020011829 W JP 2020011829W WO 2020189692 A1 WO2020189692 A1 WO 2020189692A1
Authority
WO
WIPO (PCT)
Prior art keywords
cured product
circuit board
resin composition
epoxy resin
mass
Prior art date
Application number
PCT/JP2020/011829
Other languages
English (en)
French (fr)
Inventor
秀樹 大山
田中 孝幸
松村 恵理
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to KR1020217029744A priority Critical patent/KR20210138607A/ko
Priority to CN202080022411.4A priority patent/CN113597652A/zh
Priority to EP20773871.7A priority patent/EP3944272B1/en
Priority to JP2021507382A priority patent/JP7414805B2/ja
Publication of WO2020189692A1 publication Critical patent/WO2020189692A1/ja
Priority to JP2022100693A priority patent/JP7420167B2/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • H01F41/046Printed circuit coils structurally combined with ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/16Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates the magnetic material being applied in the form of particles, e.g. by serigraphy, to form thick magnetic films or precursors therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/165Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed inductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • H01F1/37Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • H01F27/292Surface mounted devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/08Magnetic details
    • H05K2201/083Magnetic materials
    • H05K2201/086Magnetic materials for inductive purposes, e.g. printed inductor with ferrite core
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/425Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern
    • H05K3/427Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern initial plating of through-holes in metal-clad substrates

Definitions

  • the present invention relates to a method for manufacturing a circuit board using a resin composition containing magnetic powder; the resin composition.
  • inductors sometimes called power inductors, high frequency band inductors, and common mode choke coils, are installed in information terminals such as mobile phones and smartphones.
  • independent inductor components were mounted on the circuit board, but in recent years, a method of forming a coil by the conductor pattern of the circuit board and providing the inductor inside the circuit board has been performed.
  • Patent Document 1 a spiral conductor pattern wound a plurality of times is formed on a plurality of layers of a multilayer substrate, and the ends of the conductor patterns of each layer are interconnected with an upper layer and a lower layer to form a spiral coil as a whole.
  • a multi-layer circuit board with a built-in inductor is disclosed.
  • Patent Document 2 discloses that an inductor component is incorporated in a core substrate of a circuit board in order to reduce the thickness of the circuit board.
  • Patent Document 2 discloses that a resin composition constituting a resin composition layer of a resin sheet with a support contains a magnetic powder, and the insulating layer formed is a magnetic material.
  • Patent Document 3 through holes in a circuit board for an inductor component are filled with a resin composition containing a magnetic powder to form a magnetic core, and a wiring layer of the circuit board is formed.
  • An inductor component that achieves a small size and high inductance by arranging the magnetic core at the center of the coil is disclosed.
  • a conductor layer may be formed on a magnetically cured product layer containing magnetic powder, and it is desirable to form the conductor layer by wet plating, which is advantageous in terms of cost. ..
  • the present inventors have investigated a method of forming a conductor layer by polishing the surface of the magnetically cured product layer as a process of forming a conductor layer on the magnetically cured product layer without using an oxidizing agent.
  • a conductor layer was formed on the magnetically cured material layer by wet plating, and in the process of performing wet plating, the magnetic powder contained in the magnetically cured material layer was formed.
  • We have found a new problem that magnetic foreign substances such as precipitates and precipitates that are considered to be derived are generated and contaminate the bath and the substrate.
  • contamination becomes remarkable in the catalyst activation step of activating the catalyst with a reducing agent after applying a catalyst such as palladium to the surface of the magnetically cured product layer.
  • the present invention has been made in view of the above circumstances, and even when the surface of the magnetically cured material layer is not treated with an oxidizing agent, a conductor by wet plating is applied on the magnetically cured material layer containing magnetic powder. It is an object of the present invention to provide a method for manufacturing a substrate capable of suppressing the generation of magnetic foreign matter in the manufacture of a circuit board on which a layer is formed.
  • the present inventors treated the surface of the magnetically cured product layer with an oxidizing agent by using a magnetic powder containing nickel as the magnetic powder contained in the resin composition.
  • the present invention has been completed by finding that the generation of magnetic foreign substances in the wet plating process can be suppressed even when the polishing treatment is performed instead of performing the polishing treatment.
  • the present invention includes the following contents.
  • [1] A step of thermally curing the resin composition to obtain a magnetically cured product, (2) a step of polishing at least a part of the surface of the magnetically cured product, and (3) a step of polishing the polished surface of the magnetically cured product.
  • This is a method for manufacturing a circuit substrate, which comprises a step of forming a conductor layer by wet plating in at least a part of the above, wherein the resin composition is (A) a magnetic powder containing nickel, and (B) an epoxy resin.
  • And (C) A method for manufacturing a circuit board, which comprises a curing agent.
  • [5] The method for manufacturing a circuit board according to any one of the above [1] to [4], wherein the weight retention rate of the component (A) when immersed in 2N sulfuric acid at 40 ° C. for 5 minutes is 90% or more.
  • [6] The method for manufacturing a circuit board according to any one of [1] to [5] above, wherein the component (B) contains an epoxy resin liquid at 25 ° C.
  • the component (C) is a curing agent selected from the group consisting of an acid anhydride-based curing agent, an amine-based curing agent, and an imidazole-based curing agent. Circuit board manufacturing method.
  • the magnetically cured product obtained by curing the resin composition in the present invention in the production of a circuit board, even if the surface of the magnetically cured product layer is not treated with an oxidizing agent, it is treated by a wet plating process. It is possible to suppress the amount of magnetic foreign matter that can be generated in the liquid.
  • FIG. 1 is a schematic cross-sectional view of a core substrate as an example of the first embodiment of the method for manufacturing a circuit board.
  • FIG. 2 is a schematic cross-sectional view of a core substrate having through holes formed as an example of the first embodiment of the method for manufacturing a circuit board.
  • FIG. 3 is a schematic cross-sectional view showing a state in which a plating layer is formed in a through hole as an example of the first embodiment of the method for manufacturing a circuit board.
  • FIG. 4 is a schematic cross-sectional view showing a state in which a through-hole filling paste is filled in a through-hole as an example of the first embodiment of a method for manufacturing a circuit board.
  • FIG. 1 is a schematic cross-sectional view of a core substrate as an example of the first embodiment of the method for manufacturing a circuit board.
  • FIG. 2 is a schematic cross-sectional view of a core substrate having through holes formed as an example of the first embodiment of the method for manufacturing a circuit board.
  • FIG. 5 is a schematic cross-sectional view showing a state of a magnetically cured product obtained by thermosetting a filled through-hole filling paste as an example of the first embodiment of a method for manufacturing a circuit board.
  • FIG. 6 is a schematic cross-sectional view showing a state after polishing a magnetically cured product as an example of the first embodiment of the method for manufacturing a circuit board.
  • FIG. 7 is a schematic cross-sectional view showing a state in which a conductor layer is formed on a polished surface as an example of the first embodiment of the method for manufacturing a circuit board.
  • FIG. 8 is a schematic cross-sectional view showing a state in which a pattern conductor layer is formed as an example of the first embodiment of the method for manufacturing a circuit board.
  • FIG. 9 is a schematic cross-sectional view for explaining step ( ⁇ ) as an example of the second embodiment of the method for manufacturing a circuit board.
  • FIG. 10 is a schematic cross-sectional view for explaining step ( ⁇ ) as an example of the second embodiment of the method for manufacturing a circuit board.
  • FIG. 11 is a schematic cross-sectional view for explaining the step ( ⁇ ) as an example of the second embodiment of the method for manufacturing a circuit board.
  • FIG. 12 is a schematic cross-sectional view showing how a pattern conductor layer is formed as an example of the second embodiment of the method for manufacturing a circuit board.
  • FIG. 13 is a schematic plan view of an inductor component including a circuit board obtained by the second embodiment of the method for manufacturing a circuit board as an example, as viewed from one side in the thickness direction.
  • FIG. 14 is a schematic view showing a cut end face of an inductor component including a circuit board obtained by the second embodiment of the method for manufacturing a circuit board cut at a position indicated by an alternate long and short dash line II-II as an example.
  • FIG. 15 is a schematic plan view for explaining the configuration of the first conductor layer among the inductor components including the circuit board obtained by the second embodiment of the method for manufacturing a circuit board as an example.
  • a circuit board is a board having a conductor layer (circuit) formed on one side or both sides.
  • the circuit board can be used as a wiring board for mounting an electronic component such as a semiconductor chip, and can also be used as a (multilayer) printed wiring board using such a wiring board as an inner layer board.
  • the method for producing a circuit board of the present invention includes (1) a step of thermally curing the resin composition to obtain a magnetically cured product, (2) a step of polishing at least a part of the surface of the magnetically cured product, and (3) magnetism. A step of forming a conductor layer by wet plating on at least a part of the polished surface of the cured product is included in this order.
  • the resin composition also contains (A) a magnetic powder containing nickel, (B) an epoxy resin, and (C) a curing agent.
  • the magnetic powder containing (A) nickel, which is resistant to acid is used as the magnetic powder in the resin composition of the present invention, it can be oxidized by using the magnetically cured product in the production of a circuit board. Even when the surface of the magnetically cured product layer is not treated with an agent and instead is polished, the amount of magnetic foreign matter that can be generated in the treatment liquid can be kept low in the wet plating process, so that the bath , It is possible to prevent contamination of the substrate and the like.
  • (A) a circuit board including a magnetically cured product having a surface containing a magnetic powder containing nickel and a conductor layer formed on the surface can be manufactured while suppressing the amount of magnetic foreign matter generated.
  • the resin composition of the present invention contains the component (A), so that a magnetically cured product having a hardness suitable for polishing can be easily obtained. Therefore, in the embodiment, since the magnetically cured product of the resin composition of the present invention is excellent in polishability, the polishing of the (2) polishing step of the wet plating process can be efficiently performed.
  • the step (1) is a step of thermally curing the resin composition to obtain a magnetically cured product.
  • the shape of the magnetically cured product is not particularly limited, and is appropriately set according to the usage mode and the like.
  • the step of preparing the resin composition may be included.
  • the curing temperature of the resin composition in the step (1) varies depending on the composition and type of the resin composition, but is preferably 120 ° C. or higher, more preferably 130 ° C. or higher, still more preferably 150 ° C. or higher, preferably 240 ° C. or higher. ° C. or lower, more preferably 220 ° C. or lower, still more preferably 200 ° C. or lower.
  • the curing time of the resin composition is preferably 5 minutes or more, more preferably 10 minutes or more, further preferably 15 minutes or more, preferably 120 minutes or less, more preferably 100 minutes or less, still more preferably 90 minutes or less. is there.
  • the resin composition Before the resin composition is thermosetting, the resin composition may be subjected to a preheat treatment in which the resin composition is heated at a temperature lower than the curing temperature.
  • the resin composition prior to thermosetting the resin composition, the resin composition is usually prepared at a temperature of 50 ° C. or higher and lower than 120 ° C. (preferably 60 ° C. or higher and 110 ° C. or lower, more preferably 70 ° C. or higher and 100 ° C. or lower). Preheating may be carried out for usually 5 minutes or more (preferably 5 minutes to 150 minutes, more preferably 15 minutes to 120 minutes).
  • the degree of curing of the magnetically cured product obtained in the step (1) is preferably 80% or more, more preferably 85% or more, and further preferably 90% or more.
  • the degree of curing can be measured using, for example, a differential scanning calorimetry device.
  • the step (2) is a step of polishing the surface of the magnetically cured product.
  • the surface to be polished may be at least a part of the surface of the magnetically cured product.
  • Examples of the polishing method include buffing and belt polishing.
  • Examples of commercially available buffing equipment include "NT-700IM” manufactured by Ishii Notation Co., Ltd.
  • the arithmetic mean roughness (Ra) of the polished surface of the magnetically cured product is preferably 300 nm or more, more preferably 350 nm or more, and further preferably 400 nm or more from the viewpoint of improving the plating adhesion with the conductor layer.
  • the upper limit is preferably 1000 nm or less, more preferably 900 nm or less, still more preferably 800 nm or less.
  • the surface roughness (Ra) can be measured using, for example, a non-contact type surface roughness meter.
  • a heat treatment step may be performed if necessary for the purpose of further increasing the degree of curing of the magnetically cured product.
  • the temperature in the heat treatment step may be adjusted according to the above-mentioned curing temperature, preferably 120 ° C. or higher, more preferably 130 ° C. or higher, further preferably 150 ° C. or higher, preferably 240 ° C. or lower, and more preferably 220 ° C. or lower. , More preferably 200 ° C. or lower.
  • the heat treatment time is preferably 5 minutes or more, more preferably 10 minutes or more, further preferably 15 minutes or more, preferably 90 minutes or less, more preferably 70 minutes or less, still more preferably 60 minutes or less.
  • a conductor layer can be formed on the magnetically cured product without treating the surface with an oxidizing agent, so that the magnetically cured product is brittle. It is possible to prevent this from happening and achieve good plating adhesion.
  • (A) a magnetic powder containing nickel may be partially exposed, but since the component (A) is resistant to acid, a magnetic foreign substance is generated. The amount can be kept low.
  • the step (3) is a step of forming a conductor layer by wet plating on at least a part of the polished surface of the magnetically cured product.
  • Magnetic powder containing (A) nickel may be present on the polished surface of the magnetically cured product, but (A) the magnetic powder containing nickel is difficult to elute into the liquid used for plating, so that magnetic foreign matter is generated. Can be suppressed.
  • Materials for the conductor layer include, for example, single metals such as gold, platinum, palladium, silver, copper, aluminum, cobalt, chromium, zinc, nickel, titanium, tungsten, iron, tin and indium; gold, platinum, palladium and silver.
  • step (3) it is preferable to perform an electroless plating treatment as a wet plating treatment to form a conductor layer, and after performing the electroless plating treatment, further perform an electrolytic plating treatment to form a conductor layer. It is more preferable to form. Therefore, in step (3), it is preferable to form a conductor layer by plating the surface of the magnetically cured product by a semi-additive method, a full-additive method, or the like. In the step (3), it is preferable to form the conductor layer by the semi-additive method from the viewpoint of ease of manufacturing the conductor layer.
  • a plating seed layer is formed on the surface of the magnetically cured product by electroless plating.
  • a mask pattern is formed on the formed plating seed layer to expose a part of the plating seed layer corresponding to a desired wiring pattern.
  • a conductor layer is formed on the exposed plating seed layer by electroplating, and then the mask pattern is removed. After that, the unnecessary plating seed layer can be removed by etching or the like to form a conductor layer having a desired wiring pattern.
  • the electroless plating process is performed by immersing a magnetically cured product in an electroless plating solution.
  • the electroless plating treatment include electroless copper plating, electroless nickel plating, electroless nickel-tungsten plating, electroless tin plating, electroless gold plating and the like, and electroless copper plating is preferable.
  • Examples of the electroless plating solution used in the electroless plating treatment include solutions containing metal ions such as copper, nickel, tungsten, tin, gold, palladium, and PdCl 2 . Further, the electroless plating solution may contain other additives such as a reducing agent.
  • a commercially available product can be used as the electroless plating solution. Examples of commercially available products include "Sulcup PEA” manufactured by C. Uyemura & Co., Ltd. and "S-KPD” manufactured by Japan Kanigen Co., Ltd.
  • the treatment time of the electroless plating treatment is preferably 10 minutes or more, more preferably 20 minutes or more, further preferably 30 minutes or more, preferably 60 minutes or less, more preferably 50 minutes or more. Minutes or less, more preferably 40 minutes or less.
  • the treatment temperature of the electroless plating treatment is preferably 10 ° C. or higher, more preferably 20 ° C. or higher, still more preferably 30 ° C. or higher, preferably 60 ° C. or lower, more preferably from the viewpoint of improving the efficiency of conductor layer formation. Is 55 ° C. or lower, more preferably 50 ° C. or lower.
  • a dry film is laminated on the plating seed layer. After that, exposure and development are performed under predetermined conditions using a photomask so that a part of the plating seed layer is exposed corresponding to a desired wiring pattern to form a mask pattern.
  • the exposure and development conditions can be performed under already known conditions.
  • a photosensitive dry film made of a photoresist composition can be used as the dry film.
  • a dry film include novolak resin, acrylic resin and the like.
  • the mask pattern is used as a plating mask in the electrolytic copper plating process. After the electroplating process, the mask pattern is removed.
  • the electrolytic plating treatment is performed by immersing the magnetically cured product after the electroless plating treatment in a plating bath. At that time, an electric current is passed through the plating bath.
  • the electrolytic plating treatment include electrolytic copper plating, electrolytic nickel plating, electrolytic tin plating, electrolytic gold plating, and the like, and electrolytic copper plating is preferable.
  • Examples of the plating bath used for the electrolytic plating treatment include a bath containing copper sulfate, copper pyrophosphate, copper cyanide and the like.
  • the treatment time of the electroplating treatment is preferably 30 minutes or more, more preferably 40 minutes or more, still more preferably 50 minutes or more, preferably 90 minutes or less, more preferably 80 minutes. Below, it is more preferably 70 minutes or less.
  • the processing temperature of the electrolytic plating treatment is preferably 10 ° C. or higher, more preferably 15 ° C. or higher, further preferably 20 ° C. or higher, preferably 50 ° C. or lower, more preferably 50 ° C. or higher, from the viewpoint of improving the efficiency of conductor layer formation. It is 40 ° C. or lower, more preferably 30 ° C. or lower.
  • the current density of the electroplating treatment is preferably 1.0 A / dm 2 or more, more preferably 1.5 A / dm 2 or more, still more preferably 2.0 A / dm 2 or more, from the viewpoint of improving the efficiency of conductor layer formation. It is preferably 4.0 A / dm 2 or less, more preferably 3.5 A / dm 2 or less, and further preferably 3.0 A / dm 2 or less.
  • annealing treatment may be performed if necessary for the purpose of improving the peel strength of the conductor layer.
  • the annealing treatment can be performed, for example, by heating the substrate at 150 to 200 ° C. for 20 to 90 minutes.
  • the thickness of the conductor layer is preferably 70 ⁇ m or less, more preferably 60 ⁇ m or less, still more preferably 50 ⁇ m or less, still more preferably 40 ⁇ m or less, particularly preferably 30 ⁇ m or less, 20 ⁇ m or less. It is 15 ⁇ m or less or 10 ⁇ m or less.
  • the lower limit is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, still more preferably 5 ⁇ m or more.
  • the first embodiment and the second embodiment will be described as more specific examples of the method for manufacturing the circuit board.
  • the method for manufacturing a circuit board according to the present invention is not limited to the first and second embodiments exemplified below.
  • the circuit board in the first embodiment includes a substrate on which a through hole is formed and a magnetically cured product that fills the through hole. Therefore, the method of manufacturing the circuit board in the first embodiment is (1A) A step of filling a through hole of a substrate with a resin composition and thermosetting the resin composition to form a magnetically cured product. (2A) A step of polishing at least a part of the surface of a magnetically cured product, (3A) The step of forming a conductor layer by wet plating on at least a part of the polished surface of the magnetically cured product is included in this order.
  • the method for manufacturing the circuit board in the first embodiment further describes the method after the (2A) step and before the (3A) step. It is preferable to further include (2A-1) a conditioning step of treating the surface of the magnetically cured product with a solution containing a surfactant, and (2A-2) a catalysis step of imparting a catalyst to the surface of the magnetically cured product in this order. , (2A-2) After the process (3A) Before the process, (2A-3) It is more preferable to further include a catalyst activation step of activating the catalyst. When the steps (2A-1) to (2A-3) are performed after the step (2A) is completed, it is possible to suppress the generation of insoluble matter and the like generated in the steps (2A-2) and (2A-3). It becomes.
  • (2A-1-1) A micro-etching step of removing the surfactant from a portion where the surfactant is unnecessary may be included.
  • the step (1A) is a step of filling the through holes of the substrate with the resin composition and thermally curing the resin composition to form a magnetically cured product.
  • the support substrate 11, the first metal layer 12 made of a metal such as copper foil provided on both surfaces of the support substrate 11, and the first metal layer 12 The step of preparing the core substrate 10 including the two metal layers 13 may be included.
  • the material of the support substrate 11 include an insulating substrate such as a glass epoxy substrate, a metal substrate, a polyester substrate, a polyimide substrate, a BT resin substrate, and a thermosetting polyphenylene ether substrate.
  • a step of forming a through hole 14 in the core substrate 10 may be included.
  • the through hole 14 can be formed by, for example, drilling, laser irradiation, plasma irradiation, or the like.
  • the through hole 14 can be formed by forming a through hole in the core substrate 10 using a drill or the like.
  • the through hole 14 can be formed by using a commercially available drill device.
  • Examples of commercially available drill devices include "ND-1S211" manufactured by Hitachi Via Mechanics.
  • the core substrate 10 is roughened, and the through hole 14 is formed, the surface of the first metal layer 12 is formed, and the second metal layer is formed.
  • a step of forming the plating layer 20 on the surface of 13 may be included.
  • the roughening treatment either a dry type or a wet type roughening treatment may be performed.
  • the dry roughening treatment include plasma treatment and the like.
  • a method of performing a swelling treatment with a swelling liquid, a roughening treatment with an oxidizing agent, and a neutralization treatment with a neutralizing liquid can be mentioned in this order.
  • the plating layer 20 is formed by the plating method, and the procedure for forming the plating layer 20 by the plating method is the same as the formation of the conductor layer in the step (3A) described later.
  • the resin composition 30a is filled in the through hole 14 as shown by an example in FIG.
  • the filling method include a method of filling the through hole 14 with the resin composition 30a via a squeegee, a method of filling the resin composition 30a via a cartridge, a method of mask printing and filling the resin composition 30a, and the like. Examples include a roll coating method and an inkjet method.
  • the resin composition 30a is preferably a magnetic paste.
  • the resin composition 30a After filling the through hole 14 with the resin composition 30a, the resin composition 30a is thermally cured to form the magnetically cured product 30 in the through hole 14, as shown in FIG. 5 as an example.
  • the thermosetting conditions of the resin composition 30a and the degree of curing of the magnetically cured product 30 in the step (1A) are the same as those shown in the above-mentioned step (1).
  • the step (2A) is a step of polishing at least a part of the surface of the magnetically cured product.
  • the excess magnetically cured product 30 protruding or adhering from the core substrate 10 is removed by polishing and flattened.
  • a polishing method a method capable of polishing the excess magnetically cured product 30 protruding or adhering from the core substrate 10 can be used. Such a polishing method is the same as that shown in the above-mentioned step (2).
  • the arithmetic mean roughness (Ra) of the polished surface of the magnetically cured product after the step (2A) is preferably 300 nm or more, more preferably 350 nm or more, still more preferably, from the viewpoint of improving the plating adhesion with the conductor layer. Is 400 nm or more.
  • the upper limit is preferably 1000 nm or less, more preferably 900 nm or less, still more preferably 800 nm or less.
  • the surface roughness (Ra) can be measured using, for example, a non-contact type surface roughness meter.
  • a conductor layer can be formed on the magnetically cured product without treating the surface with an oxidizing agent, so that the magnetically cured product is brittle. It is possible to prevent this from happening and achieve good plating adhesion.
  • (A) a magnetic powder containing nickel may be partially exposed, but since the component (A) is resistant to acid, a magnetic foreign substance is generated. The amount can be kept low.
  • a heat treatment step may be performed if necessary for the purpose of further increasing the degree of curing of the magnetically cured product. ..
  • the step (2A-1) is a conditioning step of treating the surface of the magnetically cured product with a solution containing a surfactant.
  • a solution containing a surfactant usually, by bringing the solution containing the surfactant into contact with the surface of the magnetically cured product, it is possible to easily clean the surface of the magnetically cured product and easily adsorb the catalyst in the step (2A-2). Adjust the surface charge so as to.
  • the surface charge can be adjusted so that the surface of the magnetically cured product can be washed and the catalyst in the step (2A-2) can be easily adsorbed.
  • a solution containing a surfactant can be used.
  • examples of such a solution include an alkaline solution containing a surfactant and an acid solution containing a surfactant, but an alkaline solution containing a surfactant is preferable from the viewpoint of suppressing insoluble matter and the like.
  • the alkaline solution include a sodium hydroxide solution and a potassium hydroxide solution.
  • the pH of the alkaline solution containing the surfactant is preferably 7 or more, more preferably 8 or more, and further preferably 10 or more.
  • the upper limit is not particularly limited, but may be preferably 14 or less, 13 or less, and the like.
  • the pH of the acid solution containing the surfactant is preferably 1 or more, more preferably 2 or more, still more preferably 3 or more.
  • the upper limit is not particularly limited, but is preferably less than 7, 6 or less, and the like.
  • surfactant examples include cationic surfactants such as alkylamine salts, alkyltrimethylammonium salts and alkyldimethylbenzylammonium salts; fatty acid salts such as sodium oleate, alkyl sulfates, alkylbenzene sulfonates and alkyl sulfosuccinates.
  • cationic surfactants such as alkylamine salts, alkyltrimethylammonium salts and alkyldimethylbenzylammonium salts
  • fatty acid salts such as sodium oleate, alkyl sulfates, alkylbenzene sulfonates and alkyl sulfosuccinates.
  • Anionic surfactants such as acid salts, naphthalene sulfonates, polyoxyethylene alkyl sulfates, alkane sulfonate sodium salts, alkyldiphenyl ether sulfonic acid sodium salts; polyoxyethylene nonylphenyl ethers, polyoxyethylene lauryl ethers, polyoxyethylene Examples thereof include nonionic surfactants such as styrylphenyl ether, polyoxyethylene octiphenyl ether, polyoxyethylene sorbitol tetraoleate, and polyoxyethylene / polyoxypropylene copolymer.
  • a commercially available product can be used as the surfactant.
  • Examples of commercially available products include "Securigan 902" manufactured by Atotech Japan Co., Ltd. and "PED-104" manufactured by C. Uyemura & Co., Ltd.
  • the treatment time of the step (2A-1) is preferably 1 minute or longer, more preferably 2 minutes or longer, still more preferably 3 minutes or longer, preferably 20 minutes or shorter, from the viewpoint of facilitating the adsorption of the catalyst. It is more preferably 15 minutes or less, still more preferably 10 minutes or less.
  • the temperature of the solution containing the surfactant is preferably 30 ° C. or higher, more preferably 40 ° C. or higher, still more preferably 50 ° C. or higher, preferably 90 ° C. or lower, from the viewpoint of facilitating the adsorption of the catalyst. It is preferably 80 ° C. or lower, more preferably 70 ° C. or lower.
  • the step (2A-1-1) is a micro-etching step of removing the surfactant from the portion where the surfactant is unnecessary.
  • the surfactant is usually removed from the portion where the surfactant is unnecessary by bringing the microetching solution into contact with the surface of the magnetically cured product.
  • Examples of the portion that does not require a surfactant include the first metal layer 12 and the second metal layer 13.
  • micro-etching solution examples include hydrochloric acid, sulfuric acid, hydrogen peroxide solution, sodium persulfate, ammonium persulfate salt, and a solution composed of a combination thereof.
  • the concentration of the microetching solution is specified, usually 2N or less, preferably 1.5N or less, more preferably 1N or less, from the viewpoint of removing the surfactant only from unnecessary parts. From the viewpoint of facilitating removal, it is preferably 0.1 N or more, more preferably 0.2 N or more, still more preferably 0.5 N or more.
  • the temperature of the microetching solution is preferably 10 ° C. or higher, more preferably 15 ° C. or higher, still more preferably 20 ° C. or higher, preferably 50 ° C. or lower, more preferably 50 ° C. or lower, from the viewpoint of facilitating the removal of the surfactant. Is 40 ° C. or lower, more preferably 30 ° C. or lower.
  • the treatment time of the step (2A-1-1) is preferably 10 seconds or longer, more preferably 15 seconds or longer, still more preferably 30 seconds or longer, and preferably 30 seconds or longer, from the viewpoint of facilitating the removal of the surfactant. It is 60 seconds or less, more preferably 50 seconds or less, still more preferably 40 seconds or less.
  • the step (2A-2) is a catalytic step of applying a catalyst to the surface of the magnetically cured product.
  • the adhesion between the magnetically cured product and the conductor layer can be improved.
  • the magnetically cured product is immersed in a solution containing the catalyst, and the catalyst is adsorbed on the surface of the magnetically cured product.
  • the catalyst examples include palladium salts, palladium complex compounds, tin-palladium complex salts, tin-palladium colloids, and the like.
  • the solution containing the catalyst is usually an alkaline solution.
  • the pH of this alkaline solution is preferably greater than 7, more preferably 8 or higher, and even more preferably 10 or higher.
  • the upper limit is not particularly limited, but may be preferably 14 or less, 13 or less, and the like.
  • the concentration of the solution containing the catalyst is preferably 1 mmol / L or more, more preferably 5 mmol / L or more, still more preferably 10 mmol / L or more in terms of normality from the viewpoint of adsorbing the catalyst on the entire magnetically cured product. It is preferably 500 mmol / L or less, more preferably 300 mmol / L or less, and further preferably 100 mmol / L or less.
  • a commercially available product can be used as the solution containing the catalyst.
  • Examples of commercially available products include "Activator Neogand 834" manufactured by Atotech Japan Co., Ltd. and “Brown Schumer” manufactured by Japan Kanigen Co., Ltd.
  • the treatment time of the step (2A-2) is preferably 1 minute or longer, more preferably 2 minutes or longer, still more preferably 3 minutes or longer, preferably 20 minutes, from the viewpoint of adsorbing the catalyst on the entire magnetically cured product. Below, it is more preferably 15 minutes or less, still more preferably 10 minutes or less.
  • the temperature of the solution containing the catalyst is preferably 10 ° C. or higher, more preferably 20 ° C. or higher, still more preferably 30 ° C. or higher, preferably 60 ° C. or lower, from the viewpoint of adsorbing the catalyst on the entire magnetic cured product. It is more preferably 50 ° C. or lower, still more preferably 40 ° C. or lower.
  • the step (2A-3) is a catalyst activation step for activating the catalyst.
  • the adhesion between the magnetically cured product and the conductor layer can be improved by activating the catalyst.
  • the magnetically cured product to which the catalyst is applied is immersed in a reducing agent solution to generate a nucleus of the catalyst, and the catalyst applied to the surface of the magnetically cured product is activated.
  • Examples of the reducing agent used in the step (2A-3) include hypophosphate, a mixed solution of dimethylamine borane and a potassium salt of an organic acid, and the like.
  • the reducing agent solution is usually an acidic solution.
  • Such an acidic solution easily dissolves a general magnetic powder, but (A) a magnetic powder containing nickel is difficult to dissolve, so that the generation of insoluble matter or the like can be remarkably suppressed.
  • the pH of this acidic solution is preferably 1 or more, more preferably 2 or more, still more preferably 3 or more.
  • the upper limit is not particularly limited, but is preferably less than 7, 6 or less, and the like.
  • the concentration of the reducing agent in the reducing agent solution is preferably 0.3 N or more, more preferably 0.4 N or more, more preferably 0.4 N or more, in terms of normality, from the viewpoint of activating the catalyst applied to the surface of the magnetically cured product. Is 0.5N or more, preferably 3N or less, more preferably 2N or less, still more preferably 1N or less.
  • a commercially available product can be used as the reducing agent solution.
  • Examples of commercially available products include "Reducer Accelerator 810mod.” Manufactured by Atotech Japan, “Reducer Neogant WA”, and “K-PVD” manufactured by Japan Kanigen.
  • the treatment time of the step (2A-3) is preferably 1 minute or longer, more preferably 2 minutes or longer, still more preferably 3 minutes or longer, preferably 20 minutes or shorter, more preferably 20 minutes or longer, from the viewpoint of activating the catalyst. Is 15 minutes or less, more preferably 10 minutes or less.
  • the temperature of the reducing agent solution is preferably 10 ° C. or higher, more preferably 20 ° C. or higher, further preferably 30 ° C. or higher, preferably 60 ° C. or lower, and more preferably 50 ° C. or lower. , More preferably 40 ° C. or lower.
  • the step (3A) is a step of forming a conductor layer by wet plating on at least a part of the polished surface of the magnetically cured product.
  • a conductor layer 40 is formed on the polished magnetic cured product 30 by wet plating.
  • a part of the conductor layer 40, the first metal layer 12, the second metal layer 13, and the plating layer 20 is removed by a process such as etching.
  • the pattern conductor layer 41 may be formed.
  • those shown as the material, forming method, etc. of the conductor layer in the above-mentioned step (3) can be applied.
  • the circuit board in the second embodiment includes a substrate including wiring and a magnetically cured product that seals and protects the wiring. For example, it is a form including a layered magnetically cured product.
  • the method of manufacturing the circuit board in the second embodiment is (1B) A step of laminating a magnetic sheet on a substrate so that the resin composition layer is bonded to the substrate, and thermosetting the resin composition layer to form a magnetically cured product. (2B) A step of polishing at least a part of the surface of the magnetically cured product, and (3B) a step of forming a conductor layer by wet plating on at least a part of the polished surface of the magnetically cured product are included in this order.
  • the method for manufacturing the circuit board in the second embodiment further describes the method after the (1B) step and before the (2B) step.
  • (1B-1) It is preferable to include a step of drilling a magnetically cured product.
  • (2B) step and before the (3B) step it is possible to further include (2B-1) a conditioning step of treating the surface of the magnetically cured product with a solution containing a surfactant, and (2B-2) a catalysis step of imparting a catalyst to the surface of the magnetically cured product in this order.
  • (2B-2) After the process (3B) Before the process, (2B-3) It is more preferable to further include a catalyst activation step of activating the catalyst.
  • (2B-1-1) A micro-etching step of removing the surfactant from a portion where the surfactant is unnecessary may be included.
  • step (1B) is a step of laminating a magnetic sheet on the substrate so that the resin composition layer is bonded to the substrate, and thermosetting the resin composition layer to form a magnetically cured product.
  • a step of preparing a magnetic sheet may be included.
  • the magnetic sheet 310 including the support 330 and the resin composition layer 320a provided on the support 330 is provided with the resin composition layer 320a as the inner layer substrate.
  • the magnetic sheet 310 is laminated on the inner layer substrate 200 so as to be joined to the 200.
  • the inner layer substrate 200 is an insulating substrate.
  • Examples of the material of the inner layer substrate 200 include an insulating substrate such as a glass epoxy substrate, a metal substrate, a polyester substrate, a polyimide substrate, a BT resin substrate, and a thermosetting polyphenylene ether substrate.
  • the inner layer substrate 200 may be an inner layer circuit board in which wiring or the like is built in the thickness thereof.
  • the inner layer substrate 200 has a first conductor layer 420 provided on the first main surface 200a and an external terminal 240 provided on the second main surface 200b.
  • the first conductor layer 420 includes a plurality of wirings. In the illustrated example, only the wiring constituting the coiled conductive structure 400 of the inductor element is shown.
  • the external terminal 240 is a terminal for electrically connecting to an external device or the like (not shown).
  • the external terminal 240 can be configured as a part of the conductor layer provided on the second main surface 200b.
  • the conductor material that can form the first conductor layer 420, the external terminal 240, and other conductor layers is the same as the material of the conductor layer described in step (3).
  • the first conductor layer 420, the external terminal 240, and the other conductor layers have a single-layer structure, but also have a single-metal layer made of different types of metals or alloys or a multi-layer structure in which two or more alloy layers are laminated. May be good.
  • the thickness of the first conductor layer 420, the external terminal 240, and the other conductor layers is the same as that of the pattern conductor layer in the first embodiment.
  • the line (L) / space (S) ratio of the first conductor layer 420 and the external terminal 240 is not particularly limited, but is usually 900/900 ⁇ m from the viewpoint of reducing surface irregularities and obtaining a magnetically cured product having excellent smoothness. Below, it is preferably 700/700 ⁇ m or less, more preferably 500/500 ⁇ m or less, still more preferably 300/300 ⁇ m or less, still more preferably 200/200 ⁇ m or less.
  • the lower limit of the line / space ratio is not particularly limited, but is preferably 1/1 ⁇ m or more from the viewpoint of improving the embedding of the resin composition layer in the space.
  • the inner layer substrate 200 has a plurality of through holes 220 penetrating the inner layer substrate 200 so as to reach from the first main surface 200a to the second main surface 200b.
  • the through hole 220 is provided with wiring 220a in the through hole.
  • the wiring 220a in the through hole electrically connects the first conductor layer 420 and the external terminal 240.
  • the resin composition layer 320a and the inner layer substrate 200 can be joined, for example, by heat-bonding the magnetic sheet 310 to the inner layer substrate 200 from the support 330 side.
  • the member for heat-pressing the magnetic sheet 310 to the inner layer substrate 200 include a heated metal plate (stainless steel (SUS) end plate, etc.) or a metal roll (SUS roll). Can be mentioned.
  • a sheet made of an elastic material such as heat-resistant rubber or the like so that the magnetic sheet 310 sufficiently follows the unevenness of the surface of the inner layer substrate 200. It is preferable to press through.
  • the temperature during heat crimping is preferably in the range of 80 ° C. to 160 ° C., more preferably 90 ° C. to 140 ° C., still more preferably 100 ° C. to 120 ° C.
  • the pressure during heat crimping is preferably 0. It is in the range of 098 MPa to 1.77 MPa, more preferably 0.29 MPa to 1.47 MPa
  • the time for heat crimping is preferably in the range of 20 seconds to 400 seconds, more preferably 30 seconds to 300 seconds.
  • the bonding between the magnetic sheet and the inner layer substrate is preferably carried out under reduced pressure conditions of a pressure of 26.7 hPa or less.
  • the resin composition layer 320a of the magnetic sheet 310 and the inner layer substrate 200 can be joined by a commercially available vacuum laminator.
  • commercially available vacuum laminators include vacuum pressurizing laminators manufactured by Meiki Co., Ltd., vacuum applicators manufactured by Nikko Materials, and the like.
  • the laminated magnetic sheet 31 may be smoothed by pressing a heat-bonded member under normal pressure (under atmospheric pressure), for example, from the support side. ..
  • the press conditions for the smoothing treatment can be the same as the heat-bonding conditions for the above-mentioned lamination.
  • the smoothing process can be performed by a commercially available laminator. The lamination and the smoothing treatment may be continuously performed using the above-mentioned commercially available vacuum laminator.
  • the resin composition layer is thermally cured to form a magnetically cured product.
  • the resin composition layer 320a bonded to the inner layer substrate 200 is thermally cured to form the first magnetically cured product layer 320.
  • the thermosetting conditions of the resin composition layer 320a and the degree of curing of the first magnetically cured material layer 320 are the same as the thermosetting conditions and the degree of curing described in the step (1).
  • the support 330 may be removed after the heat curing in the step (1B) and between the steps (2B), or may be peeled off after the step (2B).
  • the step (1B) may be performed by directly applying or printing a paste-like resin composition (magnetic paste) on the inner layer substrate instead of laminating the magnetic sheet on the inner layer substrate.
  • a paste-like resin composition magnetic paste
  • the step (1B-1) is a step of drilling a magnetically cured product.
  • the first magnetically cured product layer 320 is drilled to form a via hole 360.
  • the via hole 360 serves as a path for electrically connecting the first conductor layer 420 and the second conductor layer 440 described later.
  • the via hole 360 can be formed by the same method as the formation of the through hole described in the step (1).
  • the step (2B) is a step of polishing at least a part of the surface of the magnetically cured product.
  • the polishing method in the step (2B) the same polishing as that described in the step (2A) of the first embodiment can be performed.
  • the arithmetic mean roughness (Ra) of the polished surface of the magnetically cured product after the step (2B) is preferably 300 nm or more, more preferably 350 nm or more, still more preferably, from the viewpoint of improving the plating adhesion with the conductor layer. Is 400 nm or more.
  • the upper limit is preferably 1000 nm or less, more preferably 900 nm or less, still more preferably 800 nm or less.
  • the surface roughness (Ra) can be measured using, for example, a non-contact type surface roughness meter.
  • a conductor layer can be formed on the magnetically cured product without treating the surface with an oxidizing agent, so that the magnetically cured product is brittle. It is possible to prevent this from happening and achieve good plating adhesion.
  • (A) a magnetic powder containing nickel may be partially exposed, but since the component (A) is resistant to acid, a magnetic foreign substance is generated. The amount can be kept low.
  • the steps (2B-1) to (2B-3) are as described in the steps (2A-1) to (2A-3) of the first embodiment, respectively.
  • the step (3B) is a step of forming a conductor layer by wet plating on at least a part of the polished surface of the magnetically cured product.
  • a second conductor layer 440 is partially formed on the polished surface of the first magnetically cured product layer 320.
  • the method for forming the second conductor layer 440 is as described in the first embodiment.
  • the wiring 360a in the via hole is also formed in the via hole 360.
  • the conductor layer 400 is formed by forming the second conductor layer 440.
  • the second conductor layer 440 includes a plurality of wirings.
  • the conductor material that can form the second conductor layer 440 is the same as that of the first conductor layer 420.
  • the second conductor layer 440 may have a single layer structure, a single metal layer made of different types of metals or alloys, or a multi-layer structure in which two or more alloy layers are laminated.
  • the layer in contact with the magnetically cured product is preferably a single metal layer of chromium, zinc or titanium, or an alloy layer of a nickel-chromium alloy.
  • the thickness of the second conductor layer 440 is the same as the thickness of the first conductor layer 420.
  • the first conductor layer 420 and the second conductor layer 440 may be provided in a spiral shape, for example, as shown in FIGS. 13 to 15 described later.
  • one end on the center side of the spiral wiring portion of the second conductor layer 440 is electrically connected to one end on the center side of the spiral wiring portion of the first conductor layer 420 by the wiring 360a in the via hole.
  • the other end of the spiral wiring portion of the second conductor layer 440 on the outer peripheral side is electrically connected to the land 420a of the first conductor layer 42 by the wiring 360a in the via hole. Therefore, the other end of the spiral wiring portion of the second conductor layer 440 on the outer peripheral side is electrically connected to the external terminal 240 via the via hole wiring 360a, the land 420a, and the through hole wiring 220a.
  • the coiled conductive structure 400 includes a spiral wiring portion that is a part of the first conductor layer 420, a spiral wiring portion that is a part of the second conductor layer 440, and a spiral wiring portion of the first conductor layer 420. It is composed of the wiring 360a in the via hole that electrically connects the wiring portion of the second conductor layer 440 and the spiral wiring portion of the second conductor layer 440.
  • a step of further forming a magnetically cured product on the conductor layer may be performed.
  • a second magnetically cured product is formed on the first magnetically cured product layer 320 on which the second conductor layer 440 and the wiring 360a in the via hole are formed.
  • the second magnetically cured product may be formed by the same process as the process already described.
  • the resin composition in the present invention can be a paste-like magnetic paste even if it does not contain an organic solvent.
  • the content thereof is preferably less than 1.0% by mass, more preferably 0.8% by mass or less, still more preferably 0.5% by mass, based on the total mass of the magnetic paste.
  • it is particularly preferably 0.1% by mass or less.
  • the lower limit is 0.001% by mass or more, or no content, without particular limitation.
  • the viscosity of the magnetic paste is preferably 20 Pa ⁇ s or more, more preferably 25 Pa ⁇ s or more, further preferably 30 Pa ⁇ s or more, 50 Pa ⁇ s or more at 25 ° C., and usually less than 200 Pa ⁇ s, preferably 180 Pa ⁇ s. Hereinafter, it is more preferably 160 Pa ⁇ s or less.
  • the viscosity can be measured using an E-type viscometer while keeping the temperature of the magnetic paste at 25 ⁇ 2 ° C.
  • Such a magnetic paste is useful when filling the through holes of the substrate.
  • the magnetic sheet includes a support and a resin composition layer provided on the support and formed of the resin composition of the present invention.
  • the thickness of the resin composition layer is preferably 250 ⁇ m or less, more preferably 200 ⁇ m or less, still more preferably 150 ⁇ m or less, 100 ⁇ m or less from the viewpoint of thinning.
  • the lower limit of the thickness of the resin composition layer is not particularly limited, but may be usually 5 ⁇ m or more.
  • Examples of the support include a film made of a plastic material, a metal foil, and a paper pattern, and a film made of a plastic material and a metal foil are preferable.
  • the plastic material may be, for example, polyethylene terephthalate (hereinafter abbreviated as "PET”) or polyethylene naphthalate (hereinafter abbreviated as “PEN”).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • Etc. polyester, polycarbonate (hereinafter sometimes abbreviated as “PC”), acrylic such as polymethylmethacrylate (PMMA), cyclic polyolefin, triacetylcellulose (TAC), polyethersulfide (PES), polyether. Examples thereof include ketones and polyimides.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • Etc. polyester, polycarbonate (hereinafter sometimes abbreviated as “PC”), acrylic such as polymethylmethacrylate (PMMA), cyclic polyolefin, triacetylcellulose (TAC), polyethersulfide (PES), polyether. Examples thereof include ketones and polyimides.
  • PC poly
  • the metal foil When a metal foil is used as the support, examples of the metal foil include copper foil and aluminum foil, and copper foil is preferable.
  • the copper foil a foil made of a single metal of copper may be used, and a foil made of an alloy of copper and another metal (for example, tin, chromium, silver, magnesium, nickel, zirconium, silicon, titanium, etc.) may be used. You may use it.
  • the support may be matted or corona-treated on the surface to be joined to the resin composition layer.
  • a support with a release layer having a release layer on the surface to be joined with the resin composition layer may be used.
  • the release agent used for the release layer of the support with the release layer include one or more release agents selected from the group consisting of alkyd resin, polyolefin resin, urethane resin, and silicone resin. ..
  • a commercially available product may be used.
  • “SK-1” and “SK-1” manufactured by Lintec Corporation which are PET films having a release layer containing an alkyd resin-based release agent as a main component. Examples include “AL-5" and “AL-7", “Lumirror T60” manufactured by Toray Industries, Inc., “Purex” manufactured by Teijin Corporation, and "Unipee” manufactured by Unitika.
  • the thickness of the support is not particularly limited, but is preferably in the range of 5 ⁇ m to 75 ⁇ m, and more preferably in the range of 10 ⁇ m to 60 ⁇ m.
  • the thickness of the entire support with a release layer is preferably in the above range.
  • a magnetic paste in which a resin composition is dissolved in an organic solvent is prepared, and this magnetic paste is applied onto a support using a die coater or the like, and further dried to form a resin composition layer. It can be manufactured by.
  • the resin composition is in the form of a paste, it can be produced by directly applying the resin composition onto the support using a die coater or the like to form a resin composition layer.
  • organic solvent examples include ketones such as acetone, methyl ethyl ketone (MEK) and cyclohexanone, acetic acid esters such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate and carbitol acetate, cellosolve and butyl carbitol and the like.
  • ketones such as acetone, methyl ethyl ketone (MEK) and cyclohexanone
  • acetic acid esters such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate and carbitol acetate, cellosolve and butyl carbitol and the like.
  • carbitols aromatic hydrocarbons such as toluene and xylene
  • amide solvents such as dimethylformamide, dimethylacetamide (DMAc) and
  • Drying may be carried out by a known method such as heating or blowing hot air.
  • the drying conditions are not particularly limited, but the resin composition layer is dried so that the content of the organic solvent is 10% by mass or less, preferably 5% by mass or less. Although it depends on the boiling point of the organic solvent in the magnetic paste, for example, when a magnetic paste containing 30% by mass to 60% by mass of an organic solvent is used, the resin composition is obtained by drying at 50 ° C. to 150 ° C. for 3 to 10 minutes. A material layer can be formed.
  • a protective film similar to the support can be further laminated on the surface of the resin composition layer that is not bonded to the support (that is, the surface opposite to the support).
  • the thickness of the protective film is not particularly limited, but is, for example, 1 ⁇ m to 40 ⁇ m.
  • the circuit board in the present invention is preferably an inductor component having an inductor element formed of a pattern conductor layer.
  • the inductor component includes a circuit board obtained by the method for manufacturing a circuit board in the present invention.
  • an inductor element formed of a conductor at least a part around a magnetically cured product of the resin composition has.
  • an inductor component for example, those described in JP-A-2016-197624 can be applied.
  • the inductor component includes a magnetically cured product of a resin composition (resin composition layer) and at least a part thereof embedded in the magnetically cured product. It has a conductive structure, and is composed of the conductive structure and a part of the magnetically cured product that extends in the thickness direction of the magnetically cured product and is surrounded by the conductive structure. Includes inductor elements to be magnetized.
  • FIG. 13 is a schematic plan view of an inductor component incorporating an inductor element as viewed from one side in the thickness direction.
  • FIG. 14 is a schematic view showing a cut end face of an inductor component cut at the position indicated by the II-II alternate long and short dash line in FIG.
  • FIG. 15 is a schematic plan view for explaining the configuration of the first conductor layer among the inductor components.
  • the inductor component 100 includes a plurality of magnetically cured products (first magnetically cured product layer 320, second magnetically cured product layer 340) and a plurality of conductor layers (first conductor layer). It can be a build-up wiring board having 420, a second conductor layer 440), i.e., having a build-up magnetically cured material layer and a build-up conductor layer. Further, the inductor component 100 includes an inner layer substrate 200.
  • the first magnetically cured product layer 320 and the second magnetically cured product layer 340 constitute a magnetic portion 300 that can be seen as an integral magnetically cured product. Therefore, the coiled conductive structure 400 is provided so that at least a part thereof is embedded in the magnetic portion 300. That is, in the inductor component 100 of the present embodiment, the inductor element extends in the thickness direction of the coiled conductive structure 400 and the magnetic portion 300, and is surrounded by the coiled conductive structure 400. It is composed of a core that is a part of.
  • the first conductor layer 420 has a spiral wiring portion for forming the coiled conductive structure 400 and a rectangular shape electrically connected to the wiring 220a in the through hole. Includes land 420a.
  • the spiral wiring portion includes a bent portion that bends at a right angle to the linear portion and a detour portion that bypasses the land 420a.
  • the spiral wiring portion of the first conductor layer 420 has a substantially rectangular outline as a whole, and has a shape of being wound counterclockwise from the center side toward the outside thereof.
  • a second conductor layer 440 is provided on the first magnetically cured product layer 320.
  • the second conductor layer 440 includes a spiral wiring portion for forming the coiled conductive structure 400.
  • the spiral wiring portion includes a linear portion and a bent portion that bends at a right angle.
  • the spiral wiring portion of the second conductor layer 44 has a substantially rectangular outline as a whole, and has a shape of being wound clockwise from the center side toward the outside thereof.
  • Such an inductor component can be used as a wiring board for mounting an electronic component such as a semiconductor chip, and can also be used as a (multilayer) printed wiring board using such a wiring board as an inner layer board. Further, the wiring board can be used as an individualized chip inductor component, or the chip inductor component can be used as a surface-mounted printed wiring board.
  • various types of semiconductor devices can be manufactured by using such a wiring plate.
  • the semiconductor device including such a wiring plate can be suitably used for electric products (for example, computers, mobile phones, digital cameras, televisions, etc.) and vehicles (for example, motorcycles, automobiles, trains, ships, aircraft, etc.) and the like. ..
  • the resin composition in the present invention contains (A) a magnetic powder containing nickel, (B) an epoxy resin, and (C) a curing agent.
  • the resin composition may further contain (D) a non-magnetic inorganic filler and may further contain (E) other additives as needed.
  • the resin composition of the present invention contains the component (A), so that a magnetically cured product having a hardness suitable for polishing can be easily obtained. Therefore, in the embodiment, the magnetically cured product of the resin composition of the present invention is excellent in polishability.
  • each component of the resin composition in the present invention will be described.
  • the resin composition in the present invention contains (A) a magnetic powder containing nickel.
  • the nickel-containing magnetic powder include pure nickel powder; nickel-containing iron oxide powder such as Ni-Zn-based ferrite powder, Ba-Ni-based ferrite powder, and Ba-Ni-Co-based ferrite powder; Fe-Ni-Cr.
  • nickel-iron alloy-based metal powders such as based alloy powders, Fe—Ni based alloy powders, Fe—Ni—Mo based alloy powders, and Fe—Ni—Mo—Cu based alloy powders.
  • the magnetic powder containing nickel is preferably at least one selected from nickel-containing iron oxide powder and nickel-iron alloy-based metal powder, more preferably nickel-iron alloy-based metal powder, and Fe—Ni-based alloy. Particularly preferred are powders and Fe—Ni—Mo based alloy powders.
  • the nickel-containing iron oxide powder may contain at least one selected from Cu, Mn, and Zn in addition to Fe and Ni. Further, the nickel-iron alloy-based metal powder may contain iron alloy-based metal powder containing at least one selected from Si, Cr, Al, Mo, Cu, and Co, in addition to Fe and Ni. ..
  • the nickel content in the component (A) is, for example, 10% by mass or more, 20% by mass or more, 30% by mass or more, preferably 35% by mass or more, from the viewpoint of remarkably obtaining the desired effect of the present invention. It is preferably 40% by mass or more, and particularly preferably 45% by mass or more.
  • the upper limit is not particularly limited, but may be, for example, 100% by mass or less, less than 100% by mass, 95% by mass or less, 90% by mass or less, 85% by mass or less, and the like.
  • the iron content in the component (A) is not particularly limited, but is, for example, 90% by mass or less, 80% by mass or less, 70% by mass or less, preferably 65% by mass or less, and more preferably 60% by mass. % Or less, particularly preferably 55% by mass or less.
  • the lower limit is not particularly limited, but may be, for example, 0% by mass or more, more than 0% by mass, 5% by mass or more, 10% by mass or more, 15% by mass or more, and the like.
  • a commercially available magnetic powder can be used as the component (A).
  • Specific examples of commercially available magnetic powders that can be used include "MA-RCO-5" manufactured by DOWA Electronics, "80% Ni-4Mo” manufactured by Epson Atmix, and the like.
  • the magnetic powder may be used alone or in combination of two or more.
  • the component (A) is preferably spherical.
  • the value (aspect ratio) obtained by dividing the length of the major axis of the magnetic powder by the length of the minor axis is preferably 2 or less, more preferably 1.5 or less, and further preferably 1.2 or less. In general, it is easier to improve the relative magnetic permeability when the magnetic powder has a flat shape that is not spherical. However, it is usually preferable to use a spherical magnetic powder from the viewpoint of obtaining a paste having a preferable viscosity and a low magnetic loss.
  • the average particle size of the component (A) is preferably 0.01 ⁇ m or more, more preferably 0.5 ⁇ m or more, and further preferably 1 ⁇ m or more from the viewpoint of improving the specific magnetic permeability. Further, it is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and further preferably 10 ⁇ m or less.
  • the average particle size of the component (A) can be measured by a laser diffraction / scattering method based on the Mie scattering theory. Specifically, it can be measured by creating a particle size distribution of magnetic powder on a volume basis with a laser diffraction / scattering type particle size distribution measuring device and using the median diameter as the average particle size. As the measurement sample, a magnetic powder dispersed in water by ultrasonic waves can be preferably used. As the laser diffraction / scattering type particle size distribution measuring device, "LA-500" manufactured by HORIBA, Ltd., "SALD-2200” manufactured by Shimadzu Corporation, or the like can be used.
  • the specific surface area of the magnetic powder can be measured by the BET method.
  • the undissolved rate of the component (A) when immersed in acid is 70% or more when immersed in 2N sulfuric acid for 5 minutes at 40 ° C. from the viewpoint of significantly obtaining the desired effect of the present invention.
  • 80% or more is more preferable, 90% or more is further preferable, and 95% or more is particularly preferable.
  • the content (% by volume) of the component (A) is preferably 10% by volume or more when the non-volatile component in the resin composition is 100% by volume from the viewpoint of improving the relative magnetic permeability and reducing the loss coefficient. It is more preferably 20% by volume or more, still more preferably 30% by volume or more. Further, it is preferably 85% by volume or less, more preferably 80% by volume or less, and further preferably 75% by volume or less.
  • the content (% by mass) of the component (A) is preferably 70% by mass or more when the non-volatile component in the resin composition is 100% by mass from the viewpoint of improving the relative magnetic permeability and reducing the loss coefficient. It is more preferably 75% by mass or more, still more preferably 78% by mass or more. Further, it is preferably 98% by mass or less, more preferably 95% by mass or less, and further preferably 90% by mass or less.
  • the resin composition in the present invention contains (B) an epoxy resin.
  • Examples of the (B) epoxy resin include bixilenol type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AF type epoxy resin, dicyclopentadiene type epoxy resin, and trisphenol type.
  • One type of epoxy resin may be used alone, or two or more types may be used in combination.
  • the resin composition preferably contains an epoxy resin having two or more epoxy groups in one molecule as the (B) epoxy resin.
  • the ratio of the epoxy resin having two or more epoxy groups in one molecule is preferably 50% by mass with respect to 100% by mass of the non-volatile component of the epoxy resin (B). % Or more, more preferably 60% by mass or more, and particularly preferably 70% by mass or more.
  • the epoxy resin may be a liquid epoxy resin at a temperature of 25 ° C. (hereinafter sometimes referred to as “liquid epoxy resin”) or a solid epoxy resin at a temperature of 25 ° C. (hereinafter referred to as “solid epoxy resin”). ).
  • the resin composition of the present invention contains a liquid epoxy resin as the epoxy resin.
  • the resin composition of the present invention comprises a solid epoxy resin as the epoxy resin.
  • the resin composition of the present invention may contain only the liquid epoxy resin or only the solid epoxy resin as the epoxy resin, and may contain a combination of the liquid epoxy resin and the solid epoxy resin. However, in a preferred embodiment, only the liquid epoxy resin is included.
  • liquid epoxy resin a liquid epoxy resin having two or more epoxy groups in one molecule is preferable.
  • liquid epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AF type epoxy resin, naphthalene type epoxy resin, glycidyl ester type epoxy resin, glycidylamine type epoxy resin, phenol novolac type epoxy resin, and ester skeleton.
  • An alicyclic epoxy resin having an alicyclic epoxy resin, a cyclohexane type epoxy resin, a cyclohexanedimethanol type epoxy resin, a glycidylamine type epoxy resin, and an epoxy resin having a butadiene structure are preferable.
  • liquid epoxy resin examples include "HP4032”, “HP4032D”, and “HP4032SS” (naphthalene type epoxy resin) manufactured by DIC; “828US”, “828EL”, “jER828EL”, and “825" manufactured by Mitsubishi Chemical Co., Ltd. , “Epicoat 828EL” (bisphenol A type epoxy resin); “jER807”, “1750” (bisphenol F type epoxy resin) manufactured by Mitsubishi Chemical Co., Ltd .; “jER152” (phenol novolac type epoxy resin) manufactured by Mitsubishi Chemical Co., Ltd.; “630” and “630LSD” manufactured by Mitsubishi Chemical Co., Ltd.
  • JP-100 and “JP-200” (epoxy resin having a butadiene structure);
  • ZX1658 and “ZX1658GS” (liquid 1,4-glycidylcyclohexane type epoxy resin) manufactured by Nippon Steel & Sumitomo Metal Corporation. These may be used individually by 1 type, and may be used in combination of 2 or more types.
  • solid epoxy resin a solid epoxy resin having three or more epoxy groups in one molecule is preferable, and an aromatic solid epoxy resin having three or more epoxy groups in one molecule is more preferable.
  • solid epoxy resin examples include bixilenol type epoxy resin, naphthalene type epoxy resin, naphthalene type tetrafunctional epoxy resin, cresol novolac type epoxy resin, dicyclopentadiene type epoxy resin, trisphenol type epoxy resin, naphthol type epoxy resin, and biphenyl.
  • Type epoxy resin, naphthylene ether type epoxy resin, anthracene type epoxy resin, bisphenol A type epoxy resin, bisphenol AF type epoxy resin, and tetraphenylethane type epoxy resin are preferable.
  • solid epoxy resin examples include "HP4032H” (naphthalene type epoxy resin) manufactured by DIC; "HP-4700” and “HP-4710” (naphthalene type tetrafunctional epoxy resin) manufactured by DIC; DIC. "N-690” (cresol novolac type epoxy resin); DIC “N-695" (cresol novolac type epoxy resin); DIC "HP-7200” (dicyclopentadiene type epoxy resin); "HP-7200HH”, “HP-7200H”, "EXA-7311”, “EXA-7311-G3", “EXA-7311-G4", "EXA-7311-G4S”, "HP6000” (HP6000) manufactured by DIC.
  • the mass ratio of the liquid epoxy resin to the solid epoxy resin is preferably a mass ratio. It is 1 or more, more preferably 10 or more, and particularly preferably 50 or more.
  • the epoxy equivalent of the (B) epoxy resin is preferably 50 g / eq. ⁇ 5000g / eq. , More preferably 50 g / eq. ⁇ 3000g / eq. , More preferably 80 g / eq. ⁇ 2000g / eq. , Even more preferably 110 g / eq. ⁇ 1000g / eq. Is. Within this range, the crosslink density of the magnetically cured product of the magnetic sheet becomes sufficient, and a magnetically cured product layer having a small surface roughness can be provided.
  • Epoxy equivalent is the mass of a resin containing 1 equivalent of an epoxy group. This epoxy equivalent can be measured according to JIS K7236.
  • the weight average molecular weight (Mw) of the epoxy resin is preferably 100 to 5000, more preferably 250 to 3000, and further preferably 400 to 1500 from the viewpoint of remarkably obtaining the desired effect of the present invention.
  • the weight average molecular weight of the resin can be measured as a polystyrene-equivalent value by a gel permeation chromatography (GPC) method.
  • the content of the epoxy resin (B) is not particularly limited, but is preferably 1 when the non-volatile component in the resin composition is 100% by mass from the viewpoint of remarkably obtaining the desired effect of the present invention. It is by mass% or more, more preferably 5% by mass or more, still more preferably 8% by mass or more, and particularly preferably 10% by mass or more.
  • the upper limit is preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 30% by mass or less, and particularly preferably 20% by mass or less, from the viewpoint of remarkably obtaining the desired effect of the present invention.
  • the resin composition in the present invention contains (C) a curing agent.
  • the curing agent (C) is not particularly limited as long as it has a function of curing an epoxy resin, and is, for example, a phenol-based curing agent, a naphthol-based curing agent, an acid anhydride-based curing agent, an active ester-based curing agent, and a benzoxazine-based curing agent.
  • examples thereof include curing agents, cyanate ester-based curing agents, carbodiimide-based curing agents, phosphorus-based curing agents, amine-based curing agents, imidazole-based curing agents, guanidine-based curing agents, and metal-based curing agents.
  • acid anhydride-based curing agents, amine-based curing agents, and imidazole-based curing agents are preferable.
  • the curing agent may be used alone or in combination of two or more.
  • a phenol-based curing agent having a novolak structure or a naphthol-based curing agent having a novolak structure is preferable from the viewpoint of heat resistance and water resistance. Further, from the viewpoint of adhesion to the adherend, a nitrogen-containing phenol-based curing agent or a nitrogen-containing naphthol-based curing agent is preferable, and a triazine skeleton-containing phenol-based curing agent or a triazine skeleton-containing naphthol-based curing agent is more preferable.
  • a triazine skeleton-containing phenol novolac resin is preferable from the viewpoint of highly satisfying heat resistance, water resistance, and adhesion.
  • the phenol-based curing agent and the naphthol-based curing agent include, for example, "MEH-7700”, “MEH-7810", “MEH-7851”, “MEH-8000H” manufactured by Meiwa Kasei Co., Ltd., and Nippon Kayaku Co., Ltd. "NHN”, “CBN”, “GPH” manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
  • the acid anhydride-based curing agent examples include a curing agent having one or more acid anhydride groups in one molecule.
  • Specific examples of the acid anhydride-based curing agent include phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylnadic acid anhydride, and methylnadic hydride.
  • the active ester-based curing agent is not particularly limited, but generally contains an ester group having high reactive activity such as phenol esters, thiophenol esters, N-hydroxyamine esters, and esters of heterocyclic hydroxy compounds in one molecule.
  • a compound having two or more esters is preferably used.
  • the active ester-based curing agent is preferably obtained by a condensation reaction between a carboxylic acid compound and / or a thiocarboxylic acid compound and a hydroxy compound and / or a thiol compound.
  • an active ester-based curing agent obtained from a carboxylic acid compound and a hydroxy compound is preferable, and an active ester-based curing agent obtained from a carboxylic acid compound and a phenol compound and / or a naphthol compound is more preferable.
  • the carboxylic acid compound include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, pyromellitic acid and the like.
  • phenol compound or naphthol compound examples include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, phenolphthaline, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m-.
  • the "dicyclopentadiene-type diphenol compound” refers to a diphenol compound obtained by condensing two phenol molecules with one dicyclopentadiene molecule.
  • an active ester compound containing a dicyclopentadiene-type diphenol structure an active ester compound containing a naphthalene structure, an active ester compound containing an acetylated product of phenol novolac, and an active ester compound containing a benzoylated product of phenol novolac are preferable.
  • an active ester compound containing a naphthalene structure and an active ester compound containing a dicyclopentadiene-type diphenol structure are more preferable.
  • the "dicyclopentadiene-type diphenol structure” represents a divalent structural unit composed of phenylene-dicyclopentalene-phenylene.
  • active ester-based curing agents include active ester compounds containing a dicyclopentadiene-type diphenol structure, such as "EXB9451”, “EXB9460”, “EXB9460S”, “HPC-8000”, “HPC-8000H”, and “” HPC-8000-65T “,” HPC-8000H-65TM ",” EXB-8000L “,” EXB-8000L-65TM “(manufactured by DIC);” EXB9416-70BK ",” EXB9416-70BK "as active ester compounds containing a naphthalene structure.
  • benzoxazine-based curing agent examples include “JBZ-OP100D” and “ODA-BOZ” manufactured by JFE Chemicals; “HFB2006M” manufactured by Showa Polymer Co., Ltd., and “Pd” manufactured by Shikoku Chemicals Corporation. Examples include “FA”.
  • cyanate ester-based curing agent examples include bisphenol A disicianate, polyphenol cyanate (oligo (3-methylene-1,5-phenylencyanate)), 4,4'-methylenebis (2,6-dimethylphenylcyanate), 4, 4'-Etilidendidiphenyl disianate, hexafluorobisphenol A disyanate, 2,2-bis (4-cyanate) phenylpropane, 1,1-bis (4-cyanate phenylmethane), bis (4-cyanate-3,5-) Bifunctional cyanate resins such as dimethylphenyl) methane, 1,3-bis (4-cyanatephenyl-1- (methylethylidene)) benzene, bis (4-cyanatephenyl) thioether, and bis (4-cyanatephenyl) ether, Examples thereof include polyfunctional cyanate resins derived from phenol novolac, cresol novolak and the like, and prepolymers in which these cyanate resin
  • cyanate ester-based curing agent examples include "PT30” and “PT60” (both are phenol novolac type polyfunctional cyanate ester resins), "BA230”, and “BA230S75” (part of bisphenol A disocyanate) manufactured by Lonza Japan.
  • PT30 and "PT60” (both are phenol novolac type polyfunctional cyanate ester resins), "BA230”, and “BA230S75” (part of bisphenol A disocyanate) manufactured by Lonza Japan.
  • a prepolymer in which all of them are triazined to form a trimer can be mentioned.
  • carbodiimide-based curing agent examples include “V-03” and “V-07” manufactured by Nisshinbo Chemical Co., Ltd.
  • Examples of the phosphorus-based curing agent include triphenylphosphine, a phosphonium borate compound, tetraphenylphosphonium tetraphenylborate, n-butylphosphonium tetraphenylborate, tetrabutylphosphonium decanoate, and (4-methylphenyl) triphenylphosphonium thiocyanate. Examples thereof include tetraphenylphosphonium thiocyanate and butyltriphenylphosphonium thiocyanate.
  • amine-based curing agents examples include triethylamine, tributylamine, 4-dimethylaminopyridine (DMAP), benzyldimethylamine, 2,4,6, -tris (dimethylaminomethyl) phenol, and 1,8-diazabicyclo (5,).
  • DMAP 4-dimethylaminopyridine
  • benzyldimethylamine 2,4,6, -tris (dimethylaminomethyl) phenol
  • imidazole-based curing agent examples include 2-methylimidazole, 2-undecyl imidazole, 2-heptadecyl imidazole, 1,2-dimethyl imidazole, 2-ethyl-4-methyl imidazole, 1,2-dimethyl imidazole, 2 -Ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1 -Cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimerite, 1-cyanoethyl-2 -Phenylimida
  • imidazole-based curing agent a commercially available product may be used, and examples thereof include "P200-H50” manufactured by Mitsubishi Chemical Corporation.
  • guanidine-based curing agent examples include dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, 1- (o-tolyl) guanidine, dimethylguanidine, diphenylguanidine, trimethylguanidine, and tetra.
  • the metal-based curing agent examples include organometallic complexes or organometallic salts of metals such as cobalt, copper, zinc, iron, nickel, manganese, and tin.
  • organic metal complex examples include an organic cobalt complex such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate, an organic copper complex such as copper (II) acetylacetonate, and zinc (II) acetylacetonate.
  • organic zinc complexes such as iron (III) acetylacetonate, organic nickel complexes such as nickel (II) acetylacetonate, and organic manganese complexes such as manganese (II) acetylacetonate.
  • organic metal salt include zinc octylate, tin octylate, zinc naphthenate, cobalt naphthenate, tin stearate, zinc stearate and the like.
  • the amount ratio of the epoxy resin to the curing agent is a ratio of [total number of epoxy groups in the epoxy resin]: [total number of reactive groups in the curing agent], preferably in the range of 1: 0.2 to 1: 2. 1: 0.3 to 1: 1.5 is more preferable, and 1: 0.4 to 1: 1.2 is even more preferable.
  • the reactive group of the curing agent is an active hydroxyl group, an active ester group, or the like, and differs depending on the type of the curing agent.
  • the total number of epoxy groups in the epoxy resin is the total number of non-volatile component masses of each epoxy resin divided by the epoxy equivalent for all epoxy resins, and the total number of reactive groups in the curing agent is The value obtained by dividing the non-volatile component mass of each curing agent by the reaction group equivalent is the total value for all curing agents.
  • the content of the curing agent (C) is not particularly limited, but when the non-volatile component in the resin composition is 100% by mass, it is preferably 0.01% by mass or more, more preferably 0.1% by mass. % Or more, more preferably 0.5% by mass or more.
  • the upper limit is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 2% by mass or less.
  • the resin composition in the present invention may contain (D) a non-magnetic inorganic filler as an optional component.
  • the non-magnetic inorganic filler (D) is a component that does not involve magnetism.
  • the material of the non-magnetic inorganic filler (D) is not particularly limited, but for example, silica, alumina, glass, cordierite, silicon oxide, barium sulfate, barium carbonate, talc, clay, mica powder, zinc oxide, hydrotal.
  • silica examples include amorphous silica, fused silica, crystalline silica, synthetic silica, hollow silica and the like. Further, as silica, spherical silica is preferable.
  • the non-magnetic inorganic filler may be used alone or in combination of two or more.
  • non-magnetic inorganic fillers include, for example, "RY-200” and “A200” manufactured by Nippon Aerosil Co., Ltd .; “UFP-30” manufactured by Denka Kagaku Kogyo Co., Ltd .; “UFP-30” manufactured by Nippon Steel & Sumikin Materials Co., Ltd.
  • the average particle size of the non-magnetic inorganic filler (D) is not particularly limited, but is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, still more preferably 8 ⁇ m or less from the viewpoint of obtaining the desired effect of the present invention. It is even more preferably 6 ⁇ m or less, and particularly preferably 5 ⁇ m or less.
  • the lower limit of the average particle size of the non-magnetic inorganic filler is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, still more preferably 2 ⁇ m or more, still more preferably 3 ⁇ m or more, from the viewpoint of obtaining the desired effect of the present invention. Particularly preferably, it is 4 ⁇ m or more.
  • the average particle size of the non-magnetic inorganic filler can be measured by a laser diffraction / scattering method based on the Mie scattering theory. Specifically, it can be measured by creating a particle size distribution of a non-magnetic inorganic filler on a volume basis with a laser diffraction / scattering type particle size distribution measuring device and using the median diameter as the average particle size. As the measurement sample, 100 mg of a non-magnetic inorganic filler and 10 g of methyl ethyl ketone can be weighed in a vial and dispersed by ultrasonic waves for 10 minutes.
  • the measurement sample was measured using a laser diffraction type particle size distribution measuring device, the wavelengths of the light sources used were blue and red, and the volume-based particle size distribution of the non-magnetic inorganic filler was measured by the flow cell method, and the obtained particle size was obtained.
  • the average particle size was calculated as the median diameter from the distribution.
  • the laser diffraction type particle size distribution measuring device include "LA-960" manufactured by HORIBA, Ltd.
  • the non-magnetic inorganic filler (D) is an aminosilane-based coupling agent, an epoxysilane-based coupling agent, a mercaptosilane-based coupling agent, an alkoxysilane compound, an organosilazane compound, and a titanate-based material from the viewpoint of enhancing moisture resistance and dispersibility. It is preferably treated with one or more surface treatment agents such as a coupling agent.
  • Examples of commercially available surface treatment agents include “KBM403” (3-glycidoxypropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd., “KBM803” (3-mercaptopropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd., and Shin-Etsu Chemical Co., Ltd.
  • KBE903 (3-aminopropyltriethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd.
  • KBM573 N-phenyl-3-aminopropyltrimethoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.
  • SZ-31 manufactured by Shin-Etsu Chemical Co., Ltd.
  • the degree of surface treatment with the surface treatment agent is preferably within a predetermined range from the viewpoint of improving the dispersibility of the non-magnetic inorganic filler.
  • 100% by mass of the non-magnetic inorganic filler is preferably surface-treated with 0.2% by mass to 5% by mass of a surface treatment agent, and surface-treated with 0.2% by mass to 3% by mass. It is preferable that the surface is treated with 0.3% by mass to 2% by mass.
  • the degree of surface treatment with the surface treatment agent can be evaluated by the amount of carbon per unit surface area of the non-magnetic inorganic filler.
  • Carbon content per unit surface area of the non-magnetic inorganic filler from the viewpoint of improving the dispersibility of the non-magnetic inorganic filler is preferably 0.02 mg / m 2 or more, 0.1 mg / m 2 or more, and 0. 2 mg / m 2 or more is more preferable.
  • 1 mg / m 2 or less is preferable, 0.8 mg / m 2 or less is more preferable, and 0.5 mg / m 2 or less is further preferable. preferable.
  • the amount of carbon per unit surface area of the non-magnetic inorganic filler can be measured after the non-magnetic inorganic filler after the surface treatment is washed with a solvent (for example, methyl ethyl ketone (MEK)). Specifically, a sufficient amount of MEK as a solvent is added to the non-magnetic inorganic filler surface-treated with a surface treatment agent, and ultrasonically cleaned at 25 ° C. for 5 minutes. After removing the supernatant and drying the solid content, the amount of carbon per unit surface area of the non-magnetic inorganic filler can be measured using a carbon analyzer. As the carbon analyzer, "EMIA-320V" manufactured by HORIBA, Ltd. or the like can be used.
  • EMIA-320V manufactured by HORIBA, Ltd.
  • the specific surface area of the non-magnetic inorganic filler (D) is preferably 1 m 2 / g or more, more preferably 2 m 2 / g or more, and particularly preferably 3 m 2 / g or more, from the viewpoint of further improving the effect of the present invention. is there.
  • the upper limit is not particularly limited, but is preferably 50 m 2 / g or less, more preferably 20 m 2 / g or less, 10 m 2 / g or less, or 5 m 2 / g or less.
  • the specific surface area of the non-magnetic inorganic filler is determined by adsorbing nitrogen gas on the sample surface using a specific surface area measuring device (Macsorb HM-1210 manufactured by Mountech) according to the BET method, and using the BET multipoint method to determine the specific surface area. Obtained by calculation.
  • a specific surface area measuring device Macsorb HM-1210 manufactured by Mountech
  • the content of the non-magnetic inorganic filler (D) is preferably 10% by mass or less, more preferably 5% by mass or less, still more preferably 2% by mass or less, when the non-volatile component in the resin composition is 100% by mass. , Particularly preferably 1% by mass or less.
  • the lower limit of the content is not particularly limited, but is, for example, 0.001% by mass or more, 0.01% by mass or more, 0. It can be 1% by mass or more, 0.2% by mass or more, and the like.
  • the resin composition in the present invention may further contain (E) and other additives, if necessary.
  • other additives include other resin components, dispersants, curing retardants such as triethyl borate, flame retardants, thickeners, defoamers, leveling agents, adhesion imparting agents, and colorants.
  • resin additives organic solvents and the like.
  • the content of other additives can be appropriately set by those skilled in the art.
  • the resin composition in the present invention uses a magnetic powder containing nickel as the magnetic powder, by using the magnetically cured product of the resin composition in the production of a circuit board, the magnetically cured product with an oxidizing agent is used. Even when the layer surface is not treated, the amount of magnetic foreign matter that can be generated in the treatment liquid in the wet plating process in the substrate production can be suppressed.
  • the magnetically cured product obtained by thermosetting the resin composition of the present invention is immersed in a soft etching solution (Na 2 S 2 O 8 100 g / L, H 2 SO 4 (75% aqueous solution)) at 30 ° C. for 1 minute.
  • a soft etching solution Na 2 S 2 O 8 100 g / L, H 2 SO 4 (75% aqueous solution)
  • the amount of mass reduction per unit surface area, that is, the etching rate is preferably 25 mg / cm 2 or less, more preferably 20 mg / cm 2 or less, still more preferably 15 mg / cm 2 or less, and particularly preferably 12 mg / cm 2 or less.
  • the lower limit is not particularly limited, but may be, for example, 0.01 mg / cm 2 or more, 0.1 mg / cm 2 or more, 1 mg / cm 2 or more, and the like.
  • the specific magnetic permeability ( ⁇ ') of the magnetically cured product obtained by thermosetting the resin composition in the present invention at a measurement frequency of 100 MHz and a room temperature of 23 ° C. is preferably 2 or more, more preferably 3 or more, still more preferably 3. It is .5 or more, particularly preferably 4 or more.
  • the resin composition of the present invention contains the component (A), so that a magnetically cured product having a hardness suitable for polishing can be easily obtained. Therefore, in the embodiment, since the magnetically cured product of the resin composition of the present invention is excellent in polishability, polishing in the polishing step (2) of the wet plating process can be easily performed.
  • the resin composition in the present invention contains the component (A), for example, the pencil hardness measured according to JIS K 5600-5-4 on the surface of the magnetically cured product obtained by thermosetting the resin composition can be determined. It can be preferably 5H or less, particularly preferably 4H or less.
  • the lower limit may be preferably F or more, more preferably H or more, still more preferably 2H or more, and particularly preferably 3H or more.
  • the resin composition can be produced, for example, by a method of stirring the compounding components using a stirring device such as a three-roll, rotary mixer, or high-speed rotary mixer.
  • the resin composition may be defoamed after production or the like. Examples thereof include defoaming by standing, defoaming by centrifugation, vacuum defoaming, stirring defoaming, and defoaming by a combination thereof.
  • the resin composition may be used in the form of a paste-like resin composition (magnetic paste) or in the form of a magnetic sheet containing a layer of the resin composition. ..
  • Epoxy resin (“ZX-1059", a mixture of bisphenol A type epoxy resin and bisphenol F type epoxy resin, manufactured by Nittetsu Chemical & Materials Co., Ltd.) 8.3 parts by mass, curing agent ("2MZA-PW", imidazole-based curing Accelerator, 2,4-diamino-6- [2'-methylimidazolyl- (1')] -ethyl-s-triazine, manufactured by Shikoku Kasei Co., Ltd., 1 part by mass, fumed silica ("RY200", Japan Aerosil Co., Ltd.) (Manufactured) 0.2 parts by mass, magnetic powder ("MA-RCO-5", Fe-Ni alloy, Ni content 50%: Fe content 50%, average particle size 3 ⁇ m, manufactured by DOWA Electronics) 62 mass The parts were mixed to prepare a paste-like resin composition.
  • Example 2 ⁇ Example 2> In Example 1, 62 parts by mass of magnetic powder (“MA-RCO-5”, Fe—Ni alloy, Ni content 50%: Fe content 50%, average particle size 3 ⁇ m, manufactured by DOWA Electronics) was used. It was changed to 53 parts by mass. A paste-like resin composition was prepared in the same manner as in Example 1 except for the above items.
  • MA-RCO-5 Fe—Ni alloy, Ni content 50%: Fe content 50%, average particle size 3 ⁇ m, manufactured by DOWA Electronics
  • Example 3 ⁇ Example 3> In Example 1, 62 parts by mass of magnetic powder (“MA-RCO-5”, Fe—Ni alloy, Ni content 50%: Fe content 50%, average particle size 3 ⁇ m, manufactured by DOWA Electronics) was used. It was changed to 70 parts by mass. A paste-like resin composition was prepared in the same manner as in Example 1 except for the above items.
  • MA-RCO-5 Fe—Ni alloy, Ni content 50%: Fe content 50%, average particle size 3 ⁇ m, manufactured by DOWA Electronics
  • Example 4 In Example 1, 62 parts by mass of magnetic powder (“MA-RCO-5”, Fe—Ni alloy, Ni content 50%: Fe content 50%, average particle size 3 ⁇ m, manufactured by DOWA Electronics Co., Ltd.) was used. Magnetic powder (“80% Ni-4Mo”, Fe—Ni—Mo alloy, Ni content 80%: Fe content 16%: Mo content 4%, average particle size 3 ⁇ m, manufactured by Epson Atmix) 62 It was changed to the mass part. A paste-like resin composition was prepared in the same manner as in Example 1 except for the above items.
  • Example 5 ⁇ Example 5> In Example 1, 62 parts by mass of magnetic powder (“MA-RCO-5”, Fe—Ni alloy, Ni content 50%: Fe content 50%, average particle size 3 ⁇ m, manufactured by DOWA Electronics) was used. It was changed to 44 parts by mass. A paste-like resin composition was prepared in the same manner as in Example 1 except for the above items.
  • MA-RCO-5 Fe—Ni alloy, Ni content 50%: Fe content 50%, average particle size 3 ⁇ m, manufactured by DOWA Electronics
  • Example 6 ⁇ Example 6> In Example 1, 62 parts by mass of magnetic powder (“MA-RCO-5”, Fe—Ni alloy, Ni content 50%: Fe content 50%, average particle size 3 ⁇ m, manufactured by DOWA Electronics) was used. It was changed to 36 parts by mass. A paste-like resin composition was prepared in the same manner as in Example 1 except for the above items.
  • MA-RCO-5 Fe—Ni alloy, Ni content 50%: Fe content 50%, average particle size 3 ⁇ m, manufactured by DOWA Electronics
  • Example 1 ⁇ Comparative example 1>
  • MA-RCO-5 Fe—Ni alloy, Ni content 50%: Fe content 50%, average particle size 3 ⁇ m, manufactured by DOWA Electronics Co., Ltd.
  • a paste-like resin composition was prepared in the same manner as in Example 1 except for the above items.
  • Example 2 ⁇ Comparative example 2>
  • 62 parts by mass of magnetic powder (“MA-RCO-5”, Fe—Ni alloy, Ni content 50%: Fe content 50%, average particle size 3 ⁇ m, manufactured by DOWA Electronics Co., Ltd.) was used. It was changed to 62 parts by mass of magnetic powder (“Fe-6.5Si-4.5Cr”, Fe—Si—Cr alloy, average particle size 3 ⁇ m, manufactured by Epson Atmix Co., Ltd.).
  • a paste-like resin composition was prepared in the same manner as in Example 1 except for the above items.
  • ⁇ Test Example 1 Evaluation of solubility of magnetic powder> 10 g of the magnetic powder which is the raw material of the paste-like resin composition was weighed, put into 100 mL of 2N sulfuric acid, and immersed at 40 ° C. for 5 minutes. After that, the magnetic powder was recovered using a filter paper (Kiriyama Glass Co., Ltd., No. 5B 60 mm ⁇ ), dried at 100 ° C. for 60 minutes, and then weighed the magnetic powder using a precision balance to maintain the weight. The rate (%) was calculated.
  • ⁇ Test Example 2 Evaluation of relative magnetic permeability>
  • a polyethylene terephthalate (PET) film (“PET501010” manufactured by Lintec Corporation, thickness 50 ⁇ m) treated with a silicon-based release agent was prepared.
  • the paste-like resin compositions of Examples and Comparative Examples were uniformly applied on the release surface of the PET film with a doctor blade so that the thickness of the paste layer after drying was 100 ⁇ m to obtain a resin sheet.
  • the obtained resin sheet was heated at 180 ° C. for 90 minutes to thermally cure the paste layer, and the support was peeled off to obtain a sheet-like cured product.
  • the prepared sheet-like cured product was cut into test pieces having a width of 5 mm and a length of 18 mm to prepare an evaluation sample.
  • this evaluation sample was measured at a measurement frequency of 100 MHz by a 3-turn coil method, and the specific magnetic permeability ( ⁇ ') was measured at room temperature of 23 ° C.
  • ⁇ Test Example 3 Etching rate evaluation>
  • the sheet-shaped cured product of Test Example 2 prepared using the paste-like resin compositions of Examples and Comparative Examples was cut into a size of 5 cm x 5 cm, dried at 130 ° C. for 15 minutes, and the mass immediately after the drying was measured. This is referred to as sample A, and the mass of sample A is referred to as "X1".
  • Sample A was immersed in a cleaner / seculigand 902 manufactured by Atotech Japan Co., Ltd. at 60 ° C. for 5 minutes, washed with water, and then soft-etched (Na 2 S 2 O 8 : 100 g / L, H 2 SO 4 (75% aq.
  • ⁇ Test Example 4 Pencil hardness evaluation> The surface of the cured sheet-like product of Test Example 2 prepared using the paste-like resin compositions of Examples and Comparative Examples was formed into a sheet according to the test method of JIS K 5600-5-4 on the surface that did not face the PET film. The hardness of the surface of the cured product was measured. The hardness of the hardest pencil that did not cause scratches was defined as the pencil hardness.
  • the prepared evaluation substrate (5 cm square) is immersed in a reducing solution ("Reducer Accelerator 810mod.”, Atotech Japan, 60 ml, “Reducer Neogant WA”, Atotech Japan, 3 ml) at 40 ° C. for 24 hours. did.
  • the precipitated precipitate was filtered out as an insoluble matter using a filter paper (Kiriyama Glass Co., Ltd., No. 5B 60 mm ⁇ ), vacuum dried for 5 hours, and then the amount of insoluble matter (mg / L) was measured using a precision balance. , Evaluated according to the following criteria.
  • Insoluble matter amount is less than 300 mg / L
  • Insoluble matter amount is 300 mg / L or more
  • Table 1 below shows the non-volatile components and their contents of the resin compositions of Examples and Comparative Examples, and the measurement results and evaluations of Test Examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)

Abstract

本発明は、磁性粉体を含む磁性硬化物上に湿式めっきによる導体層が形成される回路基板の製造方法であって、酸化剤による磁性硬化物層表面の処理を行わない場合であっても、磁性異物の生成を抑制することができる製造方法を提供する。本発明は、(1)樹脂組成物を熱硬化させ、磁性硬化物を得る工程、(2)磁性硬化物の表面の少なくとも一部を研磨する工程、及び(3)磁性硬化物の研磨した面上の少なくとも一部に、湿式めっきにより導体層を形成する工程をこの順で含む、回路基板の製造方法であって、樹脂組成物が、(A)ニッケルを含む磁性粉体、(B)エポキシ樹脂、及び(C)硬化剤を含む、回路基板の製造方法等である。

Description

回路基板の製造方法
 本発明は、磁性粉体を含む樹脂組成物を用いる回路基板の製造方法;当該樹脂組成物に関する。
 パワーインダクタ、高周波帯域用インダクタ、コモンモードチョークコイルと呼ばれることがあるインダクタは、携帯電話機、スマートフォンなどの情報端末に数多く搭載されている。従来は独立したインダクタ部品が回路基板上に実装されていたが、近年は回路基板の導体パターンによりコイルを形成し、インダクタを回路基板の内部に設ける手法が行われるようになってきている。
 例えば、特許文献1には、多層基板の複数層に複数回巻きの渦巻状導体パターンを形成し、各層の導体パターンの端を上層及び下層と層間接続し、全体としてらせん状のコイルを形成した、インダクタが内蔵された多層回路基板が開示されている。また特許文献2には、回路基板の薄型化のため、インダクタ部品を回路基板のコア基板に内蔵することが開示されている。
 このように絶縁層上に形成される複数の導体パターンによりインダクタを形成したインダクタ部品を製造する場合、絶縁層を形成するための材料として磁性粉体を含有する樹脂組成物を用いることが考えられる。磁性粉体を含む絶縁層(磁性硬化物層)を用いれば、インダクタンス値を高くすることができ、またインダクタ外への磁力線の漏れも防ぐことができる。例えば、特許文献2には、支持体付き樹脂シートの樹脂組成物層を構成する樹脂組成物に磁性粉体を含有させ、形成される絶縁層を磁性体とすることが開示されている。
 また、例えば、特許文献3には、インダクタ部品用の回路基板におけるスルーホールを、磁性粉体を含む樹脂組成物で充填して、磁性体コアを形成し、回路基板の配線層の形成されたコイルの中心に、該磁性体コアを配置することで、小型で高いインダクタンスを達成したインダクタ部品が開示されている。
特開2009-16504号公報 特開2012-186440号公報 特開2016-197624号公報
 これらインダクタ部品(回路基板)の製造においては、磁性粉体を含む磁性硬化物層上に、導体層を形成することがあり、コスト面で有利な湿式めっきにより導体層を形成することが望まれる。
 磁性粉体を含まない絶縁層上に導体層を形成する際、通常、酸化剤で絶縁層の表面を処理した後に導体層を形成する方法が一般的である。しかしながら、本発明者らはこれまでに、磁性粉体を含有する磁性硬化物層上に導体層を形成する場合、磁性硬化物層の表面を酸化剤で処理すると樹脂及び磁性粉体が溶出し、磁性硬化物層が脆くなってしまうことから、めっき密着性を良好なものにすることが困難となることを見出している。
 このため、本発明者らは、酸化剤を使用しないで磁性硬化物層上に導体層を形成するプロセスとして、磁性硬化物層の表面を研磨して導体層を形成する方法を検討した。しかしながら、磁性硬化物層の表面を研磨後、磁性硬化物層上への湿式めっきによる導体層の形成を行ったところ、湿式めっきを行うプロセスにおいて、磁性硬化物層中に含まれる磁性粉体に由来すると考えられる沈殿物や析出物等の磁性異物が生成し、浴及び基板等を汚染するという新たな課題を見出した。特に、無電解めっきを行う場合に、磁性硬化物層表面にパラジウム等の触媒を付与した後、該触媒を還元剤で活性化する触媒活性化工程において汚染が顕著となることを見出した。
 本発明は、上記の事情に鑑みてなされたものであり、酸化剤による磁性硬化物層表面の処理を行わない場合であっても、磁性粉体を含む磁性硬化物層上に湿式めっきによる導体層が形成される回路基板の製造において、磁性異物の生成を抑制することができる基板の製造方法を提供することを目的とする。
 本発明者らは、上記目的を達成すべく、鋭意検討した結果、樹脂組成物中に含有させる磁性粉体としてニッケルを含むものを使用することにより、酸化剤による磁性硬化物層表面の処理を行わずに、その代わりとして研磨処理を行う場合であっても、湿式めっきプロセスにおける磁性異物の生成を抑制できることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の内容を含む。
[1] (1)樹脂組成物を熱硬化させ、磁性硬化物を得る工程、(2)磁性硬化物の表面の少なくとも一部を研磨する工程、及び(3)磁性硬化物の研磨した面上の少なくとも一部に、湿式めっきにより導体層を形成する工程をこの順で含む、回路基板の製造方法であって、樹脂組成物が、(A)ニッケルを含む磁性粉体、(B)エポキシ樹脂、及び(C)硬化剤を含む、回路基板の製造方法。
[2] (A)成分が、ニッケル鉄合金系金属粉である、上記[1]に記載の回路基板の製造方法。
[3] (A)成分中のニッケル含有量が、30質量%~90質量%である、上記[1]又は[2]に記載の回路基板の製造方法。
[4] 樹脂組成物中の(A)成分の含有量が、樹脂組成物中の不揮発成分を100質量%とした場合、70質量%~98質量%である、上記[1]~[3]の何れかに記載の回路基板の製造方法。
[5] 2N硫酸に40℃5分浸漬した場合の(A)成分の重量保持率が、90%以上である、上記[1]~[4]の何れかに記載の回路基板の製造方法。
[6] (B)成分が、25℃で液状のエポキシ樹脂を含む、上記[1]~[5]の何れかに記載の回路基板の製造方法。
[7] (C)成分が、酸無水物系硬化剤、アミン系硬化剤、及びイミダゾール系硬化剤からなる群から選ばれる硬化剤である、上記[1]~[6]の何れかに記載の回路基板の製造方法。
[8] (1)工程で得られる磁性硬化物の表面のJIS K 5600-5-4に従って測定した鉛筆硬度が、F~5Hである、上記[1]~[7]の何れかに記載の回路基板の製造方法。
[9] (1)工程で得られる磁性硬化物をソフトエッチング液(Na100g/L,HSO(75%水溶液))に30℃1分間浸漬した場合のエッチングレートが、25mg/cm以下である、上記[1]~[8]の何れかに記載の回路基板の製造方法。
[10] 樹脂組成物がペースト状である、上記[1]~[9]の何れかに記載の回路基板の製造方法。
[11] (A)ニッケルを含む磁性粉体、(B)エポキシ樹脂、及び(C)硬化剤を含む、樹脂組成物。
 本発明における樹脂組成物を硬化させて得られる磁性硬化物を回路基板の製造に使用することにより、酸化剤による磁性硬化物層表面の処理を行わない場合であっても、湿式めっきプロセスで処理液中に生成し得る磁性異物の生成量を抑制することができる。
図1は、回路基板の製造方法の第1実施形態の一例としてのコア基板の模式的な断面図である。 図2は、回路基板の製造方法の第1実施形態の一例としてのスルーホールを形成したコア基板の模式的な断面図である。 図3は、回路基板の製造方法の第1実施形態の一例としてのスルーホール内にめっき層を形成した様子を示す模式的な断面図である。 図4は、回路基板の製造方法の第1実施形態の一例としてのスルーホール内にスルーホール充填用ペーストを充填させた様子を示す模式的な断面図である。 図5は、回路基板の製造方法の第1実施形態の一例としての充填させたスルーホール充填用ペーストを熱硬化させた磁性硬化物の様子を示す模式的な断面図である。 図6は、回路基板の製造方法の第1実施形態の一例としての磁性硬化物を研磨した後の様子を示す模式的な断面図である。 図7は、回路基板の製造方法の第1実施形態の一例としての研磨した面上に導体層を形成した様子を示す模式的な断面図である。 図8は、回路基板の製造方法の第1実施形態の一例としてのパターン導体層を形成した様子を示す模式的な断面図である。 図9は、回路基板の製造方法の第2実施形態の一例としての(α)工程を説明するための模式的な断面図である。 図10は、回路基板の製造方法の第2実施形態の一例としての(α)工程を説明するための模式的な断面図である。 図11は、回路基板の製造方法の第2実施形態の一例としての(β)工程を説明するための模式的な断面図である。 図12は、回路基板の製造方法の第2実施形態の一例としてのパターン導体層を形成した様子を示す模式的な断面図である。 図13は、一例としての回路基板の製造方法の第2実施形態により得た回路基板を含むインダクタ部品をその厚さ方向の一方からみた模式的な平面図である。 図14は、一例としてのII-II一点鎖線で示した位置で切断した回路基板の製造方法の第2実施形態により得た回路基板を含むインダクタ部品の切断端面を示す模式的な図である。 図15は、一例としての回路基板の製造方法の第2実施形態により得た回路基板を含むインダクタ部品のうちの第1導体層の構成を説明するための模式的な平面図である。
 以下、図面を参照して、本発明の実施形態について説明する。なお、各図面は、発明が理解できる程度に、構成要素の形状、大きさ及び配置が概略的に示されているに過ぎない。本発明は以下の記述によって限定されるものではなく、各構成要素は適宜変更可能である。以下の説明に用いる図面において、同様の構成要素については同一の符号を付して示し、重複する説明については省略する場合がある。また、本発明の実施形態にかかる構成は、必ずしも図示例の配置により、製造されたり、使用されたりするとは限らない。
[回路基板]
 回路基板とは、片面又は両面に導体層(回路)が形成された基板をいう。回路基板は、半導体チップ等の電子部品を搭載するための配線板として用いることができ、かかる配線板を内層基板として使用した(多層)プリント配線板として用いることもできる。
 以下、回路基板の製造方法について説明する。
[回路基板の製造方法]
 本発明の回路基板の製造方法は、(1)樹脂組成物を熱硬化させ、磁性硬化物を得る工程、(2)磁性硬化物の表面の少なくとも一部を研磨する工程、及び(3)磁性硬化物の研磨した面上の少なくとも一部に、湿式めっきにより導体層を形成する工程、をこの順で含む。また、樹脂組成物は、(A)ニッケルを含む磁性粉体、(B)エポキシ樹脂、及び(C)硬化剤を含む。このように、本発明における樹脂組成物には磁性粉体として酸に強い(A)ニッケルを含む磁性粉体が用いられているため、その磁性硬化物を回路基板の製造に用いることにより、酸化剤による磁性硬化物層表面の処理を行わずに、その代わりとして研磨処理を行う場合であっても、湿式めっきプロセスにおいて、処理液中に生じ得る磁性異物の生成量が低く抑えられるため、浴、基板等の汚染を防止することができる。特に(A)ニッケルを含む磁性粉体を含む面を有する磁性硬化物と、前記面に形成された導体層とを備える回路基板を、磁性異物の生成量を抑制しながら回路基板を製造できる。また、一実施形態において、本発明における樹脂組成物は、(A)成分を含有していることにより研磨に適した硬度の磁性硬化物を容易に得ることができる。したがって、当該実施形態において、本発明における樹脂組成物の磁性硬化物は、研磨性に優れていることから、湿式めっきプロセスの(2)研磨工程の研磨を効率的に行うことができる。
 -(1)工程-
 (1)工程は、樹脂組成物を熱硬化させ、磁性硬化物を得る工程である。磁性硬化物の形状は特に限定されず、使用態様などに応じて適宜設定される。(1)工程を行うにあたって、樹脂組成物を準備する工程を含んでいてもよい。(1)工程における樹脂組成物の硬化温度は、樹脂組成物の組成や種類によっても異なるが、好ましくは120℃以上、より好ましくは130℃以上、さらに好ましくは150℃以上であり、好ましくは240℃以下、より好ましくは220℃以下、さらに好ましくは200℃以下である。樹脂組成物の硬化時間は、好ましくは5分以上、より好ましくは10分以上、さらに好ましくは15分以上であり、好ましくは120分以下、より好ましくは100分以下、さらに好ましくは90分以下である。
 樹脂組成物を熱硬化させる前に、樹脂組成物に対して、硬化温度よりも低い温度で加熱する予備加熱処理を施してもよい。例えば、樹脂組成物を熱硬化させるのに先立ち、通常50℃以上120℃未満(好ましくは60℃以上110℃以下、より好ましくは70℃以上100℃以下)の温度にて、樹脂組成物を、通常5分間以上(好ましくは5分間~150分間、より好ましくは15分間~120分間)、予備加熱してもよい。
 (1)工程において得られる磁性硬化物の硬化度としては、好ましくは80%以上、より好ましくは85%以上、さらに好ましくは90%以上である。硬化度は、例えば示差走査熱量測定装置を用いて測定することができる。
 -(2)工程-
 (2)工程は、磁性硬化物の表面を研磨する工程である。研磨する面は、磁性硬化物の表面の少なくとも一部であればよい。研磨方法としては、例えば、バフ研磨、ベルト研磨等が挙げられる。市販されているバフ研磨装置としては石井表記社製「NT-700IM」等が挙げられる。
 磁性硬化物の研磨した面の算術平均粗さ(Ra)としては、導体層とのめっき密着性を向上させる観点から、好ましくは300nm以上、より好ましくは350nm以上、さらに好ましくは400nm以上である。上限は、好ましくは1000nm以下、より好ましくは900nm以下、さらに好ましくは800nm以下である。表面粗さ(Ra)は、例えば、非接触型表面粗さ計を用いて測定することができる。
 (2)工程後(3)工程前に、磁性硬化物の硬化度をさらに高める等の目的で、必要により熱処理工程を行ってもよい。熱処理工程における温度は上記した硬化温度に準じて行えばよく、好ましくは120℃以上、より好ましくは130℃以上、さらに好ましくは150℃以上であり、好ましくは240℃以下、より好ましくは220℃以下、さらに好ましくは200℃以下である。熱処理時間は、好ましくは5分以上、より好ましくは10分以上、さらに好ましくは15分以上であり、好ましくは90分以下、より好ましくは70分以下、さらに好ましくは60分以下である。
 (2)工程において、磁性硬化物の表面を研磨することにより、当該表面に対して酸化剤による処理を行うことなく磁性硬化物上に導体層を形成することができるため、磁性硬化物が脆くなることを防止し、良好なめっき密着性を達成できる。
 また、こうして得られる磁性硬化物の研磨面には、(A)ニッケルを含む磁性粉体が一部露出している場合があるが、(A)成分が酸に強いことから、磁性異物の生成量が低く抑えられる。
 -(3)工程-
 (3)工程は、磁性硬化物の研磨した面上の少なくとも一部に、湿式めっきにより導体層を形成する工程である。磁性硬化物の研磨面には(A)ニッケルを含む磁性粉体が存在し得るが、(A)ニッケルを含む磁性粉体は、めっきで使用する液に溶出し難いので、磁性異物の発生を抑制できる。導体層の材料としては、例えば、金、白金、パラジウム、銀、銅、アルミニウム、コバルト、クロム、亜鉛、ニッケル、チタン、タングステン、鉄、スズ、インジウム等の単金属;金、白金、パラジウム、銀、銅、アルミニウム、コバルト、クロム、亜鉛、ニッケル、チタン、タングステン、鉄、スズ及びインジウムの群から選択される2種以上の金属の合金が挙げられる。中でも、汎用性、コスト、パターニングの容易性等の観点から、クロム、ニッケル、チタン、アルミニウム、亜鉛、金、パラジウム、銀若しくは銅、又はニッケルクロム合金、銅ニッケル合金、銅チタン合金を用いることが好ましく、クロム、ニッケル、チタン、アルミニウム、亜鉛、金、パラジウム、銀若しくは銅、又はニッケルクロム合金を用いることがより好ましく、銅を用いることがさらに好ましい。
 (3)工程の好適な実施形態では、湿式めっき処理として無電解めっき処理を行い、導体層を形成することが好ましく、無電解めっき処理を行った後、さらに電解めっき処理を行い、導体層を形成することがより好ましい。よって、(3)工程は、セミアディティブ法、フルアディティブ法等によって磁性硬化物の表面にめっきし導体層を形成することが好ましい。(3)工程は、導体層の製造のしやすさの観点から、セミアディティブ法により導体層を形成することが好ましい。
 セミアディティブ法の詳細は、まず、磁性硬化物の表面に、無電解めっき処理によりめっきシード層を形成する。次いで、形成されためっきシード層上に、所望の配線パターンに対応してめっきシード層の一部を露出させるマスクパターンを形成する。露出しためっきシード層上に、電解めっき処理により導体層を形成した後、マスクパターンを除去する。その後、不要なめっきシード層をエッチング等により除去して、所望の配線パターンを有する導体層を形成することができる。
 無電解めっき処理は、無電解めっき液に磁性硬化物を浸漬させて行う。無電解めっき処理としては、例えば、無電解銅めっき、無電解ニッケルめっき、無電解ニッケル-タングステンめっき、無電解スズめっき、無電解金めっき等が挙げられ、無電解銅めっきが好ましい。
 無電解めっき処理に用いる無電解めっき液としては、例えば、銅、ニッケル、タングステン、錫、金、パラジウム、PdCl等の金属イオンを含有する液が挙げられる。また、無電解めっき液は、還元剤などのその他の添加剤を含んでいてもよい。無電解めっき液は、市販品を用いることができる。市販品としては、例えば、上村工業社製の「スルカップPEA」や、日本カニゼン社製の「S-KPD」等が挙げられる。
 無電解めっき処理の処理時間としては、触媒を活性化させる観点から、好ましくは10分以上、より好ましくは20分以上、さらに好ましくは30分以上であり、好ましくは60分以下、より好ましくは50分以下、さらに好ましくは40分以下である。
 無電解めっき処理の処理温度としては、導体層形成の効率化の観点から、好ましくは10℃以上、より好ましくは20℃以上、さらに好ましくは30℃以上であり、好ましくは60℃以下、より好ましくは55℃以下、さらに好ましくは50℃以下である。
 無電解めっき処理によりめっきシード層を形成した後、めっきシード層上に、ドライフィルムを積層する。その後、所望の配線パターンに対応してめっきシード層の一部が露出するようにフォトマスクを用いて所定の条件で露光、現像を行い、マスクパターンを形成する。露光及び現像条件は、すでに公知の条件にて行うことできる。
 ドライフィルムとしては、フォトレジスト組成物からなる感光性のドライフィルムを用いることができる。このようなドライフィルムとしては、例えば、ノボラック樹脂、アクリル樹脂等が挙げられる。
 マスクパターンは、電解銅めっき処理におけるめっきマスクとして使用する。電解めっき処理後、マスクパターンは除去される。
 電解めっき処理は、めっき浴に無電解めっき処理後の磁性硬化物を浸漬させて行う。その際、めっき浴に電流を流して行う。電解めっき処理としては、電解銅めっき、電解ニッケルめっき、電解スズめっき、電解金めっき等が挙げられ、電解銅めっきが好ましい。
 電解めっき処理に用いるめっき浴としては、硫酸銅、ピロリン酸銅、シアン化銅等を含む浴が挙げられる。
 電解めっき処理の処理時間としては、触媒を活性化させる観点から、好ましくは30分以上、より好ましくは40分以上、さらに好ましくは50分以上であり、好ましくは90分以下、より好ましくは80分以下、さらに好ましくは70分以下である。
 電解めっき処理の処理温度としては、導体層形成の効率化の観点から、好ましくは10℃以上、より好ましくは15℃以上、さらに好ましくは20℃以上であり、好ましくは50℃以下、より好ましくは40℃以下、さらに好ましくは30℃以下である。
 電解めっき処理の電流密度としては、導体層形成の効率化の観点から、好ましくは1.0A/dm以上、より好ましくは1.5A/dm以上、さらに好ましくは2.0A/dm以上であり、好ましくは4.0A/dm以下、より好ましくは3.5A/dm以下、さらに好ましくは3.0A/dm以下である。
 導体層形成後、導体層のピール強度を向上させる等の目的で、必要によりアニール処理を行ってもよい。アニール処理は、例えば、基板を150~200℃で20~90分間加熱することにより行うことができる。
 導体層の厚さは、薄型化の観点から、好ましくは70μm以下であり、より好ましくは60μm以下であり、さらに好ましくは50μm以下、さらにより好ましくは40μm以下、特に好ましくは30μm以下、20μm以下、15μm以下又は10μm以下である。下限は好ましくは1μm以上、より好ましくは3μm以上、さらに好ましくは5μm以上である。
 以下、回路基板の製造方法のより具体的な例として、第1実施形態及び第2実施形態について説明する。当然、本発明に係る回路基板の製造方法は、以下に例示する第1及び第2実施形態に限定されない。
<第1実施形態>
 第1実施形態における回路基板は、スルーホールが形成された基板と、前記スルーホールを充填する磁性硬化物と、を含む。したがって、第1実施形態における回路基板の製造方法は、
 (1A)基板のスルーホール内に樹脂組成物を充填し、樹脂組成物を熱硬化して磁性硬化物を形成する工程、
 (2A)磁性硬化物の表面の少なくとも一部を研磨する工程、
 (3A)磁性硬化物の研磨した面上の少なくとも一部に、湿式めっきにより導体層を形成する工程をこの順で含む。
 第1実施形態における回路基板の製造方法は、さらに(2A)工程後(3A)工程前に、
 (2A-1)磁性硬化物表面を、界面活性剤を含む溶液で処理するコンディショニング工程、及び
 (2A-2)磁性硬化物表面に触媒を付与する触媒化工程
をこの順でさらに含むことが好ましく、
 (2A-2)工程後(3A)工程前に、
 (2A-3)触媒を活性化する触媒活性化工程
をさらに含むことがより好ましい。(2A-1)~(2A-3)工程を(2A)工程終了後に行う場合、特に(2A-2)工程及び(2A-3)工程において発生する不溶物等の発生を抑制することが可能となる。
 また、(2A-1)工程後(2A-2)工程前に、
 (2A-1-1)界面活性剤が不要な部位から界面活性剤を除去するマイクロエッチング工程を含んでいてもよい。
-(1A)工程-
 (1A)工程は、基板のスルーホール内に樹脂組成物を充填し、樹脂組成物を熱硬化して磁性硬化物を形成する工程である。(1A)工程では、磁性ペーストを用いて磁性硬化物を形成することが好ましい。また、(1A)工程を行うにあたって、図1に一例を示すように、支持基板11、並びに該支持基板11の両表面に設けられた銅箔等の金属からなる第1金属層12、及び第2金属層13を備えるコア基板10を準備する工程を含んでいてもよい。支持基板11の材料の例としては、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等の絶縁性基材が挙げられる。
 また、図2に一例を示すように、コア基板10にスルーホール14を形成する工程を含んでいてもよい。スルーホール14は、例えば、ドリル、レーザー照射、プラズマ照射等により形成することができる。具体的には、ドリル等を用いてコア基板10に貫通穴を形成することにより、スルーホール14を形成することができる。
 スルーホール14の形成は、市販されているドリル装置を用いて実施することができる。市販されているドリル装置としては、例えば、日立ビアメカニクス社製「ND-1S211」等が挙げられる。
 コア基板10にスルーホール14を形成した後、図3に一例を示すように、コア基板10の粗化処理を行い、スルーホール14内、第1金属層12の表面上、及び第2金属層13の表面上にめっき層20を形成する工程を含んでいてもよい。
 前記の粗化処理としては、乾式及び湿式のいずれの粗化処理を行ってもよい。乾式の粗化処理の例としては、プラズマ処理等が挙げられる。また、湿式の粗化処理の例としては、膨潤液による膨潤処理、酸化剤による粗化処理、及び、中和液による中和処理をこの順に行う方法が挙げられる。
 めっき層20は、めっき法により形成され、めっき法によりめっき層20が形成される手順は、後述する(3A)工程における導体層の形成と同様である。
 スルーホール14内にめっき層20を形成されたコア基板10を用意した後で、図4に一例を示すように、樹脂組成物30aをスルーホール14へ充填する。充填方法としては、例えば、スキージを介してスルーホール14へ樹脂組成物30aを充填する方法、カートリッジを介して樹脂組成物30aを充填する方法、マスク印刷して樹脂組成物30aを充填する方法、ロールコート法、インクジェット法等が挙げられる。樹脂組成物30aは磁性ペーストであることが好ましい。
 スルーホール14内に樹脂組成物30aを充填後、樹脂組成物30aを熱硬化して、図5に一例を示すように、スルーホール14内に磁性硬化物30を形成する。(1A)工程における樹脂組成物30aの熱硬化条件、及び磁性硬化物30の硬化度は、上述した(1)工程で示したものと同様である。
-(2A)工程-
 (2A)工程は、磁性硬化物の表面の少なくとも一部を研磨する工程である。(2A)工程では、図6に一例を示すように、コア基板10から突出又は付着している余剰の磁性硬化物30を研磨することにより除去し、平坦化する。研磨方法としては、コア基板10から突出又は付着している余剰の磁性硬化物30を研磨することができる方法を用いることができる。このような研磨方法は、上述した(2)工程で示したものと同様である。
 (2A)工程後の磁性硬化物の研磨した面の算術平均粗さ(Ra)としては、導体層とのめっき密着性を向上させる観点から、好ましくは300nm以上、より好ましくは350nm以上、さらに好ましくは400nm以上である。上限は、好ましくは1000nm以下、より好ましくは900nm以下、さらに好ましくは800nm以下である。表面粗さ(Ra)は、例えば、非接触型表面粗さ計を用いて測定することができる。
 (2A)工程において、磁性硬化物の表面を研磨することにより、当該表面に対して酸化剤による処理を行うことなく磁性硬化物上に導体層を形成することができるため、磁性硬化物が脆くなることを防止し、良好なめっき密着性を達成できる。
 また、こうして得られる磁性硬化物の研磨面には、(A)ニッケルを含む磁性粉体が一部露出している場合があるが、(A)成分が酸に強いことから、磁性異物の生成量が低く抑えられる。
 (2A)工程後(3A)工程前に、上記(2)工程後(3)工程前と同様に、磁性硬化物の硬化度をさらに高める等の目的で、必要により熱処理工程を行ってもよい。
-(2A-1)工程-
 (2A-1)工程は、磁性硬化物表面を、界面活性剤を含む溶液で処理するコンディショニング工程である。(2A-1)工程では、通常、界面活性剤を含む溶液と磁性硬化物表面とを接触させることで、磁性硬化物表面の洗浄とともに、(2A-2)工程における触媒の吸着を容易にできるように表面電荷を調整する。
 (2A-1)工程で使用する界面活性剤を含む溶液としては、磁性硬化物表面の洗浄とともに、(2A-2)工程における触媒の吸着を容易にできるように表面電荷を調整することができる界面活性剤を含む溶液を用いることができる。このような溶液としては、界面活性剤を含むアルカリ溶液、界面活性剤を含む酸溶液等が挙げられるが、不溶物等を抑制する観点から界面活性剤を含むアルカリ溶液が好ましい。アルカリ溶液としては水酸化ナトリウム溶液、水酸化カリウム溶液等が挙げられる。
 界面活性剤を含むアルカリ溶液のpHとしては、好ましくは7を超え、より好ましくは8以上、さらに好ましくは10以上である。上限は特に制限はないが、好ましくは14以下、13以下等とし得る。界面活性剤を含む酸溶液のpHとしては、好ましくは1以上、より好ましくは2以上、さらに好ましくは3以上である。上限は特に制限はないが、好ましくは7未満、6以下等とし得る。
 界面活性剤としては、例えば、アルキルアミン塩、アルキルトリメチルアンモニウム塩、アルキルジメチルベンジルアンモニウム塩等のカチオン性界面活性剤;オレイン酸ナトリウム等の脂肪酸塩、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、ナフタレンスルホン酸塩、ポリオキシエチレンアルキル硫酸塩、アルカンスルホネートナトリウム塩、アルキルジフェニルエーテルスルホン酸ナトリウム塩等のアニオン性界面活性剤;ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンスチリルフェニルエーテル、ポリオキシエチレンオクチフェニルエーテル、ポリオキシエチレンソルビトールテトラオレエート、ポリオキシエチレン・ポリオキシプロピレン共重合体等の非イオン性界面活性剤等が挙げられる。
 界面活性剤は、市販品を用いることができる。市販品としては、例えばアトテックジャパン社製の「セキュリガンド902」、上村工業社製「PED-104」等が挙げられる。
 (2A-1)工程の処理時間としては、触媒の吸着を容易にする観点から、好ましくは1分以上、より好ましくは2分以上、さらに好ましくは3分以上であり、好ましくは20分以下、より好ましくは15分以下、さらに好ましくは10分以下である。
 界面活性剤を含む溶液の温度としては、触媒の吸着を容易にする観点から、好ましくは30℃以上、より好ましくは40℃以上、さらに好ましくは50℃以上であり、好ましくは90℃以下、より好ましくは80℃以下、さらに好ましくは70℃以下である。
 (2A-1)工程終了後、必要に応じて水洗処理を行ってもよい。
-(2A-1-1)工程-
 (2A-1-1)工程は、界面活性剤が不要な部位から界面活性剤を除去するマイクロエッチング工程である。(2A-1-1)工程では、通常、マイクロエッチング液と磁性硬化物表面とを接触させることで、界面活性剤が不要な部位から界面活性剤を除去する。界面活性剤が不要な部位としては、例えば第1金属層12及び第2金属層13等が挙げられる。
 マイクロエッチング液としては、塩酸、硫酸、過酸化水素水、過硫酸ナトリウム、過硫酸アンモニウム塩及びこれらの組み合わせからなる液等が挙げられる。
 マイクロエッチング液の濃度としては、界面活性剤を不要な部位のみから除去する観点から、規定度で、通常は2N以下、好ましくは1.5N以下、より好ましくは1N以下であり、界面活性剤の除去を容易にする観点から、好ましくは0.1N以上、より好ましくは0.2N以上、さらに好ましくは0.5N以上である。
 マイクロエッチング液の温度としては、界面活性剤の除去を容易にする観点から、好ましくは10℃以上、より好ましくは15℃以上、さらに好ましくは20℃以上であり、好ましくは50℃以下、より好ましくは40℃以下、さらに好ましくは30℃以下である。
 (2A-1-1)工程の処理時間としては、界面活性剤の除去を容易にする観点から、好ましくは10秒以上、より好ましくは15秒以上、さらに好ましくは30秒以上であり、好ましくは60秒以下、より好ましくは50秒以下、さらに好ましくは40秒以下である。
 (2A-1-1)工程終了後、必要に応じて水洗処理を行ってもよい。
-(2A-2)工程-
 (2A-2)工程は、磁性硬化物表面に触媒を付与する触媒化工程である。(2A-2)工程では、磁性硬化物表面に触媒を付与することで、磁性硬化物と導体層との間の密着性を向上させることができる。通常、(2A-2)工程では、触媒を含有する溶液に磁性硬化物を浸漬し、磁性硬化物表面に触媒を吸着させる。
 触媒としては、例えば、パラジウム塩、パラジウム錯化合物、スズ・パラジウムの錯塩、スズ・パラジウムコロイド、等が挙げられる。
 触媒を含有する溶液は、通常、アルカリ性の溶液を用いる。これにより、不溶物等の発生を顕著に抑制することができる。このアルカリ性の溶液のpHとしては、好ましくは7を超え、より好ましくは8以上、さらに好ましくは10以上である。上限は特に制限はないが、好ましくは14以下、13以下等とし得る。
 また、触媒を含有する溶液の濃度としては、磁性硬化物全体に触媒を吸着させる観点から、規定度で、好ましくは1mmol/L以上、より好ましくは5mmol/L以上、さらに好ましくは10mmol/L以上であり、好ましくは500mmol/L以下、より好ましくは300mmol/L以下、さらに好ましくは100mmol/L以下である。
 触媒を含有する溶液は、市販品を用いることができる。市販品としては、例えば、アトテックジャパン社製の「アクチベーター・ネオガンド834」、日本カニゼン社製の「ブラウンシューマー」等が挙げられる。
 (2A-2)工程の処理時間としては、磁性硬化物全体に触媒を吸着させる観点から、好ましくは1分以上、より好ましくは2分以上、さらに好ましくは3分以上であり、好ましくは20分以下、より好ましくは15分以下、さらに好ましくは10分以下である。
 触媒を含有する溶液の温度としては、磁性硬化物全体に触媒を吸着させる観点から、好ましくは10℃以上、より好ましくは20℃以上、さらに好ましくは30℃以上であり、好ましくは60℃以下、より好ましくは50℃以下、さらに好ましくは40℃以下である。
 (2A-2)工程終了後、必要に応じて水洗処理を行ってもよい。
-(2A-3)工程-
 (2A-3)工程は、触媒を活性化する触媒活性化工程である。(2A-3)工程では、触媒を活性化することで、磁性硬化物と導体層との間の密着性を向上させることができる。通常、(2A-3)工程では、触媒が付与された磁性硬化物を還元剤溶液に浸漬し触媒の核を生成させ、磁性硬化物表面に付与された触媒を活性化させる。
 従来の一般的な磁性粉体(Niを含まない金属粉体など)は、還元剤溶液に溶解しやすかった。また、溶解した磁性粉体の成分の一部又は全部は、還元剤による還元によって析出し、異物が生じやすかった。しかし、本願発明で使用する(A)成分は、還元剤溶液に溶解し難いので、異物の発生を抑制できる。
 (2A-3)工程で用いられる還元剤としては、例えば、次亜リン酸塩、ジメチルアミンボランと有機酸のカリウム塩の混合液等が挙げられる。
 還元剤溶液は、通常、酸性の溶液を用いる。このような酸性の溶液は、一般的な磁性粉体を溶解しやすいが、(A)ニッケルを含む磁性粉体は、溶解し難いので、不溶物等の発生を顕著に抑制することができる。この酸性溶液のpHとしては、好ましくは1以上、より好ましくは2以上、さらに好ましくは3以上である。上限は特に制限はないが、好ましくは7未満、6以下等とし得る。
 また、還元剤溶液中の還元剤濃度としては、磁性硬化物表面に付与された触媒を活性化させる観点から、規定度で、好ましくは0.3N以上、より好ましくは0.4N以上、さらに好ましくは0.5N以上であり、好ましくは3N以下、より好ましくは2N以下、さらに好ましくは1N以下である。
 還元剤溶液は、市販品を用いることができる。市販品としては、例えば、アトテックジャパン社製「リデューサーアクセラレーター810mod.」、「リデューサーネオガントWA」、日本カニゼン社製「K-PVD」等が挙げられる。
 (2A-3)工程の処理時間としては、触媒を活性化させる観点から、好ましくは1分以上、より好ましくは2分以上、さらに好ましくは3分以上であり、好ましくは20分以下、より好ましくは15分以下、さらに好ましくは10分以下である。
 還元剤溶液の温度としては、触媒を活性化させる観点から、好ましくは10℃以上、より好ましくは20℃以上、さらに好ましくは30℃以上であり、好ましくは60℃以下、より好ましくは50℃以下、さらに好ましくは40℃以下である。
 (2A-3)工程終了後、必要に応じて水洗処理を行ってもよい。
-(3A)工程-
 (3A)工程は、磁性硬化物の研磨した面上の少なくとも一部に、湿式めっきにより導体層を形成する工程である。(3A)工程では、図7に一例を示すように、研磨した磁性硬化物30上に、湿式めっきにより導体層40を形成する。さらに、導体層40を形成後、図8に一例を示すように、エッチング等の処理により導体層40、第1金属層12、第2金属層13、及びめっき層20の一部を除去してパターン導体層41を形成してもよい。(3A)工程における導体層40及びパターン導体層41の材料、形成方法等は、上述した(3)工程における導体層の材料、形成方法等として示したものを適用することができる。
<第2実施形態>
 第2実施形態における回路基板は、配線を含む基板と、前記配線を封止保護する磁性硬化物と、を含む。例えば、層状の磁性硬化物を備える形態である。第2実施形態における回路基板の製造方法は、
 (1B)磁性シートを、樹脂組成物層が基板と接合するように基板上に積層し、樹脂組成物層を熱硬化して磁性硬化物を形成する工程、
 (2B)磁性硬化物の表面の少なくとも一部を研磨する工程、及び
 (3B)磁性硬化物の研磨した面上の少なくとも一部に、湿式めっきにより導体層を形成する工程をこの順で含む。
 第2実施形態における回路基板の製造方法は、さらに(1B)工程後(2B)工程前に、
 (1B-1)磁性硬化物に穴あけ加工を行う工程を含むことが好ましい。
 さらに(2B)工程後(3B)工程前に、
 (2B-1)磁性硬化物表面を、界面活性剤を含む溶液で処理するコンディショニング
工程、及び
 (2B-2)磁性硬化物表面に触媒を付与する触媒化工程
をこの順でさらに含むことがより好ましく、
 (2B-2)工程後(3B)工程前に、
 (2B-3)触媒を活性化する触媒活性化工程
をさらに含むことがさらに好ましい。
 また、(2B-1)工程後(2B-2)工程前に、
 (2B-1-1)界面活性剤が不要な部位から界面活性剤を除去するマイクロエッチング工程を含んでいてもよい。
-(1B)工程-
 (1B)工程は、磁性シートを、樹脂組成物層が基板と接合するように基板上に積層し、樹脂組成物層を熱硬化して磁性硬化物を形成する工程である。(1B)工程を行うにあたって、磁性シートを準備する工程を含んでいてもよい。
 (1B)工程において、図9に一例を示すように、支持体330と、該支持体330上に設けられた樹脂組成物層320aとを含む磁性シート310を、樹脂組成物層320aが内層基板200と接合するように、内層基板200上に磁性シート310を積層させる。
 内層基板200は、絶縁性の基板である。内層基板200の材料としては、例えば、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等の絶縁性基材が挙げられる。内層基板200は、その厚さ内に配線等が作り込まれた内層回路基板であってもよい。
 図9に一例を示すように、内層基板200は、第1主表面200a上に設けられる第1導体層420と、第2主表面200b上に設けられる外部端子240とを有している。第1導体層420は、複数の配線を含んでいる。図示例ではインダクタ素子のコイル状導電性構造体400を構成する配線のみが示されている。外部端子240は図示されていない外部の装置等と電気的に接続するための端子である。外部端子240は、第2主表面200bに設けられる導体層の一部として構成することができる。
 第1導体層420、外部端子240、その他の導体層を構成し得る導体材料としては、(3)工程において説明した導体層の材料と同様である。
 第1導体層420、外部端子240、その他の導体層は、単層構造であっても、異なる種類の金属若しくは合金からなる単金属層又は合金層が2層以上積層した複層構造であってもよい。また、第1導体層420、外部端子240、その他の導体層の厚さは、第1実施形態におけるパターン導体層と同様である。
 第1導体層420及び外部端子240のライン(L)/スペース(S)比は特に制限されないが、表面の凹凸を減少させて平滑性に優れる磁性硬化物を得る観点から、通常、900/900μm以下、好ましくは700/700μm以下、より好ましくは500/500μm以下、さらに好ましくは300/300μm以下、さらにより好ましくは200/200μm以下である。ライン/スペース比の下限は特に制限されないが、スペースへの樹脂組成物層の埋め込みを良好にする観点から、好ましくは1/1μm以上である。
 内層基板200は第1主表面200aから第2主表面200bに至るように内層基板200を貫通する複数のスルーホール220を有している。スルーホール220にはスルーホール内配線220aが設けられている。スルーホール内配線220aは、第1導体層420と外部端子240とを電気的に接続している。
 樹脂組成物層320aと内層基板200との接合は、例えば、支持体330側から、磁性シート310を内層基板200に加熱圧着することにより行うことができる。磁性シート310を内層基板200に加熱圧着する部材(以下、「加熱圧着部材」ともいう。)としては、例えば、加熱された金属板(ステンレス(SUS)鏡板等)又は金属ロール(SUSロール)等が挙げられる。なお、加熱圧着部材を磁性シート310に直接的に接触させてプレスするのではなく、内層基板200の表面の凹凸に磁性シート310が十分に追随するよう、耐熱ゴム等の弾性材からなるシート等を介してプレスするのが好ましい。
 加熱圧着する際の温度は、好ましくは80℃~160℃、より好ましくは90℃~140℃、さらに好ましくは100℃~120℃の範囲であり、加熱圧着する際の圧力は、好ましくは0.098MPa~1.77MPa、より好ましくは0.29MPa~1.47MPaの範囲であり、加熱圧着する際の時間は、好ましくは20秒間~400秒間、より好ましくは30秒間~300秒間の範囲である。磁性シートと内層基板との接合は、圧力26.7hPa以下の減圧条件下で実施することが好ましい。
 磁性シート310の樹脂組成物層320aと内層基板200との接合は、市販の真空ラミネーターによって行うことができる。市販の真空ラミネーターとしては、例えば、名機製作所社製の真空加圧式ラミネーター、ニッコー・マテリアルズ社製のバキュームアプリケーター等が挙げられる。
 磁性シート310と内層基板200との接合の後に、常圧下(大気圧下)、例えば、加熱圧着部材を支持体側からプレスすることにより、積層された磁性シート31の平滑化処理を行ってもよい。平滑化処理のプレス条件は、上記積層の加熱圧着条件と同様の条件とすることができる。平滑化処理は、市販のラミネーターによって行うことができる。なお、積層と平滑化処理とは、上記の市販の真空ラミネーターを用いて連続的に行ってもよい。
 磁性シートを内層基板に積層した後、樹脂組成物層を熱硬化して磁性硬化物を形成する。図10に一例を示すように、内層基板200に接合させた樹脂組成物層320aを熱硬化し第1磁性硬化物層320を形成する。樹脂組成物層320aの熱硬化条件、及び第1磁性硬化物層320の硬化度は、(1)工程において説明した熱硬化条件及び硬化度と同様である。
 支持体330は、(1B)工程の熱硬化後と(2B)工程との間に除去してもよく、(2B)工程の後に剥離してもよい。
 また、(1B)工程は、磁性シートを内層基板上に積層する代わりに、ペースト状の樹脂組成物(磁性ペースト)を内層基板上に直接塗布又は印刷することにより行ってもよい。
-(1B-1)工程-
 (1B-1)工程は、磁性硬化物に穴あけ加工を行う工程である。(1B-1)工程において、図11に一例を示すように、第1磁性硬化物層320に穴あけ加工をし、ビアホール360を形成する。ビアホール360は、第1導体層420と、後述する第2導体層440とを電気的に接続するための経路となる。ビアホール360の形成は(1)工程において説明したスルーホールの形成と同様の方法により行うことができる。
-(2B)工程-
 (2B)工程は、磁性硬化物の表面の少なくとも一部を研磨する工程である。(2B)工程における研磨方法としては、第1実施形態の(2A)工程において説明したものと同様の研磨により行うことができる。
 (2B)工程後の磁性硬化物の研磨した面の算術平均粗さ(Ra)としては、導体層とのめっき密着性を向上させる観点から、好ましくは300nm以上、より好ましくは350nm以上、さらに好ましくは400nm以上である。上限は、好ましくは1000nm以下、より好ましくは900nm以下、さらに好ましくは800nm以下である。表面粗さ(Ra)は、例えば、非接触型表面粗さ計を用いて測定することができる。
 (2B)工程において、磁性硬化物の表面を研磨することにより、当該表面に対して酸化剤による処理を行うことなく磁性硬化物上に導体層を形成することができるため、磁性硬化物が脆くなることを防止し、良好なめっき密着性を達成できる。
 また、こうして得られる磁性硬化物の研磨面には、(A)ニッケルを含む磁性粉体が一部露出している場合があるが、(A)成分が酸に強いことから、磁性異物の生成量が低く抑えられる。
 (2B-1)~(2B-3)工程はそれぞれ第1実施形態の(2A-1)~(2A-3)工程において説明したとおりである。
-(3B)工程-
 (3B)工程は、磁性硬化物の研磨した面上の少なくとも一部に、湿式めっきにより導体層を形成する工程である。(3B)工程では、図12に一例を示すように、第1磁性硬化物層320の研磨した面上に、部分的に、第2導体層440を形成する。第2導体層440の形成方法は、第1実施形態において説明したとおりである。なお、この工程により、ビアホール360内にビアホール内配線360aが併せて形成される。第2導体層440を形成することで導体層400が形成する。第2導体層440は、複数の配線を含んでいる。
 第2導体層440を構成し得る導体材料は、第1導体層420と同様である。第2導体層440は、単層構造であっても、異なる種類の金属若しくは合金からなる単金属層又は合金層が2層以上積層した複層構造であってもよい。第2導体層440が複層構造である場合、磁性硬化物と接する層は、クロム、亜鉛若しくはチタンの単金属層、又はニッケルクロム合金の合金層であることが好ましい。また、第2導体層440の厚さは、第1導体層420の厚さと同様である。
 第1導体層420及び第2導体層440は、例えば後述する図13~15に一例を示すように、渦巻状に設けられていてもよい。一例において、第2導体層440の渦巻状の配線部のうちの中心側の一端はビアホール内配線360aにより第1導体層420の渦巻状の配線部のうちの中心側の一端に電気的に接続されている。第2導体層440の渦巻状の配線部のうちの外周側の他端はビアホール内配線360aにより第1導体層42のランド420aに電気的に接続されている。よって第2導体層440の渦巻状の配線部のうちの外周側の他端はビアホール内配線360a、ランド420a、スルーホール内配線220aを経て外部端子240に電気的に接続される。
 コイル状導電性構造体400は、第1導体層420の一部分である渦巻状の配線部、第2導体層440の一部分である渦巻状の配線部、第1導体層420の渦巻状の配線部と第2導体層440の渦巻状の配線部とを電気的に接続しているビアホール内配線360aにより構成されている。
 (3B)工程後、さらに導体層上に磁性硬化物を形成する工程を行ってもよい。詳細は、図14に一例を示すように、第2導体層440及びビアホール内配線360aが形成された第1磁性硬化物層320上に第2磁性硬化物を形成する。第2磁性硬化物は既に説明した工程と同様の工程により形成すればよい。
[磁性ペースト]
 本発明における樹脂組成物は、液状のエポキシ樹脂等を使用することにより、有機溶剤を含まなくともペースト状の磁性ペーストとすることができる。磁性ペーストが有機溶媒を含む場合、その含有量は、磁性ペーストの全質量に対して、好ましくは1.0質量%未満、より好ましくは0.8質量%以下、さらに好ましくは0.5質量%以下、特に好ましくは0.1質量%以下である。下限は、特に制限はないが0.001質量%以上、又は含有しないことである。磁性ペースト中の有機溶剤の含有量が少ない、または有機溶剤を含まないことにより、有機溶剤の揮発によるボイドの発生を抑制することができ、さらに取扱い性、作業性にも優れたものとすることができる。
 磁性ペーストの粘度は、25℃で好ましくは20Pa・s以上、より好ましくは25Pa・s以上、さらに好ましくは30Pa・s以上、50Pa・s以上であり、通常200Pa・s未満、好ましくは180Pa・s以下、より好ましくは160Pa・s以下である。粘度は、磁性ペーストの温度を25±2℃に保ち、E型粘度計を用いて測定することができる。
 このような磁性ペーストは、基板のスルーホール内に充填する際に有用である。
[磁性シート]
 磁性シートは、支持体と、該支持体上に設けられた、本発明における樹脂組成物で形成された樹脂組成物層とを含む。
 樹脂組成物層の厚さは、薄型化の観点から、好ましくは250μm以下、より好ましくは200μm以下、さらに好ましくは150μm以下、100μm以下である。樹脂組成物層の厚さの下限は、特に限定されないが、通常、5μm以上等とし得る。
 支持体としては、例えば、プラスチック材料からなるフィルム、金属箔、離型紙が挙げられ、プラスチック材料からなるフィルム、金属箔が好ましい。
 支持体としてプラスチック材料からなるフィルムを使用する場合、プラスチック材料としては、例えば、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート(以下「PEN」と略称することがある。)等のポリエステル、ポリカーボネート(以下「PC」と略称することがある。)、ポリメチルメタクリレート(PMMA)等のアクリル、環状ポリオレフィン、トリアセチルセルロース(TAC)、ポリエーテルサルファイド(PES)、ポリエーテルケトン、ポリイミド等が挙げられる。中でも、ポリエチレンテレフタレート、ポリエチレンナフタレートが好ましく、安価なポリエチレンテレフタレートが特に好ましい。
 支持体として金属箔を使用する場合、金属箔としては、例えば、銅箔、アルミニウム箔等が挙げられ、銅箔が好ましい。銅箔としては、銅の単金属からなる箔を用いてもよく、銅と他の金属(例えば、スズ、クロム、銀、マグネシウム、ニッケル、ジルコニウム、ケイ素、チタン等)との合金からなる箔を用いてもよい。
 支持体は、樹脂組成物層と接合する面にマット処理、コロナ処理を施してあってもよい。
 また、支持体としては、樹脂組成物層と接合する面に離型層を有する離型層付き支持体を使用してもよい。離型層付き支持体の離型層に使用する離型剤としては、例えば、アルキド樹脂、ポリオレフィン樹脂、ウレタン樹脂、及びシリコーン樹脂からなる群から選択される1種以上の離型剤が挙げられる。離型層付き支持体は、市販品を用いてもよく、例えば、アルキド樹脂系離型剤を主成分とする離型層を有するPETフィルムである、リンテック社製の「SK-1」、「AL-5」、「AL-7」、東レ社製の「ルミラーT60」、帝人社製の「ピューレックス」、ユニチカ社製の「ユニピール」等が挙げられる。
 支持体の厚みとしては、特に限定されないが、5μm~75μmの範囲が好ましく、10μm~60μmの範囲がより好ましい。なお、離型層付き支持体を使用する場合、離型層付き支持体全体の厚さが上記範囲であることが好ましい。
 磁性シートは、例えば、有機溶剤に樹脂組成物を溶解した磁性ペーストを調製し、この磁性ペーストを、ダイコーター等を用いて支持体上に塗布し、更に乾燥させて樹脂組成物層を形成させることにより製造することができる。なお、樹脂組成物がペースト状の場合、ダイコーター等を用いて支持体上に直接樹脂組成物を塗布して樹脂組成物層を形成させることにより製造することができる。
 有機溶剤としては、例えば、アセトン、メチルエチルケトン(MEK)及びシクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート及びカルビトールアセテート等の酢酸エステル類、セロソルブ及びブチルカルビトール等のカルビトール類、トルエン及びキシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド(DMAc)及びN-メチルピロリドン等のアミド系溶媒等を挙げることができる。有機溶剤は1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 乾燥は、加熱、熱風吹きつけ等の公知の方法により実施してよい。乾燥条件は特に限定されないが、樹脂組成物層中の有機溶剤の含有量が10質量%以下、好ましくは5質量%以下となるように乾燥させる。磁性ペースト中の有機溶剤の沸点によっても異なるが、例えば30質量%~60質量%の有機溶剤を含む磁性ペーストを用いる場合、50℃~150℃で3分間~10分間乾燥させることにより、樹脂組成物層を形成することができる。
 磁性シートにおいて、樹脂組成物層の支持体と接合していない面(即ち、支持体とは反対側の面)には、支持体に準じた保護フィルムをさらに積層することができる。保護フィルムの厚さは、特に限定されるものではないが、例えば、1μm~40μmである。保護フィルムを積層することにより、樹脂組成物層の表面へのゴミ等の付着やキズを抑制することができる。磁性シートは、ロール状に巻きとって保存することが可能である。磁性シートが保護フィルムを有する場合、保護フィルムを剥がすことによって使用可能となる。
[インダクタ部品]
 本発明における回路基板としては、パターン導体層により形成されたインダクタ素子を有するインダクタ部品であることが好ましい。
 インダクタ部品は、本発明における回路基板の製造方法により得られた回路基板を含む。このようなインダクタ部品は、回路基板の製造方法の第1実施形態により得られた回路基板を含む場合、前記の樹脂組成物の磁性硬化物の周囲の少なくとも一部に導体によって形成されたインダクタ素子を有する。このようなインダクタ部品は、例えば特開2016-197624号公報に記載のものを適用できる。
 また、回路基板の製造方法の第2実施形態により得られた回路基板を含む場合、インダクタ部品は、樹脂組成物(樹脂組成物層)の磁性硬化物と、この磁性硬化物に少なくとも一部分が埋め込まれた導電性構造体とを有しており、この導電性構造体と、磁性硬化物の厚さ方向に延在し、かつ導電性構造体に囲まれた磁性硬化物のうちの一部分によって構成されるインダクタ素子を含んでいる。ここで図13は、インダクタ素子を内蔵するインダクタ部品をその厚さ方向の一方からみた模式的な平面図である。図14は、図13のII-II一点鎖線で示した位置で切断したインダクタ部品の切断端面を示す模式的な図である。図15は、インダクタ部品のうちの第1導体層の構成を説明するための模式的な平面図である。
 インダクタ部品100は、図13及び図14に一例として示されるように、複数の磁性硬化物(第1磁性硬化物層320、第2磁性硬化物層340)及び複数の導体層(第1導体層420、第2導体層440)を有する、即ちビルドアップ磁性硬化物層及びビルドアップ導体層を有するビルドアップ配線板であり得る。また、インダクタ部品100は、内層基板200を備えている。
 図14より、第1磁性硬化物層320及び第2磁性硬化物層340は一体的な磁性硬化物としてみることができる磁性部300を構成している。よってコイル状導電性構造体400は、磁性部300に少なくとも一部分が埋め込まれるように設けられている。すなわち、本実施形態のインダクタ部品100において、インダクタ素子はコイル状導電性構造体400と、磁性部300の厚さ方向に延在し、かつコイル状導電性構造体400に囲まれた磁性部300のうちの一部分である芯部によって構成されている。
 図15に一例として示されるように、第1導体層420はコイル状導電性構造体400を構成するための渦巻状の配線部と、スルーホール内配線220aと電気的に接続される矩形状のランド420aとを含んでいる。図示例では渦巻状の配線部は直線状部と直角に屈曲する屈曲部とランド420aを迂回する迂回部を含んでいる。図示例では第1導体層420の渦巻状の配線部は全体の輪郭が略矩形状であって、中心側からその外側に向かうにあたり反時計回りに巻いている形状を有している。
 同様に、第1磁性硬化物層320上には第2導体層440が設けられている。第2導体層440はコイル状導電性構造体400を構成するための渦巻状の配線部を含んでいる。図13又は図14では渦巻状の配線部は直線状部と直角に屈曲する屈曲部とを含んでいる。図13又は図14では第2導体層44の渦巻状の配線部は全体の輪郭が略矩形状であって、中心側からその外側に向かうにあたり時計回りに巻いている形状を有している。
 このようなインダクタ部品は、半導体チップ等の電子部品を搭載するための配線板として用いることができ、かかる配線板を内層基板として使用した(多層)プリント配線板として用いることもできる。また、かかる配線板を個片化したチップインダクタ部品として用いることもでき、該チップインダクタ部品を表面実装したプリント配線板として用いることもできる。
 また、かかる配線板を用いて、種々の態様の半導体装置を製造することができる。かかる配線板を含む半導体装置は、電気製品(例えば、コンピューター、携帯電話、デジタルカメラ及びテレビ等)及び乗物(例えば、自動二輪車、自動車、電車、船舶及び航空機等)等に好適に用いることができる。
[樹脂組成物]
 本発明における樹脂組成物は、(A)ニッケルを含む磁性粉体、(B)エポキシ樹脂、及び(C)硬化剤を含む。樹脂組成物は、さらに(D)非磁性無機充填材を含有する場合があり、さらに必要に応じて(E)その他の添加剤を含み得る。
 このような樹脂組成物の磁性硬化物を回路基板の製造に用いることにより、磁性硬化物層表面の処理を行わずに、その代わりとして研磨処理を行う場合であっても、湿式めっきプロセスで処理液中に生じ得る磁性異物の生成量を抑制することができるため、浴、基板等の汚染を防止することができる。一実施形態において、本発明における樹脂組成物は、(A)成分を含有していることにより研磨に適した硬度の磁性硬化物を容易に得ることができる。したがって、当該実施形態において、本発明における樹脂組成物の磁性硬化物は、研磨性に優れる。以下、本発明における樹脂組成物の各成分について説明する。
<(A)ニッケルを含む磁性粉体>
 本発明における樹脂組成物は、(A)ニッケルを含む磁性粉体を含有する。ニッケルを含む磁性粉体としては、例えば、純ニッケル粉末;Ni-Zn系フェライト粉末、Ba-Ni系フェライト粉末、Ba-Ni-Co系フェライト粉末等のニッケル含有酸化鉄粉;Fe-Ni-Cr系合金粉末、Fe-Ni系合金粉末、Fe-Ni-Mo系合金粉末、Fe-Ni-Mo-Cu系合金粉末等のニッケル鉄合金系金属粉等が挙げられる。
 ニッケルを含む磁性粉体としては、中でも、ニッケル含有酸化鉄粉及びニッケル鉄合金系金属粉から選ばれる少なくとも1種であることが好ましく、ニッケル鉄合金系金属粉がより好ましく、Fe-Ni系合金粉末及びFe-Ni-Mo系合金粉末であることが特に好ましい。ニッケル含有酸化鉄粉は、Fe、Niに加えて、Cu、Mn、及びZnから選ばれる少なくとも1種を含むものであってもよい。また、ニッケル鉄合金系金属粉は、Fe、Niに加えて、Si、Cr、Al、Mo、Cu、及びCoから選ばれる少なくとも1種を含む鉄合金系金属粉を含むものであってもよい。
 (A)成分中のニッケル含有量は、本発明の所望の効果を顕著に得る観点から、例えば10質量%以上、20質量%以上、30質量%以上であり、好ましくは35質量%以上、より好ましくは40質量%以上、特に好ましくは45質量%以上である。上限は、特に限定されるものではないが、例えば、100質量%以下、100質量%未満、95質量%以下、90質量%以下、85質量%以下等とし得る。
 (A)成分中の鉄含有量は、特に限定されるものではないが、例えば90質量%以下、80質量%以下、70質量%以下であり、好ましくは65質量%以下、より好ましくは60質量%以下、特に好ましくは55質量%以下である。下限は、特に限定されるものではないが、例えば、0質量%以上、0質量%超、5質量%以上、10質量%以上、15質量%以上等とし得る。
 (A)成分としては、市販の磁性粉体を用いることができる。用いられ得る市販の磁性粉体の具体例としては、DOWAエレクトロニクス社製「MA-RCO-5」、エプソンアトミックス社製「80%Ni-4Mo」等が挙げられる。磁性粉体は1種単独で用いてもよく、又は2種以上を併用してもよい。
 (A)成分は、球状であることが好ましい。磁性粉体の長軸の長さを短軸の長さで除した値(アスペクト比)としては、好ましくは2以下、より好ましくは1.5以下、さらに好ましくは1.2以下である。一般に、磁性粉体は球状ではない扁平な形状であるほうが、比透磁率を向上させやすい。しかし、特に球状の磁性粉体を用いる方が、通常、磁気損失を低くでき、また好ましい粘度を有するペーストを得る観点から好ましい。
 (A)成分の平均粒径は、比透磁率を向上させる観点から、好ましくは0.01μm以上、より好ましくは0.5μm以上、さらに好ましくは1μm以上である。また、好ましくは30μm以下、より好ましくは20μm以下、さらに好ましくは10μm以下である。
 (A)成分の平均粒径はミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。具体的にはレーザー回折散乱式粒径分布測定装置により、磁性粉体の粒径分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。測定サンプルは、磁性粉体を超音波により水に分散させたものを好ましく使用することができる。レーザー回折散乱式粒径分布測定装置としては、堀場製作所社製「LA-500」、島津製作所社製「SALD-2200」等を使用することができる。
 (A)成分の比表面積は、比透磁率を向上させる観点から、好ましくは0.05m/g以上、より好ましくは0.1m/g以上、さらに好ましくは0.3m/g以上である。また、好ましくは10m/g以下、より好ましくは8m/g以下、さらに好ましくは5m/g以下である。磁性粉体の比表面積は、BET法によって測定できる。
 (A)成分の酸浸漬時の未溶解率、即ち重量保持率は、本発明の所望の効果を顕著に得る観点から、例えば、2N硫酸に40℃5分間浸漬した場合において、70%以上が好ましく、80%以上がより好ましく、90%以上がさらに好ましく、95%以上が特に好ましい。
 (A)成分の含有量(体積%)は、比透磁率を向上させ及び損失係数を低減させる観点から、樹脂組成物中の不揮発成分を100体積%とした場合、好ましくは10体積%以上、より好ましくは20体積%以上、さらに好ましくは30体積%以上である。また、好ましくは85体積%以下、より好ましくは80体積%以下、さらに好ましくは75体積%以下である。
 (A)成分の含有量(質量%)は、比透磁率を向上させ及び損失係数を低減させる観点から、樹脂組成物中の不揮発成分を100質量%とした場合、好ましくは70質量%以上、より好ましくは75質量%以上、さらに好ましくは78質量%以上である。また、好ましくは98質量%以下、より好ましくは95質量%以下、さらに好ましくは90質量%以下である。
<(B)エポキシ樹脂>
 本発明における樹脂組成物は、(B)エポキシ樹脂を含有する。
 (B)エポキシ樹脂としては、例えば、ビキシレノール型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、tert-ブチル-カテコール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフトール型エポキシ樹脂、アントラセン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、線状脂肪族エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂、スピロ環含有エポキシ樹脂、シクロヘキサン型エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、トリメチロール型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂等が挙げられる。エポキシ樹脂は、1種類単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 樹脂組成物は、(B)エポキシ樹脂として、1分子中に2個以上のエポキシ基を有するエポキシ樹脂を含むことが好ましい。本発明の所望の効果を顕著に得る観点から、(B)エポキシ樹脂の不揮発成分100質量%に対して、1分子中に2個以上のエポキシ基を有するエポキシ樹脂の割合は、好ましくは50質量%以上、より好ましくは60質量%以上、特に好ましくは70質量%以上である。
 エポキシ樹脂には、温度25℃で液状のエポキシ樹脂(以下「液状エポキシ樹脂」ということがある。)と、温度25℃で固体状のエポキシ樹脂(以下「固体状エポキシ樹脂」ということがある。)とがある。一実施形態では、本発明の樹脂組成物は、エポキシ樹脂として、液状エポキシ樹脂を含む。一実施形態では、本発明の樹脂組成物は、エポキシ樹脂として、固体状エポキシ樹脂を含む。本発明の樹脂組成物は、エポキシ樹脂として、液状エポキシ樹脂のみを含んでいてもよく、或いは固体状エポキシ樹脂のみを含んでいてもよく、液状エポキシ樹脂と固体状エポキシ樹脂とを組み合わせて含んでいてもよいが、好適な実施形態では、液状エポキシ樹脂のみを含む。
 液状エポキシ樹脂としては、1分子中に2個以上のエポキシ基を有する液状エポキシ樹脂が好ましい。
 液状エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ナフタレン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、エステル骨格を有する脂環式エポキシ樹脂、シクロヘキサン型エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、及びブタジエン構造を有するエポキシ樹脂が好ましい。
 液状エポキシ樹脂の具体例としては、DIC社製の「HP4032」、「HP4032D」、「HP4032SS」(ナフタレン型エポキシ樹脂);三菱ケミカル社製の「828US」、「828EL」、「jER828EL」、「825」、「エピコート828EL」(ビスフェノールA型エポキシ樹脂);三菱ケミカル社製の「jER807」、「1750」(ビスフェノールF型エポキシ樹脂);三菱ケミカル社製の「jER152」(フェノールノボラック型エポキシ樹脂);三菱ケミカル社製の「630」、「630LSD」(グリシジルアミン型エポキシ樹脂);新日鉄住金化学社製の「ZX1059」(ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合品);ナガセケムテックス社製の「EX-721」(グリシジルエステル型エポキシ樹脂);ダイセル社製の「セロキサイド2021P」(エステル骨格を有する脂環式エポキシ樹脂);ダイセル社製の「PB-3600」、日本曹達社製の「JP-100」、「JP-200」(ブタジエン構造を有するエポキシ樹脂);新日鉄住金化学社製の「ZX1658」、「ZX1658GS」(液状1,4-グリシジルシクロヘキサン型エポキシ樹脂)等が挙げられる。これらは、1種類単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 固体状エポキシ樹脂としては、1分子中に3個以上のエポキシ基を有する固体状エポキシ樹脂が好ましく、1分子中に3個以上のエポキシ基を有する芳香族系の固体状エポキシ樹脂がより好ましい。
 固体状エポキシ樹脂としては、ビキシレノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフタレン型4官能エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、アントラセン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂が好ましい。
 固体状エポキシ樹脂の具体例としては、DIC社製の「HP4032H」(ナフタレン型エポキシ樹脂);DIC社製の「HP-4700」、「HP-4710」(ナフタレン型4官能エポキシ樹脂);DIC社製の「N-690」(クレゾールノボラック型エポキシ樹脂);DIC社製の「N-695」(クレゾールノボラック型エポキシ樹脂);DIC社製の「HP-7200」(ジシクロペンタジエン型エポキシ樹脂);DIC社製の「HP-7200HH」、「HP-7200H」、「EXA-7311」、「EXA-7311-G3」、「EXA-7311-G4」、「EXA-7311-G4S」、「HP6000」(ナフチレンエーテル型エポキシ樹脂);日本化薬社製の「EPPN-502H」(トリスフェノール型エポキシ樹脂);日本化薬社製の「NC7000L」(ナフトールノボラック型エポキシ樹脂);日本化薬社製の「NC3000H」、「NC3000」、「NC3000L」、「NC3100」(ビフェニル型エポキシ樹脂);新日鉄住金化学社製の「ESN475V」(ナフトール型エポキシ樹脂);新日鉄住金化学社製の「ESN485」(ナフトールノボラック型エポキシ樹脂);三菱ケミカル社製の「YX4000H」、「YX4000」、「YL6121」(ビフェニル型エポキシ樹脂);三菱ケミカル社製の「YX4000HK」(ビキシレノール型エポキシ樹脂);三菱ケミカル社製の「YX8800」(アントラセン型エポキシ樹脂);三菱ケミカル社製の「YX7700」(キシレン構造含有ノボラック型エポキシ樹脂);大阪ガスケミカル社製の「PG-100」、「CG-500」;三菱ケミカル社製の「YL7760」(ビスフェノールAF型エポキシ樹脂);三菱ケミカル社製の「YL7800」(フルオレン型エポキシ樹脂);三菱ケミカル社製の「jER1010」(固体状ビスフェノールA型エポキシ樹脂);三菱ケミカル社製の「jER1031S」(テトラフェニルエタン型エポキシ樹脂)等が挙げられる。これらは、1種類単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 (B)エポキシ樹脂として液状エポキシ樹脂と固体状エポキシ樹脂とを組み合わせて用いる場合、液状エポキシ樹脂の固体状エポキシ樹脂に対する質量比(液状エポキシ樹脂/固体状エポキシ樹脂)は、質量比で、好ましくは1以上、より好ましくは10以上、特に好ましくは50以上である。
 (B)エポキシ樹脂のエポキシ当量は、好ましくは50g/eq.~5000g/eq.、より好ましくは50g/eq.~3000g/eq.、さらに好ましくは80g/eq.~2000g/eq.、さらにより好ましくは110g/eq.~1000g/eq.である。この範囲となることで、磁性シートの磁性硬化物の架橋密度が十分となり、表面粗さの小さい磁性硬化物層をもたらすことができる。エポキシ当量は、1当量のエポキシ基を含む樹脂の質量である。このエポキシ当量は、JIS K7236に従って測定することができる。
 (B)エポキシ樹脂の重量平均分子量(Mw)は、本発明の所望の効果を顕著に得る観点から、好ましくは100~5000、より好ましくは250~3000、さらに好ましくは400~1500である。樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により、ポリスチレン換算の値として測定できる。
 (B)エポキシ樹脂の含有量は、特に限定されるものではないが、本発明の所望の効果を顕著に得る観点から、樹脂組成物中の不揮発成分を100質量%とした場合、好ましくは1質量%以上、より好ましくは5質量%以上、さらに好ましくは8質量%以上、特に好ましくは10質量%以上である。その上限は、本発明の所望の効果を顕著に得る観点から、好ましくは50質量%以下、より好ましくは40質量%以下、さらに好ましくは30質量%以下、特に好ましくは20質量%以下である。
<(C)硬化剤>
 本発明における樹脂組成物は、(C)硬化剤を含む。
 (C)硬化剤としては、エポキシ樹脂を硬化する機能を有する限り特に限定されず、例えば、フェノール系硬化剤、ナフトール系硬化剤、酸無水物系硬化剤、活性エステル系硬化剤、ベンゾオキサジン系硬化剤、シアネートエステル系硬化剤、カルボジイミド系硬化剤、リン系硬化剤、アミン系硬化剤、イミダゾール系硬化剤、グアニジン系硬化剤、金属系硬化剤等が挙げられる。中でも、酸無水物系硬化剤、アミン系硬化剤、及びイミダゾール系硬化剤が好ましい。(C)硬化剤は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 フェノール系硬化剤及びナフトール系硬化剤としては、耐熱性及び耐水性の観点から、ノボラック構造を有するフェノール系硬化剤、又はノボラック構造を有するナフトール系硬化剤が好ましい。また、被着体に対する密着性の観点から、含窒素フェノール系硬化剤又は含窒素ナフトール系硬化剤が好ましく、トリアジン骨格含有フェノール系硬化剤又はトリアジン骨格含有ナフトール系硬化剤がより好ましい。中でも、耐熱性、耐水性、及び密着性を高度に満足させる観点から、トリアジン骨格含有フェノールノボラック樹脂が好ましい。フェノール系硬化剤及びナフトール系硬化剤の具体例としては、例えば、明和化成社製の「MEH-7700」、「MEH-7810」、「MEH-7851」、「MEH-8000H」、日本化薬社製の「NHN」、「CBN」、「GPH」、新日鉄住金化学社製の「SN-170」、「SN-180」、「SN-190」、「SN-475」、「SN-485」、「SN-495」、「SN-375」、「SN-395」、DIC社製の「LA-7052」、「LA-7054」、「LA-3018」、「LA-3018-50P」、「LA-1356」、「TD2090」等が挙げられる。
 酸無水物系硬化剤としては、1分子内中に1個以上の酸無水物基を有する硬化剤が挙げられる。酸無水物系硬化剤の具体例としては、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルナジック酸無水物、水素化メチルナジック酸無水物、トリアルキルテトラヒドロ無水フタル酸、ドデセニル無水コハク酸、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、無水トリメリット酸、無水ピロメリット酸、ベンソフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物、ナフタレンテトラカルボン酸二無水物、オキシジフタル酸二無水物、3,3’-4,4’-ジフェニルスルホンテトラカルボン酸二無水物、1,3,3a,4,5,9b-ヘキサヒドロ-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-C]フラン-1,3-ジオン、エチレングリコールビス(アンヒドロトリメリテート)、メチルビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物/ビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物(市販品としては新日本理化社製の「HNA-100」)、スチレンとマレイン酸とが共重合したスチレン・マレイン酸樹脂などのポリマー型の酸無水物などが挙げられる。
 活性エステル系硬化剤としては、特に制限はないが、一般にフェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の反応活性の高いエステル基を1分子中に2個以上有する化合物が好ましく用いられる。当該活性エステル系硬化剤は、カルボン酸化合物及び/又はチオカルボン酸化合物とヒドロキシ化合物及び/又はチオール化合物との縮合反応によって得られるものが好ましい。特に耐熱性向上の観点から、カルボン酸化合物とヒドロキシ化合物とから得られる活性エステル系硬化剤が好ましく、カルボン酸化合物とフェノール化合物及び/又はナフトール化合物とから得られる活性エステル系硬化剤がより好ましい。カルボン酸化合物としては、例えば安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等が挙げられる。フェノール化合物又はナフトール化合物としては、例えば、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、カテコール、α-ナフトール、β-ナフトール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエン型ジフェノール化合物、フェノールノボラック等が挙げられる。ここで、「ジシクロペンタジエン型ジフェノール化合物」とは、ジシクロペンタジエン1分子にフェノール2分子が縮合して得られるジフェノール化合物をいう。
 具体的には、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物、ナフタレン構造を含む活性エステル化合物、フェノールノボラックのアセチル化物を含む活性エステル化合物、フェノールノボラックのベンゾイル化物を含む活性エステル化合物が好ましく、中でもナフタレン構造を含む活性エステル化合物、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物がより好ましい。「ジシクロペンタジエン型ジフェノール構造」とは、フェニレン-ジシクロペンタレン-フェニレンからなる2価の構造単位を表す。
 活性エステル系硬化剤の市販品としては、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物として、「EXB9451」、「EXB9460」、「EXB9460S」、「HPC-8000」、「HPC-8000H」、「HPC-8000-65T」、「HPC-8000H-65TM」、「EXB-8000L」、「EXB-8000L-65TM」(DIC社製);ナフタレン構造を含む活性エステル化合物として「EXB9416-70BK」、「EXB-8150-65T」(DIC社製);フェノールノボラックのアセチル化物を含む活性エステル化合物として「DC808」(三菱ケミカル社製);フェノールノボラックのベンゾイル化物を含む活性エステル化合物として「YLH1026」(三菱ケミカル社製);フェノールノボラックのアセチル化物である活性エステル系硬化剤として「DC808」(三菱ケミカル社製);フェノールノボラックのベンゾイル化物である活性エステル系硬化剤として「YLH1026」(三菱ケミカル社製)、「YLH1030」(三菱ケミカル社製)、「YLH1048」(三菱ケミカル社製);等が挙げられる。
 ベンゾオキサジン系硬化剤の具体例としては、JFEケミカル社製の「JBZ-OP100D」、「ODA-BOZ」;昭和高分子社製の「HFB2006M」、四国化成工業社製の「P-d」、「F-a」などが挙げられる。
 シアネートエステル系硬化剤としては、例えば、ビスフェノールAジシアネート、ポリフェノールシアネート(オリゴ(3-メチレン-1,5-フェニレンシアネート))、4,4’-メチレンビス(2,6-ジメチルフェニルシアネート)、4,4’-エチリデンジフェニルジシアネート、ヘキサフルオロビスフェノールAジシアネート、2,2-ビス(4-シアネート)フェニルプロパン、1,1-ビス(4-シアネートフェニルメタン)、ビス(4-シアネート-3,5-ジメチルフェニル)メタン、1,3-ビス(4-シアネートフェニル-1-(メチルエチリデン))ベンゼン、ビス(4-シアネートフェニル)チオエーテル、及びビス(4-シアネートフェニル)エーテル等の2官能シアネート樹脂、フェノールノボラック及びクレゾールノボラック等から誘導される多官能シアネート樹脂、これらシアネート樹脂が一部トリアジン化したプレポリマーなどが挙げられる。シアネートエステル系硬化剤の具体例としては、ロンザジャパン社製の「PT30」及び「PT60」(いずれもフェノールノボラック型多官能シアネートエステル樹脂)、「BA230」、「BA230S75」(ビスフェノールAジシアネートの一部又は全部がトリアジン化され三量体となったプレポリマー)等が挙げられる。
 カルボジイミド系硬化剤の具体例としては、日清紡ケミカル社製の「V-03」、「V-07」等が挙げられる。
 リン系硬化剤としては、例えば、トリフェニルホスフィン、ホスホニウムボレート化合物、テトラフェニルホスホニウムテトラフェニルボレート、n-ブチルホスホニウムテトラフェニルボレート、テトラブチルホスホニウムデカン酸塩、(4-メチルフェニル)トリフェニルホスホニウムチオシアネート、テトラフェニルホスホニウムチオシアネート、ブチルトリフェニルホスホニウムチオシアネート等が挙げられる。
 アミン系硬化剤としては、例えば、トリエチルアミン、トリブチルアミン、4-ジメチルアミノピリジン(DMAP)、ベンジルジメチルアミン、2,4,6,-トリス(ジメチルアミノメチル)フェノール、1,8-ジアザビシクロ(5,4,0)-ウンデセン等が挙げられ、4-ジメチルアミノピリジン、1,8-ジアザビシクロ(5,4,0)-ウンデセン等の脂肪族アミン系硬化剤;ベンジジン、o-トリジン、4,4’-ジアミノジフェニルメタン、4、4’-ジアミノ-3,3’-ジメチルジフェニルメタン(市販品としては日本化薬製の「カヤボンドC-100」)、4、4’-ジアミノ-3,3’-ジエチルジフェニルメタン(市販品としては日本化薬製の「カヤハードA-A」)、4、4’-ジアミノ-3,3’,5,5’-テトラメチルジフェニルメタン(市販品としては日本化薬製の「カヤボンドC-200S」)、4、4’-ジアミノ-3,3’,5,5’-テトラエチルジフェニルメタン(市販品としては日本化薬製の「カヤボンドC-300S」)、4、4’-ジアミノ-3,3’-ジエチル-5,5’-ジメチルジフェニルメタン、4,4’-ジアミノジフェニルエーテル、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ネオペンタン、4,4’-[1,3-フェニレンビス(1-メチル-エチリデン)]ビスアニリン(市販品としては三井化学製の「ビスアニリンM」)、4,4’-[1,4-フェニレンビス(1-メチル-エチリデン)]ビスアニリン(市販品としては三井化学製の「ビスアニリンP」)、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(市販品としては和歌山精化製の「BAPP」)、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、4,4’-ビス(4-アミノフェノキシ)ビフェニル等の芳香族アミン系硬化剤が挙げられる。
 イミダゾール系硬化剤としては、例えば、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール、1-ドデシル-2-メチル-3-ベンジルイミダゾリウムクロライド、2-メチルイミダゾリン、2-フェニルイミダゾリン、等のイミダゾール化合物及びイミダゾール化合物とエポキシ樹脂とのアダクト体が挙げられる。
 イミダゾール系硬化剤としては、市販品を用いてもよく、例えば、三菱ケミカル社製の「P200-H50」等が挙げられる。
 グアニジン系硬化剤としては、例えば、ジシアンジアミド、1-メチルグアニジン、1-エチルグアニジン、1-シクロヘキシルグアニジン、1-フェニルグアニジン、1-(o-トリル)グアニジン、ジメチルグアニジン、ジフェニルグアニジン、トリメチルグアニジン、テトラメチルグアニジン、ペンタメチルグアニジン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、1-メチルビグアニド、1-エチルビグアニド、1-n-ブチルビグアニド、1-n-オクタデシルビグアニド、1,1-ジメチルビグアニド、1,1-ジエチルビグアニド、1-シクロヘキシルビグアニド、1-アリルビグアニド、1-フェニルビグアニド、1-(o-トリル)ビグアニド等が挙げられる。
 金属系硬化剤としては、例えば、コバルト、銅、亜鉛、鉄、ニッケル、マンガン、スズ等の金属の、有機金属錯体又は有機金属塩が挙げられる。有機金属錯体の具体例としては、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート等の有機コバルト錯体、銅(II)アセチルアセトナート等の有機銅錯体、亜鉛(II)アセチルアセトナート等の有機亜鉛錯体、鉄(III)アセチルアセトナート等の有機鉄錯体、ニッケル(II)アセチルアセトナート等の有機ニッケル錯体、マンガン(II)アセチルアセトナート等の有機マンガン錯体等が挙げられる。有機金属塩としては、例えば、オクチル酸亜鉛、オクチル酸錫、ナフテン酸亜鉛、ナフテン酸コバルト、ステアリン酸スズ、ステアリン酸亜鉛等が挙げられる。
 エポキシ樹脂と硬化剤との量比は、[エポキシ樹脂のエポキシ基の合計数]:[硬化剤の反応基の合計数]の比率で、1:0.2~1:2の範囲が好ましく、1:0.3~1:1.5がより好ましく、1:0.4~1:1.2がさらに好ましい。ここで、硬化剤の反応基とは、活性水酸基、活性エステル基等であり、硬化剤の種類によって異なる。また、エポキシ樹脂のエポキシ基の合計数とは、各エポキシ樹脂の不揮発成分質量をエポキシ当量で除した値をすべてのエポキシ樹脂について合計した値であり、硬化剤の反応基の合計数とは、各硬化剤の不揮発成分質量を反応基当量で除した値をすべての硬化剤について合計した値である。エポキシ樹脂と硬化剤との量比を斯かる範囲とすることにより、得られる硬化物の耐熱性がより向上する。
 (C)硬化剤の含有量は、特に限定されるものではないが、樹脂組成物中の不揮発成分を100質量%とした場合、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、さらに好ましくは0.5質量%以上である。その上限は、好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは2質量%以下である。
<(D)非磁性無機充填材>
 本発明における樹脂組成物は、任意成分として(D)非磁性無機充填材を含む場合がある。(D)非磁性無機充填材は、(A)成分とは異なり、磁性を伴わない成分である。
 (D)非磁性無機充填材の材料は特に限定されないが、例えば、シリカ、アルミナ、ガラス、コーディエライト、シリコン酸化物、硫酸バリウム、炭酸バリウム、タルク、クレー、雲母粉、酸化亜鉛、ハイドロタルサイト、ベーマイト、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、窒化マンガン、ホウ酸アルミニウム、炭酸ストロンチウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、酸化ジルコニウム、チタン酸バリウム、チタン酸ジルコン酸バリウム、ジルコン酸バリウム、ジルコン酸カルシウム、リン酸ジルコニウム、及びリン酸タングステン酸ジルコニウム等が挙げられ、シリカが特に好適である。シリカとしては、例えば、無定形シリカ、溶融シリカ、結晶シリカ、合成シリカ、中空シリカ等が挙げられる。またシリカとしては球形シリカが好ましい。(D)非磁性無機充填材は1種単独で用いてもよく、2種以上を組み合わせて使用してもよい。
 (D)非磁性無機充填材の市販品としては、例えば、日本アエロジル社製「RY-200」、「A200」;電化化学工業社製の「UFP-30」;新日鉄住金マテリアルズ社製の「SP60-05」、「SP507-05」;アドマテックス社製の「YC100C」、「YA050C」、「YA050C-MJE」、「YA010C」;デンカ社製の「UFP-30」;トクヤマ社製の「シルフィルNSS-3N」、「シルフィルNSS-4N」、「シルフィルNSS-5N」;アドマテックス社製の「SC2500SQ」、「SO-C4」、「SO-C2」、「SO-C1」;などが挙げられる。
 (D)非磁性無機充填材の平均粒径は、特に限定されるものではないが、本発明の所望の効果を得る観点から、好ましくは20μm以下、より好ましくは10μm以下、さらに好ましくは8μm以下、さらにより好ましくは6μm以下、特に好ましくは5μm以下である。非磁性無機充填材の平均粒径の下限は、本発明の所望の効果を得る観点から、好ましくは0.1μm以上、より好ましくは1μm以上、さらに好ましくは2μm以上、さらにより好ましくは3μm以上、特に好ましくは4μm以上である。非磁性無機充填材の平均粒径は、ミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。具体的には、レーザー回折散乱式粒径分布測定装置により、非磁性無機充填材の粒径分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。測定サンプルは、非磁性無機充填材100mg、メチルエチルケトン10gをバイアル瓶に秤取り、超音波にて10分間分散させたものを使用することができる。測定サンプルを、レーザー回折式粒径分布測定装置を使用して、使用光源波長を青色及び赤色とし、フローセル方式で非磁性無機充填材の体積基準の粒径分布を測定し、得られた粒径分布からメディアン径として平均粒径を算出した。レーザー回折式粒径分布測定装置としては、例えば堀場製作所社製「LA-960」等が挙げられる。
 (D)非磁性無機充填材は、耐湿性及び分散性を高める観点から、アミノシラン系カップリング剤、エポキシシラン系カップリング剤、メルカプトシラン系カップリング剤、アルコキシシラン化合物、オルガノシラザン化合物、チタネート系カップリング剤などの1種以上の表面処理剤で処理されていることが好ましい。表面処理剤の市販品としては、例えば、信越化学工業社製「KBM403」(3-グリシドキシプロピルトリメトキシシラン)、信越化学工業社製「KBM803」(3-メルカプトプロピルトリメトキシシラン)、信越化学工業社製「KBE903」(3-アミノプロピルトリエトキシシラン)、信越化学工業社製「KBM573」(N-フェニル-3-アミノプロピルトリメトキシシラン)、信越化学工業社製「SZ-31」(ヘキサメチルジシラザン)、信越化学工業社製「KBM103」(フェニルトリメトキシシラン)、信越化学工業社製「KBM-4803」(長鎖エポキシ型シランカップリング剤)、信越化学工業社製「KBM-7103」(3,3,3-トリフルオロプロピルトリメトキシシラン)等が挙げられる。
 表面処理剤による表面処理の程度は、非磁性無機充填材の分散性向上の観点から、所定の範囲に収まることが好ましい。具体的には、非磁性無機充填材100質量%は、0.2質量%~5質量%の表面処理剤で表面処理されていることが好ましく、0.2質量%~3質量%で表面処理されていることが好ましく、0.3質量%~2質量%で表面処理されていることが好ましい。
 表面処理剤による表面処理の程度は、非磁性無機充填材の単位表面積当たりのカーボン量によって評価することができる。非磁性無機充填材の単位表面積当たりのカーボン量は、非磁性無機充填材の分散性向上の観点から、0.02mg/m以上が好ましく、0.1mg/m以上がより好ましく、0.2mg/m以上がさらに好ましい。一方、磁性ペーストの溶融粘度やシート形態での溶融粘度の上昇を防止する観点から、1mg/m以下が好ましく、0.8mg/m以下がより好ましく、0.5mg/m以下がさらに好ましい。
 (D)非磁性無機充填材の単位表面積当たりのカーボン量は、表面処理後の非磁性無機充填材を溶剤(例えば、メチルエチルケトン(MEK))により洗浄処理した後に測定することができる。具体的には、溶剤として十分な量のMEKを表面処理剤で表面処理された非磁性無機充填材に加えて、25℃で5分間超音波洗浄する。上澄液を除去し、固形分を乾燥させた後、カーボン分析計を用いて非磁性無機充填材の単位表面積当たりのカーボン量を測定することができる。カーボン分析計としては、堀場製作所社製「EMIA-320V」等を使用することができる。
 (D)非磁性無機充填材の比表面積は、本発明の効果をより向上させる観点から、好ましくは1m/g以上、より好ましくは2m/g以上、特に好ましくは3m/g以上である。上限に特段の制限は無いが、好ましくは50m/g以下、より好ましくは20m/g以下、10m/g以下又は5m/g以下である。非磁性無機充填材の比表面積は、BET法に従って、比表面積測定装置(マウンテック社製Macsorb HM-1210)を使用して試料表面に窒素ガスを吸着させ、BET多点法を用いて比表面積を算出することで得られる。
 (D)非磁性無機充填材の含有量は、樹脂組成物中の不揮発成分を100質量%とした場合、好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは2質量%以下、特に好ましくは1質量%以下である。樹脂組成物が(D)非磁性無機充填材を含有する場合、その含有量の下限は、特に限定されるものではないが、例えば、0.001質量%以上、0.01質量%以上、0.1質量%以上、0.2質量%以上等とし得る。
<(E)その他の添加剤>
 本発明における樹脂組成物は、さらに必要に応じて、(E)その他の添加剤を含んでいてもよい。斯かるその他の添加剤としては、例えば、その他の樹脂成分、分散剤、ホウ酸トリエチル等の硬化遅延剤、難燃剤、増粘剤、消泡剤、レベリング剤、密着性付与剤、及び着色剤等の樹脂添加剤、有機溶剤等が挙げられる。その他の添加剤の含有量は、当業者により適宜設定され得る。
<樹脂組成物の特性>
 本発明における樹脂組成物は、磁性粉体としてニッケルを含む磁性粉体を使用しているため、当該樹脂組成物の磁性硬化物を回路基板の製造に使用することにより、酸化剤による磁性硬化物層表面の処理を行わない場合であっても、基板製造における湿式めっきプロセスで処理液中に生成し得る磁性異物の生成量を抑制することができる。
 本発明における樹脂組成物を熱硬化して得られる磁性硬化物をソフトエッチング液(Na100g/L,HSO(75%水溶液))に30℃1分間浸漬した場合の単位表面積あたりの質量減少量、即ちエッチングレートは、好ましくは25mg/cm以下、より好ましくは20mg/cm以下、さらに好ましくは15mg/cm以下、特に好ましくは12mg/cm以下である。下限は、特に制限されるものではないが、例えば、0.01mg/cm以上、0.1mg/cm以上、1mg/cm以上等とし得る。
 本発明における樹脂組成物を熱硬化して得られる磁性硬化物の測定周波数100MHz、室温23℃での比透磁率(μ’)は、好ましくは2以上、より好ましくは3以上、さらに好ましくは3.5以上、特に好ましくは4以上である。
 一実施形態において、本発明における樹脂組成物は、(A)成分を含有していることにより研磨に適した硬度の磁性硬化物を容易に得ることができる。したがって、当該実施形態において、本発明における樹脂組成物の磁性硬化物は、研磨性に優れているため、湿式めっきプロセスの(2)研磨工程の研磨を容易に行うことができる。本発明における樹脂組成物は(A)成分を含有していることにより、例えば、樹脂組成物を熱硬化して得られる磁性硬化物表面のJIS K 5600-5-4に従って測定した鉛筆硬度が、好ましくは5H以下、特に好ましくは4H以下となり得る。下限は、好ましくはF以上、より好ましくはH以上、さらに好ましくは2H以上、特に好ましくは3H以上となり得る。
<樹脂組成物の製造方法>
 樹脂組成物は、例えば、配合成分を、3本ロール、回転ミキサー、高速回転ミキサーなどの撹拌装置を用いて撹拌する方法によって製造できる。樹脂組成物は、製造後等に脱泡を行ってよい。例えば、静置による脱泡、遠心分離による脱泡、真空脱泡、撹拌脱泡、及びこれらの組合せ等による脱泡が挙げられる。
 基板の磁性硬化物を形成するにあたって、樹脂組成物は、ペースト状の樹脂組成物(磁性ペースト)の形態で用いてもよく、該樹脂組成物の層を含む磁性シートの形態で用いてもよい。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下の記載において、量を表す「部」及び「%」は、別途明示のない限り、それぞれ「質量部」及び「質量%」を意味する。
<実施例1>
 エポキシ樹脂(「ZX-1059」、ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合品、日鉄ケミカル&マテリアル社製)8.3質量部、硬化剤(「2MZA-PW」、イミダゾール系硬化促進剤、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、四国化成社製)1質量部、フュームドシリカ(「RY200」、日本アエロジル社製)0.2質量部、磁性粉体(「MA-RCO-5」、Fe-Ni系合金、Ni含有率50%:Fe含有率50%、平均粒径3μm、DOWAエレクトロニクス社製)62質量部を混合し、ペースト状の樹脂組成物を調製した。
<実施例2>
 実施例1において、磁性粉体(「MA-RCO-5」、Fe-Ni系合金、Ni含有率50%:Fe含有率50%、平均粒径3μm、DOWAエレクトロニクス社製)62質量部を、53質量部に変えた。以上の事項以外は実施例1と同様にして、ペースト状の樹脂組成物を調製した。
<実施例3>
 実施例1において、磁性粉体(「MA-RCO-5」、Fe-Ni系合金、Ni含有率50%:Fe含有率50%、平均粒径3μm、DOWAエレクトロニクス社製)62質量部を、70質量部に変えた。以上の事項以外は実施例1と同様にして、ペースト状の樹脂組成物を調製した。
<実施例4>
 実施例1において、磁性粉体(「MA-RCO-5」、Fe-Ni系合金、Ni含有率50%:Fe含有率50%、平均粒径3μm、DOWAエレクトロニクス社製)62質量部を、磁性粉体(「80%Ni-4Mo」、Fe-Ni-Mo系合金、Ni含有率80%:Fe含有率16%:Mo含有率4%、平均粒径3μm、エプソンアトミックス社製)62質量部に変えた。以上の事項以外は実施例1と同様にして、ペースト状の樹脂組成物を調製した。
<実施例5>
 実施例1において、磁性粉体(「MA-RCO-5」、Fe-Ni系合金、Ni含有率50%:Fe含有率50%、平均粒径3μm、DOWAエレクトロニクス社製)62質量部を、44質量部に変えた。以上の事項以外は実施例1と同様にして、ペースト状の樹脂組成物を調製した。
<実施例6>
 実施例1において、磁性粉体(「MA-RCO-5」、Fe-Ni系合金、Ni含有率50%:Fe含有率50%、平均粒径3μm、DOWAエレクトロニクス社製)62質量部を、36質量部に変えた。以上の事項以外は実施例1と同様にして、ペースト状の樹脂組成物を調製した。
<比較例1>
 実施例1において、磁性粉体(「MA-RCO-5」、Fe-Ni系合金、Ni含有率50%:Fe含有率50%、平均粒径3μm、DOWAエレクトロニクス社製)62質量部を、磁性粉体(「AW2-08PF3F」、Fe-Si系合金、平均粒径3μm、エプソンアトミックス社製)53質量部に変えた。以上の事項以外は実施例1と同様にして、ペースト状の樹脂組成物を調製した。
<比較例2>
 実施例1において、磁性粉体(「MA-RCO-5」、Fe-Ni系合金、Ni含有率50%:Fe含有率50%、平均粒径3μm、DOWAエレクトロニクス社製)62質量部を、磁性粉体(「Fe-6.5Si-4.5Cr」、Fe-Si-Cr系合金、平均粒径3μm、エプソンアトミックス社製)62質量部に変えた。以上の事項以外は実施例1と同様にして、ペースト状の樹脂組成物を調製した。
<試験例1:磁性粉体の溶解性評価>
 ペースト状樹脂組成物の原料である磁性粉体を10g計量し、2N硫酸100mLに投入し、40℃5分浸漬した。その後、磁性粉体をろ紙(桐山製作所社製、No.5B 60mmφ)を用いて回収し、100℃60分の乾燥を行った後に精密天秤を用いて磁性粉体の重量測定を行い、重量保持率(%)を算出した。
<試験例2:比透磁率評価>
 支持体として、シリコン系離型剤処理を施したポリエチレンテレフタレート(PET)フィルム(リンテック社製「PET501010」、厚さ50μm)を用意した。実施例および比較例のペースト状樹脂組成物を上記PETフィルムの離型面上に、乾燥後のペースト層の厚みが100μmとなるよう、ドクターブレードにて均一に塗布し、樹脂シートを得た。得られた樹脂シートを180℃で90分間加熱することによりペースト層を熱硬化し、支持体を剥離することによりシート状硬化物を得た。
 作製したシート状硬化物を、幅5mm、長さ18mmの試験片に切断し、評価サンプルとした。この評価サンプルを、アジレントテクノロジーズ(Agilent Technologies社製、「HP8362B」)を用いて、3ターンコイル法にて測定周波数を100MHzとし、室温23℃にて比透磁率(μ’)を測定した。
<試験例3:エッチングレート評価>
 実施例および比較例のペースト状樹脂組成物を用いて作製した試験例2のシート状硬化物を5cmx5cmの大きさに裁断し、130℃で15分乾燥し、該乾燥直後の質量を測定した。これを試料Aとし、試料Aの質量を「X1」とする。試料Aをアトテックジャパン社製のクリーナー・セキュリガンド902に60℃で5分間浸漬し、水洗処理後、ソフトエッチング液(Na:100g/L,HSO(75%aq.)14.2ml/L)に30℃で1分間浸漬した後、粗化試料Aを得た。粗化試料Aを水洗し、130℃で15分乾燥した直後の質量を測定した。該乾燥した直後の粗化試料Aの質量を「X2」とする。下記式により、樹脂組成物の硬化物の粗化処理によるエッチングレート(mg/cm)を求めた。
 エッチングレート(mg/cm)={(X1-X2)/25}
<試験例4:鉛筆硬度評価>
 実施例および比較例のペースト状樹脂組成物を用いて作製した試験例2のシート状硬化物のPETフィルムと対向していなかった面について、JIS K 5600-5-4の試験方法に従って、シート状硬化物表面の硬度を測定した。キズ跡が生じなかったもっとも硬い鉛筆の硬度を鉛筆硬度とした。
<試験例5:不溶物量評価>
 印刷基板として、ガラス布基材エポキシ樹脂両面銅張積層版(銅箔の厚さ18μm、基板厚み0.8mm、松下電工社製R1515A)の両面をマイクロエッチング剤(メック社製CZ8100)にて1μmエッチングして銅表面の粗化処理を行ったものを用意した。用意した印刷基板上に、作製した樹脂組成物をドクターブレードにて均一に塗布し、およそ120μm厚のペースト層を形成した。ペースト層を130℃で30分間加熱し、さらに145℃で30分加熱することにより熱硬化し、磁性硬化物を形成した。形成した磁性硬化物の表面のバフ研磨を実施した後、高圧水洗(3.0MPa、15秒)により洗浄し、180℃で30分加熱することにより熱処理を行った。作製した基板を5cm角に切断した後、この基板を評価基板とした。
 作製した評価基板(5cm角)を、還元用溶液(「リデューサーアクセラレーター810mod.」、アトテックジャパン社製、60ml、「リデューサーネオガントWA」、アトテックジャパン社製、3ml)に40℃で24時間浸漬した。析出した沈殿物をろ紙(桐山製作所社製、No.5B 60mmφ)を用いて不溶物としてろ別し、5時間真空乾燥させた後に精密天秤を用いて不溶物量(mg/L)の測定を行い、以下の基準で評価した。
 ○:不溶物量が300mg/L未満
 ×:不溶物量が300mg/L以上
 実施例及び比較例の樹脂組成物の不揮発成分及びその含有量、並びに試験例の測定結果及び評価を下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例より、磁性粉体としてニッケルを含むものを使用した場合に、不溶物量を大きく抑えられることがわかった。一方、ニッケルを含む磁性粉体を使用していない比較例は、多量の不溶物が析出した。また、実施例より、磁性粉体としてニッケルを含むものを使用した場合は、使用していない場合と比較して、鉛筆硬度が低く、研磨性に優れていることがわかった。
 10   コア基板
 11   支持基板
 12   第1金属層
 13   第2金属層
 14   スルーホール
 20   めっき層
 30a  樹脂組成物
 30   磁性硬化物
 40   導体層
 41   パターン導体層
100   インダクタ部品
200   内層基板
200a  第1主表面
200b  第2主表面
220   スルーホール
220a  スルーホール内配線
240   外部端子
300   磁性部
310   磁性シート
320a  樹脂組成物層
320   第1磁性硬化物層
330   支持体
340   第2磁性硬化物層
360   ビアホール
360a  ビアホール内配線
400   コイル状導電性構造体
420   第1導体層
420a  ランド
440   第2導体層

Claims (11)

  1.  (1)樹脂組成物を熱硬化させ、磁性硬化物を得る工程、
     (2)磁性硬化物の表面の少なくとも一部を研磨する工程、及び
     (3)磁性硬化物の研磨した面上の少なくとも一部に、湿式めっきにより導体層を形成する工程をこの順で含む、回路基板の製造方法であって、
     樹脂組成物が、
     (A)ニッケルを含む磁性粉体、
     (B)エポキシ樹脂、及び
     (C)硬化剤
    を含む、回路基板の製造方法。
  2.  (A)成分が、ニッケル鉄合金系金属粉である、請求項1に記載の回路基板の製造方法。
  3.  (A)成分中のニッケル含有量が、30質量%~90質量%である、請求項1又は2に記載の回路基板の製造方法。
  4.  樹脂組成物中の(A)成分の含有量が、樹脂組成物中の不揮発成分を100質量%とした場合、70質量%~98質量%である、請求項1~3の何れか1項に記載の回路基板の製造方法。
  5.  2N硫酸に40℃5分浸漬した場合の(A)成分の重量保持率が、90%以上である、請求項1~4の何れか1項に記載の回路基板の製造方法。
  6.  (B)成分が、25℃で液状のエポキシ樹脂を含む、請求項1~5の何れか1項に記載の回路基板の製造方法。
  7.  (C)成分が、酸無水物系硬化剤、アミン系硬化剤、及びイミダゾール系硬化剤からなる群から選ばれる硬化剤である、請求項1~6の何れか1項に記載の回路基板の製造方法。
  8.  (1)工程で得られる磁性硬化物の表面のJIS K 5600-5-4に従って測定した鉛筆硬度が、F~5Hである、請求項1~7の何れか1項に記載の回路基板の製造方法。
  9.  (1)工程で得られる磁性硬化物をソフトエッチング液(Na100g/L,HSO(75%水溶液))に30℃1分間浸漬した場合のエッチングレートが、25mg/cm以下である、請求項1~8の何れか1項に記載の回路基板の製造方法。
  10.  樹脂組成物がペースト状である、請求項1~9の何れか1項に記載の回路基板の製造方法。
  11.  (A)ニッケルを含む磁性粉体、
     (B)エポキシ樹脂、及び
     (C)硬化剤
    を含む、樹脂組成物。
PCT/JP2020/011829 2019-03-18 2020-03-17 回路基板の製造方法 WO2020189692A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217029744A KR20210138607A (ko) 2019-03-18 2020-03-17 회로 기판의 제조 방법
CN202080022411.4A CN113597652A (zh) 2019-03-18 2020-03-17 电路基板的制造方法
EP20773871.7A EP3944272B1 (en) 2019-03-18 2020-03-17 Circuit board manufacturing method
JP2021507382A JP7414805B2 (ja) 2019-03-18 2020-03-17 回路基板の製造方法
JP2022100693A JP7420167B2 (ja) 2019-03-18 2022-06-22 回路基板の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019050281 2019-03-18
JP2019-050281 2019-03-18

Publications (1)

Publication Number Publication Date
WO2020189692A1 true WO2020189692A1 (ja) 2020-09-24

Family

ID=72520158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011829 WO2020189692A1 (ja) 2019-03-18 2020-03-17 回路基板の製造方法

Country Status (6)

Country Link
EP (1) EP3944272B1 (ja)
JP (2) JP7414805B2 (ja)
KR (1) KR20210138607A (ja)
CN (1) CN113597652A (ja)
TW (1) TW202103188A (ja)
WO (1) WO2020189692A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113573486A (zh) * 2021-09-28 2021-10-29 广东科翔电子科技股份有限公司 一种rf-ic载板制作装置以及制作方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI763499B (zh) * 2021-05-24 2022-05-01 大陸商宏啟勝精密電子(秦皇島)有限公司 電路板及其製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001203463A (ja) * 2000-01-21 2001-07-27 Taiyo Ink Mfg Ltd 層間接続用導電性ペースト、及びそれを用いた多層プリント配線板とその製造方法
JP2005317351A (ja) * 2004-04-28 2005-11-10 Alps Electric Co Ltd 導電性ペースト
JP2009016504A (ja) 2007-07-03 2009-01-22 Shinko Electric Ind Co Ltd インダクタ内蔵型多層配線基板
JP2012131899A (ja) * 2010-12-21 2012-07-12 Sumitomo Bakelite Co Ltd 樹脂組成物、樹脂シート、金属ベース回路基板、インバータ装置、及びパワー半導体装置
JP2012186440A (ja) 2011-02-18 2012-09-27 Ibiden Co Ltd インダクタ部品とその部品を内蔵しているプリント配線板及びインダクタ部品の製造方法
KR101564197B1 (ko) * 2015-05-19 2015-10-28 주식회사 뉴프린텍 홀 플러깅용 복합 수지 조성물
JP2016197624A (ja) 2015-04-02 2016-11-24 イビデン株式会社 インダクタ部品、インダクタ部品の製造方法、インダクタ部品を内蔵するプリント配線板
JP2017174949A (ja) * 2016-03-23 2017-09-28 Tdk株式会社 電子回路パッケージ
JP2019001849A (ja) * 2017-06-12 2019-01-10 株式会社フジミインコーポレーテッド フィラー、成形体、及び放熱材料

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129449A (ja) * 1995-10-30 1997-05-16 Toshiba Corp インダクタおよびその製造方法
JP2001096665A (ja) * 1999-10-01 2001-04-10 Tdk Corp 基 板
US6706975B2 (en) * 2000-07-13 2004-03-16 Ngk Spark Plug Co., Ltd. Paste for filling throughhole and printed wiring board using same
JP2002175921A (ja) * 2000-09-20 2002-06-21 Tdk Corp 電子部品およびその製造方法
JP2004047700A (ja) * 2002-07-11 2004-02-12 Jfe Steel Kk 非接触充電器用平面磁気素子
JP2008081818A (ja) * 2006-09-28 2008-04-10 Sumitomo Osaka Cement Co Ltd ニッケル―鉄合金ナノ粒子の前駆体粉末の製造方法およびニッケル―鉄合金ナノ粒子の前駆体粉末、ニッケル―鉄合金ナノ粒子の製造方法およびニッケル―鉄合金ナノ粒子
JP6953279B2 (ja) * 2016-12-07 2021-10-27 日東電工株式会社 モジュールの製造方法
JP2018133358A (ja) * 2017-02-13 2018-08-23 株式会社豊田中央研究所 印刷用磁性体ペースト及びその製造方法
WO2018194100A1 (ja) * 2017-04-19 2018-10-25 味の素株式会社 樹脂組成物
CN111886939A (zh) * 2018-03-23 2020-11-03 味之素株式会社 通孔填充用糊料

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001203463A (ja) * 2000-01-21 2001-07-27 Taiyo Ink Mfg Ltd 層間接続用導電性ペースト、及びそれを用いた多層プリント配線板とその製造方法
JP2005317351A (ja) * 2004-04-28 2005-11-10 Alps Electric Co Ltd 導電性ペースト
JP2009016504A (ja) 2007-07-03 2009-01-22 Shinko Electric Ind Co Ltd インダクタ内蔵型多層配線基板
JP2012131899A (ja) * 2010-12-21 2012-07-12 Sumitomo Bakelite Co Ltd 樹脂組成物、樹脂シート、金属ベース回路基板、インバータ装置、及びパワー半導体装置
JP2012186440A (ja) 2011-02-18 2012-09-27 Ibiden Co Ltd インダクタ部品とその部品を内蔵しているプリント配線板及びインダクタ部品の製造方法
JP2016197624A (ja) 2015-04-02 2016-11-24 イビデン株式会社 インダクタ部品、インダクタ部品の製造方法、インダクタ部品を内蔵するプリント配線板
KR101564197B1 (ko) * 2015-05-19 2015-10-28 주식회사 뉴프린텍 홀 플러깅용 복합 수지 조성물
JP2017174949A (ja) * 2016-03-23 2017-09-28 Tdk株式会社 電子回路パッケージ
JP2019001849A (ja) * 2017-06-12 2019-01-10 株式会社フジミインコーポレーテッド フィラー、成形体、及び放熱材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3944272A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113573486A (zh) * 2021-09-28 2021-10-29 广东科翔电子科技股份有限公司 一种rf-ic载板制作装置以及制作方法
CN113573486B (zh) * 2021-09-28 2021-12-14 广东科翔电子科技股份有限公司 一种rf-ic载板制作装置以及制作方法

Also Published As

Publication number Publication date
JPWO2020189692A1 (ja) 2021-11-04
EP3944272B1 (en) 2024-10-16
CN113597652A (zh) 2021-11-02
JP7414805B2 (ja) 2024-01-16
EP3944272A1 (en) 2022-01-26
JP2022126796A (ja) 2022-08-30
KR20210138607A (ko) 2021-11-19
TW202103188A (zh) 2021-01-16
EP3944272A4 (en) 2022-12-28
JP7420167B2 (ja) 2024-01-23

Similar Documents

Publication Publication Date Title
JP7392743B2 (ja) 磁性ペースト
JPWO2018194099A1 (ja) 樹脂組成物
KR20200130323A (ko) 스루홀 충전용 페이스트
JP7447563B2 (ja) 樹脂組成物
JP7338560B2 (ja) 樹脂組成物
JP2017177461A (ja) 樹脂シート
JP2023164858A (ja) 磁性組成物
JP7222228B2 (ja) 基板の製造方法
JP7081667B2 (ja) 磁性ペースト
TW202230402A (zh) 磁性糊料
JP7420167B2 (ja) 回路基板の製造方法
JP2017177469A (ja) 樹脂シート
JP7552583B2 (ja) 樹脂組成物
WO2023176284A1 (ja) 樹脂組成物及びその製造方法
JP7463736B2 (ja) 樹脂組成物
JP2022142747A (ja) 樹脂組成物
JP7423896B2 (ja) 基板の製造方法
WO2024204070A1 (ja) 回路基板の製造方法及び樹脂組成物
WO2024048283A1 (ja) 磁性基板の製造方法、及び、磁性基板
JP2024042695A (ja) 樹脂組成物
JP2017154397A (ja) 支持体付き樹脂シート
JP2024125720A (ja) 樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773871

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507382

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020773871

Country of ref document: EP

Effective date: 20211018