[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020184222A1 - 赤外線遮蔽透明部材用樹脂組成物及び成形品 - Google Patents

赤外線遮蔽透明部材用樹脂組成物及び成形品 Download PDF

Info

Publication number
WO2020184222A1
WO2020184222A1 PCT/JP2020/008316 JP2020008316W WO2020184222A1 WO 2020184222 A1 WO2020184222 A1 WO 2020184222A1 JP 2020008316 W JP2020008316 W JP 2020008316W WO 2020184222 A1 WO2020184222 A1 WO 2020184222A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
weight
parts
resin composition
tert
Prior art date
Application number
PCT/JP2020/008316
Other languages
English (en)
French (fr)
Inventor
庸介 大西
彰香 伊藤
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to US17/438,273 priority Critical patent/US20220145041A1/en
Priority to CN202080019964.4A priority patent/CN113574114B/zh
Priority to EP20768972.0A priority patent/EP3940029B1/en
Priority to JP2021504923A priority patent/JP7204881B2/ja
Publication of WO2020184222A1 publication Critical patent/WO2020184222A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3472Five-membered rings
    • C08K5/3475Five-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/35Heterocyclic compounds having nitrogen in the ring having also oxygen in the ring
    • C08K5/357Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2258Oxides; Hydroxides of metals of tungsten
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter

Definitions

  • the present invention relates to a polycarbonate resin composition containing composite tungsten oxide fine particles as an inorganic material having infrared absorption performance, and a molded product composed of the polycarbonate resin composition.
  • a transparent material with infrared shielding performance has the effect of suppressing the temperature rise in the room and the temperature rise perceived by humans, and is expected to be effective in reducing the environmental load when used for window members for automobile applications and building material applications.
  • infrared ray shielding performance by imparting infrared ray shielding performance to the transparent resin, it has a great effect on reducing the environmental load such as suppressing CO 2 emissions from the viewpoint of weight reduction and thermal management.
  • Patent Document 1 discloses a technique for imparting composite tungsten oxide fine particles to a transparent resin as a method for developing infrared shielding performance, but there is a problem that the infrared shielding performance deteriorates over time under moist heat conditions. ..
  • Patent Document 2 discloses a technique for improving moisture and heat resistance by limiting the particle size of the composite tungsten oxide fine particles, but the effect is insufficient.
  • Patent Document 3 discloses a technique for improving the thermal stability of a resin by blending a fatty acid ester, but the effect of improving the moisture and heat resistance of infrared shielding performance is not recognized.
  • Patent Document 4 discloses a technique of suppressing hydrolysis of a resin by blending an epoxy resin with a transparent resin, but the effect of improving the moisture resistance of the infrared ray shielding performance is not recognized. Therefore, it is required to improve the moisture resistance and heat resistance of the infrared ray shielding performance of the transparent resin to which the composite tungsten oxide fine particles are added.
  • An object of the present invention is to obtain a resin composition having good infrared shielding performance with good moisture and heat resistance while maintaining high transparency and a molded product thereof.
  • the present inventors have excellent moist heat resistance, high infrared shielding performance and high transparency by adding composite tungsten oxide fine particles, epoxy resin and fatty acid ester to the polycarbonate resin. It has been found that a polycarbonate resin composition showing the above and a molded product comprising the same can be obtained.
  • the above-mentioned problem is (A) with respect to 100 parts by weight of the polycarbonate resin (A component), (B) general formula MxWyOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, One or more elements selected from B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, I, W is tungsten , O is oxygen, 0.001 to 0.2 parts by weight of the composite tungsten oxide fine particles (B component) represented by 0.001 ⁇ x / y ⁇ 1, 2.2 ⁇ z / y ⁇ 3.0).
  • the resin composition of the present invention has infrared shielding performance with good moisture and heat resistance while maintaining high transparency, it has a vehicle lamp, a vehicle sensor cover, a vehicle display cover, a vehicle window member, and a relay display. It is suitable for covers or window members for building materials, and its industrial effect is exceptional.
  • Component A Polycarbonate resin
  • the polycarbonate resin used as the component A in the present invention is obtained by reacting a divalent phenol with a carbonate precursor.
  • the reaction method include an interfacial polymerization method, a melt transesterification method, a solid phase transesterification method of a carbonate prepolymer, and a ring-opening polymerization method of a cyclic carbonate compound.
  • dihydric phenol used here are hydroquinone, resorcinol, 4,4'-biphenol, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl).
  • Propane (commonly known as bisphenol A), 2,2-bis (4-hydroxy-3-methylphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 1,1-bis (4-hydroxyphenyl)- 1-phenylethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2-bis (4-hydroxyphenyl) Pentan, 4,4'-(p-phenylenediisopropyridene) diphenol, 4,4'-(m-phenylenediisopropylidene) diphenol, 1,1-bis (4-hydroxyphenyl) -4-isopropylcyclohexane , Bis
  • carbonate precursor carbonyl halide, carbonic acid diester or haloformate is used, and specific examples thereof include phosgene, diphenyl carbonate or dihaloformate of divalent phenol.
  • the polycarbonate resin of the present invention is a branched polycarbonate resin obtained by copolymerizing a trifunctional or higher polyfunctional aromatic compound, or a polyester carbonate resin obtained by copolymerizing an aromatic or aliphatic (including alicyclic) bifunctional carboxylic acid.
  • trifunctional or higher polyfunctional aromatic compound examples include 1,1,1-tris (4-hydroxyphenyl) ethane, 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane and the like. Can be used.
  • the amount thereof is 0.001 to 1 mol%, preferably 0.005 to 0.9 mol%, particularly preferably 0.01 to 0, based on the total amount of the aromatic polycarbonate. It is 0.8 mol%.
  • a branched structure may be generated as a side reaction, and the amount of the branched structure is also 0.001 to 1 mol%, preferably 0.005 to 0, based on the total amount of the aromatic polycarbonate. It is preferably 9 mol%, particularly preferably 0.01 to 0.8 mol%. It should be noted that such a ratio can be calculated by 1H-NMR measurement.
  • the aliphatic bifunctional carboxylic acid is preferably ⁇ , ⁇ -dicarboxylic acid.
  • the aliphatic bifunctional carboxylic acid include linear saturated aliphatic dicarboxylic acids such as sebacic acid (decanedioic acid), dodecanedioic acid, tetradecanedioic acid, octadecanedioic acid, and icosandioic acid, and cyclohexanedicarboxylic acid.
  • Such as alicyclic dicarboxylic acid is preferably mentioned.
  • An alicyclic diol is more preferable as the bifunctional alcohol, and examples thereof include cyclohexanedimethanol, cyclohexanediol, and tricyclodecanedimethanol.
  • the reaction by the interfacial polymerization method is usually a reaction between divalent phenol and phosgene, and is reacted in the presence of an acid binder and an organic solvent.
  • an acid binder for example, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, pyridine and the like are used.
  • organic solvent for example, halogenated hydrocarbons such as methylene chloride and chlorobenzene are used.
  • a catalyst such as a tertiary amine or a quaternary ammonium salt can be used to promote the reaction
  • a monofunctional phenol such as phenol, p-tert-butylphenol, or p-cumylphenol can be used as the molecular weight modifier. It is preferable to use the kind.
  • examples of the monofunctional phenols include decylphenol, dodecylphenol, tetradecylphenol, hexadecylphenol, octadecylphenol, eicosylphenol, docosylphenol, and triacontylphenol. These monofunctional phenols having a relatively long-chain alkyl group are effective when improvement in fluidity and hydrolysis resistance is required.
  • the reaction temperature is usually 0 to 40 ° C.
  • the reaction time is several minutes to 5 hours
  • the pH during the reaction is usually kept at 10 or more.
  • the reaction by the melting method is usually a transesterification reaction of dihydric phenol and carbonic acid diester, and the dihydric phenol and carbonic acid diester are mixed in the presence of an inert gas and reacted at 120 to 350 ° C. under reduced pressure. The degree of decompression is changed stepwise, and finally the phenols produced at 133 Pa or less are removed from the system.
  • the reaction time is usually about 1 to 4 hours.
  • Examples of the carbonic acid diester include diphenyl carbonate, dinaphthyl carbonate, bis (diphenyl) carbonate, dimethyl carbonate, diethyl carbonate and dibutyl carbonate, and diphenyl carbonate is preferable.
  • a polymerization catalyst can be used to increase the polymerization rate, and examples of the polymerization catalyst include alkali metals such as sodium hydroxide and potassium hydroxide, hydroxides of alkaline earth metals, and hydroxides of boron and aluminum.
  • the catalyst may be used alone or in combination of two or more.
  • the amount of these polymerization catalysts used is preferably 1 ⁇ 10-9 to 1 ⁇ 10-5 equivalents, more preferably 1 ⁇ 10-8 to 5 ⁇ 10-6 equivalents, relative to 1 mol of the raw material divalent phenol. Selected by range.
  • a deactivating agent that neutralizes the activity of the catalyst.
  • the amount of the deactivator is preferably 0.5 to 50 mol with respect to 1 mol of the remaining catalyst. Further, it is used at a ratio of 0.01 to 500 ppm, more preferably 0.01 to 300 ppm, and particularly preferably 0.01 to 100 ppm, based on the polymerized aromatic polycarbonate.
  • Preferred examples of the deactivator include a phosphonium salt such as tetrabutylphosphonium salt of dodecylbenzenesulfonic acid and an ammonium salt such as tetraethylammonium dodecylbenzyl sulfate. Details of reaction forms other than the above are also well known in books and patent gazettes.
  • the viscosity average molecular weight of the polycarbonate resin is preferably 14,000 to 100,000, more preferably 20,000 to 30,000, even more preferably 22,000 to 28,000, and 23,000 to 26,000. Is particularly preferable. If the molecular weight exceeds the above range and the molecular weight is too low, the resistance to the hard coating agent tends to be insufficient, and if the molecular weight exceeds the above range and the molecular weight is too high, injection molding becomes difficult and the molded product cracks or uneven shadows occur. It is easy to occur.
  • the resin composition of the present invention can reduce non-uniform shadows of the molded product caused by the turbulence of the resin flow at a molecular weight having sufficient resistance to the hard coat agent, and has a good hard coat layer. It is possible to form a polycarbonate resin molded product. In a more preferable range, both impact resistance and molding processability are excellent.
  • the polycarbonate resin may be obtained by mixing those having a viscosity average molecular weight outside the above range.
  • the viscosity average molecular weight (M) of the polycarbonate resin was obtained by inserting the specific viscosity ( ⁇ sp ) obtained at 20 ° C. from a solution of 0.7 g of the polycarbonate resin in 100 ml of methylene chloride into the following equation.
  • PC-i aromatic polycarbonate having a viscosity average molecular weight of 70,000 to 300,000
  • PC-ii aromatic polycarbonate having a viscosity average molecular weight of 10,000 to 30,000
  • the viscosity average molecular weight thereof is Aromatic polycarbonate having a value of 15,000 to 40,000, preferably 20,000 to 30,000 (hereinafter, may be referred to as “high molecular weight component-containing aromatic polycarbonate”) can also be used.
  • Such a high molecular weight component-containing aromatic polycarbonate increases the entropy elasticity of the polymer due to the presence of PC-i, and becomes more advantageous at the time of injection press molding suitable in the present invention. For example, appearance defects such as hesitation marks can be further reduced, and the range of conditions for injection press molding can be expanded accordingly.
  • the low molecular weight component of the PC-ii component lowers the overall melt viscosity, promotes relaxation of the resin, and enables molding with lower strain. The same effect is also observed in the polycarbonate resin containing the branched component.
  • B component composite tungsten oxide fine particles
  • component B are represented by the general formula MxWyOz.
  • M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Represents one or more elements selected from Hf, Os, Bi, and I, and one or more elements selected from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, Sr, and Ba. Is preferable, and K, Rb, or Cs is more preferable. W represents tungsten and O represents oxygen.
  • X, y, and z are numbers that satisfy the formula 0.001 ⁇ x / y ⁇ 1, 2.2 ⁇ z / y ⁇ 3.0. Further, the range of x / y and z / y is preferably 0.01 ⁇ x / y ⁇ 0.5, 2.7 ⁇ z / y ⁇ 3.0, respectively, and 0.2 ⁇ x / y ⁇ 0.4. 2.8 ⁇ z / y ⁇ 3.0 is more preferable.
  • the particle size of the composite tungsten oxide fine particles (component B) is preferably 1 nm to 800 nm, more preferably 1 nm to 600 nm, and even more preferably 1 nm to 300 nm. If the particle size is smaller than 1 nm, the agglomeration effect becomes large, so that poor dispersibility is likely to occur, and if it is larger than 800 nm, the degree of cloudiness of the transparent resin molded product may increase.
  • the composite tungsten oxide fine particles (component B) can be obtained by heat-treating a tungsten compound as a starting material in an inert gas atmosphere or a reducing gas atmosphere.
  • the composite tungsten oxide fine particles obtained through the heat treatment have sufficient near-infrared shielding power and have preferable properties as infrared shielding fine particles.
  • the starting material for the composite tungsten oxide fine particles is a tungsten compound containing the element M in the form of a simple substance or a compound.
  • tungsten trioxide powder tungsten dioxide powder, tungsten oxide hydrate, tungsten hexachloride powder, ammonium tungsate powder, and tungsten hexachloride containing the element M in the form of a single element or a compound.
  • Tungsten oxide hydrate powder obtained by dissolving in alcohol and then drying
  • Tungsten trioxide obtained by dissolving tungsten hexachloride in alcohol, adding water to precipitate, and drying this.
  • tungsten compound powder obtained by drying an aqueous ammonium tungstate solution, and a metallic tungsten powder.
  • the starting material is a solution
  • these raw materials they can be heat-treated in an inert gas atmosphere or a reducing gas atmosphere to obtain the above-mentioned composite tungsten oxide fine particles.
  • the tungsten compound containing the element M is such as water or an organic solvent. It is preferably soluble in a solvent.
  • tungstate containing element M chloride salt, nitrate, sulfate, oxalate, oxide, carbonate, hydroxide and the like can be mentioned, but the solution is not limited to these. Is preferable.
  • component B The raw material for producing the composite tungsten oxide fine particles (component B) will be described in detail below again.
  • tungsten oxide fine particles (B component) represented by the general formula MxWyOz a powder obtained by mixing the tungsten oxide powder and the M element powder can be used.
  • a tungsten oxide powder tungsten trioxide powder, tungsten dioxide powder, tungsten oxide hydrate, tungsten hexachloride powder, ammonium tungstenate powder, and tungsten hexachloride are dissolved in alcohol and then dried.
  • Tungsten oxide hydrate powder, tungsten hexachloride is dissolved in alcohol, water is added and precipitated, and the obtained tungsten oxide hydrate powder and ammonium tungsten aqueous solution are dried. Examples thereof include tungsten compound powder and metallic tungsten powder obtained.
  • examples of the M element-based powder include powders of simple substances or compounds containing the M element.
  • the tungsten compound as a starting material for obtaining the composite tungsten oxide fine particles (component B) is a solution or a dispersion, each element can be easily and uniformly mixed.
  • the starting material for the composite tungsten oxide fine particles (component B) is a powder obtained by mixing an alcohol solution of tungsten hexachloride or an aqueous solution of ammonium tungstate and a solution of the compound containing the M element. It is more preferable to have.
  • the starting material for the fine particles (component B) of the composite tungsten oxide is a dispersion solution obtained by dissolving tungsten hexachloride in alcohol and then adding water to form a precipitate, and a simple substance containing the M element.
  • the powder of the compound or the solution of the compound containing the M element is mixed and then dried.
  • Examples of the compound containing the M element include, but are not limited to, tungstate, chloride salt, nitrate, sulfate, oxalate, oxide, carbonate, hydroxide and the like of the M element. Anything that becomes a solution may be used. Further, in the case of industrially producing composite tungsten oxide fine particles (component B), if hydrate powder or tungsten trioxide of tungsten oxide is used and carbonate or hydroxide of M element is used, heat treatment or the like is performed. This is a preferable manufacturing method because no harmful gas or the like is generated at the stage of.
  • the heat treatment conditions for the composite tungsten oxide fine particles (component B) in the inert atmosphere are preferably 650 ° C. or higher.
  • the starting material heat-treated at 650 ° C. or higher has sufficient near-infrared shielding power and is efficient as infrared-shielding fine particles.
  • the inert gas it is preferable to use an inert gas such as Ar or N 2 .
  • the starting material is first heat-treated in a reducing gas atmosphere at 100 ° C. or higher and 850 ° C. or lower, and then in an inert gas atmosphere at a temperature of 650 ° C. or higher and 1,200 ° C. or lower. It is preferable to heat-treat with.
  • the reducing gas at this time is not particularly limited, but H 2 is preferable.
  • H 2 is used as the reducing gas
  • the composition of the reducing atmosphere preferably contains H 2 in a volume ratio of 0.1% or more, more preferably 2% or more. If H 2 is 0.1% or more by volume, the reduction can proceed efficiently.
  • the surface of the fine particles (component B) of the composite tungsten oxide is coated with an oxide containing one or more metals of Si, Ti, Zr, and Al.
  • the coating method is not particularly limited, but the surface of the composite tungsten oxide fine particles (B component) is coated by adding the metal alkoxide to the solution in which the fine particles (B component) of the composite tungsten oxide are dispersed. It is possible.
  • the composite tungsten oxide fine particles (component B) are coated with a dispersant.
  • the dispersant include polycarbonate, polysulfone, polyacrylonitrile, polyarylate, polyethylene, polyvinyl chloride, polyvinylidene chloride, fluororesin, polyvinyl butyral, polyvinyl alcohol, polystyrene, silicone resins and derivatives thereof.
  • the composite tungsten oxide fine particles (component B) and the dispersant are dissolved in a solvent such as toluene, stirred to prepare a dispersion liquid, and then the solvent is removed by a treatment such as vacuum drying.
  • a solvent such as toluene
  • examples thereof include a method of coating tungsten oxide fine particles (component B).
  • a method of adding the B component to the polycarbonate resin (A component) a method of directly adding the composite tungsten oxide fine particles (B component) or a coated composite tungsten oxide fine particles (B component), or 1 to 100 Examples thereof include a method of adding after diluting with a double polycarbonate resin (component A).
  • the content of component B is 0.0001 to 0.2 parts by weight, preferably 0.001 to 0.1 parts by weight, more preferably 0.002 to 0.05 parts by weight, based on 100 parts by weight of component A. preferable. If the content of the B component is less than 0.0001 parts by weight, the infrared shielding ability cannot be sufficiently exhibited, and if it is more than 0.2 parts by weight, the moist heat resistance deteriorates and the total light transmittance becomes very small. It ends up.
  • C component epoxy resin
  • the resin composition of the present invention contains an epoxy resin as a C component for the purpose of having infrared shielding performance having good moisture and heat resistance while maintaining high transparency.
  • the epoxy resin used is preferably an epoxy polymer containing a glycidyl group, more preferably an epoxy polymer containing glycidyl methacrylate in the copolymer, and polystyrene is preferable as the other component of the copolymer. Used for. Among them, a polyglycidyl methacrylate-polystyrene copolymer is preferably used. When an epoxy polymer containing no glycidyl group is used, the compatibility with the component A may be poor and the transparency may be poor.
  • Examples of the monomer component of the polymer containing a glycidyl group include allyl glycidyl ether, glycidyl methacrylate, glycidyl acrylate, 4-hydroxybutyl acrylate glycidyl ether, 1,2-epoxy-5-hexene, 1,2-epoxy-9-decene, and the like.
  • Examples thereof include epoxy succinic acid
  • examples of the polymer include terminal epoxy-modified polydimethylsiloxane and side-chain epoxy-modified polydimethylsiloxane.
  • the content of the C component is 0.0001 to 0.1 parts by weight, preferably 0.001 to 0.05 parts by weight, and more preferably 0.001 to 0.03 parts by weight with respect to 100 parts by weight of the A component. is there. If the content is less than 0.0001 parts by weight, sufficient moisture and heat resistance is not exhibited, and if it exceeds 0.1 parts by weight, the hue deteriorates and the transparency is impaired.
  • D component mold release agent
  • the resin composition of the present invention is a fatty acid ester containing a full ester composed of a fatty acid and a polyhydric alcohol as a D component as a main component for the purpose of having an infrared shielding performance having good moisture and heat resistance while maintaining high transparency. Contains a mold.
  • the fatty acid preferably has 3 to 32 carbon atoms, and particularly preferably a fatty acid having 10 to 32 carbon atoms.
  • the fatty acid include decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid (palmitic acid), heptadecanoic acid, octadecanoic acid (stearic acid), nonadecanic acid, bechenic acid, icosanoic acid, and the like.
  • saturated aliphatic carboxylic acids such as docosanoic acid, and unsaturated fatty acids such as palmitic acid, oleic acid, linoleic acid, linolenic acid, eicosenoic acid, eicosapentaenoic acid, and setreic acid.
  • the fatty acid preferably has 14 to 20 carbon atoms.
  • saturated fatty acids are preferable.
  • stearic acid and palmitic acid are preferred.
  • the above fatty acids such as stearic acid and palmitic acid are usually produced from animal fats and oils such as beef tallow and lard and natural fats and oils such as palm oil and sunflower oil.
  • Fatty acids are usually mixtures containing other carboxylic acid components with different carbon atoms. Therefore, also in the production of the fatty acid ester of the present invention, fatty acids produced from such natural fats and oils and in the form of a mixture containing other carboxylic acid components, particularly stearic acid and palmitic acid are preferably used.
  • polyhydric alcohols examples include pentaerythritol, dipentaerythritol, tripentaerythritol, polyglycerol (triglycerol to hexaglycerol), ditrimethylolpropane, xylitol, sorbitol, and mannitol. Dipentaerythritol is preferable in the fatty acid ester of the present invention.
  • the fatty acid ester of the present invention is a full ester. When a partial ester is used, sufficient moisture and heat resistance is not exhibited.
  • the acid value of the fatty acid ester of the present invention is preferably 20 or less, more preferably 4 to 20, and even more preferably 4 to 12 from the viewpoint of thermal stability.
  • the acid value can be substantially 0.
  • the hydroxyl value of the fatty acid ester is preferably in the range of 0.1 to 30.
  • the iodine value is preferably 10 or less.
  • the iodine value can be substantially 0. These characteristics can be obtained by the method specified in JIS K0070.
  • the D component is preferably a fatty acid ester represented by the following formula (1).
  • the content of the D component is 0.001 to 0.5 parts by weight, preferably 0.01 to 0.4 parts by weight, and more preferably 0.05 to 0.3 parts by weight with respect to 100 parts by weight of the A component. is there. If the content is less than 0.001 parts by weight, sufficient moisture and heat resistance is not exhibited, and if it exceeds 0.5 parts by weight, the molecular weight of the polycarbonate resin composition decreases during molding.
  • E component heat stabilizer
  • the resin composition of the present invention preferably contains a heat stabilizer as the E component.
  • At least one kind of heat stabilizer selected from the group consisting of a phenol-based stabilizer (E-1 component), a sulfur-based stabilizer (E-2 component), and a phosphorus-based stabilizer (E-3 component).
  • E-1 component phenol-based stabilizer
  • E-2 component sulfur-based stabilizer
  • E-3 component phosphorus-based stabilizer
  • the content of the E component is preferably 0.0002 to 0.8 parts by weight, more preferably 0.001 to 0.7 parts by weight, and 0.01 to 0 parts by weight with respect to 100 parts by weight of the A component. It is more preferably 1 part by weight. If the content is less than 0.0002 parts by weight, the effect of thermal stability may not be exhibited, and if it exceeds 0.8 parts by weight, the hue stability during molding may be maintained when used in combination with composite tungsten oxide fine particles. It may not be possible.
  • E-1 component phenolic stabilizer
  • phenolic stabilizer examples include ⁇ -tocopherol, butylhydroxytoluene, cinapyl alcohol, vitamin E, n-octadecyl- ⁇ - (4'-hydroxy-3', 5'-di-tert-butylfel) propionate, and the like.
  • phenolic stabilizers can be used alone or in combination of two or more.
  • E-2 component sulfur-based stabilizer
  • sulfur compounds dilaurylthiodipropionate, ditridecylthiodipropionate, dimyristylthiodipropionate, distearylthiodipropionate, pentaerythritol tetrakis (3-laurylthiopropionate), pentaerythritol tetrakis ( 3-Dodecylthiopropionate), pentaerythritol tetrakis (3-octadecylthiopropionate), pentaerythritol tetrakis (3-myristylthiopropionate), pentaerythritol tetrakis (3-stearylthiopropionate), etc.
  • Phosphorus-based stabilizers are already widely known as thermal stabilizers for aromatic polycarbonates.
  • the phosphorus-based stabilizer enhances the thermal stability of the resin composition to the extent that it can withstand an extremely severe heat load.
  • Phosphite compounds and phosphonite are mainly mentioned as phosphorus-based stabilizers.
  • examples of the phosphite compound include triphenylphosphite, tris (nonylphenyl) phosphite, tridecylphosphite, trioctylphosphite, trioctadecylphosphite, didecylmonophenylphosphite, and dioctylmonophenylphosphite.
  • phosphite compound a compound that reacts with divalent phenols and has a cyclic structure can also be used.
  • Examples of the phosphonite compound include tetrakis (2,4-di-tert-butylphenyl) -4,4'-biphenylenediphosphonite and tetrakis (2,4-di-tert-butylphenyl) -4,3'-biphenyl.
  • Such a phosphonite compound is preferable because it can be used in combination with a phosphite compound having an aryl group in which two or more alkyl groups are substituted.
  • F component UV absorber
  • the resin composition of the present invention may be used without painting or the like. In such a case, good light resistance may be required, so it is preferable to add an ultraviolet absorber.
  • the UV absorber is at least one selected from the group consisting of a benzotriazole-based UV absorber (F-1 component), a triazine-based UV absorber (F-2 component), and an oxazine-based UV absorber (F-3 component). UV absorbers are preferred.
  • the content of the F component is preferably 0.1 to 2 parts by weight, more preferably 0.12 to 1.5 parts by weight, and further preferably 0.15 to 1 part by weight with respect to 100 parts by weight of the A component. is there. If the content of the F component is less than 0.1 parts by weight, sufficient light resistance may not be exhibited, and if it is more than 2 parts by weight, poor appearance or deterioration of physical properties may occur due to gas generation.
  • F-1 component benzotriazole UV absorber
  • benzotriazole-based ultraviolet absorber examples include 2- (2-hydroxy-5-methylphenyl) benzotriazol, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazol, and 2- (2- (2-).
  • examples of the triazine-based ultraviolet absorber include 2- (4,6-diphenyl-1,3,5-triazine-2-yl) -5-hexyloxyphenol and 2- (4,6-diphenyl-1,3).
  • the phenyl group of the above-exemplified compound such as 2- (4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine-2-yl) -5-hexyloxyphenol is 2,4-dimethyl.
  • a compound that has become a phenyl group is exemplified.
  • F-3 component: oxazine-based UV absorber examples include 2,2'-p-phenylenebis (3,1-benzoxazine-4-one) and 2,2'-m-phenylenebis (3,1-benzoxazine-4).
  • the resin composition of the present invention can provide a molded product containing various dyeing pigments and exhibiting various design properties.
  • the dyes used in the present invention include perylene dyes, coumarin dyes, thioindigo dyes, anthracinone dyes, thioxanthone dyes, ferrocyanides such as navy blue, perinone dyes, quinoline dyes, and quinacridone dyes.
  • the polycarbonate resin composition of the present invention can also be blended with a metallic pigment to obtain a better metallic color.
  • Aluminum powder is suitable as the metallic pigment.
  • a fluorescent whitening agent or a fluorescent dye that emits light other than that a better design effect that makes the best use of the emitted color can be imparted.
  • Examples of the fluorescent dye (including the fluorescent whitening agent) used in the present invention include a coumarin-based fluorescent dye, a benzopyran-based fluorescent dye, a perylene-based fluorescent dye, an anthracinone-based fluorescent dye, a thioindigo-based fluorescent dye, and a xanthene-based fluorescent dye. , Xantone-based fluorescent dye, thioxanthene-based fluorescent dye, thioxanthone-based fluorescent dye, thiazine-based fluorescent dye, diaminostilben-based fluorescent dye, and the like.
  • the resin composition of the present invention preferably contains nitride fine particles.
  • the nitride fine particles are preferably at least one metal nitride fine particles selected from the group consisting of Ti, Zr, Hf, V, Nb and Ta.
  • Any method is adopted for producing the resin composition of the present invention. For example, a method of premixing each component and optionally other components, then melt-kneading and pelletizing can be mentioned.
  • premixing means examples include a Nauter mixer, a V-type blender, a Henschel mixer, a mechanochemical device, and an extrusion mixer.
  • granulation can be performed by an extrusion granulator, a briquetting machine, or the like, depending on the case.
  • melt-kneading is performed by a melt-kneader typified by a bent twin-screw extruder, and pelletization is performed by equipment such as a pelletizer.
  • melt kneader examples include a Banbury mixer, a kneading roll, and a constant heat stirring vessel, but a vent type twin-screw extruder is preferable.
  • a method of independently supplying each component and optionally other components to a melt kneader typified by a twin-screw extruder can be adopted without premixing.
  • the resin composition of the present invention obtained as described above can usually be injection-molded from pellets produced as described above to produce various products. Further, it is also possible to directly convert the resin melt-kneaded by the extruder into a sheet, a film, a modified extrusion-molded product and an injection-molded product without passing through pellets.
  • injection molding not only ordinary molding methods, but also injection compression molding, injection press molding, gas-assisted injection molding, foam molding (including those by injection of supercritical fluid), insert molding, and insert molding, depending on the intended purpose.
  • Molded products can be obtained using injection molding methods such as in-mold coating molding, heat insulating mold molding, rapid heating and cooling mold molding, two-color molding, sandwich molding, and ultra-high speed injection molding.
  • injection molding methods such as in-mold coating molding, heat insulating mold molding, rapid heating and cooling mold molding, two-color molding, sandwich molding, and ultra-high speed injection molding.
  • a cold runner method or a hot runner method can be selected for molding.
  • the resin composition of the present invention can also be used to mold various deformed extrusion-molded products and sheets by extrusion molding. Further, it is preferable that one side or both sides of the molded product is hard-coated.
  • the thickness of the molded product is preferably 0.1 to 20 mm, more preferably 0.1 to 15 mm. Further, the total light transmittance of the molded product defined by ISO9050 is preferably 20% or more, and more preferably 30% or more. Further, the haze specified by ISO9050 of the molded product is preferably 5% or less, and more preferably 3% or less.
  • the embodiment of the present inventor is a collection of preferable ranges of each of the above requirements. For example, a representative example thereof will be described in the following examples. Of course, the present invention is not limited to these forms.
  • Part means “part by weight” and% means “% by weight” unless otherwise specified.
  • resin composition (1-1) Raw materials used (Component A) A-1: Polycarbonate resin powder with a molecular weight of 24,200 obtained by the following manufacturing method A three-stage six-blade stirrer and a reflux condenser were attached to the reaction vessel with a baffle. In this reaction vessel, 45.6 parts of bisphenol A, 2.78 mol% of p-tert-butylphenol with respect to bisphenol A, 265 parts of dichloromethane and 200 parts of water are put, and nitrogen purge is performed to remove oxygen in the reaction vessel. Was done.
  • the content in the reaction vessel was less than 80% of the vessel capacity.
  • an aqueous solution for supplying 0.09 part of sodium hydrosulfite and 21.8 parts of sodium hydroxide was supplied to the suspension, and bisphenol A was dissolved at 15 ° C.
  • 23.35 parts of phosgene was fed to this mixture for 30 minutes.
  • 0.016 parts of triethylamine (0.08 mol% with respect to bisphenol A) was added and stirred for 60 minutes to terminate the reaction. Then, the reaction mixture was allowed to stand and the organic phase was separated.
  • Methylene chloride was added to the obtained dichloromethane solution of the polycarbonate resin to obtain a solution having a concentration of 14% by weight, and then 0.5% hydroxylation was made using a centrifugal extractor with a perforated plate (KCC centrifugal extractor manufactured by Kawasaki Engineering Co., Ltd.).
  • An aqueous sodium solution was supplied at a flow rate of 1,000 ml / min and an organic phase was supplied at a flow rate of 1,000 ml / min, and the mixture was treated under the conditions of 3,500 rpm. Then, the organic phase was acidified with dichloromethane, and then washing with water was repeated to obtain the aqueous phase.
  • B component B-1: Cs 0.33 WO 3 Heat ray absorber composed of about 23% by weight and organic dispersion resin (YMDS-874R manufactured by Sumitomo Metal Mining Co., Ltd.)
  • C component C-1: Epoxy resin (manufactured by NOF CORPORATION: G-0250SP)
  • C-2 Epoxy resin (manufactured by NOF CORPORATION: G-0150M)
  • D component D-1: Fatty acid full ester (has a structure represented by the formula (1)) (manufactured by RIKEN Vitamin Co., Ltd .: L-8483)
  • D-3 Fatty acid full ester (does not have the
  • B component Pellets were obtained.
  • the content of the B component is the amount of Cs 0.33 WO 3 which is an inorganic ultraviolet absorbing material contained in B-1 shown in parentheses. (The numbers in parentheses represent the parts by weight in the resin composition of B-1.)
  • Additives to be added to the polycarbonate resin should be prepared in advance as a premix with the polycarbonate resin at a concentration of 10 to 100 times the blending amount. After preparation, the whole mixture was mixed by a blender.
  • the vent type twin-screw extruder was manufactured by Japan Steel Works, Ltd .: TEX30 ⁇ (complete meshing, rotating in the same direction, double-threaded screw).
  • the kneading zone is one type in front of the vent opening.
  • the extrusion conditions were a discharge rate of 20 kg / h, a screw rotation speed of 130 rpm, a degree of vacuum of the vent of 3 kPa, and an extrusion temperature of 290 ° C. from the first supply port to the die portion.
  • the above resin composition was produced in an atmosphere in which clean air passed through a HEPA filter circulates, and sufficient care was taken not to allow foreign matter to enter during the work.
  • (2-2) Test piece preparation method The obtained pellets are dried at 110 to 120 ° C. for 6 hours in a hot air circulation type dryer, and then used by an injection molding machine [SG260M-HP manufactured by Sumitomo Heavy Industries, Ltd.] to have a cylinder temperature of 300 ° C. and a mold temperature of 80.
  • (3) Evaluation items (3-1) Viscosity average molecular weight of test piece The test piece crushed into 3 mm square shavings was mixed with 20 to 30 times the weight of methylene chloride to dissolve the soluble component in the composition. Next, the soluble component was collected by Celite filtration. After that, the solvent in the obtained solution was removed, and the solid after removing the solvent was sufficiently dried to obtain a solid having a component dissolved in methylene chloride.
  • test piece was subjected to a wet heat treatment for 48 hours under the conditions of 120 ° C. and 75% Rh with a pressure cooker tester TPC-412 (manufactured by ESPEC Co., Ltd.), and Tts was calculated by the same method as the above method. ..
  • Tts was calculated by the same method as the above method. ..
  • the difference between Tts after the pressure cooker and the initial Tts was calculated and used as the amount of change in infrared shielding performance ( ⁇ Tts) after the moisture resistance test.
  • ⁇ Tts infrared shielding performance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、高い透明性を保ちながら耐湿熱性が良好な赤外線遮蔽性能を有する樹脂組成物を提供する。 本発明の樹脂組成物は、(A)ポリカーボネート樹脂(A成分)100重量部に対し、(B)一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.2≦z/y≦3.0)で表記される複合タングステン酸化物微粒子(B成分)0.0001~0.2重量部、(C)エポキシ樹脂(C成分)0.0001~0.1重量部並びに(D)脂肪酸および多価アルコールからなるフルエステルを主成分とする脂肪酸エステルである離型剤(D成分)0.001~0.5重量部を含有することを特徴とする。

Description

赤外線遮蔽透明部材用樹脂組成物及び成形品
 本発明は赤外線吸収性能をもつ無機材料としての複合タングステン酸化物微粒子を含むポリカーボネート樹脂組成物ならびに該ポリカーボネート樹脂組成物から成る成形品に関する。
 赤外線遮蔽性能を有する透明材料は室内の温度上昇抑制や人の体感温度上昇を抑制する効果があり、自動車用途や建材用途等の窓部材に用いることで環境負荷低減への効果が期待される。特に透明樹脂に赤外性線遮蔽性能を付与することにより軽量化とサーマルマネージメントの観点からCO排出量抑制など環境負荷低減への効果は大きい。赤外線遮蔽性能を発現させる手法として、特許文献1には透明樹脂に複合タングステン酸化物微粒子を付与する技術が開示されているが、湿熱条件下で経時的に赤外線遮蔽性能が劣化するという問題がある。特許文献2には複合タングステン酸化物微粒子の粒子径を限定することで耐湿熱性を向上する技術が開示されているが、その効果は不十分である。また、特許文献3には脂肪酸エステルを配合することで樹脂の熱安定性を向上させる技術が開示されているが、赤外線遮蔽性能の耐湿熱性を向上させる効果は認められない。また、特許文献4には透明樹脂にエポキシ樹脂を配合することで樹脂の加水分解を抑制する技術が開示されているが、赤外線遮蔽性能の耐湿熱性を向上させる効果は認められない。そのため、複合タングステン酸化物微粒子を付与した透明樹脂の赤外線遮蔽性能の耐湿熱性の向上が求められている。
特許第5714826号公報 特開2017-95686号公報 特開2008-156386号公報 特表2003-531926号公報
 本発明の目的は、高い透明性を保ちながら耐湿熱性が良好な赤外線遮蔽性能を有する樹脂組成物とその成形品を得ることである。
 本発明者らは、前記課題を解決するため鋭意検討した結果、ポリカーボネート樹脂に複合タングステン酸化物微粒子、エポキシ樹脂及び脂肪酸エステルを添加することで、耐湿熱性に優れかつ高い赤外線遮蔽性能と高い透過性を示すポリカーボネート樹脂組成物とそれから成る成形品が得られることを見出した。すなわち、上記課題は、(A)ポリカーボネート樹脂(A成分)100重量部に対し、(B)一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.2≦z/y≦3.0)で表記される複合タングステン酸化物微粒子(B成分)0.0001~0.2重量部、(C)エポキシ樹脂(C成分)0.0001~0.1重量部並びに(D)脂肪酸および多価アルコールからなるフルエステルを主成分とする脂肪酸エステルである離型剤(D成分)0.001~0.5重量部を含有する樹脂組成物により達成される。
 本発明の樹脂組成物は、高い透明性を保ちながら耐湿熱性が良好な赤外線遮蔽性能を有するため、車両用灯具、車両用センサーカバー、車両用表示装置カバー、車両用窓部材、リレー用表示装置カバーまたは建築材用窓部材等に適しておりその奏する産業上の効果は格別である。
 以下、本発明の各構成成分の詳細について説明する。
(A成分:ポリカーボネート樹脂)
 本発明でA成分として使用されるポリカーボネート樹脂は、二価フェノールとカーボネート前駆体とを反応させて得られるものである。反応方法の一例として界面重合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、および環状カーボネート化合物の開環重合法などを挙げることができる。  
 ここで使用される二価フェノールの代表的な例としては、ハイドロキノン、レゾルシノール、4,4’-ビフェノール、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)プロパン(通称ビスフェノールA)、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、4,4’-(p-フェニレンジイソプロピリデン)ジフェノール、4,4’-(m-フェニレンジイソプロピリデン)ジフェノール、1,1-ビス(4-ヒドロキシフェニル)-4-イソプロピルシクロヘキサン、ビス(4-ヒドロキシフェニル)オキシド、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-ヒドロキシフェニル)スルホキシド、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)ケトン、ビス(4-ヒドロキシフェニル)エステル、2,2-ビス(3,5-ジブロモ-4-ヒドロキシフェニル)プロパン、ビス(3,5-ジブロモ-4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシ-3-メチルフェニル)スルフィド、9,9-ビス(4-ヒドロキシフェニル)フルオレンおよび9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレンなどが挙げられる。好ましい二価フェノールは、ビス(4-ヒドロキシフェニル)アルカンであり、なかでも耐衝撃性の点からビスフェノールAが特に好ましい。  
 カーボネート前駆体としてはカルボニルハライド、炭酸ジエステルまたはハロホルメートなどが使用され、具体的にはホスゲン、ジフェニルカーボネートまたは二価フェノールのジハロホルメートなどが挙げられる。  
 上記二価フェノールとカーボネート前駆体を界面重合法によってポリカーボネート樹脂を製造するに当っては、必要に応じて触媒、末端停止剤、二価フェノールが酸化するのを防止するための酸化防止剤などを使用してもよい。また本発明のポリカーボネート樹脂は三官能以上の多官能性芳香族化合物を共重合した分岐ポリカーボネート樹脂、芳香族または脂肪族(脂環族を含む)の二官能性カルボン酸を共重合したポリエステルカーボネート樹脂、二官能性アルコール(脂環族を含む)を共重合した共重合ポリカーボネート樹脂、並びにかかる二官能性カルボン酸および二官能性アルコールを共に共重合したポリエステルカーボネート樹脂を含む。また、得られたポリカーボネート樹脂の2種以上を混合した混合物であってもよい。  
 三官能以上の多官能性芳香族化合物としては、1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタンなどが使用できる。  
 分岐ポリカーボネートを生ずる多官能性化合物を含む場合、かかる量は、芳香族ポリカーボネート全量中、0.001~1モル%、好ましくは0.005~0.9モル%、特に好ましくは0.01~0.8モル%である。また特に溶融エステル交換法の場合、副反応として分岐構造が生ずる場合があるが、かかる分岐構造量についても、芳香族ポリカーボネート全量中、0.001~1モル%、好ましくは0.005~0.9モル%、特に好ましくは0.01~0.8モル%であるものが好ましい。尚、かかる割合については1H-NMR測定により算出することが可能である。  
 脂肪族の二官能性のカルボン酸は、α,ω-ジカルボン酸が好ましい。脂肪族の二官能性のカルボン酸としては例えば、セバシン酸(デカン二酸)、ドデカン二酸、テトラデカン二酸、オクタデカン二酸、イコサン二酸などの直鎖飽和脂肪族ジカルボン酸、並びにシクロヘキサンジカルボン酸などの脂環族ジカルボン酸が好ましく挙げられる。二官能性アルコールとしては脂環族ジオールがより好適であり、例えばシクロヘキサンジメタノール、シクロヘキサンジオール、およびトリシクロデカンジメタノールなどが例示される。  
 更にポリオルガノシロキサン単位を共重合した、ポリカーボネート-ポリオルガノシロキサン共重合体の使用も可能である。  
 界面重合法による反応は、通常二価フェノールとホスゲンとの反応であり、酸結合剤および有機溶媒の存在下に反応させる。酸結合剤としては例えば水酸化ナトリウムや水酸化カリウムなどのアルカリ金属水酸化物、ピリジンなどが用いられる。  
 有機溶媒としては例えば塩化メチレン、クロロベンゼンなどのハロゲン化炭化水素が用いられる。  
 また、反応促進のために例えば第三級アミンや第四級アンモニウム塩などの触媒を用いることができ、分子量調節剤として例えばフェノール、p-tert-ブチルフェノール、p-クミルフェノールなどの単官能フェノール類を用いるのが好ましい。更に単官能フェノール類としては、デシルフェノール、ドデシルフェノール、テトラデシルフェノール、ヘキサデシルフェノール、オクタデシルフェノール、エイコシルフェノール、ドコシルフェノールおよびトリアコンチルフェノールなどを挙げることができる。これらの比較的長鎖のアルキル基を有する単官能フェノール類は、流動性や耐加水分解性の向上が求められる場合に有効である。  
 反応温度は通常0~40℃、反応時間は数分~5時間、反応中のpHは通常10以上に保つのが好ましい。  
 溶融法による反応は、通常二価フェノールと炭酸ジエステルとのエステル交換反応であり、不活性ガスの存在下に二価フェノールと炭酸ジエステルを混合し、減圧下通常120~350℃で反応させる。減圧度は段階的に変化させ、最終的には133Pa以下にして生成したフェノール類を系外に除去させる。反応時間は通常1~4時間程度である。  
 炭酸ジエステルとしては、例えばジフェニルカーボネート、ジナフチルカーボネート、ビス(ジフェニル)カーボネート、ジメチルカーボネート、ジエチルカーボネートおよびジブチルカーボネートなどが挙げられ、なかでもジフェニルカーボネートが好ましい。  
 重合速度を速めるために重合触媒を使用することができ、重合触媒としては、例えば水酸化ナトリウムや水酸化カリウムなどのアルカリ金属やアルカリ土類金属の水酸化物、ホウ素やアルミニウムの水酸化物、アルカリ金属塩、アルカリ土類金属塩、第4級アンモニウム塩、アルカリ金属やアルカリ土類金属のアルコキシド、アルカリ金属やアルカリ土類金属の有機酸塩、亜鉛化合物、ホウ素化合物、ケイ素化合物、ゲルマニウム化合物、有機錫化合物、鉛化合物、アンチモン化合物、マンガン化合物、チタン化合物、ジルコニウム化合物などの通常エステル化反応やエステル交換反応に使用される触媒があげられる。触媒は単独で使用しても良いし、二種類以上を併用して使用しても良い。これらの重合触媒の使用量は、原料の二価フェノール1モルに対し、好ましくは1×10-9~1×10-5当量、より好ましくは1×10-8~5×10-6当量の範囲で選ばれる。  
 また、重合反応において、フェノール性の末端基を減少するために、重縮反応の後期あるいは終了後に、例えば2-クロロフェニルフェニルカーボネート、2-メトキシカルボニルフェニルフェニルカーボネートおよび2-エトキシカルボニルフェニルフェニルカーボネートなどの化合物を加えることができる。  
 さらに溶融エステル交換法では触媒の活性を中和する失活剤を用いることが好ましい。かかる失活剤の量としては、残存する触媒1モルに対して0.5~50モルの割合で用いるのが好ましい。また重合後の芳香族ポリカーボネートに対し、0.01~500ppmの割合、より好ましくは0.01~300ppm、特に好ましくは0.01~100ppmの割合で使用する。失活剤としては、ドデシルベンゼンスルホン酸テトラブチルホスホニウム塩などのホスホニウム塩、テトラエチルアンモニウムドデシルベンジルサルフェートなどのアンモニウム塩などが好ましく挙げられる。上記以外の反応形式の詳細についても、成書及び特許公報などで良く知られている。  
 ポリカーボネート樹脂の粘度平均分子量は、14,000~100,000であることが好ましく、20,000~30,000がより好ましく、22,000~28,000がさらに好ましく、23,000~26,000が特に好ましい。上記範囲を超えて分子量が低すぎる場合にはハードコート剤に対する耐性が不十分となりやすく、上記範囲を超えて分子量が高すぎる場合には射出成形が困難となり成形品の割れや不均一な陰影が生じやすくなる。上記の好適な範囲においてはハードコート剤に対する耐性が十分な分子量において、本発明の樹脂組成物は樹脂流動の乱れにより生じる成形品の不均一な陰影が低減可能であり、ハードコート層を有する良好なポリカーボネート樹脂成形体の形成を可能とする。更により好ましい範囲においては、耐衝撃性と成形加工性との両立に優れる。尚、上記ポリカーボネート樹脂は、その粘度平均分子量が上記範囲外のものを混合して得られたものであってもよい。  
 ポリカーボネート樹脂の粘度平均分子量(M)は塩化メチレン100mlにポリカーボネート樹脂0.7gを溶解した溶液から20℃で求めた比粘度(ηsp)を次式に挿入して求めたものである。  
 ηsp/c=[η]+0.45×[η]c(但し[η]は極限粘度)  
 [η]=1.23×10-40.83  
 c=0.7  
 本発明におけるポリカーボネート樹脂の態様として以下のものを挙げることができる。すなわち、粘度平均分子量70,000~300,000の芳香族ポリカーボネート(PC-i)、および粘度平均分子量10,000~30,000の芳香族ポリカーボネート(PC-ii)からなり、その粘度平均分子量が15,000~40,000、好適には20,000~30,000である芳香族ポリカーボネート(以下、“高分子量成分含有芳香族ポリカーボネート”と称することがある)も使用できる。  
 かかる高分子量成分含有芳香族ポリカーボネートは、PC-iの存在によりポリマーのエントロピー弾性を大きくし本発明において好適な射出プレス成形時においてより有利となる。例えばヘジテーションマークなどの外観不良はより低減でき、その分射出プレス成形の条件幅を広げることが可能である。一方PC-ii成分の低い分子量成分は全体の溶融粘度を低下し、樹脂の緩和を促進して、より低歪の成形を可能とする。尚、同様の効果は分岐成分を含有するポリカーボネート樹脂においても認められる。
(B成分:複合タングステン酸化物微粒子)
 複合タングステン酸化物微粒子(B成分)は、一般式MxWyOzで表される。式中Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択される1種類以上の元素を表し、Li、Na、K、Rb、Cs、Mg、Ca、SrおよびBaからなる群より選択される1種類以上の元素であることが好ましく、K、Rb、またはCsであることがさらに好ましい。また、Wはタングステン、Oは酸素を表す。
 x、y、zは0.001≦x/y≦1、2.2≦z/y≦3.0の式を満たす数である。さらに、x/y、z/yの範囲はそれぞれ0.01≦x/y≦0.5、2.7≦z/y≦3.0が好ましく、0.2≦x/y≦0.4、2.8≦z/y≦3.0がより好ましい。  
 複合タングステン酸化物微粒子(B成分)の粒子径は、1nm~800nmであることが好ましく、1nm~600nmがより好ましく、1nm~300nmがさらに好ましい。粒子径が1nmより小さいと凝集効果が大きくなるため分散性不良が生じやすくなり、800nmより大きいと透明樹脂成形品の曇り度が高くなるなど不良が生じることがある。  
 複合タングステン酸化物微粒子(B成分)は、出発原料であるタングステン化合物を、不活性ガス雰囲気もしくは還元性ガス雰囲気中で熱処理して得ることができる。当該熱処理を経て得られた複合タングステン酸化物微粒子は、十分な近赤外線遮蔽力を有し、赤外線遮蔽微粒子として好ましい性質を有している。  
 複合タングステン酸化物微粒子(B成分)の出発原料は、元素Mを、元素単体または化合物のかたちで含有するタングステン化合物である。具体的には元素Mを、元素単体または化合物のかたちで含有する、3酸化タングステン粉末、2酸化タングステン粉末、タングステン酸化物の水和物、6塩化タングステン粉末、タングステン酸アンモニウム粉末、6塩化タングステンをアルコール中に溶解させたのち乾燥して得られるタングステン酸化物の水和物粉末、6塩化タングステンをアルコール中に溶解させたのち水を添加して沈殿させこれを乾燥して得られるタングステン酸化物の水和物粉末、タングステン酸アンモニウム水溶液を乾燥して得られるタングステン化合物粉末、および金属タングステン粉末からなる群より選ばれた一種類以上であることが好ましい。なお、出発原料が溶液であると、各元素は容易に均一混合可能となる観点より、タングステン酸アンモニウム水溶液や、6塩化タングステン溶液を用いることがさらに好ましい。これら原料を用い、これを不活性ガス雰囲気もしくは還元性ガス雰囲気中で熱処理して、上述した複合タングステン酸化物微粒子を得ることができる。  
 ここで、各成分が分子レベルで均一混合した出発原料であるタングステン化合物を製造するためには、各原料を溶液で混合することが好ましく、元素Mを含むタングステン化合物が、水や有機溶媒などの溶媒に溶解可能なものであることが好ましい。例えば、元素Mを含有するタングステン酸塩、塩化物塩、硝酸塩、硫酸塩、シュウ酸塩、酸化物、炭酸塩、水酸化物などが挙げられるが、これらに限定されず、溶液状になるものであれば好ましい。  
 複合タングステン酸化物微粒子(B成分)を製造するための原料に関し、以下で、再度詳細に説明する。  
 一般式MxWyOzで表記される複合タングステン酸化物微粒子(B成分)を得るための出発原料には、タングステン酸化物系粉末と前記M元素系粉末を混合した粉末を用いることが出来る。タングステン酸化物系粉末として、3酸化タングステン粉末、2酸化タングステン粉末、タングステン酸化物の水和物、6塩化タングステン粉末、タングステン酸アンモニウム粉末、6塩化タングステンをアルコール中に溶解させたのち乾燥して得られるタングステン酸化物の水和物粉末、6塩化タングステンをアルコール中に溶解させたのち水を添加して沈殿させこれを乾燥して得られるタングステン酸化物の水和物粉末、タングステン酸アンモニウム水溶液を乾燥して得られるタングステン化合物粉末、金属タングステン粉末などが挙げられる。またM元素系粉末として、M元素を含有する単体または化合物の粉末などが挙げられる。さらに、複合タングステン酸化物微粒子(B成分)を得るための出発原料であるタングステン化合物が、溶液または分散液であると、各元素は容易に均一混合可能となる。当該観点より、複合タングステン酸化物微粒子(B成分)の出発原料が、6塩化タングステンのアルコール溶液またはタングステン酸アンモニウム水溶液と、前記M元素を含有する化合物の溶液とを、混合したのち乾燥した粉末であることがさらに好ましい。同様に、複合タングステン酸化物の微粒子(B成分)の出発原料が、6塩化タングステンをアルコール中に溶解させたのち水を添加して沈殿を生成させた分散液と、前記M元素を含有する単体または化合物の粉末または前記M元素を含有する化合物の溶液とを、混合したのち乾燥した粉末であることも好ましい。  
 前記M元素を含有する化合物としては、M元素のタングステン酸塩、塩化物塩、硝酸塩、硫酸塩、シュウ酸塩、酸化物、炭酸塩、水酸化物などが挙げられるが、これらに限定されず、溶液状になるものであればよい。さらに、複合タングステン酸化物微粒子(B成分)を工業的に製造する場合に、タングステン酸化物の水和物粉末や三酸化タングステンと、M元素の炭酸塩や水酸化物とを用いると、熱処理などの段階で有害なガスなどが発生することが無く、好ましい製造法である。  
 ここで、複合タングステン酸化物微粒子(B成分)の不活性雰囲気中における熱処理条件としては、650℃以上が好ましい。650℃以上で熱処理された出発原料は、十分な近赤外線遮蔽力を有し赤外線遮蔽微粒子として効率がよい。不活性ガスとしてはAr、Nなどの不活性ガスを用いることがよい。  
 また、還元性雰囲気中の熱処理条件としては、まず出発原料を還元性ガス雰囲気中にて100℃以上850℃以下で熱処理し、次いで不活性ガス雰囲気中で650℃以上1,200℃以下の温度で熱処理することが好ましい。この時の還元性ガスは、特に限定されないがHが好ましい。また還元性ガスとしてHを用いる場合は、還元雰囲気の組成として、Hが体積比で0.1%以上が好ましく、さらに好ましくは2%以上がよい。Hが体積比で0.1%以上あれば効率よく還元を進めることができる。  
 耐候性の向上の観点から、複合タングステン酸化物の微粒子(B成分)の表面は、Si、Ti、Zr、Alの一種類以上の金属を含有する酸化物で被覆されていることが好ましい。被覆方法は特に限定されないが、当複合タングステン酸化物の微粒子(B成分)を分散した溶液中へ、上記金属のアルコキシドを添加することで、複合タングステン酸化物微粒子(B成分)の表面を被覆することが可能である。  
 また、複合タングステン酸化微粒子(B成分)は、分散剤で被覆されていることが好ましい。分散剤としてはポリカーボネート、ポリサルホン、ポリアクリロニトリル、ポリアリレート、ポリエチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、フッ素樹脂、ポリビニルブチラール、ポリビニルアルコール、ポリスチレン、シリコーン系樹脂やこれらの誘導体などが挙げられる。これらで被覆されることにより樹脂へ添加したときの分散性が向上し、更に機械物性の低下を防ぐ効果がある。なお、分散剤による被覆方法としては複合タングステン酸化微粒子(B成分)と分散剤をトルエンなどの溶媒に溶解、攪拌し分散液を調製した後、真空乾燥などの処理で溶媒を除去することにより複合タングステン酸化微粒子(B成分)を被覆する方法などが挙げられる。  
 また、B成分をポリカーボネート樹脂(A成分)に添加する方法としては、複合タングステン酸化物微粒子(B成分)もしくは被覆された複合タングステン酸化物微粒子(B成分)を直接添加する方法や、1~100倍のポリカーボネート樹脂(A成分)で希釈した後に添加する方法が挙げられる。  
 B成分の含有量は、A成分100重量部に対し、0.0001~0.2重量部であり、0.001~0.1重量部が好ましく、0.002~0.05重量部がより好ましい。B成分の含有量が0.0001重量部より少ないと赤外線の遮蔽能力が十分に発揮できず、0.2重量部より多いと耐湿熱性が悪化し、また全光線透過率が非常に小さくなってしまう。
(C成分:エポキシ樹脂)
 本発明の樹脂組成物は高い透明性を保ちながら耐湿熱性が良好な赤外線遮蔽性能を有することを目的に、C成分としてエポキシ樹脂を含有する。使用されるエポキシ樹脂は、グリシジル基を含むエポキシ重合体であることが好ましく、グリシジルメタクリレートを共重合体に含むエポキシ重合体であることがより好ましく、共重合体のもう一方成分にはポリスチレンが好適に用いられる。その中でも、ポリグリシジルメタクリレート―ポリスチレン共重合体が好ましく用いられる。グリシジル基を含有しないエポキシ重合体を用いた場合はA成分との相溶性が悪く透明性に劣る場合がある。グリシジル基を含む重合体のモノマー成分としては、アリルグリシジルエーテル、グリシジルメタクリレート、グリシジルアクリレート、4-ヒドロキシブチルアクリレートグリシジルエーテル、1,2-エポキシ―5-ヘキセン、1,2-エポキシ―9-デセン、エポキシスクシン酸などが挙げられ、重合体としては末端エポキシ変性ポリジメチルシロキサン、側鎖エポキシ変性ポリジメチルシロキサンなどが挙げられる。
 C成分の含有量は、A成分100重量部に対し、0.0001~0.1重量部、好ましくは0.001~0.05重量部、より好ましくは0.001~0.03重量部である。含有量が0.0001重量部未満では十分な耐湿熱性が発現せず、0.1重量部を超えると、色相が悪化し透明性が損なわれる。
(D成分:離型剤)
 本発明の樹脂組成物は高い透明性を保ちながら耐湿熱性が良好な赤外線遮蔽性能を有することを目的に、D成分として脂肪酸および多価アルコールからなるフルエステルを主成分とする脂肪酸エステルである離型剤を含有する。
 かかる脂肪酸は炭素数が3~32であることが好ましく、特に炭素数が10~32の脂肪酸が好ましい。該脂肪酸としては、例えばデカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸(パルミチン酸)、ヘプタデカン酸、オクタデカン酸(ステアリン酸)、ノナデカン酸、ベヘン酸、イコサン酸、およびドコサン酸などの飽和脂肪族カルボン酸、並びにパルミトレイン酸、オレイン酸、リノール酸、リノレン酸、エイコセン酸、エイコサペンタエン酸、およびセトレイン酸などの不飽和脂肪酸を挙げることができる。上記の中でも脂肪酸は、炭素数が14~20であるものが好ましい。なかでも飽和脂肪酸が好ましい。特にステアリン酸およびパルミチン酸が好ましい。ステアリン酸やパルミチン酸など上記の脂肪酸は通常、牛脂や豚脂などに代表される動物性油脂およびパーム油やサンフラワー油に代表される植物性油脂などの天然油脂類から製造されるため、これらの脂肪酸は、通常炭素原子数の異なる他のカルボン酸成分を含む混合物である。したがって本発明の脂肪酸エステルの製造においてもかかる天然油脂類から製造され、他のカルボン酸成分を含む混合物の形態からなる脂肪酸、殊にステアリン酸やパルミチン酸が好ましく使用される。
 かかる多価アルコールとしては、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ポリグリセロール(トリグリセロール~ヘキサグリセロール)、ジトリメチロールプロパン、キシリトール、ソルビトール、およびマンニトールなどが挙げられる。本発明の脂肪酸エステルにおいてはジペンタエリスリトールが好ましい。  
 本発明の脂肪酸エステルは、フルエステルである。部分エステルを使用した場合、十分な耐湿熱性が発現しない。本発明の脂肪酸エステルにおける酸価は、熱安定性の点から好ましく20以下、より好ましくは4~20の範囲、更に好ましくは4~12の範囲である。尚、酸価は実質的に0を取り得る。また脂肪酸エステルの水酸基価は、0.1~30の範囲が好ましい。更にヨウ素価は、10以下が好ましい。尚、ヨウ素価は実質的に0を取り得る。これらの特性はJIS K 0070に規定された方法により求めることができる。 
 以上のことを踏まえると、D成分は下記式(1)で表される脂肪酸エステルであることが好ましい。
Figure JPOXMLDOC01-appb-C000002
(式中、前記R~Rは、独立して互いに同一または異なり、炭素数10~32のアルキル基である。)
 D成分の含有量は、A成分100重量部に対し、0.001~0.5重量部、好ましくは0.01~0.4重量部、より好ましくは0.05~0.3重量部である。含有量が0.001重量部未満では十分な耐湿熱性が発現せず、0.5重量部を超えると、成形時にポリカーボネート樹脂組成物の分子量が低下する。
(E成分:熱安定剤)
 本発明の樹脂組成物はE成分として、熱安定剤を含有することが好ましい。熱安定剤としては、フェノール系安定剤(E-1成分)、イオウ系安定剤(E-2成分)およびリン系安定剤(E-3成分)からなる群から選ばれる少なくとも一種の熱安定剤が好ましい。E成分の含有量はA成分100重量部に対し、0.0002~0.8重量部であることが好ましく、0.001~0.7重量部であることがより好ましく、0.01~0.1重量部であることがさらに好ましい。含有量が0.0002重量部未満では熱安定性の効果を発現しない場合があり、0.8重量部を超えると複合タングステン酸化物微粒子と併用した際成形時の色相安定性を維持することができなくなる場合がある。 
(E-1成分:フェノール系安定剤)  
 フェノール系安定剤としては、例えば、α-トコフェロール、ブチルヒドロキシトルエン、シナピルアルコール、ビタミンE、n-オクタデシル-β-(4’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェル)プロピオネート、2-tert-ブチル-6-(3’-tert-ブチル-5’-メチル-2’-ヒドロキシベンジル)-4-メチルフェニルアクリレート、2,6-ジ-tert-ブチル-4-(N,N-ジメチルアミノメチル)フェノール、3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホネートジエチルエステル、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール)、4,4’-メチレンビス(2,6-ジ-tert-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-シクロヘキシルフェノール)、2,2’-ジメチレン-ビス(6-α-メチル-ベンジル-p-クレゾール)2,2’-エチリデン-ビス(4,6-ジ-tert-ブチルフェノール)、2,2’-ブチリデン-ビス(4-メチル-6-tert-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、トリエチレングリコール-N-ビス-3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート、1,6-へキサンジオールビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、ビス[2-tert-ブチル-4-メチル6-(3-tert-ブチル-5-メチル-2-ヒドロキシベンジル)フェニル]テレフタレート、3,9-ビス{2-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]-1,1,-ジメチルエチル}-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、4,4’-チオビス(6-tert-ブチル-m-クレゾール)、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、2,2’-チオビス(4-メチル-6-tert-ブチルフェノール)、ビス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)スルフィド、4,4’-ジ-チオビス(2,6-ジ-tert-ブチルフェノール)、4,4’-トリ-チオビス(2,6-ジ-tert-ブチルフェノール)、2,2-チオジエチレンビス-[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,4-ビス(n-オクチルチオ)-6-(4-ヒドロキシ-3’,5’-ジ-tert-ブチルアニリノ)-1,3,5-トリアジン、N,N’-ヘキサメチレンビス-(3,5-ジ-tert-ブチル-4-ヒドロキシヒドロシンナミド)、N,N’-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニル]ヒドラジン、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)イソシアヌレート、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリス(4-tert-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)イソシアヌレート、1,3,5-トリス2[3(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]エチルイソシアヌレート、およびテトラキス[メチレン-3-(3’,5’-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタンなどが例示される。これらはいずれも入手容易である。上記フェノール系安定剤は、単独でまたは2種以上を組合せて使用することができる。
(E-2成分:イオウ系安定剤)  
 イオウ系化合物として、ジラウリルチオジプロピオネート、ジトリデシルチオジプロピオネート、ジミリスチルチオジプロピオネート、ジステアリルチオジプロピオネート、ペンタエリスリトールテトラキス(3-ラウリルチオプロピオネート)、ペンタエリスリトールテトラキス(3-ドデシルチオプロピオネート)、ペンタエリスリトールテトラキス(3-オクタデシルチオプロピオネート)、ペンタエリスリトールテトラキス(3-ミリスチルチオプロピオネート)、ペンタエリスリトールテトラキス(3-ステアリルチオプロピオネート)などが挙げられる。これらは単独で用いても良いし、2種以上混合して使用しても良い。
(E-3成分:リン系安定剤)  
 リン系安定剤は、芳香族ポリカーボネートの熱安定剤として既に広く知られている。本発明においてリン系安定剤は、樹脂組成物が極めて過酷な熱負荷に耐え得る程度まで、その熱安定性を高める。リン系安定剤としては主にホスファイト化合物とホスホナイトが上げられる。  
 ここで、ホスファイト化合物としては例えば、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ-iso-プロピルフェニル)ホスファイト、トリス(ジ-n-ブチルフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリス(2,6-ジ-tert-ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-エチルフェニル)ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ジシクロヘキシルペンタエリスリトールジホスファイトなどが例示される。  
 更に他のホスファイト化合物としては二価フェノール類と反応し環状構造を有するものも使用できる。例えば、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)(2,4-ジ-tert-ブチルフェニル)ホスファイト、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、2,2’-エチリデンビス(4-メチル-6-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイトなどが例示される。  
 ホスホナイト化合物としては、例えばテトラキス(2,4-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,3’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-3,3’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,3’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-3,3’-ビフェニレンジホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイト、ビス(2,6-ジ-n-ブチルフェニル)-3-フェニル-フェニルホスホナイト、ビス(2,6-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,6-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイトなどが挙げられ、テトラキス(ジ-tert-ブチルフェニル)-ビフェニレンジホスホナイト、ビス(ジ-tert-ブチルフェニル)-フェニル-フェニルホスホナイトが好ましく、テトラキス(2,4-ジ-tert-ブチルフェニル)-ビフェニレンジホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-フェニル-フェニルホスホナイトがより好ましい。かかるホスホナイト化合物はアルキル基が2以上置換したアリール基を有するホスファイト化合物との併用可能であり好ましい。  
(F成分:紫外線吸収剤)
 本発明の樹脂組成物は、塗装などを施すことなく使用される場合がある。かかる場合には良好な耐光性を要求される場合があるため紫外線吸収剤を配合することが好ましい。
 紫外線吸収剤としては、ベンゾトリアゾール系紫外線吸収剤(F-1成分)、トリアジン系紫外線吸収剤(F-2成分)およびオキサジン系紫外線吸収剤(F-3成分)からなる群から選ばれる少なくとも一種の紫外線吸収剤が好ましい。F成分の含有量はA成分100重量部に対し、好ましくは0.1~2重量部であり、より好ましくは0.12~1.5重量部、さらに好ましくは0.15~1重量部である。F成分の含有量が0.1重量部未満であると、十分な耐光性が発現しない場合があり、2重量部より多いとガス発生による外観不良や物性低下が発生する場合がある。
(F-1成分:ベンゾトリアゾール系紫外線吸収剤)
 ベンゾトリアゾール系紫外線吸収剤としては、 例えば、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-3,5-ジクミルフェニル)フェニルベンゾトリアゾール、2-(2-ヒドロキシ-3-tert-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]、2-(2-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-tert-アミルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-5-tert-ブチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-4-オクトキシフェニル)ベンゾトリアゾ-ル、2,2’-メチレンビス(4-クミル-6-ベンゾトリアゾールフェニル)、2,2’-p-フェニレンビス(1,3-ベンゾオキサジン-4-オン)、および2-[2-ヒドロキシ-3-(3,4,5,6-テトラヒドロフタルイミドメチル)-5-メチルフェニル]ベンゾトリアゾ-ル、並びに2-(2’-ヒドロキシ-5-メタクリロキシエチルフェニル)-2H-ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体や2-(2’―ヒドロキシ-5-アクリロキシエチルフェニル)―2H―ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体など、2-ヒドロキシフェニル-2H-ベンゾトリアゾール骨格を有する重合体などが例示される。
(F-2成分:トリアジン系紫外線吸収剤)
 トリアジン系紫外線吸収剤としては、例えば、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-ヘキシルオキシフェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-メチルオキシフェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-エチルオキシフェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-プロピルオキシフェノール、および2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-ブチルオキシフェノールなどが例示される。さらに2-(4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル)-5-ヘキシルオキシフェノールなど、上記例示化合物のフェニル基が2,4-ジメチルフェニル基となった化合物が例示される。
(F-3成分:オキサジン系紫外線吸収剤)
 オキサジン系紫外線吸収剤としては、例えば、2,2’-p-フェニレンビス(3,1-ベンゾオキサジン-4-オン)、2,2’-m-フェニレンビス(3,1-ベンゾオキサジン-4-オン)、2,2’-p,p’-ジフェニレンビス(3,1-ベンゾオキサジン-4-オン)などが例示される。
(その他の成分)
(1)染顔料
 本発明の樹脂組成物は各種の染顔料を含有し多様な意匠性を発現する成形品を提供できる。本発明で使用する染顔料としては、ペリレン系染料、クマリン系染料、チオインジゴ系染料、アンスラキノン系染料、チオキサントン系染料、紺青等のフェロシアン化物、ペリノン系染料、キノリン系染料、キナクリドン系染料、ジオキサジン系染料、イソインドリノン系染料、フタロシアニン系染料、カーボンブラック、酸化チタン、酸化亜鉛、硫化亜鉛、炭酸カルシウム、金属酸化物微粒子などを挙げることができる。更に本発明のポリカーボネート樹脂組成物はメタリック顔料を配合してより良好なメタリック色彩を得ることもできる。メタリック顔料としては、アルミ粉が好適である。また、蛍光増白剤やそれ以外の発光をする蛍光染料を配合することにより、発光色を生かした更に良好な意匠効果を付与することができる。本発明で使用する蛍光染料(蛍光増白剤を含む)としては、例えば、クマリン系蛍光染料、ベンゾピラン系蛍光染料、ペリレン系蛍光染料、アンスラキノン系蛍光染料、チオインジゴ系蛍光染料、キサンテン系蛍光染料、キサントン系蛍光染料、チオキサンテン系蛍光染料、チオキサントン系蛍光染料、チアジン系蛍光染料、およびジアミノスチルベン系蛍光染料などを挙げることができる。これらの中でも耐熱性が良好でポリカーボネート樹脂の成形加工時における劣化が少ないクマリン系蛍光染料、ベンゾピラン系蛍光染料、およびペリレン系蛍光染料が好適である。
(2)窒化物微粒子
 本発明の樹脂組成物は、窒化物微粒子を含有することが好ましい。窒化物微粒子は、Ti、Zr、Hf、V、NbおよびTaからなる群より選ばれる少なくとも一種の金属の窒化物微粒子であることが好ましい。
(樹脂組成物の製造)
 本発明の樹脂組成物を製造するには、任意の方法が採用される。例えば各成分、並びに任意に他の成分を予備混合し、その後溶融混練し、ペレット化する方法を挙げることができる。予備混合の手段としては、ナウターミキサー、V型ブレンダー、ヘンシェルミキサー、メカノケミカル装置、押出混合機などを挙げることができる。予備混合においては場合により押出造粒器やブリケッティングマシーンなどにより造粒を行うこともできる。予備混合後、ベント式二軸押出機に代表される溶融混練機で溶融混練、およびペレタイザー等の機器によりペレット化する。溶融混練機としては他にバンバリーミキサー、混練ロール、恒熱撹拌容器などを挙げることができるが、ベント式ニ軸押出機が好ましい。他に、各成分、並びに任意に他の成分を予備混合することなく、それぞれ独立に二軸押出機に代表される溶融混練機に供給する方法も取ることもできる。
(成形品の製造)
 上記の如く得られた本発明の樹脂組成物は通常前記の如く製造されたペレットを射出成形して各種製品を製造することができる。更にペレットを経由することなく、押出機で溶融混練された樹脂を直接シート、フィルム、異型押出成形品および射出成形品にすることも可能である。
 かかる射出成形においては、通常の成形方法だけでなく、適宜目的に応じて、射出圧縮成形、射出プレス成形、ガスアシスト射出成形、発泡成形(超臨界流体の注入によるものを含む)、インサート成形、インモールドコーティング成形、断熱金型成形、急速加熱冷却金型成形、二色成形、サンドイッチ成形、および超高速射出成形などの射出成形法を用いて成形品を得ることができる。これら各種成形法の利点は既に広く知られるところである。また成形はコールドランナー方式およびホットランナー方式のいずれも選択することができる。また本発明の樹脂組成物は、押出成形により各種異形押出成形品、シートを成形することも可能である。また、成形品の片面または両面にハードコート処理されることが好ましい。
 成形品の厚みは0.1~20mmであることが好ましく、0.1~15mmであることがより好ましい。また、成形品のISO9050で規定される全光線透過率は20%以上であることが好ましく、30%以上であることがより好ましい。さらに、成形品のISO9050で規定されるヘーズは5%以下であることが好ましく、3%以下であることがより好ましい。
 本発明者の実施する形態は、前記の各要件の好ましい範囲を集約したものとなるが、例えば、その代表例を下記の実施例中に記載する。もちろん本発明はこれらの形態に限定されるものではない。
 以下に実施例を挙げて本発明をさらに具体的に説明する。また、以下“部”は特に断りのない限り“重量部”を、%は“重量%”を示す。
(1)樹脂組成物の作成  
(1-1)使用原料  
(A成分)  
A-1:下記製法により得られた分子量24,200のポリカーボネート樹脂パウダー  
 バッフル付反応容器に、三段六枚羽根の攪拌機および還流冷却管を取り付けた。この反応容器に、ビスフェノールA45.6部、p-tert-ブチルフェノールをビスフェノールAに対して2.78モル%、ジクロロメタン265部及び水200部を入れ、反応容器内の酸素を除去する為に窒素パージを行った。尚、かかる段階で反応容器中の内容物は、容器容量の8割弱であった。次に、上記懸濁液にナトリウムハイドロサルファイト0.09部および水酸化ナトリウム21.8部を供給するための水溶液約80部を供給し、15℃でビスフェノールAを溶解した。撹拌下、この混合物にホスゲン23.35部を30分間で供給した。その後、トリエチルアミン0.016部(ビスフェノールAに対して0.08モル%)を添加して60分間攪拌し、反応を終結させた。その後、反応混合物を静置し、有機相を分液した。得られたポリカーボネート樹脂のジクロロメタン溶液に塩化メチレンを加えて14重量%の濃度の溶液とし、更に多孔板付遠心抽出機(川崎エンジニアリング(株)製KCC遠心抽出機)を用いて0.5%水酸化ナトリウム水溶液を流量1,000ml/min、有機相を流量1,000ml/minの速度で供給し、3,500rpmの条件で処理した後、有機相を塩酸酸性とし、その後水洗を繰り返し、水相の導電率がイオン交換水と殆ど同じになったところで塩化メチレンを蒸発してポリカーボネート樹脂パウダーを得た。
(B成分)
B-1:Cs0.33WO約23重量%および有機分散樹脂からなる熱線吸収剤(住友金属鉱山(株)製YMDS-874R)
(C成分)  
C-1:エポキシ樹脂(日油(株)製:G-0250SP)
C-2:エポキシ樹脂(日油(株)製:G-0150M)
(D成分)  
D-1:脂肪酸フルエステル(式(1)で示される構造を有する。)(理研ビタミン(株)製:L-8483)  
D-2:脂肪酸フルエステル(式(1)で示される構造を有する。)(理研ビタミン(株)製:SL-02)  
D-3:脂肪酸フルエステル(式(1)で示される構造を有さない。)(日油(株)製:H-874S)  
D-4:脂肪酸部分エステル(理研ビタミン(株)製:S-100A)
(E成分)  
E-1:フェノール系安定剤(BASFジャパン(株)製:IRGANOX1076) 
E-2:イオウ系安定剤:(BASFジャパン(株)製:IRGANOX L115)
E-3:リン系安定剤(クラリアントジャパン(株)製:P-EPQ)
(F成分)  
F-1:ベンゾトリアゾール系紫外線吸収剤(ケミプロ化成(株)製:ケミソーブ79)  
F-2:ベンゾトリアジン系紫外線吸収剤(BASFジャパン(株)製:Tinuvin1577ED) 
F-3:オキサジン系紫外線吸収剤(錦海化学(株)製:UV0901)
(2)試験片作成  
(2-1)樹脂組成物の製造  
 表1および表2に記載の各成分を表1および表2記載の割合で計量して混合しブレンダーにて混合した後、ベント式二軸押出機を用いて溶融混練し、ポリカーボネート樹脂組成物のペレットを得た。なお、B成分の含有量は括弧内に示したB-1に含まれる無機系紫外線吸収材料であるCs0.33WOの量である。(括弧外の数字はB-1の樹脂組成物中の重量部を表す。)ポリカーボネート樹脂に添加する添加剤はそれぞれ配合量の10~100倍の濃度を目安に予めポリカーボネート樹脂との予備混合物として作成した後、ブレンダーによる全体の混合を行った。ベント式二軸押出機は(株)日本製鋼所製:TEX30α(完全かみ合い、同方向回転、2条ネジスクリュー)を使用した。混練ゾーンはベント口手前に1箇所のタイプとした。押出条件は吐出量20kg/h、スクリュー回転数130rpm、ベントの真空度3kPaであり、また押出温度は第1供給口からダイス部分まで290℃とした。尚、上記の樹脂組成物の製造はHEPAフィルターを通した清浄な空気が循環する雰囲気において実施し、また作業時に異物の混入がないよう十分に注意して行った。  
(2-2)試験片作成方法  
 得られたペレットを110~120℃で6時間熱風循環式乾燥機にて乾燥した後、射出成形機[住友重機械工業(株)製SG260M-HP]により、シリンダー温度300℃、金型温度80℃の条件で評価用の試験片である幅150mm×長さ150mm×厚さ5mmの板を成形した。  
(3)評価項目  
(3-1)試験片の粘度平均分子量  
 3mm角程度の屑に粉砕した試験片を、その20~30倍重量の塩化メチレンと混合し、組成物中の可溶分を溶解させた。次に、かかる可溶分をセライト濾過により採取した。その後得られた溶液中の溶媒を除去し、溶媒除去後の固体を十分に乾燥し、塩化メチレンに溶解する成分の固体を得た。かかる固体0.7gを塩化メチレン100mlに溶解した溶液から、上記のポリカーボネート樹脂の粘度平均分子量と同様に、20℃における比粘度を求め、該比粘度から粘度平均分子量を算出した。
(3-2)耐湿熱性試験後の赤外線遮蔽性能の変化量  
 試験片から50mm角の試験片を切り出した。その分光光線を(株)日立ハイテクノロジーズ製分光光線測定器U-4100を用いて初期のTotal transmission of solar energy(Tts)をISO13837に準拠して算出した。結果を表1および表2に示す。次に、かかる試験片をプレッシャークッカー試験機TPC-412(ESPEC株式会社製)で120℃、75%Rhの条件にて48時間の湿熱処理を行い、上記方法と同様の方法でTtsを算出した。プレッシャークッカー後のTtsと初期のTtsの差を算出し耐湿熱性試験後の赤外線遮蔽性能の変化量(ΔTts)とした。結果を表1および表2に示す。  
(3-3)全光線透過率およびヘーズ  
 試験片から50mm角の試験片を切り出し、(株)村上色彩技術研究所製ヘーズメーターHR-100を用いISO13468に準拠して全光線透過率およびヘーズを測定した。結果を表1および表2に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 

Claims (12)

  1.  (A)ポリカーボネート樹脂(A成分)100重量部に対し、(B)一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.2≦z/y≦3.0)で表記される複合タングステン酸化物微粒子(B成分)0.0001~0.2重量部、(C)エポキシ樹脂(C成分)0.0001~0.1重量部並びに(D)脂肪酸および多価アルコールからなるフルエステルを主成分とする脂肪酸エステルである離型剤(D成分)0.001~0.5重量部を含有する樹脂組成物。
  2.  B成分の粒子径が1nm~800nmであることを特徴とする請求項1に記載の樹脂組成物。
  3.  D成分が下記式(1)で表される脂肪酸エステルであることを特徴とする請求項1または2に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、前記R~Rは、独立して互いに同一または異なり、炭素数10~32のアルキル基である。)
  4.  A成分100重量部に対し、(E)熱安定剤(E成分)0.0002~0.8重量部を含有することを特徴とする請求項1~3のいずれかに記載の樹脂組成物。
  5.  E成分が、フェノール系安定剤(E-1成分)、イオウ系安定剤(E-2成分)およびリン系安定剤(E-3成分)からなる群から選ばれる少なくとも一種の熱安定剤であることを特徴とする請求項4に記載の樹脂組成物。
  6.  A成分100重量部に対し、(F)紫外線吸収剤(F成分)0.1~2重量部を含有することを特徴とする請求項1~5のいずれかに記載の樹脂組成物。
  7.  F成分が、ベンゾトリアゾール系紫外線吸収剤(F-1成分)、トリアジン系紫外線吸収剤(F-2成分)およびオキサジン系紫外線吸収剤(F-3成分)からなる群から選ばれる少なくとも一種の紫外線吸収剤であることを特徴とする請求項6に記載の樹脂組成物。
  8.  請求項1~7のいずれかに記載の樹脂組成物からなるフィルム、シートまたは射出成形品。
  9.  厚みが0.1~20mmである請求項8に記載の成形品。
  10.  ISO9050で規定される全光線透過率が20%以上であり、ISO9050で規定されるヘーズが5%以下である請求項8または9に記載の成形品。
  11.  請求項8~10のいずれかに記載の成形品の片面または両面にハードコート処理を施された成形品。
  12.  成形品が車両用灯具、車両用センサーカバー、車両用表示装置カバー、車両用窓部材、リレー用表示装置カバーまたは建築材用窓部材である請求項8~11のいずれかに記載の成形品。
PCT/JP2020/008316 2019-03-13 2020-02-28 赤外線遮蔽透明部材用樹脂組成物及び成形品 WO2020184222A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/438,273 US20220145041A1 (en) 2019-03-13 2020-02-28 Resin composition for infrared ray-blocking transparent member, and molded article
CN202080019964.4A CN113574114B (zh) 2019-03-13 2020-02-28 红外线屏蔽透明构件用树脂组合物和成型品
EP20768972.0A EP3940029B1 (en) 2019-03-13 2020-02-28 Resin composition for infrared ray-blocking transparent member, and molded article
JP2021504923A JP7204881B2 (ja) 2019-03-13 2020-02-28 赤外線遮蔽透明部材用樹脂組成物及び成形品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019046018 2019-03-13
JP2019-046018 2019-03-13

Publications (1)

Publication Number Publication Date
WO2020184222A1 true WO2020184222A1 (ja) 2020-09-17

Family

ID=72426422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008316 WO2020184222A1 (ja) 2019-03-13 2020-02-28 赤外線遮蔽透明部材用樹脂組成物及び成形品

Country Status (6)

Country Link
US (1) US20220145041A1 (ja)
EP (1) EP3940029B1 (ja)
JP (1) JP7204881B2 (ja)
CN (1) CN113574114B (ja)
TW (1) TWI834834B (ja)
WO (1) WO2020184222A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021182217A1 (ja) * 2020-03-13 2021-09-16

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5714826B2 (ja) 1974-09-10 1982-03-26
JPH11335548A (ja) * 1999-04-05 1999-12-07 Daicel Chem Ind Ltd ポリカ―ボネ―ト樹脂組成物
JP2003531926A (ja) 2000-04-10 2003-10-28 ゼネラル・エレクトリック・カンパニイ 加水分解安定性に優れたポリカーボネート
JP2008156386A (ja) * 2006-12-20 2008-07-10 Sumitomo Metal Mining Co Ltd ポリカーボネート樹脂組成物および得られるペレット、並びにポリカーボネート樹脂成形体
WO2010143732A1 (ja) * 2009-06-12 2010-12-16 帝人化成株式会社 ポリカーボネート樹脂組成物およびそれからなる成形品
JP2016169189A (ja) * 2015-03-13 2016-09-23 帝人株式会社 近赤外線による生体組織の損傷を防止する方法
JP2017095686A (ja) * 2015-11-17 2017-06-01 帝人株式会社 赤外線遮蔽透明部材用樹脂組成物及び成形品
WO2017130492A1 (ja) * 2016-01-28 2017-08-03 住友金属鉱山株式会社 ポリカーボネート樹脂組成物、熱線遮蔽成形体および熱線遮蔽積層体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003113294A (ja) * 2001-10-01 2003-04-18 Ge Plastics Japan Ltd 自動車外・内装品
JP4678225B2 (ja) * 2005-03-31 2011-04-27 住友金属鉱山株式会社 赤外線遮蔽材料微粒子分散体および赤外線遮蔽体
US8268460B2 (en) * 2007-10-25 2012-09-18 Sumitomo Metal Mining Co., Ltd. High heat resistant masterbatch, heat ray shielding transparent molded resin, and heat-ray shielding transparent lamination body
WO2010137729A1 (ja) * 2009-05-28 2010-12-02 帝人化成株式会社 ポリカーボネート樹脂組成物およびその成形品
JP5714826B2 (ja) * 2010-02-16 2015-05-07 帝人株式会社 ポリカーボネート樹脂組成物及びそれからなる成形品
JP6156561B2 (ja) * 2015-11-27 2017-07-05 三菱エンジニアリングプラスチックス株式会社 芳香族ポリカーボネート樹脂組成物及びその成形品
JP6698400B2 (ja) * 2016-03-29 2020-05-27 帝人株式会社 赤外線遮蔽透明部材用樹脂組成物及び成形品
WO2019026784A1 (ja) * 2017-07-31 2019-02-07 出光興産株式会社 芳香族ポリカーボネート樹脂組成物及び光学成形品
JP6614734B1 (ja) * 2019-04-25 2019-12-04 ユニチカ株式会社 樹脂組成物およびそれより得られる成形体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5714826B2 (ja) 1974-09-10 1982-03-26
JPH11335548A (ja) * 1999-04-05 1999-12-07 Daicel Chem Ind Ltd ポリカ―ボネ―ト樹脂組成物
JP2003531926A (ja) 2000-04-10 2003-10-28 ゼネラル・エレクトリック・カンパニイ 加水分解安定性に優れたポリカーボネート
JP2008156386A (ja) * 2006-12-20 2008-07-10 Sumitomo Metal Mining Co Ltd ポリカーボネート樹脂組成物および得られるペレット、並びにポリカーボネート樹脂成形体
WO2010143732A1 (ja) * 2009-06-12 2010-12-16 帝人化成株式会社 ポリカーボネート樹脂組成物およびそれからなる成形品
JP2016169189A (ja) * 2015-03-13 2016-09-23 帝人株式会社 近赤外線による生体組織の損傷を防止する方法
JP2017095686A (ja) * 2015-11-17 2017-06-01 帝人株式会社 赤外線遮蔽透明部材用樹脂組成物及び成形品
WO2017130492A1 (ja) * 2016-01-28 2017-08-03 住友金属鉱山株式会社 ポリカーボネート樹脂組成物、熱線遮蔽成形体および熱線遮蔽積層体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3940029A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021182217A1 (ja) * 2020-03-13 2021-09-16
WO2021182217A1 (ja) * 2020-03-13 2021-09-16 帝人株式会社 樹脂組成物および未延伸光学フィルム
JP7332786B2 (ja) 2020-03-13 2023-08-23 帝人株式会社 樹脂組成物および未延伸光学フィルム

Also Published As

Publication number Publication date
CN113574114A (zh) 2021-10-29
JPWO2020184222A1 (ja) 2021-10-28
EP3940029A1 (en) 2022-01-19
EP3940029A4 (en) 2022-03-02
TW202039689A (zh) 2020-11-01
US20220145041A1 (en) 2022-05-12
TWI834834B (zh) 2024-03-11
JP7204881B2 (ja) 2023-01-16
EP3940029B1 (en) 2024-04-03
CN113574114B (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
CA2790044C (en) Polycarbonate resin composition and molded article thereof
JP5542810B2 (ja) ポリカーボネート樹脂組成物およびその成形品
JP5055296B2 (ja) ポリカーボネート樹脂組成物およびその成形品
WO2011043492A1 (ja) 帯電防止性ポリカーボネート樹脂組成物およびその成形品
WO2010143732A1 (ja) ポリカーボネート樹脂組成物およびそれからなる成形品
JPWO2008146400A1 (ja) 樹脂組成物
JP6503203B2 (ja) 近赤外線による生体組織の損傷を防止する方法
WO2011064897A1 (ja) ビスベンゾオキサジノン化合物
JP6698400B2 (ja) 赤外線遮蔽透明部材用樹脂組成物及び成形品
JP6807634B2 (ja) 繊維強化ポリプロピレン樹脂組成物
JP4938212B2 (ja) 熱可塑性樹脂組成物およびその成形品
WO2020184222A1 (ja) 赤外線遮蔽透明部材用樹脂組成物及び成形品
JP4647066B2 (ja) ポリカーボネート樹脂組成物
JP7332786B2 (ja) 樹脂組成物および未延伸光学フィルム
JP2017095686A (ja) 赤外線遮蔽透明部材用樹脂組成物及び成形品
JP2021169543A (ja) 赤外線遮蔽透明部材用樹脂組成物及び成形品
JP2023153332A (ja) ポリカーボネート樹脂組成物及びその成形品
KR102020867B1 (ko) 전광선 투과율 대비 근적외선 차단율이 우수하고 내스크래치성이 향상된 폴리카보네이트 수지 조성물
JP7128082B2 (ja) 熱可塑性樹脂混合物、熱可塑性樹脂組成物および成形品
JP6991322B2 (ja) ポリカーボネート樹脂組成物およびこれを含む光学成形品
JP5278998B2 (ja) 光拡散性を有する回転成形体
JP2022087563A (ja) 熱可塑性樹脂組成物およびそれからなる成形品
WO2019151504A1 (ja) 熱可塑性樹脂組成物およびその成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20768972

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021504923

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020768972

Country of ref document: EP

Effective date: 20211013