[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020158773A1 - ピリドン化合物の製造方法 - Google Patents

ピリドン化合物の製造方法 Download PDF

Info

Publication number
WO2020158773A1
WO2020158773A1 PCT/JP2020/003087 JP2020003087W WO2020158773A1 WO 2020158773 A1 WO2020158773 A1 WO 2020158773A1 JP 2020003087 W JP2020003087 W JP 2020003087W WO 2020158773 A1 WO2020158773 A1 WO 2020158773A1
Authority
WO
WIPO (PCT)
Prior art keywords
chloro
fluorophenoxy
formula
compound
pyridine
Prior art date
Application number
PCT/JP2020/003087
Other languages
English (en)
French (fr)
Inventor
孝行 若松
幸 井口
石川 淳一
暢 井上
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to JP2020569667A priority Critical patent/JP7385604B2/ja
Priority to US17/426,431 priority patent/US11760724B2/en
Priority to DE112020000601.8T priority patent/DE112020000601T5/de
Priority to CN202080011607.3A priority patent/CN113365981B/zh
Publication of WO2020158773A1 publication Critical patent/WO2020158773A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/69Two or more oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/89Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members with hetero atoms directly attached to the ring nitrogen atom

Definitions

  • the present invention relates to a method for producing a pyridone compound.
  • Patent Document 1 describes a uracil compound useful as a herbicide.
  • Patent Document 2 describes a method for producing the uracil compound, which has the formula (4): [In the formula, X 1 and X 2 each independently represent a halogen atom, R 1 represents a hydrogen atom, an amino group or a group represented by NHCOR 2 , and R 2 represents a C1-C5 alkyl group. ] It is disclosed that the compound represented by (hereinafter, referred to as compound (4)) is useful as an intermediate for producing a herbicide.
  • Patent Document 2 has a low yield of the compound (4), and is not always satisfactory as a production method.
  • the object of the present invention is to provide an efficient method for producing compound (4).
  • the inventors of the present invention have completed the present invention as a result of intensive studies to solve the above problems.
  • the present invention is as follows.
  • the compound represented by the formula (3) is reacted with a compound represented by the formula (3) in the presence of at least one of tri(C1-C8 alkyl)amine and an alkali metal acetate.
  • X 1 , X 2 and R 2 have the same meanings as described above, and R 6 represents a hydrogen atom or a group represented by an NHCOR 2 group.
  • Step (C) a step of hydrolyzing the compound represented by the formula (3) to obtain a compound represented by the formula (4), And a manufacturing method.
  • Expression (3) [In the formula, X 1 and X 2 each independently represent a halogen atom, R 2 represents a C1-C5 alkyl group, and R 6 represents a hydrogen atom or a group represented by NHCOR 2 . ] The compound represented by.
  • compound (4) can be produced in good yield.
  • step (B) the compound represented by the formula (1) (hereinafter referred to as the compound (1)) and the compound represented by the formula (2) in an amount of 4 to 10 times by weight the compound (1) (hereinafter referred to as Compound (2)) is reacted at a temperature of 100° C. or higher in the presence of at least one of tri(C1-C8 alkyl)amine and an alkali metal acetate to give a compound represented by the formula (3) (hereinafter , Compound (3)) is obtained.
  • the compound represented by the formula (1) hereinafter referred to as the compound (1)
  • Compound (2) in an amount of 4 to 10 times by weight the compound (1) (hereinafter referred to as Compound (2)) is reacted at a temperature of 100° C. or higher in the presence of at least one of tri(C1-C8 alkyl)amine and an alkali metal acetate to give a compound represented by the formula (3) (hereinafter , Compound (3)) is obtained.
  • Examples of the C1-C5 alkyl group for R 2 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group and a pentyl group.
  • An ethyl group is preferable, and a methyl group is more preferable.
  • X 1 a chlorine atom is preferable.
  • X 2 is preferably a fluorine atom.
  • R 1 is preferably a hydrogen atom.
  • the compound (1) in which X 1 is a chlorine atom, X 2 is a fluorine atom and R 1 is a hydrogen atom is called 3-(2-chloro-4-fluorophenoxy)pyridine-N-oxide. .. Further, R 1 may be an amino group (NH 2 ).
  • the compound (1) in which X 1 is a chlorine atom, X 2 is a fluorine atom, and R 1 is an amino group is 3-(5-amino-2-chloro-4-fluorophenoxy)pyridine-N-oxide. Is called.
  • R 6 is preferably a hydrogen atom.
  • the compound (3) in which X 1 is a chlorine atom, X 2 is a fluorine atom, R 6 is a hydrogen atom, and R 2 is a methyl group is 2-acetoxy-3-(2-chloro-4- Fluorophenoxy)pyridine.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Acetic anhydride is compound (2) when R 2 is a methyl group. It is preferable to carry out the reaction at 100° C. to 140° C. using acetic anhydride as the compound (2). It is more preferable to carry out the reaction at 110° C. to 140° C. using acetic anhydride as the compound (2). It is particularly preferable to carry out the reaction at 120° C. to 140° C. using acetic anhydride as the compound (2).
  • the amount of the compound (2) used is 4 to 10 times by weight, preferably 5 to 10 times by weight that of the compound (1).
  • At least one of tri(C1-C8 alkyl)amine and alkali metal acetate is used in the reaction of step (B).
  • tri(C1-C8 alkyl)amine and alkali metal acetate only tri(C1-C8 alkyl)amine may be used, only alkali metal acetate may be used, or tri(C1-alkyl)amine may be used. Both C8 alkyl)amines and alkali metal acetates may be used.
  • Tri(C1-C8 alkyl)amine is an amine having 3 C1-C8 alkyls attached to the nitrogen atom, but the 3 C1-C8 alkyls are independently selected and are the same as each other. Or it may be different.
  • tri(C1-C8 alkyl)amine examples include trimethylamine, triethylamine, tributylamine, diisopropylethylamine, trioctylamine and mixtures of two or more thereof, with triethylamine, diisopropylethylamine or trioctylamine being preferred, and triethylamine Is more preferable.
  • alkali metal acetates include lithium acetate, sodium acetate, potassium acetate, cesium acetate and mixtures of two or more thereof, with sodium acetate being preferred.
  • pyridines such as pyridine and 2,4,6-trimethylpyridine are substituted for tri(C1-C8 alkyl)amine and alkali metal acetate; N-methylimidazole; ,2-dimethylimidazole, 1,4-dimethylimidazole, 1,5-dimethylimidazole and other imidazoles; lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate and other alkali metal carbonates; or sodium hydrogen carbonate, hydrogen carbonate Although alkali metal hydrogencarbonates such as potassium can be used, it is preferable to use at least one of tri(C1-C8 alkyl)amine and alkali metal acetate in step (B).
  • the amount of at least one of tri(C1-C8 alkyl)amine and alkali metal acetate used is usually 1 mol to 10 mol, preferably 1 mol to 2 mol, per 1 mol of compound (1), but is not limited thereto. It is not something that will be done.
  • the tri(C1-C8 alkyl)amine and the alkali metal acetate may be used in combination.
  • the reaction may be carried out in the presence of imidazoles.
  • the imidazoles include N-methylimidazole, 1,2-dimethylimidazole, 1,4-dimethylimidazole and 1,5-dimethylimidazole, and N-methylimidazole is preferable.
  • the amount used is usually 0.01 mol to 0.2 mol per 1 mol of compound (1), but is not limited thereto.
  • the reaction may be carried out in a solvent.
  • the solvent include ether solvents such as diethyl ether, tetrahydrofuran, tert-butyl methyl ether, cyclopentyl methyl ether, 1,2-dimethoxyethane; pentane, hexane, heptane, octane, benzene, toluene, ethylbenzene, xylene, mesitylene, Hydrocarbon solvents such as cyclopentane and cyclohexane; amide solvents such as N-methylpyrrolidone, N,N-dimethylformamide and N,N-dimethylacetamide; and mixtures of two or more of these, and hydrocarbon solvents are preferred. .
  • the amount of the solvent used is usually 1 to 20 times by weight the amount of the compound (1), but is not limited thereto.
  • the compound (1) may be mixed with the solvent in advance and used as a solution of the compound (1).
  • the tri(C1-C8 alkyl)amine may be used as it is, may be used as a commercially available solution, or may be mixed with the above solvent in advance and used as a solution.
  • the reaction is usually carried out using compound (1), compound (2) and at least one of tri(C1-C8 alkyl)amine and alkali metal acetate (hereinafter, also referred to as compound such as tri(C1-C8 alkyl)amine). It is carried out by mixing.
  • the order and method of the mixing are not particularly limited, and for example, a method of adding the compound (1) or a solution of the compound (1) to a mixture of the compound (2) and a compound such as tri(C1-C8 alkyl)amine, Method of adding compound (2) to a mixture of compound (1) and compound such as tri(C1-C8 alkyl)amine, compound (2) including compound (1) and compound such as tri(C1-C8 alkyl)amine And a method of adding the compound (1) or a solution of the compound (1) to the mixture of the compound (2) and the compound such as tri(C1-C8 alkyl)amine.
  • a method of adding a mixture of the compound (1) and a compound such as tri(C1-C8 alkyl)amine to (2) is preferable.
  • the addition may be carried out at once, or may be divided. Although it may be added, it is preferable to add it while controlling the addition rate so that the above reaction temperature is maintained.
  • the addition may be carried out all at once or in divided portions. It is preferable to add while controlling the addition rate so that the temperature is maintained.
  • the reaction time is usually 1 to 96 hours, preferably 1 to 24 hours, though it depends on the conditions such as the reaction temperature.
  • the reaction temperature is 100° C. or higher.
  • the reaction temperature can be 100° C. to the reflux temperature of the compound (2).
  • the preferable reaction temperature when compound (2) is acetic anhydride is as described above.
  • the compound (3) can be directly used in the step (C) after concentration under reduced pressure or without concentration. That is, the compound (3) can proceed to the next hydrolysis step without isolation or purification.
  • the compound (3) can also be isolated and purified by a conventional method. For example, when a solid is precipitated, the solid produced after the completion of the reaction can be collected by filtration to isolate the compound (3). Alternatively, for example, the compound (3) can be isolated by mixing the reaction mixture with water after completion of the reaction, extracting with an organic solvent, washing the obtained organic layer, drying, and concentrating under reduced pressure. ..
  • the organic solvent used for extraction is not particularly limited as long as it is an organic solvent in which the compound (3) is dissolved, and examples thereof include diethyl ether, tetrahydrofuran, tert-butyl methyl ether, cyclopentyl methyl ether, 1,2-dimethoxy.
  • Ether solvent such as ethane
  • ester solvent such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate, tert-butyl acetate
  • ketone solvent such as acetone, methyl ethyl ketone, methyl isobutyl ketone
  • Hydrocarbon solvents such as toluene, ethylbenzene, xylene, mesitylene, cyclopentane and cyclohexane
  • halogenated hydrocarbon solvents such as dichloromethane, chloroform and carbon tetrachloride
  • aromatic halogenated hydrocarbon solvents such as chlorobenzene and dichlorobenzene; and these Mixtures of two or more may be mentioned.
  • the compound (3) can be further purified by column chromatography, recrystallization and the
  • step (C) compound (3) is hydrolyzed to obtain compound (4). Hydrolysis can be carried out in the presence or absence of acid or base.
  • the compound (4) is one kind of pyridone compound.
  • a chlorine atom is preferable as X 1
  • a fluorine atom is preferable as X 2
  • a hydrogen atom is preferable as R 1
  • the compound (4) in the case of satisfying these is 3-(2-chloro- It is referred to as 4-fluorophenoxy)-2(1H)-pyridinone.
  • Examples of the acid used for hydrolysis include inorganic acids such as hydrochloric acid and sulfuric acid; acetic acid, propionic acid, butyric acid, hexanoic acid, octanoic acid, 2-ethylhexanoic acid, decanoic acid, dodecanoic acid, chloroacetic acid, dichloroacetic acid, Aliphatic carboxylic acids or halogenated aliphatic carboxylic acids such as trichloroacetic acid and trifluoroacetic acid; and organic sulfonic acids such as methanesulfonic acid, trifluoromethanesulfonic acid, 10-camphorsulfonic acid and p-toluenesulfonic acid, Of these, inorganic acids, aliphatic carboxylic acids and halogenated aliphatic carboxylic acids are preferable.
  • the amount of the acid used is usually 0.01 to 5 mol, preferably 0.01 to 2 mol, per 1 mol of the compound
  • Examples of the base used for hydrolysis include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide and cesium hydroxide; and alkaline earth hydroxides such as magnesium hydroxide, calcium hydroxide and barium hydroxide.
  • Examples of the metal hydroxides include sodium hydroxide.
  • the base may be used as an aqueous solution. The amount of the base used is usually 2 to 10 mol, but not limited thereto, per 1 mol of the compound (3).
  • Water can be used for hydrolysis.
  • the amount of water used is usually 1 to 100 mol per 1 mol of the compound (3), but is not limited thereto.
  • the reaction is usually performed in a solvent.
  • the solvent include ether solvents such as diethyl ether, tetrahydrofuran, tert-butyl methyl ether, cyclopentyl methyl ether, 1,2-dimethoxyethane; pentane, hexane, heptane, octane, benzene, toluene, ethylbenzene, xylene, mesitylene.
  • Hydrocarbon solvents such as cyclopentane, cyclohexane; alcohol solvents such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol; N-methylpyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, etc.
  • Amide solvent and mixtures of two or more thereof.
  • Water used for hydrolysis may be used as a solvent. In that case, the amount of water used may be more than 100 mol per mol of the compound (3).
  • the amount of the solvent used is usually 0.1 to 20 times by weight the amount of the compound (3), but is not limited thereto.
  • the reaction temperature is usually 0°C to the reflux temperature of the solvent, and is usually 0 to 100°C when a solvent other than water is not used in the reaction.
  • the reaction time varies depending on the reaction temperature, but is usually 1 to 72 hours.
  • compound (4) can be isolated and purified by a conventional method. For example, when a solid is precipitated, the compound (4) can be isolated by filtering the resulting solid. Alternatively, for example, the compound (4) is isolated by adding an acid or a base to neutralize the reaction mixture, extracting with an organic solvent, washing the obtained organic layer, drying, and concentrating under reduced pressure. Can also The organic solvent used for extraction is not particularly limited as long as it can dissolve the compound (4), and examples thereof include diethyl ether, tetrahydrofuran, tert-butyl methyl ether, cyclopentyl methyl ether, 1,2-dimethoxyethane.
  • ether solvent such as ether solvent; ester solvent such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate, tert-butyl acetate; ketone solvent such as acetone, methyl ethyl ketone, methyl isobutyl ketone; pentane, hexane, heptane, octane, benzene, toluene , Hydrocarbon solvents such as ethylbenzene, xylene, mesitylene, cyclopentane and cyclohexane; halogenated hydrocarbon solvents such as dichloromethane, chloroform and carbon tetrachloride; aromatic halogenated hydrocarbon solvents such as chlorobenzene and dichlorobenzene; methanol, ethanol, Alcohol solvents such as 1-propanol, 2-propanol, 1-butanol; and mixtures of two or more thereof.
  • the compound (4) has the formula (4a): [Wherein, X 1 , X 2 and R 1 have the same meanings as described above. ] It has a tautomeric relationship with the compound shown by. The tautomer represented by the formula (4a) is also included in the compound (4).
  • step (A) the compound represented by the formula (5) (hereinafter referred to as the compound (5)) and the compound represented by the formula (6) (hereinafter referred to as the compound (6)) in the presence of a base.
  • the reaction is performed to obtain the compound (1).
  • the reaction is carried out by mixing the compound (5), the compound (6) and the base.
  • the mixing order of the compound (5), the compound (6) and the base is not particularly limited.
  • the amount of the compound (6) used is usually 0.5 to 10 mol, preferably 1 to 5 mol, more preferably 1 to 2 mol, per 1 mol of the compound (5), but is not limited thereto. Absent.
  • Examples of the base include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide and cesium hydroxide; alkali metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate and cesium carbonate; triphosphates. Examples thereof include alkali metal phosphates such as lithium, trisodium phosphate, tripotassium phosphate, and tricesium phosphate; and alkali metal hydrides such as lithium hydride, sodium hydride, potassium hydride, and the like. Acid salts are preferred.
  • the amount of the base used is usually 1 to 10 mol, preferably 1 to 5 mol, and more preferably 1 to 2 mol, per 1 mol of the compound (5), but is not limited thereto.
  • the reaction may be carried out in the presence of additives.
  • additives include crown ethers such as 15-crown 5-ether and 18-crown 6-ether, with 15-crown 5-ether being preferred.
  • the amount used is usually 0.01 to 1 mol per 1 mol of the compound (5), but is not limited thereto.
  • the reaction temperature is usually 95°C to 180°C, preferably 140°C to 160°C.
  • the reaction time varies depending on the reaction temperature, but is usually 1 to 72 hours.
  • the reaction is usually performed in a solvent.
  • the solvent include amide solvents such as N-methylpyrrolidone, N,N-dimethylformamide, and N,N-dimethylacetamide; sulfoxide solvents such as dimethyl sulfoxide; sulfone solvents such as sulfolane; pentane, hexane, heptane, octane.
  • Hydrocarbon solvents such as benzene, toluene, ethylbenzene, xylene, mesitylene, cyclopentane, and cyclohexane; aromatic halogenated hydrocarbon solvents such as chlorobenzene and dichlorobenzene; and mixtures of two or more thereof, including amide solvents.
  • N-methylpyrrolidone is more preferable.
  • Compound (1) can be isolated and purified by a conventional method. For example, when a solid precipitates, the solid produced after the completion of the reaction can be collected by filtration to isolate the compound (1).
  • the compound (1) may be isolated by mixing the reaction mixture with water after completion of the reaction, extracting with an organic solvent, washing the obtained organic layer, drying, and concentrating under reduced pressure. it can.
  • the reaction mixture is mixed with water, extracted with an organic solvent, and the obtained organic layer is mixed with an aqueous solution of Bronsted acid to prepare a water containing a Bronsted acid salt of the compound (1).
  • a layer is obtained, and then the aqueous layer is neutralized with a base, the compound (1) is extracted as an organic layer using an organic solvent, and the organic layer is washed, dried and concentrated as necessary to give a compound.
  • the organic solvent used for extraction is not particularly limited as long as it is an organic solvent in which the compound (1) is dissolved, and examples thereof include diethyl ether, tetrahydrofuran, tert-butyl methyl ether, cyclopentyl methyl ether, 1,2-dimethoxy.
  • Ether solvents such as ethane; ester solvents such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate, tert-butyl acetate; ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone; pentane, hexane, heptane, octane, benzene, toluene, Hydrocarbon solvents such as ethylbenzene, xylene, mesitylene, cyclopentane and cyclohexane; halogenated hydrocarbon solvents such as dichloromethane, chloroform and carbon tetrachloride; aromatic halogenated hydrocarbon solvents such as chlorobenzene and dichlorobenzene; and two of these The above mixture may be mentioned. Further, the compound (1) can be further purified by column chromatography, recrystallization and the like. Alternatively, compound (1)
  • the compound (5) has the formula (7): [In the formula, X 3 represents the same meaning as described above. ] It can be obtained by reacting a compound represented by (hereinafter referred to as compound (7)) with an oxidizing agent.
  • the oxidizing agent examples include hydrogen peroxide, hydrogen peroxide such as urea-hydrogen peroxide adduct, peracids such as peracetic acid and m-chloroperbenzoic acid, and organic peroxidation such as tert-butyl hydroperoxide.
  • hydrogen peroxide water examples include hydrogen peroxide water.
  • concentration of the hydrogen peroxide solution is usually 10 to 70% by weight, preferably 30 to 60% by weight.
  • the amount of the oxidizing agent used is usually 1 to 10 mol, preferably 1 to 5 mol, and more preferably 1 to 2 mol, per 1 mol of the compound (7), but is not limited thereto.
  • the reaction may be carried out in the presence of acid.
  • the acid include inorganic acids such as hydrochloric acid and sulfuric acid; sulfonic acids such as methanesulfonic acid and ethanesulfonic acid; and acetic acid, propionic acid, butyric acid, hexanoic acid, octanoic acid, 2-ethylhexanoic acid, decanoic acid, dodecane.
  • Acids, aliphatic carboxylic acids such as chloroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, and halogenated aliphatic carboxylic acids are mentioned, and hydrochloric acid or sulfuric acid is preferable.
  • the amount used is usually 0.01 to 10 mol, preferably 0.01 to 2 mol, per 1 mol of the compound (7), but is not limited thereto. Absent.
  • the reaction may be carried out in the presence of a metal catalyst.
  • the metal catalyst include tungsten compounds such as sodium tungstate, sodium tungstate dihydrate, and sodium tungstate decahydrate; vanadium compounds such as sodium orthovanadate (V) acid; and molybdenum oxide (VI).
  • the molybdenum compound of the above is mentioned, and sodium tungstate dihydrate is preferable.
  • the amount used is usually 0.01 to 1 mol, preferably 0.01 to 0.1 mol, per 1 mol of the compound (7), but is not limited thereto. Not something.
  • the reaction temperature is usually 0°C to 100°C, preferably 60°C to 80°C.
  • the reaction time varies depending on the reaction temperature, but is usually 1 to 48 hours.
  • the reaction may be carried out in a solvent inert to the reaction, and examples of the solvent inert to the reaction include sulfone solvents such as sulfolane and water.
  • Compound (5) can be isolated and purified by a conventional method. For example, when a solid is precipitated, the solid produced after the reaction is completed can be collected by filtration to isolate the compound (5). Alternatively, for example, the compound (5) may be isolated by mixing the reaction mixture with water after completion of the reaction, extracting with an organic solvent, washing the obtained organic layer, drying, and concentrating under reduced pressure. it can.
  • the organic solvent used for extraction is not particularly limited as long as it can dissolve the compound (5), and examples thereof include diethyl ether, tetrahydrofuran, tert-butyl methyl ether, cyclopentyl methyl ether, 1,2-dimethoxy.
  • Ether solvents such as ethane; ester solvents such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate, tert-butyl acetate; ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone; pentane, hexane, heptane, octane, benzene, toluene, Hydrocarbon solvents such as ethylbenzene, xylene, mesitylene, cyclopentane and cyclohexane; halogenated hydrocarbon solvents such as dichloromethane, chloroform and carbon tetrachloride; aromatic halogenated hydrocarbon solvents such as chlorobenzene and dichlorobenzene; N-methylpyrrolidone, Amide solvents such as N,N-dimethylformamide, N,N-dimethylacetamide; and mixtures of
  • the present invention will be described in detail with reference to examples, but the present invention is not limited to the following examples.
  • the% (percent) of an aqueous solution of an inorganic salt such as hydrochloric acid, sulfuric acid, sodium hydroxide, sodium sulfite, etc. and the content of a substance mean mass% unless otherwise specified. Unless otherwise specified,% of yield (%) is based on the amount of substance (mol).
  • the obtained mixed solution is concentrated under reduced pressure, 1.53 g of xylene, 3.84 g of water and 1.42 g of 27% aqueous sodium hydroxide solution are added, and the mixture is stirred at 80° C. for 3 hours and then separated at 80° C.
  • the obtained aqueous layer is cooled to 40° C., 0.48 g of 98% sulfuric acid, 0.61 g of 1-butanol and 0.77 g of xylene are added, and the mixture is separated at 80° C.
  • the obtained organic layer is cooled to 40° C., 2.30 g of water is added, and liquid separation is performed at 80° C.
  • the obtained organic layer is cooled to 5° C.
  • Example 2 3-(2-chloro-4-fluorophenoxy)pyridine-N-oxide 1.00 g (content: 76.7%), acetic anhydride 3.84 g and triethylamine 0.37 g are mixed at room temperature and heated to 120°C.
  • the obtained mixed solution is concentrated under reduced pressure, 1.53 g of xylene, 3.84 g of water and 1.42 g of 27% aqueous sodium hydroxide solution are added, and the mixture is stirred at 80° C. for 3 hours and then separated at 80° C.
  • the obtained aqueous layer is cooled to 40° C., 0.48 g of 98% sulfuric acid, 0.61 g of 1-butanol and 0.77 g of xylene are added, and the mixture is separated at 80° C.
  • the obtained organic layer is cooled to 40° C., 2.30 g of water is added, and liquid separation is performed at 80° C.
  • the obtained organic layer is cooled to 5° C.
  • Example 3 3-(2-chloro-4-fluorophenoxy)pyridine-N-oxide 1.01 g (content: 76.7%), acetic anhydride 3.85 g, triethylamine 0.37 g and N-methyl-2-pyrrolidone (hereinafter, referred to as NMP) (76.6 mg) was mixed at room temperature, heated to 120° C., and stirred for 7 hours.
  • NMP N-methyl-2-pyrrolidone
  • the obtained mixed solution is concentrated under reduced pressure, 1.53 g of xylene, 3.84 g of water and 1.42 g of 27% aqueous sodium hydroxide solution are added, and the mixture is stirred at 80° C. for 3 hours and then separated at 80° C.
  • the obtained aqueous layer is cooled to 40° C., 0.48 g of 98% sulfuric acid, 0.61 g of 1-butanol and 0.77 g of xylene are added, and the mixture is separated at 80° C.
  • the obtained organic layer is cooled to 40° C., 2.30 g of water is added, and liquid separation is performed at 80° C.
  • the obtained organic layer is cooled to 5° C.
  • Example 4 3-(2-chloro-4-fluorophenoxy)pyridine-N-oxide 1.00 g (content: 76.7%), acetic anhydride 3.84 g, triethylamine 0.36 g and NMP 0.78 g were mixed at room temperature to give 120 When the temperature was raised to 0° C. and the mixture was stirred for 7 hours, 2-acetoxy-3-(2-chloro-4-fluorophenoxy)pyridine and 3-(2-chloro-4-fluorophenoxy)-2(1H)-pyridinone were added.
  • the obtained aqueous layer is cooled to 40° C., 0.48 g of 98% sulfuric acid, 0.61 g of 1-butanol and 0.77 g of xylene are added, and the mixture is separated at 80° C.
  • the obtained organic layer is cooled to 40° C., 2.30 g of water is added, and liquid separation is performed at 80° C.
  • the obtained organic layer is cooled to 5° C. with stirring, the precipitated solid is filtered, and the filtered material is washed with 1.53 g of toluene. By drying the obtained solid, 3-(2-chloro-4-fluorophenoxy)-2(1H)-pyridinone can be quantitatively obtained.
  • Example 5 3-(2-chloro-4-fluorophenoxy)pyridine-N-oxide 15.0 g (content: 91.8%), acetic anhydride 68.9 g, triethylamine 6.40 g and N-methylimidazole 0.12 g at room temperature After mixing and heating to 120° C.
  • the obtained mixed solution was concentrated under reduced pressure, 20.7 g of xylene, 25.6 g of 27% aqueous sodium hydroxide solution and 13.90 g of water were added, and the mixture was stirred at 80° C. for 2 hours and 30 minutes and then separated at 80° C. ..
  • the obtained aqueous layer was cooled to 40° C., and 24.3 g of a 17% sulfuric acid aqueous solution was added.
  • the resulting mixture was cooled to 15°C with stirring. After filtering the precipitated solid, the residue was washed with 41.4 g of water.
  • Example 6 3-(2-chloro-4-fluorophenoxy)pyridine-N-oxide 32.6 g (content: 48.0%), acetic anhydride 78.4 g, triethylamine 7.28 g and N-methylimidazole 0.13 g at room temperature. The mixture was mixed, heated to 120° C., and stirred for 5 hours. The obtained mixed solution was concentrated under reduced pressure, 31.5 g of xylene, 16.3 g of 48% aqueous sodium hydroxide solution and 78.3 g of water were added, and the mixture was stirred at 80° C. for 1 hour and then separated at 80° C.
  • aqueous layer 123.8 g of an aqueous 3-(2-chloro-4-fluorophenoxy)-2(1H)-pyridinone solution (content: 11.8%, yield: 86%) was obtained.
  • the obtained aqueous layer was cooled to 40° C., 4.56 g of 98% sulfuric acid was added, 55.7 g of xylene and 10.0 g of 1-butanol were added, and the mixture was stirred at 80° C. and then separated at 80° C. ..
  • the obtained organic layer was washed with 45.2 g of water and then cooled to 0°C.
  • Example 7 3-(2-chloro-4-fluorophenoxy)pyridine-N-oxide 1.00 g (content: 91.8%), acetic anhydride 4.59 g, triethylamine 0.44 g and N-methylimidazole 18.0 mg at room temperature After mixing and heating to 120° C.
  • the obtained mixed solution is concentrated under reduced pressure, 1.53 g of xylene, 3.84 g of water and 1.42 g of 27% aqueous sodium hydroxide solution are added, and the mixture is stirred at 80° C. for 3 hours and then separated at 80° C.
  • the obtained aqueous layer is cooled to 40° C., 0.48 g of 98% sulfuric acid, 0.61 g of 1-butanol and 0.77 g of xylene are added, and the mixture is separated at 80° C.
  • the obtained organic layer is cooled to 40° C., 2.30 g of water is added, and liquid separation is performed at 80° C.
  • the obtained organic layer is cooled to 5° C.
  • Example 8 3-(2-chloro-4-fluorophenoxy)pyridine-N-oxide 1.00 g (content: 91.8%), acetic anhydride 4.59 g, triethylamine 0.43 g and potassium acetate 37.8 mg were mixed to obtain 120 When the temperature was raised to 0° C. and the mixture was stirred for 7 hours, 2-acetoxy-3-(2-chloro-4-fluorophenoxy)pyridine and 3-(2-chloro-4-fluorophenoxy)-2(1H)-pyridinone were added.
  • the obtained aqueous layer is cooled to 40° C., 0.48 g of 98% sulfuric acid, 0.61 g of 1-butanol and 0.77 g of xylene are added, and the mixture is separated at 80° C.
  • the obtained organic layer is cooled to 40° C., 2.30 g of water is added, and liquid separation is performed at 80° C.
  • the obtained organic layer is cooled to 5° C. with stirring, the precipitated solid is filtered, and the filtered material is washed with 1.53 g of toluene. By drying the obtained solid, 3-(2-chloro-4-fluorophenoxy)-2(1H)-pyridinone can be quantitatively obtained.
  • Example 9 3-(2-chloro-4-fluorophenoxy)pyridine-N-oxide 1.00 g (content: 91.8%), acetic anhydride 4.59 g, triethylamine 0.43 g and sodium acetate 31.1 mg were mixed at room temperature. After heating to 120° C.
  • the obtained mixed solution is concentrated under reduced pressure, 1.53 g of xylene, 3.84 g of water and 1.42 g of 27% aqueous sodium hydroxide solution are added, and the mixture is stirred at 80° C. for 3 hours and then separated at 80° C.
  • the obtained aqueous layer is cooled to 40° C., 0.48 g of 98% sulfuric acid, 0.61 g of 1-butanol and 0.77 g of xylene are added, and the mixture is separated at 80° C.
  • the obtained organic layer is cooled to 40° C., 2.30 g of water is added, and liquid separation is performed at 80° C.
  • the obtained organic layer is cooled to 5° C.
  • Example 10 3-(2-chloro-4-fluorophenoxy)pyridine-N-oxide 1.00 g (content: 91.8%), acetic anhydride 4.59 g, triethylamine 0.44 g and sodium acetate 63.5 mg are mixed at room temperature. After heating to 120° C.
  • the obtained mixed solution is concentrated under reduced pressure, 1.53 g of xylene, 3.84 g of water and 1.42 g of 27% aqueous sodium hydroxide solution are added, and the mixture is stirred at 80° C. for 3 hours and then separated at 80° C.
  • the obtained aqueous layer is cooled to 40° C., 0.48 g of 98% sulfuric acid, 0.61 g of 1-butanol and 0.77 g of xylene are added, and the mixture is separated at 80° C.
  • the obtained organic layer is cooled to 40° C., 2.30 g of water is added, and liquid separation is performed at 80° C.
  • the obtained organic layer is cooled to 5° C.
  • Example 11 3-(2-chloro-4-fluorophenoxy)pyridine-N-oxide 1.00 g (content: 91.8%), acetic anhydride 4.59 g, triethylamine 0.43 g and lithium acetate 25.6 mg were mixed at room temperature. After heating to 120° C.
  • the obtained mixed solution is concentrated under reduced pressure, 1.53 g of xylene, 3.84 g of water and 1.42 g of 27% aqueous sodium hydroxide solution are added, and the mixture is stirred at 80° C. for 3 hours and then separated at 80° C.
  • the obtained aqueous layer is cooled to 40° C., 0.48 g of 98% sulfuric acid, 0.61 g of 1-butanol and 0.77 g of xylene are added, and the mixture is separated at 80° C.
  • the obtained organic layer is cooled to 40° C., 2.30 g of water is added, and liquid separation is performed at 80° C.
  • the obtained organic layer is cooled to 5° C.
  • Example 12 3-(2-Chloro-4-fluorophenoxy)pyridine-N-oxide 1.00 g (content: 91.8%), acetic anhydride 4.59 g and triethylamine 0.44 g are mixed at room temperature and heated to 100°C. After stirring for 25 hours, a mixed solution 5 containing 2-acetoxy-3-(2-chloro-4-fluorophenoxy)pyridine and 3-(2-chloro-4-fluorophenoxy)-2(1H)-pyridinone was obtained.
  • the obtained aqueous layer is cooled to 40° C., 0.48 g of 98% sulfuric acid, 0.61 g of 1-butanol and 0.77 g of xylene are added, and the mixture is separated at 80° C.
  • the obtained organic layer is cooled to 40° C., 2.30 g of water is added, and liquid separation is performed at 80° C.
  • the obtained organic layer is cooled to 5° C. with stirring, the precipitated solid is filtered, and the filtered material is washed with 1.53 g of toluene. By drying the obtained solid, 3-(2-chloro-4-fluorophenoxy)-2(1H)-pyridinone can be quantitatively obtained.
  • Example 13 3-(2-chloro-4-fluorophenoxy)pyridine-N-oxide 1.00 g (content: 91.8%), acetic anhydride 4.59 g and triethylamine 0.43 g were mixed at room temperature and heated to 140°C.
  • the obtained mixed solution is concentrated under reduced pressure, 1.53 g of xylene, 3.84 g of water and 1.42 g of 27% aqueous sodium hydroxide solution are added, and the mixture is stirred at 80° C. for 3 hours and then separated at 80° C.
  • the obtained aqueous layer is cooled to 40° C., 0.48 g of 98% sulfuric acid, 0.61 g of 1-butanol and 0.77 g of xylene are added, and the mixture is separated at 80° C.
  • the obtained organic layer is cooled to 40° C., 2.30 g of water is added, and liquid separation is performed at 80° C.
  • the obtained organic layer is cooled to 5° C.
  • Example 14 0.50 g (content: 60.5%) of 3-(2-chloro-4-fluorophenoxy)pyridine-N-oxide, 1.53 g of acetic anhydride and 0.11 g of sodium acetate were mixed at room temperature and the temperature was raised to 120°C.
  • the obtained mixed solution is concentrated under reduced pressure, 0.45 g of xylene, 0.30 g of water and 0.58 g of 27% sodium hydroxide aqueous solution are added, and the mixture is stirred at 80° C. for 3 hours and then separated at 80° C.
  • the obtained aqueous layer is cooled to 40° C., 0.21 g of 98% sulfuric acid, 0.24 g of 1-butanol and 0.96 g of xylene are added, and the mixture is separated at 80° C.
  • the obtained organic layer is cooled to 40° C., 0.15 g of water is added, and liquid separation is performed at 80° C.
  • the obtained organic layer is cooled to 5° C.
  • powder X-ray diffraction conditions are as follows.
  • Powder X-ray diffractometer SmartLab (manufactured by Rigaku Corporation)
  • X-ray output CuK ⁇ , 45kV, 200mA
  • Sampling width 0.02° Scanning range: 2° to 50°
  • Example 15 A mixed solution of 4-(2-chloro-4-fluorophenoxy)pyridine-N-oxide (40.3 g, content: 49.6%) and acetic anhydride (100.0 g) was added to triethylamine (17.3 g) under reflux for 4 hours. The mixture was added dropwise and stirred under reflux for 3 hours. The resulting mixed solution was concentrated under reduced pressure, 7.5 g of water was added, and the mixture was stirred at 80° C. for 2 hours, and 50.0 g of a solution of 3-(2-chloro-4-fluorophenoxy)-2(1H)-pyridinone ( Content 33.9%, yield 85%) was obtained.
  • Example 16 A mixed solution of 4-(2-chloro-4-fluorophenoxy)pyridine-N-oxide (40.0 g, content: 50.0%) and acetic anhydride (100.0 g) was refluxed with triethylamine (17.4 g) over 4 hours. The mixture was added dropwise and stirred under reflux for 3 hours. The obtained mixed solution was concentrated under reduced pressure, 40.0 g of xylene and 4.5 g of water were added, the mixture was stirred at 80° C. for 8 hours, and then refluxed and dehydrated for 2 hours.
  • the obtained mixed solution was heated to 140° C., cooled to 15° C., the precipitated solid was filtered, the filter cake was washed with 30.0 g of xylene, and dried to give 3-(2-chloro-4).
  • -Fluorophenoxy)-2(1H)-pyridinone (17.9 g, content 88.2%, yield 79%) was obtained as crystals.
  • the melting point was 184.8°C. This crystal is referred to as crystal B.
  • Example 21 Mix 0.77 g of 2-chloro-4-fluorophenol, 1.50 g of 3-chloropyridine-N-oxide in NMP (content: 40.7%), 1.16 g of trisodium phosphate and 1.22 g of NMP at room temperature. Then, the temperature was raised to 160° C. and the mixture was stirred for 24 hours. The obtained reaction mixture was cooled to 80° C., water was added, and 11.1 g of an NMP solution of 3-(2-chloro-4-fluorophenoxy)pyridine-N-oxide (content: 4.15%, yield 39) %) was obtained.
  • Example 22 0.77 g of 2-chloro-4-fluorophenol, 1.50 g of 3-chloropyridine-N-oxide in NMP (content: 40.7%), 1.16 g of trisodium phosphate, 1.22 g of NMP and 15-crown 1.58 g of 5-ether was mixed at room temperature, heated to 160° C. and stirred for 24 hours. The resulting reaction mixture was cooled to 80° C., water was added, and 11.5 g of NMP solution of 3-(2-chloro-4-fluorophenoxy)pyridine-N-oxide (content: 4.51%, yield 45) %) was obtained.
  • Example 23 0.53 g of 2-chloro-4-fluorophenol, 1.07 g of 3-chloropyridine-N-oxide in NMP (content: 42.3%), 1.04 g of tripotassium phosphate and 0.85 g of NMP are mixed at room temperature. Then, the temperature was raised to 170° C. and the mixture was stirred for 32 hours. The obtained reaction mixture was cooled to 80° C., water was added thereto, and 17.95 g of NMP solution of 3-(2-chloro-4-fluorophenoxy)pyridine-N-oxide (content: 2.42%, yield 55 %) was obtained.
  • Example 24 0.53 g of 2-chloro-4-fluorophenol, 1.01 g of NMP solution of 3-chloropyridine-N-oxide (content: 42.3%), 0.94 g of potassium carbonate and 0.85 g of NMP are mixed at room temperature, It heated up at 170 degreeC and stirred for 32 hours. The obtained reaction mixture was cooled to 80° C., water was added thereto, and 15.7 g of NMP solution of 3-(2-chloro-4-fluorophenoxy)pyridine-N-oxide (content: 2.03%, yield 41 %) was obtained.
  • Example 25 0.53 g of 2-chloro-4-fluorophenol, 1.51 g of an NMP solution of 3-chloropyridine-N-oxide (content: 40.7%), 2.30 g of cesium carbonate and 1.22 g of NMP were mixed at room temperature, It heated up at 160 degreeC and stirred for 24 hours. The obtained reaction mixture was cooled to 80° C., water was added thereto, and 17.7 g of an NMP solution of 3-(2-chloro-4-fluorophenoxy)pyridine-N-oxide (content: 3.34%, yield 52) %) was obtained.
  • Example 26 0.57 g of 2-chloro-4-fluorophenol, 1.51 g of 3-fluoropyridine-N-oxide in NMP (content: 27.0%), 1.12 g of tripotassium phosphate and 0.81 g of NMP are mixed at room temperature. Then, the temperature was raised to 160° C. and the mixture was stirred for 16 hours. The obtained reaction mixture was cooled to 80° C., water was added, and 11.27 g of N(MP) solution of 3-(2-chloro-4-fluorophenoxy)pyridine-N-oxide (content: 5.32%, yield 70) %) was obtained.
  • Example 28 0.64 g of 5-amino-2-chloro-4-fluorophenol, 1.50 g of 3-fluoropyridine-N-oxide in NMP (content: 27.0%), 1.12 g of tripotassium phosphate and 0.81 g of NMP. Were mixed at room temperature, heated to 160° C. and stirred for 16 hours. The obtained reaction liquid was cooled to 80° C. and water was added to obtain 14.09 g of an NMP solution of 3-(5-amino-2-chloro-4-fluorophenoxy)pyridine-N-oxide. By analyzing the obtained solution by HPLC, it was confirmed that 3-(5-amino-2-chloro-4-fluorophenoxy)pyridine-N-oxide was obtained in a NMP solution in a yield of 64%. did.
  • Example 30 0.50 g (content: 60.5%) of 3-(2-chloro-4-fluorophenoxy)pyridine-N-oxide, 1.52 g of acetic anhydride and 0.18 g of diisopropylethylamine were mixed at room temperature and the temperature was raised to 120°C.
  • the obtained mixed solution is concentrated under reduced pressure, 0.77 g of xylene, 1.92 g of water and 0.71 g of 27% aqueous sodium hydroxide solution are added, and the mixture is stirred at 80° C. for 3 hours and then separated at 80° C.
  • the obtained aqueous layer is cooled to 40° C., 0.24 g of 98% sulfuric acid, 0.31 g of 1-butanol and 0.39 g of xylene are added, and the mixture is separated at 80° C.
  • the obtained organic layer is cooled to 40° C., 1.15 g of water is added, and liquid separation is performed at 80° C.
  • the obtained organic layer is cooled to 5° C.
  • Example 31 0.50 g (content: 60.5%) of 3-(2-chloro-4-fluorophenoxy)pyridine-N-oxide, 1.51 g of acetic anhydride and 0.49 g of trioctylamine were mixed at room temperature, and the mixture was heated to 120°C.
  • the obtained mixed solution is concentrated under reduced pressure, 0.77 g of xylene, 1.92 g of water and 0.71 g of 27% aqueous sodium hydroxide solution are added, and the mixture is stirred at 80° C. for 3 hours and then separated at 80° C.
  • the obtained aqueous layer is cooled to 40° C., 0.24 g of 98% sulfuric acid, 0.31 g of 1-butanol and 0.39 g of xylene are added, and the mixture is separated at 80° C.
  • the obtained organic layer is cooled to 40° C., 1.15 g of water is added, and liquid separation is performed at 80° C.
  • the obtained organic layer is cooled to 5° C.
  • the resulting reaction mixture is concentrated, 4.1 g of xylene, 9.7 g of water and 3.4 g of 27% aqueous sodium hydroxide solution are added, and the mixture is stirred at room temperature for 8 hours.
  • 3.4 g of 27% aqueous sodium hydroxide solution was added, and the mixture was stirred at room temperature for 8 hours.
  • 3.2 g of concentrated hydrochloric acid and then 9.8 g of ethyl acetate are added, the temperature is raised to 60° C., and 1.0 g of ethanol is added.
  • Comparative Example 1 (Example in which tri(C1-C8 alkyl)amine and alkali metal acetate are not used) 3-(2-Chloro-4-fluorophenoxy)pyridine-N-oxide (1.0 g) and acetic anhydride (5.0 g) were mixed at room temperature, heated to 120° C. and stirred for 8.5 hours. The obtained reaction mixture was concentrated under reduced pressure to obtain 4.7 g of a concentrated liquid. A mixture containing 3-(2-chloro-4-fluorophenoxy)-2(1H)-pyridinone by adding 6.1 g of concentrated hydrochloric acid to 2.9 g of the obtained concentrated liquid and heating at 100° C. for 2 hours. 5.3 g of a solution (content 7.7%, yield 65%) was obtained.
  • Comparative Example 2 (Example in which the amount of the compound (2) used in the step (B) is 2 times the weight of the compound (1)) 3-(2-chloro-4-fluorophenoxy)pyridine-N-oxide 1.01 g (content: 76.7%), acetic anhydride 1.51 g, triethylamine 0.42 g and toluene 1.59 g were mixed at room temperature, After heating to 120° C.
  • the obtained mixed solution is concentrated under reduced pressure, 1.53 g of xylene, 3.84 g of water and 1.42 g of 27% aqueous sodium hydroxide solution are added, and the mixture is stirred at 80° C. for 3 hours and then separated at 80° C.
  • the obtained aqueous layer is cooled to 40° C., 0.48 g of 98% sulfuric acid, 0.61 g of 1-butanol and 0.77 g of xylene are added, and the mixture is separated at 80° C.
  • the obtained organic layer is cooled to 40° C., 2.30 g of water is added, and liquid separation is performed at 80° C.
  • the obtained organic layer is cooled to 5° C.
  • Comparative Example 3 Example in which the amount of the compound (2) used in the step (B) is 3 times the weight of the compound (1)
  • 0.50 g (content: 60.5%) of 3-(2-chloro-4-fluorophenoxy)pyridine-N-oxide, 0.91 g of acetic anhydride and 0.14 g of triethylamine were mixed at room temperature, and the temperature was raised to 120°C.
  • Comparative Example 4 (example in which the reaction temperature in step (B) is 90° C.) 0.50 g (content: 60.5%) of 3-(2-chloro-4-fluorophenoxy)pyridine-N-oxide, 1.51 g of acetic anhydride and 0.14 g of triethylamine are mixed at room temperature and heated to 90°C.
  • the obtained mixed solution is concentrated under reduced pressure, 0.77 g of xylene, 1.92 g of water and 0.71 g of 27% aqueous sodium hydroxide solution are added, and the mixture is stirred at 80° C. for 3 hours and then separated at 80° C.
  • the obtained aqueous layer is cooled to 40° C., 0.24 g of 98% sulfuric acid, 0.31 g of 1-butanol and 0.39 g of xylene are added, and the mixture is separated at 80° C.
  • the obtained organic layer is cooled to 40° C., 1.15 g of water is added, and liquid separation is performed at 80° C.
  • the obtained organic layer is cooled to 5° C.
  • the present invention provides a method for producing compound (4) useful as an intermediate for producing herbicides.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pyridine Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本発明は、ピリドン化合物の効率的な製造方法を提供する。 より詳細には、本発明は、式(1) [式中、X1およびX2はそれぞれ独立してハロゲン原子を表し、R1は水素原子、アミノ基またはNHCOR2で表される基を表し、R2はC1-C5アルキル基を表す。] で示される化合物と、式(1)で示される化合物に対して4~10重量倍の式(2): [式中、R2は前記と同じ意味を表す。] で示される化合物とを、トリ(C1-C8アルキル)アミンおよびアルカリ金属酢酸塩の少なくとも1つの存在下、100℃以上の温度で反応させて、式(3): [式中、X1、X2およびR2は前記と同じ意味を表し、R6は水素原子またはNHCOR2基を表す。] で示される化合物を得る工程と、 式(3)で示される化合物を加水分解する工程とを含む、 式(4): [式中、X1、X2およびR1は前記と同じ意味を表す。] で示されるピリドン化合物を得る製造方法を提供する。

Description

ピリドン化合物の製造方法
 本特許出願は、日本国特許出願2019-013999号(2019年1月30日出願)に基づくパリ条約上の優先権および利益を主張するものであり、ここに引用することによって、上記出願に記載された内容の全体が、本明細書中に組み込まれるものとする。
 本発明はピリドン化合物の製造方法に関する。
 特許文献1には、除草剤として有用なウラシル化合物が記載されている。特許文献2には、前記ウラシル化合物の製造方法が記載されており、式(4):
Figure JPOXMLDOC01-appb-C000010
[式中、XおよびXはそれぞれ独立してハロゲン原子を表し、Rは水素原子、アミノ基またはNHCORで表される基を表し、RはC1-C5アルキル基を表す。]
で示される化合物(以下、化合物(4)と記す)が除草剤の製造中間体として有用であることが開示されている。
米国特許第6537948号明細書 国際公開第2007/083090号
 しかしながら、特許文献2に記載の方法は化合物(4)の収率が低く、製造方法としては必ずしも満足のいくものではない。
 本発明は、化合物(4)の効率的な製造方法を提供することを目的とする。
 本発明者等は、上記の課題を解決するために鋭意検討を行った結果、本発明を完成するに至った。
 本発明は、以下の通りである。
[1]式(4):
Figure JPOXMLDOC01-appb-C000011
[式中、XおよびXはそれぞれ独立してハロゲン原子を表し、Rは水素原子、アミノ基またはNHCORで表される基を表し、RはC1-C5アルキル基を表す。]
で示される化合物の製造方法であって、
 工程(B):式(1):
Figure JPOXMLDOC01-appb-C000012
[式中、X、XおよびRは前記と同じ意味を表す。]
で示される化合物と、式(1)で示される化合物に対して4~10重量倍の式(2):
Figure JPOXMLDOC01-appb-C000013
[式中、Rは前記と同じ意味を表す。]
で示される化合物とを、トリ(C1-C8アルキル)アミンおよびアルカリ金属酢酸塩の少なくとも1つの存在下、100℃以上の温度で反応させて、式(3):
Figure JPOXMLDOC01-appb-C000014
[式中、X、XおよびRは前記と同じ意味を表し、Rは水素原子またはNHCOR基で表される基を表す。]
で示される化合物を得る工程;および、
 工程(C):式(3)で示される化合物を加水分解して、式(4)で示される化合物を得る工程、
を含む、製造方法。
[2]トリ(C1-C8アルキル)アミンが、トリエチルアミン、ジイソプロピルエチルアミンまたはトリオクチルアミンである、[1]に記載の製造方法。
[3]アルカリ金属酢酸塩が酢酸ナトリウムである、[1]に記載の製造方法。
[4]トリ(C1-C8アルキル)アミンおよびアルカリ金属酢酸塩の少なくとも1つがトリ(C1-C8アルキル)アミンを含む、[1]に記載の製造方法。
[5]トリ(C1-C8アルキル)アミンおよびアルカリ金属酢酸塩の少なくとも1つがアルカリ金属酢酸塩を含む、[1]に記載の製造方法。
[6]トリ(C1-C8アルキル)アミンが、トリエチルアミン、ジイソプロピルエチルアミンまたはトリオクチルアミンである[4]に記載の製造方法。
[7]アルカリ金属酢酸塩が酢酸ナトリウムである、[5]に記載の製造方法。
[8]式(4):
Figure JPOXMLDOC01-appb-C000015
[式中、XおよびXはそれぞれ独立してハロゲン原子を表し、Rは水素原子、アミノ基またはNHCORで表される基を表し、RはC1-C5アルキル基を表す。]
で示される化合物の製造方法であって、
 工程(A):式(5):
Figure JPOXMLDOC01-appb-C000016
[式中、Xはハロゲン原子を表す。]
で示される化合物と、式(6):
Figure JPOXMLDOC01-appb-C000017
[式中、X、XおよびRは前記と同じ意味を表す。]
で示される化合物とを塩基の存在下で反応させて、式(1):
Figure JPOXMLDOC01-appb-C000018
[式中、X、XおよびRは前記と同じ意味を表す。]
で示される化合物を得る工程;ならびに、
 [1]~[7]のいずれかに記載の工程(B)および工程(C)、
を含む、製造方法。
[9]Xが塩素原子である、[1]~[8]のいずれかに記載の製造方法。
[10]Xがフッ素原子である、[1]~[9]のいずれかに記載の製造方法。
[11]式(3):
Figure JPOXMLDOC01-appb-C000019
[式中、XおよびXはそれぞれ独立してハロゲン原子を表し、RはC1-C5アルキル基を表し、Rは水素原子またはNHCORで表される基を表す。]
で示される化合物。
 本発明により、化合物(4)を収率よく製造することができる。
 以下、本発明について詳細に説明する。
 工程(B)について説明する。
 工程(B)では、式(1)で示される化合物(以下、化合物(1)と記す)と、化合物(1)に対して4~10重量倍の式(2)で示される化合物(以下、化合物(2)と記す)とを、トリ(C1-C8アルキル)アミンおよびアルカリ金属酢酸塩の少なくとも1つの存在下、100℃以上の温度で反応させて、式(3)で示される化合物(以下、化合物(3)と記す)を得る。
 RにおけるC1-C5アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基およびペンチル基が挙げられ、メチル基またはエチル基が好ましく、メチル基がより好ましい。
 Xとしては、塩素原子が好ましい。Xとしては、フッ素原子が好ましい。Rとしては、水素原子が好ましい。Xが塩素原子であり、Xがフッ素原子であり、Rが水素原子である化合物(1)は、3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシドと称される。
 また、Rは、アミノ基(NH)であってもよい。Xが塩素原子であり、Xがフッ素原子であり、Rがアミノ基である化合物(1)は、3-(5-アミノ-2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシドと称される。
 Rとしては、水素原子が好ましい。Xが塩素原子であり、Xがフッ素原子であり、Rが水素原子であり、Rがメチル基である化合物(3)は、2-アセトキシ-3-(2-クロロ-4-フルオロフェノキシ)ピリジンと称される。
 なお、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 化合物(2)としては、無水酢酸が好ましい。無水酢酸は、Rがメチル基である場合の化合物(2)である。
 化合物(2)として無水酢酸を用い、100℃~140℃で反応を行うことが好ましい。化合物(2)として無水酢酸を用い、110℃~140℃で反応を行うことがさらに好ましい。化合物(2)として無水酢酸を用い、120℃~140℃で反応を行うことが特に好ましい。
 化合物(2)の使用量は、化合物(1)に対して4~10重量倍であり、5~10重量倍であることが好ましい。
 反応には、化合物(2)に代えて、式(8):
Figure JPOXMLDOC01-appb-C000020
[式中、RはC1-C5アルキル基または置換されていてもよいフェニル基を表し、Xはハロゲン原子を表す。]
で示される化合物または式(9):
Figure JPOXMLDOC01-appb-C000021
[式中、Rは前記と同じ意味を表す。]
で示される化合物を用いることもできるが、工程(B)では、化合物(2)を用いることが好ましい。
 工程(B)の反応には、トリ(C1-C8アルキル)アミンおよびアルカリ金属酢酸塩の少なくとも1つが用いられる。トリ(C1-C8アルキル)アミンおよびアルカリ金属酢酸塩のうちのトリ(C1-C8アルキル)アミンのみが用いられてもよいし、アルカリ金属酢酸塩のみが用いられてもよいし、トリ(C1-C8アルキル)アミンおよびアルカリ金属酢酸塩の両方が用いられてもよい。
 トリ(C1-C8アルキル)アミンは、窒素原子に3個のC1-C8アルキルが結合したアミンであるが、3個のC1-C8アルキルは、独立して選択され、これらは互いに同じものであっても違うものであってもよい。
 トリ(C1-C8アルキル)アミンとしては、例えば、トリメチルアミン、トリエチルアミン、トリブチルアミン、ジイソプロピルエチルアミン、トリオクチルアミンおよびこれらの2つ以上の混合物が挙げられ、トリエチルアミン、ジイソプロピルエチルアミンまたはトリオクチルアミンが好ましく、トリエチルアミンがさらに好ましい。
 アルカリ金属酢酸塩としては、例えば、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸セシウムおよびこれらの2つ以上の混合物が挙げられ、酢酸ナトリウムが好ましい。
 なお、化合物(3)を得る反応には、トリ(C1-C8アルキル)アミンおよびアルカリ金属酢酸塩に代えて、ピリジン、2,4,6-トリメチルピリジン等のピリジン類;N-メチルイミダゾール、1,2-ジメチルイミダゾール、1,4-ジメチルイミダゾール、1,5-ジメチルイミダゾール等のイミダゾール類;炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム等のアルカリ金属炭酸塩類;または、炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属炭酸水素塩類を用いることもできるが、工程(B)では、トリ(C1-C8アルキル)アミンおよびアルカリ金属酢酸塩の少なくとも1つを用いることが好ましい。
 トリ(C1-C8アルキル)アミンおよびアルカリ金属酢酸塩の少なくとも1つの使用量は、化合物(1)1モル当たり、通常1モル~10モル、好ましくは1モル~2モルであるが、これに限定されるものではない。トリ(C1-C8アルキル)アミンとアルカリ金属酢酸塩とは、併用してもよい。
 反応は、イミダゾール類の存在下で行ってもよい。イミダゾール類としては、例えば、N-メチルイミダゾール、1,2-ジメチルイミダゾール、1,4-ジメチルイミダゾール、1,5-ジメチルイミダゾール等が挙げられ、N-メチルイミダゾールが好ましい。
 イミダゾール類の存在下で反応を行う場合、その使用量は、化合物(1)1モル当たり、通常0.01モル~0.2モルであるが、これに限定されるものではない。
 反応は、溶媒中で行ってもよい。溶媒としては、例えばジエチルエーテル、テトラヒドロフラン、tert-ブチルメチルエーテル、シクロペンチルメチルエーテル、1,2-ジメトキシエタン等のエーテル溶媒;ペンタン、ヘキサン、へプタン、オクタン、ベンゼン、トルエン、エチルベンゼン、キシレン、メシチレン、シクロペンタン、シクロヘキサン等の炭化水素溶媒;N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド溶媒;およびこれらの2つ以上の混合物が挙げられ、炭化水素溶媒が好ましい。
 溶媒中で反応を行う場合、溶媒の使用量は、化合物(1)に対して、通常1~20重量倍であるが、これに限定されるものではない。
 化合物(1)は、前記溶媒と予め混合し、化合物(1)の溶液として用いてもよい。
 トリ(C1-C8アルキル)アミンは、そのまま用いてもよく、市販の溶液として用いてもよく、前記溶媒と予め混合して溶液として用いてもよい。
 反応は、通常、化合物(1)、化合物(2)ならびにトリ(C1-C8アルキル)アミンおよびアルカリ金属酢酸塩の少なくとも1つ(以下、トリ(C1-C8アルキル)アミン等の化合物ともいう)を混合することにより実施される。前記混合の順序および方法に特に限定はなく、例えば、化合物(2)とトリ(C1-C8アルキル)アミン等の化合物との混合物に化合物(1)または化合物(1)の溶液を添加する方法、化合物(1)とトリ(C1-C8アルキル)アミン等の化合物との混合物に化合物(2)を添加する方法、化合物(2)に化合物(1)とトリ(C1-C8アルキル)アミン等の化合物との混合物を添加する方法が挙げられ、化合物(2)とトリ(C1-C8アルキル)アミン等の化合物との混合物に化合物(1)または化合物(1)の溶液を添加する方法、または、化合物(2)に化合物(1)とトリ(C1-C8アルキル)アミン等の化合物との混合物を添加する方法が好ましい。
 化合物(2)とトリ(C1-C8アルキル)アミン等の化合物との混合物に化合物(1)または化合物(1)の溶液を添加する場合、添加は一度に行ってもよく、分割して行ってもよいが、前記の反応温度が維持されるように添加速度を調節しながら添加することが好ましい。
 化合物(2)に化合物(1)とトリ(C1-C8アルキル)アミン等の化合物との混合物を添加する場合、添加は一度に行ってもよく、分割して行ってもよいが、前記の反応温度が維持されるように添加速度を調節しながら添加することが好ましい。
 反応時間は反応温度等の条件にもよるが、通常1~96時間、好ましくは1~24時間である。反応温度は、100℃以上である。反応温度は、100℃~化合物(2)の還流温度にすることができる。化合物(2)が無水酢酸である場合の好ましい反応温度は上述のとおりである。
 化合物(3)は、減圧下で濃縮した後、あるいは濃縮せずに、そのまま工程(C)に用いることができる。すなわち、化合物(3)は、単離または精製することなく、次の加水分解の工程に進むことができる。
 また、化合物(3)は、常法によって単離、精製することもできる。例えば、固体が析出する場合には、反応終了後に生じた固体を濾過により濾取し、化合物(3)を単離することができる。また、例えば、反応終了後に反応混合物を水と混合し、有機溶媒で抽出した後、得られた有機層を洗浄、乾燥、減圧下で濃縮することにより化合物(3)を単離することもできる。なお、抽出に用いられる有機溶媒は、化合物(3)が溶解する有機溶媒であればよく、特に限定されないが、例えばジエチルエーテル、テトラヒドロフラン、tert-ブチルメチルエーテル、シクロペンチルメチルエーテル、1,2-ジメトキシエタン等のエーテル溶媒;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸tert-ブチル等のエステル溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン溶媒;ペンタン、ヘキサン、へプタン、オクタン、ベンゼン、トルエン、エチルベンゼン、キシレン、メシチレン、シクロペンタン、シクロヘキサン等の炭化水素溶媒;ジクロロメタン、クロロホルム、四塩化炭素等のハロゲン化炭化水素溶媒;クロロベンゼン、ジクロロベンゼン等の芳香族ハロゲン化炭化水素溶媒;およびこれらの2つ以上の混合物が挙げられる。また、化合物(3)はカラムクロマトグラフィー、再結晶等によりさらに精製することもできる。
 工程(C)について説明する。
 工程(C)では、化合物(3)を加水分解して、化合物(4)を得る。
 加水分解は、酸または塩基の存在下、あるいは非存在下で実施することができる。
 化合物(4)は、ピリドン化合物の1種である。
 上述と同様に、Xとしては塩素原子が好ましく、Xとしてはフッ素原子が好ましく、Rとしては水素原子が好ましく、これらを満たす場合の化合物(4)は、3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンと称される。
 加水分解に用いられる酸としては、例えば、塩酸、硫酸等の無機酸;酢酸、プロピオン酸、酪酸、ヘキサン酸、オクタン酸、2-エチルヘキサン酸、デカン酸、ドデカン酸、クロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロ酢酸等の脂肪族カルボン酸またはハロゲン化脂肪族カルボン酸;およびメタンスルホン酸、トリフルオロメタンスルホン酸、10-カンファースルホン酸、p-トルエンスルホン酸等の有機スルホン酸が挙げられ、中でも無機酸、脂肪族カルボン酸またはハロゲン化脂肪族カルボン酸が好ましい。
 酸の使用量は、化合物(3)1モル当たり、通常0.01~5モル、好ましくは0.01~2モルであるが、これに限定されるものではない。
 加水分解に用いられる塩基としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ金属水酸化物;および水酸化マグネシウム、水酸化カルシウム、水酸化バリウム等のアルカリ土類金属水酸化物が挙げられ、中でも水酸化ナトリウムが好ましい。塩基は、水溶液として用いてもよい。
 塩基の使用量は、化合物(3)1モル当たり、通常2~10モルであるが、これに限定されるものではない。
 加水分解には水を用いることができる。水の使用量は、化合物(3)1モル当たり、通常1~100モルであるが、これに限定されるものではない。
 反応は、通常溶媒中で行われる。溶媒としては、例えば、ジエチルエーテル、テトラヒドロフラン、tert-ブチルメチルエーテル、シクロペンチルメチルエーテル、1,2-ジメトキシエタン等のエーテル溶媒;ペンタン、ヘキサン、へプタン、オクタン、ベンゼン、トルエン、エチルベンゼン、キシレン、メシチレン、シクロペンタン、シクロヘキサン等の炭化水素溶媒;メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール等のアルコール溶媒;N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド溶媒;およびこれらの2つ以上の混合物が挙げられる。加水分解に用いる水を溶媒として用いてもよい。その場合、水の使用量が、化合物(3)1モル当たり100モルよりも多くなってもよい。
 溶媒の使用量は、化合物(3)に対して、通常0.1~20重量倍であるが、これに限定されるものではない。
 反応温度は、通常0℃~溶媒の還流温度であり、反応に水以外の溶媒が用いられない場合、通常0~100℃である。反応時間は反応温度によっても異なるが、通常1~72時間である。
 反応終了後は、化合物(4)は、常法によって単離、精製することができる。例えば、固体が析出する場合には、生じた固体を濾取することにより、化合物(4)を単離することができる。また、例えば、酸または塩基を加え、反応混合物を中和した後、有機溶媒で抽出し、得られた有機層を洗浄、乾燥、減圧下で濃縮することにより化合物(4)を単離することもできる。なお、抽出に用いられる有機溶媒は、化合物(4)が溶解する溶媒であればよく、特に限定されないが、例えばジエチルエーテル、テトラヒドロフラン、tert-ブチルメチルエーテル、シクロペンチルメチルエーテル、1,2-ジメトキシエタン等のエーテル溶媒;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸tert-ブチル等のエステル溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン溶媒;ペンタン、ヘキサン、へプタン、オクタン、ベンゼン、トルエン、エチルベンゼン、キシレン、メシチレン、シクロペンタン、シクロヘキサン等の炭化水素溶媒;ジクロロメタン、クロロホルム、四塩化炭素等のハロゲン化炭化水素溶媒;クロロベンゼン、ジクロロベンゼン等の芳香族ハロゲン化炭化水素溶媒;メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール等のアルコール溶媒;およびこれらの2つ以上の混合物が挙げられる。また、化合物(4)はカラムクロマトグラフィー、再結晶等によりさらに精製することもできる。
 化合物(4)は、式(4a):
Figure JPOXMLDOC01-appb-C000022
[式中、X、XおよびRは前記と同じ意味を表す。]
で示される化合物と互変異性体の関係にある。式(4a)で示される互変異性体も化合物(4)に含まれるものとする。
 工程(A)について説明する。
 工程(A)では、式(5)で示される化合物(以下、化合物(5)と記す)と式(6)で示される化合物(以下、化合物(6)と記す)とを塩基の存在下で反応させて、化合物(1)を得る。
 反応は、化合物(5)、化合物(6)および塩基を混合することにより実施される。化合物(5)、化合物(6)および塩基の混合において、混合順序に特に限定はない。
 化合物(6)の使用量は、化合物(5)1モル当たり、通常0.5~10モル、好ましくは1~5モル、より好ましくは1~2モルであるが、これに限定されるものではない。
 塩基としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ金属水酸化物;炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム等のアルカリ金属炭酸塩;リン酸三リチウム、リン酸三ナトリウム、リン酸三カリウム、リン酸三セシウム等のアルカリ金属リン酸塩;および水素化リチウム、水素化ナトリウム、水素化カリウム等のアルカリ金属水素化物が挙げられ、中でもアルカリ金属リン酸塩が好ましい。
 塩基の使用量は、化合物(5)1モル当たり、通常1~10モル、好ましくは1~5モル、より好ましくは1~2モルであるが、これに限定されるものではない。
 反応は、添加剤の存在下で行ってもよい。添加剤としては、例えば、15-クラウン 5-エーテル、18-クラウン 6-エーテル等のクラウンエーテル類が挙げられ、15-クラウン 5-エーテルが好ましい。
 添加剤の存在下で反応を行う場合、その使用量は、化合物(5)1モル当たり、通常0.01~1モルであるが、これに限定されるものではない。
 反応温度は、通常95℃~180℃、好ましくは、140℃~160℃である。反応時間は反応温度によっても異なるが、通常1~72時間である。
 反応は、通常、溶媒中で行われる。溶媒としては、例えば、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド溶媒;ジメチルスルホキシド等のスルホキシド溶媒;スルホラン等のスルホン溶媒;ペンタン、ヘキサン、へプタン、オクタン、ベンゼン、トルエン、エチルベンゼン、キシレン、メシチレン、シクロペンタン、シクロヘキサン等の炭化水素溶媒;クロロベンゼン、ジクロロベンゼン等の芳香族ハロゲン化炭化水素溶媒;およびこれらの2つ以上の混合物が挙げられ、アミド溶媒が好ましく、N-メチルピロリドンがより好ましい。
 化合物(1)は、常法によって単離、精製することができる。例えば、固体が析出する場合には、反応終了後に生じた固体を濾過により濾取し、化合物(1)を単離することができる。また、例えば、反応終了後に反応混合物と水とを混合し、有機溶媒で抽出した後、得られた有機層を洗浄、乾燥、減圧下で濃縮することにより化合物(1)を単離することもできる。さらに、例えば、反応終了後に反応混合物と水とを混合し、有機溶媒で抽出した後、得られた有機層をブレンステッド酸の水溶液と混合し、化合物(1)のブレンステッド酸塩を含む水層を得、次いで、該水層を塩基で中和し、有機溶媒を用いて化合物(1)を有機層として抽出し、必要に応じて該有機層を洗浄、乾燥、濃縮することにより、化合物(1)を単離することもできる。なお、抽出に用いられる有機溶媒は、化合物(1)が溶解する有機溶媒であればよく、特に限定されないが、例えばジエチルエーテル、テトラヒドロフラン、tert-ブチルメチルエーテル、シクロペンチルメチルエーテル、1,2-ジメトキシエタン等のエーテル溶媒;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸tert-ブチル等のエステル溶媒;メチルエチルケトン、メチルイソブチルケトン等のケトン溶媒;ペンタン、ヘキサン、へプタン、オクタン、ベンゼン、トルエン、エチルベンゼン、キシレン、メシチレン、シクロペンタン、シクロヘキサン等の炭化水素溶媒;ジクロロメタン、クロロホルム、四塩化炭素等のハロゲン化炭化水素溶媒;クロロベンゼン、ジクロロベンゼン等の芳香族ハロゲン化炭化水素溶媒;およびこれらの2つ以上の混合物が挙げられる。また、化合物(1)はカラムクロマトグラフィー、再結晶等によりさらに精製することもできる。あるいは、化合物(1)は、精製することなく、工程(B)に用いてもよい。
 化合物(5)は、式(7):
Figure JPOXMLDOC01-appb-C000023
[式中、Xは前記と同じ意味を表す。]
で示される化合物(以下、化合物(7)と記す)と酸化剤とを反応させることにより得ることができる。
 酸化剤としては、例えば、過酸化水素水、尿素-過酸化水素付加体等の過酸化水素;過酢酸、m-クロロ過安息香酸等の過酸;およびtert-ブチルヒドロペルオキシド等の有機過酸化物が挙げられ、中でも、過酸化水素水が好ましい。
 過酸化水素水の濃度は通常、10~70重量%であり、好ましくは30~60重量%である。
 酸化剤の使用量は、化合物(7)1モル当たり、通常1~10モル、好ましくは1~5モル、より好ましくは1~2モルであるが、これに限定されるものではない。
 反応は、酸の存在下で行ってもよい。酸としては、例えば、塩酸、硫酸等の無機酸;メタンスルホン酸、エタンスルホン酸等のスルホン酸;および酢酸、プロピオン酸、酪酸、ヘキサン酸、オクタン酸、2-エチルヘキサン酸、デカン酸、ドデカン酸、クロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロ酢酸等の脂肪族カルボン酸またはハロゲン化脂肪族カルボン酸が挙げられ、塩酸または硫酸が好ましい。
 酸の存在下で反応を行う場合、その使用量は、化合物(7)1モル当たり、通常0.01~10モル、好ましくは0.01~2モルであるが、これに限定されるものではない。
 反応は、金属触媒の存在下で行ってもよい。金属触媒としては、例えば、タングステン酸ナトリウム、タングステン酸ナトリウム二水和物、タングステン酸ナトリウム十水和物等のタングステン化合物;オルトバナジン(V)酸ナトリウム等のバナジウム化合物;および酸化モリブデン(VI)等のモリブデン化合物が挙げられ、タングステン酸ナトリウム二水和物が好ましい。
 金属触媒の存在下で反応を行う場合、その使用量は、化合物(7)1モル当たり、通常0.01~1モル、好ましくは0.01~0.1モルであるが、これに限定されるものではない。
 反応温度は通常0℃~100℃であり、好ましくは60℃~80℃である。反応時間は反応温度によっても異なるが、通常1~48時間である。
 反応は、反応に不活性な溶媒中で行ってもよく、反応に不活性な溶媒としては、例えば、スルホラン等のスルホン溶媒および水が挙げられる。
 化合物(5)は、常法によって単離、精製することができる。例えば、固体が析出する場合には、反応終了後に生じた固体を濾過により濾取し、化合物(5)を単離することができる。また、例えば、反応終了後に反応混合物と水とを混合し、有機溶媒で抽出した後、得られた有機層を洗浄、乾燥、減圧下で濃縮することにより化合物(5)を単離することもできる。なお、抽出に用いられる有機溶媒は、化合物(5)が溶解する有機溶媒であればよく、特に限定されないが、例えばジエチルエーテル、テトラヒドロフラン、tert-ブチルメチルエーテル、シクロペンチルメチルエーテル、1,2-ジメトキシエタン等のエーテル溶媒;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸tert-ブチル等のエステル溶媒;メチルエチルケトン、メチルイソブチルケトン等のケトン溶媒;ペンタン、ヘキサン、へプタン、オクタン、ベンゼン、トルエン、エチルベンゼン、キシレン、メシチレン、シクロペンタン、シクロヘキサン等の炭化水素溶媒;ジクロロメタン、クロロホルム、四塩化炭素等のハロゲン化炭化水素溶媒;クロロベンゼン、ジクロロベンゼン等の芳香族ハロゲン化炭化水素溶媒;N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド溶媒;およびこれらの2つ以上の混合物が挙げられる。また、化合物(5)はカラムクロマトグラフィー、再結晶等によりさらに精製することもできる。あるいは、化合物(5)は、精製することなく、化合物(1)の製造に用いてもよい。
 以下、実施例を挙げて本発明を詳細に説明するが、本発明は以下の実施例のみに限定されるものではない。
 なお、以下において、塩酸、硫酸、水酸化ナトリウム、亜硫酸ナトリウムなどの無機塩の水溶液の%(パーセント)および物質の含量は、特に断りのない限り、質量%を意味する。収率の%(パーセント)は、特に断りのない限り、物質量(モル)に基づく。
 以下の実施例1~14、18~34、および比較例1~4において、特に記載のない場合、定量分析は高速液体クロマトグラフィー(以下、HPLCと記す)を用い、絶対検量線法で実施した。その分析条件は以下の通りである。
[高速液体クロマトグラフィー(HPLC)分析条件]
移動相:A液:0.1%リン酸水溶液、B液:アセトニトリル
グラジエント条件:B液の組成を30%から70分かけて100%とした。
カラム:XBridge Phenyl、粒径 3.5μm、4.6mmI.D.×15cm(日本ウォーターズ社)
UV測定波長:274nm
流量:1.0mL/min
カラムオーブン:40℃
3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンの製造
実施例1
 3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシド1.01g(含量:76.7%)、無水酢酸7.67gおよびトリエチルアミン0.38gを室温で混合し、120℃に昇温して7時間撹拌したところ、2-アセトキシ-3-(2-クロロ-4-フルオロフェノキシ)ピリジンおよび3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンを含む混合溶液8.54g(2-アセトキシ-3-(2-クロロ-4-フルオロフェノキシ)ピリジン含量:9.55%、収率78%;3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノン含量:0.94%、収率9%。合計収率87%)が得られた。
 得られた混合溶液を減圧下で濃縮し、キシレン1.53g、水3.84gおよび27%水酸化ナトリウム水溶液1.42gを加え、80℃で3時間撹拌後、80℃で分液する。得られる水層を40℃に冷却し、98%硫酸0.48g、1-ブタノール0.61gおよびキシレン0.77gを加え、80℃で分液する。得られる有機層を40℃に冷却し、水2.30gを加え、80℃で分液する。得られる有機層を撹拌しながら5℃まで冷却し、析出する固体を濾過後、濾物をトルエン1.53gで洗浄する。得られる固体を乾燥することで3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンが定量的に得られる。
実施例2
 3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシド1.00g(含量:76.7%)、無水酢酸3.84gおよびトリエチルアミン0.37gを室温で混合し、120℃に昇温して7時間撹拌したところ、2-アセトキシ-3-(2-クロロ-4-フルオロフェノキシ)ピリジンおよび3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンを含む混合溶液4.75g(2-アセトキシ-3-(2-クロロ-4-フルオロフェノキシ)ピリジン含量:15.6%、収率72%;3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノン含量:2.14%、収率11%。合計収率83%)が得られた。
 得られた混合溶液を減圧下で濃縮し、キシレン1.53g、水3.84gおよび27%水酸化ナトリウム水溶液1.42gを加え、80℃で3時間撹拌後、80℃で分液する。得られる水層を40℃に冷却し、98%硫酸0.48g、1-ブタノール0.61gおよびキシレン0.77gを加え、80℃で分液する。得られる有機層を40℃に冷却し、水2.30gを加え、80℃で分液する。得られる有機層を撹拌しながら5℃まで冷却し、析出する固体を濾過後、濾物をトルエン1.53gで洗浄する。得られる固体を乾燥することで3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンが定量的に得られる。
実施例3
 3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシド1.01g(含量:76.7%)、無水酢酸3.85g、トリエチルアミン0.37gおよびN-メチル-2-ピロリドン(以下、NMPと記す)76.6mgを室温で混合し、120℃に昇温して7時間撹拌したところ、2-アセトキシ-3-(2-クロロ-4-フルオロフェノキシ)ピリジンおよび3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンを含む混合溶液5.02g(2-アセトキシ-3-(2-クロロ-4-フルオロフェノキシ)ピリジン含量:15.2%、収率74%;3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノン含量:1.87%、収率11%。合計収率84%)が得られた。
 得られた混合溶液を減圧下で濃縮し、キシレン1.53g、水3.84gおよび27%水酸化ナトリウム水溶液1.42gを加え、80℃で3時間撹拌後、80℃で分液する。得られる水層を40℃に冷却し、98%硫酸0.48g、1-ブタノール0.61gおよびキシレン0.77gを加え、80℃で分液する。得られる有機層を40℃に冷却し、水2.30gを加え、80℃で分液する。得られる有機層を撹拌しながら5℃まで冷却し、析出する固体を濾過後、濾物をトルエン1.53gで洗浄する。得られる固体を乾燥することで3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンが定量的に得られる。
実施例4
 3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシド1.00g(含量:76.7%)、無水酢酸3.84g、トリエチルアミン0.36gおよびNMP0.78gを室温で混合し、120℃に昇温して7時間撹拌したところ、2-アセトキシ-3-(2-クロロ-4-フルオロフェノキシ)ピリジンおよび3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンを含む混合溶液5.77g(2-アセトキシ-3-(2-クロロ-4-フルオロフェノキシ)ピリジン含量:13.5%、収率75%;3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノン含量:1.26%、収率8%。合計収率83%)が得られた。
 得られた混合溶液を減圧下で濃縮し、キシレン1.53g、水3.84gおよび27%水酸化ナトリウム水溶液1.42gを加え、80℃で3時間撹拌後、80℃で分液する。得られる水層を40℃に冷却し、98%硫酸0.48g、1-ブタノール0.61gおよびキシレン0.77gを加え、80℃で分液する。得られる有機層を40℃に冷却し、水2.30gを加え、80℃で分液する。得られる有機層を撹拌しながら5℃まで冷却し、析出する固体を濾過後、濾物をトルエン1.53gで洗浄する。得られる固体を乾燥することで3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンが定量的に得られる。
実施例5
 3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシド15.0g(含量:91.8%)、無水酢酸68.9g、トリエチルアミン6.40gおよびN-メチルイミダゾール0.12gを室温で混合し、120℃に昇温して7時間撹拌したところ、2-アセトキシ-3-(2-クロロ-4-フルオロフェノキシ)ピリジンおよび3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンを含む溶液89.9g(2-アセトキシ-3-(2-クロロ-4-フルオロフェノキシ)ピリジン含量:15.0%、収率83%;3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノン含量:0.71%、収率5%。合計収率88%)が得られた。
 得られた混合溶液を減圧下で濃縮後、キシレン20.7g、27%水酸化ナトリウム水溶液25.6gおよび水13.90gを加え、80℃で2時間30分撹拌後、80℃で分液した。得られた水層を40℃に冷却し、17%硫酸水溶液24.3gを加えた。得られた混合物を撹拌しながら15℃まで冷却した。析出した固体を濾過した後、濾物を水41.4gで洗浄した。得られた固体を乾燥することで3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノン12.8g(含量86.2%、収率80%)を得た。
H-NMR(400 MHz,DMSO-D)δ:12.03(1H,br s),7.54(1H,dd,J=8.4,2.8 Hz),7.27(1H,dd,J=6.6,2.0 Hz),7.18-7.13(2H,m),6.93(1H,dd,J=9.0,4.8 Hz),6.18(1H,t,J=6.8 Hz).
実施例6
 3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシド32.6g(含量:48.0%)、無水酢酸78.4g、トリエチルアミン7.28gおよびN-メチルイミダゾール0.13gを室温で混合し、120℃に昇温して5時間撹拌した。
 得られた混合溶液を減圧下で濃縮後、キシレン31.5g、48%水酸化ナトリウム水溶液16.3gおよび水78.3gを加え、80℃で1時間撹拌後、80℃で分液した。水層として、3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノン水溶液123.8g(含量11.8%、収率86%)を得た。得られた水層を40℃に冷却し、98%硫酸4.56gを加え、さらにキシレン55.7gと1-ブタノール10.0gとを加え、80℃で撹拌した後、80℃で分液した。得られた有機層を水45.2gで洗浄した後、0℃に冷却した。析出した固体を濾過した後、濾物をキシレン45.0gついで水30.1gで洗浄後、乾燥することで3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノン12.5g(含量91.6%、収率69%)を得た。
実施例7
 3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシド1.00g(含量:91.8%)、無水酢酸4.59g、トリエチルアミン0.44gおよびN-メチルイミダゾール18.0mgを室温で混合し、120℃に昇温して7時間撹拌したところ、2-アセトキシ-3-(2-クロロ-4-フルオロフェノキシ)ピリジンおよび3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンを含む混合溶液5.79g(2-アセトキシ-3-(2-クロロ-4-フルオロフェノキシ)ピリジン含量:15.0%、収率80%;3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノン含量:1.00%、収率6%。合計収率86%)が得られた。
 得られた混合溶液を減圧下で濃縮し、キシレン1.53g、水3.84gおよび27%水酸化ナトリウム水溶液1.42gを加え、80℃で3時間撹拌後、80℃で分液する。得られる水層を40℃に冷却し、98%硫酸0.48g、1-ブタノール0.61gおよびキシレン0.77gを加え、80℃で分液する。得られる有機層を40℃に冷却し、水2.30gを加え、80℃で分液する。得られる有機層を撹拌しながら5℃まで冷却し、析出する固体を濾過後、濾物をトルエン1.53gで洗浄する。得られる固体を乾燥することで3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンが定量的に得られる。
実施例8
 3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシド1.00g(含量:91.8%)、無水酢酸4.59g、トリエチルアミン0.43gおよび酢酸カリウム37.8mgを混合し、120℃に昇温して7時間撹拌したところ、2-アセトキシ-3-(2-クロロ-4-フルオロフェノキシ)ピリジンおよび3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンを含む混合溶液5.79g(2-アセトキシ-3-(2-クロロ-4-フルオロフェノキシ)ピリジン含量:15.0%、収率80%;3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノン含量:0.89%、収率6%。合計収率86%)が得られた。
 得られた混合溶液を減圧下で濃縮し、キシレン1.53g、水3.84gおよび27%水酸化ナトリウム水溶液1.42gを加え、80℃で3時間撹拌後、80℃で分液する。得られる水層を40℃に冷却し、98%硫酸0.48g、1-ブタノール0.61gおよびキシレン0.77gを加えて、80℃で分液する。得られる有機層を40℃に冷却し、水2.30gを加え、80℃で分液する。得られる有機層を撹拌しながら5℃まで冷却し、析出する固体を濾過後、濾物をトルエン1.53gで洗浄する。得られる固体を乾燥することで3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンが定量的に得られる。
実施例9
 3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシド1.00g(含量:91.8%)、無水酢酸4.59g、トリエチルアミン0.43gおよび酢酸ナトリウム31.1mgを室温で混合し、120℃に昇温して7時間撹拌したところ、2-アセトキシ-3-(2-クロロ-4-フルオロフェノキシ)ピリジンおよび3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンを含む混合溶液5.79g(2-アセトキシ-3-(2-クロロ-4-フルオロフェノキシ)ピリジン含量:15.2%、収率81%;3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノン含量:0.80%、収率5%。合計収率86%)が得られた。
 得られた混合溶液を減圧下で濃縮し、キシレン1.53g、水3.84gおよび27%水酸化ナトリウム水溶液1.42gを加え、80℃で3時間撹拌後、80℃で分液する。得られる水層を40℃に冷却し、98%硫酸0.48g、1-ブタノール0.61gおよびキシレン0.77gを加え、80℃で分液する。得られる有機層を40℃に冷却し、水2.30gを加え、80℃で分液する。得られる有機層を撹拌しながら5℃まで冷却し、析出する固体を濾過後、濾物をトルエン1.53gで洗浄する。得られる固体を乾燥することで3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンが定量的に得られる。
実施例10
 3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシド1.00g(含量:91.8%)、無水酢酸4.59g、トリエチルアミン0.44gおよび酢酸ナトリウム63.5mgを室温で混合し、120℃に昇温して7時間撹拌したところ、2-アセトキシ-3-(2-クロロ-4-フルオロフェノキシ)ピリジンおよび3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンを含む混合溶液5.77g(2-アセトキシ-3-(2-クロロ-4-フルオロフェノキシ)ピリジン含量:15.0%、収率80%;3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノン含量:0.96%、収率6%。合計収率86%)が得られた。
 得られた混合溶液を減圧下で濃縮し、キシレン1.53g、水3.84gおよび27%水酸化ナトリウム水溶液1.42gを加え、80℃で3時間撹拌後、80℃で分液する。得られる水層を40℃に冷却し、98%硫酸0.48g、1-ブタノール0.61gおよびキシレン0.77gを加え、80℃で分液する。得られる有機層を40℃に冷却し、水2.30gを加え、80℃で分液する。得られる有機層を撹拌しながら5℃まで冷却し、析出する固体を濾過後、濾物をトルエン1.53gで洗浄する。得られる固体を乾燥することで3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンが定量的に得られる。
実施例11
 3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシド1.00g(含量:91.8%)、無水酢酸4.59g、トリエチルアミン0.43gおよび酢酸リチウム25.6mgを室温で混合し、120℃に昇温して7時間撹拌したところ、2-アセトキシ-3-(2-クロロ-4-フルオロフェノキシ)ピリジンおよび3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンを含む混合溶液5.90g(2-アセトキシ-3-(2-クロロ-4-フルオロフェノキシ)ピリジン含量:14.9%、収率82%;3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノン含量:0.68%、収率4%。合計収率86%)が得られた。
 得られた混合溶液を減圧下で濃縮し、キシレン1.53g、水3.84gおよび27%水酸化ナトリウム水溶液1.42gを加え、80℃で3時間撹拌後、80℃で分液する。得られる水層を40℃に冷却し、98%硫酸0.48g、1-ブタノール0.61gおよびキシレン0.77gを加え、80℃で分液する。得られる有機層を40℃に冷却し、水2.30gを加え、80℃で分液する。得られる有機層を撹拌しながら5℃まで冷却し、析出する固体を濾過後、濾物をトルエン1.53gで洗浄する。得られる固体を乾燥することで3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンが定量的に得られる。
実施例12
 3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシド1.00g(含量:91.8%)、無水酢酸4.59gおよびトリエチルアミン0.44gを室温で混合し、100℃に昇温して25時間撹拌したところ、2-アセトキシ-3-(2-クロロ-4-フルオロフェノキシ)ピリジンおよび3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンを含む混合溶液5.70g(2-アセトキシ-3-(2-クロロ-4-フルオロフェノキシ)ピリジン含量:14.1%、収率75%;3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノン含量:0.86%、収率5%。合計収率80%)が得られた。
 得られた混合溶液を減圧下で濃縮し、キシレン1.53g、水3.84gおよび27%水酸化ナトリウム水溶液1.42gを加え、80℃で3時間撹拌後、80℃で分液する。得られる水層を40℃に冷却し、98%硫酸0.48g、1-ブタノール0.61gおよびキシレン0.77gを加え、80℃で分液する。得られる有機層を40℃に冷却し、水2.30gを加え、80℃で分液する。得られる有機層を撹拌しながら5℃まで冷却し、析出する固体を濾過後、濾物をトルエン1.53gで洗浄する。得られる固体を乾燥することで3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンが定量的に得られる。
実施例13
 3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシド1.00g(含量:91.8%)、無水酢酸4.59gおよびトリエチルアミン0.43gを室温で混合し、140℃に昇温して7時間撹拌したところ、2-アセトキシ-3-(2-クロロ-4-フルオロフェノキシ)ピリジンおよび3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンを含む混合溶液5.72g(2-アセトキシ-3-(2-クロロ-4-フルオロフェノキシ)ピリジン含量:14.9%、収率79%;3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノン含量:0.84%、収率5%。合計収率84%)が得られた。
 得られた混合溶液を減圧下で濃縮し、キシレン1.53g、水3.84gおよび27%水酸化ナトリウム水溶液1.42gを加え、80℃で3時間撹拌後、80℃で分液する。得られる水層を40℃に冷却し、98%硫酸0.48g、1-ブタノール0.61g、キシレン0.77gを加えて、80℃で分液する。得られる有機層を40℃に冷却し、水2.30gを加え、80℃で分液する。得られる有機層を撹拌しながら5℃まで冷却し、析出する固体を濾過後、濾物をトルエン1.53gで洗浄する。得られる固体を乾燥することで3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンが定量的に得られる。
実施例14
 3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシド0.50g(含量:60.5%)、無水酢酸1.53gおよび酢酸ナトリウム0.11gを室温で混合し、120℃に昇温して7時間撹拌したところ、2-アセトキシ-3-(2-クロロ-4-フルオロフェノキシ)ピリジンおよび3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンを含む混合溶液1.90g(2-アセトキシ-3-(2-クロロ-4-フルオロフェノキシ)ピリジン含量:12.3%、収率66%;3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノン含量:2.68%、収率17%。合計収率83%)が得られた。
 得られた混合溶液を減圧下で濃縮し、キシレン0.45g、水0.30gおよび27%水酸化ナトリウム水溶液0.58gを加え、80℃で3時間撹拌後、80℃で分液する。得られる水層を40℃に冷却し、98%硫酸0.21g、1-ブタノール0.24gおよびキシレン0.96gを加えて、80℃で分液する。得られる有機層を40℃に冷却し、水0.15gを加え、80℃で分液する。得られる有機層を撹拌しながら5℃まで冷却し、析出する固体を濾過後、濾物をトルエン0.30gで洗浄する。得られる固体を乾燥することで3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンが定量的に得られる。
 以下の実施例15~17において、特に記載のない場合、定量分析は高速液体クロマトグラフィー(HPLC)を用い、内部標準法で実施した。その分析条件は以下の通りである。
 移動相:A液:0.08%炭酸水素アンモニウム水溶液(pH9.7)、B液:アセトニトリル
グラジエント条件:
Figure JPOXMLDOC01-appb-T000024
 本明細書において、粉末X線回折条件は以下の通りである。
粉末X線回折装置:SmartLab(株式会社リガク製)
X線出力:CuKα、45kV、200mA
サンプリング幅:0.02°
走査範囲:2°~50°
実施例15
 3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシド40.3g(含量:49.6%)、無水酢酸100.0gの混合溶液を、還流下トリエチルアミン17.3gに4時間かけて滴下し、還流下3時間撹拌した。
 得られた混合溶液を減圧濃縮後、水7.5gを加え、80℃で2時間撹拌し、3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンの溶液50.0g(含量33.9%、収率85%)を得た。得られた混合溶液にトルエン100.0gを滴下し、濃縮後、得られた3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンのトルエンと酢酸の混合溶液67.5g(含量26.5%)を90℃に加熱した後、15℃まで冷却した。析出した固体を濾過した後、濾物をトルエン30.0gで洗浄後、乾燥することで3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノン12.5g(含量92.1%、収率70%)を結晶として得た。この結晶を結晶Aとする。
 結晶Aは、粉末X線解析において、2θ=8.3±0.2°、10.1±0.2°、11.8±0.2°、12.7±0.2°、16.4±0.2°、16.7±0.2°、17.3±0.2°、19.8±0.2°、21.3±0.2°、23.7±0.2°、に回折ピークを有する結晶であり、[表2]に示す回折ピークを有していた。
Figure JPOXMLDOC01-appb-T000025
実施例16
 3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシド40.0g(含量:50.0%)、無水酢酸100.0gの混合溶液を、還流下トリエチルアミン17.4gに4時間かけて滴下し、還流下3時間撹拌した。
 得られた混合溶液を減圧濃縮後、キシレン40.0g、水4.5gを加え、80℃で8時間撹拌し、その後2時間還流脱水した。得られた混合溶液を140℃に加熱した後、15℃まで冷却し、析出した固体を濾過した後、濾物をキシレン30.0gで洗浄後、乾燥することで3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノン17.9g(含量88.2%、収率79%)を結晶として得た。融点184.8℃であった。この結晶を結晶Bとする。
 結晶Bは、粉末X線解析において、2θ=8.3±0.2°、12.7±0.2°、16.4±0.2°、16.7±0.2°、17.3±0.2°、19.8±0.2°、21.3±0.2°、25.1±0.2°、25.5±0.2°、27.8±0.2°に回折ピークを有する結晶であり、[表3]に示す回折ピークを有していた。
Figure JPOXMLDOC01-appb-T000026
実施例17
 3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノン0.04gにN,N-ジメチルホルムアミド0.1gを加え、得られたスラリー溶液を2日間室温で振盪した。得られた結晶を濾過後、60℃で減圧乾燥し、0.03gの結晶を得た。融点185.0℃であった。この結晶を結晶Cとする。
 結晶Cは、粉末X線解析において、2θ=10.0±0.2°、11.8±0.2°、14.6±0.2°、18.0±0.2°、18.5±0.2°、20.2±0.2°、21.1±0.2°、22.7±0.2°、23.0±0.2°、23.7±0.2°に回折ピークを有する結晶であり、[表4]に示す回折ピークを有していた。
Figure JPOXMLDOC01-appb-T000027
3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシドの製造
実施例18
 2-クロロ-4-フルオロフェノール1.5g、3-クロロピリジン-N-オキシド1.6g、炭酸セシウム4.9gおよびジメチルホルムアミド10mLを室温で混合し、140℃に昇温して20時間撹拌した。得られた反応混合物を室温に冷却して水を加えた後、クロロホルム50mLにて抽出した。得られた有機層を減圧下で濃縮して、残渣をシリカゲルカラムクロマトグラフィーにて精製して、3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシド1.2gを得た。
3-(5-アミノ-2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシドの製造
実施例19
 5-アミノ-2-クロロ-4-フルオロフェノール3.3g、3-クロロピリジン-N-オキシド3.1g、リン酸三カリウム12.7gおよびジメチルホルムアミド10mLを室温で混合し、140℃に昇温して22時間撹拌した。得られた反応混合物を室温に冷却して水を加えた後、クロロホルム50mLにて抽出した。得られた有機層を減圧下で濃縮して、残渣をシリカゲルカラムクロマトグラフィーにて精製し、3-(5-アミノ-2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシド2.2gを得た。
3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシドの製造
実施例20
 2-クロロ-4-フルオロフェノール1.33g、3-クロロピリジン-N-オキシドのNMP溶液(含量:42.3%)2.48g、リン酸三カリウム2.60gおよびNMP2.11gを室温で混合し、160℃に昇温して24時間撹拌した。得られた反応混合物を80℃に冷却して水を加え、3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシドのNMP溶液20.3g(含量:4.69%、収率49%)を得た。
実施例21
 2-クロロ-4-フルオロフェノール0.77g、3-クロロピリジン-N-オキシドのNMP溶液(含量:40.7%)1.50g、リン酸三ナトリウム1.16gおよびNMP1.22gを室温で混合し、160℃に昇温して24時間撹拌した。得られた反応混合物を80℃に冷却して水を加え、3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシドのNMP溶液11.1g(含量:4.15%、収率39%)を得た。
実施例22
 2-クロロ-4-フルオロフェノール0.77g、3-クロロピリジン-N-オキシドのNMP溶液(含量:40.7%)1.50g、リン酸三ナトリウム1.16g、NMP1.22gおよび15-クラウン 5-エーテル1.58gを室温で混合し、160℃に昇温して24時間撹拌した。得られた反応混合物を80℃に冷却して水を加え、3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシドのNMP溶液11.5g(含量:4.51%、収率45%)を得た。
実施例23
 2-クロロ-4-フルオロフェノール0.53g、3-クロロピリジン-N-オキシドのNMP溶液(含量:42.3%)1.07g、リン酸三カリウム1.04gおよびNMP0.85gを室温で混合し、170℃に昇温して32時間撹拌した。得られた反応混合物を80℃に冷却して水を加え、3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシドのNMP溶液17.95g(含量:2.42%、収率55%)を得た。
実施例24
 2-クロロ-4-フルオロフェノール0.53g、3-クロロピリジン-N-オキシドのNMP溶液(含量:42.3%)1.01g、炭酸カリウム0.94gおよびNMP0.85gを室温で混合し、170℃に昇温して32時間撹拌した。得られた反応混合物を80℃に冷却して水を加え、3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシドのNMP溶液15.7g(含量:2.03%、収率41%)を得た。
実施例25
 2-クロロ-4-フルオロフェノール0.53g、3-クロロピリジン-N-オキシドのNMP溶液(含量:40.7%)1.51g、炭酸セシウム2.30gおよびNMP1.22gを室温で混合し、160℃に昇温して24時間撹拌した。得られた反応混合物を80℃に冷却して水を加え、3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシドのNMP溶液17.7g(含量:3.34%、収率52%)を得た。
実施例26
 2-クロロ-4-フルオロフェノール0.57g、3-フルオロピリジン-N-オキシドのNMP溶液(含量:27.0%)1.51g、リン酸三カリウム1.12gおよびNMP0.81gを室温で混合し、160℃に昇温して16時間撹拌した。得られた反応混合物を80℃に冷却して水を加え、3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシドのNMP溶液11.27g(含量:5.32%、収率70%)を得た。
3-(5-アミノ-2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシドの製造
実施例27
 5-アミノ-2-クロロ-4-フルオロフェノール23.4g、3-クロロピリジン-N-オキシドのNMP溶液(含量:47.6%)42.6g、リン酸三カリウム43.3gおよびNMP17.7gを室温で混合し、160℃に昇温して24時間撹拌した。得られた反応混合物を80℃に冷却して水123.4gを加え、3-(5-アミノ-2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシドのNMP溶液244.9gを得た。得られた溶液をHPLCで分析することで、3-(5-アミノ-2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシドが、NMP溶液において、収率52%で得られたことを確認した。
実施例28
 5-アミノ-2-クロロ-4-フルオロフェノール0.64g、3-フルオロピリジン-N-オキシドのNMP溶液(含量:27.0%)1.50g、リン酸三カリウム1.12gおよびNMP0.81gを室温で混合し、160℃に昇温して16時間撹拌した。得られた反応液を80℃に冷却して水を加え、3-(5-アミノ-2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシドのNMP溶液14.09gを得た。得られた溶液をHPLCで分析することで、3-(5-アミノ-2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシドが、NMP溶液において、収率64%で得られたことを確認した。
3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンの製造
実施例29
 3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシド0.50g(含量:60.5%)、無水酢酸1.21gおよびトリエチルアミン0.14gを室温で混合し、120℃に昇温して7時間撹拌したところ、2-アセトキシ-3-(2-クロロ-4-フルオロフェノキシ)ピリジンおよび3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンを含む混合溶液1.84g(2-アセトキシ-3-(2-クロロ-4-フルオロフェノキシ)ピリジン含量:12.7%、収率70%;3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノン含量:1.04%、収率6%。合計収率76%)が得られた。
 得られた混合溶液を減圧下で濃縮し、キシレン0.77g、水1.92gおよび27%水酸化ナトリウム水溶液0.71gを加え、80℃で3時間撹拌後、80℃で分液する。得られる水層を40℃に冷却し、98%硫酸0.24g、1-ブタノール0.31gおよびキシレン0.39gを加え、80℃で分液する。得られる有機層を40℃に冷却し、水1.15gを加え、80℃で分液する。得られる有機層を撹拌しながら5℃まで冷却し、析出する固体を濾過後、濾物をトルエン0.77gで洗浄する。得られる固体を乾燥することで3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンが定量的に得られる。
実施例30
 3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシド0.50g(含量:60.5%)、無水酢酸1.52gおよびジイソプロピルエチルアミン0.18gを室温で混合し、120℃に昇温して7時間撹拌したところ、2-アセトキシ-3-(2-クロロ-4-フルオロフェノキシ)ピリジンおよび3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンを含む混合溶液2.19g(2-アセトキシ-3-(2-クロロ-4-フルオロフェノキシ)ピリジン含量:10.5%、収率77%;3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノン含量:0.83%、収率6%。合計収率83%)が得られた。
 得られた混合溶液を減圧下で濃縮し、キシレン0.77g、水1.92gおよび27%水酸化ナトリウム水溶液0.71gを加え、80℃で3時間撹拌後、80℃で分液する。得られる水層を40℃に冷却し、98%硫酸0.24g、1-ブタノール0.31gおよびキシレン0.39gを加えて、80℃で分液する。得られる有機層を40℃に冷却し、水1.15gを加え、80℃で分液する。得られる有機層を撹拌しながら5℃まで冷却し、析出する固体を濾過後、濾物をトルエン0.77gで洗浄する。得られる固体を乾燥することで3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンが定量的に得られる。
実施例31
 3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシド0.50g(含量:60.5%)、無水酢酸1.51gおよびトリオクチルアミン0.49gを室温で混合し、120℃に昇温して7時間撹拌したところ、2-アセトキシ-3-(2-クロロ-4-フルオロフェノキシ)ピリジンおよび3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンを含む混合溶液2.49g(2-アセトキシ-3-(2-クロロ-4-フルオロフェノキシ)ピリジン含量:9.22%、収率77%;3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノン含量:1.13%、収率9%。合計収率86%)が得られた。
 得られた混合溶液を減圧下で濃縮し、キシレン0.77g、水1.92gおよび27%水酸化ナトリウム水溶液0.71gを加え、80℃で3時間撹拌後、80℃で分液する。得られる水層を40℃に冷却し、98%硫酸0.24g、1-ブタノール0.31gおよびキシレン0.39gを加えて、80℃で分液する。得られる有機層を40℃に冷却し、水1.15gを加え、80℃で分液する。得られる有機層を撹拌しながら5℃まで冷却し、析出する固体を濾過後、濾物をトルエン0.77gで洗浄する。得られる固体を乾燥することで3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンが定量的に得られる。
3-(5-アセチルアミノ-2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンおよび3-(5-アミノ-2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンの製造
実施例32
 3-(5-アミノ-2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシド2.0g(含量:97.8%)、無水酢酸10.7g、トリエチルアミン1.72gおよびN-メチルイミダゾール0.02gを室温で混合し、120℃に昇温して8時間撹拌する。得られる反応混合物を濃縮し、キシレン4.1g、水9.7gおよび27%水酸化ナトリウム水溶液3.4gを加え、室温で8時間撹拌する。得られる混合物に27%水酸化ナトリウム水溶液3.4gを加え、室温で8時間撹拌する。室温で濃塩酸3.2g、次いで酢酸エチル9.8gを加え、60℃に昇温してエタノール1.0gを加える。析出する固体を濾過し、得られる濾物を水10.5gおよび酢酸エチル9.6gで順次洗浄し、乾燥することで3-(5-アセチルアミノ-2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンおよび3-(5-アミノ-2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンの混合物が得られる。
3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンの製造
実施例33
 3-クロロピリジン-N-オキシドのNMP溶液(含量:40.7%)105.9g、2-クロロ-4-フルオロフェノール48.5g、リン酸三カリウム79.2gおよびNMP20.7gを室温で混合し、160℃に昇温して25時間撹拌した。得られた反応混合物を50℃に冷却した後、水を加え、分液を行い、有機層として3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシドのNMP溶液222.2g(含量19.7%)を得た。
 得られた3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシドのNMP溶液(含量19.7%)のうち180.0gに飽和食塩水32.9gを室温で加え、80℃でキシレン164.7gで5回抽出を行い、得られた有機層を濃縮することで3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシドのNMP溶液87.5g(含量:36.6%、収率50%)を得た。
 得られた3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシドのNMP溶液(含量:36.6%)のうち81.0g、無水酢酸148.4g、トリエチルアミン13.8gおよびN-メチルイミダゾール0.25gを混合し、120℃に昇温して7時間撹拌した。
 得られた反応混合物を減圧下で濃縮後、キシレン44.5g、27%水酸化ナトリウム水溶液54.7gおよび水29.8gを加え、80℃で撹拌後、80℃で分液し、水層として3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノン水溶液223.2g(含量11.2%、収率83%)を得た。得られた水層を40℃に冷却し、44%硫酸24.2gを加えた後、撹拌しながら15℃まで冷却した。析出した固体を濾過し、濾物を水59.2gで洗浄した。得られた固体を乾燥することで3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノン46.3g(含量52.4%、収率82%)を得た。
3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシドの製造
実施例34
 3-クロロピリジン200.2g、水31.3g、タングステン酸ナトリウム二水和物5.9gおよび98%濃硫酸14.1gを室温で混合した後、60℃まで昇温した。60℃で保温した混合物へ30%過酸化水素水217.5gを11時間かけて滴下した。60℃で一晩撹拌した後、35℃まで冷却し、22%亜硫酸ナトリウム水溶液300.8g、48%水酸化ナトリウム水溶液102.2gおよびNMP197.9gを加え、分液を行い、3-クロロピリジン-N-オキシドを含む有機層647.8g(含量:30.0%、収率:85%)を得た。得られた有機層のうち633.6gにキシレン191.5gを加え、ディーンスターク装置を用いて、還流脱水を行い、3-クロロピリジン-N-オキシドのNMP溶液358.4g(含量:46.0%)を得た。
 得られた3-クロロピリジン-N-オキシドのNMP溶液のうち100.3g、2-クロロ-4-フルオロフェノール57.9g、リン酸三ナトリウム86.5g、NMP59.6gおよび15-クラウン 5-エーテル11.54gを室温で混合した後、160℃で165時間撹拌した。得られた反応混合物を80℃に冷却し、水を加えて分液を行い、有機層として3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシド(含量13.6%、収率71%)のNMP溶液、水層として3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシド(含量0.1%、収率0.1%)の水溶液を得た。得られた有機層に飽和食塩水46gを加えた後、キシレン226gで3回抽出した。得られた有機層を濃縮して、3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシドの溶液121.9g(含量:45.4%、収率66%)を得た。
比較例1(トリ(C1-C8アルキル)アミンおよびアルカリ金属酢酸塩を使用しない例)
 3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシド1.0gおよび無水酢酸5.0gを室温で混合し、120℃に昇温して8.5時間撹拌した。得られた反応混合物を減圧下で濃縮し、濃縮液4.7gを得た。得られた濃縮液のうち2.9gに濃塩酸6.1gを加え、100℃で2時間加熱することにより3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンを含む混合溶液5.3g(含量7.7%、収率65%)を得た。
比較例2(工程(B)の化合物(2)の使用量が、化合物(1)に対して2重量倍である例)
 3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシド1.01g(含量:76.7%)、無水酢酸1.51g、トリエチルアミン0.42gおよびトルエン1.59gを室温で混合し、120℃に昇温して8時間撹拌したところ、2-アセトキシ-3-(2-クロロ-4-フルオロフェノキシ)ピリジンおよび3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンを含む混合溶液4.35g(2-アセトキシ-3-(2-クロロ-4-フルオロフェノキシ)ピリジン含量:12.2%、収率51%;3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノン含量:2.07%、収率10%。合計収率61%)が得られた。
 主な不純物として式(A):
Figure JPOXMLDOC01-appb-C000028
で示される化合物(以下、不純物Aと記す)が、高速液体クロマトグラフィーの面積百分率18%で生成したことを確認した。
 得られた混合溶液を減圧下で濃縮し、キシレン1.53g、水3.84gおよび27%水酸化ナトリウム水溶液1.42gを加え、80℃で3時間撹拌後、80℃で分液する。得られる水層を40℃に冷却し、98%硫酸0.48g、1-ブタノール0.61gおよびキシレン0.77gを加え、80℃で分液する。得られる有機層を40℃に冷却し、水2.30gを加え、80℃で分液する。得られる有機層を撹拌しながら5℃まで冷却し、析出する固体を濾過後、濾物をトルエン1.53gで洗浄する。得られる固体を乾燥することで3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンが定量的に得られる。
 以下に、不純物Aの分析値を記す。
HRMS:[M+H]=461.0265,C2213Cl
H-NMR(CDCl,300MHz,δ/ppm):6.23(t,J=7.2Hz,1H),6.83(dd,J=7.5,1.8Hz,1H),6.91-7.15(m,4H),7.20(dd,J=8.0,3.0Hz,1H),7.25-7.32(m,2H),7.70(dd,J=7.2,1,8Hz,1H),7.95(d,J=8.7Hz,1H),8.24(d,J=3.0Hz,1H).
13C-NMR(CDCl,75MHz,δ/ppm):104.7,114.7(d,J=22.7Hz),115.4(d,J=22.7Hz),117.9(d,J=33.0Hz),118.3(d,J=33.0Hz),120.8(d,J=8.8Hz),122.2,122.4,123.0(d,J=8.8Hz),125.1,126.1(d,J=10.3Hz),127.5(d,J=11.0Hz),130.9,137.8,146.0,147.0(d,J=2.0Hz),147.2,147.9(d,J=3.7Hz),153.5,157.3,158.7(d,J=244.7Hz),159.4(d,J=246.9Hz).
比較例3(工程(B)の化合物(2)の使用量が、化合物(1)に対して3重量倍である例)
 3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシド0.50g(含量:60.5%)、無水酢酸0.91gおよびトリエチルアミン0.14gを室温で混合し、120℃に昇温して7時間撹拌したところ、2-アセトキシ-3-(2-クロロ-4-フルオロフェノキシ)ピリジンおよび3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンを含む混合溶液1.54g(2-アセトキシ-3-(2-クロロ-4-フルオロフェノキシ)ピリジン含量:12.9%、収率60%;3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノン含量:0.79%、収率4%。合計収率64%)が得られた。
 得られた混合溶液を減圧下で濃縮し、キシレン0.77g、水1.92gおよび27%水酸化ナトリウム水溶液0.71gを加え、80℃で3時間撹拌後、80℃で分液する。得られる水層を40℃に冷却し、98%硫酸0.24g、1-ブタノール0.31gおよびキシレン0.39gを加え、80℃で分液する。得られる有機層を40℃に冷却し、水1.15gを加え、80℃で分液する。得られる有機層を撹拌しながら5℃まで冷却し、析出する固体を濾過後、濾物をトルエン0.77gで洗浄する。得られる固体を乾燥することで3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンが定量的に得られる。
比較例4(工程(B)の反応温度が90℃である例)
 3-(2-クロロ-4-フルオロフェノキシ)ピリジン-N-オキシド0.50g(含量:60.5%)、無水酢酸1.51gおよびトリエチルアミン0.14gを室温で混合し、90℃に昇温して48時間撹拌したところ、2-アセトキシ-3-(2-クロロ-4-フルオロフェノキシ)ピリジンおよび3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンを含む混合溶液2.13g(2-アセトキシ-3-(2-クロロ-4-フルオロフェノキシ)ピリジン含量:8.13%、収率58%;3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノン含量:0.99%、収率7%。合計収率65%)が得られた。
 得られた混合溶液を減圧下で濃縮し、キシレン0.77g、水1.92gおよび27%水酸化ナトリウム水溶液0.71gを加え、80℃で3時間撹拌後、80℃で分液する。得られる水層を40℃に冷却し、98%硫酸0.24g、1-ブタノール0.31gおよびキシレン0.39gを加え、80℃で分液する。得られる有機層を40℃に冷却し、水1.15gを加え、80℃で分液する。得られる有機層を撹拌しながら5℃まで冷却し、析出する固体を濾過後、濾物をトルエン0.77gで洗浄する。得られる固体を乾燥することで3-(2-クロロ-4-フルオロフェノキシ)-2(1H)-ピリジノンが定量的に得られる。
 本発明は、除草剤の製造中間体として有用な化合物(4)の製造方法を提供する。

Claims (11)

  1.  式(4):
    Figure JPOXMLDOC01-appb-C000001
    [式中、XおよびXはそれぞれ独立してハロゲン原子を表し、Rは水素原子、アミノ基またはNHCORで表される基を表し、RはC1-C5アルキル基を表す。]
    で示される化合物の製造方法であって、
     工程(B):式(1):
    Figure JPOXMLDOC01-appb-C000002
    [式中、X、XおよびRは前記と同じ意味を表す。]
    で示される化合物と、式(1)で示される化合物に対して4~10重量倍の式(2):
    Figure JPOXMLDOC01-appb-C000003
    [式中、Rは前記と同じ意味を表す。]
    で示される化合物とを、トリ(C1-C8アルキル)アミンおよびアルカリ金属酢酸塩の少なくとも1つの存在下、100℃以上の温度で反応させて、式(3):
    Figure JPOXMLDOC01-appb-C000004
    [式中、X、XおよびRは前記と同じ意味を表し、Rは水素原子またはNHCORで表される基を表す。]
    で示される化合物を得る工程;および、
     工程(C):式(3)で示される化合物を加水分解し、式(4)で示される化合物を得る工程、
    を含む、製造方法。
  2.  トリ(C1-C8アルキル)アミンが、トリエチルアミン、ジイソプロピルエチルアミンまたはトリオクチルアミンである、請求項1に記載の製造方法。
  3.  アルカリ金属酢酸塩が酢酸ナトリウムである、請求項1に記載の製造方法。
  4.  トリ(C1-C8アルキル)アミンおよびアルカリ金属酢酸塩の少なくとも1つが、トリ(C1-C8アルキル)アミンを含む、請求項1に記載の製造方法。
  5.  トリ(C1-C8アルキル)アミンおよびアルカリ金属酢酸塩の少なくとも1つが、アルカリ金属酢酸塩を含む、請求項1に記載の製造方法。
  6.  トリ(C1-C8アルキル)アミンが、トリエチルアミン、ジイソプロピルエチルアミンまたはトリオクチルアミンである、請求項4に記載の製造方法。
  7.  アルカリ金属酢酸塩が酢酸ナトリウムである、請求項5に記載の製造方法。
  8.  式(4):
    Figure JPOXMLDOC01-appb-C000005
    [式中、XおよびXはそれぞれ独立してハロゲン原子を表し、Rは水素原子、アミノ基またはNHCORで表される基を表し、RはC1-C5アルキル基を表す。]
    で示される化合物の製造方法であって、
     工程(A):式(5):
    Figure JPOXMLDOC01-appb-C000006
    [式中、Xはハロゲン原子を表す。]
    で示される化合物と、式(6):
    Figure JPOXMLDOC01-appb-C000007
    [式中、X、XおよびRは前記と同じ意味を表す。]
    で示される化合物とを塩基の存在下で反応させて、式(1):
    Figure JPOXMLDOC01-appb-C000008
    [式中、X、XおよびRは前記と同じ意味を表す。]
    で示される化合物を得る工程;ならびに、
     請求項1~7のいずれか1項に記載の工程(B)および工程(C)、
    を含む、製造方法。
  9.  Xが塩素原子である、請求項1~8のいずれか1項に記載の製造方法。
  10.  Xがフッ素原子である、請求項1~9のいずれか1項に記載の製造方法。
  11.  式(3):
    Figure JPOXMLDOC01-appb-C000009
    [式中、XおよびXはそれぞれ独立してハロゲン原子を表し、RはC1-C5アルキル基を表し、Rは水素原子またはNHCORで表される基を表す。]
    で示される化合物。
PCT/JP2020/003087 2019-01-30 2020-01-29 ピリドン化合物の製造方法 WO2020158773A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020569667A JP7385604B2 (ja) 2019-01-30 2020-01-29 ピリドン化合物の製造方法
US17/426,431 US11760724B2 (en) 2019-01-30 2020-01-29 Pyridone compound production method
DE112020000601.8T DE112020000601T5 (de) 2019-01-30 2020-01-29 Verfahren zur herstellung einer pyridonverbindung
CN202080011607.3A CN113365981B (zh) 2019-01-30 2020-01-29 吡啶酮化合物的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019013999 2019-01-30
JP2019-013999 2019-01-30

Publications (1)

Publication Number Publication Date
WO2020158773A1 true WO2020158773A1 (ja) 2020-08-06

Family

ID=71840205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003087 WO2020158773A1 (ja) 2019-01-30 2020-01-29 ピリドン化合物の製造方法

Country Status (5)

Country Link
US (1) US11760724B2 (ja)
JP (1) JP7385604B2 (ja)
CN (1) CN113365981B (ja)
DE (1) DE112020000601T5 (ja)
WO (1) WO2020158773A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3846553A (en) * 1969-12-03 1974-11-05 Merck & Co Inc 3-substituted-2-pyridones in the treatment of pain, fever or inflammation
JP2002155061A (ja) * 2000-02-04 2002-05-28 Sumitomo Chem Co Ltd ウラシル化合物及びその用途
WO2007083090A2 (en) * 2006-01-17 2007-07-26 Syngenta Limited Process for the preparation of uracil derivatives

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3406329A1 (de) * 1984-02-22 1985-08-22 Merck Patent Gmbh, 6100 Darmstadt Pyridone
US9580444B2 (en) * 2013-03-15 2017-02-28 Sagami Chemical Research Institute Polycyclic pyrazolinone derivative and herbicide comprising same as effective component thereof
JP6971664B2 (ja) 2017-07-05 2021-11-24 株式会社荏原製作所 基板研磨装置及び方法
JP7426951B2 (ja) * 2019-01-30 2024-02-02 住友化学株式会社 クロロベンゼン化合物の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3846553A (en) * 1969-12-03 1974-11-05 Merck & Co Inc 3-substituted-2-pyridones in the treatment of pain, fever or inflammation
JP2002155061A (ja) * 2000-02-04 2002-05-28 Sumitomo Chem Co Ltd ウラシル化合物及びその用途
WO2007083090A2 (en) * 2006-01-17 2007-07-26 Syngenta Limited Process for the preparation of uracil derivatives

Also Published As

Publication number Publication date
JPWO2020158773A1 (ja) 2021-12-02
CN113365981A (zh) 2021-09-07
CN113365981B (zh) 2024-11-08
JP7385604B2 (ja) 2023-11-22
DE112020000601T5 (de) 2021-11-11
US11760724B2 (en) 2023-09-19
US20220106273A1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
CN106061972B (zh) 5-氟-4-亚氨基-3-(烷基/取代烷基)-1-(芳基磺酰基)-3,4-二氢嘧啶-2(1h)-酮及其制备方法
CZ301809B6 (cs) Zpusob prípravy 2-halogenbenzoových kyselin a jejich derivátu
EP0104715B1 (en) 2,3-difluoro-5-(trifluoromethyl)pyridine and method of making and using the same
TWI434835B (zh) 苯達莫司汀烷酯、苯達莫司汀及其衍生物之生產方法
EP2931047B1 (en) Process for the preparation of 4-amino-5-fluoro-3-chloro-6-(substituted)picolinates
EP3348554B1 (en) Method for producing triazole compound
WO2011078296A1 (ja) 2-クロロ-3-トリフルオロメチルピリジンの製造方法
WO2020158773A1 (ja) ピリドン化合物の製造方法
JP6891131B2 (ja) エンザルタミドを調製するための新規な方法
WO2015097850A1 (ja) 2-アミノニコチン酸ベンジルエステル誘導体の製造方法
JP7426951B2 (ja) クロロベンゼン化合物の製造方法
JP2009235062A (ja) 3−アミノ−2−クロロ−6−トリフルオロメチルピリジンの製造方法
US4625035A (en) 2,3-difluoro-5-(trifluoromethyl)pyridine
CN108473431B (zh) 2-氨基烟酸苄酯衍生物的制造方法
WO2023214552A1 (ja) トリフルオロメタンスルホニル化剤組成物、及び、トリフルオロメタンスルホニルオキシ化合物またはトリフルオロメタンスルホニル化合物の製造方法
JPS625147B2 (ja)
JP4055246B2 (ja) 5−クロロ−6−(α−フルオロアルキル)−4−ピリミドン及びその製法
WO1995021828A1 (fr) Procede de production de derives de l'hexahydropyridazine et de l'hexahydropyridazine-1,2-dicarboxylate
JP2004075616A (ja) 4−ハロゲノ−2−(4−フルオロフェニルアミノ)−5,6−ジメチルピリミジンの製造方法
TW201823210A (zh) 製備4-胺基-3-氯-5-氟-6-(4-氯-2-氟-3-甲氧基苯基)吡啶甲酸甲酯之方法
JPH07224044A (ja) ヘキサヒドロピリダジン−1,2−ジカルボキシ誘導体の製造法
JPWO2002070482A1 (ja) 光学活性n−アリール−1−アミノ−2−プロパノール誘導体の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748431

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020569667

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20748431

Country of ref document: EP

Kind code of ref document: A1