[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020147564A1 - 盘式电机及其控制方法 - Google Patents

盘式电机及其控制方法 Download PDF

Info

Publication number
WO2020147564A1
WO2020147564A1 PCT/CN2019/129768 CN2019129768W WO2020147564A1 WO 2020147564 A1 WO2020147564 A1 WO 2020147564A1 CN 2019129768 W CN2019129768 W CN 2019129768W WO 2020147564 A1 WO2020147564 A1 WO 2020147564A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnet
magnetic steel
disc motor
disk
Prior art date
Application number
PCT/CN2019/129768
Other languages
English (en)
French (fr)
Inventor
何俊明
于河波
Original Assignee
上海盘毂动力科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海盘毂动力科技股份有限公司 filed Critical 上海盘毂动力科技股份有限公司
Publication of WO2020147564A1 publication Critical patent/WO2020147564A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/28Arrangements for controlling current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/12Transversal flux machines

Definitions

  • the present invention relates to the technical field of disc motors, and more specifically, to a disc motor and a control method thereof.
  • Permanent magnet synchronous motors have been widely used in industry, aerospace and other fields due to their high power density, high efficiency, simple structure and other advantages.
  • traditional permanent magnet motors due to the limitation of the characteristics of permanent magnet materials, traditional permanent magnet motors have the problems that the air gap magnetic field is difficult to adjust, and it is difficult to achieve a wide speed range.
  • Electric vehicles are driven by permanent magnet motors. When running at high speeds, due to the inverter voltage limitation, they generally adopt field weakening control, which results in relatively large copper consumption.
  • the permanent magnet In order to ensure the stability of the performance of the traditional permanent magnet motor, the permanent magnet must have a certain degree of anti-demagnetization ability, and it is required that the permanent magnet does not produce irreversible demagnetization within the normal working range and harsh working environment.
  • the thickness of the permanent magnet must be thick enough to resist the demagnetization force generated by the armature winding. Therefore, when the traditional permanent magnet motor is designed, its structure prevents the permanent magnet from being re-magnetized. Once magnetized, it will maintain its magnetization state during the service life of the motor.
  • variable-flux motor can be adjusted online by DC magnetizing current or d-axis current according to the load and speed, thereby adjusting the air gap magnetic field, so that the motor can run with high efficiency.
  • DC magnetizing current or d-axis current according to the load and speed, thereby adjusting the air gap magnetic field, so that the motor can run with high efficiency.
  • applying a short pulse current can change the magnetization state of the permanent magnet and easily adjust the air gap magnetic field.
  • the invention patent with the patent number CN107040064A discloses a dual-stator axial magnetic flux switching hybrid permanent magnet memory motor, which includes two stators with salient pole structure and a rotor with salient pole structure.
  • the two stators have the same structure. They are respectively marked as the first stator and the second stator.
  • the two stators are arranged oppositely, and the rotor is arranged coaxially between the two stators; one of the two stators uses only neodymium iron boron permanent magnets, and the other uses only aluminum Nickel-cobalt permanent magnets, the permanent magnets on a single stator are alternately magnetized in the circumferential direction, and the magnetizing directions of the two stators are opposite to each other.
  • the two permanent magnets are in series on the magnetic circuit.
  • the stator using neodymium iron boron permanent magnets is used to generate constant magnetic flux, and the stator using alnico permanent magnets generates variable magnetic flux for adjusting the air gap magnetic field.
  • the present invention proposes a series structure hybrid permanent magnet excitation method, so that the motor not only retains the characteristics of higher power density of the traditional permanent magnet motor, but also has the characteristics of a memory motor with a wide speed operating range and high efficiency.
  • the invention patent with the patent number CN104617727B discloses a variable magnetic flux reluctance motor, which includes a stator and a rotor located inside the stator.
  • the rotor includes a plurality of rotor poles that are mirror images of each other on the left and right sides of the respective centerlines. The distance between the outer surface of each rotor pole and the inner surface of the stator increases from the center line to both sides.
  • the variable magnetic flux reluctance motor can ensure that the torque ripple is reduced while the torque density loss is small. .
  • variable-flux reluctance motor the AC armature coil is separated from the excitation adjustment coil, which increases the difficulty of winding production.
  • the power density, noise, and torque ripple of the reluctance motor are not as good as permanent magnet synchronous motors.
  • the present invention provides a disc motor to optimize the working structure of the variable flux motor; the present invention also provides a control method of the disc motor.
  • the present invention provides the following technical solutions:
  • a disc motor comprising a first stator core and a second stator core arranged in an axial direction, and a rotor arranged between the first stator core and the second stator core;
  • the rotor includes a disk support member and a plurality of magnetic steels arranged around the circumference of the disk support member, the magnetic steel includes a magnetic steel body made of a non-memory magnetic steel, and the magnetic steel The main body has an embedding opening in the width direction which penetrates through the embedding opening, and a magnetic supplementary magnetic steel made of a memory characteristic magnetic steel is arranged in the embedded installation opening.
  • the mounting openings include a plurality of the magnetic steels arranged at intervals along the radial direction of the magnetic steel, and each of the mounting openings is provided with the magnetic compensation magnet.
  • the magnetic steel body is divided into a plurality of spaced sub-magnetic steel bodies by the inserting opening, and the inner side of the magnetic steel in the radial direction is set as the complementary magnetic Steel, the magnetic steel is provided with the sub-magnet body on the outer side of the magnetic steel in the radial direction.
  • the sub-magnet body and the magnetic compensation magnet have the same width in the radial direction of the magnet.
  • the magnetic supplementary magnet includes a first supplementary magnetic steel arranged on the radially inner side of the magnetic steel and a second supplementary magnetic steel arranged in the middle of the magnetic steel;
  • the sub-magnet body includes a first sub-magnet body and a second sub-magnet body that are alternately arranged with the first and second magnetic compensation magnets.
  • the arcs of the first supplementary magnet, the first sub-magnet body, the second supplementary magnet and the second sub-magnet body are the same.
  • the disc motor further includes a charging and demagnetizing coil electrically connected to the first magnetizing magnet and the second magnetizing magnet for inputting pulse current.
  • a control method of a disc motor includes the steps:
  • the method further includes the following steps:
  • the input current direction is the same as the pulse magnetizing current of the compensation magnet, and the pulse magnetizing current is determined by the disc motor 2.
  • the maximum magnetic flux that can be reached at the predetermined speed is determined.
  • the size and direction of the i d and the i q are obtained by Parker transformation.
  • the disk motor provided by the present invention includes a first stator core and a second stator core arranged in an axial direction, and a rotor arranged between the first stator core and the second stator core; the rotor includes a disk Type support member and a plurality of magnetic steels arranged around the circumference of the disc type support member.
  • the magnetic steel includes a magnetic steel body prepared from a non-memory magnetic steel, and an embedded mounting on the magnetic steel body and passing through the width direction of the magnetic steel body.
  • a magnetic steel made of magnetic steel with memory characteristics is arranged in the inserting hole.
  • the magnetic steel is arranged around the circumference of the disc support member, and the two constitute the rotor frame to support between the first stator core and the second stator core.
  • the magnetic steel has a fan-shaped structure and is made of non-memory magnetic steel.
  • the main body generates a constant magnetic field.
  • the magnetic steel body is provided with an embedded installation opening that penetrates its width direction.
  • the magnetic compensation magnet with memory characteristics is installed in the installation opening. When the motor is working, a pulse current is input to the magnetic compensation magnet.
  • the variable magnetic field can be generated and synthesized with the constant magnetic field generated by the magnetic steel body to meet the magnetic field performance of the disc motor under different speed requirements.
  • the magnetic steel body and the magnetic supplementary magnetic steel are embedded and assembled, with low assembly difficulty and simple preparation process.
  • the memory characteristic magnetic steel is used to produce variable magnetic steel without changing the winding method of the coil. It passes through the first stator core and the second stator
  • the stator coil on the iron core can provide magnetic pulses, reducing the difficulty of coil winding, and thus the overall process structure of the variable flux motor is spent.
  • Fig. 1 is a schematic diagram of the arrangement structure of the stator core and the rotor in the disc motor provided by the present invention
  • Fig. 2 is a schematic diagram of the magnetic steel structure of the rotor in Fig. 1.
  • Fig. 1 is a schematic diagram of the arrangement structure of the stator core and the rotor in the disc motor provided by the present invention
  • Fig. 2 is a schematic diagram of the magnetic steel structure of the rotor in Fig. 1.
  • the rotor 4 shown in FIG. 1 is only used to show the schematic diagram of the arrangement structure of the magnets 41, and the structure for fixing the disc support member is not shown.
  • a plurality of magnets 41 are distributed around the rotor 4, and the figure 2 is used to indicate the specific structure of the magnetic steel.
  • This embodiment provides a disc motor, which includes a first stator core 1 and a second stator core 2 arranged in an axial direction, and is arranged between the first stator core 1 and the second stator core 2
  • the rotor 4 includes a disc support member and a plurality of magnets 41 arranged around the circumference of the disc support member.
  • the magnet 41 includes a magnet body 411 made of a non-memory magnetic steel, and is opened in the magnetic
  • the steel body 411 is provided with an inserting opening in the width direction of the steel body 411, and a magnetic supplementary magnetic steel 410 made of a memory characteristic magnetic steel is arranged in the inserting opening.
  • the magnetic steel 41 is arranged around the circumference of the disc support member, and the two constitute the rotor 4 to be supported between the first stator core 1 and the second stator core 2.
  • the magnetic steel has a fan-shaped structure and is made of non-memory magnetic steel.
  • the prepared magnetic steel body 411 generates a constant magnetic field.
  • the magnetic steel body 411 is provided with an embedded installation opening through its width direction.
  • the magnetic compensation magnet 410 with memory characteristics is installed in the installation opening. When the motor is working, the magnetic compensation
  • the magnetic steel 410 inputs a pulse current, it can generate a variable magnetic field, which is combined with the magnetic steel body to generate a constant magnetic field to meet the magnetic field performance of the disc motor under different speed requirements.
  • the magnetic steel body and the magnetic supplementary magnetic steel are embedded and assembled, with low assembly difficulty and simple preparation process.
  • the magnetic steel with memory characteristics is used to produce variable magnetic steel without changing the winding method of the coil. It passes through the first stator core 1 and the second stator core.
  • the stator coil 3 on the stator core 2 can provide magnetic pulses, reducing the difficulty of winding the coil, and thus the overall process structure of the variable flux motor is spent.
  • the mounting openings include a plurality of magnets 41 arranged at intervals along the radial direction, and a magnetic supplementary magnet 410 is provided in each mounting opening.
  • a plurality of embedding ports are arranged in the radial direction of the magnet 41, which is the radial arrangement direction of the magnet 41 along the rotor 4, a plurality of embedding ports are arranged at intervals on the magnet 41, each of which is installed Compensating magnets 410 are installed in the mouth.
  • the magnet body 411 is divided into a plurality of sub-magnet bodies (421, 431) arranged at intervals by the insertion opening.
  • the inner side of the magnet in the radial direction is set as a magnetizing magnet 410, and the magnet 41 is arranged along its diameter.
  • a sub-magnet main body 421 is provided on the outer side.
  • the magnet body 411 is composed of a plurality of sub-magnet bodies (421, 431), and the two adjacent sub-magnet bodies (421, 431) are surrounded by an inserting opening for inserting the magnetic steel.
  • the mounting ports are arranged at intervals on the magnet body 411, so that the sub-magnet bodies (421, 431) and the complementary magnet 410 are alternately arranged, so that the sub-magnet bodies (421, 431) are arranged along the magnetic
  • the steel 41 is uniformly arranged in the radial direction, and the magnetic supplementary magnet 410 is arranged in the insertion opening, and is also evenly distributed in the radial direction of the magnet 41, ensuring that the magnetic field generated by the magnet is distributed uniformly along the radial direction of the rotor and optimizing the motor performance.
  • the sub-magnet body (421, 431) and the magnetic compensation magnet 410 have the same width in the radial direction of the magnet 41.
  • the sub-magnet body (421, 431) and the compensation magnet 410 have the same width in the radial direction along the magnet 41, which ensures that the sub-magnet body (421, 431) generates a uniform magnetic field along the radial direction of the magnet 41.
  • the magnetic field generated by the complementary magnet 410 alternately arranged with the sub-magnet body (421, 431) can uniformly strengthen or weaken the constant magnetic field of the magnet body 411, thereby ensuring the operation of the motor
  • the structure is stable to avoid the jamming of the rotor caused by the pulse current.
  • the magnetic supplementary magnet 410 includes a first supplementary magnetic steel 430 arranged on the radial inner side of the magnet 41 and a second supplementary magnetic steel 420 arranged in the middle of the magnet 41;
  • the sub-magnet body (421, 431) includes a first sub-magnet body 431 and a second sub-magnet body 421 that are alternately arranged with the first supplementary magnet 430 and the second supplementary magnet 420.
  • This embodiment provides a preferred solution for the rotor magnet.
  • the magnetic compensation magnet 410 includes two pieces of the first magnetic compensation magnet 430 and the second magnetic compensation magnet 420, and the sub-magnet body 411 includes the first sub-magnet body 431.
  • the second sub-magnet body 421, the first supplementary magnet 430 is located on the radially inner side of the magnet 41, and the second sub-magnet body 421 is located on the radially outer side of the magnet 41.
  • the alternating arrangement structure ensures that the magnetic The magnetic field is uniform in the radial direction of the steel.
  • the arcs of the first supplementary magnet 430, the first sub-magnet body 431, the second supplementary magnet 420, and the second sub-magnet body 421 are the same.
  • a plurality of magnets 41 are evenly distributed around the rotor 4, and each magnet 41 has a fan-shaped structure, because the magnetizing magnet 410 and the magnet body 411 are arranged along the width direction of the magnet 41 ,
  • the magnetic steel and the magnetic steel body are arranged along the radial direction of the magnetic steel to have the same arc, and the two are embedded to form a sector-shaped magnetic steel structure.
  • it also includes a charging and demagnetizing coil electrically connected to the first and second magnetizing magnets for inputting pulse current.
  • Complementary magnets are magnetic steels with memory characteristics. Different magnetic field strengths can be generated through magnetic pulses.
  • the charging and demagnetization coils are set in the disc motor, and the pulse magnetic current of the compensating magnets is input through the charging and demagnetization coils. Realize the excitation of the magnetic steel magnetic field with memory characteristics, which is combined with the constant magnetic field generated by the magnetic steel body to meet the magnetic field strength requirements of the disk motor at different base speeds.
  • this case also provides a control method of the disc motor, including the steps:
  • the magnetic fields of the two combine to form a constant magnetic field.
  • the magnitude of the pulse magnetic current of the complementary magnetic steel By changing the magnitude of the pulse magnetic current of the complementary magnetic steel, the size of the magnetic field generated by the complementary magnetic field can be changed through its memory characteristics. The magnetic field strength of the constant magnetic field is adjusted.
  • the constant magnetic field is orthogonal to the rotating magnetic field generated by the stator AC coil to generate rotating torque.
  • the three-phase alternating current i u , i v , i w input by the stator can be transformed into the following relationship by Park transformation:
  • i d is parallel to the constant magnetic field generated by the magnetic steel, which strengthens or weakens the constant magnetic field;
  • the base speed of the disc motor refers to the rated speed of the disc motor.
  • the constant magnetic field generated by the magnet body will produce constant electromagnetic torque by cutting with the current in the i q direction. Meet the working requirements of the motor.
  • control i d 0
  • the magnetic field generated by the magnetic steel is only the constant magnetic field produced by the non-memory magnetic steel, and the constant magnetic field generated by the iq cutting the non-memory magnetic steel can generate electromagnetic torque, which can meet the basic requirements of the disc motor. Work requirements under the speed.
  • K dp motor winding coefficient N motor series turns per phase, p motor pole pairs, ⁇ motor air gap flux.
  • the winding coefficient, the number of series turns per phase, and the number of pole pairs are determined.
  • the permanent magnet generates a constant magnetic field.
  • the air gap flux is also determined, so the motor's back EMF It increases as the motor speed increases.
  • the back-EMF of the motor is equal to the external voltage. At this time, the speed of the motor cannot be increased any more. If you want to increase the speed of the motor, you can only reduce the air gap flux.
  • the controller changes the current angle ⁇ to obtain different i d , and adjusts the magnetic field performance of the magnetic compensation magnet by increasing or decreasing i d to achieve the purpose of adjusting the air gap magnetic flux of the motor.
  • the input current direction is opposite to the direction of the magnetic field of the compensating magnet.
  • the pulse weakening current can be reached by the first predetermined speed of the disc motor The maximum magnetic flux is determined.
  • the removal timing of i d is adjusted according to the characteristics of the magnetic field excitation of the magnetic supplementary magnets according to the current.
  • the size of i d is adjusted according to the magnetic field performance of the supplementary magnets to meet the magnetic field performance required for the disc motor to reach the first predetermined speed.
  • the first predetermined speed is The current target speed of the disc motor.
  • control i d 0. At this time, there is no need to input the pulse weakening current. Remove the pulse weakening current and the magnetic compensation magnet can be used Its memory characteristics produce a constant magnetic field with the magnet body.
  • the input current direction is the same as the direction of the magnetic field of the complementary magnet.
  • the pulse magnetization current is determined by the second predetermined speed of the disk motor. The maximum magnetic flux that can be reached is determined.
  • the control process of the disc motor from above the base speed to below the base speed is equivalent to the above process.
  • the pulse magnetizing current and the magnetic field of the magnetic compensation magnet with memory characteristics are weakened and adjusted.
  • the magnitude of the pulse magnetizing current reduces the magnetic field strength of the magnetic compensation magnet to the initial state. Only the constant magnetic field generated by the magnet body and i q generate a constant electromagnetic torque, which meets the working requirements below the base speed.
  • the magnitude of the pulse magnetization current can be controlled according to the required magnetic field strength at the second predetermined speed.
  • the second predetermined speed is the current target speed of the disk motor.
  • the pulse magnetization current can be directly provided to remove the magnetic field of the complementary magnet.
  • the size, electromagnetic torque is generated only by the magnetic steel body.
  • the timing of removing the pulse magnetizing current can be controlled according to the response time of the magnetizing magnet.
  • i d generates instantaneous pulse current, while the electromagnetic torque generated by i q still exists, so that the motor can run smoothly.
  • the magnetic compensation magnet has memory characteristics.
  • the magnetic compensation magnet has memory characteristics. Permanent magnet, the magnetic performance is stable at the required magnetic field performance at this speed, and i d is removed, and the disc motor enters the predetermined speed working state.
  • the above-mentioned embodiment provides the control state of the disc motor transitioning from below the base speed to above the base speed, and from above the base speed to below the base speed i d .
  • the disc motor also includes the transition to when the base speed is above the base speed. higher rotational speed, and the speed reduction from a higher to two states above the base speed, by adjusting the process still i d control the raised or lowered, in particular, can be divided into:
  • the disc motor works below the base speed (rated speed). At this time, the back electromotive force is less than the external voltage, and i q only needs to provide the required torque current;
  • the disc motor is switched from below the base speed to above the base speed. At this time, the back electromotive force must exceed the external voltage, and i d is applied to generate an instantaneous pulse weakening current. After that, the magnetic performance of the permanent magnet with memory magnet is stable at this speed. The magnetic field performance of, i d can be removed at this time, i q only needs to provide the current of the required torque at this time;
  • step 3 The disc motor is switched from above the rated speed to a higher speed, the process is the same as step 2;
  • the speed of the disc motor is switched from above the base speed to below the base speed.
  • the back electromotive force is less than the external voltage, and there is no need to reduce the air gap flux.
  • i d is applied to produce instantaneous
  • the pulse magnetization current makes the supplementary magnetic steel return to the initial state of magnetic performance. After that, the magnetic performance of the permanent magnet with memory magnet is stable at the magnetic field performance required by this speed. At this time, i d can be removed, and i q only needs to provide this The current of the torque required at the time;
  • the disc motor is switched from a higher speed to above the base speed, and the disc motor is reduced from a higher speed to a lower speed, but it does not run below the base speed. Due to the decrease of the speed, the back electromotive force decreases and the air gap flux It can be increased to reduce the torque generating i q , and i d is applied to generate an instantaneous pulse magnetizing current to increase the air gap magnetic flux. After that, the magnetic performance of permanent magnets with memory magnets is stable at this speed. , At this time i d can be removed, and i q only needs to provide the current required for the torque at this time.
  • the magnitude of i d and i q is controlled by the current angle of the input disc motor.
  • the currents of i d and i q are controlled by the pulse magnetic coil.
  • the pulse magnetic coil and the AC coil are the same coil.
  • the current angle is adjusted by the control device to control the magnitude of i d and i q .
  • the control is accurate and responsive The time is fast to further avoid the lag phenomenon.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

一种盘式电机和一种盘式电机的控制方法,包括沿轴向布置的第一定子铁芯(1)和第二定子铁芯(2),及设置于第一定子铁芯(1)和第二定子铁芯(2)之间的转子(4);转子(4)包括盘式支撑构件和环绕盘式支撑构件的周向布置的多个磁钢(41),磁钢(41)包括由非记忆特性磁钢制备的磁钢本体(411),和开设于磁钢本体(411)上并贯穿其宽度方向上的嵌装口,嵌装口内设置有由记性特性磁钢制备的补磁磁钢(410)。通过对补磁磁钢(410)输入脉冲电流,其即可产生可变磁场,与磁钢本体(411)产生恒定磁场进行合成,满足盘式电机不同转速要求下的磁场性能。

Description

盘式电机及其控制方法
本申请要求于2019年01月15日提交中国专利局、申请号为201910035695.X、发明名称为“盘式电机及其控制方法”上述中国专利申请的优先权,其全部内容通过引用结合在上述申请中。
技术领域
本发明涉及盘式电机技术领域,更具体地说,涉及一种盘式电机及其控制方法。
背景技术
永磁同步电机由于其高功率密度、高效率、结构简单等优点在工业、航空航天等领域获得了广泛的应用。但由于永磁材料自身的特点的限制,传统永磁电机存在气隙磁场难以调节、难以实现宽调速范围的问题。
电动汽车采用永磁电机驱动,高速运行时,由于逆变器电压限制,一般采用弱磁控制,铜耗较大。传统永磁电机为了保证电机性能的稳定性,永磁体要有一定的抗去磁能力,要求永磁体在正常的工作范围内和恶劣的工作环境下不会产生不可逆退磁。
这就意味着永磁体的厚度要足够厚以抵抗电枢绕组产生的去磁磁动势。因此传统永磁电机设计时,其结构使得永磁体不能被重新磁化,一经充磁,在电机的使用寿命期间,将一直保持其磁化状态。
变磁通电机能够根据负载和转速,通过直流磁化电流或者d轴电流在线调节,从而调节气隙磁场,使得电机高效率运行。并不像传统的永磁电机弱磁运行时需要施加持续的d轴电流,由于所采用的永磁材料的特性,施加短时的脉冲电流即可改变永磁体的磁化状态,方便的调节气隙磁场。
专利号为CN107040064A的发明专利,公开了一种双定子轴向磁场磁通切换型混合永磁记忆电机,包括两个凸极结构的定子和一个凸极结构的转子,两个定子的结构相同,分别记为第一定子和第二定子,两个定子位置相对设置,转子同轴设置在两个定子之间;两定子中其中一个定子只采用钕铁硼永磁体,另外一个定子只采用铝镍钴永磁体,单个定子上永磁体沿周向交替充磁,两个 定子相对位置永磁体充磁方向相反,两种永磁在磁路上为串联结构。其中采用钕铁硼永磁体的定子用于产生恒定磁通,其中采用铝镍钴永磁体的定子产生可变磁通用于调节气隙磁场。本发明提出采用串联结构混合永磁的励磁方式,使得该电机既保留了传统永磁电机较高的功率密度的特点,同时又有记忆电机宽转速运行范围、高效率的特点。
然而该混合永磁记忆电机,交流绕组和调节绕组分开,将转子磁钢转移到定子上避免了加调节电流时转子磁钢位置必须固定从而产生卡顿现象,但造成定子分瓣,定子制作难度加大,交流绕组和调节绕组分开多用了铜,绕组制作也更加复杂。
专利号为CN104617727B的发明专利,公开了一种可变磁通磁阻电机,包括定子以及位于定子内侧的转子,转子包括多个以各自的中心线为轴左右两侧互为镜像的转子极,每一个转子极的外表面与定子的内表面之间的间距由中心线向两侧变大,该可变磁通磁阻电机,可以确保在转矩密度损失较小的前提下降低转矩脉动。
然而该变磁通磁阻电机,交流电枢线圈和励磁调节线圈分开,增加绕组制作难度,磁阻电机的功率密度和噪音、转矩脉动都不如永磁同步电机。
因此,如何优化变磁通电机的工作结构,是目前本领域技术人员亟待解决的问题。
这里,应当指出的是,本部分中所提供的技术内容旨在有助于本领域技术人员对本发明的理解,而不一定构成现有技术。
发明内容
有鉴于此,本发明提供了一种盘式电机,以优化变磁通电机的工作结构;本发明还提供了一种盘式电机的控制方法。
为了达到上述目的,本发明提供如下技术方案:
一种盘式电机,包括沿轴向布置的第一定子铁芯和第二定子铁芯,及设置于所述第一定子铁芯和所述第二定子铁芯之间的转子;
所述转子包括盘式支撑构件和环绕所述盘式支撑构件的周向布置的多个磁钢,所述磁钢包括由非记忆特性磁钢制备的磁钢本体,和开设于所述磁钢本体上并贯穿其宽度方向上的嵌装口,所述嵌装口内设置有由记性特性磁钢制备的补磁磁钢。
优选地,在上述盘式电机中,所述嵌装口包括沿所述磁钢的径向间隔布置的多个,每个所述嵌装口内均设置有所述补磁磁钢。
优选地,在上述盘式电机中,所述磁钢本体由所述嵌装口分隔为多个间隔布置的子磁钢本体,所述磁钢沿其径向的内侧设置为所述补磁磁钢,所述磁钢沿其径向的外侧设置有所述子磁钢本体。
优选地,在上述盘式电机中,所述子磁钢本体和所述补磁磁钢沿所述磁钢的径向方向上宽度相同。
优选地,在上述盘式电机中,所述补磁磁钢包括设置于所述磁钢径向内侧的第一补磁磁钢和设置于所述磁钢中部的第二补磁磁钢;所述子磁钢本体包括与所述第一补磁磁钢和所述第二补磁磁钢交替布置的第一子磁钢本体和第二子磁钢本体。
优选地,在上述盘式电机中,所述第一补磁磁钢、所述第一子磁钢本体、所述第二补磁磁钢和所述第二子磁钢本体的弧度相同。
优选地,在上述盘式电机中,还包括与所述第一补磁磁钢和所述第二补磁磁钢电连接,用以输入脉冲电流的充、去磁线圈。
一种盘式电机的控制方法,包括步骤:
1)当所述盘式电机在基速以下运行时,控制i d=0,i q产生电磁转矩;
2)当所述盘式电机在基速以上运行时,输入电流方向与所述补磁磁钢方向相反的脉冲弱磁电流,所述脉冲弱磁电流的大小由所述盘式电机的的第一预定转速所能达到的最大磁通决定,当所述补磁磁钢稳定在所述盘式电机达到第一预定转速所需的磁场性能时,去除所述脉冲弱磁电流,控制所述i d=0。
优选地,在上述盘式电机的控制方法中,还包括步骤:
3)当需要所述盘式电机降速到基速以下运行时,输入电流方向与所述补磁磁钢方向一致的脉冲增磁电流,所述脉冲增磁电流的大小由盘式电机的第二预定转速所能达到的最大磁通决定,当所述补磁磁钢稳定在所述盘式电机达到第二预定转速所需的磁场性能时,去除所述脉冲增磁电流,控制所述i d=0。
优选地,在上述盘式电机的控制方法中,所述i d和所述i q大小及方向由派克变换获取。
本发明提供的盘式电机,包括沿轴向布置的第一定子铁芯和第二定子铁芯,及设置于第一定子铁芯和第二定子铁芯之间的转子;转子包括盘式支撑构件和环绕盘式支撑构件的周向布置的多个磁钢,磁钢包括由非记忆特性磁钢制备的磁钢本体,和开设于磁钢本体上并贯穿其宽度方向上的嵌装口,嵌装口内设置有由记性特性磁钢制备的补磁磁钢。磁钢环绕盘式支撑构件的周向布置,二者组成转子架撑于第一定子铁芯和第二定子铁芯之间,磁钢呈扇形结构,由非记忆特性磁钢制备的磁钢本体产生恒定磁场,磁钢本体上开设贯穿其宽度方向的嵌装口,由具有记忆特性的补磁磁钢安装于嵌装口内,在电机工作时,通过对补磁磁钢输入脉冲电流,其即可产生可变磁场,与磁钢本体产生恒定磁场进行合成,满足盘式电机不同转速要求下的磁场性能。磁钢本体和补磁磁钢嵌装组合,装配难度低,制备工艺简单,采用记忆特性磁钢产生可变磁钢,不改变线圈的绕制方式,通过第一定子铁芯和第二定子铁芯上的定子线圈即可提供磁脉冲,降低线圈绕制难度,从而整体上又花了变磁通电机的工艺结构。
附图说明
通过以下参照附图对本发明实施例的描述,本发明的上述以及其它目的、特征和优点将更为清楚,在附图中:
图1为本发明提供的盘式电机中定子铁芯和转子的布置结构示意图;
图2为图1中转子的磁钢结构示意图。
具体实施方式
以下基于实施例对本发明进行描述,但是本发明并不仅仅限于这些实施 例。
如图1和图2所示,图1为本发明提供的盘式电机中定子铁芯和转子的布置结构示意图;图2为图1中转子的磁钢结构示意图。
图1所示转子4仅用于表示磁钢41的布置结构示意图,而用于固装盘式支撑构件的结构并未进行显示,其转子4上多个磁钢41呈环绕状分布,而图2用以表示磁钢的具体结构。
本实施例提供了一种盘式电机,包括沿轴向布置的第一定子铁芯1和第二定子铁芯2,及设置于第一定子铁芯1和第二定子铁芯2之间的转子4;转子4包括盘式支撑构件和环绕盘式支撑构件的周向布置的多个磁钢41,磁钢41包括由非记忆特性磁钢制备的磁钢本体411,和开设于磁钢本体411上并贯穿其宽度方向上的嵌装口,嵌装口内设置有由记性特性磁钢制备的补磁磁钢410。磁钢41环绕盘式支撑构件的周向布置,二者组成转子4架撑于第一定子铁芯1和第二定子铁芯2之间,磁钢呈扇形结构,由非记忆特性磁钢制备的磁钢本体411产生恒定磁场,磁钢本体411上开设贯穿其宽度方向的嵌装口,由具有记忆特性的补磁磁钢410安装于嵌装口内,在电机工作时,通过对补磁磁钢410输入脉冲电流,其即可产生可变磁场,与磁钢本体产生恒定磁场进行合成,满足盘式电机不同转速要求下的磁场性能。磁钢本体和补磁磁钢嵌装组合,装配难度低,制备工艺简单,采用记忆特性磁钢产生可变磁钢,不改变线圈的绕制方式,通过第一定子铁芯1和第二定子铁芯2上的定子线圈3即可提供磁脉冲,降低线圈绕制难度,从而整体上又花了变磁通电机的工艺结构。
在本案一具体实施例中,嵌装口包括沿磁钢41的径向间隔布置的多个,每个嵌装口内均设置有补磁磁钢410。嵌装口包括多个,在沿磁钢41的径向,该方向为磁钢41沿转子4的径向布置方向,在磁钢41上开设间隔布置的多个嵌装口,每个嵌装口内均设置补磁磁钢410。
具体地,磁钢本体411由嵌装口分隔为多个间隔布置的子磁钢本体(421、431),磁钢沿其径向的内侧设置为补磁磁钢410,磁钢41沿其径向的外侧设置有子磁钢本体421。
即,将磁钢本体411设置由多个子磁钢本体(421、431)组成,相邻的两个子磁钢本体(421、431)之间围成嵌装补磁磁钢的嵌装口,由于嵌装口在磁钢本体411上间隔布置,使得子磁钢本体(421、431)和补磁磁钢410之间呈交替布置的方式,从而使得子磁钢本体(421、431)在沿磁钢41的径向方向均匀布置,补磁磁钢410布置于嵌装口,同样均布于磁钢41的径向方向上,保证磁钢产生磁场沿转子的径向分布均匀,优化电机性能。
在本案一具体实施例中,子磁钢本体(421、431)和补磁磁钢410沿磁钢41的径向方向上宽度相同。通过子磁钢本体(421、431)和补磁磁钢410在沿磁钢41径向宽度相同,保证子磁钢本体(421、431)在沿磁钢41的径向产生磁场均匀,在补磁磁钢410由脉冲磁电流激发时,与子磁钢本体(421、431)交替布置的补磁磁钢410产生的磁场可对磁钢本体411的恒定磁场均匀加强或削弱,从而保证电机工作结构稳定性,避免调节脉冲电流对转子的卡顿现象。
在本案一具体实施例中,补磁磁钢410包括设置于磁钢41径向内侧的第一补磁磁钢430和设置于磁钢41中部的第二补磁磁钢420;子磁钢本体(421、431)包括与第一补磁磁钢430和第二补磁磁钢420交替布置的第一子磁钢本体431和第二子磁钢本体421。本实施例提供一种转子磁钢优选的方案,补磁磁钢410包括第一补磁磁钢430和第二补磁磁钢420两块,子磁钢本体411包括第一子磁钢本体431和第二子磁钢本体421,第一补磁磁钢430位于磁钢41径向的内侧,第二子磁钢本体421位于磁钢41径向的外侧,通过交替排布结构,保证在磁钢径向方向上磁场均匀。
优选地,第一补磁磁钢430、第一子磁钢本体431、第二补磁磁钢420和第二子磁钢本体421的弧度相同。适应转子4的盘状结构,转子4上均匀环绕分布多个磁钢41,每个磁钢41均呈扇形结构,由于补磁磁钢410和磁钢本体411均沿磁钢41的宽度方向布置,将补磁磁钢和磁钢本体在沿磁钢径向设置具有相同的弧度,二者嵌装组成扇形磁钢结构。
在本案一具体实施例中,还包括与第一补磁磁钢和第二补磁磁钢电连接,用以输入脉冲电流的充、去磁线圈。补磁磁钢为具有记忆特性的磁钢,通过磁 脉冲可产生不同磁场强度,在盘式电机内设置充、去磁线圈,通过充、去磁线圈输入补磁磁钢的脉冲磁电流,从而实现对具有记忆特性磁钢磁场的激发,其与磁钢本体产生的恒定磁场相结合,满足盘式电机不同基速下的磁场强度要求。
基于上述实施例提供的盘式电机,本案还提供了一种一种盘式电机的控制方法,包括步骤:
1)当盘式电机在基速以下运行时,控制i d=0,i q产生电磁转矩。
磁钢本体和补磁磁钢在电机工作过程中,二者磁场相结合形成恒定磁场,通过改变补磁磁钢脉冲磁电流的大小,可通过其记忆特性改变补磁磁场产生磁场大小,从而对恒定磁场的磁场强度进行调节。
恒定磁场与定子交流线圈产生的旋转磁场正交产生旋转转矩,定子输入的三相交流电i u,i v,i w进行派克变换可变换成如下关系:
Figure PCTCN2019129768-appb-000001
其中,i d平行于磁钢产生的恒定磁场,对恒定磁场加强或削弱;
i q正交于恒定磁场产生电磁转矩;
盘式电机的基速是指盘式电机的额定转速,当盘式电机在基速以下运行时,由磁钢本体产生的恒定磁场,其与i q方向电流切割产生恒定电磁转矩,即可满足电机的工作要求。
此时控制i d=0,磁钢产生的磁场仅为非记忆特性磁钢产生的恒定磁场,由i q切割非记忆特性磁钢产生的恒定磁场即可产生电磁转矩,满足盘式电机基速下的工作要求。
电机的相反电动势ε与电机转速n的关系如下:
ε=4.44K dpNfΦ,
f=np/60,
所以,
Figure PCTCN2019129768-appb-000002
K dp电机绕组系数,N电机每相串联匝数,p电机极对数,Φ电机气隙磁通。
当电机制造完成后其绕组系数、每相串联匝数和极对数就都确定下来,永磁体产生的是恒定磁场,当没有外部的调节,气隙磁通也是确定的,因此电机的反电动势是随着电机转速的升高而升高的。
当电机达到某一转速时如基速,即额定转速,电机的反电动势等于外接电压,此时电机的转速就不能再升高了,要想提高电机的转速就只有降低气隙磁通,通过控制器改变电流角度θ得到不同的i d,由i d的升高或降低调节补磁磁钢的磁场性能,从而实现调节电机气隙磁通的目的。
2)当盘式电机在基速以上运行时,输入电流方向与补磁磁钢的磁场方向相反的脉冲弱磁电流,脉冲弱磁电流的大小由盘式电机的第一预定转速所能达到的最大磁通决定,当补磁磁钢稳定在盘式电机达到第一预定转速所需的磁场性能时,去除脉冲弱磁电流,控制i d=0。
利用记忆特性的补磁磁钢,达到盘式电机的变磁通要求,在盘式电机满足基速以上运行要求的同时,去除脉冲弱磁电流,控制i d=0,即补磁磁钢产生预定强度的磁场后,无需再提供i d。i d的去除时机根据电流对补磁磁钢磁场激发的特性进行调节,i d的大小根据补磁磁钢产生满足盘式电机达到第一预定转速所需磁场性能进行调整,第一预定转速为盘式电机当前的目标转速,当补磁磁钢达到稳定的磁场性能后,控制i d=0,此时无需脉冲弱磁电流的输入,去掉该脉冲弱磁电流,补磁磁钢即可利用其记忆特性,与磁钢本体产生恒定的磁场。
在本案一具体实施例中,还包括步骤:
3)当需要盘式电机降速到基速以下运行时,输入电流方向与补磁磁钢的磁场方向相同的脉冲增磁电流,脉冲增磁电流的大小由盘式电机的第二预定转速所能达到的最大磁通决定,当补磁磁钢稳定在盘式电机达到第二预定转速所需的磁场性能时,去除脉冲增磁电流,控制i d=0。
盘式电机由基速以上降低至基速以下的控制过程与上述过程相当,通过输入脉冲增磁电流,该脉冲增磁电流与具有记忆特性的补磁磁钢的磁场进行削弱调节,可通过控制脉冲增磁电流的大小使得补磁磁钢的磁场强度降低至初始状态,仅通过磁钢本体产生的恒定磁场与i q产生恒定电磁转矩,满足基速以下的 工作要求。脉冲增磁电流的大小可更具第二预定转速下需要的磁场强度进行控制,第二预定转速为盘式电机当前的目标转速,可直接提供脉冲增磁电流为去除补磁磁钢去除磁场的大小,仅通过磁钢本体产生电磁转矩。脉冲增磁电流的去除时机可根据补磁磁钢的响应时间进行控制。
本实施例提供的盘式电机,在全工况下采用本发明全工况采用i d=0控制,i q用来产生电磁转矩,只在需要改变气隙磁通时改变电流角θ使i d产生瞬时脉冲电流,同时i q产生的电磁转矩依然存在,这样电机就能平稳运行,加i d瞬时脉冲电流后具有记忆特性的补磁磁钢,补磁磁钢为具有记忆特性的永磁体,磁性能稳定在此转速需要的磁场性能,去掉i d,盘式电机进入预定转速工作状态。
上述实施例提供了盘式电机由基速以下过渡到基速以上,以及由基速以上过渡到基速以下i d的控制状态,具体地,盘式电机还包括在基速以上时,过渡到更高转速,以及由较高转速降低至基速以上两种状态,该过程仍通过调节i d的升高或降低进行控制,具体地,可分为:
1、盘式电机在基速(额定转速)以下工作,此时反电动势小于外接电压,i q只需提供所需转矩的电流就可以;
2、盘式电机由基速以下向基速以上切换,此时反电动势要超过外接电压,施加i d,产生瞬时脉冲弱磁电流,此后具有记忆磁钢的永磁体磁性能稳定在此转速需要的磁场性能,此时i d可以去掉,i q只需提供此时所需转矩的电流;
3、盘式电机由额定转速以上到更高转速切换,过程同步骤2;
4、盘式电机转速由基速以上到基速以下切换,盘式电机在基速以下工作反电动势小于外接电压,不需要调小气隙磁通,为减小i q,施加i d,产生瞬时脉冲增磁电流,使补磁磁钢回到最初始磁性能状态,此后具有记忆磁钢的永磁体磁性能稳定在此转速需要的磁场性能,此时i d可以去掉,i q只需提供此时所需转矩的电流;
5、盘式电机由较高转速到基速以上切换,盘式电机由较高转速降低到较低转速,但未低于基速以上运行,由于转速的降低反电动势跟着下降,气隙磁通可以增大,以减小产生转矩的i q,施加i d,产生瞬时脉冲增磁电流,使气隙 磁通增加,此后具有记忆磁钢的永磁体磁性能稳定在此转速需要的磁场性能,此时i d可以去掉,i q只需提供此时所需转矩的电流。
综上,通过采用将转子的磁钢设置为非记忆磁钢和具有记忆特性的磁钢交替排布的结构,在需要对盘式电机的转速进行调整时,采用i d=0对盘式电机气隙磁场在线调节,由脉冲电流升高具有记忆特性磁钢的磁场性能,降低弱磁时铜损耗,提高电机高速区效率,而在低速区仍采用非记忆特性磁钢,效率不不变。
在本案一具体实施例中,i d和i q大小的控制由输入盘式电机的电流角度控制。i d和i q的电流通过脉冲磁线圈进行控制,在本案中,脉冲磁线圈和交流线圈为同一线圈,通过控制装置调节电流角度,从而对i d和i q大小进行控制,控制准确,响应时间快,进一步避免卡顿现象。
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域技术人员而言,本发明可以有各种改动和变化。凡在本发明的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种盘式电机,其特征在于,包括沿轴向布置的第一定子铁芯和第二定子铁芯,及设置于所述第一定子铁芯和所述第二定子铁芯之间的转子;
    所述转子包括盘式支撑构件和环绕所述盘式支撑构件的周向布置的多个磁钢,所述磁钢包括由非记忆特性磁钢制备的磁钢本体,和开设于所述磁钢本体上并贯穿其宽度方向上的嵌装口,所述嵌装口内设置有由记性特性磁钢制备的补磁磁钢。
  2. 根据权利要求1所述的盘式电机,其特征在于,所述嵌装口包括沿所述磁钢的径向间隔布置的多个,每个所述嵌装口内均设置有所述补磁磁钢。
  3. 根据权利要求2所述的盘式电机,其特征在于,所述磁钢本体由所述嵌装口分隔为多个间隔布置的子磁钢本体,所述磁钢沿其径向的内侧设置为所述补磁磁钢,所述磁钢沿其径向的外侧设置有所述子磁钢本体。
  4. 根据权利要求3所述的盘式电机,其特征在于,所述子磁钢本体和所述补磁磁钢沿所述磁钢的径向方向上宽度相同。
  5. 根据权利要求3所述的盘式电机,其特征在于,所述补磁磁钢包括设置于所述磁钢径向内侧的第一补磁磁钢和设置于所述磁钢中部的第二补磁磁钢;所述子磁钢本体包括与所述第一补磁磁钢和所述第二补磁磁钢交替布置的第一子磁钢本体和第二子磁钢本体。
  6. 根据权利要求5所述的盘式电机,其特征在于,所述第一补磁磁钢、所述第一子磁钢本体、所述第二补磁磁钢和所述第二子磁钢本体的弧度相同。
  7. 根据权利要求5所述的盘式电机,其特征在于,还包括与所述第一补磁磁钢和所述第二补磁磁钢电连接,用以输入脉冲电流的充、去磁线圈。
  8. 一种盘式电机的控制方法,其特征在于,包括步骤:
    1)当所述盘式电机在基速以下运行时,控制i d=0,i q产生电磁转矩;
    2)当盘式电机在基速以上运行时,输入电流方向与所述补磁磁钢方向相反的脉冲弱磁电流,所述脉冲弱磁电流的大小由所述盘式电机的的第一预定转 速所能达到的最大磁通决定,当补磁磁钢稳定在盘式电机达到第一预定转速所需的磁场性能时,去除脉冲弱磁电流,控制i d=0。
  9. 根据权利要求8所述的盘式电机的控制方法,其特征在于,还包括步骤:
    3)当需要所述盘式电机降速到基速以下运行时,输入电流方向与所述补磁磁钢方向一致的脉冲增磁电流,所述脉冲增磁电流的大小由盘式电机的第二预定转速所能达到的最大磁通决定,当所述补磁磁钢稳定在所述盘式电机达到第二预定转速所需的磁场性能时,去除所述脉冲增磁电流,控制所述i d=0。
  10. 根据权利要求8所述的盘式电机的控制方法,其特征在于,所述i d和所述i q大小及方向由派克变换获取。
PCT/CN2019/129768 2019-01-15 2019-12-30 盘式电机及其控制方法 WO2020147564A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910035695.X 2019-01-15
CN201910035695.XA CN109617278A (zh) 2019-01-15 2019-01-15 盘式电机及其控制方法

Publications (1)

Publication Number Publication Date
WO2020147564A1 true WO2020147564A1 (zh) 2020-07-23

Family

ID=66017330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129768 WO2020147564A1 (zh) 2019-01-15 2019-12-30 盘式电机及其控制方法

Country Status (2)

Country Link
CN (1) CN109617278A (zh)
WO (1) WO2020147564A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109617278A (zh) * 2019-01-15 2019-04-12 上海盘毂动力科技股份有限公司 盘式电机及其控制方法
CN112152354B (zh) * 2020-08-19 2023-01-13 沈阳工业大学 一种表面插入式永磁盘式电机转子

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201146439Y (zh) * 2008-01-25 2008-11-05 东南大学 可变磁通永磁同步电动机
JP2009044866A (ja) * 2007-08-09 2009-02-26 Fujitsu General Ltd アキシャルエアギャップ型電動機
CN104617726A (zh) * 2015-02-11 2015-05-13 东南大学 一种永磁交错式轴向磁场磁通切换型记忆电机
CN108494197A (zh) * 2018-02-24 2018-09-04 西安理工大学 一种定/转子永磁型变磁通轴向磁通切换永磁发电机
CN109617278A (zh) * 2019-01-15 2019-04-12 上海盘毂动力科技股份有限公司 盘式电机及其控制方法
CN209184324U (zh) * 2019-01-15 2019-07-30 上海盘毂动力科技股份有限公司 盘式电机

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100384058C (zh) * 2005-12-27 2008-04-23 上海大学 双馈电混合励磁轴向磁场永磁电机
KR101276016B1 (ko) * 2012-05-02 2013-06-19 뉴모텍(주) 가변 자속 모터

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044866A (ja) * 2007-08-09 2009-02-26 Fujitsu General Ltd アキシャルエアギャップ型電動機
CN201146439Y (zh) * 2008-01-25 2008-11-05 东南大学 可变磁通永磁同步电动机
CN104617726A (zh) * 2015-02-11 2015-05-13 东南大学 一种永磁交错式轴向磁场磁通切换型记忆电机
CN108494197A (zh) * 2018-02-24 2018-09-04 西安理工大学 一种定/转子永磁型变磁通轴向磁通切换永磁发电机
CN109617278A (zh) * 2019-01-15 2019-04-12 上海盘毂动力科技股份有限公司 盘式电机及其控制方法
CN209184324U (zh) * 2019-01-15 2019-07-30 上海盘毂动力科技股份有限公司 盘式电机

Also Published As

Publication number Publication date
CN109617278A (zh) 2019-04-12

Similar Documents

Publication Publication Date Title
CN109217597B (zh) 复合励磁非晶合金轴向磁通电机
US20120153763A1 (en) Synchronous motor
WO2017023250A1 (en) Permanent magnet synchronous motor
JP2008289300A (ja) 永久磁石式回転電機
US20210211004A1 (en) Rotor and permanent magnet motor
CN104638864A (zh) 永磁电机及提高永磁电机转速的方法
CN104467333B (zh) 转子励磁多相磁阻电机及其控制方法
Sakai et al. Principle of hybrid variable-magnetic-force motors
CN104578636A (zh) 一种双定子轴向磁场磁通切换型混合永磁记忆电机
CN108336837A (zh) 一种混合励磁直驱电机
WO2020147564A1 (zh) 盘式电机及其控制方法
CN115065212A (zh) 一种新型定子分区双凸极记忆电机
CN110994834B (zh) 一种交直轴电感可变式永磁无刷电机及其广域高效优化设计方法
JP2005304204A (ja) 永久磁石型同期モータおよび駆動装置
CN110620460B (zh) 一种串联磁路混合永磁体记忆电机
CN110838779A (zh) 一种混合励磁绕线转子及混合励磁绕线式同步电机
US20240250568A1 (en) Axial Flux Motor
US11855488B2 (en) Motor rotor structure and permanent magnet motor
JP2009065803A (ja) 磁石同期機
CN113346705B (zh) 一种表贴式低谐波混合永磁记忆电机
CN209184324U (zh) 盘式电机
Shimizu et al. Reduction of torque ripple in double-layered IPMSM for automotive applications by rotor structure modification
Takbash et al. Torque ripple reduction of a variable flux motor
JP2011172323A (ja) 永久磁石式回転電機
JP5390314B2 (ja) 永久磁石式回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909920

Country of ref document: EP

Kind code of ref document: A1