[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020027641A1 - 아토피성 질환 예방 또는 치료용 약학적 조성물 - Google Patents

아토피성 질환 예방 또는 치료용 약학적 조성물 Download PDF

Info

Publication number
WO2020027641A1
WO2020027641A1 PCT/KR2019/095028 KR2019095028W WO2020027641A1 WO 2020027641 A1 WO2020027641 A1 WO 2020027641A1 KR 2019095028 W KR2019095028 W KR 2019095028W WO 2020027641 A1 WO2020027641 A1 WO 2020027641A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
sequence
strand
sirna
dsrna
Prior art date
Application number
PCT/KR2019/095028
Other languages
English (en)
French (fr)
Inventor
원철희
민달희
Original Assignee
주식회사 레모넥스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 레모넥스 filed Critical 주식회사 레모넥스
Priority to US17/265,386 priority Critical patent/US20220110964A1/en
Priority to JP2021505844A priority patent/JP7580121B2/ja
Priority to CN201980050023.4A priority patent/CN112512510A/zh
Priority to EP19845250.0A priority patent/EP3831365A4/en
Publication of WO2020027641A1 publication Critical patent/WO2020027641A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1136Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against growth factors, growth regulators, cytokines, lymphokines or hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/143Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/32Special delivery means, e.g. tissue-specific

Definitions

  • the present invention relates to a pharmaceutical composition having a good atopic disease prevention or treatment effect.
  • Atopic dermatitis is an intractable disease with chronic itching and skin inflammatory symptoms.
  • the major difference in the clinical manifestations of atopic dermatitis and urticaria is due to differences in the mechanisms causing each itching.
  • itching in urticaria is mediated by histamine secreted from mast cells, so it can be treated as an antihistamine.
  • itching of atopic dermatitis is mediated by various immune inflammatory reactions in addition to histamine, so antihystamine alone cannot effectively control itchy symptoms. . Therefore, for the effective treatment of atopic diseases, it is very important to heal the itch mediated by the immune response.
  • TSLP thymic stromal lymphopoietin
  • keratinocytes a dermal epithelial cell
  • TSLP secreted from dermal epithelial cells activates TRPA-1 positive-sensory neurons, causing itching.
  • TRPA-1 positive-sensory neurons causing itching.
  • antisense nucleic acids may be used, such as chemical treatment, or a method known as interfering RNA may be used.
  • interfering RNA may be used.
  • double stranded RNA (dsRNA) oligonucleotides and siRNA oligonucleotides can be used.
  • cationic polymers lipid nanoparticles (LNP), viruses, and various nanomaterials have been developed for the delivery of siRNAs.
  • the clinical application of cationic polymers and LNPs should be prudent due to the toxicity and / or instability of the structures in vivo, and viral gene transfer poses mutagenesis in addition to low packaging capacity.
  • Chemical modifications of siRNA backbones can increase stability and cell uptake, but still suffer from disadvantages such as high cost, labor intensive, time consuming processing, and high amounts of siRNA administration for satisfactory efficacy in target cells.
  • An object of the present invention is to provide a composition having high efficiency of inhibiting TSLP expression and having an excellent prophylactic or therapeutic effect of atopic diseases.
  • porous silica particles the ratio of the absorbance of the following formula 1 is t is 24 or more, atopic disease prevention or treatment pharmaceutical composition:
  • a 0 is the absorbance of the porous silica particles measured by placing 5 ml of the 1 mg / ml suspension of the porous silica particles in a cylindrical permeable membrane having pores having a diameter of 50 kDa,
  • the pH of the suspension is 7.4,
  • a t is the absorbance of the porous silica particles measured after t hours have elapsed since the measurement of A 0 ).
  • porous silica particles by expanding the pores of less than 5nm in diameter by reacting the silica particles having pores of less than 5nm in diameter at 120 °C to 180 °C for 24 to 96 hours; And calcining the pores of the expanded silica particles at a temperature of 400 ° C. or higher for at least 3 hours, wherein the pharmaceutical composition for preventing or treating atopic diseases.
  • the average diameter of the porous silica particles is 150 nm to 1000nm
  • the BET surface area is 200m 2 / g to 700m 2 / g
  • the volume per g is 0.7ml to 2.2ml
  • nucleic acid molecule is one of siRNA, dsRNA, PNA or miRNA.
  • nucleic acid molecule is a siRNA consisting of the sense RNA consisting of the sequence of SEQ ID NO: 1 and antisense RNA consisting of the sequence of SEQ ID NO: 47, the strand consisting of the sequence of SEQ ID NO: 24 and the dsRNA consisting of a strand complementary thereto
  • composition for preventing or treating atopic diseases according to 5 above, further comprising a UU sequence at the 3 ′ end of the sense RNA and the antisense RNA sequence.
  • composition of claim 5, wherein the sense RNA and the antisense RNA sequence further comprises a sequence of dTdT at the 3 'end of the sequence.
  • the nucleic acid molecule is a siRNA consisting of a sense RNA consisting of a sequence of SEQ ID NO: 1 and an antisense RNA consisting of a sequence of SEQ ID NO: 47, a strand consisting of a sequence of SEQ ID NO: 24 and a dsRNA complementary thereto ,
  • nucleic acid molecule according to the above 8, wherein the nucleic acid molecule consists of a siRNA consisting of a sense RNA consisting of a sequence of SEQ ID NO: 1 and an antisense RNA consisting of a sequence of SEQ ID NO: 47, or a strand consisting of a sequence of SEQ ID NO: 24 and a dsRNA complementary thereto
  • composition for preventing or treating atopic diseases comprising a.
  • porous silica particles have a hydrophilic or hydrophobic functional group will be a pharmaceutical composition for preventing or treating atopic diseases.
  • the atopic disease is bronchial asthma, allergic rhinitis, gall margin, atopic dermatitis, allergic conjunctivitis, allergic dermatitis, allergic contact dermatitis, inflammatory skin disease, pruritus and food allergy in the group
  • At least one selected is a pharmaceutical composition for preventing or treating atopic diseases.
  • composition of the present invention can deliver a nucleic acid molecule capable of effectively inhibiting TSLP expression in a sustained manner with high efficiency, thereby suppressing TSLP expression with excellent efficiency, and thus preventing or treating various atopic diseases due to TSLP overexpression. Can be represented.
  • Figure 1 shows the MS analysis value of the synthesized SLIGRL peptide.
  • FIG. 2 is a micrograph of porous silica particles according to one embodiment of the present invention.
  • FIG. 3 is a micrograph of porous silica particles according to an embodiment of the present invention.
  • Figure 4 is a micrograph of the small pore particles during the manufacturing process of the porous silica particles according to an embodiment of the present invention.
  • Figure 5 is a micrograph of the small pore particles according to an embodiment of the present invention.
  • Figure 6 is a micrograph of the pore diameter of the porous silica particles according to an embodiment of the present invention.
  • DDV Delivery Vehicle
  • the number in parenthesis means the diameter of the particle
  • the number of subscripts means the pore diameter.
  • DDV (200) 10 means the particles of the embodiment having a particle diameter of 200 nm, pore diameter of 10 nm.
  • Figure 7 is a micrograph to confirm the biodegradability of the porous silica particles according to an embodiment of the present invention.
  • FIG. 8 is a tube having a cylindrical permeable membrane according to one example.
  • 11 is a result of decreasing absorbance for each pore diameter of porous silica particles according to an embodiment of the present invention over time.
  • FIG. 13 is a result of decreasing absorbance over time of porous silica particles according to an exemplary embodiment of the present invention.
  • Figure 15 is the degree of release over time of the siRNA supported on the porous silica particles according to an embodiment of the present invention.
  • Figure 16 shows the morphological features in HaCaT cells of DDV loaded with siRNA.
  • Figure 17 shows the morphological features in HeLa cells of DDV loaded with siRNA.
  • FIG. 21 shows a fluorescence image obtained by injecting LEM-siTSLP (mouse) into the skin of a mouse and extracting the skin.
  • FIG. 22 shows fluorescence images obtained by injecting FITC-conjugated siTSLP (mouse) not contained in DegradaBALL into the skin of mice and extracting the skin.
  • FIG. 23 shows a fluorescence image obtained by injecting LEM-siTSLP (mouse) into the mouse skin, extracting the skin, and confirming LEM-siTSLP (mouse) delivery effect and distribution change.
  • FIG. 26 shows experimental results of observing cell viability after treatment with DegradaBALL.
  • siRNA refers to a nucleic acid molecule capable of mediating RNA interference or gene silencing. siRNA is provided as an efficient gene knockdown method or gene therapy method because it can inhibit the expression of the target gene.
  • the siRNA® molecule may have a double-stranded structure in which the sense strand (corresponding sequence corresponding to the mRNA sequence of the target gene) and the antisense strand (sequence complementary to the mRNA sequence of the target gene) are positioned opposite to each other.
  • siRNA® molecules may have a single chain structure with self-complementary sense and antisense strands.
  • siRNAs are not limited to the complete pairing of double-stranded RNA portions paired with RNA, but paired by mismatches (the corresponding bases are not complementary), bulges (there are no bases corresponding to one chain), and the like. May be included.
  • the siRNA® terminal structure can be either blunt or cohesive, as long as the expression of the target gene can be suppressed by RNAi (RNA interference) effects.
  • the cohesive end structure can be both a 3'-end protrusion structure and a 5'-end protrusion structure.
  • siRNA molecules may have a form in which a short nucleotide sequence (eg, about 5-15 nt) is inserted between self-complementary sense and antisense strands, in which case the siRNA molecules formed by expression of the nucleotide sequence are intramolecular hybridization.
  • a short nucleotide sequence eg, about 5-15 nt
  • the siRNA molecules formed by expression of the nucleotide sequence are intramolecular hybridization.
  • the hairpin structure is formed, and as a whole, the stem-and-loop structure is formed.
  • This stem-and-loop structure is processed in vitro or in vivo to produce active “siRNA” molecules that can mediate RNAi.
  • dsRNA is a precursor molecule of siRNA, meets the RISC complex containing the target cell's DICER enzyme (Ribonuclease III) and is cleaved into siRNA, in which RNAi occurs.
  • dsRNA has a sequence that is several nucleotides longer than siRNA, and the double stranded strand of the sense strand (corresponding to the target gene) and the antisense strand (sequence complementary to the mRNA sequence of the target gene) It may have a structure forming a.
  • PNA is a synthetic polymer that has a structure similar to DNA or RNA, but unlike DNA or RNA, and is designed to have no charge, and has a strong binding force, wherein the DNA and RNA are deoxyribose or ribose sugar backbones ( backbones, respectively, while the backbone of the PNA has a structure in which repeating N- (2-aminoethyl) -glycine ((N- (2-aminoethyl) -glycine) units are linked by peptide bonds.
  • methylene methylene
  • -C O-
  • Nucleic acid is meant to include any PNA, DNA or RNA, eg, chromosomes, mitochondria, viruses and / or bacterial nucleic acids present in tissue samples.
  • PNA protein-binding nucleic acid
  • DNA or RNA DNA or RNA
  • chromosomes chromosomes
  • mitochondria mitochondria
  • viruses and / or bacterial nucleic acids present in tissue samples.
  • Gene means any nucleic acid sequence or portion thereof that has a functional role in protein coding or transcription or in the regulation of other gene expression.
  • the gene may consist of any nucleic acid encoding a functional protein or only a portion of a nucleic acid encoding or expressing a protein.
  • Nucleic acid sequences can include gene abnormalities in exons, introns, initiation or termination regions, promoter sequences, other regulatory sequences, or unique sequences adjacent to genes.
  • gene expression generally refers to a cellular process in which a biologically active polypeptide is produced from a DNA sequence and exhibits biological activity in a cell.
  • gene expression includes not only transcriptional and translational processes, but also post-transcriptional and posttranslational processes that can affect the biological activity of a gene or gene product.
  • the processes include, but are not limited to, RNA synthesis, processing and transport, as well as post-translational modifications of the polypeptide synthesis, transport and polypeptide.
  • siRNA genes the term “gene expression” refers to the process by which precursor siRNAs are produced from a gene.
  • this process is referred to as transcription, although unlike transcription induced by RNA polymerase II for a protein coding gene, the transcription product of the siRNA gene is not translated to produce a protein. Nevertheless, generation of mature siRNA from siRNA genes is encompassed by the term "gene expression" as that term is used herein.
  • target gene refers to a gene that is targeted for regulation using the methods and compositions of the subject matter disclosed herein. Therefore, the target gene comprises a nucleic acid sequence whose expression level is down regulated by siRNA at the mRNA or polypeptide level.
  • target RNA or “target mRNA” refers to a transcript of a target gene to which siRNA binds to induce regulation of expression of the target gene.
  • transcription refers to a cellular process that involves the interaction of an RNA polymerase with a gene that drives expression as RNA of structural information present in the coding sequence of the gene.
  • down-regulation refers to the expression of specific genes in mRNA or the expression of proteins in activated cells by intracellular transcription or translation in activated cells compared to normal tissue cells. Means reduced.
  • Treatment means an approach to obtain beneficial or desirable clinical results.
  • beneficial or desirable clinical outcomes include, but are not limited to, alleviation of symptoms, reduction of disease range, stabilization of disease state (ie, not worsening), delay or slowing of disease progression, disease state Improvement or temporary mitigation and alleviation (partially or wholly), detectable or not detected.
  • Treatment may also mean increasing survival compared to expected survival when untreated. Treatment refers to both therapeutic treatment and prophylactic or preventive measures. Such treatments include not only the disorders to be prevented but also the treatments required for already occurring disorders.
  • Prevention means any action that inhibits or delays the development of a related disease. It will be apparent to those skilled in the art that the compositions herein can prevent the initial symptoms, or related diseases, if administered before they appear.
  • the present invention provides a composition for inhibiting TSLP gene expression; comprising: porous silica particles carrying nucleic acid molecules that complementarily bind to at least a portion of a transcript of a thymic stromal lymphopoietin (TSLP) gene.
  • the porous silica particles are particles of silica (SiO 2 ) material, and have a particle size of nano size.
  • Porous silica nanoparticles of the present invention is a porous particle, having a nano-sized pores, can carry a nucleic acid molecule that complementarily binds to at least a portion of the TSLP mRNA on its surface and / or inside the pores.
  • TSLP mRNA of the present invention may be an mRNA derived from the same species as the target species, for example, human may be a sequence of SEQ ID NO: 149, but is not limited thereto.
  • TSLP mRNA may be human TSLP mRNA, mouse TSLP mRNA, monkey TSLP mRNA, rabbit TSLP mRNA, preferably human TSLP mRNA, but is not limited thereto.
  • the nucleic acid molecule of the present invention can be produced differently according to the TSLP mRNA sequence.
  • the nucleic acid molecule of the present invention may be designed to bind to a human TSLP mRNA sequence, but is not limited thereto.
  • a 0 is the absorbance of the porous silica particles measured by placing 5 ml of the 1 mg / ml suspension of the porous silica particles in a cylindrical permeable membrane having pores having a diameter of 50 kDa,
  • the pH of the suspension is 7.4,
  • a t is the absorbance of the porous silica particles measured after t hours have elapsed since the measurement of A 0 ).
  • Equation 1 means that the rate at which the porous silica particles are degraded in an environment similar to the body.
  • Absorbance A 0 , A t in Equation 1 may be measured by putting porous silica particles and a suspension in a cylindrical permeable membrane and putting the same suspension outside the permeable membrane, as illustrated in FIG. 8, for example.
  • the porous silica particles of the present invention are biodegradable, and can be slowly decomposed in suspension, 50 kDa in diameter corresponds to about 5 nm, and biodegradable porous silica particles can pass through a permeable membrane of 50 kDa in diameter, and a cylindrical permeable membrane is 60 rpm horizontal. Under stirring, the suspension can be mixed evenly and the degraded porous silica particles can come out of the permeable membrane.
  • the absorbance in Equation 1 may be measured, for example, under an environment in which the suspension outside the permeable membrane is replaced with a new suspension.
  • the suspension can be one that is constantly replaced, one that can be replaced every period, and the period can be periodic or irregular. For example, within the range of 1 hour to 1 week, 1 hour interval, 2 hours interval, 3 hours interval, 6 hours interval, 12 hours interval, 24 hours interval, 2 days interval, 3 days interval, 4 days interval, 7 It may be replaced at day intervals, but is not limited thereto.
  • the ratio of the absorbance to 1/2 means that the absorbance is half of the initial absorbance after t hours, which means that approximately half of the porous silica particles are decomposed.
  • the suspension may be a buffer solution, for example, at least one selected from the group consisting of phosphate buffered saline (PBS) and simulated body fluid (SBF), and more specifically, PBS.
  • PBS phosphate buffered saline
  • SBF simulated body fluid
  • T of the absorbance ratio of Equation 1 of the present invention is 1/2 or more, for example, t may be 24 to 120, for example, 24 to 96, 24 to 72, 30 within the above range To 70, 40 to 70, 50 to 65 and the like, but is not limited thereto.
  • t for example, the absorbance ratio of Equation 1 is 1/5 may be, for example, 70 to 140, for example, 80 to 140, 80 to 120, and 80 to 110 within the above range. , 70 to 140, 70 to 120, 70 to 110, and the like, but is not limited thereto.
  • t may be 130 to 220, for example, wherein the ratio of absorbance of Equation 1 is 1/20, for example, 130 to 200, 140 to 200, 140 to 180 within the above range. , 150 to 180, and the like, but is not limited thereto.
  • the porous silica particles of the present invention may have a measured absorbance of 0.01 or less, for example, 250 or more, for example, 300 or more, 350 or more, 400 or more, 500 or more, 1000 or more, and the upper limit thereof is 2000 days. May be, but is not limited thereto.
  • the ratio of the absorbance of Formula 1 and t have a high positive correlation.
  • the Pearson correlation coefficient may be 0.8 or more, for example, 0.9 or more and 0.95 or more. .
  • T in Equation 1 means how fast the porous silica particles decompose in an environment similar to the body, for example, the surface area, particle diameter, pore diameter, surface and / or inside the pores of the porous silica particles. It can be controlled by controlling the substituent, the degree of compactness of the surface, and the like.
  • the surface area of the particles can be increased to reduce t, or the surface area can be reduced to increase t.
  • the surface area can be adjusted by adjusting the diameter of the particles and the diameter of the pores.
  • substituents on the surface and / or within the pores it is possible to increase t by reducing the direct exposure of porous silica particles to the environment (such as solvents).
  • the porous silica particles carry a nucleic acid molecule that complementarily binds to at least a portion of the TSLP mRNA, and increases the affinity between the nucleic acid molecule that binds to at least a portion of the TSLP mRNA and the porous silica particles, thereby increasing the affinity between the porous silica silica particles.
  • the surface may be made more densely at the time of preparation of the particles to increase t.
  • Porous silica particles of the present invention may be, for example, spherical particles, but is not limited thereto.
  • the porous silica particles of the present invention may have an average diameter of, for example, 150 nm to 1000 nm, for example, within the above range, for example, 150 nm to 800 nm, 150 nm to 500 nm, 150 nm to 400 nm, 150 nm to 300 nm, and 150 nm to 200 nm. May be, but is not limited thereto.
  • the porous silica particles of the present invention may have an average pore diameter of, for example, 1 nm to 100 nm, for example, within the above range, for example, 5 nm to 100 nm, 7 nm to 100 nm, 7 nm to 50 nm, 10 nm to 50 nm, 10 nm to 30 nm. , 7 nm to 30 nm, but is not limited thereto.
  • Having such a large diameter can carry a nucleic acid molecule that complementarily binds to at least a portion of a large amount of TSLP mRNA, it is also possible to carry a nucleic acid molecule that complementarily binds to at least a portion of a large TSLP mRNA.
  • the porous silica particles of the present invention may have a BET surface area of, for example, 200 m 2 / g to 700 m 2 / g.
  • a BET surface area of, for example, 200 m 2 / g to 700 m 2 / g, 200 m 2 / g to 650 m 2 / g, 250 m 2 / g to 650 m 2 / g, 300 m 2 / g to 700 m 2 / g, 300 m 2 / g to 650m 2 / g, 300m 2 / g to 600m 2 / g, 300m 2 / g to 550m 2 / g, 300m 2 / g to 500m 2 / g, 300m 2 / g to 450m 2 / g, etc. It is not limited to this.
  • the porous silica nanoparticles of the present invention may have a volume per g, for example, 0.7 ml to 2.2 ml.
  • a volume per g for example, 0.7 ml to 2.2 ml.
  • within the above range may be 0.7ml to 2.0ml, 0.8ml to 2.2ml, 0,8ml to 2.0ml, 0.9ml to 2.0ml, 1.0ml to 2.0ml and the like, but is not limited thereto. If the volume per gram is too small, the rate of decomposition may be too high, and excessively large particles may be difficult to manufacture or may not have an intact shape.
  • the porous silica particles of the present invention may have hydrophilic substituents and / or hydrophobic substituents on the outer surface and / or inside the pores.
  • hydrophilic substituents may exist on both the surface and inside of the pores, or only hydrophobic substituents may exist, hydrophilic substituents may exist on the surface or inside of the pores, hydrophobic substituents may exist on the surface, hydrophilic substituents on the surface, and hydrophobic substituents inside the pores. It may be present and vice versa.
  • the release of nucleic acid molecules complementarily binding to at least a portion of the TSLP mRNA supported on the porous silica particles of the present invention is mainly carried out by decomposition of the nanoparticles, and is complementary to at least a portion of the TSLP mRNA by the control of the substituents.
  • the interaction of the porous silica particles with respect to the binding nucleic acid molecule release environment can be controlled to control the rate of degradation of the nanoparticles themselves, thereby controlling the rate of release of nucleic acid molecules complementarily binding to at least a portion of the TSLP mRNA.
  • Nucleic acid molecules complementarily bound to at least a portion of TSLP mRNA may be diffused and released from the nanoparticles, and the binding force of the nucleic acid molecules complementarily bound to at least a portion of TSLP mRNA is controlled by the control of the substituent. Controlled release of nucleic acid molecules that complementarily bind to at least a portion of TSLP mRNA can be controlled.
  • hydrophobic substituents are present in the pores to enhance binding to nucleic acid molecules or substances that complementarily bind to at least a portion of poorly soluble (hydrophobic) TSLP mRNA, and the surface of the particles in terms of ease of use, formulation, and the like. May be treated such that a hydrophilic substituent is present.
  • Hydrophilic substituents are, for example, hydroxyl groups, carboxy groups, amino groups, carbonyl groups, sulfhydryl groups, phosphate groups, thiol groups, ammonium groups, ester groups, imide groups, thiimide groups, keto groups, ether groups, indene groups, sulfonyl groups, polyethylene Glycol groups and the like
  • the hydrophobic substituent is, for example, substituted or unsubstituted C1 to C30 alkyl group, substituted or unsubstituted C3 to C30 cycloalkyl group, substituted or unsubstituted C6 to C30 aryl group, substituted Or an unsubstituted C2 to C30 heteroaryl group, a halogen group, a C1 to C30 ester group, a halogen-containing group, and the like.
  • the porous silica particles of the present invention may be one in which the outer surface and / or the inside of the pores are positively charged, negatively charged and / or uncharged.
  • both the surface and the inside of the pore may be positively charged, or may be negatively charged, only the surface or the inside of the pore may be positively charged, or may be negatively charged, the surface may be positively charged, and the interior of the pore may be negatively charged. The reverse is also possible, and vice versa.
  • the charging may be, for example, by the presence of a nonionic substituent, a cationic substituent or an anionic substituent.
  • the cationic substituent may be, for example, an amino group, another nitrogen-containing group, or the like as a basic group, and specifically, a heterocyclic aromatic compound group including a amino group, an aminoalkyl group, an alkylamino group, and a nitrogen atom, a cyan group, and a guanidine group. At least one functional group selected from the group consisting of, but is not limited thereto.
  • the anionic substituent may be, for example, a carboxy group (-COOH), a sulfonic acid group (-SO 3 H), a thiol group (-SH), etc., as an acidic group, but is not limited thereto.
  • the interaction of the porous silica particles with the nucleic acid molecule release environment that complementarily binds to at least a portion of the TSLP mRNA is controlled by controlling the substituents, thereby controlling the decomposition rate of the nanoparticles themselves, thereby controlling at least a portion of the TSLP mRNA.
  • the rate of release of nucleic acid molecules complementarily binding to the nucleic acid molecules may be controlled, and the nucleic acid molecules complementarily binding to at least a portion of the TSLP mRNA may be diffused and released from the nanoparticles.
  • the binding force of the nucleic acid molecules binding to at least a portion complementary to the nanoparticles may be controlled to control the release of the nucleic acid molecules binding to at least a portion of the TSLP mRNA.
  • the porous silica particles of the present invention support a nucleic acid molecule that complementarily binds to at least a portion of TSLP mRNA in addition to the surface and / or the pores thereof, and targets of the nucleic acid molecule that complementarily binds to at least a portion of TSLP mRNA.
  • Substituents may be present for transfer to a cell, support of a substance for other purposes, or other additional substituents, and the like, and may further include antibodies, ligands, cell permeable peptides, or aptamers bound thereto.
  • Substituents, charges, binders and the like within the aforementioned surfaces and / or pores may be added, for example, by surface modification.
  • Surface modification can be carried out, for example, by reacting a compound having a substituent to be introduced with the particles, which may be, for example, an alkoxysilane having a C1 to C10 alkoxy group, but is not limited thereto.
  • the alkoxysilane has one or more alkoxy groups, and may have, for example, 1 to 3, and there may be a substituent to be introduced into a site where the alkoxy group is not bonded or a substituent substituted therewith.
  • the porous silica particles of the present invention may be manufactured through a small pore particle preparation and a pore expansion process, and may be manufactured through a calcination process, a surface modification process, and the like, as necessary. If both the calcination and the surface modification process has gone through may be surface modified after calcination.
  • the small pore particles may be, for example, particles having an average pore diameter of 1 nm to 5 nm.
  • the small pore particles can be obtained by adding a surfactant and a silica precursor in a solvent, stirring and homogenizing.
  • the solvent may be water and / or an organic solvent
  • the organic solvent may be, for example, ethers such as 1,4-dioxane (particularly cyclic ethers); Halogenated hydrocarbons such as chloroform, methylene chloride, carbon tetrachloride, 1,2-dichloroethane, dichloroethylene, trichloroethylene, perchloroethylene, dichloropropane, amyl chloride and 1,2-dibromoethane; Acetone, methyl isobutyl ketone, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, etc.
  • ethers such as 1,4-dioxane (particularly cyclic ethers)
  • Halogenated hydrocarbons such as chloroform, methylene chloride, carbon tetrachlor
  • Ketones Carbon-based aromatics such as benzene, toluene, xylene and tetramethylbenzene; Alkyl amides such as N, N-dimethylformamide, N, N-dibutylformamide, N, N-dimethylacetamide and N-methylpyrrolidone; Alcohols such as methanol, ethanol, propanol and butanol; Ethylene glycol monoethyl ether, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether Glycol ethers (cellosolve) such as dipropylene glycol diethyl ether and triethylene glycol monoethyl ether; Dimethylacetamide (DMAc), N, N-diethylacetamide,
  • the ratio may be, for example, water and the organic solvent in a volume ratio of 1: 0.7 to 1.5, for example, 1: 1: 0.8 to 1.3, but is not limited thereto.
  • the surfactant may be, for example, cetyltrimethylammonium bromide (CTAB), hexadecyltrimethylammonium bromide (TMABr), hexadecyltrimethylpyridinium chloride (TMPrCl), tetramethylammonium chloride (TMACl), and the like, and specifically, CTAB may be used.
  • CTAB cetyltrimethylammonium bromide
  • TMABr hexadecyltrimethylammonium bromide
  • TMPrCl hexadecyltrimethylpyridinium chloride
  • TMACl tetramethylammonium chloride
  • the surfactant may be added, for example, in an amount of 1 g to 10 g, for example, 1 g to 8 g, 2 g to 8 g, 3 g to 8 g, etc., per liter of solvent, but is not limited thereto.
  • the silica precursor may be added after stirring with the addition of a surfactant to the solvent.
  • the silica precursor may be, for example, tetramethyl orthosilicate (TMOS), but is not limited thereto.
  • the stirring may be performed, for example, for 10 minutes to 30 minutes, but is not limited thereto.
  • the silica precursor may be added, for example, 0.5 ml to 5 ml per liter of solvent, for example, 0.5 ml to 4 ml, 0.5 ml to 3 ml, 0.5 ml to 2 ml, 1 ml to 2 ml, etc. within the above range, but is not limited thereto. It doesn't happen.
  • sodium hydroxide may further be used as a catalyst, which may be added with stirring after adding the surfactant to the solvent and before adding the silica precursor.
  • the sodium hydroxide may be, for example, 0.5 ml to 8 ml per liter of solvent, for example, 0.5 ml to 5 ml, 0.5 ml to 4 ml, 1 ml to 4 ml, 1 ml to 3 ml, 2 ml to 3 ml, etc., based on 1 M aqueous sodium hydroxide solution. However, it is not limited thereto.
  • the solution can be reacted with stirring.
  • the stirring may be performed for example, for 2 hours to 15 hours, for example, within the above range, for example, 3 hours to 15 hours, 4 hours to 15 hours, 4 hours to 13 hours, 5 hours to 12 hours, 6 hours to 12 hours. , 6 hours to 10 hours, and the like, but is not limited thereto. If the stirring time (reaction time) is too short, nucleation may be insufficient.
  • the solution may be aged. Aging may be performed for example, from 8 hours to 24 hours, for example, within the range of 8 hours to 20 hours, 8 hours to 18 hours, 8 hours to 16 hours, 8 hours to 14 hours, 10 hours to 16 hours. , 10 hours to 14 hours, and the like, but is not limited thereto.
  • reaction product may be washed and dried to obtain porous silica particles, and if necessary, separation of unreacted material may be preceded before washing.
  • Separation of the unreacted material may be carried out by separating the supernatant, for example by centrifugation, centrifugation may be carried out, for example at 6,000 to 10,000 rpm, the time is for example 3 minutes to 60 minutes, For example, it may be performed within 3 minutes to 30 minutes, 3 minutes to 30 minutes, 5 minutes to 30 minutes, and the like, but is not limited thereto.
  • the washing may be performed with water and / or an organic solvent, and in particular, since a substance that can be dissolved in each solvent may be different, water and an organic solvent may be used once or several times, or once or even with water or an organic solvent alone. Can be washed several times.
  • the number of times may be, for example, two or more, ten or less, for example, three or more and ten or less, four or more and eight or less, four or more and six or less.
  • the organic solvent may be, for example, ethers such as 1,4-dioxane (particularly cyclic ethers); Halogenated hydrocarbons such as chloroform, methylene chloride, carbon tetrachloride, 1,2-dichloroethane, dichloroethylene, trichloroethylene, perchloroethylene, dichloropropane, amyl chloride and 1,2-dibromoethane; Acetone, methyl isobutyl ketone, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, etc.
  • ethers such as 1,4-dioxane (particularly cyclic ethers)
  • Halogenated hydrocarbons such as chloroform, methylene chloride, carbon tetrachloride, 1,2-dichloroethane, dichlor
  • Ketones Carbon-based aromatics such as benzene, toluene, xylene and tetramethylbenzene; Alkyl amides such as N, N-dimethylformamide, N, N-dibutylformamide, N, N-dimethylacetamide and N-methylpyrrolidone; Alcohols such as methanol, ethanol, propanol and butanol; Ethylene glycol monoethyl ether, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether Glycol ethers (cellosolve) such as dipropylene glycol diethyl ether and triethylene glycol monoethyl ether; Dimethylacetamide (DMAc), N, N-diethylacetamide,
  • the washing may be carried out under centrifugation, for example at 6,000 to 10,000 rpm, the time being for example 3 to 60 minutes, for example 3 to 30 minutes, 3 within the above range. It may be performed in minutes to 30 minutes, 5 minutes to 30 minutes and the like, but is not limited thereto.
  • the washing may be performed by filtering out particles with a filter without centrifugation.
  • the filter may have pores less than or equal to the diameter of the porous silica particles. Filtering the reaction liquid with such a filter leaves only particles on the filter, which can be washed by pouring water and / or an organic solvent on the filter.
  • the drying may be performed at 20 ° C. to 100 ° C., but is not limited thereto, and may be performed in a vacuum state.
  • the pores of the obtained porous silica particles are expanded, and the pore expansion may be performed using a pore swelling agent.
  • the pore swelling agent may be trimethylbenzene, triethylbenzene, tripropylbenzene, tributylbenzene, tripentylbenzene, trihexylbenzene, toluene, benzene, and the like, and specifically, trimethylbenzene may be used. It is not limited.
  • the pore swelling agent may use, for example, N, N-dimethylhexadecylamine (N, N-dimethylhexadecylamine, DMHA), but is not limited thereto.
  • the pore expansion may be carried out, for example, by mixing porous silica particles in a solvent with a pore swelling agent and heating to react.
  • the solvent may be, for example, water and / or an organic solvent
  • the organic solvent may be, for example, ethers such as 1,4-dioxane (particularly cyclic ethers); Halogenated hydrocarbons such as chloroform, methylene chloride, carbon tetrachloride, 1,2-dichloroethane, dichloroethylene, trichloroethylene, perchloroethylene, dichloropropane, amyl chloride and 1,2-dibromoethane; Ketones such as acetone, methyl isobutyl ketone and cyclohexanone; Carbon-based aromatics such as benzene, toluene and xylene; Alkyl amides such as N, N-dimethylformamide, N, N-dibutylformamide, N, N-dimethylacetamide and N-methylpyrrolidone; Alcohols such as methanol, ethanol, propanol and butanol; And the like
  • the porous silica particles are, for example, 10 g to 200 g per liter of solvent, for example, 10 g to 150 g, 10 g to 100 g, 30 g to 100 g, 40 g to 100 g, 50 g to 100 g, 50 g to 80 g, 60 g to 80 g, etc., within the above range. It may be added in a ratio of, but is not limited thereto.
  • the porous silica particles may be evenly dispersed in a solvent, for example, the porous silica particles may be added to the solvent and ultrasonically dispersed.
  • the second solvent may be added after the porous silica particles are dispersed in the first solvent.
  • the pore swelling agent is for example 10 to 200 parts by volume, 100 to 150 parts by volume, 10 to 100 parts by volume, 10 to 80 parts by volume, 30 to 80 parts by volume, 30 to 80 parts by volume based on 100 parts by volume of solvent. 70 parts by volume may be added, but is not limited thereto.
  • the reaction can be carried out, for example, at 120 ° C to 190 ° C.
  • 120 ° C to 190 ° C For example, within the range of 120 °C to 190 °C, 120 °C to 180 °C, 120 °C to 170 °C, 130 °C to 170 °C, 130 °C to 160 °C, 130 °C to 150 °C, 130 °C to 140 °C It may be performed, but is not limited thereto.
  • the reaction may be performed, for example, for 6 hours to 96 hours.
  • 6 hours to 96 hours within the range of 30 hours to 96 hours, 30 hours to 96 hours, 30 hours to 80 hours, 30 hours to 72 hours, 24 hours to 80 hours, 24 hours to 72 hours, 36 hours to 96 hours, 36 36 hours to 80 hours, 36 hours to 72 hours, 36 hours to 66 hours, 36 hours to 60 hours, 48 hours to 96 hours, 48 hours to 88 hours, 48 hours to 80 hours, 48 hours to 72 hours, 6 hours to 96 hours, 7 hours to 96 hours, 8 hours to 80 hours, 9 hours to 72 hours, 9 hours to 80 hours, 6 hours to 72 hours, 9 hours to 96 hours, 10 hours to 80 hours, 10 hours to 72 hours , 12 hours to 66 hours, 13 hours to 60 hours, 14 hours to 96 hours, 15 hours to 88 hours, 16 hours to 80 hours, 17 hours to 72 hours, and the like, but is not limited thereto.
  • the time and temperature can be adjusted within the ranges exemplified above so that the reaction can be carried out sufficiently without excess. For example, when the reaction temperature is lowered, the reaction time may be increased, or when the reaction temperature is lowered, the reaction time may be shortened. If the reaction is not sufficient, the expansion of the pores may not be sufficient, and if the reaction proceeds excessively, the particles may collapse due to the expansion of the pores.
  • the reaction can be carried out under stirring. For example, it may be stirred at a speed of 100 rpm or more, and specifically, may be performed at a speed of 100 rpm to 1000 rpm, but is not limited thereto.
  • the reaction solution can be cooled slowly, for example, it can be cooled by gradually reducing the temperature. Specifically, it may be carried out by gradually decreasing the temperature at a rate of 0.5 °C / min to 20 °C / min from the temperature to room temperature, for example, 1 °C / min to 20 °C / min, 3 °C / min to within the above range 20 ° C./minute, 3 ° C./minute to 12 ° C./minute, 3 ° C./minute to 10 ° C./minute, and the like, but is not limited thereto.
  • reaction product After cooling, the reaction product may be washed and dried to obtain porous silica particles having expanded pores, and if necessary, separation of unreacted material may be preceded before washing.
  • Separation of the unreacted material may be carried out by separating the supernatant, for example by centrifugation, centrifugation may be carried out, for example at 6,000 to 10,000 rpm, the time is for example 3 minutes to 60 minutes, For example, it may be performed within 3 minutes to 30 minutes, 3 minutes to 30 minutes, 5 minutes to 30 minutes, and the like, but is not limited thereto.
  • the organic solvent may be, for example, ethers such as 1,4-dioxane (particularly cyclic ethers); Halogenated hydrocarbons such as chloroform, methylene chloride, carbon tetrachloride, 1,2-dichloroethane, dichloroethylene, trichloroethylene, perchloroethylene, dichloropropane, amyl chloride and 1,2-dibromoethane; Ketones such as acetone, methyl isobutyl ketone and cyclohexanone; Carbon-based aromatics such as benzene, toluene and xylene; Alkyl amides such as N, N-dimethylformamide, N, N-dibutylformamide, N, N-dimethylacetamide and N-methylpyrrolidone; Alcohols such as methanol, ethanol, propanol and butanol; And the like, and specifically, alcohol, more specifically ethanol can be used, but is not limited
  • the washing may be carried out under centrifugation, for example at 6,000 to 10,000 rpm, the time being for example 3 to 60 minutes, for example 3 to 30 minutes, 3 within the above range. It may be performed in minutes to 30 minutes, 5 minutes to 30 minutes and the like, but is not limited thereto.
  • the washing may be performed by filtering out particles with a filter without centrifugation.
  • the filter may have pores less than or equal to the diameter of the porous silica particles. Filtering the reaction liquid with such a filter leaves only particles on the filter, which can be washed by pouring water and / or an organic solvent on the filter.
  • water and an organic solvent may be used alternately once or several times, and may be washed once or several times even with water or an organic solvent alone.
  • the number of times may be, for example, two or more, ten or less, for example, three or more and ten or less, four or more and eight or less, four or more and six or less.
  • the drying may be performed at 20 ° C. to 100 ° C., but is not limited thereto, and may be performed in a vacuum state.
  • the obtained particles may be calcined, which is a process of heating the particles to remove silanol groups on the surface and inside thereof to lower the reactivity of the particles, to have a more compact structure, and to remove organic substances filling the pores.
  • it may be heated to a temperature of 400 °C or more.
  • the upper limit thereof is not particularly limited, and may be, for example, 1000 ° C, 900 ° C, 800 ° C, 700 ° C, or the like.
  • the heating can be carried out for example for 3 hours or more, for 4 hours or more.
  • the upper limit is not particularly limited and may be, for example, 24 hours, 12 hours, 10 hours, 8 hours, 6 hours, 5 hours, or the like. More specifically, it may be performed for 3 hours to 8 hours at 400 ° C to 700 ° C, specifically 4 hours to 5 hours at 500 ° C to 600 ° C, but is not limited thereto.
  • the porous silica particles obtained can then be surface modified, and the surface modification can be carried out on the surface and / or inside the pores.
  • the particle surface and the inside of the pore may be surface modified identically, or may be surface modified differently.
  • the surface modification can cause the particles to charge or to have hydrophilic and / or hydrophobic properties.
  • Surface modification can be carried out, for example, by reacting a compound having substituents such as hydrophilic, hydrophobic, cationic, anionic and the like to be introduced with the particles, and the compound can be, for example, an alkoxysilane having a C1 to C10 alkoxy group. However, it is not limited thereto.
  • the alkoxysilane reacts with the porous silicon particles, a covalent bond is formed between the silicon atom and the oxygen atom so that the alkoxysilane may be bonded to the surface and / or the inside of the pores of the porous silicon particle, and the alkoxysilane has a substituent to be introduced.
  • the corresponding substituents may be introduced into the surface of the porous silicon particles and / or within the pores.
  • the reaction may be carried out by reacting porous silica particles dispersed in a solvent with an alkoxysilane.
  • the solvent may be water and / or an organic solvent
  • the organic solvent may be, for example, ethers such as 1,4-dioxane (particularly cyclic ethers); Halogenated hydrocarbons such as chloroform, methylene chloride, carbon tetrachloride, 1,2-dichloroethane, dichloroethylene, trichloroethylene, perchloroethylene, dichloropropane, amyl chloride and 1,2-dibromoethane; Acetone, methyl isobutyl ketone, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, etc.
  • ethers such as 1,4-dioxane (particularly cyclic ethers)
  • Halogenated hydrocarbons such as chloroform, methylene chloride, carbon tetrachlor
  • Ketones Carbon-based aromatics such as benzene, toluene, xylene and tetramethylbenzene; Alkyl amides such as N, N-dimethylformamide, N, N-dibutylformamide, N, N-dimethylacetamide and N-methylpyrrolidone; Alcohols such as methanol, ethanol, propanol and butanol; Ethylene glycol monoethyl ether, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether Glycol ethers (cellosolve) such as dipropylene glycol diethyl ether and triethylene glycol monoethyl ether; Dimethylacetamide (DMAc), N, N-diethylacetamide,
  • the charge to the positive charge can be carried out by reacting with an alkoxysilane having a basic group such as a nitrogen-containing group such as an amino group, an aminoalkyl group, for example.
  • an alkoxysilane having a basic group such as a nitrogen-containing group such as an amino group, an aminoalkyl group, for example.
  • Charging to the negative charge may be carried out by reacting with an alkoxysilane having an acidic group such as, for example, a carboxyl group, a sulfonic acid group, a thiol group, and the like.
  • an alkoxysilane having an acidic group such as, for example, a carboxyl group, a sulfonic acid group, a thiol group, and the like.
  • 3-Mercaptopropyl) trimethoxysilane may be used, but is not limited thereto.
  • the charge to the non-charge (not positive or negative charge, non-charged state) can be carried out by reacting with an alkoxysilane having a common functional group having no charge, a combination of charging to the positive charge and negative charge appropriately By doing so, it is possible to charge with no charge through the offset of positive and negative charge, but is not limited thereto.
  • the hydrophilic property is a hydrophilic group such as hydroxy group, carboxy group, amino group, carbonyl group, sulfhydryl group, phosphate group, thiol group, ammonium group, ester group, imide group, thiimide group, keto group, ether group, indene group, sulfo It may be made to react with the alkoxysilane which has a silyl group, a polyethyleneglycol group, etc.
  • Trimethoxy (octadecyl) silane, Trimethoxy-n-octylsilane, Trimethoxy (propyl) silane, Isobutyl (trimethoxy) silane, Trimethoxy (7-octen-1-yl) silane, Trimethoxy (3,3,3-trifluoropropyl) Silane, Trimethoxy (2-phenylethyl) silane, Vinyltrimethoxysilane, Cyanomethyl, 3- (trimethoxysilyl) propyl] trithiocarbonate, (3-Bromopropyl) trimethoxysilane, etc. may be used, but is not limited thereto.
  • hydrophobic substituents are present inside the pores to enhance binding to nucleic acid molecules or substances that complementarily bind to at least a portion of poorly soluble (hydrophobic) TSLP mRNA through the surface modification, and ease of use and formulation.
  • the surface of the particle may be treated such as to have a hydrophilic substituent, and a substituent may be present on the surface to bind a nucleic acid molecule or a substance complementarily to at least part of another TSLP mRNA.
  • the surface modification may be carried out in combination.
  • two or more surface modifications may be performed on the outer surface or inside the pores.
  • a compound including a carboxyl group may be bonded to silica particles into which amino groups are introduced by amide bonds to change the positively charged particles to have different surface properties, but is not limited thereto.
  • the reaction of the porous silica particles with the alkoxysilane can be carried out, for example, under heating, and the heating is for example from 80 ° C. to 180 ° C., for example from 80 ° C. to 160 ° C., from 80 ° C. to 150 ° C. within the above range. , 100 ° C. to 160 ° C., 100 ° C. to 150 ° C., 110 ° C. to 150 ° C., etc., but is not limited thereto.
  • the reaction of the porous silica particles with the alkoxysilane is, for example, 4 hours to 20 hours, for example, 4 hours to 18 hours, 4 hours to 16 hours, 6 hours to 18 hours, 6 hours to 16 hours within the above range. , 8 hours to 18 hours, 8 hours to 16 hours, 8 hours to 14 hours, 10 hours to 14 hours, etc., but is not limited thereto.
  • the reaction temperature, time, and the amount of the compound used for surface modification may be selected according to the degree to be surface modified, and the reaction conditions vary depending on the degree of hydrophilicity, hydrophobicity, and charge of the nucleic acid molecules or materials of the present invention.
  • the degree of hydrophilicity, hydrophobicity, and charge of the porous silica particles By controlling the degree of hydrophilicity, hydrophobicity, and charge of the porous silica particles, the release rate of nucleic acid molecules or substances that complementarily bind to at least a portion of the TSLP mRNA can be controlled.
  • the reaction temperature may be increased or the reaction time may be increased in order for the porous silica particles to have a strong positive charge.
  • the compound throughput can be increased, but is not limited thereto.
  • porous silica particles of the present invention may be produced through, for example, the preparation of small pores, pore expansion, surface modification, and internal pore modification.
  • the small pore particle production and pore expansion process may be based on the above-described process, and the washing and drying process may be performed after the small pore particle production and after the pore expansion process.
  • separation of the unreacted material may be preceded before washing, and separation of the unreacted material may be performed by separating the supernatant, for example, by centrifugation.
  • the centrifugation may be performed, for example, at 6,000 to 10,000 rpm, and the time may be, for example, 3 to 60 minutes, specifically, 3 to 30 minutes, 3 to 30 minutes, and 5 minutes within the above range. To 30 minutes, etc., but is not limited thereto.
  • the washing after the preparation of the particles of the small pores may be performed by a method / condition within the above-described range, but is not limited thereto.
  • the washing after the pore expansion may be performed under more relaxed conditions than the above example.
  • washing may be performed within three times, but is not limited thereto.
  • the reaction solution such as a surfactant used for particle production and pore expansion is filled in the pores so that the inside of the pores is not modified during surface modification. Only the surface can be modified. Then, washing the particles may remove the reaction solution in the pores.
  • the washing may be carried out under centrifugation, for example at 6,000 to 10,000 rpm, the time being for example 3 to 60 minutes, specifically 3 to 30 minutes, 3 within the above range. It may be performed in minutes to 30 minutes, 5 minutes to 30 minutes and the like, but is not limited thereto.
  • water and an organic solvent may be used alternately once or several times, and may be washed once or several times even with water or an organic solvent alone.
  • the number of times may be, for example, two or more, ten or less, specifically, three or more and ten or less, four or more and eight or less, four or more and six or less.
  • the drying may be performed at 20 ° C. to 100 ° C., but is not limited thereto, and may be performed in a vacuum state.
  • Nucleic acid molecules complementarily binding to at least a portion of the TSLP mRNA may be supported on the surface and / or within the pores of the porous silica particles, and the support is complementary to, for example, the porous silica particles in the solvent and at least a portion of the TSLP mRNA. It can be carried out by mixing the binding nucleic acid molecules.
  • the solvent may be water and / or an organic solvent
  • the organic solvent may be, for example, ethers such as 1,4-dioxane (particularly cyclic ethers); Halogenated hydrocarbons such as chloroform, methylene chloride, carbon tetrachloride, 1,2-dichloroethane, dichloroethylene, trichloroethylene, perchloroethylene, dichloropropane, amyl chloride and 1,2-dibromoethane; Ketones such as acetone, methyl isobutyl ketone and cyclohexanone; Carbon-based aromatics such as benzene, toluene and xylene; Alkyl amides such as N, N-dimethylformamide, N, N-dibutylformamide, N, N-dimethylacetamide and N-methylpyrrolidone; Alcohols such as methanol, ethanol, propanol and butanol; Etc. can be used.
  • PBS phosphate buffered saline solution
  • SBF Simulated Body Fluid
  • Borate-buffered saline Borate-buffered saline
  • Tris-buffered saline may be used as the solvent.
  • the ratio of the porous silica particles and the nucleic acid molecule of the present invention is not particularly limited, for example, the weight ratio is 1: 0.05 to 0.8, for example, within the above range 1: 0.05 to 0.7, 1: 0.05 to 0.6, 1: 0.1 to 0.8, 1: 0.1 to 0.6, 1: 0.2 to 0.8, 1: 0.2 to 0.6, and the like.
  • Nucleic acid molecules complementarily binding to at least a portion of the TSLP mRNA supported on the porous silica particles may be gradually released over an extended time. Such slow release may be continuous or discontinuous, linear or nonlinear, and may vary due to the characteristics of the porous silica particles and / or their interaction with nucleic acid molecules that complementarily bind to at least a portion of the TSLP mRNA. .
  • a nucleic acid molecule that complementarily binds to at least a portion of the TSLP mRNA supported on the porous silica particles is released as the porous silica particles are biodegraded, and the porous silica particles according to the present invention are gradually degraded and complementary to at least a portion of the supported TSLP mRNA. It is possible to release the nucleic acid molecules that bind automatically. This may be controlled by, for example, adjusting the surface area, particle diameter, pore diameter, substituents on the surface and / or pores, degree of compactness of the porous silica particles, and the like, but are not limited thereto.
  • a nucleic acid molecule that complementarily binds to at least a portion of the TSLP mRNA supported on the porous silica particles may be released while being diffused from the porous silica particles, which is complementary to at least a portion of the porous silica particles and the TSLP mRNA. It is influenced by the relationship between the binding nucleic acid molecule and the nucleic acid molecule release environment that complementarily binds to at least a portion of TSLP mRNA, thereby regulating the release of nucleic acid molecule that complementarily binds to at least a portion of TSLP mRNA. Can be. For example, it can be controlled by strengthening or weakening the binding capacity of the porous silica particles with nucleic acid molecules that complementarily bind to at least a portion of the TSLP mRNA.
  • the surface of the particle and / or the inside of the pore have a hydrophobic substituent so that the porous silica particles and TSLP
  • the binding force with a nucleic acid molecule or substance complementarily binding to at least a portion of the mRNA may be increased, whereby the nucleic acid molecule or substance complementarily binding to at least a portion of the TSLP mRNA may be released in a sustained manner.
  • This may be, for example, the surface-modified porous silica particles with an alkoxysilane having a hydrophobic substituent.
  • “poorly soluble” means to be insoluble (practically insoluble) or only slightly soluble (in water), which means “Pharmaceutical Science” 18th Edition (USP). , Remington, Mack Publishing Company).
  • the poorly water-soluble material may be, for example, water solubility of less than 10 g / L, specifically less than 5 g / L, more specifically less than 1 g / L at 1 atmosphere and 25 ° C., but is not limited thereto.
  • the surface and / or inside the pores have a hydrophilic substituent to complement the porous silica particles and at least a portion of the TSLP mRNA.
  • the binding force with the nucleic acid molecule or substance that binds to may be increased, whereby the nucleic acid molecule or substance that complementarily binds to at least a portion of the TSLP mRNA may be released in a sustained manner.
  • This may be, for example, the surface of the porous silica particles modified with an alkoxysilane having a hydrophilic substituent.
  • the water-soluble substance may have a water solubility of 10 g / L or more at 1 atmosphere and 25 ° C., but is not limited thereto.
  • the surface of the particle and / or the inside of the pores are charged with opposite charges to the porous silica particles and at least a portion of the TSLP mRNA.
  • the binding force to the nucleic acid molecules or substances that complementarily bind may be increased, whereby the nucleic acid molecules or substances that complementarily bind to at least a portion of the TSLP mRNA may be released in a sustained manner.
  • This may be, for example, the surface-modified porous silica particles with an alkoxysilane having an acidic group or a basic group.
  • the surface of the particles and / or the inside of the pores may be negatively charged at the neutral pH.
  • the binding force between the porous silica particles and the nucleic acid molecules or substances that complementarily bind to at least a portion of the TSLP mRNA is increased, and thus the nucleic acid molecules or the substances that bind to the at least a portion of the TSLP mRNA are complementarily released.
  • the porous silica particles may be surface-modified with an alkoxysilane having an acidic group such as a carboxyl group (-COOH) and a sulfonic acid group (-SO 3 H).
  • the surface of the particles and / or the inside of the pores may be positively charged, whereby The binding force with a nucleic acid molecule or substance complementarily binding to at least a portion of the TSLP mRNA may be increased so that the nucleic acid molecule or substance complementarily binding to at least a portion of the TSLP mRNA may be released in a sustained manner.
  • the porous silica particles may be surface-modified with an alkoxysilane having a basic group such as an amino group or another nitrogen-containing group.
  • Nucleic acid molecules or substances that complementarily bind to at least a portion of the TSLP mRNA may be released for a period of, for example, 7 days to 1 year or more, depending on the type of treatment required, the release environment, and the porous silica particles used.
  • porous silica particles of the present invention are 100% degradable as biodegradable, 100% of the nucleic acid molecules or substances complementarily binding to at least a part of the TSLP mRNA supported thereon may be released.
  • the nucleic acid molecule may be one strand of siRNA, dsRNA, PNA or miRNA, in which case the siRNA, dsRNA, PNA or miRNA may be expressed by RNAi (RNA interference). It may be to inhibit the, more specifically, may be to inhibit the expression of the TSLP gene by binding complementarily to at least a portion of the TSLP mRNA.
  • RNAi RNA interference
  • the nucleic acid molecule is a siRNA consisting of a sense RNA consisting of a sequence of SEQ ID NO: 1 shown in Table 1 and an antisense RNA consisting of a sequence of SEQ ID NO: 47, a strand consisting of a sequence of SEQ ID NO: 24, and a strand complementary thereto.
  • a dsRNA consisting of a sequence of SEQ ID NO: 2 a sense RNA consisting of a sequence of SEQ ID NO: 2
  • Target sequence 1 SEQ ID NO: 1265'-GCA GCC UAU CUC AGU ACU A-3 '(Position in gene sequence: 140) siRNA GC content: 47.37% Sense strand: SEQ ID NO: 15'-GCA GCC UAU CUC AGU ACU A-3 ' Antisense strand: SEQ ID NO: 475'-UAG UAC UGA GAU AGG CUG C-3 ' dsRNA: SEQ ID NO: 245'-GCA GCC UAU CUC AGU ACU AUU UCU A-3 ' Target sequence 2: SEQ ID NO: 1275'-GCC UAU CUC AGU ACU AUU U-3 '(Position in gene sequence: 143) siRNA GC content: 36.85% Sense strand: SEQ ID NO: 25'-GCC UAU CUC AGU ACU AUU U-3 ' Antisense strand: SEQ ID NO: 485'-AAA UAG UAC UGA GAU AGG C-3 '
  • Nucleic acid molecules of the present invention are animals including humans, for example monkeys, pigs, horses, cows, sheep, dogs, cats, mice (mice), rabbits (rabbits) and the like, preferably may be of human origin.
  • the nucleic acid molecule of the present invention has been modified by deletion, substitution or insertion of functional equivalents of the nucleic acid molecule constituting the same, for example, some nucleotide sequences of the nucleic acid molecule of the present invention. It is a concept that includes a variant (variants) that can function functionally the same as the nucleic acid molecule of the invention.
  • the nucleic acid molecule of the present invention when it forms a sense RNA or antisense RNA of siRNA, it may further include a sequence of UU or dTdT at the 3 'end of the sense RNA and antisense RNA sequence, which is a nucleic acid
  • the siRNA or dsRNA can be given to the siRNA or the dsRNA by increasing the structural stability of the siRNA or dsRNA by increasing the resistance to the enzyme, and increasing the RNAi efficiency of the siRNA or the dsRNA through the induction of a stable RISC.
  • Nucleic acid molecules of the present invention may be isolated or prepared using standard molecular biology techniques, such as chemical synthesis or recombinant methods, or may be commercially available.
  • the composition of the present invention may contain not only the nucleic acid molecule of the present invention, but also other substances capable of increasing the expression rate of the nucleic acid molecule of the present invention in cells, for example, compounds, natural products, novel proteins, and the like. .
  • nucleic acid molecule of the present invention can be provided included in the vector for expression in the cell.
  • Nucleic acid molecules of the present invention can be introduced into cells using a variety of transformation techniques, such as complexes of DNA and DEAE-dextran, complexes of DNA and nuclear proteins, complexes of DNA and lipids, for this purpose nucleic acid molecules of the present invention Can be in a form contained within a carrier that allows for efficient introduction into a cell.
  • the carrier is preferably a vector, and both viral and non-viral vectors can be used.
  • a viral vector for example, lentiviruses, retroviruses, adenoviruses, adenoviruses, herpesviruses, and abipoxvirus vectors may be used.
  • lentiviral vector is a lentiviral vector, but is not limited thereto.
  • Lentiviruses are a type of retrovirus that infects dividing as well as dividing cells due to the nucleophilicity of a pre-integrated complex (virus "shell") that enables active introduction into the nucleopore or the complete nuclear membrane. There are features that can be made.
  • the vector containing the nucleic acid molecule of the present invention preferably further comprises a selection marker.
  • the "selection marker” is intended to facilitate selection of cells into which the nucleic acid molecule of the present invention has been introduced.
  • the selectable markers that can be used in the vector are not particularly limited as long as they are genes capable of easily detecting or measuring the introduction of the vector, but typically, drug resistance, nutritional requirements, resistance to cytotoxic agents, or surface proteins.
  • Markers that confer a selectable phenotype such as expression, for example GFP (green fluorescent protein), puromycin, neomycin (Neo), hygromycin (Hyg), histidinol dihydro Genase (histidinol dehydrogenase gene: hisD) and guanine phosphosribosyltransferase (Gpt), and the like, and preferably GFP (green fluorescent protein) and puromycin markers can be used.
  • GFP green fluorescent protein
  • puromycin puromycin
  • Neo neomycin
  • Hyg hygromycin
  • histidinol dihydro Genase histidinol dehydrogenase gene: hisD
  • Gpt guanine phosphosribosyltransferase
  • the present invention is a pharmaceutical composition for preventing or treating atopic diseases, including; a composition for inhibiting TSLP gene expression comprising; porous silica particles carrying nucleic acid molecules complementarily bound to at least a portion of the TSLP mRNA; To provide a composition.
  • nucleic acid molecule porous silica particles, TSLP gene expression, and the like are as described above.
  • the pharmaceutical composition of the present invention has the effect of preventing or treating atopic diseases, which may be an effect achieved by inhibiting the expression of the TSLP gene of the nucleic acid molecule of the present invention.
  • atopic diseases that are the diseases to be prevented or treated of the pharmaceutical composition of the present invention include bronchial asthma, allergic rhinitis, gallazine, atopic dermatitis, allergic conjunctivitis, allergic dermatitis, allergic contact dermatitis, inflammatory skin disease, It may be at least one disease selected from the group consisting of allergic diseases such as pruritus or food allergy, but is not necessarily limited thereto, and is not particularly limited as long as it corresponds to a disease due to overexpression of TSLP.
  • Atopic dermatitis refers to a condition in which the site of infection of the skin is changed by atopic dermatitis, which includes both a condition considered as a skin disease and a condition not regarded as a skin disease.
  • the pharmaceutical composition of the present invention may further comprise a pharmaceutically acceptable carrier, and may be formulated with the carrier.
  • a pharmaceutically acceptable carrier refers to a carrier or diluent that does not stimulate the organism and does not inhibit the biological activity and properties of the administered compound.
  • Acceptable pharmaceutical carriers in compositions formulated in liquid solutions are sterile and biocompatible, which include saline, sterile water, Ringer's solution, buffered saline, albumin injectable solutions, dextrose solution, maltodextrin solution, glycerol, ethanol and One or more of these components may be mixed and used, and other conventional additives such as antioxidants, buffers and bacteriostatic agents may be added as necessary.
  • Diluents, dispersants, surfactants, binders and lubricants may also be added in addition to formulate into injectable formulations, pills, capsules, granules or tablets such as aqueous solutions, suspensions, emulsions and the like.
  • composition of the present invention is applicable to any formulation containing the nucleic acid molecule of the present invention as an active ingredient, and can be prepared in oral or parenteral formulations.
  • Pharmaceutical formulations of the present invention may be oral, rectal, nasal, topical (including the cheek and sublingual), subcutaneous, vaginal or parenteral (intramuscular, subcutaneous). And forms suitable for administration by inhalation or insufflation.
  • the pharmaceutical composition of the present invention is administered in a pharmaceutically effective amount. Effective dose levels depend on the type of disease, severity, activity of the drug, sensitivity to the drug, time of administration, route of administration and rate of release, duration of treatment, factors including concurrent medications, and other factors well known in the medical field. Can be determined.
  • the pharmaceutical compositions of the present invention may be administered as individual therapeutic agents or in combination with other therapeutic agents, may be administered sequentially or simultaneously with conventional therapeutic agents, and may be single or multiple doses. Taking all of the above factors into consideration, it is important to administer an amount that can achieve the maximum effect with a minimum amount without side effects, which can be readily determined by one skilled in the art.
  • the dosage of the pharmaceutical composition of the present invention varies widely depending on the weight, age, sex, health condition, diet, time of administration, administration method, excretion rate and severity of the disease, and the appropriate dosage is, for example, Depending on the amount of drug accumulated in the patient's body and / or the specific efficacy of the nucleic acid molecules of the invention used. It can be calculated on the basis of EC50, which is generally determined to be effective in in vivo animal models and in vitro, for example from 0.01 ⁇ g to 1 g per kg of body weight, in unit periods of daily, weekly, monthly or yearly It may be administered once or several times per unit period, or may be continuously administered for a long time using an infusion pump. The number of repeated doses is determined in consideration of the time the drug stays in the body, the drug concentration in the body, and the like. Even after treatment according to the course of the disease treatment, the composition can be administered for relapse.
  • the pharmaceutical composition of the present invention may further contain a compound which maintains / increases the solubility and / or absorption of at least one active ingredient or the active ingredient having the same or similar function in the treatment of fibroproliferative diseases. It may also optionally further comprise chemotherapeutic agents, anti-inflammatory agents, antiviral agents and / or immunomodulators and the like.
  • compositions of the present invention may be formulated using methods known in the art to provide rapid, sustained or delayed release of the active ingredient after administration to a mammal.
  • the formulations may be in the form of powders, granules, tablets, emulsions, syrups, aerosols, soft or hard gelatin capsules, sterile injectable solutions, sterile powders.
  • the present invention is a cosmetic composition for the prevention or improvement of atopic diseases, including; a composition for inhibiting TSLP gene expression comprising; porous silica particles carrying nucleic acid molecules that complementarily bind to at least a portion of the TSLP mRNA; To provide.
  • nucleic acid molecule porous silica particles, TSLP gene expression, atopic diseases, and the like are as described above.
  • the cosmetic composition of the present invention has an effect of preventing or ameliorating atopic diseases, which may be an effect achieved by inhibiting the expression of the TSLP gene of the nucleic acid molecule of the present invention.
  • the cosmetic composition of the present invention may further include components conventionally used in the cosmetic composition, and may include, for example, conventional auxiliaries such as antioxidants, stabilizers, solubilizers, vitamins, pigments and flavors, and carriers, This is not restrictive.
  • conventional auxiliaries such as antioxidants, stabilizers, solubilizers, vitamins, pigments and flavors, and carriers, This is not restrictive.
  • Products to which the composition can be added include, for example, cosmetics such as astringent cosmetics, soft cosmetics, nourishing cosmetics, various creams, essences, packs, foundations, cleansing agents, face washes, soaps, treatments, essences, etc. This is not restrictive.
  • Specific formulations of the cosmetic composition of the present invention include skin lotion, skin softener, skin toner, astringent, lotion, milk lotion, moisture lotion, nutrition lotion, massage cream, nutrition cream, moisture cream, hand cream, essence, nutrition essence, pack, Soap, shampoo, cleansing foam, cleansing lotion, cleansing cream, body lotion, body cleanser, latex, lipstick, makeup base, foundation, press powder, loose powder, eye shadow, etc., but may not include .
  • the present invention also relates to a method for treating atopic diseases.
  • the method for treating atopic diseases of the present invention includes administering to a subject porous silica particles carrying a substance that inhibits TSLP expression.
  • Agents that inhibit TSLP expression may be within the aforementioned range.
  • the porous silica particles may be in the ranges exemplified above, or may be prepared by methods / conditions within the ranges exemplified above.
  • the subject may be a mammal, including a human, and specifically a human.
  • the agent that inhibits TSLP expression may be formulated in a method within the ranges described above in the form of a composition.
  • the method of administration is not limited and includes, for example, oral, rectal, nasal, topical (including buccal and sublingual), subcutaneous, vaginal or parenteral (muscle) Intravenous, subcutaneous and intravenous) or by inhalation or insufflation.
  • the present invention also relates to the use of a porous silica particle carrying a substance for inhibiting TSLP expression for the manufacture of a pharmaceutical composition for preventing or treating atopic diseases.
  • Agents that inhibit TSLP expression may be within the aforementioned range.
  • the porous silica particles may be in the ranges exemplified above, or may be prepared by methods / conditions within the ranges exemplified above.
  • siRNA used in the present invention may be abbreviated as 'siTSLP', porous silica particles of the present invention as 'DegradaBALL or DDV', and DegradaBALL carrying siTSLP may be referred to as 'LEM-siTSLP', respectively.
  • DegradaBALL combined with DegradaBALL and TAMRA is Lemonex, Inc. (Cell counting kit-8) is provided by Dojindo molecular technologies, Inc. (Maryland, USA). 10% Phosphate Buffered Saline (PBS), Dulbecco's Modified Eagle's Medium (DMEM), Fetal Bovine Serum (FBS), Roswell Park Memorial Laboratory 1640 (RPMI 1640), Penicillin-Streptomycin and 0.05% Trypsin-EDTA are WelGene (Korea) Purchased from). All PCR primers were purchased from Cosmogenetech (Seoul, Korea). Trizol cell lysis solution was purchased from Molecular Probes Invitrogen (Carlsbad, CA, USA) and all PCR reagents were obtained from TaKaRa Bio Inc. Purchased from (Shiga, Japan). All chemicals were used as received.
  • PBS Phosphate Buffered Saline
  • DMEM Dulbecco's Modified Eagle's Medium
  • FBS
  • SLIGRL peptide used to induce the expression of TSLP was synthesized by Lemonex (Seoul, South Korea), MS analysis of the synthesized peptide is shown in FIG.
  • the nucleotide sequence can be found at the US National Center for Biological Information (http://www.ncbi.nim.nih.gov) and is listed as thymic stromal lymphopoietin in the official symbol (TSLP) and the full official name, and under the approval number NM_033035.4 Human sequences were used to design siRNA, dsRNA, and antisense RNA sequences for human TSLP.
  • siRNA sequence 1 to sequence 10 having a GC content of the target sequence between 30% and 70% of the designed DNA fragments were selected.
  • 13 sequences from SEQ ID NOs: 11-23 designed the siRNA sequence with the GC content between 30% and 70%.
  • 23 siRNAs were finally selected and manufactured by ordering from Bioneer (http://www.bioneer.co.kr).
  • a sense sequence and an antisense sequence for the target sequence of TSLP were designed for siRNA production, respectively.
  • siRNA and dsRNA were prepared by specific base pair binding of each single sequence, the sense sequence and the antisense sequence.
  • Target sequence 1 SEQ ID NO: 1265'-GCAGCCUAUCUCAGUACUA-3 '(Position in gene sequence: 140)
  • Sense strand SEQ ID NO: 705'-GCAGCCUAUCUCAGUACUAUU-3 '
  • Antisense strand SEQ ID NO: 935'-UAGUACUGAGAUAGGCUGCUU-3 ' dsRNA: SEQ ID NO: 245'-GCAGCCUAUCUCAGUACUAUUUCUA-3 '
  • Target sequence 2 SEQ ID NO: 1275'-GCCUAUCUCAGUACUAUUU-3 '(Position in gene sequence: 143)
  • Sense strand SEQ ID NO: 715'-GCCUAUCUCAGUACUAUUUU-3 '
  • Antisense strand SEQ ID NO: 945'-AAAUAGUACUGAGAUAGGCUU-3 ' dsRNA: SEQ ID NO: 255'-GCCUAUCUCAGUACUAUUUCUAAA G-3
  • Porous Silica Particles DDV or DegradaBALL
  • reaction solution was then centrifuged at 8000 rpm for 10 minutes at 25 ° C. to remove the supernatant, centrifuged at 8000 rpm for 10 minutes at 25 ° C., and washed five times with alternating ethanol and distilled water.
  • the reaction was carried out starting at 25 ° C. and warming up at a rate of 10 ° C./min, then slowly cooling at a rate of 1-10 ° C./min in the autoclave.
  • the cooled reaction solution was centrifuged at 8000 rpm for 10 minutes at 25 ° C. to remove the supernatant, and centrifuged at 8000 rpm for 10 minutes at 25 ° C. and washed five times with ethanol and distilled water.
  • the porous silica particles prepared in 2) were put in a glass vial, heated at 550 ° C. for 5 hours, and cooled slowly to room temperature after completion of the reaction to prepare particles.
  • Porous silica particles were prepared in the same manner as in the above 2-1- (1) except that the reaction conditions at the time of pore expansion were changed to 140 ° C. and 72 hours.
  • Porous silica particles were prepared in the same manner as in Example 2-1- (1), except that a 5-fold large container was used and each material was used in 5-fold volume.
  • Porous silica particles were prepared in the same manner as in the case of 2-1- (1), except that 920 ml of distilled water and 850 ml of methanol were used to prepare the small pore particles.
  • Porous silica particles were prepared in the same manner as in 2-1- (1), except that 800 ml of distilled water, 1010 ml of methanol, and 10.6 g of CTAB were used to prepare the small pore particles.
  • Porous silica particles were prepared in the same manner as 2-1- (1), except that 620 ml of distilled water, 1380 ml of methanol, and 7.88 g of CTAB were used to prepare the small pore particles.
  • Porous silica particles were prepared in the same manner as 2-1- (1), except that 2.5 mL of TMB was used for pore expansion.
  • Porous silica particles were prepared in the same manner as 2-1- (1), except that 4.5 mL of TMB was used for pore expansion.
  • Porous silica particles were prepared in the same manner as 2-1- (1), except that 11 mL of TMB was used for pore expansion.
  • Porous silica particles were prepared in the same manner as 2-1- (1), except that 12.5 mL of TMB was used for pore expansion.
  • Example 2-1- (1) -2 the small pore particles were reacted with TMB, cooled, and centrifuged to remove the supernatant. Thereafter, centrifuged under the same conditions as in Example 2-1- (1) -2), washed three times with alternating ethanol and distilled water, and then dried under the same conditions as in Example 2-1- (1) -2). Powdery porous silica particles (pore diameter 10-15 nm, particle diameter 200 nm) were obtained.
  • N-Hydroxysuccinimide 200 mg was dispersed in 30 mL of PBS and allowed to react for 12 hours while stirring at room temperature. The product is then washed and dried.
  • reaction solution of the previous step remains inside the pore, so that the inside of the pore is not modified.
  • the cooled reaction solution was centrifuged at 8000 rpm for 10 minutes to remove the supernatant, centrifuged at 8000 rpm for 10 minutes at 25 ° C, and washed five times with alternating ethanol and distilled water.
  • Example 2-1- (4) The porous silica particles of Example 2-1- (4) were reacted with (3-Aminopropyl) triethoxysilane (APTES) to charge with a positive charge.
  • APTES (3-Aminopropyl) triethoxysilane
  • porous silica particles were dispersed in a 10 mL toluene in a 100 mL round bottom flask with a bath sonicator. Then 1mL of APTES was added and stirred at 400rpm and stirred at 130 ° C for 12 hours.
  • Example 2-1- (1) The porous silica particles of Example 2-1- (1) were charged with positive charge by reacting with (3-Aminopropyl) triethoxysilane (APTES), except that 0.4 ml of APTES was added and the reaction time was 3 hours.
  • APTES (3-Aminopropyl) triethoxysilane
  • Example 2-1- (9) The porous silica particles of Example 2-1- (9) were charged with positive charge by reacting with (3-Aminopropyl) triethoxysilane (APTES), and the other method was the method of 2-2- (1) -1). Modified in the same manner as
  • Example 2-1- (10) The porous silica particles of Example 2-1- (10) were charged with positive charge by reacting with (3-Aminopropyl) triethoxysilane (APTES), and were modified in the same manner as in the method of 2-2- (1) -1). It was.
  • APTES (3-Aminopropyl) triethoxysilane
  • Example 2-1- (1) The porous silica particles of Example 2-1- (1) were reacted with Trimethoxy (propyl) silane to introduce a propyl group into the surface and the pores, and 0.35ml of Trimethoxy (propyl) silane was added instead of APTES, followed by reaction for 12 hours. Modification was carried out in the same manner as in Example 2-2- (1) except for the above.
  • Example 2-1- (1) The porous silica particles of Example 2-1- (1) were reacted with Trimethoxy-n-octylsilane to introduce propyl groups into the surface and the pores, and 0.5 ml of Trimethoxy-n-octylsilane was added instead of APTES, and reacted for 12 hours. Modification was carried out in the same manner as in Example 2-2- (1) except for the above.
  • DMSO Dimethyl sulfoxide
  • 80 mg of succinic anhydride was added instead of APTES, and reacted at room temperature for 24 hours, except that DMSO was used instead of distilled water.
  • the modification was carried out in the same manner as in the method of -2- (1) -1).
  • Example 2-2- (1) -1 The procedure was modified in the same manner as in Example 2-2- (1) -1), except that 1.1 mL of MPTES was used instead of APTES.
  • Example 2-2- (3) -2 100 mg of the porous silica nanoparticles of Example 2-2- (3) -2) were dispersed in 1 mL aqueous 1 M sulfuric acid solution and 20 mL of 30% hydrogen peroxide solution, stirred at room temperature to induce an oxidation reaction to oxidize thiol groups with sulfonic acid groups. After the same washing and drying as in Example 2-2- (1) -1).
  • siTSLP # 1 The nucleic acid molecule of the sequence of Table 2, the sense RNA consisting of the sense RNA consisting of the sequence of SEQ ID NO: 70 and the antisense RNA consisting of the sequence of SEQ ID NO: 93 (hereinafter, siTSLP # 1), sense consisting of the sequence of SEQ ID NO: 83 SiRNA consisting of RNA and antisense RNA consisting of the sequence of SEQ ID NO: 106 (hereinafter siTSLP # 14) and / or siRNA consisting of sense RNA consisting of the sequence of SEQ ID NO: 90 and antisense RNA consisting of the sequence of SEQ ID NO: 113 (hereinafter siTSLP) # 21) was used to perform the following experiment.
  • nucleic acid molecule e.g. sense RNA, antisense RNA, dsRNA
  • sequence constituting the nucleic acid molecule e.g. sense RNA, antisense RNA, dsRNA
  • the DDV carrying the siTSLP # 1 was expressed as LEM-siTSLP # 1 and the DDV carrying the siTSLP # 14 was expressed as LEM-siTSLP # 21.
  • A549 and HaCaT cells were seeded in 96-well culture plates with 100 ⁇ l of growth medium (50-70% confluency) at a density of 10,000 cells per well.
  • Cells were treated with appropriate concentrations of DegradaBALL (Example 2-2- (1) -2) -2 porous silica particles) in serum containing medium and incubated at 37 ° C. for 24 hours. After incubation, the cells were washed twice with 1 ⁇ PBS, and then 100 ⁇ l of serum-free medium containing 10 ⁇ l of CCK-8 was added, followed by further incubation for 1 hour.
  • the optical density of each well in the culture plate was measured at 450 nm wavelength. Mean and standard deviation of deviations of triplicates were calculated and plotted (see FIG. 26).
  • keratinocyte HaCaT cell line (CLC cell line service, Germany).
  • HaCaT cell lines were cultured in DMEM culture (Gibco BRL, USA) containing 10% fetal bovine serum (FBS; Gibco BRL, USA) and antibiotics.
  • the culture dish was a 100 mm culture dish, 6-well plate and 24-well plate, and was incubated in a 37 ° C incubator with 5% CO2. The cultures were exchanged every two days and subcultured just before the cells proliferated.
  • LEM-siTSLP (25 pmol) dispersed in serum-free medium was treated to HaCaT cells cultured in 24-well plates. After incubation for 6 hours at 37 ° C., 5% CO 2 incubator, serum-free culture was removed and washed twice with 1 ⁇ PBS, followed by replacement of serum-containing cell medium. After 6 hours again, the serum containing culture medium was removed and washed with 1 x PBS. The cells were treated with SLIGRL peptide (200 ⁇ M) in a medium containing serum, and total RNA was extracted using Trizol (Invitrogen, USA) after 0, 6, 12 and 24 hours of culture to confirm TSLP induction.
  • RNA and nuclease-free water were mixed to prepare 16 ⁇ L, and then reacted at 70 ° C for 5 minutes to denature the RNA, cooled rapidly on ice, and briefly centrifuged to collect the evaporated solution. Then, 4 ⁇ L of Reverse Transcription Master Premix (Elpis Biotech, contain random hexamer, 5x ready-to-use mix, cat # EBT-1511) was added, mixed well, and reacted at 42 ° C. for 1 hour. Then, after reacting for 5 minutes at 94 °C cooled to ice and stored at -20 °C.
  • Reverse Transcription Master Premix Elpis Biotech, contain random hexamer, 5x ready-to-use mix, cat # EBT-1511
  • RT-PCR primer sequences used for mRNA expression analysis are shown in Table 3 below.
  • hTSLP Human TSLP
  • GAGCCGCAGGCACCCTCTCA SEQ ID NO: 116
  • GCCCCAACTAACCCTCAGGGAGT SEQ ID NO: 117
  • mTSLP mimRNA TSLP
  • GCAAGCCAGCTTGTCTCCTGA SEQ ID NO: 118
  • GGCAGTGGTCATTGAGGGCTT SEQ ID NO: 119
  • hGAPDH Human GAPDH
  • SEQ ID NO: 120 GGATGACCTTGCCCACAGC
  • SEQ ID NO: 121 mGAPDH (mouse GAPDH) TGACCTCAACTACATGGTCTACA (SEQ ID NO: 122) CTTCCCATTCTCGGCCTTG (SEQ ID NO: 123)
  • nucleic acid molecules prepared by the sequences included in Table 2, the nucleic acid molecules were used in Lipofectamine 2000 (Invitrogen, USA) and cationic liposomes in HaCaT cells. After transfection, TSLP expression inhibition efficiency was confirmed.
  • TSLP TSLP using nucleic acid molecules (siRNA or dsRNA) is shown in Table 4 below.
  • Porous Silica Particles DDV or DegradaBALL
  • Figure 2 is a photograph of the porous silica particles of 2-1- (1)
  • Figure 3 is a photograph of the porous silica particles of 2-1- (2) to confirm that evenly formed spherical porous silica particles with sufficiently expanded pores.
  • FIG. 4 is a photograph of small pore particles of 2-1- (1)
  • FIG. 5 is a comparative photograph of small pore particles of 2-1- (1) and 2-1- (3). You can see that is generated evenly.
  • Example 2-1- (1) The surface area and pore volume of the small pore particles of Example 2-1- (1) and the porous silica particles of Examples 2-1- (1), (7), (8) and (10) were calculated.
  • the surface area was calculated by Brunauer-Emmett-Teller (BET) method, and the pore size distribution was calculated by Barrett-Joyner-Halenda (BJH) method.
  • BET Brunauer-Emmett-Teller
  • BJH Barrett-Joyner-Halenda
  • Example 2-1- (1) 2.1 1337 0.69 Experimental Method Example 2-1- (7) 4.3 630 0.72 Experimental Method Example 2-1- (8) 6.9 521 0.79 Experimental Method Example 2-1- (1) 10.4 486 0.82 Experimental Method Example 2-1- (10) 23 395 0.97
  • porous silica particles are biodegraded and nearly decomposed after 360 hours.
  • a 0 is the absorbance of the porous silica particles measured by placing 5 ml of the 1 mg / ml suspension of the porous silica particles into a cylindrical permeable membrane having pores having a diameter of 50 kDa,
  • a t is the absorbance of the porous silica particles measured after t hours have elapsed since the measurement of A 0 ).
  • porous silica particle powder was dissolved in 5 ml of SBF (pH 7.4). Thereafter, 5 ml of the porous silica particle solution was placed in a permeable membrane having pores having a diameter of 50 kDa shown in FIG. 8. 15 ml of SBF was added to the outer membrane, and the SBF of the outer membrane was replaced every 12 hours. Decomposition of the porous silica particles was performed at 37 ° C. with 60 rpm horizontal stirring.
  • porous silica particles of the example have a significantly larger t than the control.
  • t which has a ratio of absorbance 1/2 of the positively charged particles, was 24 or more.
  • the solvent was recovered at 0.5, 1, 2, 4, 8, 12, and 24 hours elapsed, and thereafter, at 24 hours, 0.5 ml of the solvent was recovered for fluorescence measurement. SBF was added.
  • the time of siRNA release by 50% is about 48 hours.
  • HaCaT cells or HeLa cells are seeded in an 8-well chamber (Lab-Tek Chamber slide system) by 2.0 ⁇ 10 3 and incubated for 24 hours. After washing the cells twice with 1 ⁇ PBS, TAMRA fluorescence-labeled siRNA (50 ng) was loaded onto DDV (1 ⁇ g) labeled with FITC fluorescence to make siRNA and DDV complexes. Process for 2 hours.
  • HaCaT human keratinocyte cells
  • HaCaT cells were treated with the above three kinds of LEM-siTSLP (25 pmol) and then incubated with 200 ⁇ M SLIGRL to induce TSLP expression.
  • LEM-siTSLP 25 pmol
  • SLIGRL 200 ⁇ M SLIGRL
  • the treatment of LEM-siTSLP to the cell line reduced the mRNA expression level of TSLP
  • LEM-siTSLP # 1 treatment showed a significant effect on the inhibition of mRNA expression of TSLP.
  • LEM-siTSLP was confirmed in this experiment to maintain the TSLP knockdown effect longer than LNP in HaCaT cells.
  • HaCaT cells were treated with LEM-siTSLP # 1 (25 pmol) and siTSLP # 1 (25 pmol) supported on LNP, followed by SLIGRL treatment to induce TSLP expression.
  • LEM-siTSLP was injected into C57BL / 6 mouse ball tissues by injecting fluorescent label LEM-siTSLP consisting of FITC-conjugated siTSLP loaded on TAMRA-conjugated DegradaBALL and injecting only unsupported FITC-conjugated siTSLP through the subcutaneous infusion route. And duration at the injection site of siTSLP were compared. This experiment confirmed the effect of distribution and distribution of LEM-siTSLP.
  • the DDV used the porous silica particles of Example 2-2- (1) -2) -2, and the siTSLP used siRNA # 1.
  • Fluorescence image analysis of the resected mouse buccal skin and fragmented buccal skin was performed on days 1, 2 and 4 after injection. Fluorescence of TAMRA-DegradaBALL carrying FITC-siTSLP showed strong luminescence at the injection site on day 1. The fluorescence slowly decreased with time, but the fluorescence at the injection site remained strong until 4 days after injection (see FIGS. 21 and 23). The trend of decreasing fluorescence at the injection site over time was in accordance with the tendency of the skin section slide. On the other hand, no fluorescence signal was observed in the excised skin or fragmented skin slides from mice injected with only unsupported FITC-siTSLP, which was rapidly dispersed in the body when only siTSLP without DDV was administered.
  • TSLP knockdown effects in mice injected with LEM-siTSLP were confirmed by mouse behavioral analysis.
  • the DDV used porous silica particles of Example 2-2- (1) -2) -2, and the siTSLP was a sense RNA sequence (5'-CGAGCAAAUCGAGGACUGUdTdT-3 '(SEQ ID NO: 124)) and an antisense RNA sequence ( 5'-ACAGUCCUCGAUUUGCUCGdTdT-3 '(SEQ ID NO: 125) was used.
  • TSLP induction was performed by ID injection of 100 ug (in 20 ul PBS) of SLIGRL peptide, and the behavior was compared by observing the scratching behavior for 30 minutes immediately after injection.
  • the number of times the mouse scratches the ball area is analyzed, and to distinguish it from the grooming behavior, only the number of scratches of the ball with the 'back foot' is counted. In the case of continuous scratching, the duration was measured and counted once per second.
  • FIG. 24 shows the total number of scratches measured during 30 minutes
  • FIG. 25 shows the number of scratches measured at 5 minute intervals.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Pulmonology (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Dermatology (AREA)
  • Endocrinology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

본 발명은 TSLP의 발현 수준을 효과적으로 억제시킴으로써, 기관지천식, 알러지성 비염, 아토피성 피부염, 알러지성 피부염 또는 염증성 피부 질환과 같은 아토피성 질환을 우수한 효율로 예방 또는 치료할 수 있는 조성물에 관한 것이다.

Description

아토피성 질환 예방 또는 치료용 약학적 조성물
본 발명은 우수한 아토피성 질환 예방 또는 치료 효과를 갖는 약학적 조성물에 관한 것이다.
아토피 피부염은 만성적 가려움증과 피부 염증성 증상을 수반하는 난치성 질환이다. 아토피 피부염과 두드러기의 임상적 증상에 있어 가장 큰 차이점은 각각의 가려움증을 유발하는 메커니즘의 차이에 기인한다. 일반적으로 두드러기에서의 가려움증은 비만세포에서 분비되는 히스타민에 의해 매개되므로 항히스타민제로서 치료가 가능 하지만, 아토피 피부염의 가려움증은 히스타민 이외에도 다양한 면역 염증반응에 의해 매개되므로 항히스타민제 만으로는 가려운 증세 조차도 효과적으로 조절할 수 없다. 따라서, 아토피성 질환의 효과적 치료를 위해서는 면역 반응에 의해 매개되는 가려움증을 치유하는 것이 매우 중요하다.
TSLP (thymic stromal lymphopoietin)는 아토피성 질환의 만성적 염증 반응에 의해 피부상피세포인 케라틴세포(keratinocytes)에서 다량 분비되며, 만성 아토피 피부염 질환자가 복합 천식 질환자로의 진행을 매개하는 중요한 인자이다. 또한 피부상피세포에서 분비된 TSLP는 TRPA-1 양성-체지각 뉴런을 활성화 시켜 가려움증을 유발한다. 상기 TSLP의 상세한 모든 기능은 알려져 있지 않지만, 최근 연구 결과들에 따르면 TSLP의 발현은 병리학적, 면역학적, 그리고 분자생물학적으로 아토피 피부염 및/또는 천식 질환등 아토피성 질환과 관련되어 있는바, TSLP 는 미용, 치료, 약제학적으로 중요한 인자라 여겨진다.
TSLP 발현억제를 위해 화학적 치료방법과 같이 안티센스 핵산을 이용하거나, 간섭 RNA로 알려져 있는 방법을 이용할 수 있다. 또한, 이중 가닥 RNA (dsRNA) 올리고뉴클레오티드와 siRNA 올리고뉴클레오티드를 이용할 수 있다.
한편, 현재까지 siRNA의 전달을 위해 양이온성 고분자, 지질나노입자(LNP), 바이러스 및 다양한 나노물질이 개발되었다. 양이온성 고분자와 LNP의 임상적 적용은 생체 내 구조의 독성 및/또는 불안정성 때문에 신중해야하고, 바이러스성 유전자 전달은 낮은 포장능력 외 돌연변이 유발 문제가 있다. siRNA 백본의 화학적 변형은 안정성과 세포흡수를 증가시킬 수 있으나, 여전히 고비용, 노동 집약성, 시간 소모적인 공정 및 표적세포에서의 만족스러운 효능을 위한 높은 양의 siRNA 투여와 같은 단점을 여전히 갖고 있다.
본 발명은 TSLP 발현을 높은 효율로 억제하여, 우수한 아토피성 질환의 예방 또는 치료 효과를 갖는 조성물을 제공하는 것을 목적으로 한다.
1. TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자를 담지한 다공성 실리카 입자;를 포함하고,
상기 다공성 실리카 입자는 하기 수학식 1의 흡광도의 비가 1/2이 되는 t가 24 이상인 것인, 아토피성 질환 예방 또는 치료용 약학적 조성물:
[수학식 1]
A t/A 0
(식 중, A 0는 상기 다공성 실리카 입자 1mg/ml 현탁액 5ml를 직경 50kDa의 기공을 갖는 원통형 투과막에 넣고 측정된 다공성 실리카 입자의 흡광도이고,
상기 투과막 외부에는 상기 투과막과 접하며, 상기 현탁액과 동일한 용매 15ml가 위치하고, 상기 투과막 내외부는 37℃에서 60rpm 수평 교반되며,
상기 현탁액의 pH는 7.4이고,
A t는 상기 A 0의 측정시로부터 t시간 경과 후에 측정된 다공성 실리카 입자의 흡광도임).
2. 위 1에 있어서, 상기 다공성 실리카 입자는 직경 5nm 미만의 기공을 갖는 실리카 입자를 120℃ 내지 180℃에서 24시간 내지 96시간 동안 팽창제와 반응시켜 상기 직경 5nm 미만의 기공을 팽창시키는 단계; 및 상기 기공이 팽창된 실리카 입자를 400℃ 이상의 온도에서 3시간 이상 하소하는 단계를 포함하여 제조된 것인, 아토피성 질환 예방 또는 치료용 약학적 조성물.
3. 위 1에 있어서, 상기 다공성 실리카 입자의 평균 직경은 150 nm 내지 1000nm이고, 그 BET 표면적은 200m 2/g 내지 700m 2/g이고, 그 g당 부피는 0.7ml 내지 2.2ml인, 아토피성 질환 예방 또는 치료용 약학적 조성물.
4. 위 1에 있어서, 상기 핵산분자는 siRNA, dsRNA, PNA 또는 miRNA 중 하나인 아토피성 질환 예방 또는 치료용 약학적 조성물.
5. 위 4에 있어서, 상기 핵산분자는 서열번호 1의 서열로 이루어진 센스 RNA 및 서열번호 47의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 24의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 2의 서열로 이루어진 센스 RNA 및 서열번호 48의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 25의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 3의 서열로 이루어진 센스 RNA 및 서열번호 49의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 26의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 4의 서열로 이루어진 센스 RNA 및 서열번호 50의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 27의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 5의 서열로 이루어진 센스 RNA 및 서열번호 51의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 28의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 6의 서열로 이루어진 센스 RNA 및 서열번호 52의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 29의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 7의 서열로 이루어진 센스 RNA 및 서열번호 53의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 30의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 8의 서열로 이루어진 센스 RNA 및 서열번호 54의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 31의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 9의 서열로 이루어진 센스 RNA 및 서열번호 55의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 32의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 10의 서열로 이루어진 센스 RNA 및 서열번호 56의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 33의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 11의 서열로 이루어진 센스 RNA 및 서열번호 57의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 34의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 12의 서열로 이루어진 센스 RNA 및 서열번호 58의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 35의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 13의 서열로 이루어진 센스 RNA 및 서열번호 59의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 36의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 14의 서열로 이루어진 센스 RNA 및 서열번호 60의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 37의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 15의 서열로 이루어진 센스 RNA 및 서열번호 61의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 38의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 16의 서열로 이루어진 센스 RNA 및 서열번호 62의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 39의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 17의 서열로 이루어진 센스 RNA 및 서열번호 63의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 40의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 18의 서열로 이루어진 센스 RNA 및 서열번호 64의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 41의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 19의 서열로 이루어진 센스 RNA 및 서열번호 65의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 42의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 20의 서열로 이루어진 센스 RNA 및 서열번호 66의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 43의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 21의 서열로 이루어진 센스 RNA 및 서열번호 67의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 44의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 22의 서열로 이루어진 센스 RNA 및 서열번호 68의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 45의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 23의 서열로 이루어진 센스 RNA 및 서열번호 69의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA 및 서열번호 46의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA;로 이루어진 군에서 선택된 적어도 하나의 siRNA 또는 dsRNA를 포함하는 아토피성 질환 예방 또는 치료용 약학적 조성물.
6. 위 5에 있어서, 상기 센스 RNA 및 상기 안티센스 RNA 서열의 3’ 말단에 UU의 서열을 추가로 포함하는 것인 아토피성 질환 예방 또는 치료용 약학적 조성물.
7. 위 5에 있어서, 상기 센스 RNA 및 상기 안티센스 RNA 서열의 3’ 말단에 dTdT의 서열을 추가로 포함하는 것인 아토피성 질환 예방 또는 치료용 약학적 조성물.
8. 위 5에 있어서, 상기 핵산분자는 서열번호 1의 서열로 이루어진 센스 RNA 및 서열번호 47의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 24의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 14의 서열로 이루어진 센스 RNA 및 서열번호 60의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 37의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 21의 서열로 이루어진 센스 RNA 및 서열번호 67의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA 및 서열번호 44의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA;로 이루어진 군에서 선택된 적어도 하나의 siRNA 또는 dsRNA를 포함하는 아토피성 질환 예방 또는 치료용 약학적 조성물.
9. 위 8에 있어서, 상기 핵산분자는 서열번호 1의 서열로 이루어진 센스 RNA 및 서열번호 47의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA 또는 서열번호 24의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA를 포함하는 아토피성 질환 예방 또는 치료용 약학적 조성물.
10. 위 1에 있어서, 상기 다공성 실리카 입자는 외부 표면 또는 기공 내부가 중성의 pH에서 양전하를 띠는 것인 아토피성 질환 예방 또는 치료용 약학적 조성물.
11. 위 1에 있어서, 상기 다공성 실리카 입자는 친수성 또는 소수성 작용기를 갖는 것인 아토피성 질환 예방 또는 치료용 약학적 조성물.
12. 위 1에 있어서, 상기 아토피성 질환은 기관지천식, 알러지성 비염, 담마진, 아토피 피부염, 알러지성 결막염, 알러지성 피부염, 알러지성 접촉성 피부염, 염증성 피부질환, 소양증 및 식품 알레르기로 이루어진 군에서 선택된 적어도 하나인 아토피성 질환 예방 또는 치료용 약학적 조성물.
본 발명의 조성물은 TSLP 발현을 효과적으로 억제할 수 있는 핵산분자를 고효율로 서방적으로 전달하여, 우수한 효율로 TSLP 발현을 억제할 수 있고, 그에 따라 TSLP 과발현으로 인한 다양한 아토피성 질환의 예방 또는 치료 효과를 나타낼 수 있다.
도 1은 합성된 SLIGRL 펩타이드의 MS 분석 값을 나타낸다.
도 2는 본 발명의 일 구현예에 따른 다공성 실리카 입자의 현미경 사진이다.
도 3은 본 발명의 일 구현예에 따른 다공성 실리카 입자의 현미경 사진이다.
도 4는 본 발명의 일 구현예에 따른 다공성 실리카 입자의 제조 공정 중의 소기공 입자의 현미경 사진이다.
도 5는 본 발명의 일 구현예에 따른 소기공 입자의 현미경 사진이다.
도 6은 본 발명의 일 구현예에 따른 다공성 실리카 입자의 기공 직경별 현미경 사진이다.
DDV(Degradable Delivery Vehicle)는 실시예의 입자로서 괄호안의 숫자는 입자의 직경, 아래첨자의 숫자는 기공 직경을 의미한다. 예를 들어, DDV(200)10은 입자 직경은 200 nm, 기공 직경은 10 nm인 실시예의 입자를 의미한다.
도 7은 본 발명의 일 구현예에 따른 다공성 실리카 입자의 생분해성을 확인할 수 있는 현미경 사진이다.
도 8은 일 예시에 따른 원통형 투과막을 구비한 튜브이다.
도 9는 본 발명의 일 구현예에 따른 다공성 실리카 입자의 시간 경과에 따른 흡광도 감소 결과이다.
도 10은 본 발명의 일 구현예에 따른 다공성 실리카 입자의 시간 경과에 따른 입경별 흡광도 감소 결과이다.
도 11은 본 발명의 일 구현예에 따른 다공성 실리카 입자의 시간 경과에 따른 기공 직경별 흡광도 감소 결과이다.
도 12는 본 발명의 일 구현예에 따른 다공성 실리카 입자의 시간 경과에 따른 환경의 pH별 흡광도 감소 결과이다.
도 13은 본 발명의 일 구현예에 따른 다공성 실리카 입자의 시간 경과에 따른 흡광도 감소 결과이다.
도 14는 일 예시에 따른 siRNA 또는 dsRNA 방출을 확인하는 튜브이다.
도 15는 본 발명의 일 구현예에 따른 다공성 실리카 입자에 담지된 siRNA의 시간 경과에 따른 방출 정도이다.
도 16는 siRNA가 담지된 DDV의 HaCaT 세포 내의 형태학적 특징을 나타낸다.
도 17은 siRNA가 담지된 DDV의 HeLa 세포 내의 형태학적 특징을 나타낸다.
도 18은 HaCaT 세포에서 SLIGRL 처리시 TSLP 발현이 유도되는 것을 나타낸다.
도 19는 HaCaT 세포에 LEM-siTSLP#1, LEM-siTSLP#14, LEM-siTSLP#21를 처리하고, 수득 12시간 전에 SLIGRL을 처리해 TSLP를 유도한 후, RT-PCR을 이용하여 TSLP mRNA 발현 수준을 확인한 결과를 나타낸다.
도 20은 HaCaT 세포에 LEM-siTSLP 및 siTSLP를 담지한 LNP를 처리하여 TSLP mRNA 발현 수준을 비교한 결과를 나타낸다.
도 21은 마우스의 피부에 LEM-siTSLP(mouse)를 주입한 후, 피부를 적출하여 확인한 형광 이미지를 나타낸다.
도 22는 마우스의 피부에 DegradaBALL에 담지되지 않은 FITC-접합된 siTSLP(mouse)를 주입한 후, 피부를 적출하여 확인한 형광 이미지를 나타낸다.
도 23은 마우스 피부에 LEM-siTSLP(mouse)를 주입한 후, 피부를 적출하여 LEM-siTSLP(mouse) 전달 효과 및 분포 변화를 확인한 형광 이미지를 나타낸다.
도 24는 LEM-siTSLP(mouse)가 주입된 마우스의 긁는 행동 분석 결과를 나타낸다.
도 25는 LEM-siTSLP(mouse)가 주입된 마우스의 긁는 행동 분석 결과를 나타낸다.
도 26은 세포에 DegradaBALL 처리후 세포생존율을 관찰한 실험 결과를 나타낸 것이다.
본 발명의 구체적 설명에 있어서 용어의 구체적 의미를 정의하고자 하나, 이는 당업계 통상의 기술자에 이해되는 의미로 받아들여질 것일 뿐, 하기에 정의된 특정 의미로 제한하고자 하는 의도는 아니다.
"siRNA"는 RNA 방해 또는 유전자 사일런싱을 매개할 수 있는 핵산 분자를 의미한다. siRNA는 표적 유전자의 발현을 억제할 수 있기 때문에 효율적인 유전자 녹다운 방법으로서 또는 유전자치료 방법으로 제공된다. siRNA 분자는 센스 가닥(표적 유전자의 mRNA 서열에 상응하는(corresponding) 서열)과 안티센스 가닥(표적 유전자의 mRNA 서열에 상보적인 서열)이 서로 반대쪽에 위치하여 이중쇄를 이루는 구조를 가질 수 있다. 또한, siRNA 분자는, 자기-상보성(self-complementary) 센스 및 안티센스 가닥을 가지는 단일쇄 구조를 가질 수 있다. siRNA는 RNA끼리 짝을 이루는 이중사슬 RNA 부분이 완전히 쌍을 이루는 것에 한정되지 않고 미스매치(대응하는 염기가 상보적이지 않음), 벌지(일방의 사슬에 대응하는 염기가 없음) 등에 의하여 쌍을 이루지 않는 부분이 포함될 수 있다. siRNA 말단 구조는 표적 유전자의 발현을 RNAi(RNA interference) 효과에 의하여 억제할 수 있는 것이면 평활(blunt) 말단 혹은 점착(cohesive) 말단 모두 가능하다. 점착 말단 구조는 3'-말단 돌출 구조와 5'-말단 돌출 구조 모두 가능하다. 또한, siRNA 분자는 자기-상보성 센스 및 안티센스 가닥 사이에 짧은 뉴클레오타이드 서열(예컨대, 약 5-15 nt)이 삽입된 형태를 가질 수 있으며, 이 경우 뉴클레오타이드 서열의 발현에 의해 형성된 siRNA 분자는 분자내 혼성화에 의하여 헤어핀 구조를 형성하게 되며, 전체적으로는 스템-앤드-루프 구조를 형성하게 된다. 이 스템-앤드-루프 구조는 인 비트로(in vitro) 또는 인 비보(in vivo)에서 프로세싱되어 RNAi를 매개할 수 있는 활성의 siRNA 분자를 생성한다.
"dsRNA"는 siRNA의 전구체 분자로서, 표적세포의 DICER 효소(Ribonuclease III)를 포함하는 RISC 복합체와 만나 siRNA로 절단되고, 이 과정에서 RNAi가 발생한다. dsRNA는 siRNA 보다 수 뉴클레오티드 만큼 긴 서열을 갖고, 센스 가닥(표적 유전자의 mRNA 서열에 상응하는(corresponding) 서열)과 안티센스 가닥(표적 유전자의 mRNA 서열에 상보적인 서열)이 서로 반대쪽에 위치하여 이중쇄를 이루는 구조를 가질 수 있다.
"PNA"는 DNA 또는 RNA와 유사한 구조를 가지나, DNA 또는 RNA와는 달리 전하를 띠지 않도록 설계되어 강한 결합력을 갖는 합성 폴리머로서, DNA와 RNA가 데옥시리보오스(deoxyribose) 또는 리보오스(ribose) 당 백본(backbone)을 각각 갖는 반면, PNA의 백본은 반복적인 N-(2-아미노에틸)-글리신((N-(2-aminoethyl)-glycine) 단위가 펩티드 결합으로 연결된 구조를 갖는다. 퓨린(purine)과 피리미딘(pyrimidine) 염기가 메틸렌(-CH 2-)과 카보닐 그룹(-C=O-)으로 백본에 연결되어 있는 구조이고, 펩티드와 유사하게 양 말단에 각각 N-말단과 C-말단을 갖는다.
"핵산"은 임의의 PNA, DNA 또는 RNA, 예를 들어, 조직 샘플에 존재하는 염색체, 미토콘드리아, 바이러스 및/또는 세균 핵산을 포함하는 의미이다. 이중가닥 핵산 분자의 하나 또는 두개 모두의 가닥을 포함하고, 무손상 핵산 분자의 임의의 단편 또는 일부를 포함한다.
"유전자"는 단백질 코딩 또는 전사시에 또는 다른 유전자 발현의 조절시에 기능적 역할을 갖는 임의의 핵산 서열 또는 그의 일부를 의미한다. 유전자는 기능적 단백질을 코딩하는 모든 핵산 또는 단백질을 코딩 또는 발현하는 핵산의 일부만으로 이루어질 수 있다. 핵산 서열은 엑손, 인트론, 개시 또는 종료 영역, 프로모터 서열, 다른 조절 서열 또는 유전자에 인접한 특유한 서열 내에 유전자 이상을 포함할 수 있다.
"유전자 발현"이란 용어는 일반적으로 생물학적 활성이 있는 폴리펩티드가 DNA 서열로부터 생성되고 세포에서 생물학적 활성을 나타내는 세포 과정을 의미한다. 그런 의미로, 유전자 발현은 전사 및 해독 과정을 포함할 뿐만 아니라, 유전자 또는 유전자 산물의 생물학적 활성에 영향을 끼칠 수 있는 전사후 및 해독후 과정을 포함한다. 상기 과정들은 RNA 합성, 가공 및 수송뿐만 아니라, 폴립펩티드 합성, 수송 및 폴리펩티드의 해독후 변형을 포함하지만, 이들에 국한되는 것은 아니다. 단백질 산물을 암호화하지 않는 유전자, 예컨대, siRNA 유전자의 경우에, "유전자 발현"이란 용어는 전구체 siRNA가 유전자로부터 생성되는 과정을 의미한다. 통상, 상기 과정은, 단백질 암호 유전자에 대해 RNA 폴리머라제 II에 의해 유도되는 전사와는 달리, siRNA 유전자의 전사 산물이 해독되어 단백질을 생성하지 않지만, 전사로 언급된다. 그럼에도 불구하고, siRNA 유전자로부터 성숙 siRNA의 생성은 그 용어가 본원에 사용되는 대로 "유전자 발현"이란 용어에 의해 포함된다
"표적 유전자 (target gene)"란 용어는 본원에 개시되는 주제의 방법 및 조성물을 사용하여 조절하기 위해 표적으로 삼는 유전자를 의미한다. 그러므로, 표적 유전자는 그 발현 레벨이 mRNA 또는 폴리펩티드 레벨로 siRNA에 의해 하향 조절되는 핵산 서열을 포함한다. 유사하게, "표적 RNA" 또는 "표적 mRNA"란 용어는 siRNA가 결합하여 표적 유전자의 발현의 조절을 유도할 표적 유전자의 전사체를 의미한다.
"전사 (transcription)"란 용어는 유전자의 암호 서열에 존재하는 구조 정보의 RNA로서 발현을 유도하는 유전자와 RNA 폴리머라제의 상호작용을 포함하는 세포 과정을 의미한다.
"하향 조절(down-regulation)"이라는 표현은, 정상조직세포에 비하여, 활성화된 세포에서 세포 내 전사(gene transcription) 또는 번역(gene translation)에 의해서 특정 유전자의 mRNA로의 발현 또는 단백질로 발현량이 현저하게 감소된 것을 의미한다.
"치료"는 이롭거나 바람직한 임상적 결과를 수득하기 위한 접근을 의미한다. 본 발명의 목적을 위해서, 이롭거나 바람직한 임상적 결과는 비제한적으로, 증상의 완화, 질병 범위의 감소, 질병 상태의 안정화 (즉, 악화되지 않음), 질병 진행의 지연 또는 속도의 감소, 질병 상태의 개선 또는 일시적 완화 및 경감 (부분적이거나 전체적으로), 검출가능하거나 또는 검출되지 않거나의 여부를 포함한다. 또한, "치료"는 치료를 받지 않았을 때 예상되는 생존율과 비교하여 생존율을 늘이는 것을 의미할 수도 있다. 치료는 치료학적 치료 및 예방적 또는 예방조치 방법 모두를 가리킨다. 상기 치료들은 예방되는 장애뿐만 아니라 이미 발생한 장애에 있어서 요구되는 치료를 포함한다.
"예방"은 관련 질환의 발병을 억제 또는 지연시키는 모든 행위를 의미한다. 본원의 조성물은 초기 증상, 또는 나타나기 전에 투여할 경우 관련 질환을 예방할 수 있다는 것은 당업자에게 자명할 것이다.
이하, 본 발명을 상세히 설명한다.
본 발명은 TSLP(thymic stromal lymphopoietin) 유전자의 전사체의 적어도 일부에 상보적으로 결합하는 핵산분자를 담지한 다공성 실리카 입자;를 포함하는 TSLP 유전자 발현 억제용 조성물을 제공한다. 상기 다공성 실리카 입자는 실리카(SiO 2) 소재의 입자이며, 나노 사이즈의 입경을 갖는다.
본 발명의 다공성 실리카 나노입자는 다공성 입자로서, 나노사이즈의 기공을 갖고, 그 표면 및/또는 기공 내부에 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자를 담지할 수 있다.
본 발명 TSLP mRNA는 대상 타겟 종과 동일 종 유래의 mRNA일 수 있고, 예를 들면 인간인 경우는 서열번호 149의 서열일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 본 발명 TSLP mRNA는 인간 TSLP mRNA, 마우스 TSLP mRNA, 원숭이 TSLP mRNA, 토끼 TSLP mRNA일 수 있으며, 바람직하게는 인간 TSLP mRNA일 수 있으나, 이에 제한되지 않는다.
본 발명 핵산분자는 TSLP mRNA 서열에 따라 다르게 제작될 수 있다. 예를 들어, 본 발명 핵산분자는 인간 TSLP mRNA 서열에 상보적으로 결합할 수 있도록 제작된 것일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 다공성 실리카 입자는 생분해성 입자로서, TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자를 담지하여 체내에 투여되었을 때 체내에서 생분해되면서 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자를 방출할 수 있는데, 본 발명의 다공성 실리카 입자는 체내에서 서서히 분해되어 담지된 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자가 서방적으로 방출되도록 할 수 있다. 예를 들면, 하기 수학식 1의 흡광도의 비가 1/2이 되는 t가 24 이상이다:
[수학식 1]
A t/A 0
(식 중, A 0는 상기 다공성 실리카 입자 1mg/ml 현탁액 5ml를 직경 50kDa의 기공을 갖는 원통형 투과막에 넣고 측정된 다공성 실리카 입자의 흡광도이고,
상기 투과막 외부에는 상기 투과막과 접하며, 상기 현탁액과 동일한 용매 15ml가 위치하고, 상기 투과막 내외부는 37℃에서 60rpm 수평 교반되며,
상기 현탁액의 pH는 7.4이고,
A t는 상기 A 0의 측정시로부터 t시간 경과 후에 측정된 다공성 실리카 입자의 흡광도임).
상기 수학식 1은 다공성 실리카 입자가 체내와 유사한 환경에서 어느 정도의 속도로 분해되는지를 의미하는 것이다.
상기 수학식 1에서의 흡광도 A 0, A t는 예를 들면 도 8에 예시된 바와 같이, 원통형 투과막에 다공성 실리카 입자 및 현탁액을 넣고, 투과막 외부에도 동일한 현탁액을 넣고 측정된 것일 수 있다.
본 발명의 다공성 실리카 입자는 생분해성으로서, 현탁액 내에서 서서히 분해될 수 있고, 직경 50kDa는 약 5nm에 해당하는 것으로서 생분해된 다공성 실리카 입자는 직경 50kDa의 투과막을 통과할 수 있고, 원통형 투과막은 60rpm 수평 교반 하에 있으므로 현탁액이 고루 섞일 수 있으며 분해된 다공성 실리카 입자는 투과막 외부로 나올 수 있다.
상기 수학식 1에서의 흡광도는 예를 들어 투과막 외부의 현탁액이 새로운 현탁액으로 교체되는 환경 하에 측정된 것일 수 있다. 현탁액은 지속적으로 교체되는 것일 수 있고, 일정 기간마다 교체되는 것일 수 있으며, 상기 일정 기간은 정기 또는 비정기적인 기간일 수 있다. 예를 들어 1시간 내지 1주일의 범위 내에서, 1시간 간격, 2시간 간격, 3시간 간격, 6시간 간격, 12시간 간격, 24시간 간격, 2일 간격, 3일 간격, 4일 간격, 7일 간격 등으로 교체될 수 있으나 이에 제한되는 것은 아니다
상기 흡광도의 비가 1/2가 된다는 것은 t시간 후에 흡광도가 초기 흡광도의 절반이 된다는 것인 바, 이는 다공성 실리카 입자의 대략 절반이 분해되었다는 의미이다.
상기 현탁액은 완충용액일 수 있고, 구체적인 예를 들면, PBS(phosphate buffered saline) 및 SBF(simulated body fluid)로 이루어진 군에서 선택된 1종 이상일 수 있으며, 보다 구체적으로는 PBS일 수 있다.
본 발명의 상기 수학식 1의 흡광도의 비가 1/2이 되는 t가 24 이상으로, 예를 들면 t는 24 내지 120일 수 있고, 예를 들어 상기 범위 내에서 24 내지 96, 24 내지 72, 30 내지 70, 40 내지 70, 50 내지 65 등일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 다공성 실리카 입자는 상기 수학식 1의 흡광도의 비가 1/5가 되는 t가 예를 들면 70 내지 140일 수 있고, 예를 들어 상기 범위 내에서 80 내지 140, 80 내지 120, 80 내지 110, 70 내지 140, 70 내지 120, 70 내지 110 등일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 다공성 실리카 입자는 상기 수학식 1의 흡광도의 비가 1/20가 되는 t가 예를 들면 130 내지 220일 수 있고, 예를 들어 상기 범위 내에서 130 내지 200, 140 내지 200, 140 내지 180, 150 내지 180 등일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 다공성 실리카 입자는 측정되는 흡광도가 0.01 이하가 되는 t가 예를 들면 250 이상, 예를 들어, 300 이상, 350 이상, 400 이상, 500 이상, 1000 이상 등일 수 있으며, 그 상한은 2000일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 다공성 실리카 입자에서 상기 수학식 1의 흡광도의 비와 t는 높은 양의 상관 관계를 갖는 것으로서, 예를 들면 피어슨 상관 계수가 0.8 이상일 수 있고, 예를 들어, 0.9 이상, 0.95 이상일 수 있다.
상기 수학식 1의 t는 다공성 실리카 입자가 체내와 유사한 환경에서 어느 정도의 속도로 분해되는지를 의미하는 것으로서, 이는 예를 들면 다공성 실리카 입자의 표면적, 입경, 기공 직경, 표면 및/또는 기공 내부의 치환기, 표면의 치밀함 정도 등을 조절함으로써 조절될 수 있다.
예를 들면, 입자의 표면적을 증가시켜 t를 감소시키거나, 표면적을 감소시켜 t를 증가시킬 수 있다. 표면적은 입자의 직경, 기공의 직경을 조절함으로써 조절될 수 있다. 또한, 표면 및/또는 기공 내부에 치환기를 위치시켜 다공성 실리카 입자가 환경(용매 등)에 직접 노출되는 것을 줄여 t를 증가시킬 수 있다. 또한, 다공성 실리카 입자에 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자를 담지시키고 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자와 다공성 실리카 입자 간의 친화도를 증가시켜, 다공성 실리카 실리카 입자가 환경에 직접 노출되는 것을 줄여 t를 증가시킬 수 있다. 또한, 입자의 제조시에 표면을 보다 치밀하게 제조하여 t를 증가시킬 수도 있다. 상기에는 수학식 1의 t를 조절할 수 있는 다양한 예시를 서술하였으나, 이에 제한되는 것은 아니다.
본 발명의 다공성 실리카 입자는 예를 들면 구형 입자일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 다공성 실리카 입자는 평균 직경이 예를 들면 150nm 내지 1000nm일 수 있고, 예를 들어 상기 범위 내에서 예를 들면 150nm 내지 800nm, 150nm 내지 500nm, 150nm 내지 400nm, 150nm 내지 300nm, 150nm 내지 200nm일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 다공성 실리카 입자는 평균 기공 직경이 예를 들면 1nm 내지 100nm일 수 있고, 예를 들어 상기 범위 내에서 예를 들면 5nm 내지 100nm, 7nm 내지 100nm, 7nm 내지 50nm, 10nm 내지 50nm, 10nm 내지 30nm, 7nm 내지 30nm일 수 있으나, 이에 제한되는 것은 아니다. 상기와 같은 큰 직경을 가져 다량의 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자를 담지할 수 있고, 크기가 큰 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자의 담지도 가능하다.
본 발명의 다공성 실리카 입자는 BET 표면적이 예를 들면 200m 2/g 내지 700m 2/g일 수 있다. 예를 들어 상기 범위 내에서 200m 2/g 내지 700m 2/g, 200m 2/g 내지 650m 2/g, 250m 2/g 내지 650m 2/g, 300m 2/g 내지 700m 2/g, 300m 2/g 내지 650m 2/g, 300m 2/g 내지 600m 2/g, 300m 2/g 내지 550m 2/g, 300m 2/g 내지 500m 2/g, 300m 2/g 내지 450m 2/g 등일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 다공성 실리카 나노입자는 g당 부피가 예를 들면 0.7ml 내지 2.2ml일 수 있다. 예를 들어 상기 범위 내에서 0.7ml 내지 2.0ml, 0.8ml 내지 2.2ml, 0,8 ml 내지 2.0ml, 0.9 ml 내지 2.0ml, 1.0 ml 내지 2.0ml 등일 수 있으나, 이에 제한되는 것은 아니다. g당 부피가 과도하게 작아지면 분해 속도가 너무 빨라질 수 있고, 과도하게 큰 입자는 제조가 어렵거나, 온전한 형상을 가질 수 없을 수 있다.
본 발명의 다공성 실리카 입자는 외부 표면 및/또는 기공 내부에 친수성 치환기 및/또는 소수성 치환기가 존재할 수 있다. 예를 들면 표면 및 기공 내부 모두 친수성 치환기만 존재하거나, 소수성 치환기만 존재할 수도 있고, 표면 또는 기공 내부에만 친수성 치환기가 존재하거나, 소수성 치환기가 존재할 수도 있고, 표면에는 친수성 치환기, 기공 내부에는 소수성 치환기가 존재할 수도 있고, 그 반대의 경우도 가능하다.
본 발명의 다공성 실리카 입자에 담지된 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자의 방출은 주로 나노입자의 분해에 의해 수행되는 것인 바, 상기 치환기의 조절로 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자 방출 환경에 대한 다공성 실리카 입자의 상호 작용이 조절되어 나노입자 자체의 분해 속도가 조절되어 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자 방출 속도가 조절될 수 있고, 또한, TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자는 나노입자로부터 확산되어 방출될 수도 있는데, 상기 치환기의 조절로 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자의 나노입자에 대한 결합력이 조절되어 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자의 방출이 조절될 수 있다.
또한, 난용성(소수성) TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질과의 결합력 증진을 위해 기공 내부에는 소수성 치환기가 존재하고, 사용, 제형화의 용이성 등의 측면에서 입자의 표면은 친수성 치환기가 존재하도록 하는 등의 처리도 가능하다.
친수성 치환기는 예를 들면 히드록시기, 카르복시기, 아미노기, 카르보닐기, 설프히드릴기, 포스페이트기, 티올기, 암모늄기, 에스터기, 이미드기, 티오이미드기, 케토기, 에터기, 인덴기, 설포닐기, 폴리에틸렌글리콜기 등을 들 수 있고, 소수성 치환기는 예를 들면 치환 또는 비치환된 C1 내지 C30의 알킬기, 치환 또는 비치환된 C3 내지 C30의 사이클로알킬기, 치환 또는 비치환된 C6 내지 C30의 아릴기, 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기, 할로겐기, C1 내지 C30의 에스테르기, 및 할로겐 함유기 등을 들 수 있다.
또한, 본 발명의 다공성 실리카 입자는 외부 표면 및/또는 기공 내부가 양전하, 음전하 및/또는 무전하로 대전된 것일 수 있다. 예를 들면 표면 및 기공 내부 모두 양전하로 대전되거나, 음전하로 대전될 수 있고, 표면 또는 기공 내부만 양전하로 대전되거나, 음전하로 대전될 수 있고, 표면은 양전하, 기공 내부는 음전하로 대전될 수 있고, 그 반대의 경우도 가능하며, 무전하의 경우도 마찬가지이다.
상기 대전은 예를 들면 비이온성 치환기, 양이온성 치환기 또는 음이온성 치환기가 존재함으로써 된 것일 수 있다.
상기 양이온성 치환기는 예를 들면 염기성기로서 아미노기, 그 외 질소함유기 등일 수 있고, 구체적으로는, 아미노기, 아미노알킬기, 알킬아미노기, 질소원자를 포함하는 헤테로고리 방향족화합물기, 시안기 및 구아니딘기로 이루어진 군에서 선택된 적어도 하나의 작용기일 수 있으나, 이에 제한되는 것은 아니다.
상기 음이온성 치환기는 예를 들면 산성기로서 카르복시기(-COOH), 술폰산기(-SO 3H), 티올기(-SH) 등일 수 있으나, 이에 제한되는 것은 아니다.
마찬가지로 상기 대전에 의해 상기 치환기의 조절로 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자 방출 환경에 대한 다공성 실리카 입자의 상호 작용이 조절되어 나노입자 자체의 분해 속도가 조절되어 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자 방출 속도가 조절될 수 있고, 또한, TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자는 나노입자로부터 확산되어 방출될 수도 있는데, 상기 치환기의 조절로 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자의 나노입자에 대한 결합력이 조절되어 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자 방출이 조절될 수 있다.
또한, 본 발명의 다공성 실리카 입자는 그 표면 및/또는 기공 내부에 상기 외에 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자의 담지, TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자의 표적 세포로의 이동, 그외 기타 목적을 위한 물질의 담지 또는 그외 추가 치환기의 결합 등을 위한 치환기가 존재할 수 있으며, 이에 결합된 항체, 리간드, 세포투과성 펩타이드 또는 엡타머 등을 더 포함할 수 있다.
전술한 표면 및/또는 기공 내부의 치환기, 전하, 결합물질 등은 예를 들면 표면 개질에 의해 부가될 수 있다.
표면 개질은 예를 들면 도입하고자 하는 치환기를 갖는 화합물을 입자와 반응시켜 수행할 수 있고, 상기 화합물은 예를 들면 C1 내지 C10 알콕시기를 갖는 알콕시실란일 수 있으나, 이에 제한되는 것은 아니다. 상기 알콕시실란은 상기 알콕시기를 1개 이상 갖는 것으로서, 예를 들면 1 내지 3개 가질 수 있고, 알콕시기가 결합되지 않은 부위에 도입하고자 하는 치환기가 있거나 이로 치환된 치환기가 있을 수 있다.
본 발명의 다공성 실리카 입자는 예를 들면 소기공의 입자 제조 및 기공 확장 공정을 거쳐 제조된 것일 수 있고, 필요에 따라 하소(calcination) 공정, 표면 개질 공정 등을 더 거쳐 제조된 것일 수 있다. 하소 및 표면 개질 공정을 모두 거친 경우는 하소 이후에 표면 개질 된 것일 수 있다.
상기 소기공의 입자는 예를 들면 평균 기공 직경이 1nm 내지 5nm인 입자일 수 있다.
상기 소기공의 입자는 용매에 계면활성제와 실리카 전구물질을 넣고 교반 및 균질화시켜 얻어질 수 있다.
상기 용매는 물 및/또는 유기용매일 수 있고, 유기용매는 예를 들면 1,4-디옥산 등의 에테르류(특히 고리형상 에테르류); 클로로포름, 염화메틸렌, 4염화탄소, 1,2-디클로로에탄, 디클로로에틸렌, 트리클로로에틸렌, 퍼클로로에틸렌, 디클로로프로판, 염화아밀, 1,2-디브로모에탄 등의 할로겐화 탄화수소류; 아세톤, 메틸이소부틸케톤, γ-부티로락톤, 1,3-디메틸-이미다졸리디논, 메틸에틸케톤, 시클로헥사논, 시클로펜타논, 4-하이드록시-4-메틸-2-펜타논 등의 케톤류; 벤젠, 톨루엔, 크실렌, 테트라메틸벤젠 등의 탄소계 방향족류 ; N,N-디메틸포름아미드, N,N-디부틸포름아미드, N,N-디메틸아세트아미드, N-메틸피롤리돈 등의 알킬아미드류; 메탄올, 에탄올, 프로판올, 부탄올 등의 알코올류; 에틸렌글리콜모노에틸에테르, 에틸렌글리콜모노메틸에테르, 에틸렌글리콜모노부틸에테르, 디에틸렌글리콜모노에틸에테르, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노에틸에테르, 디프로필렌글리콜디에틸에테르, 트리에틸렌글리콜모노에틸에테르 등의 글리콜에테르류(셀로솔브); 그외 디메틸아세트아미드(DMAc), N,N-디에틸아세트아미드, 디메틸포름아미드(DMF), 디에틸포름아미드(DEF), N,N-디메틸아세트아미드(DMAc), N-메틸피롤리돈(NMP), N-에틸피롤리돈(NEP), 1,3-디메틸-2-이미다졸리디논, N,N-디메틸메톡시아세트아미드, 디메틸술폭사이드, 피리딘, 디메틸술폰, 헥사메틸포스포아미드, 테트라메틸우레아, N-메틸카르로락탐, 테트라히드로퓨란, m-디옥산, P-디옥산, 1,2-디메톡시에탄 등을 사용할 수 있고, 구체적으로는 알코올, 보다 구체적으로 메탄올을 사용할 수 있으나, 이에 제한되는 것은 아니다.
상기 물과 유기 용매의 혼합 용매 사용시 그 비율은 예를 들면 물과 유기용매를 1: 0.7 내지 1.5의 부피비, 예를 들어, 1: 0.8 내지 1.3의 부피비로 사용할 수 있으나, 이에 제한되는 것은 아니다.
상기 계면활성제는 예를 들면 CTAB(cetyltrimethylammonium bromide), TMABr(hexadecyltrimethylammonium bromide), TMPrCl(hexadecyltrimethylpyridinium chloride), TMACl(tetramethylammonium chloride) 등일 수 있고, 구체적으로는 CTAB를 사용할 수 있다.
상기 계면활성제는 예를 들면 용매 1리터당 1g 내지 10g, 예를 들어 상기 범위 내에서 1g 내지 8g, 2g 내지 8g, 3g 내지 8g 등의 양으로 첨가될 수 있으나, 이에 제한되는 것은 아니다.
상기 실리카 전구 물질은 용매에 계면활성제를 첨가하여 교반한 후에 첨가될 수 있다. 실리카 전구물질은 예를 들면 TMOS(Tetramethyl orthosilicate)일 수 있으나, 이에 제한되는 것은 아니다.
상기 교반은 예를 들면 10분 내지 30분간 수행될 수 있으나, 이에 제한되는 것은 아니다.
상기 실리카 전구물질은 예를 들면 용매 1리터당 0.5ml 내지 5ml, 예를 들어 상기 범위 내에서 0.5ml 내지 4ml, 0.5ml 내지 3ml, 0.5ml 내지 2ml, 1ml 내지 2ml 등으로 첨가될 수 있으나, 이에 제한되는 것은 아니다.
필요에 따라 촉매로서 수산화나트륨을 더 사용할 수 있으며, 이는 용매에 계면활성제를 첨가한 후 실리카 전구물질의 첨가 전에 교반하면서 첨가될 수 있다.
상기 수산화나트륨은 예를 들면 1M 수산화나트륨 수용액 기준으로 용매 1리터당 0.5ml 내지 8ml, 예를 들어 상기 범위 내에서 0.5ml 내지 5ml, 0.5ml 내지 4ml, 1ml 내지 4ml, 1ml 내지 3ml 2ml 내지 3ml 등일 수 있으나, 이에 제한되는 것은 아니다.
상기 실리카 전구 물질의 첨가 후에 용액을 교반하며 반응시킬 수 있다. 교반은 예를 들면 2시간 내지 15시간 할 수 있고, 예를 들어 상기 범위 내에서 3시간 내지 15시간, 4시간 내지 15시간, 4시간 내지 13시간, 5시간 내지 12시간, 6 시간 내지 12시간, 6시간 내지 10시간 등일 수 있으나, 이에 제한되는 것은 아니다. 교반 시간(반응 시간)이 너무 짧은 경우에는 결정핵 생성(nucleation)이 부족할 수 있다.
상기 교반 이후에는 용액을 숙성(aging)시킬 수 있다. 숙성은 예를 들면 8시간 내지 24시간 할 수 있고, 예를 들어 상기 범위 내에서 8시간 내지 20시간, 8시간 내지 18시간, 8시간 내지 16시간, 8시간 내지 14시간, 10시간 내지 16시간, 10시간 내지 14시간 등일 수 있으나, 이에 제한되는 것은 아니다.
이후, 반응산물을 세척 및 건조시켜 다공성 실리카 입자를 얻을 수 있고, 필요에 따라 세척 전에 미반응 물질의 분리가 선행될 수 있다.
상기 미반응 물질의 분리는 예를 들면 원심분리로 상등액을 분리하여 수행될 수 있고, 원심분리는 예를 들면 6,000 내지 10,000rpm으로 수행될 수 있으며, 그 시간은 예를 들면 3분 내지 60분, 예를 들어 상기 범위 내에서 3분 내지 30분, 3분 내지 30분, 5분 내지 30분 등으로 수행될 수 있으나, 이에 제한되는 것은 아니다.
상기 세척은 물 및/또는 유기용매로 할 수 있고, 구체적으로는 용매별로 녹일 수 있는 물질이 상이하므로 물과 유기용매를 1회 또는 수회 번갈아 사용할 수 있으며, 물 또는 유기용매 단독으로도 1회 또는 수회 세척할 수 있다. 상기 수회는 예를 들면 2회 이상, 10회 이하, 예를 들어, 3회 이상 10회 이하, 4회 이상 8회 이하, 4회 이상 6회 이하 등일 수 있다.
상기 유기용매는 예를 들면 1,4-디옥산 등의 에테르류(특히 고리형상 에테르류); 클로로포름, 염화메틸렌, 4염화탄소, 1,2-디클로로에탄, 디클로로에틸렌, 트리클로로에틸렌, 퍼클로로에틸렌, 디클로로프로판, 염화아밀, 1,2-디브로모에탄 등의 할로겐화 탄화수소류; 아세톤, 메틸이소부틸케톤, γ-부티로락톤, 1,3-디메틸-이미다졸리디논, 메틸에틸케톤, 시클로헥사논, 시클로펜타논, 4-하이드록시-4-메틸-2-펜타논 등의 케톤류; 벤젠, 톨루엔, 크실렌, 테트라메틸벤젠 등의 탄소계 방향족류 ; N,N-디메틸포름아미드, N,N-디부틸포름아미드, N,N-디메틸아세트아미드, N-메틸피롤리돈 등의 알킬아미드류; 메탄올, 에탄올, 프로판올, 부탄올 등의 알코올류; 에틸렌글리콜모노에틸에테르, 에틸렌글리콜모노메틸에테르, 에틸렌글리콜모노부틸에테르, 디에틸렌글리콜모노에틸에테르, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노에틸에테르, 디프로필렌글리콜디에틸에테르, 트리에틸렌글리콜모노에틸에테르 등의 글리콜에테르류(셀로솔브); 그외 디메틸아세트아미드(DMAc), N,N-디에틸아세트아미드, 디메틸포름아미드(DMF), 디에틸포름아미드(DEF), N,N-디메틸아세트아미드(DMAc), N-메틸피롤리돈(NMP), N-에틸피롤리돈(NEP), 1,3-디메틸-2-이미다졸리디논, N,N-디메틸메톡시아세트아미드, 디메틸술폭사이드, 피리딘, 디메틸술폰, 헥사메틸포스포아미드, 테트라메틸우레아, N-메틸카르로락탐, 테트라히드로퓨란, m-디옥산, P-디옥산, 1,2-디메톡시에탄 등을 사용할 수 있고, 구체적으로는 알코올, 보다 구체적으로 에탄올을 사용할 수 있으나, 이에 제한되는 것은 아니다.
상기 세척은 원심분리 하에 수행될 수 있으며, 예를 들면 6,000 내지 10,000rpm으로 수행될 수 있으며, 그 시간은 예를 들면 3분 내지 60분, 예를 들어 상기 범위 내에서 3분 내지 30분, 3분 내지 30분, 5분 내지 30분 등으로 수행될 수 있으나, 이에 제한되는 것은 아니다.
상기 세척은 원심분리를 하지 않고, 필터로 입자를 걸러내어 수행될 수도 있다. 필터는 다공성 실리카 입자의 직경 이하의 기공을 가지는 것일 수 있다. 반응액을 그러한 필터로 걸러내면 입자만이 필터 위에 남고, 그 필터 위에 물 및/또는 유기용매를 부어 세척할 수 있다.
상기 세척 시에 물과 유기용매를 1회 또는 수회 번갈아 사용할 수 있으며, 물 또는 유기용매 단독으로도 1회 또는 수회 세척할 수 있다. 상기 수회는 예를 들면 2회 이상, 10회 이하, 예를 들어, 3회 이상 10회 이하, 4회 이상 8회 이하, 4회 이상 6회 이하 등일 수 있다.
상기 건조는 예를 들면 20℃ 내지 100℃로 수행될 수 있으나, 이에 제한되는 것은 아니고, 진공 상태에서 수행될 수도 있다.
이후, 상기 얻어진 다공성 실리카 입자의 기공을 확장하고, 기공 확장은 기공 팽창제를 사용하여 수행될 수 있다.
상기 기공 팽창제는 예를 들면 트리메틸벤젠, 트리에틸벤젠, 트리프로필벤젠, 트리부틸벤젠, 트리펜틸벤젠, 트리헥실벤젠, 톨루엔, 벤젠 등을 사용할 수 있고, 구체적으로, 트리메틸벤젠을 사용할 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기 기공 팽창제는 예를 들면 N,N-디메틸헥사데실아민(N,N-dimethylhexadecylamine,DMHA)를 사용할 수 있으나, 이에 제한되는 것은 아니다.
상기 기공 확장은 예를 들면 용매 중의 다공성 실리카 입자를 기공 팽창제와 혼합하고, 가열하여 반응시켜 수행될 수 있다.
상기 용매는 예를 들면 물 및/또는 유기용매일 수 있고, 유기용매는 예를 들면 1,4-디옥산 등의 에테르류(특히 고리형상 에테르류); 클로로포름, 염화메틸렌, 4염화탄소, 1,2-디클로로에탄, 디클로로에틸렌, 트리클로로에틸렌, 퍼클로로에틸렌, 디클로로프로판, 염화아밀, 1,2-디브로모에탄 등의 할로겐화 탄화수소류; 아세톤, 메틸이소부틸케톤, 시클로헥산온 등의 케톤류; 벤젠, 톨루엔, 크실렌 등의 탄소계 방향족류; N,N-디메틸포름아미드, N,N-디부틸포름아미드, N,N-디메틸아세트아미드, N-메틸피롤리돈 등의 알킬아미드류; 메탄올, 에탄올, 프로판올, 부탄올 등의 알코올류; 등을 사용할 수 있고, 구체적으로는 알코올, 보다 구체적으로 에탄올을 사용할 수 있으나, 이에 제한되는 것은 아니다.
상기 다공성 실리카 입자는 예를 들면 용매 1리터당 10g 내지 200g, 예를 들어 상기 범위 내에서 10g 내지 150g, 10g 내지 100g, 30g 내지 100g, 40g 내지 100g, 50g 내지 100g, 50g 내지 80g, 60g 내지 80g 등의 비율로 첨가될 수 있으나, 이에 제한되는 것은 아니다.
상기 다공성 실리카 입자는 용매 중에 고르게 분산되어 있는 것일 수 있고, 예를 들면 용매에 다공성 실리카 입자를 첨가하고 초음파 분산시킨 것일 수 있다. 혼합용매를 사용하는 경우에는 제1 용매에 다공성 실리카 입자를 분산시킨 후에 제2 용매를 첨가한 것일 수 있다.
상기 기공 팽창제는 예를 들면 용매 100부피부에 대하여 10 내지 200부피부, 상기 범위 내에서, 10 내지 150부피부, 10 내지 100부피부, 10 내지 80부피부, 30 내지 80부피부, 30 내지 70부피부 등의 비율로 첨가될 수 있으나, 이에 제한되는 것은 아니다.
상기 반응은 예를 들면 120℃ 내지 190℃로 수행될 수 있다. 예를 들어 상기 범위 내에서 120℃ 내지 190℃, 120℃ 내지 180℃, 120℃ 내지 170℃, 130℃ 내지 170℃, 130℃ 내지 160℃, 130℃ 내지 150℃, 130℃ 내지 140℃ 등으로 수행될 수 있으나, 이에 제한되는 것은 아니다.
상기 반응은 예를 들면 6시간 내지 96시간 수행 수행될 수 있다. 예를 들어 상기 범위 내에서 30시간 내지 96시간, 30시간 내지 96시간, 30시간 내지 80시간, 30시간 내지 72시간, 24시간 내지 80시간, 24시간 내지 72시간, 36시간 내지 96시간, 36시간 내지 80시간, 36시간 내지 72시간, 36시간 내지 66시간, 36시간 내지 60시간, 48시간 내지 96시간, 48시간 내지 88시간, 48시간 내지 80시간, 48시간 내지 72시간, 6시간 내지 96시간, 7시간 내지 96시간, 8시간 내지 80시간, 9시간 내지 72시간, 9시간 내지 80시간, 6시간 내지 72시간, 9시간 내지 96시간, 10시간 내지 80시간, 10시간 내지 72시간, 12시간 내지 66시간, 13시간 내지 60시간, 14시간 내지 96시간, 15시간 내지 88시간, 16시간 내지 80시간, 17시간 내지 72시간 등일 수 있으나, 이에 제한되는 것은 아니다.
상기 예시한 범위 내에서 시간 및 온도를 조절하여 반응이 과다하지 않으면서 충분히 수행될 수 있도록 할 수 있다. 예를 들면 반응 온도가 낮아지면 반응 시간을 늘리거나, 반응 온도가 낮아지면 반응 시간을 짧게하는 등에 의할 수 있다. 반응이 충분하지 않으면 기공의 확장이 충분하지 못할 수 있고, 반응이 과다하게 진행되면 기공의 과다 확장에 의해 입자가 붕괴될 수 있다.
상기 반응은 예를 들면 단계적으로 승온시켜 수행될 수 있다. 구체적으로, 상온에서 상기 온도까지 0.5℃/분 내지 15℃/분의 속도로 단계적으로 승온시켜 수행될 수 있으며, 예를 들어 상기 범위 내에서 1℃/분 내지 15℃/분, 3℃/분 내지 15℃/분, 3℃/분 내지 12℃/분, 3℃/분 내지 10℃/분 등일 수 있으나, 이에 제한되는 것은 아니다.
상기 반응은 교반 하에 수행될 수 있다. 예를 들면 100rpm 이상의 속도로 교반될 수 있고, 구체적으로 100rpm 내지 1000rpm의 속도로 수행도리 수 있으나, 이에 제한되는 것은 아니다.
상기 반응 이후에는 반응액을 서서히 냉각시킬 수 있으며, 예를 들면 단계적으로 감온하여 냉각시킬 수 있다. 구체적으로 상기 온도에서 상온까지 0.5℃/분 내지 20℃/분의 속도로 단계적으로 감온시켜 수행될 수 있으며, 예를 들어 상기 범위 내에서 1℃/분 내지 20℃/분, 3℃/분 내지 20℃/분, 3℃/분 내지 12℃/분, 3℃/분 내지 10℃/분 등일 수 있으나, 이에 제한되는 것은 아니다.
상기 냉각 이후에 반응 산물을 세척 및 건조시켜 기공이 확장된 다공성 실리카 입자를 얻을 수 있고, 필요에 따라 세척 전에 미반응 물질의 분리가 선행될 수 있다.
상기 미반응 물질의 분리는 예를 들면 원심분리로 상등액을 분리하여 수행될 수 있고, 원심분리는 예를 들면 6,000 내지 10,000rpm으로 수행될 수 있으며, 그 시간은 예를 들면 3분 내지 60분, 예를 들어 상기 범위 내에서 3분 내지 30분, 3분 내지 30분, 5분 내지 30분 등으로 수행될 수 있으나, 이에 제한되는 것은 아니다.
상기 세척은 물 및/또는 유기용매로 할 수 있고, 구체적으로는 용매별로 녹일 수 있는 물질이 상이하므로 물과 유기용매를 1회 또는 수회 번갈아 사용할 수 있으며, 물 또는 유기용매 단독으로도 1회 또는 수회 세척할 수 있다. 상기 수회는 예를 들면 2회 이상, 10회 이하, 예를 들어, 3회, 4회, 5회, 6회, 7회, 8회 등일 수 있다.
상기 유기용매는 예를 들면 1,4-디옥산 등의 에테르류(특히 고리형상 에테르류); 클로로포름, 염화메틸렌, 4염화탄소, 1,2-디클로로에탄, 디클로로에틸렌, 트리클로로에틸렌, 퍼클로로에틸렌, 디클로로프로판, 염화아밀, 1,2-디브로모에탄 등의 할로겐화 탄화수소류; 아세톤, 메틸이소부틸케톤, 시클로헥산온 등의 케톤류; 벤젠, 톨루엔, 크실렌 등의 탄소계 방향족류; N,N-디메틸포름아미드, N,N-디부틸포름아미드, N,N-디메틸아세트아미드, N-메틸피롤리돈 등의 알킬아미드류; 메탄올, 에탄올, 프로판올, 부탄올 등의 알코올류; 등을 사용할 수 있고, 구체적으로는 알코올, 보다 구체적으로 에탄올을 사용할 수 있으나, 이에 제한되는 것은 아니다.
상기 세척은 원심분리 하에 수행될 수 있으며, 예를 들면 6,000 내지 10,000rpm으로 수행될 수 있으며, 그 시간은 예를 들면 3분 내지 60분, 예를 들어 상기 범위 내에서 3분 내지 30분, 3분 내지 30분, 5분 내지 30분 등으로 수행될 수 있으나, 이에 제한되는 것은 아니다.
상기 세척은 원심분리를 하지 않고, 필터로 입자를 걸러내어 수행될 수도 있다. 필터는 다공성 실리카 입자의 직경 이하의 기공을 가지는 것일 수 있다. 반응액을 그러한 필터로 걸러내면 입자만이 필터 위에 남고, 그 필터 위에 물 및/또는 유기용매를 부어 세척할 수 있다.
상기 세척 시에 물과 유기용매를 1회 또는 수회 번갈아 사용할 수 있으며, 물 또는 유기용매 단독으로도 1회 또는 수회 세척할 수 있다. 상기 수회는 예를 들면 2회 이상, 10회 이하, 예를 들어, 3회 이상 10회 이하, 4회 이상 8회 이하, 4회 이상 6회 이하 등일 수 있다.
상기 건조는 예를 들면 20℃ 내지 100℃로 수행될 수 있으나, 이에 제한되는 것은 아니고, 진공 상태에서 수행될 수도 있다.
이후, 얻어진 입자는 하소될 수 있는데, 하소는 입자를 가열하여 그 표면 및 내부의 실라놀기를 제거하여 입자의 반응성을 낮추고, 좀 더 치밀한 구조를 갖게 하고, 기공을 채우는 유기물들을 제거하는 공정으로, 예를 들면 400℃ 이상의 온도로 가열될 수 있다. 그 상한은 특별히 제한되지 않으며, 예를 들면 1000℃, 900℃, 800℃, 700℃ 등일 수 있다. 가열은 예를 들면 3시간 이상, 4시간 이상 등으로 수행될 수 있다. 그 상한은 특별히 한정되지 않으며, 예를 들면 24시간, 12시간, 10시간, 8시간, 6시간, 5시간 등일 수 있다. 보다 구체적으로는 400℃ 내지 700℃에서 3시간 내지 8시간, 구체적으로 500℃ 내지 600℃에서 4시간 내지 5시간 수행될 수 있으나, 이에 제한되는 것은 아니다.
기공을 채우는 유기물을 제거함으로써, 잔존 유기물에 의해 나타나는 세포 독성, 거품 발생 등의 문제를 방지할 수 있다.
이후, 얻어진 다공성 실리카 입자는 표면개질 될 수 있고, 표면 개질은 표면 및/또는 기공 내부에 수행될 수 있다. 입자 표면과 기공 내부는 동일하게 표면개질될 수도 있고, 서로 다르게 표면개질될 수도 있다.
상기 표면 개질을 통해 입자가 대전되도록 하거나, 친수성 및/또는 소수성 성질을 갖도록 할 수 있다.
보다 구체적으로, TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자의 효과적인 담지를 위하여, 아미노기, 아미노알킬기, 알킬아미노기, 질소원자를 포함하는 헤테로고리 방향족화합물기, 시안기 및 구아니딘기로 이루어진 군에서 선택된 적어도 하나의 치환기를 갖도록 하여, 상기 다공성 실리카 입자의 표면개질을 수행할 수 있다.
표면 개질은 예를 들면 도입하고자 하는 친수성, 소수성, 양이온성, 음이온성 등의 치환기를 갖는 화합물을 입자와 반응시켜 수행할 수 있고, 상기 화합물은 예를 들면 C1 내지 C10 알콕시기를 갖는 알콕시실란일 수 있으나, 이에 제한되는 것은 아니다.
상기 알콕시실란은 상기 알콕시기를 1개 이상 갖는 것으로서, 예를 들면 1 내지 3개 가질 수 있고, 알콕시기가 결합되지 않은 부위에 도입하고자 하는 치환기가 있거나 이로 치환된 치환기가 있을 수 있다.
상기 알콕시실란을 다공성 실리콘 입자와 반응시키면 실리콘 원자와 산소 원자간 공유 결합이 형성되어 알콕시실란이 다공성 실리콘 입자의 표면 및/또는 기공 내부와 결합될 수 있고, 상기 알콕시실란은 도입하고자 하는 치환기를 가지고 있는 바, 해당 치환기가 다공성 실리콘 입자의 표면 및/또는 기공 내부에 도입될 수 있다.
상기 반응은 용매에 분산시킨 다공성 실리카 입자를 알콕시실란과 반응시켜 수행할 수 있다.
상기 용매는 물 및/또는 유기용매일 수 있고, 유기용매는 예를 들면 1,4-디옥산 등의 에테르류(특히 고리형상 에테르류); 클로로포름, 염화메틸렌, 4염화탄소, 1,2-디클로로에탄, 디클로로에틸렌, 트리클로로에틸렌, 퍼클로로에틸렌, 디클로로프로판, 염화아밀, 1,2-디브로모에탄 등의 할로겐화 탄화수소류; 아세톤, 메틸이소부틸케톤, γ-부티로락톤, 1,3-디메틸-이미다졸리디논, 메틸에틸케톤, 시클로헥사논, 시클로펜타논, 4-하이드록시-4-메틸-2-펜타논 등의 케톤류; 벤젠, 톨루엔, 크실렌, 테트라메틸벤젠 등의 탄소계 방향족류 ; N,N-디메틸포름아미드, N,N-디부틸포름아미드, N,N-디메틸아세트아미드, N-메틸피롤리돈 등의 알킬아미드류; 메탄올, 에탄올, 프로판올, 부탄올 등의 알코올류; 에틸렌글리콜모노에틸에테르, 에틸렌글리콜모노메틸에테르, 에틸렌글리콜모노부틸에테르, 디에틸렌글리콜모노에틸에테르, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노에틸에테르, 디프로필렌글리콜디에틸에테르, 트리에틸렌글리콜모노에틸에테르 등의 글리콜에테르류(셀로솔브); 그외 디메틸아세트아미드(DMAc), N,N-디에틸아세트아미드, 디메틸포름아미드(DMF), 디에틸포름아미드(DEF), N,N-디메틸아세트아미드(DMAc), N-메틸피롤리돈(NMP), N-에틸피롤리돈(NEP), 1,3-디메틸-2-이미다졸리디논, N,N-디메틸메톡시아세트아미드, 디메틸술폭사이드, 피리딘, 디메틸술폰, 헥사메틸포스포아미드, 테트라메틸우레아, N-메틸카르로락탐, 테트라히드로퓨란, m-디옥산, P-디옥산, 1,2-디메톡시에탄 등을 사용할 수 있고, 구체적으로는 톨루엔을 사용할 수 있으나, 이에 제한되는 것은 아니다.
상기 양전하로의 대전은 예를 들면 아미노기, 아미노알킬기 등 질소함유기 등의 염기성기를 갖는 알콕시실란과 반응시켜 수행할 수 있다. 구체적으로는 N-[3-(Trimethoxysilyl)propyl]ethylenediamine, N1-(3-Trimethoxysilylpropyl)diethylenetriamine, (3-Aminopropyl)trimethoxysilane, N-[3-(Trimethoxysilyl)propyl]aniline, Trimethoxy[3-(methylamino)propyl]silane, 3-(2-Aminoethylamino)propyldimethoxymethylsilane 등을 사용할 수 있으나, 이에 제한되는 것은 아니다.
상기 음전하로의 대전은 예를 들면 카르복시기, 술폰산기, 티올기 등의 산성기를 갖는 알콕시실란과 반응시켜 수행할 수 있다. 구체적으로는 (3-Mercaptopropyl) trimethoxysilane 등을 사용할 수 있으나, 이에 제한되는 것은 아니다.
상기 무전하(양전하 또는 음전하가 아닌, 전하가 없는 상태)로의 대전은 전하를 갖지 않는 통상의 작용기를 갖는 알콕시실란과 반응시켜 수행할 수 있고, 상기 양전하로의 대전과 음전하로의 대전을 적절히 조합하여, 양전하와 음전하의 상쇄를 통한 무전하로 대전시킬 수 있으나, 이에 제한되는 것은 아니다.
상기 친수성 성질은 친수성기, 예를 들면 히드록시기, 카르복시기, 아미노기, 카르보닐기, 설프히드릴기, 포스페이트기, 티올기, 암모늄기, 에스터기, 이미드기, 티오이미드기, 케토기, 에터기, 인덴기, 설포닐기, 폴리에틸렌글리콜기 등을 갖는 알콕시실란과 반응시켜 갖도록 할 수 있다. 구체적으로는, N-[3-(Trimethoxysilyl)propyl]ethylenediamine, N1-(3-Trimethoxysilylpropyl)diethylenetriamine, (3-Aminopropyl)trimethoxysilane, (3-Mercaptopropyl) trimethoxysilane, Trimethoxy[3-(methylamino)propyl]silane, 3-(2-Aminoethylamino)propyldimethoxymethylsilane 등을 사용할 수 있으나, 이에 제한되는 것은 아니다.
상기 소수성 성질은 소수성 치환기, 예를 들면 치환 또는 비치환된 C1 내지 C30의 알킬기, 치환 또는 비치환된 C3 내지 C30의 사이클로알킬기, 치환 또는 비치환된 C6 내지 C30의 아릴기, 치환 또는 비치환된 C2 내지 C30의 헤테로아릴기, 할로겐기, C1 내지 C30의 에스테르기, 할로겐 함유기 등을 갖는 알콕시실란과 반응시켜 갖도록 할 수 있다. 구체적으로는, Trimethoxy(octadecyl)silane, Trimethoxy-n-octylsilane, Trimethoxy(propyl)silane, Isobutyl(trimethoxy)silane, Trimethoxy(7-octen-1-yl)silane, Trimethoxy(3,3,3-trifluoropropyl)silane, Trimethoxy(2-phenylethyl)silane, Vinyltrimethoxysilane, Cyanomethyl, 3-(trimethoxysilyl)propyl] trithiocarbonate, (3-Bromopropyl)trimethoxysilane 등을 사용할 수 있으나, 이에 제한되는 것은 아니다.
그 외에 상기 표면 개질을 통해 난용성(소수성) TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질과의 결합력 증진을 위해 기공 내부에는 소수성 치환기가 존재하고, 사용, 제형화의 용이성 등의 측면에서 입자의 표면은 친수성 치환기가 존재하도록 하는 등의 처리도 가능하고, 표면에 다른 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질을 결합시키기 위한 치환기가 존재할 수도 있다.
또한, 상기 표면 개질은 복합적으로 수행될 수도 있다. 예를 들어, 외부 표면 또는 기공 내부에 2회 이상의 표면 개질이 수행될 수도 있다. 구체적인 예를 들자면, 아미노기가 도입된 실리카 입자에 카르복실기를 포함하는 화합물을 아미드 결합으로 결합시켜 양전하로 대전된 입자를 다른 표면특성을 가지게 변화시킬 수 있으나, 이에 제한되는 것은 아니다.
상기 다공성 실리카 입자의 알콕시실란과의 반응은 예를 들면 가열 하에 수행될 수 있고, 가열은 예를 들면 80℃ 내지 180℃, 예를 들어 상기 범위 내에서 80℃ 내지 160℃, 80℃ 내지 150℃, 100℃ 내지 160℃, 100℃ 내지 150℃, 110℃ 내지 150℃ 등으로 수행될 수 있으나, 이에 제한되는 것은 아니다.
상기 다공성 실리카 입자의 알콕시실란과의 반응은 예를 들면 4시간 내지 20시간, 예를 들어 상기 범위 내에서 4시간 내지 18시간, 4시간 내지 16시간, 6시간 내지 18시간, 6시간 내지 16시간, 8시간 내지 18시간, 8시간 내지 16시간, 8시간 내지 14시간, 10시간 내지 14시간 등으로 수행될 수 있으나, 이에 제한되는 것은 아니다.
상기 반응 온도, 시간, 그리고 표면개질에 사용되는 화합물의 양 등은 표면개질하고자 하는 정도에 따라 선택될 수 있는 것으로서, 본 발명의 핵산분자 또는 물질들의 친수성, 소수성, 전하 정도에 따라 반응 조건을 달리하여 다공성 실리카 입자의 친수성, 소수성, 전하 정도를 조절함으로써, TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질들의 방출 속도를 조절할 수 있다. 예를 들면, TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질들이 중성의 pH에서 강한 음전하를 띠는 경우에는 다공성 실리카 입자가 강한 양전하를 띠도록 하기 위해, 반응 온도를 높이거나 반응 시간을 길게 할 수 있으며, 화합물 처리량을 늘릴 수 있으나, 이에 제한되는 것은 아니다.
또한, 본 발명의 다공성 실리카 입자는 예를 들면 소기공의 입자 제조, 기공 확장, 표면 개질, 기공 내부 개질 공정을 거쳐 제조된 것일 수도 있다.
상기 소기공의 입자 제조 및 기공 확장 공정은 전술한 바의 공정에 의할 수 있으며, 소기공의 입자 제조 이후, 그리고 기공 확장 공정 이후에 세척 및 건조 공정을 수행할 수 있다.
필요에 따라 세척 전에 미반응 물질의 분리가 선행될 수 있고, 미반응 물질의 분리는 예를 들면 원심분리로 상등액을 분리하여 수행될 수 있다.
상기 원심분리는 예를 들면 6,000 내지 10,000rpm으로 수행될 수 있으며, 그 시간은 예를 들면 3분 내지 60분, 구체적으로, 상기 범위 내에서 3분 내지 30분, 3분 내지 30분, 5분 내지 30분 등으로 수행될 수 있으나, 이에 제한되는 것은 아니다.
상기 소기공의 입자 제조 이후의 세척은 앞서 예시한 범위 내의 방법/조건으로 수행될 수 있으나, 이에 제한되는 것은 아니다.
상기 기공 확장 이후의 세척은 앞서 예시보다는 보다 완화된 조건으로 수행할 수 있다. 예를 들면, 세척을 3회 이내 수행할 수 있으나, 이에 제한되는 것은 아니다.
상기 표면 개질과 기공 내부 개질은 각각 전술한 바의 공정에 의할 수 있으며, 표면 개질과 기공 내부 개질의 순서로 공정이 수행될 수 있고, 상기 두 공정 사이에 입자의 세척 공정이 추가로 수행될 수 있다.
상기 소기공의 입자 제조 및 기공 확장 이후에 세척을 보다 완화된 조건으로 수행하는 경우 기공 내부에 입자 제조, 기공 확장에 사용된 계면활성제 등의 반응액이 채워져 있어 표면 개질시에 기공 내부는 개질되지 않고 표면만 개질될 수 있다. 그러고 나서 입자를 세척하면 기공 내부의 반응액이 제거될 수 있다.
상기 표면 개질과 기공 내부 개질 공정 사이의 입자 세척은 물 및/또는 유기용매로 할 수 있고, 구체적으로는 용매별로 녹일 수 있는 물질이 상이하므로 물과 유기용매를 1회 또는 수회 번갈아 사용할 수 있으며, 물 또는 유기용매 단독으로도 1회 또는 수회 세척할 수 있다. 상기 수회는 예를 들면 2회 이상, 10회 이하, 구체적으로, 3회 이상 10회 이하, 4회 이상 8회 이하, 4회 이상 6회 이하 등일 수 있다.
상기 세척은 원심분리 하에 수행될 수 있으며, 예를 들면 6,000 내지 10,000rpm으로 수행될 수 있으며, 그 시간은 예를 들면 3분 내지 60분, 구체적으로, 상기 범위 내에서 3분 내지 30분, 3분 내지 30분, 5분 내지 30분 등으로 수행될 수 있으나, 이에 제한되는 것은 아니다.
상기 세척은 원심분리를 하지 않고, 필터로 입자를 걸러내어 수행될 수도 있다. 필터는 다공성 실리카 입자의 직경 이하의 기공을 가지는 것일 수 있다. 반응액을 그러한 필터로 걸러내면 입자만이 필터 위에 남고, 그 필터 위에 물 및/또는 유기용매를 부어 세척할 수 있다.
상기 세척 시에 물과 유기용매를 1회 또는 수회 번갈아 사용할 수 있으며, 물 또는 유기용매 단독으로도 1회 또는 수회 세척할 수 있다. 상기 수회는 예를 들면 2회 이상, 10회 이하, 구체적으로, 3회 이상 10회 이하, 4회 이상 8회 이하, 4회 이상 6회 이하 등일 수 있다.
상기 건조는 예를 들면 20℃ 내지 100℃로 수행될 수 있으나, 이에 제한되는 것은 아니고, 진공 상태에서 수행될 수도 있다.
TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자는 다공성 실리카 입자의 표면 및/또는 기공 내부에 담지될 수 있고, 담지는 예를 들면 용매 중의 다공성 실리카 입자와 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자를 혼합하여 수행될 수 있다.
상기 용매는 물 및/또는 유기용매일 수 있으며, 유기용매는 예를 들면 1,4-디옥산 등의 에테르류(특히 고리형상 에테르류); 클로로포름, 염화메틸렌, 4염화탄소, 1,2-디클로로에탄, 디클로로에틸렌, 트리클로로에틸렌, 퍼클로로에틸렌, 디클로로프로판, 염화아밀, 1,2-디브로모에탄 등의 할로겐화 탄화수소류; 아세톤, 메틸이소부틸케톤, 시클로헥산온 등의 케톤류; 벤젠, 톨루엔, 크실렌 등의 탄소계 방향족류; N,N-디메틸포름아미드, N,N-디부틸포름아미드, N,N-디메틸아세트아미드, N-메틸피롤리돈 등의 알킬아미드류; 메탄올, 에탄올, 프로판올, 부탄올 등의 알코올류; 등을 사용할 수 있다.
또한, 상기 용매로 PBS(phosphate buffered saline solution), SBF(Simulated Body Fluid), Borate-buffered saline, Tris-buffered saline 등을 사용할 수도 있다.
상기 다공성 실리카 입자와 본 발명의 핵산분자의 비율은 특별히 한정되지 않으며, 예를 들면 중량비가 1: 0.05 내지 0.8, 예를 들어 상기 범위 내에서 1: 0.05 내지 0.7, 1:0.05 내지 0.6, 1: 0.1 내지 0.8, 1: 0.1 내지 0.6, 1: 0.2 내지 0.8, 1: 0.2 내지 0.6 등일 수 있다.
상기 다공성 실리카 입자에 담지된 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자는 연장된 시간에 걸쳐 점진적으로 방출될 수 있다. 이와 같이 느린 방출은 연속성 또는 비연속성, 선형 또는 비선형일 수 있으며, 다공성 실리카 입자의 특징 및/또는 그와 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자와의 상호작용에 기인하여 달라질 수 있다.
상기 다공성 실리카 입자에 담지된 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자는 다공성 실리카 입자가 생분해되면서 방출되는데, 본 발명에 따른 다공성 실리카 입자는 서서히 분해되어 담지된 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자가 서방적으로 방출되도록 할 수 있다. 이는 예를 들면 다공성 실리카 입자의 표면적, 입경, 기공 직경, 표면 및/또는 기공 내부의 치환기, 표면의 치밀함 정도 등을 조절함으로써 조절될 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기 다공성 실리카 입자에 담지된 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자는 다공성 실리카 입자로부터 이탈되어 확산되면서도 방출될 수 있고, 이는 다공성 실리카 입자와 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자, TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자 방출 환경과의 관계에 영향을 받는 것인 바, 이를 조절하여 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자 방출을 조절할 수 있다. 예를 들면 표면개질에 의해 다공성 실리카 입자의 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자와의 결합력을 강화 또는 약화시킴으로써 조절할 수 있다.
보다 구체적인 예를 들자면, 담지된 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질이 난용성(소수성)인 경우에는 입자의 표면 및/또는 기공 내부가 소수성 치환기를 가져 다공성 실리카 입자와 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질과의 결합력이 증가된 것일 수 있고, 이에 의해 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질이 서방적으로 방출될 수 있다. 이는 예를 들면 다공성 실리카 입자가 소수성 치환기를 갖는 알콕시실란으로 표면개질된 것일 수 있다.
본 명세서에서 "난용성"은 (물에 대해) 불용성(insoluble), 실질적으로 불용성(practically insoluble) 또는 극히 약간의 가용성(only slightly soluble)인 것을 포함하는 의미로서 이는 "Pharmaceutical Science" 18th Edition(U.S.P., Remington, Mack Publishing Company 발행)에 정의되어 있는 용어이다.
상기 난용성 물질은 예를 들면 1기압, 25℃에서 수용해도가 10g/L 미만, 구체적으로 5g/L 미만, 보다 구체적으로 1g/L 미만일 수 있으나, 이에 제한되는 것은 아니다.
담지된 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질이 수용성(친수성)인 경우에는 입자의 표면 및/또는 기공 내부가 친수성 치환기를 가져 다공성 실리카 입자와 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질과의 결합력이 증가된 것일 수 있고, 이에 의해 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질이 서방적으로 방출될 수 있다. 이는 예를 들면 다공성 실리카 입자가 친수성 치환기를 갖는 알콕시실란으로 표면개질된 것일 수 있다.
수용성 물질은 예를 들면 1기압, 25℃에서 수용해도가 10g/L 이상일 수 있으나, 이에 제한되는 것은 아니다.
담지된 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질이 전하를 띠는 경우에는 입자의 표면 및/또는 기공 내부가 그와 반대 전하로 대전되어 다공성 실리카 입자와 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질과의 결합력이 증가된 것일 수 있고, 이에 의해 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질이 서방적으로 방출될 수 있다. 이는 예를 들면 다공성 실리카 입자가 산성기 또는 염기성기를 갖는 알콕시실란으로 표면개질된 것일 수 있다.
구체적으로, TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질이 중성의 pH에서 양전하를 띠는 것이라면 입자의 표면 및/또는 기공 내부가 중성의 pH에서 음전하로 대전되는 것일 수 있고, 이에 의해 다공성 실리카 입자와 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질과의 결합력이 증가되어 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질이 서방적으로 방출될 수 있다. 이는 예를 들면 다공성 실리카 입자가 카르복시기(-COOH), 술폰산기(-SO 3H) 등의 산성기를 갖는 알콕시실란으로 표면개질된 것일 수 있다.
또한, TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질이 중성의 pH에서 음전하를 띠는 것이라면 입자의 표면 및/또는 기공 내부가 양전하로 대전되는 것일 수 있고, 이에 의해 다공성 실리카 입자와 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질과의 결합력이 증가되어 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질이 서방적으로 방출될 수 있다. 이는 예를 들면 다공성 실리카 입자가 아미노기, 그 외 질소함유기 등의 염기성기를 갖는 알콕시실란으로 표면개질된 것일 수 있다.
TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질은 필요한 치료 유형, 방출 환경, 사용되는 다공성 실리카 입자에 의존하여 예를 들면 7일 내지 1년 또는 그 이상의 기간 동안 방출될 수 있다.
또한, 본 발명의 다공성 실리카 입자는 생분해성으로서 100% 분해될 수 있으므로, 이에 담지된 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자 또는 물질은 100% 방출될 수 있다.
상기 핵산분자는 siRNA, dsRNA, PNA 또는 miRNA의 일 가닥(strand)을 이루는 것일 수 있는데, 이러한 경우, 상기 siRNA, dsRNA, PNA 또는 miRNA는 RNAi(RNA 간섭; RNA interference)에 의해 상기 TSLP 유전자의 발현을 억제하는 것일 수 있고, 보다 구체적으로, TSLP mRNA 의 적어도 일부에 상보적으로 결합하여 TSLP 유전자의 발현을 억제하는 것일 수 있다.
상기 핵산분자는, 구체적으로, 하기 표 1에 개시된 서열번호 1의 서열로 이루어진 센스 RNA 및 서열번호 47의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 24의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 2의 서열로 이루어진 센스 RNA 및 서열번호 48의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 25의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 3의 서열로 이루어진 센스 RNA 및 서열번호 49의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 26의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 4의 서열로 이루어진 센스 RNA 및 서열번호 50의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 27의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 5의 서열로 이루어진 센스 RNA 및 서열번호 51의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 28의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 6의 서열로 이루어진 센스 RNA 및 서열번호 52의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 29의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 7의 서열로 이루어진 센스 RNA 및 서열번호 53의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 30의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 8의 서열로 이루어진 센스 RNA 및 서열번호 54의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 31의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 9의 서열로 이루어진 센스 RNA 및 서열번호 55의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 32의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 10의 서열로 이루어진 센스 RNA 및 서열번호 56의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 33의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 11의 서열로 이루어진 센스 RNA 및 서열번호 57의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 34의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 12의 서열로 이루어진 센스 RNA 및 서열번호 58의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 35의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 13의 서열로 이루어진 센스 RNA 및 서열번호 59의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 36의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 14의 서열로 이루어진 센스 RNA 및 서열번호 60의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 37의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 15의 서열로 이루어진 센스 RNA 및 서열번호 61의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 38의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 16의 서열로 이루어진 센스 RNA 및 서열번호 62의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 39의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 17의 서열로 이루어진 센스 RNA 및 서열번호 63의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 40의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 18의 서열로 이루어진 센스 RNA 및 서열번호 64의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 41의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 19의 서열로 이루어진 센스 RNA 및 서열번호 65의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 42의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 20의 서열로 이루어진 센스 RNA 및 서열번호 66의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 43의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 21의 서열로 이루어진 센스 RNA 및 서열번호 67의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 44의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 22의 서열로 이루어진 센스 RNA 및 서열번호 68의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 45의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 23의 서열로 이루어진 센스 RNA 및 서열번호 69의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA 또는 서열번호 46의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA 중 하나 이상일 수 있으나, 이에 제한되지 않는다.
Target sequence 1: 서열번호 1265'-GCA GCC UAU CUC AGU ACU A-3'(Position in gene sequence: 140) siRNA GC content: 47.37%
Sense strand: 서열번호 15'-GCA GCC UAU CUC AGU ACU A-3'
Antisense strand: 서열번호 475'-UAG UAC UGA GAU AGG CUG C-3'
dsRNA: 서열번호 245'-GCA GCC UAU CUC AGU ACU AUU UCU A-3'
Target sequence 2: 서열번호 1275'-GCC UAU CUC AGU ACU AUU U-3'(Position in gene sequence: 143) siRNA GC content: 36.85%
Sense strand: 서열번호 25'-GCC UAU CUC AGU ACU AUU U-3'
Antisense strand: 서열번호 485'-AAA UAG UAC UGA GAU AGG C-3'
dsRNA: 서열번호 255'-GCC UAU CUC AGU ACU AUU UCU AAA G-3'
Target sequence 3: 서열번호 1285'-GCC ACA UUG CCU UAC UGA A-3'(Position in gene sequence: 235) siRNA GC content: 47.37%
Sense strand: 서열번호 35'-GCC ACA UUG CCU UAC UGA A-3'
Antisense strand: 서열번호 495'-UUC AGU AAG GCA AUG UGG C-3'
dsRNA: 서열번호 265'-GCC ACA UUG CCU UAC UGA AAU CCA G-3'
Target sequence 4: 서열번호 1295'-CCA CAU UGC CUU ACU GAA A-3'(Position in gene sequence: 236) siRNA GC content: 42.11%
Sense strand: 서열번호 45'-CCA CAU UGC CUU ACU GAA A-3'
Antisense strand: 서열번호 505'-UUU CAG UAA GGC AAU GUG G-3'
dsRNA: 서열번호 275'-CCA CAU UGC CUU ACU GAA AUC CAG A-3'
Target sequence 5: 서열번호 1305'-UCC AGA GCC UAA CCU UCA A-3'(Position in gene sequence: 255) siRNA GC content: 47.37%
Sense strand: 서열번호 55'-UCC AGA GCC UAA CCU UCA A-3'
Antisense strand: 서열번호 515'-UUG AAG GUU AGG CUC UGG A-3'
dsRNA: 서열번호 285'-UCC AGA GCC UAA CCU UCA AUC CCC A-3'
Target sequence 6: 서열번호 1315'-CCA GAG CCU AAC CUU CAA U-3'(Position in gene sequence: 256) siRNA GC content: 47.37%
Sense strand: 서열번호 65'-CCA GAG CCU AAC CUU CAA U-3'
Antisense strand: 서열번호 525'-AUU GAA GGU UAG GCU CUG G-3'
dsRNA: 서열번호 295'-CCA GAG CCU AAC CUU CAA UCC CAC C-3'
Target sequence 7: 서열번호 1325'-GCG UCG CUC GCC AAA GAA A-3'(Position in gene sequence: 290) siRNA GC content: 52.9%
Sense strand: 서열번호 75'-GCG UCG CUC GCC AAA GAA A-3'
Antisense strand: 서열번호 535'-UUU CUU UGG CGA GCG ACG C-3'
dsRNA: 서열번호 305'-GCG UCG CUC GCC AAA GAA AUG UUC G-3'
Target sequence 8: 서열번호 1335'-CCA AAG AAA UGU UCG CCA U-3'(Position in gene sequence: 300) siRNA GC content: 42.11%
Sense strand: 서열번호 85'-CCA AAG AAA UGU UCG CCA U-3'
Antisense strand: 서열번호 545'-AUG GCG AAC AUU UCU UUG G-3'
dsRNA: 서열번호 315'-CCA AAG AAA UGU UCG CCA UGA AAA C-3'
Target sequence 9: 서열번호 1345'-GCU UCA AUC GAC CUU UAC U-3'(Position in gene sequence: 468) siRNA GC content: 42.11%
Sense strand: 서열번호 95'-GCU UCA AUC GAC CUU UAC U-3'
Antisense strand: 서열번호 555'-AGU AAA GGU CGA UUG AAG C-3'
dsRNA: 서열번호 325'-GCU UCA AUC GAC CUU UAC UGA AAC A-3'
Target sequence 10: 서열번호 1355'-UCA AUC GAC CUU UAC UGA A-3'(Position in gene sequence: 471) siRNA GC content: 36.85%
Sense strand: 서열번호 105'-UCA AUC GAC CUU UAC UGA A-3'
Antisense strand: 서열번호 565'-UUC AGU AAA GGU CGA UUG A-3'
dsRNA: 서열번호 335'-UCA AUC GAC CUU UAC UGA AAC AAC A-3'
Target sequence 11: 서열번호 1365'-GCC UUA CUA UAU GUU CUG UC-3'(Position in gene sequence: 32) siRNA GC content: 40.00%
Sense strand: 서열번호 115'-GCC UUA CUA UAU GUU CUG UC-3'
Antisense strand: 서열번호 575'-GAC AGA ACA UAU AGU AAG GC-3'
dsRNA: 서열번호 345'-GCC UUA CUA UAU GUU CUG UCA GUU U-3'
Target sequence 12: 서열번호 1375'-CCU UAC UAU AUG UUC UGU CAG-3'(Position in gene sequence: 33) siRNA GC content: 38.10%
Sense strand: 서열번호 125'-CCU UAC UAU AUG UUC UGU CAG-3'
Antisense strand: 서열번호 585'-CUG ACA GAA CAU AUA GUA AGG-3'
dsRNA: 서열번호 355'-CCU UAC UAU AUG UUC UGU CAG UUU C-3'
Target sequence 13: 서열번호 1385'-CAG GAA AAU CUU CAU CUU AC-3'(Position in gene sequence: 61) siRNA GC content: 35.00%
Sense strand: 서열번호 135'-CAG GAA AAU CUU CAU CUU AC-3'
Antisense strand: 서열번호 595'-GUA AGA UGA AGA UUU UCC UG-3'
dsRNA: 서열번호 365'-CAG GAA AAU CUU CAU CUU ACA ACU U-3'
Target sequence 14: 서열번호 1395'-GCU GGU GUU AAC UUA CGA CU-3'(Position in gene sequence: 91) siRNA GC content: 45.00%
Sense strand: 서열번호 145'-GCU GGU GUU AAC UUA CGA CU-3'
Antisense strand: 서열번호 605'-AGU CGU AAG UUA ACA CCA GC-3'
dsRNA: 서열번호 375'-GCU GGU GUU AAC UUA CGA CUC UUC A-3'
Target sequence 15: 서열번호 1405'-GGU GUU AAC UUA CGA CUU CA-3'(Position in gene sequence: 94) siRNA GC content: 40.00%
Sense strand: 서열번호 155'-GGU GUU AAC UUA CGA CUU CA-3'
Antisense strand: 서열번호 615'-UGA AGU CGU AAG UUA ACA CC-3'
dsRNA: 서열번호 385'-GGU GUU AAC UUA CGA CUU CAC UAA C-3'
Target sequence 16: 서열번호 1415'-CAC UAA CUG UGA CUU UGA G-3'(Position in gene sequence: 112) siRNA GC content: 42.11%
Sense strand: 서열번호 165'-CAC UAA CUG UGA CUU UGA G-3'
Antisense strand: 서열번호 625'-CUC AAA GUC ACA GUU AGU G-3'
dsRNA: 서열번호 395'-CAC UAA CUG UGA CUU UGA GAA GAU U-3'
Target sequence 17: 서열번호 1425'-GAC CUG AUU ACA UAU AUG AG-3'(Position in gene sequence: 167) siRNA GC content: 35.00%
Sense strand: 서열번호 175'-GAC CUG AUU ACA UAU AUG AG-3'
Antisense strand: 서열번호 635'-CUC AUA UAU GUA AUC AGG UC-3'
dsRNA: 서열번호 405'-GAC CUG AUU ACA UAU AUG AGU GGG A-3'
Target sequence 18: 서열번호 1435'-CCG AGU UCA ACA ACA CCG U-3'(Position in gene sequence: 201) siRNA GC content: 52.63%
Sense strand: 서열번호 185'-CCG AGU UCA ACA ACA CCG U-3'
Antisense strand: 서열번호 645'-ACG GUG UUG UUG AAC UCG G-3'
dsRNA: 서열번호 415'-CCG AGU UCA ACA ACA CCG UCU CUU G-3'
Target sequence 19: 서열번호 1445'-ACC GUC UCU UGU AGC AAU CG-3'(Position in gene sequence: 215) siRNA GC content: 50.00%
Sense strand: 서열번호 195'-ACC GUC UCU UGU AGC AAU CG-3'
Antisense strand: 서열번호 655'-CGA UUG CUA CAA GAG ACG GU-3'
dsRNA: 서열번호 425'-ACC GUC UCU UGU AGC AAU CGG CCA C-3'
Target sequence 20: 서열번호 1455'-AAG GCU GCC UUA GCU AUC UG-3'(Position in gene sequence: 326) siRNA GC content: 50.00%
Sense strand: 서열번호 205'-AAG GCU GCC UUA GCU AUC UG-3'
Antisense strand: 서열번호 665'-CAG AUA GCU AAG GCA GCC UU-3'
dsRNA: 서열번호 435'-AAG GCU GCC UUA GCU AUC UGG UGC C-3'
Target sequence 21: 서열번호 1465'-CGG AAA CUC AGA UAA AUG C-3'(Position in gene sequence: 360) siRNA GC content: 42.11%
Sense strand: 서열번호 215'-CGG AAA CUC AGA UAA AUG C-3'
Antisense strand: 서열번호 675'-GCA UUU AUC UGA GUU UCC G-3'
dsRNA: 서열번호 445'-CGG AAA CUC AGA UAA AUG CUA CUC A-3'
Target sequence 22: 서열번호 1475'-CCA ATA AAT GTC TGG AAC AA-3'(Position in gene sequence: 420) siRNA GC content: 35.00%
Sense strand: 서열번호 225'-CCA AUA AAU GUC UGG AAC AA-3'
Antisense strand: 서열번호 685'-UUG UUC CAG ACA UUU AUU GG-3'
dsRNA: 서열번호 455'-CCA ATA AAT GTC TGG AAC AAG UGU C-3'
Target sequence 23: 서열번호 1485'-CAA GGA UUG UGG CGU CGC U-3'(Position in gene sequence: 442) siRNA GC content: 57.89%
Sense strand: 서열번호 235'-CAA GGA UUG UGG CGU CGC U-3'
Antisense strand: 서열번호 695'-AGC GAC GCC ACA AUC CUU G-3'
dsRNA: 서열번호 465'-CAA GGA UUG UGG CGU CGC UGC UUC A-3'
본 발명의 핵산분자는 인간을 포함한 동물, 예를 들어 원숭이(monkeys), 돼지(pigs), 말(horses), 소(cows), 양(sheeps), 개(dogs), 고양이(cats), 생쥐(mice), 토끼(rabbits) 등으로부터 유래할 수 있으며, 바람직하게는 인간 유래의 것일 수 있다.
본 발명의 핵산분자는 이를 구성하는 핵산 분자의 작용성 등가물, 예를 들어, 본 발명의 핵산분자의 일부 염기서열이 결실(deletion), 치환(substitution) 또는 삽입(insertion)에 의해 변형되었지만, 본 발명의 핵산분자와 기능적으로 동일한 작용을 할 수 있는 변이체(variants)를 포함하는 개념이다.
보다 구체적으로, 본 발명의 핵산분자가 siRNA의 센스 RNA 또는 안티센스 RNA를 이루는 경우, 상기 센스 RNA 및 안티센스 RNA 서열의 3’ 말단에 UU 또는 dTdT의 서열을 추가로 포함하는 것일 수 있는데, 이는 핵산가수분해효소에의 저항성 증대를 통한 siRNA 또는 dsRNA의 구조적 안정성 증대, 안정한 RISC의 유도를 통한 siRNA 또는 dsRNA의 RNAi 효율성 증대 등의 장점을 siRNA 또는 dsRNA에 부여할 수 있다.
본 발명의 핵산분자는 표준 분자 생물학 기술, 예를 들어 화학적 합성 방법 또는 재조합 방법을 이용하여 분리 또는 제조하거나, 시판되는 것을 사용할 수 있다. 또한, 본 발명의 조성물은 본 발명의 핵산분자 자체뿐만 아니라, 세포 내에서 본 발명의 핵산분자의 발현율을 증가시킬 수 있는 기타의 물질, 예를 들어 화합물, 천연물, 신규 단백질 등을 포함할 수 있다.
한편, 본 발명의 핵산분자는 세포 내 발현을 위한 벡터에 포함되어 제공될 수 있다.
본 발명의 핵산분자는 DNA 및 DEAE-덱스트란의 복합체, DNA 및 핵 단백질의 복합체, DNA 및 지질의 복합체 등의 다양한 형질전환 기술을 이용하여 세포 내로 도입시킬 수 있는데, 이를 위해 본 발명의 핵산분자는 세포 내로의 효율적인 도입을 가능하게 하는 전달체 내에 포함된 형태일 수 있다. 상기 전달체는 바람직하게는 벡터이며, 바이러스 벡터 및 비바이러스 벡터 모두 사용 가능하다. 바이러스 벡터(viral vector)로서 예를 들면, 렌티바이러스(lentivirus), 레트로바이러스(retrovirus), 아데노바이러스(adenovirus), 허피스바이러스(herpes virus) 및 아비폭스바이러스(avipox virus) 벡터 등을 사용할 수 있으며, 바람직하게는 렌티바이러스 벡터이지만, 이에 제한되는 것은 아니다. 렌티바이러스는 레트로바이러스의 일종으로 핵공(nucleopore)이나 완전한 핵막으로의 능동도입을 가능하게 하는 사전-통합 복합체(바이러스 "쉘(shell)")의 친핵성으로 인해 분열 세포뿐만 아니라 미분열 세포도 감염시킬 수 있는 특징이 있다.
또한, 본 발명의 핵산분자를 포함하는 벡터는 선별마커를 추가로 포함하는 것이 바람직하다. 상기 "선별마커(selection marker)"란 본 발명의 핵산분자가 도입된 세포의 선별을 용이하게 하기 위한 것이다. 상기 벡터에서 사용할 수 있는 선별마커로는 벡터의 도입 여부를 용이하게 검출 또는 측정할 수 있는 유전자라면, 특별히 한정되지 않으나, 대표적으로 약물 내성, 영양 요구성, 세포 독성제에 대한 내성 또는 표면 단백질의 발현과 같은 선택가능 표현형을 부여하는 마커들, 예를 들어 GFP(녹색 형광 단백질), 퓨로마이신(puromycin), 네오마이신(Neomycin: Neo), 하이그로마이신(hygromycin: Hyg), 히스티디놀 디하이드로게나제(histidinol dehydrogenase gene: hisD) 및 구아닌 포스포리보실트랜스퍼라제(guanine phosphosribosyltransferase: Gpt) 등이 있으며, 바람직하게는 GFP(녹색 형광 단백질) 및 퓨로마이신 마커를 사용할 수 있다.
또한, 본 발명은 상술한 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자를 담지한 다공성 실리카 입자;를 포함하는 TSLP 유전자 발현 억제용 조성물;을 포함하는 아토피성 질환의 예방 또는 치료용 약학적 조성물을 제공한다.
상기 핵산분자, 다공성 실리카 입자, TSLP 유전자 발현의 억제 등에 관한 구체적인 내용은 상술한 바와 같다.
본 발명의 약학적 조성물은 아토피성 질환의 예방 또는 치료 효과를 갖는 것으로서, 이는 본 발명의 핵산분자의 TSLP 유전자의 발현을 억제함으로써 달성되는 효과일 수 있다.
본 발명의 약학적 조성물의 예방 또는 치료 대상 질환인 아토피성 질환의 예로서, 기관지천식, 알러지성 비염, 담마진, 아토피 피부염, 알러지성 결막염, 알러지성 피부염, 알러지성 접촉성 피부염, 염증성 피부질환, 소양증 또는 식품 알레르기와 같은 알러지성 질환으로 이루어진 군에서 선택된 적어도 하나의 질환일 수 있으나, 반드시 이에 제한되지 아니하고, TSLP의 과발현으로 인한 질환에 해당하는 것이라면 특별히 제한되지 아니한다.
“아토피성 피부염”은 아토피 피부염에 의해 피부의 감염 부위가 변화된 상태를 의미하며, 이러한 상태는 피부질환으로 간주되는 상태와 피부질환으로 간주되지 않은 상태를 모두 포함한다.
본 발명의 약학적 조성물은 약학적으로 허용가능한 담체를 추가로 포함할 수 있으며, 담체와 함께 제제화될 수 있다. 본 발명에서 용어, "약학적으로 허용가능한 담체"란 생물체를 자극하지 않고 투여 화합물의 생물학적 활성 및 특성을 저해하지 않는 담체 또는 희석제를 말한다. 액상 용액으로 제제화되는 조성물에 있어서 허용되는 약제학적 담체로는, 멸균 및 생체에 적합한 것으로서, 식염수, 멸균수, 링거액, 완충 식염수, 알부민 주사용액, 덱스트로오스 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 1 성분 이상을 혼합하여 사용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. 또한 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주사용 제형, 환약, 캡슐, 과립 또는 정제로 제제화할 수 있다.
본 발명의 약학적 조성물은 본 발명의 핵산분자를 유효성분으로 포함하는 어떠한 제형으로도 적용가능하며, 경구용 또는 비경구용 제형으로 제조할 수 있다. 본 발명의 약학적 제형은 구강(oral), 직장(rectal), 비강(nasal), 국소(topical; 볼 및 혀 밑을 포함), 피하, 질(vaginal) 또는 비경구(parenteral; 근육내, 피하 및 정맥내를 포함) 투여에 적당한 것 또는 흡입(inhalation) 또는 주입(insufflation)에 의한 투여에 적당한 형태를 포함한다.
본 발명의 약학적 조성물은 약학적으로 유효한 양으로 투여한다. 유효용량 수준은 환자의 질환의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 본 발명의 약학적 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고 종래의 치료제와는 순차적 또는 동시에 투여될 수 있으며, 단일 또는 다중 투여될 수 있다. 상기한 요소들을 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 이는 당업자에 의해 용이하게 결정될 수 있다.
본 발명의 약학적 조성물의 투여량은 환자의 체중, 연령, 성별, 건강상태, 식이, 투여시간, 투여방법, 배설률 및 질환의 중증도 등에 따라 그 범위가 매우 다양하며, 적정한 투여량은 예를 들면 환자의 체내에 축적된 약물의 양 및/또는 사용되는 본 발명의 핵산분자의 구체적 효능정도에 따라 달라질 수 있다. 일반적으로 인비보 동물모델 및 인비트로에서 효과적인 것으로 측정된 EC50을 기초로 계산될 수 있으며, 예를 들면 체중 1kg당 0.01 μg 내지 1 g 일 수 있으며, 일별, 주별, 월별 또는 연별의 단위 기간으로, 단위 기간 당 일회 내지 수회 나누어 투여될 수 있으며, 또는 인퓨전 펌프를 이용하여 장기간 연속적으로 투여될 수 있다. 반복투여 횟수는 약물이 체내 머무는 시간, 체내 약물 농도 등을 고려하여 결정된다. 질환 치료 경과에 따라 치료가 된 후라도, 재발을 위해 조성물이 투여될 수 있다.
본 발명의 약학적 조성물은 섬유증식성 질환의 치료와 관련하여 동일 또는 유사한 기능을 나타내는 유효성분을 1종 이상 또는 유효성분의 용해성 및/또는 흡수성을 유지/증가시키는 화합물을 추가로 함유할 수 있다. 또한 선택적으로, 화학치료제, 항염증제, 항바이러스제 및/또는 면역조절제 등을 추가로 포함할 수 있다.
또한, 본 발명의 약학적 조성물은 포유동물에 투여된 후 활성 성분의 신속, 지속 또는 지연된 방출을 제공할 수 있도록 당업계에 공지된 방법을 사용하여 제형화될 수 있다. 제형은 분말, 과립, 정제, 에멀젼, 시럽, 에어로졸, 연질 또는 경질 젤라틴 캅셀, 멸균 주사용액, 멸균 분말의 형태일 수 있다.
나아가, 본 발명은 상술한 TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자를 담지한 다공성 실리카 입자;를 포함하는 TSLP 유전자 발현 억제용 조성물;을 포함하는 아토피성 질환의 예방 또는 개선용 화장료 조성물을 제공한다.
상기 핵산분자, 다공성 실리카 입자, TSLP 유전자 발현의 억제, 아토피성 질환 등에 관한 구체적인 내용은 상술한 바와 같다.
본 발명의 화장료 조성물은 아토피성 질환의 예방 또는 개선 효과를 갖는 것으로서, 이는 본 발명의 핵산분자의 TSLP 유전자의 발현을 억제함으로써 달성되는 효과일 수 있다.
본 발명의 화장료 조성물은 화장료 조성물에 통상적으로 이용되는 성분들을 더 포함할 수 있으며, 예컨대 항산화제, 안정화제, 용해화제, 비타민, 안료 및 향료와 같은 통상적인 보조제, 그리고 담체를 포함할 수 있으나, 이에 제한되지 않는다.
상기 조성물을 첨가할 수 있는 제품으로는, 예를 들어, 수렴화장수, 유연화장수, 영양화장수, 각종크림, 에센스, 팩, 파운데이션 등과 같은 화장품류와 클렌징, 세안제, 비누, 트리트먼트, 미용액 등이 있으나, 이에 제한되지 않는다.
본 발명의 화장료 조성물의 구체적인 제형으로서는 스킨로션, 스킨 소프너, 스킨토너, 아스트린젠트, 로션, 밀크로션, 모이스처 로션, 영양로션, 맛사지크림, 영양크림, 모이스처 크림, 핸드크림, 에센스, 영양에센스, 팩, 비누, 샴푸, 클렌징폼, 클렌징로션, 클렌징크림, 바디로션, 바디클렌저, 유액, 립스틱, 메이컵 베이스, 파운데이션, 프레스파우더, 루스파우더, 아이섀도 등의 제형을 포함할 수 있으나, 이에 제한되지 않는다.
또한, 본 발명은 아토피성 질환 치료 방법에 관한 것이다.
본 발명의 아토피성 질환 치료 방법은 TSLP 발현을 억제시키는 물질을 담지한 다공성 실리카 입자를 개체에 투여하는 것을 포함한다.
TSLP 발현을 억제시키는 물질은 전술한 범위 내의 것일 수 있다.
다공성 실리카 입자는 앞서 예시한 범위 내의 것일 수 있으며, 앞서 예시한 범위내의 방법/조건 등으로 제조된 것일 수 있다.
개체는 인간을 포함하는 포유류일 수 있고, 구체적으로는 인간일 수 있다.
상기 TSLP 발현을 억제시키는 물질은 조성물 형태로 전술한 범위 내의 방법으로 제형화될 수 있다.
투여 방법은 한정되지 않으며, 예를 들면 구강(oral), 직장(rectal), 비강(nasal), 국소(topical; 볼 및 혀 밑을 포함), 피하, 질(vaginal) 또는 비경구(parenteral; 근육내, 피하 및 정맥내를 포함) 투여, 또는 흡입(inhalation) 또는 주입(insufflation)에 의한 투여 등의 방법에 의할 수 있다.
또한, 본 발명은 TSLP 발현을 억제시키는 물질을 담지한 다공성 실리카 입자의 아토피성 질환 예방 또는 치료용 의약 조성물의 제조를 위한 용도에 관한 것이다.
TSLP 발현을 억제시키는 물질은 전술한 범위 내의 것일 수 있다.
다공성 실리카 입자는 앞서 예시한 범위 내의 것일 수 있으며, 앞서 예시한 범위내의 방법/조건 등으로 제조된 것일 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다.
이하, 본 발명에서 사용된 siRNA는 'siTSLP'로, 본 발명의 다공성 실리카 입자는 'DegradaBALL 또는 DDV'로, siTSLP가 담지된 DegradaBALL은 'LEM-siTSLP'로 각각 약칭될 수 있다.
실험방법
1. 실험재료
DegradaBALL과 TAMRA가 결합된 DegradaBALL은 Lemonex, Inc. (서울 한국)에서 제공하였고, 세포 계수 키트-8(Cell counting kit-8)은 Dojindo molecular technologies, Inc. (Maryland, USA)에서 구입했다. 10% 인산염 완충 생리 식염수 (PBS), 둘베코 변형 이글스 배지 (DMEM), 태아 소 혈청 (FBS), 로스웰 파크 기념 연구소 1640 (RPMI 1640), 페니실린-스트렙토 마이신 및 0.05% 트립신-EDTA는 WelGene (대한민국)에서 구입했다. 모든 PCR 프라이머는 Cosmogenetech (서울, 한국)에서 구입했다. Trizol 세포 용해 용액은 Molecular Probes Invitrogen (Carlsbad, CA, USA)에서 구입했고, 모든 PCR 시약은 TaKaRa Bio Inc. (Shiga, Japan)에서 구입했다. 모든 화학 물질은 수령한 대로 사용하였다.
TSLP의 발현을 유도시키기 위해 사용되는 SLIGRL 펩타이드는 Lemonex(서울, 대한민국)에 의해 합성되었고, 합성된 펩타이드의 MS 분석 결과는 도 1에 나타내었다.
염기서열은 미국 국립생물정보센터(http://www.ncbi.nim.nih.gov)에서 검색 가능하며, 공식 심볼(TSLP)과 전체 공식 명식으로 thymic stromal lymphopoietin로 기재되며 승인번호 NM_033035.4의 인간서열을 사용하여 인간 TSLP에 대한 siRNA, dsRNA, 안티센스 RNA서열을 디자인 하였다. siRNA design을 제공하는 인터넷 사이트 중 GE Healthcare(http://dharmacon.gelifesciences.com/designcenter/?redirect=true) 에서 Dharmacon RNAi & Gene Expression 서비스를 통해 siRNA를 디자인 하였다. 이 때, 디자인한 DNA 절편 중 타겟 서열의 GC 함량이 30% 내지 70% 사이인 siRNA 서열1 내지 서열 10까지의 서열 10개를 선별하였다. 또한, 서열 11 내지 서열 23까지의 서열 13개는 발명자가 GC 함량이 30% 내지 70% 사이인 siRNA 서열을 디자인하였다. 최종 선별된 23개의 siRNA는 바이오니아 (<http://www.bioneer.co.kr>)에 주문 의뢰하여 제조하였다. 이 때, siRNA제조를 위해 TSLP의 타겟 서열에 대한 센스 서열 및 안티센스 서열을 각각 디자인하였다. 또한 각각의 단일 서열인 센스 서열과 안티센스 서열을 특이적인 염기쌍 결합에 의하여 siRNA 및 dsRNA를 제작하였다.
상기 언급된 서열의 구체적인 정보는 첨부된 서열목록 및 하기 표 2에 구체적으로 표기하였다.
Target sequence 1: 서열번호 1265'-GCAGCCUAUCUCAGUACUA-3'(Position in gene sequence: 140) Sense strand: 서열번호 705'-GCAGCCUAUCUCAGUACUAUU-3'
Antisense strand: 서열번호 935'-UAGUACUGAGAUAGGCUGCUU-3'
dsRNA: 서열번호 245'-GCAGCCUAUCUCAGUACUAUUUCUA-3'
Target sequence 2: 서열번호 1275'-GCCUAUCUCAGUACUAUUU-3'(Position in gene sequence: 143) Sense strand: 서열번호 715'-GCCUAUCUCAGUACUAUUUUU-3'
Antisense strand: 서열번호 945'-AAAUAGUACUGAGAUAGGCUU-3'
dsRNA: 서열번호 255'-GCCUAUCUCAGUACUAUUUCUAAA G-3'
Target sequence 3: 서열번호 1285'-GCCACAUUGCCUUACUGAA-3'(Position in gene sequence: 235) Sense strand: 서열번호 725'-GCCACAUUGCCUUACUGAAUU-3'
Antisense strand: 서열번호 955'-UUCAGUAAGGCAAUGUGGCUU-3'
dsRNA: 서열번호 265'-GCCACAUUGCCUUACUGAAAUCCA G-3'
Target sequence 4: 서열번호 1295'-CCACAUUGCCUUACUGAAA-3'(Position in gene sequence: 236) Sense strand: 서열번호 735'-CCACAUUGCCUUACUGAAAUU-3'
Antisense strand: 서열번호 965'-UUUCAGUAAGGCAAUGUGGUU-3'
dsRNA: 서열번호 275'-CCACAUUGCCUUACUGAAAUCCAGA-3'
Target sequence 5: 서열번호 1305'-UCCAGAGCCUAACCUUCAA-3'(Position in gene sequence: 255) Sense strand: 서열번호 745'-UCCAGAGCCUAACCUUCAAUU-3'
Antisense strand: 서열번호 975'-UUGAAGGUUAGGCUCUGGAUU-3'
dsRNA: 서열번호 285'-UCCAGAGCCUAACCUUCAAUCCCCA-3'
Target sequence 6: 서열번호 1315'-CCAGAGCCUAACCUUCAAU-3'(Position in gene sequence: 256) Sense strand: 서열번호 755'- CCAGAGCCUAACCUUCAAUUU-3'
Antisense strand: 서열번호 985'-AUUGAAGGUUAGGCUCUGGUU-3'
dsRNA: 서열번호 295'-CCAGAGCCUAACCUUCAAUCCCACC-3'
Target sequence 7: 서열번호 1325'-GCGUCGCUCGCCAAAGAAA-3'(Position in gene sequence: 290) Sense strand: 서열번호 765'-GCGUCGCUCGCCAAAGAAAUU-3'
Antisense strand: 서열번호 995'-UUUCUUUGGCGAGCGACGCUU-3'
dsRNA: 서열번호 305'-GCGUCGCUCGCCAAAGAAAUGUUCG-3'
Target sequence 8: 서열번호 1335'-CCAAAGAAAUGUUCGCCAU-3'(Position in gene sequence: 300) Sense strand: 서열번호 775'-CCAAAGAAAUGUUCGCCAUUU-3'
Antisense strand: 서열번호 1005'-AUGGCGAACAUUUCUUUGGUU-3'
dsRNA: 서열번호 315'-CCAAAGAAAUGUUCGCCAUGAAAAC-3'
Target sequence 9: 서열번호 1345'-GCUUCAAUCGACCUUUACU-3'(Position in gene sequence: 468) Sense strand: 서열번호 785'-GCUUCAAUCGACCUUUACUUU-3'
Antisense strand: 서열번호 1015'-AGUAAAGGUCGAUUGAAGCUU-3'
dsRNA: 서열번호 325'-GCUUCAAUCGACCUUUACUGAAACA-3'
Target sequence 10: 서열번호 1355'-UCAAUCGACCUUUACUGAA-3'(Position in gene sequence: 471) Sense strand: 서열번호 795'-UCAAUCGACCUUUACUGAAUU-3'
Antisense strand: 서열번호 1025'-UUCAGUAAAGGUCGAUUGAUU-3'
dsRNA: 서열번호 335'-UCAAUCGACCUUUACUGAAACAACA-3'
Target sequence 11: 서열번호 1365'-GCCUUACUAUAUGUUCUGUC-3'(Position in gene sequence: 32) Sense strand: 서열번호 805'-GCCUUACUAUAUGUUCUGUCUU-3'
Antisense strand: 서열번호 1035'-GACAGAACAUAUAGUAAGGCUU-3'
dsRNA: 서열번호 345'-GCCUUACUAUAUGUUCUGUCAGUUU-3'
Target sequence 12: 서열번호 1375'-CCUUACUAUAUGUUCUGUCAG-3'(Position in gene sequence: 33) Sense strand: 서열번호 815'-CCUUACUAUAUGUUCUGUCAGUU-3'
Antisense strand: 서열번호 1045'-CUGACAGAACAUAUAGUAAGGUU-3'
dsRNA: 서열번호 355'-CCUUACUAUAUGUUCUGUCAGUUUC-3'
Target sequence 13: 서열번호 1385'-CAGGAAAAUCUUCAUCUUAC-3'(Position in gene sequence: 61) Sense strand: 서열번호 825'-CAGGAAAAUCUUCAUCUUACUU-3'
Antisense strand: 서열번호 1055'-GUAAGAUGAAGAUUUUCCUGUU-3'
dsRNA: 서열번호 365'-CAGGAAAAUCUUCAUCUUACAACUU-3'
Target sequence 14: 서열번호 1395'-GCUGGUGUUAACUUACGACU-3'(Position in gene sequence: 91) Sense strand: 서열번호 835'-GCUGGUGUUAACUUACGACUUU-3'
Antisense strand: 서열번호 1065'-AGUCGUAAGUUAACACCAGCUU-3'
dsRNA: 서열번호 375'-GCUGGUGUUAACUUACGACUCUUCA-3'
Target sequence 15: 서열번호 1405'-GGUGUUAACUUACGACUUCA-3'(Position in gene sequence: 94) Sense strand: 서열번호 845'-GGUGUUAACUUACGACUUCAUU-3'
Antisense strand: 서열번호 1075'-UGAAGUCGUAAGUUAACACCUU-3'
dsRNA: 서열번호 385'-GGUGUUAACUUACGACUUCACUAAC-3'
Target sequence 16: 서열번호 1415'-CACUAACUGUGACUUUGAG-3'(Position in gene sequence: 112) Sense strand: 서열번호 855'-CACUAACUGUGACUUUGAGUU-3'
Antisense strand: 서열번호 1085'-CUCAAAGUCACAGUUAGUGUU-3'
dsRNA: 서열번호 395'-CACUAACUGUGACUUUGAGAAGAUU-3'
Target sequence 17: 서열번호 1425'-GACCUGAUUACAUAUAUGAG-3'(Position in gene sequence: 167) Sense strand: 서열번호 865'-GACCUGAUUACAUAUAUGAGUU-3'
Antisense strand: 서열번호 1095'-CUCAUAUAUGUAAUCAGGUCUU-3'
dsRNA: 서열번호 405'-GACCUGAUUACAUAUAUGAGUGGGA-3'
Target sequence 18: 서열번호 1435'-CCGAGUUCAACAACACCGU-3'(Position in gene sequence: 201) Sense strand: 서열번호 875'-CCGAGUUCAACAACACCGUUU-3'
Antisense strand: 서열번호 1105'-ACGGUGUUGUUGAACUCGGUU-3'
dsRNA: 서열번호 415'-CCGAGUUCAACAACACCGUCUCUUG-3'
Target sequence 19: 서열번호 1445'-ACCGUCUCUUGUAGCAAUCG-3'(Position in gene sequence: 215) Sense strand: 서열번호 885'-ACCGUCUCUUGUAGCAAUCGUU-3'
Antisense strand: 서열번호 1115'-CGAUUGCUACAAGAGACGGUUU-3'
dsRNA: 서열번호 425'-ACCGUCUCUUGUAGCAAUCGGCCAC-3'
Target sequence 20: 서열번호 1455'-AAGGCUGCCUUAGCUAUCUG-3'(Position in gene sequence: 326) Sense strand: 서열번호 895'-AAGGCUGCCUUAGCUAUCUGUU-3'
Antisense strand: 서열번호 1125'-CAGAUAGCUAAGGCAGCCUUUU-3'
dsRNA: 서열번호 435'-AAGGCUGCCUUAGCUAUCUGGUGCC-3'
Target sequence 21: 서열번호 1465'-CGGAAACUCAGAUAAAUGC-3'(Position in gene sequence: 360) Sense strand: 서열번호 905'-CGGAAACUCAGAUAAAUGCUU -3'
Antisense strand: 서열번호 1135'-GCAUUUAUCUGAGUUUCCGUU-3'
dsRNA: 서열번호 445'-CGGAAACUCAGAUAAAUGCUACUCA-3'
Target sequence 22: 서열번호 1475'-CCAATAAATGTCTGGAACAA-3'(Position in gene sequence: 420) Sense strand: 서열번호 915'-CCAAUAAAUGUCUGGAACAAUU-3'
Antisense strand: 서열번호 1145'-UUGUUCCAGACAUUUAUUGGUU-3'
dsRNA: 서열번호 455'-CCAATAAATGTCTGGAACAAGUGUC-3'
Target sequence 23: 서열번호 1485'-CAAGGAUUGUGGCGUCGCU-3'(Position in gene sequence: 442) Sense strand: 서열번호 925'-CAAGGAUUGUGGCGUCGCUUU-3'
Antisense strand: 서열번호 1155'-AGCGACGCCACAAUCCUUGUU-3'
dsRNA: 서열번호 465'-CAAGGAUUGUGGCGUCGCUGCUUCA-3'
2. 다공성 실리카 입자(DDV 또는 DegradaBALL)
2-1. 다공성 실리카 입자의 제조
(1) 다공성 실리카 입자의 제조
1) 소기공 입자의 제조
2 L 둥근바닥플라스크에 증류수 (DW) 960 mL 과 MeOH 810mL을 넣었다. 상기 플라스크에 CTAB 7.88g을 넣은 후 교반하면서 1M NaOH 4.52mL를 빠르게 넣었다. 10분 동안 교반시켜 균일한 혼합액을 넣은 후 TMOS 2.6mL를 넣었다. 6시간 동안 교반하여 균일하게 혼합한 후, 24시간 동안 숙성시켰다.
이후 상기 반응액을 25℃에서 10분간 8000rpm에서 원심분리하여 상등액을 제거하고, 25℃에서 10분간 8000rpm에서 원심분리하며 에탄올 및 증류수로 번갈아가며 5회 세척하였다.
이후 70℃ 오븐에서 건조시켜 1.5g의 분말형의 소기공 다공성 실리카 입자(기공 평균 직경 2nm, 입경 200nm)를 얻었다.
2) 기공 확장
1.5g의 소기공 다공성 실리카 입자 분말을 에탄올 10ml에 첨가하여 초음파 분산시키고, 물 10ml, TMB (trimethyl benzene) 10ml를 첨가하여 초음파 분산시켰다.
이후 상기 분산액을 오토클레이브에 넣고 160℃, 48시간 반응시켰다.
반응은 25℃에서 시작하여 10℃/분의 속도로 승온시켜 수행하였고, 이후 오토클레이브 내에서 1~10℃/분의 속도로 서서히 냉각시켰다.
냉각된 반응액을 25℃에서 10분간 8000rpm에서 원심분리하여 상등액을 제거하고, 25℃에서 10분간 8000rpm에서 원심분리하며 에탄올 및 증류수로 번갈아가며 5회 세척하였다.
이후 70℃ 오븐에서 건조시켜 분말형의 다공성 실리카 입자(기공 직경 10~15nm, 입경 200nm)를 얻었다.
3) 하소
상기 2)에서 제조된 다공성 실리카 입자를 유리 vial에 담아 550℃에서 5시간 동안 가열하고, 반응 종료 후 상온으로 서서히 식혀 입자를 제조하였다.
(2) 다공성 실리카 입자의 제조
기공 확장시의 반응 조건을 140℃, 72시간으로 변경한 것을 제외하고는 상기 2-1-(1)과 동일한 방법으로 다공성 실리카 입자를 제조하였다.
(3) 다공성 실리카 입자의 제조 (10L 스케일)
5배 큰 용기를 사용하고, 각 물질을 모두 5배 용량으로 사용한 것을 제외하고는 실시예 2-1-(1)과 동일한 방법으로 다공성 실리카 입자를 제조하였다.
(4) 다공성 실리카 입자의 제조 (입경 300nm)
소기공 입자의 제조시에 증류수 920ml, 메탄올 850ml를 사용한 것을 제외하고는 2-1-(1)과 동일한 방법으로 다공성 실리카 입자를 제조하였다.
(5) 다공성 실리카 입자의 제조 (입경 500nm)
소기공 입자의 제조시에 증류수 800ml, 메탄올 1010 ml, CTAB 10.6g을 사용한 것을 제외하고는 2-1-(1)과 동일한 방법으로 다공성 실리카 입자를 제조하였다.
(6) 다공성 실리카 입자의 제조 (입경 1000nm)
소기공 입자의 제조시에 증류수 620ml, 메탄올 1380ml, CTAB 7.88g을 사용한 것을 제외하고는 2-1-(1)과 동일한 방법으로 다공성 실리카 입자를 제조하였다.
(7) 다공성 실리카 입자의 제조 (기공 직경 4nm)
기공 확장시에 TMB를 2.5mL를 사용한 것을 제외하고는 2-1-(1)과 동일한 방법으로 다공성 실리카 입자를 제조하였다.
(8) 다공성 실리카 입자의 제조 (기공 직경 7nm)
기공 확장시에 TMB를 4.5mL를 사용한 것을 제외하고는 2-1-(1)과 동일한 방법으로 다공성 실리카 입자를 제조하였다.
(9) 다공성 실리카 입자의 제조 (기공 직경 17nm)
기공 확장시에 TMB를 11mL를 사용한 것을 제외하고는 2-1-(1)과 동일한 방법으로 다공성 실리카 입자를 제조하였다.
(10) 다공성 실리카 입자의 제조 (기공 직경 23nm)
기공 확장시에 TMB를 12.5mL를 사용한 것을 제외하고는 2-1-(1)과 동일한 방법으로 다공성 실리카 입자를 제조하였다.
(11) 다공성 실리카 입자의 제조 (이중개질)
1) 소기공 입자의 제조
실시예 2-1-(1)-1)과 동일한 방법으로 소기공 입자를 제조하였다.
2) 기공 확장
실시예 2-1-(1)-2)와 동일한 방법으로 소기공 입자를 TMB와 반응시키고 냉각시키고 원심분리하여 상등액을 제거하였다. 이후 실시예 2-1-(1)-2)와 동일 조건으로 원심분리하며 에탄올 및 증류수로 번갈아가며 3회 세척하고, 이후 실시예 2-1-(1)-2)와 동일 조건으로 건조하여 분말형의 다공성 실리카 입자(기공 직경 10~15nm, 입경 200nm)를 얻었다.
3) 표면 개질
기공이 확장된 다공성 실리카 입자 0.8g 내지 1g을 50mL의 톨루엔에 분산시킨 후, (3-aminopropyl)triethoxysilane를 5mL 넣어주어 120℃로 환류한 채로 12시간 가열하였다. 해당 과정은 상기 서술된 세척과정 및 건조 과정을 거친 뒤 1mL의 트레에틸렌글리콜 (PEG3, 2-[2-(2-methoxyethoxy)ethoxy]acetic acid)와 100mg의 EDC(1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide) 및 200mg의 N-Hydroxysuccinimide (NHS)를 30mL의 PBS에 분산시켜서 상온에서 교반한 채로 12시간 동안 반응을 보낸다. 이후 생성물은 상기의 세척 및 건조과정을 거친다.
기공 내부에 이전 단계의 반응액이 남아 있어, 기공 내부는 개질 되지 않는다.
4) 기공 내부 세척
표면개질된 입자 분말 800mg을 2M HCl/에탄올 40ml에 녹이고, 12시간 강하게 교반 하에 환류시켰다.
이후 냉각된 반응액을 10분간 8000rpm에서 원심분리하여 상등액을 제거하고, 25℃에서 10분간 8000rpm에서 원심분리하며 에탄올 및 증류수로 번갈아가며 5회 세척하였다.
이후 70℃ 오븐에서 건조시켜 분말형의 다공성 실리카 입자를 얻었다.
5) 기공 내부 개질
① 후술하는 실시예 2-2-(2)-1)의 방법과 동일한 방법으로 기공 내부에 프로필기를 도입하였다.
② 후술하는 실시예 2-2-(2)-2)의 방법과 동일한 방법으로 기공 내부에 옥틸기를 도입하였다.
2-2. 다공성 실리카 입자의 표면 개질
(1) 양전하로의 대전
1) 입경 300nm의 입자
실시예 2-1-(4)의 다공성 실리카 입자를 (3-Aminopropyl)triethoxysilane (APTES)와 반응시켜 양전하로 대전시켰다.
구체적으로, 100mL 둥근바닥플라스크에 100mg의 다공성 실리카 입자를 10mL의 톨루엔에 bath sonicator로 분산시켰다. 이후 1mL의 APTES를 첨가하고 400rpm으로 교반하며 130℃에서 교반하며 12시간 동안 반응시켰다.
반응 후에 상온까지 서서히 식히고, 10분간 8000rpm에서 원심분리하여 상등액을 제거하고, 25℃에서 10분간 8000rpm에서 원심분리하며 에탄올 및 증류수로 번갈아가며 5회 세척하였다.
이후 70℃ 오븐에서 건조시켜 표면 및 기공 내부에 아미노기를 갖는 분말형의 다공성 실리카 입자를 얻었다.
2) 입경 200nm의 입자
① 실시예 2-1-(1)의 다공성 실리카 입자를 (3-Aminopropyl)triethoxysilane (APTES)와 반응시켜 양전하로 대전시켰으며, APTES를 0.4ml 첨가하고, 반응 시간을 3시간으로 한 것을 제외하고는 상기 2-2-(1)-1)의 방법과 동일하게 개질하였다.
② 실시예 2-1-(9)의 다공성 실리카 입자를 (3-Aminopropyl)triethoxysilane (APTES)와 반응시켜 양전하로 대전시켰으며, 그 외 방법은 상기 2-2-(1)-1)의 방법과 동일하게 개질하였다.
③ 실시예 2-1-(10)의 다공성 실리카 입자를 (3-Aminopropyl)triethoxysilane (APTES)와 반응시켜 양전하로 대전시켰으며, 상기 2-2-(1)-1)의 방법과 동일하게 개질하였다.
(2) 소수성기의 도입
1) 프로필기
상기 실시예 2-1-(1)의 다공성 실리카 입자를 Trimethoxy(propyl)silane와 반응시켜 표면 및 기공 내부에 프로필기를 도입하였으며, APTES 대신에 Trimethoxy(propyl)silane를 0.35ml 첨가하고, 12시간 반응시킨 것을 제외하고는 상기 실시예 2-2-(1)과 동일한 방법으로 개질을 수행하였다.
2) 옥틸기
상기 실시예 2-1-(1)의 다공성 실리카 입자를 Trimethoxy-n-octylsilane와 반응시켜 표면 및 기공 내부에 프로필기를 도입하였으며, APTES 대신에 Trimethoxy-n-octylsilane를 0.5ml 첨가하고, 12시간 반응시킨 것을 제외하고는 상기 실시예 2-2-(1)과 동일한 방법으로 개질을 수행하였다.
(3) 음전하로의 대전
1) 카르복실기
상기 실시예 2-1-(1)의 다공성 실리카 입자를 succinic anhydride와 반응시켜 음전하로 대전시켰으며,
톨루엔 대신에 DMSO(dimethyl sulfoxide)를 사용하고, APTES 대신에 80 mg의 succinic anhydride를 첨가하여 24시간 동안 상온에서 교반하며 반응시키고, 세척 시에 증류수 대신에 DMSO를 사용한 것을 제외하고는 상기 실시예 2-2-(1)-1)의 방법과 동일하게 개질하였다.
2) 티올기
APTES 대신에 MPTES 1.1mL를 사용한 것을 제외하고는 상기 실시예 2-2-(1)-1)의 방법과 동일하게 개질하였다.
3) 술폰산기
상기 실시예 2-2-(3)-2)의 다공성 실리카 나노입자 100mg를 1M 황산수용액을 1mL와 30% 과산화수소수 20mL에 분산하여 상온에서 교반하여 산화반응을 유도하여 티올기를 술폰산기로 산화시켰다. 이후 상기 실시예 2-2-(1)-1)의 방법과 동일하게 세척 및 건조시켰다.
3. 핵산분자의 담지
상기 실시예 2-2-(1)-2)-②의 다공성 실리카 입자 10㎍와 50pmol의 핵산분자를 1xPBS 조건에서 섞은 후, 상온에서 30분간 두고 적재가 되도록 하였다.
상기 핵산분자는 상기 표 2의 서열들 중, 서열번호 70의 서열로 이루어진 센스 RNA 및 서열번호 93의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA(이하, siTSLP#1), 서열번호 83의 서열로 이루어진 센스 RNA 및 서열번호 106의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA(이하, siTSLP#14) 및/또는 서열번호 90의 서열로 이루어진 센스 RNA 및 서열번호 113의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA(이하, siTSLP#21) 를 이용하여 하기의 실험을 진행하였다. 다만, 후술할 내용에서 핵산분자를 구성하는 서열(e.g. 센스 RNA, 안티센스 RNA, dsRNA)에 대한 별도의 언급이 있다면, 별도로 언급된 서열을 포함하는 핵산분자를 담지한 것으로 볼 수 있다.
이하에서는, siTSLP#1가 담지된 DDV를 LEM-siTSLP#1, siTSLP#14가 담지된 DDV를 LEM-siTSLP#14, siTSLP#21가 담지된 DDV를 LEM-siTSLP#21로 표현하였다.
4. 세포 생존 측정
A549 및 HaCaT 세포를 100μl의 성장배지(50-70% 컨플루언시)를 갖는 96-well 배양 플레이트에 웰당 10,000 세포의 밀도로 접종하였다. 세포를 혈청 함유 배지에서 적절한 농도의 DegradaBALL(실시예 2-2-(1)-2)-②의 다공성 실리카 입자)로 처리하고, 37℃에서 24시간 동안 배양하였다. 배양 후, 세포를 1xPBS로 2회 세정한 후, 10μl의 CCK-8을 함유한 100μl의 무혈청 배지를 첨가한 다음, 1시간 더 배양하였다. 배양 플레이트 내 각 웰의 광학 밀도를 450nm 파장에서 측정하였다. 삼중항(deviation of triplicates)의 평균 및 표준편차가 계산되고 플롯되었다 (도 26 참고).
5. 세포 기반 TSLP knockdown 분석
5-1. 인간피부 각질형성세포주 HaCaT 세포의 배양
인간TSLP 특이적인 siRNA, dsRNA, 안티센스RNA올리고뉴클레오티드가 피부세포에서 발생되는 TSLP의 생산을 저해시킬 수 있는지 탐색시험을 수행하기 위하여, 인간피부의 구성 세포주인 각질형성세포 HaCaT 세포주 (CLC cell line service, Germany)를 사용하였다. HaCaT 세포주를 10% fetal bovine serum (FBS; Gibco BRL, USA)와 항생제가 함유된 DMEM 배양액 (Gibco BRL, USA)에서 배양하였다. 배양접시는 100 mm culture dish, 6-well plate 와 24-well plate를 사용하였으며, 5% CO2가 공급되는 37℃ 인큐베이터에서 배양하였다. 배양액은 2일 마다 교환해 주며 세포가 과다하게 증식되기 직전에 계대배양 하였다.
5-2. HaCaT 세포에 LEM-siTSLP 처리
무혈청 배지에 분산시킨 LEM-siTSLP(25 pmol)를, 24-well 플레이트 내 배양한 HaCaT 세포에 처리하였다. 37℃, 5% CO 2 배양기에서 6시간 동안 배양한 후, 무혈청 배양액을 제거하고 1xPBS로 2회 세정한 후, 혈청 함유 세포 배지를 교체하였다. 다시 6시간 후, 혈청 함유 배양 배지를 제거하고, 1 x PBS로 세척하였다. 혈청을 함유한 배지에서 SLIGRL 펩타이드(200μM)를 세포에 처리하였고, TSLP 유도 확인을 위해 배양 0, 6, 12 및 24시간 후, Trizol (Invitrogen, USA) 을 사용하여 total RNA를 추출하였다.
또한, LEM-siTSLP에 의한 TSLP knockdown의 지속 기간을 측정하기 위해, PAM212 세포를 무혈청 배지에서 LNP를 함유한 LNP-siTSLP(mouse) (25pmol siTSLP) 및 siTSLP(mouse) (25pmol)로 처리하였다. 5% CO 2 배양기에서, 37℃에서 6시간 동안 배양한 후, 무혈청 배양액을 제거하고, 1xPBS로 2회 세척한 후, 혈청 함유 세포 배지를 교체하였다. 지시된 시간 동안 배양한 후, 세포를 혈청 함유 배양 배지에서 SLIGRL (200μM)를 세포로 처리하였고, TSLP 유도를 위해 세포를 12시간 더 배양하였다. total RNA는 Trizol을 사용하여 추출하였다.
6. RT-PCR
1μg의 total RNA와 nuclease-free water를 섞어 16μL가 되게 준비한 후, 70℃에서 5분간 반응시켜 RNA를 denature시키고 얼음에서 빠르게 식혀준 뒤 짧게 원심분리하여 증발한 용액을 모아주었다. 그 후, Reverse Transcription Master Premix (엘피스바이오텍, contain random hexamer, 5x ready-to-use mix, cat# EBT-1511) 4 μL를 넣고 잘 섞어준 뒤 42℃에서 1시간동안 반응시켰다. 그 후, 94 ℃에서 5분간 반응한 후 얼음 위에서 식혀주고 -20℃에 보관하였다.
그 다음, nuclease-free water 7.4μL, forward primer와 reverse primer (5μM) 각 0.8μL, 앞에서 합성한 cDNA template 1μL, Power SYBR™ Green PCR Master Mix(appliedbiosystems, 2x ready-to-use mix, cat# 4367659) 10μL를 섞어 혼합용액을 만들었다.
mRNA 발현량 분석에 사용된 RT-PCR 프라이머 서열은 하기 표 3과 같다.
mRNA 종류 Forward primer Reverse primer
hTSLP(인간TSLP) GAGCCGCAGGCACCCTCTCA(서열번호 116) GCCCCAACTAACCCTCAGGGAGT (서열번호 117)
mTSLP(마우스TSLP) GCAAGCCAGCTTGTCTCCTGA(서열번호 118) GGCAGTGGTCATTGAGGGCTT(서열번호 119)
hGAPDH(인간GAPDH) TCACTGCCACCCAGAAGACTG(서열번호 120) GGATGACCTTGCCCACAGC(서열번호 121)
mGAPDH(마우스GAPDH) TGACCTCAACTACATGGTCTACA(서열번호 122) CTTCCCATTCTCGGCCTTG(서열번호 123)
PCR은, 95℃에서 3분간 denature 후, 95℃에서 10초, 60℃에서 5초, 2 step 사이클을 반복하였다 (GAPDH: 30 사이클, TSLP: 36 사이클). 최종 반응물을 1% agarose gel에 내려서 확인하였다.
7. siTSLP 및 다공성 실리카 입자가 투여된 부위의 생체조직 이미징
LEM-siTSLP (0.7nmol siTSLP(mouse), 150μg DDV) (FITC-접합 siTSLP(mouse) 및 TAMRA-DegradaBALL) 20μl를 마우스 볼 부위 피부에 주사하였다. 상기 DDV는 실시예 2-2-(1)-2)-②의 다공성 실리카 입자를 이용하였고, siTSLP(mouse)는 센스 RNA 서열(5'-CGAGCAAAUCGAGGACUGUdTdT-3'(서열번호 124)) 및 안티센스 RNA 서열(5'-ACAGUCCUCGAUUUGCUCGdTdT-3'(서열번호 125))이 결합된 것을 이용하였다. 마우스를 희생시킨 후, FOBI 이미징 기기(NeoScience Co., Ltd., Seoul, Korea)를 이용하여 절제된 마우스 볼 부위 피부의 형광 이미지를 촬영하였다. 수득한 피부 샘플을 4% PFA 용액에 넣었다. 샘플을 파라핀에 끼우고, 10μm 두께로 절단하였다. 탈수과정 후, 절편된 샘플을 DAPI로 염색하였다. 샘플은 20x 대물렌즈(Olympus, Tokyo, Japan)가 장착된 BX71 현미경으로 관찰되었다.
실험결과
1. 본 발명 핵산분자의 TSLP 발현 억제 분석
상기 표 2에 포함된 서열에 의해 제조된 핵산분자(siRNA 또는 dsRNA)의 TSLP의 발현 억제율을 확인하기 위해, 핵산분자를 Lipofectamine 2000(Invitrogen, USA)과 양이온 리포좀(cationic liposome)을 이용해 HaCaT 세포에 트랜스펙션 수행한 후, TSLP 발현 억제 효율을 확인하였다.
핵산분자(siRNA 또는 dsRNA)를 이용한 TSLP의 발현 억제율을 하기 표 4에 나타내었다.
서열번호(/는 sense strand와 antisense strand 간 pair를 의미) 발현 억제율 (%) 서열번호 발현 억제율 (%)
70/93 88.18 82/105 95.88
24 92.91 36 67.53
71/94 93.57 83/106 95.72
25 98.77 37 87.07
72/95 95.29 84/107 93.79
26 87.14 38 79.14
73/96 74.17 85/108 96.22
27 97.32 39 94.87
74/97 94.59 86/109 93.17
28 96.18 40 74.35
75/98 88.74 87/110 88.90
29 97.07 41 83.50
76/99 94.36 88/111 92.48
30 88.11 42 42.11
77/100 89.57 89/112 64.82
31 98.42 43 27.08
78/101 93.28 90/113 79.64
32 84.57 44 93.58
79/102 88.91 91/114 95.19
33 59.03 45 68.92
80/103 67.23 92/115 78.94
34 81.29 46 74.38
81/104 96.73 - -
35 93.44 - -
2. 다공성 실리카 입자(DDV 또는 DegradaBALL)
2-1. 입자의 형성 및 기공의 확장 확인
실험방법 실시예 2-1-(1) 내지 (3)의 입자의 소기공 입자, 제조된 다공성 실리카 입자를 현미경으로 관찰하여, 소기공 입자가 균일하게 생성되었는지, 기공이 충분히 확장되어 다공성 실리카 입자가 균일하게 형성되었는지를 확인하였다(도 2 내지 5).
도 2는 2-1-(1)의 다공성 실리카 입자의 사진, 도 3은 2-1-(2)의 다공성 실리카 입자의 사진으로 기공이 충분히 확장된 구형의 다공성 실리카 입자가 고르게 생성된 것을 확인할 수 있고,
도 4는 2-1-(1)의 소기공 입자의 사진이고, 도 5는 2-1-(1)과 2-1-(3)의 소기공 입자의 비교 사진으로, 구형의 소기공 입자가 고르게 생성된 것을 확인할 수 있다.
2-2. BET 표면적 및 기공의 부피 계산
실험방법 실시예 2-1-(1)의 소기공 입자, 실시예 2-1-(1),(7),(8),(10)의 다공성 실리카 입자의 표면적과 기공 부피를 계산하였다. 표면적은 Brunauer-Emmett-Teller(BET) 방법에 의해 계산되었으며, 기공 크기의 분포는 Barrett-Joyner-Halenda(BJH) 방법에 의하여 계산되었다.
상기 각 입자들의 현미경 사진은 도 6에 나타내었고, 계산 결과는 하기 표 5에 나타내었다.
구분 기공 직경(nm) BET 표면적(m 2/g) 기공 부피(mL/g)
실험방법 실시예 2-1-(1)의 소기공 입자 2.1 1337 0.69
실험방법 실시예 2-1-(7) 4.3 630 0.72
실험방법 실시예 2-1-(8) 6.9 521 0.79
실험방법 실시예 2-1-(1) 10.4 486 0.82
실험방법 실시예 2-1-(10) 23 395 0.97
2-3. 생분해성 확인
실험방법 실시예 2-1-(1)의 다공성 실리카 입자의 생분해성 확인을 위해 37℃, SBF(pH 7.4)에서의 생분해 정도를 0시간, 120시간, 360시간에 현미경으로 관찰하였고, 이는 도 7에 나타내었다.
이를 참조하면 다공성 실리카 입자가 생분해되어 360시간 경과 후에는 거의 다 분해된 것을 확인할 수 있다.
2-4. 흡광도비 측정
시간별 하기 수학식 1에 따른 흡광도비를 측정하였다.
[수학식 1]
A t/A 0
(식 중, A 0는 상기 다공성 실리카 입자 1mg/ml 현탁액 5ml를 직경 50 kDa의 기공을 갖는 원통형 투과막에 넣고 측정된 다공성 실리카 입자의 흡광도이고,
상기 투과막 외부에는 상기 투과막과 접하며, 상기 현탁액과 동일한 용매 15ml가 위치하고, 상기 투과막 내외부는 37℃에서 60rpm 수평 교반되며,
A t는 상기 A 0의 측정시로부터 t시간 경과 후에 측정된 다공성 실리카 입자의 흡광도임).
구체적으로, 다공성 실리카 입자 분말 5mg을 SBF (pH 7.4) 5ml에 녹였다. 이후 5ml의 다공성 실리카 입자 용액을 도 8에 도시된 직경 50 kDa의 기공을 갖는 투과막에 넣었다. 외부막에 15ml의 SBF를 첨가하고, 외부막의 SBF는 12시간마다 교체하였다. 다공성 실리카 입자의 분해는 37℃에서 60rpm 수평 교반하며 수행되었다.
이후 UV-vis spectroscopy에 의해 흡광도를 측정하였고, λ = 640 nm에서 분석되었다.
(1) 흡광도 비 측정
실험방법 실시예 2-1-(1)의 다공성 실리카 입자의 흡광도비를 상기 방법에 따라 측정하였고, 그 결과는 도 9에 나타내었다.
이를 참조하면 흡광도비가 1/2가 되는 t가 약 58시간으로 굉장히 천천히 분해되는 것을 확인할 수 있다.
(2) 입경별
실험방법 실시예 2-1-(1),(5),(6)의 다공성 실리카 입자의 흡광도를 상기 수학식 1에 따라 측정하였고, 그 결과는 도 10에 나타내었다(현탁액과 용매로는 SBF를 사용).
이를 참조하면, 입경의 증가에 따라 t가 감소함을 알 수 있다.
(3) 기공 평균 직경별
실험방법 실시예 2-1-(1), (9)의 다공성 실리카 입자, 그리고 컨트롤로서 실험방법 실시예 2-1-(1)의 소기공 다공성 실리카 입자의 흡광도를 상기 수학식 1에 따라 측정하였고, 그 결과는 도 11에 나타내었다(현탁액과 용매로는 SBF를 사용).
이를 참조하면, 실시예의 다공성 실리카 입자는 컨트롤에 비해 t가 상당히 큰 것을 확인할 수 있다.
(4) pH별
실험방법 실시예 2-1-(4)의 다공성 실리카 입자의 pH별 흡광도를 측정하였다. 흡광도는 SBF에서, 그리고 pH 2, 5, 및 7.4의 Tris에서 측정하였고, 그 결과는 도 12에 나타내었다.
이를 참조하면, pH 별 t의 차이는 있으나, 모두 흡광도의 비가 1/2이 되는 t가 24 이상이었다.
(5) 대전
실험방법 실시예 2-2-(1)-1)의 다공성 실리카 입자의 흡광도를 측정하였고, 그 결과는 도 13에 나타내었다(현탁액과 용매로는 Tris(pH 7.4)를 사용).
이를 참조하면, 양전하로 대전된 입자도 흡광도의 비가 1/2이 되는 t가 24 이상이었다.
2-5. 담지한 핵산분자의 방출
Cy5-siRNA를 로딩한 다공성 실리카 입자 10 ㎕를 SBF(pH 7.4, 37℃)에 재부유시키고, 기공 직경 20 kDa의 투과막(도 14의 튜브)에 넣었다.
이후, 투과 튜브를 1.5ml의 SBF에 담갔다.
siRNA의 방출은 37℃에서 60rpm 수평 교반하며 수행되었다.
24시간 이전에는 0.5, 1, 2, 4, 8, 12, 24시간 경과한 시간에 방출 용매를 회수하고, 그 이후는 24시간 간격으로, 0.5ml의 방출 용매를 형광 측정을 위해 회수하고 등량의 SBF를 첨가하였다.
Cy5-siRNA의 형광 강도는 670 nm 파장(λ ex = 647 nm)에서 측정하여 siRNA의 방출 정도를 측정하였고, 그 결과는 도 15에 나타내었다.
이를 참조하면 siRNA가 50% 방출된 시간이 약 48시간인 것을 확인할 수 있다.
3. in vitro LEM-siTSLP 처리 결과
3-1. HaCaT 세포 및 HeLa 세포내 형태 확인
(1) 실험방법
HaCaT 세포 또는 HeLa세포를 8-well chamber (Lab-Tek Chamber slide system) 에 2.0×10 3 개수만큼 seeding 후 24시간 동안 incubation 한다. 1xPBS로 세포를 2회 세척해 준 후, TAMRA 형광이 표지 된 siRNA (50 ng) 를 FITC 형광이 표지 된 DDV (1 ㎍) 에 담지하여 siRNA와 DDV 복합체를 만든 후 serum-free media 조건으로 세포에 2시간동안 처리한다.
상기 DDV는 실시예 2-2-(1)-2)-②의 다공성 실리카 입자를 이용하였고, siRNA 는 siRNA#1을 이용하였다.
2시간 후 1xPBS로 세포를 2회 세척해 준다. 이어서 10% FBS containing media로 교체한 후 시간 순서대로 (2, 6, 8, 12, 18, 24시간) 세포들을 Hoechst 33342 (Invitrogen) 을 이용하여 핵 염색하고, Delta Vision Elite High Resolution Microscope (GE Healthcare Life Sciences) 에 60x 렌즈를 이용하여 세포에 morphology 변화와 세포 내에 존재하는 siRNA와 DDV의 세포내 분포를 시간에 따라 관찰한다.
(2) 실험결과
siRNA와 DDV 복합체를 세포에 처리한 후 2시간 정도 되는 초기에는 세포 내에서 주황색 내지 노란색 형광이 많이 나타나는 것을 확인하였다. 이는 초록색 형광이 표지된 DDV에 빨간색 형광이 표지된 siRNA가 담지된 상태로 세포내에 도입 되므로, 세포 내에서 초록색 형광빛과 빨간색 형광빛이 겹쳐져서 주황색 내지 노란색 형광이 나타나는 것으로 보인다.
시간이 지남에 따라, 주황색 내지 노란색 형광이 많이 없어지고, 초록색 형광이 우세하게 나타나는 것을 확인하였다. 이는 DDV로부터 siRNA가 방출되므로, 시간이 지날수록 주황색 내지 노란색 형광이 사라지고, siRNA의 초록색 형광이 우세하게 나타나는 것으로 보인다.
상기 결과로부터, DDV와 siRNA의 복합체가 세포내에 잘 유입되고, 세포내에서 siRNA 약물이 서방형으로 방출될 수 있음을 확인하였다.
3-2. in vitro 상 LEM-siTSLP의 TSLP mRNA knockdown 확인
LEM-siTSLP의 타겟 유전자 knockdown 효율을 측정하기 위해, HaCaT(인간 케라티노사이트 세포)를 전술한 방법에 의해 제조된 LEM-siTSLP#1, LEM-siTSLP#14 및 LEM-siTSLP#21을 이용하여 하기 실험을 진행했다.
TSLP mRNA knockdown 확인 실험을 진행하기 전에 HaCaT 세포에 SLIGRL을 처리하면 TSLP의 발현이 유도되는 것을 확인하였다 (도 18 참고).
먼저, HaCaT 세포를 상기 세 종류의 LEM-siTSLP (25 pmol)로 처리한 다음, TSLP 발현을 유도하기 위해 200 νM의 SLIGRL과 함께 배양하였다. 그 결과, 세포주에 대한 LEM-siTSLP의 처리는 TSLP의 mRNA 발현 수준을 감소시켰으며, 특히 LEM-siTSLP#1 처리시 TSLP의 mRNA 발현 억제에 유의한 효과를 나타냈다.
한편, 대조군(siTSLP#1, siTSLP#14, siTSLP#21 only)은 siRNA만 처리한 경우로, HaCaT 세포에서 TSLP의 mRNA 발현억제 효과를 나타내지 않았다 (도 19 참고). 이 결과는, 대조군과는 달리 LEM-siTSLP가 세포 내로 siTSLP를 효율적으로 transfection 시킬 수 있고, TSLP 유전자의 knockdown을 유도함을 나타내는 것을 의미한다.
4. in vitro 상 LEM-siTSLP의 서방적 siTSLP 방출
LEM-siTSLP는 HaCaT 세포에서 LNP보다 TSLP knockdown 효과를 더 오래 유지하는 것을 본 실험을 통해 확인하였다.
HaCaT 세포를 LEM-siTSLP#1(25 pmol) 및 LNP에 담지된 siTSLP#1(25 pmol)로 처리한 후, SLIGRL 처리에 의해 TSLP의 발현을 유도했다.
상기 siTSLP#1을 담지한 DDV는 실시예 2-2-(1)-2)-②의 다공성 실리카 입자를 이용하였다.
HaCaT 세포에서 TSLP 발현 억제는 LEM-siTSLP#1 처리 후 96시간까지 지속되었으나(TSLP 발현수준, 72시간: 15%, 96시간: 22%), LNP에 담지된 siTSLP#1의 TSLP 발현 억제 효율은 72시간, 96시간 모두에서 높지 않았다(TSLP 발현수준, 72시간: 43%, 96시간: 56%) (도 20 참고). 즉, LEM-siTSLP는 세포에서 LNP에 담지된 siTSLP 대비, 더 오랜 기간동안 높은 수준으로 타겟 mRNA 발현을 억제함을 알 수 있다.
5. LEM-siTSLP의 전달 및 분포 변화 ex-vivo 분석
C57BL/6 마우스 볼 조직에 TAMRA-접합된 DegradaBALL에 담지된 FITC-접합된 siTSLP로 구성된 형광 라벨 LEM-siTSLP를 주입하고, 담지되지 않은 FITC-접합된 siTSLP만을 피하주입 경로를 통해 주입하여 LEM-siTSLP와 siTSLP의 주입 부위에서의 지속 시간을 비교하였다. 본 실험을 통해 LEM-siTSLP의 전달 효과 및 분포 변화를 확인하였다.
상기 DDV는 실시예 2-2-(1)-2)-②의 다공성 실리카 입자를 이용하였고, 상기 siTSLP는 siRNA#1을 이용하였다.
절제된 마우스 볼 부위 피부와 절편화된 볼 부위 피부의 형광 이미지 분석은 주입 후 1, 2, 4일째에 수행되었다. FITC-siTSLP를 담지한 TAMRA-DegradaBALL의 형광은 1일째에 주입 부위에서 강한 발광을 나타내었다. 그리고, 형광은 시간의 경과에 따라 천천히 감소하였으나, 주입 후 4일째까지 주입 부위에서의 형광은 강하게 유지되었다 (도 21 및 23 참고). 시간에 경과에 따라 주입 부위에서의 형광이 감소하는 경향은 피부 절편 슬라이드의 경향에 따랐다. 반면, 담지되지 않은 FITC-siTSLP 만을 주입한 쥐로부터 절제된 피부나 절편화된 피부 슬라이드에서의 형광 신호는 관찰되지 않았는데, 이는 DDV가 없는 siTSLP만 투여한 경우, siTSLP는 체내에서 빠르게 분산되어 버리거나, 매우 빠른 확산을 유도하는 작은 조각으로 분해됨을 암시한다(도 22 및 23 참고). 상기 데이터를 통해, DDV에 담지되지 않은 siTSLP 처리한 경우와 대비하여, LEM-siTSLP를 처리한 경우 피부 내에서 siTSLP를 현저히 높은 농도 수준으로, 주입 후 적어도 4일째까지 유지할 수 있음을 알 수 있었다.
6. LEM-siTSLP 주입에 의한 TSLP knockdown 효과 in-vivo 분석
LEM-siTSLP가 주입된 마우스에서의 TSLP knockdown 효과를 마우스 행동 분석으로 확인하였다.
마우스 볼 조직을 깨끗하게 제모한 후, 오른쪽 볼 부위에 PBS, siTSLP가 담지된 DDV(0.7 nmol siRNA, 150 ug BALL in 20 uL PBS)를 각각 intradermal(ID) injection 하였다.
상기 DDV는 실시예 2-2-(1)-2)-②의 다공성 실리카 입자를 이용하였고, 상기 siTSLP는 센스 RNA 서열(5'-CGAGCAAAUCGAGGACUGUdTdT-3'(서열번호 124)) 및 안티센스 RNA 서열(5'-ACAGUCCUCGAUUUGCUCGdTdT-3'(서열번호 125))이 결합된 것을 이용하였다.
주입후 48 시간이 경과한 다음 SLIGRL peptide 100 ug (in 20 ul PBS)을 ID injection 하여 TSLP induction을 수행하였고, 주입 직후부터 30분 동안 긁는 행동(scratching behavior)을 관찰하여 행동 양상을 비교하였다.
구체적으로, 마우스가 볼 부위를 긁는 횟수를 분석하였으며, 그루밍 행동과 구별하기 위하여 ‘뒷발’로 볼을 긁는 횟수만 카운트하였고, 뒷발을 올렸다 내리는 것을 1회로 카운트하는 것이 기본이지만 발을 내리지 않고 1초 이상 지속적으로 긁을 경우에는 지속시간을 측정하여 초당 1회로 카운트하였다.
도 24는 30분 동안 측정된 총 긁는 횟수를 나타내며, 도 25는 긁는 횟수를 5분 간격으로 측정하여 나타낸 것이다.

Claims (12)

  1. TSLP mRNA의 적어도 일부에 상보적으로 결합하는 핵산분자를 담지한 다공성 실리카 입자;를 포함하고,
    상기 다공성 실리카 입자는 하기 수학식 1의 흡광도의 비가 1/2이 되는 t가 24 이상인 것인, 아토피성 질환 예방 또는 치료용 약학적 조성물:
    [수학식 1]
    A t/A 0
    (식 중, A 0는 상기 다공성 실리카 입자 1mg/ml 현탁액 5ml를 직경 50kDa의 기공을 갖는 원통형 투과막에 넣고 측정된 다공성 실리카 입자의 흡광도이고,
    상기 투과막 외부에는 상기 투과막과 접하며, 상기 현탁액과 동일한 용매 15ml가 위치하고, 상기 투과막 내외부는 37℃에서 60rpm 수평 교반되며,
    상기 현탁액의 pH는 7.4이고,
    A t는 상기 A 0의 측정시로부터 t시간 경과 후에 측정된 다공성 실리카 입자의 흡광도임).
  2. 청구항 1에 있어서, 상기 다공성 실리카 입자는 직경 5nm 미만의 기공을 갖는 실리카 입자를 120℃ 내지 180℃에서 24시간 내지 96시간 동안 팽창제와 반응시켜 상기 직경 5nm 미만의 기공을 팽창시키는 단계; 및 상기 기공이 팽창된 실리카 입자를 400℃ 이상의 온도에서 3시간 이상 하소하는 단계를 포함하여 제조된 것인, 아토피성 질환 예방 또는 치료용 약학적 조성물.
  3. 청구항 1에 있어서, 상기 다공성 실리카 입자의 평균 직경은 150 nm 내지 1000nm이고, 그 BET 표면적은 200m 2/g 내지 700m 2/g이고, 그 g당 부피는 0.7ml 내지 2.2ml인, 아토피성 질환 예방 또는 치료용 약학적 조성물.
  4. 청구항 1에 있어서, 상기 핵산분자는 siRNA, dsRNA, PNA 또는 miRNA 중 하나인 아토피성 질환 예방 또는 치료용 약학적 조성물.
  5. 청구항 4에 있어서,
    상기 핵산분자는 서열번호 1의 서열로 이루어진 센스 RNA 및 서열번호 47의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 24의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 2의 서열로 이루어진 센스 RNA 및 서열번호 48의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 25의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 3의 서열로 이루어진 센스 RNA 및 서열번호 49의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 26의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 4의 서열로 이루어진 센스 RNA 및 서열번호 50의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 27의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 5의 서열로 이루어진 센스 RNA 및 서열번호 51의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 28의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 6의 서열로 이루어진 센스 RNA 및 서열번호 52의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 29의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 7의 서열로 이루어진 센스 RNA 및 서열번호 53의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 30의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 8의 서열로 이루어진 센스 RNA 및 서열번호 54의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 31의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 9의 서열로 이루어진 센스 RNA 및 서열번호 55의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 32의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 10의 서열로 이루어진 센스 RNA 및 서열번호 56의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 33의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 11의 서열로 이루어진 센스 RNA 및 서열번호 57의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 34의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 12의 서열로 이루어진 센스 RNA 및 서열번호 58의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 35의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 13의 서열로 이루어진 센스 RNA 및 서열번호 59의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 36의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 14의 서열로 이루어진 센스 RNA 및 서열번호 60의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 37의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 15의 서열로 이루어진 센스 RNA 및 서열번호 61의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 38의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 16의 서열로 이루어진 센스 RNA 및 서열번호 62의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 39의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 17의 서열로 이루어진 센스 RNA 및 서열번호 63의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 40의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 18의 서열로 이루어진 센스 RNA 및 서열번호 64의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 41의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 19의 서열로 이루어진 센스 RNA 및 서열번호 65의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 42의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 20의 서열로 이루어진 센스 RNA 및 서열번호 66의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 43의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 21의 서열로 이루어진 센스 RNA 및 서열번호 67의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 44의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 22의 서열로 이루어진 센스 RNA 및 서열번호 68의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 45의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 23의 서열로 이루어진 센스 RNA 및 서열번호 69의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA 및 서열번호 46의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA;로 이루어진 군에서 선택된 적어도 하나의 siRNA 또는 dsRNA를 포함하는 아토피성 질환 예방 또는 치료용 약학적 조성물.
  6. 청구항 5에 있어서, 상기 센스 RNA 및 상기 안티센스 RNA 서열의 3' 말단에 UU의 서열을 추가로 포함하는 것인 아토피성 질환 예방 또는 치료용 약학적 조성물.
  7. 청구항 5에 있어서, 상기 센스 RNA 및 상기 안티센스 RNA 서열의 3' 말단에 dTdT의 서열을 추가로 포함하는 것인 아토피성 질환 예방 또는 치료용 약학적 조성물.
  8. 청구항 5에 있어서, 상기 핵산분자는 서열번호 1의 서열로 이루어진 센스 RNA 및 서열번호 47의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 24의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 14의 서열로 이루어진 센스 RNA 및 서열번호 60의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA, 서열번호 37의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA, 서열번호 21의 서열로 이루어진 센스 RNA 및 서열번호 67의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA 및 서열번호 44의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA;로 이루어진 군에서 선택된 적어도 하나의 siRNA 또는 dsRNA를 포함하는 아토피성 질환 예방 또는 치료용 약학적 조성물.
  9. 청구항 8에 있어서, 상기 핵산분자는 서열번호 1의 서열로 이루어진 센스 RNA 및 서열번호 47의 서열로 이루어진 안티센스 RNA로 이루어진 siRNA 또는 서열번호 24의 서열로 이루어진 가닥 및 이에 상보적인 가닥으로 이루어진 dsRNA를 포함하는 아토피성 질환 예방 또는 치료용 약학적 조성물.
  10. 청구항 1에 있어서, 상기 다공성 실리카 입자는 외부 표면 또는 기공 내부가 중성의 pH에서 양전하를 띠는 것인 아토피성 질환 예방 또는 치료용 약학적 조성물.
  11. 청구항 1에 있어서, 상기 다공성 실리카 입자는 친수성 또는 소수성 작용기를 갖는 것인 아토피성 질환 예방 또는 치료용 약학적 조성물.
  12. 청구항 1에 있어서, 상기 아토피성 질환은 기관지천식, 알러지성 비염, 담마진, 아토피 피부염, 알러지성 결막염, 알러지성 피부염, 알러지성 접촉성 피부염, 염증성 피부질환, 소양증 및 식품 알레르기로 이루어진 군에서 선택된 적어도 하나인 아토피성 질환 예방 또는 치료용 약학적 조성물.
PCT/KR2019/095028 2018-08-03 2019-08-01 아토피성 질환 예방 또는 치료용 약학적 조성물 WO2020027641A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/265,386 US20220110964A1 (en) 2018-08-03 2019-08-01 Pharmaceutical composition for preventing or treating atopic diseases
JP2021505844A JP7580121B2 (ja) 2018-08-03 2019-08-01 アトピー性疾患の予防または治療用の薬学的組成物
CN201980050023.4A CN112512510A (zh) 2018-08-03 2019-08-01 用于预防或治疗特应性疾病的药物组合物
EP19845250.0A EP3831365A4 (en) 2018-08-03 2019-08-01 PHARMACEUTICAL COMPOSITION FOR THE PREVENTION OR TREATMENT OF ATOPIC DISEASES

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862714628P 2018-08-03 2018-08-03
US62/714,628 2018-08-03
KR1020190093707A KR102316727B1 (ko) 2018-08-03 2019-08-01 아토피성 질환 예방 또는 치료용 약학적 조성물
KR10-2019-0093707 2019-08-01

Publications (1)

Publication Number Publication Date
WO2020027641A1 true WO2020027641A1 (ko) 2020-02-06

Family

ID=69515300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/095028 WO2020027641A1 (ko) 2018-08-03 2019-08-01 아토피성 질환 예방 또는 치료용 약학적 조성물

Country Status (5)

Country Link
US (1) US20220110964A1 (ko)
EP (1) EP3831365A4 (ko)
KR (1) KR102316727B1 (ko)
CN (1) CN112512510A (ko)
WO (1) WO2020027641A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160011565A (ko) * 2014-07-22 2016-02-01 주식회사 레모넥스 생리활성 물질 또는 단백질 전달용 조성물 및 이의 용도
KR20160016475A (ko) * 2014-08-05 2016-02-15 원철희 Tslp 발현을 억제하는 올리고뉴클레오타이드 및 이를 포함하는 미용 또는 약제학적 조성물
KR20170029449A (ko) * 2017-02-24 2017-03-15 원철희 Tslp 발현을 억제하는 올리고뉴클레오타이드 및 이를 포함하는 미용 또는 약제학적 조성물
KR20170057194A (ko) * 2017-05-08 2017-05-24 주식회사 레모넥스 Tslp 발현을 억제하는 올리고뉴클레오타이드 및 이를 포함하는 미용 또는 약제학적 조성물

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010111490A2 (en) * 2009-03-27 2010-09-30 Merck Sharp & Dohme Corp. RNA INTERFERENCE MEDIATED INHIBITION OF THE THYMIC STROMAL LYMPHOPOIETIN (TSLP) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
KR101388958B1 (ko) * 2012-07-16 2014-04-24 서울대학교산학협력단 약물전달용 조성물 및 이를 이용한 약물전달방법
JP6338480B2 (ja) 2014-07-22 2018-06-06 株式会社Screenホールディングス 色変換装置および色変換方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160011565A (ko) * 2014-07-22 2016-02-01 주식회사 레모넥스 생리활성 물질 또는 단백질 전달용 조성물 및 이의 용도
KR20160016475A (ko) * 2014-08-05 2016-02-15 원철희 Tslp 발현을 억제하는 올리고뉴클레오타이드 및 이를 포함하는 미용 또는 약제학적 조성물
KR20170029449A (ko) * 2017-02-24 2017-03-15 원철희 Tslp 발현을 억제하는 올리고뉴클레오타이드 및 이를 포함하는 미용 또는 약제학적 조성물
KR20170057194A (ko) * 2017-05-08 2017-05-24 주식회사 레모넥스 Tslp 발현을 억제하는 올리고뉴클레오타이드 및 이를 포함하는 미용 또는 약제학적 조성물

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Pharmaceutical Science", MACK PUBLISHING COMPANY
NA, H.-K. ET AL.: "Efficient functional delivery of siRNA using mesoporous silica nanoparticles with ultralarge pores", SMALL, vol. 8, no. 11, 2012, pages 1752 - 1761, XP055684726 *
See also references of EP3831365A4

Also Published As

Publication number Publication date
KR102316727B9 (ko) 2023-04-17
US20220110964A1 (en) 2022-04-14
EP3831365A4 (en) 2023-05-10
JP2021533133A (ja) 2021-12-02
KR102316727B1 (ko) 2021-10-26
EP3831365A1 (en) 2021-06-09
EP3831365A9 (en) 2021-07-21
KR20200015882A (ko) 2020-02-13
CN112512510A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
WO2010131916A2 (ko) siRNA 접합체 및 그 제조방법
WO2013089522A1 (ko) 신규한 올리고뉴클레오티드 접합체 및 그 용도
WO2019156365A1 (ko) 엔도좀 탈출능을 갖는 펩티드 핵산 복합체 및 이의 용도
WO2015002513A2 (ko) 호흡기 질환 연관 유전자 특이적 siRNA, 그러한 siRNA를 포함하는 이중나선 올리고 RNA 구조체 및 이를 포함하는 호흡기 질환 예방 또는 치료용 조성물
WO2018030789A1 (ko) 세포투과성이 향상된 펩티드 핵산 복합체 및 이를 포함하는 약학적 조성물
WO2015152693A2 (ko) 신규 이중 나선 올리고 rna 및 이를 포함하는 섬유증 또는 호흡기 질환의 예방 또는 치료용 약학조성물
WO2010090452A2 (ko) 세포 내 전달능이 증가된 작은 간섭 rna 복합체
WO2015002511A1 (ko) 개선된 고효율 나노입자형 올리고뉴클레오타이드 구조체 및 그의 제조방법
WO2019156366A1 (ko) 핵산 복합체를 함유하는 피부 투과성 전달체 및 이의 용도
WO2017188731A1 (ko) 경구 투여용 유전자 전달을 위한 나노입자 및 이를 포함하는 약학 조성물
WO2019225968A1 (ko) 엠피레귤린 유전자 특이적 이중가닥 올리고뉴클레오티드 및 이를 포함하는 섬유증 관련 질환 및 호흡기 관련 질환 예방 및 치료용 조성물
WO2013103249A1 (ko) 고효율 나노입자형 이중나선 올리고 rna 구조체 및 그의 제조방법
WO2012165854A9 (ko) 표적 유전자 발현 억제 및 면역 반응을 동시에 유발하는 이중가닥의 긴 간섭 rna
WO2019022586A9 (ko) 간암의 예방 또는 치료용 약학적 조성물
WO2016140492A1 (ko) 신규 dna-rna 하이브리드 정사면체 구조물 또는 rna 정사면체 구조물
WO2022139528A1 (ko) 만노스를 포함하는 지질 나노입자 또는 이의 용도
WO2018110980A1 (ko) B형 간염 예방 또는 치료용 의약 조성물
WO2015005669A1 (en) LIVER CANCER RELATED GENES-SPECIFIC siRNA, DOUBLE-STRANDED OLIGO RNA MOLECULES COMPRISING THE siRNA, AND COMPOSITION FOR PREVENTING OR TREATING CANCER COMPRISING THE SAME
WO2015002512A1 (ko) 뎅기 바이러스 특이적 siRNA, 그러한 siRNA를 포함하는 이중나선 올리고 RNA 구조체 및 이를 포함하는 뎅기 바이러스 증식 억제용 조성물
WO2020027641A1 (ko) 아토피성 질환 예방 또는 치료용 약학적 조성물
WO2020027640A1 (ko) Ctgf 발현 억제용 조성물
WO2019022521A2 (ko) 혈관 내 생리활성물질 전달용 조성물
WO2019240503A1 (ko) B형 간염 예방 또는 치료용 조성물
WO2022005268A1 (ko) Rna 및 이를 포함하는 핵산 전달체
WO2020096234A1 (ko) 피부 투과성 핵산 복합체를 유효성분으로 함유하는 아토피 피부염의 예방 또는 치료용 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19845250

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021505844

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019845250

Country of ref document: EP

Effective date: 20210303