WO2020026700A1 - Scroll expander - Google Patents
Scroll expander Download PDFInfo
- Publication number
- WO2020026700A1 WO2020026700A1 PCT/JP2019/026803 JP2019026803W WO2020026700A1 WO 2020026700 A1 WO2020026700 A1 WO 2020026700A1 JP 2019026803 W JP2019026803 W JP 2019026803W WO 2020026700 A1 WO2020026700 A1 WO 2020026700A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- scroll
- expander
- hole
- suction chamber
- wall
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C1/00—Rotary-piston machines or engines
- F01C1/02—Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C21/00—Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
- F01C21/18—Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03C—POSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
- F03C2/00—Rotary-piston engines
- F03C2/02—Rotary-piston engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
Definitions
- the present invention relates to a scroll expander, and more particularly, to a scroll expander suitable for being incorporated in a Rankine cycle.
- a conventional scroll expander is generally configured to repeat the following operation. First, the scroll wall of the fixed scroll and the scroll wall of the movable scroll come into contact with each other near the center of the scroll. Next, the movable scroll was turned and the scroll wall of the movable scroll was moved to form a suction chamber near the center of the scroll, and a high-pressure working fluid such as a superheated vapor refrigerant was provided to the fixed scroll. It is introduced into the suction chamber via the introduction part. The introduction of the working fluid into the suction chamber is continued with the expansion of the suction chamber due to the turning of the movable scroll.
- a high-pressure working fluid such as a superheated vapor refrigerant
- the suction chamber expands two times. It is divided (divided) into a room (closed space). Thereby, the introduction of the working fluid is stopped, and the working fluid introduced into the suction chamber is taken into the two expansion chambers. Next, the taken-in working fluid expands in the two expansion chambers, whereby the orbiting scroll orbits and the two expansion chambers move toward the outer periphery of the scroll while expanding.
- discharge volumes the volumes (hereinafter referred to as “discharge volumes”) of the two expansion chambers (at the outer peripheral side of the scroll) communicating with the discharge port and the working fluid (at the center of the scroll) are taken in.
- the ratio between the volumes of the two expansion chambers (hereinafter referred to as “take-in volumes”), that is, the bottom areas of the two expansion chambers (hereinafter referred to as “bottom areas of discharge volumes”) communicating with the discharge ports and the working fluid are taken in.
- bottom area of the intake volume is the volume ratio of the scroll expander.
- the scroll wall is generally formed along an involute curve of a circle, and parameters such as a radius, a thickness, and an opening angle of a base circle of the scroll wall are determined according to an application. It is determined. Then, the bottom area of the intake volume is substantially determined from the determined parameters. For this reason, it is difficult to largely change the bottom area of the intake volume in a scroll expander used for the same kind of application. Further, the bottom area of the discharge volume, in other words, the number of turns of the scroll wall (the outer diameter of the scroll) is determined by the bottom area of the intake volume and the volume ratio required for the scroll expander. The size of the machine (radial size) is almost fixed.
- an object of the present invention is to provide a scroll expander that can increase the volume ratio without increasing the size or reduce the size while maintaining the volume ratio.
- a scroll expander includes a fixed scroll having a first substrate portion and a spiral first scroll wall erected on the first substrate portion, a second substrate portion, and the second substrate.
- a suction chamber formed near the center of the scroll by the held movable scroll, the first scroll wall and the second scroll wall, and whose volume changes by turning the movable scroll, and guiding a working fluid to the suction chamber.
- a fluid passage wherein the suction chamber is divided into two expansion chambers by turning the movable scroll, and the working fluid is expanded in the two expansion chambers.
- the movable scroll is further configured to pivot Te.
- the scroll expander further includes a valve device that opens the fluid passage for introducing the working fluid into the suction chamber and closes the fluid passage before the suction chamber is partitioned into the two expansion chambers. Including.
- the fluid passage is closed by the valve device and the introduction of the working fluid is stopped.
- the bottom area of the intake volume of the working fluid is reduced. be able to.
- FIG. 3 is an enlarged view of a main part of FIG. 2.
- FIG. 3 is a sectional view taken along line AA of FIG. 2.
- It is a perspective view of the rotating body which comprises a valve apparatus.
- It is a figure for explaining an example of operation of the above-mentioned scroll expander.
- It is a figure showing the modification of the above-mentioned rotating body.
- It is a figure which shows the other modification of the said rotating body.
- FIG. 1 shows a schematic configuration of a waste heat recovery device 1 to which a scroll expander according to an embodiment of the present invention is applied.
- the waste heat recovery device 1 is mounted on a vehicle, and is configured to recover and use waste heat of an engine 20 of the vehicle.
- the waste heat recovery device 1 includes a Rankine cycle 2, a transmission mechanism 3, and a control unit 4.
- the engine 20 is a water-cooled engine, and is cooled by engine cooling water circulating in a cooling water circulation path 21.
- a heater 6 (which will be described later), which is a component of the Rankine cycle 2, is disposed in the cooling water circulation path 21, and engine cooling water that has absorbed heat from the engine 20 (high temperature) passes through the inside of the heater 6. .
- the Rankine cycle 2 is a device that recovers waste heat of the engine 20 from the engine cooling water, converts the waste heat into power (drive power), and outputs the power.
- the Rankine cycle 2 has a refrigerant circulation path 5 through which a refrigerant as a working fluid circulates.
- a heater 6, a scroll expander 7, a condenser 8, and a pump 9 are arranged in the refrigerant circulation path 5 in this order along the refrigerant circulation direction.
- the working fluid for example, ethanol, HFC-134a, HFC-245fa, or HFO-1233zd can be used.
- the heater 6 is a heat exchanger that exchanges heat between the engine coolant that has absorbed heat from the engine 20 (high temperature) and the refrigerant of the Rankine cycle 2.
- the refrigerant is heated by the engine cooling water when passing through the heater 6, and becomes a high-pressure superheated vapor refrigerant (high-pressure working fluid).
- the scroll expander 7 expands the superheated vapor refrigerant from the heater 6 to generate power (driving force).
- the scroll expander 7 includes a fixed scroll and a movable scroll, and the movable scroll is driven by expanding the superheated vapor refrigerant in an expansion chamber formed between the fixed scroll and the movable scroll. It is configured to be.
- the driven movable scroll performs a revolving motion, and the revolving motion of the movable scroll is converted into a rotational motion of an output shaft and output as a driving force. Then, the refrigerant (low-pressure working fluid) that has expanded to a low pressure in the expansion chamber is discharged from the scroll expander 7.
- the condenser 8 is a heat exchanger for exchanging heat between the refrigerant discharged from the scroll expander 7, that is, the low-pressure refrigerant and the outside air. When passing through the condenser 8, the low-pressure refrigerant is cooled by outside air and condensed (liquefied). Although not shown, a fan that blows outside air toward the condenser 8 may be provided near the condenser 8.
- the pump 9 is a mechanical pump, and pumps the refrigerant condensed (liquefied) through the condenser 8 by being driven through the drive shaft to the heater 6.
- the pump 9 operates, the refrigerant circulates through each element of the Rankine cycle 2, that is, the heater 6, the scroll expander 7, the condenser 8, and the pump 9.
- the scroll expander 7 and the pump (mechanical pump) 9 are integrally connected by a rotating shaft 10a to form a pump-integrated expander 10. That is, the rotary shaft 10 a of the pump-integrated expander 10 has a function as the output shaft of the scroll expander 7 and a function as the drive shaft of the pump 9.
- the refrigerant circulation path 5 has a bypass path 51 for circulating the refrigerant bypassing the scroll expander 7 and a bypass valve 52 for opening and closing the bypass path 51.
- the operation of the bypass valve 52 that is, the opening and closing of the bypass passage 51, is controlled by the control unit 4.
- the transmission mechanism 3 transmits power between the engine 20 and the Rankine cycle 2. Specifically, the transmission mechanism 3 transmits the output torque of the engine 20 to (the pump 9 of) the pump-integrated expander 10 and the torque (axial torque) of the pump-integrated expander 10 that is the output of the Rankine cycle 2. ) To the engine 20.
- the transmission mechanism 3 includes a pulley 32 attached to an end of the rotating shaft 10a of the pump-integrated expander 10 via an electromagnetic clutch 31, a crank pulley 33 attached to the crankshaft 22 of the engine 20, a pulley 32, And a belt member 34 wound around the crank pulley 33.
- the electromagnetic clutch 31 When the electromagnetic clutch 31 is turned on (engaged), power is transmitted between the engine 20 and the Rankine cycle 2 (the pump-integrated expander 10), and when the electromagnetic clutch 31 is turned off (released). Power transmission between the engine 20 and the Rankine cycle 2 (the pump-integrated expander 10) is shut off. ON (engagement) / OFF (release) of the electromagnetic clutch 31 is controlled by the control unit 4.
- the control unit 4 controls the operation of the Rankine cycle 2 by controlling the electromagnetic clutch 31 and the bypass valve 52 as follows, for example.
- the control unit 4 opens the bypass valve 52, turns on (engages) the electromagnetic clutch 31, and drives the pump 9 by the engine 20.
- the refrigerant circulates around the scroll expander 7.
- the control unit 4 closes the bypass valve 52 when, for example, the pressure difference between the front and rear of the scroll expander 7 becomes a predetermined value or more. Accordingly, in the Rankine cycle 2, the refrigerant circulates through the scroll expander 7, and the scroll expander 7 starts generating a driving force by expanding the superheated vapor refrigerant from the heater 6.
- the control unit 4 turns off (disengages) the electromagnetic clutch 31 and stops the pump 9 (that is, stops the circulation of the refrigerant).
- the generator may be driven by the driving force generated by the scroll expander 7, and the power generated by the generator may be stored in a battery or the like. In this case, an electric pump operated by electric power from the battery or the like can be used as the pump 9.
- the scroll expander 7 in the present embodiment that is, the expander portion of the pump-integrated expander 10 will be described.
- the description of the pump 9 (the pump portion of the pump-integrated expander 10) is omitted, but the pump 9 is a known mechanical pump (gear pump) having a configuration that can be connected to the scroll expander 7 by a rotating shaft 10a. Or a vane pump).
- FIG. 2 is a schematic sectional view of the scroll expander 7
- FIG. 3 is an enlarged view of a main part of FIG. 2
- FIG. 4 is a sectional view taken along line AA of FIG.
- the scroll expander 7 according to the present embodiment includes a fixed scroll 71 and a movable scroll 72.
- the fixed scroll 71 includes a disk-shaped substrate portion (hereinafter, referred to as a “first substrate portion”) 711 and a spiral scroll wall (hereinafter, referred to as a “first scroll portion”) erected on one surface 711 a of the first substrate portion 711. 712).
- the fixed scroll 71 is formed or fixed to a housing member (not shown) of the scroll expander 7, for example.
- the movable scroll 72 includes a disk-shaped substrate portion (hereinafter, referred to as “second substrate portion”) 721, and a spiral scroll wall erected on one surface 721 a of the second substrate portion 721. (Hereinafter, referred to as “second scroll wall”) 722.
- the fixed scroll 71 and the movable scroll 72 are formed of an aluminum-based material such as aluminum or an aluminum alloy, or an iron-based material such as cast iron or steel.
- the first scroll wall 712 of the fixed scroll 71 and the second scroll wall 722 of the movable scroll 72 are formed along a circular involute curve.
- the movable scroll 72 is disposed so that the second scroll wall 722 meshes with the first scroll wall 712 of the fixed scroll 71, and is held rotatably with respect to the fixed scroll 71.
- the orbiting scroll 72 can perform a turning motion while maintaining a fixed eccentric distance from the fixed scroll 71.
- the second center-side starting end 722a) is formed to have an arcuate (semicircular) cross section, and the flat side surfaces of the two substantially face each other (see FIG. 4).
- an anti-rotation mechanism for preventing the orbiting scroll 72 from rotating. 41 (for example, a ball coupling) are arranged between the other surface 721b of the second substrate portion 721 of the orbiting scroll 72 and a fixed portion (not shown) of the scroll expander 7, an anti-rotation mechanism for preventing the orbiting scroll 72 from rotating. 41 (for example, a ball coupling) are arranged.
- the orbiting scroll 72 is connected to the rotary shaft 10a of the pump-integrated expander 10 via an eccentric bearing 42 and a driven crank mechanism 43, so that the orbital motion of the orbiting scroll 72 is reduced by the rotation of the rotary shaft 10a. Converted to movement.
- a column-shaped concave portion (hole portion) 712 b having substantially the same depth as the height of the first scroll wall 712 is formed on the upper surface of the first center-side start end 712 a of the first scroll wall 712. ing.
- the center line of the concave portion 712b coincides with the turning center line O of the orbiting scroll 72.
- the internal space of the concave portion 712b is provided outside the scroll expander 7 via a first hole 711c formed in the first substrate portion 711, specifically, on the inlet side of the scroll expander 7 in the refrigerant circulation path 5. It communicates with a passage portion (a passage portion between the heater 6 and the scroll expander 7).
- the first hole 711c is formed so as to penetrate the first substrate 711 in the thickness direction.
- One end of the first hole 711c is opened on the inner surface of the recess 712b, specifically, on the inner bottom surface of the recess 712b, and the other end of the first hole 711c is connected to the other surface 711b of the first substrate 711. It is open to.
- the present invention is not limited to this, and the first hole portion 711c may be formed such that one end is opened on the inner bottom surface of the concave portion 712b and the other end is opened on the peripheral side surface of the first substrate portion 711. .
- the internal space of the concave portion 712b is connected to the first scroll wall 712 of the fixed scroll 71 via a second hole 712c formed on the flat side surface of the first center side starting end 712a of the first scroll wall 712.
- the second scroll wall 722 of the movable scroll 72 communicates with the suction chamber 80 formed near the center of the scroll. That is, one end of the second hole 712c opens to the inner surface of the recess 712b, specifically, the inner surface of the recess 712b, and the other end of the second hole 712c opens to the suction chamber 80.
- two second holes 712c are formed side by side in the height direction of the first scroll wall 712. However, the present invention is not limited to this, and one second hole 712c may be provided.
- the rotating body 741 is rotatably accommodated in the concave portion 712b formed on the upper surface of the first center side starting end 712a. That is, the rotating body 741 is arranged on the center line O of the orbiting of the movable scroll 72.
- FIG. 5 is a perspective view of the rotating body 741. As shown in FIGS. 4 and 5, the rotating body 741 is formed in a cylindrical shape with a bottom, and is accommodated in the concave portion 712b such that the opening end is located on the inner bottom surface side of the concave portion 712b. . Therefore, the outer surface (bottom surface) of the bottom wall of the rotating body 741 faces one surface 721 a of the second substrate portion 721 of the movable scroll 72.
- An opening 741 a having an opening area larger than the opening area of the second hole 712 c is formed on the peripheral wall of the rotating body 741.
- one opening 741a corresponding to the two second holes 712c is formed in the peripheral wall of the rotating body 741.
- the present invention is not limited to this, and two openings 741a may be formed in the peripheral wall of the rotating body 741 like the second hole 712c.
- the distal end of a drive pin 742 whose base end is fixed to one surface 721a of the second substrate portion 721 of the orbiting scroll 72 is mounted (inserted) into the pin hole 741b.
- the rotating body 741 is rotationally driven in the concave portion 712b via the driving pin 742 by the orbiting of the movable scroll 72. That is, the rotating body 741 is configured to operate in conjunction with the turning of the movable scroll 72.
- the rotating body 741 closes the second hole 712c when the opening 741a does not overlap the second hole 712c, and rotates when the opening 741a rotates to a position overlapping the second hole 712c.
- the second hole 712c is configured to be opened.
- the first hole 711c and the second hole 712c communicate with each other via the internal space 741c of the rotating body 741.
- the superheated vapor refrigerant from the heater 6 flows into the scroll expander 7 from the first hole 711c, passes through the internal space 741c of the rotating body 741 and the second hole 712c, and flows out to the suction chamber 80. I do. That is, the superheated vapor refrigerant is introduced into the suction chamber 80.
- the fluid that guides the superheated vapor refrigerant to the suction chamber 80 is mainly provided by the first hole 711c, the internal space 741c of the rotating body 741, the opening 741a of the rotating body 741, and the second hole 712c.
- a passage 73 is formed.
- the first hole portion 711c forms an inlet hole through which the superheated vapor refrigerant flows in from the outside
- the second hole portion 712c forms an outlet hole through which the superheated vapor refrigerant flows out to the suction chamber 80.
- the internal space 741c of 741 and the opening 741a constitute a connecting part connecting the entrance hole and the exit hole.
- a valve device (rotary valve) 74 for opening and closing the fluid passage 73 (the outlet hole) in conjunction with the turning of the movable scroll 72 is mainly constituted by the rotating body 741 and the driving pin 742. ing.
- the scroll expander 7 (the movable scroll 72) that is stopped with the fluid passage 73 (the outlet hole) closed by the valve device 74 (the rotator 741) is started.
- a communication path (throttle path) 75 is provided which constantly connects the first hole 711c (the inlet hole) and the second hole 712c (the outlet hole).
- the communication path 75 is formed by a first groove portion 751 formed on the inner bottom surface of the concave portion 712b and a second groove portion 752 formed on the inner side surface of the concave portion 712b and connected to the first groove portion 751.
- the first center-side starting end 712a of the first scroll wall 712 of the fixed scroll 71 and the second center-side starting end 722a of the second scroll wall 722 of the movable scroll 72 are formed. Contact near the center of the scroll. More specifically, the flat side surface of the first center-side start end 712a and the flat side surface of the second center-side start end 722a abut near the scroll center. At this time, the opening 741a of the rotating body 741 is at a position that does not overlap the second hole 712c. Therefore, the valve device 74 closes the second hole 712c, that is, the (the outlet hole of) the fluid passage 73. The second hole 712c is also closed by the flat side surface of the second center-side start end 722a.
- the first hole 711c (the inlet hole) and the second hole 712c (the outlet hole) are always in communication with each other through the communication passage 75. Therefore, when the superheated vapor refrigerant is supplied from the heater 6 to the scroll expander 7, the second center-side start end 722a of the second scroll wall 722 of the movable scroll 72 receives the pressure of the superheated vapor refrigerant. Thereby, as shown in FIG. 6B, the orbiting scroll 72 turns and the second scroll wall 722 (the second center side start end 722a) moves, and the first scroll wall 712 and the second scroll wall 712. 722 forms the suction chamber 80 near the center of the scroll.
- the valve device 74 opens the second hole portion 712c, that is, the (the outlet hole of) the fluid passage 73.
- the superheated vapor refrigerant is introduced into the suction chamber 80 via the fluid passage 73. That is, introduction of the superheated vapor refrigerant into the suction chamber 80 is started.
- the volume of the suction chamber 80 (expansion chamber 80 ') at this time becomes the intake volume of the scroll expander 7, and the bottom area of the suction chamber 80 (expansion chamber 80') at this time is equal to the bottom area of the intake volume. Become.
- the suction chamber 80 formed near the center of the scroll is the first expansion chamber, which is two sealed spaces. It is partitioned (divided) into 81 and a second expansion chamber 82. More specifically, the suction chamber 80 becomes an expansion chamber 80 ′, which is one closed space by closing the fluid passage 73 by the valve device 74, and thereafter, the orbiting of the movable scroll 72 due to the expansion of the superheated steam refrigerant. It is divided into a first expansion chamber 81 and a second expansion chamber 82 which are the two closed spaces. At this time, the superheated vapor refrigerant introduced into the suction chamber 80, in other words, the superheated vapor refrigerant introduced into the expansion chamber 80 'is introduced into each of the first expansion chamber 81 and the second expansion chamber 82.
- the superheated vapor refrigerant taken into each of the first expansion chamber 81 and the second expansion chamber 82 expands in the first expansion chamber 81 and the second expansion chamber 82.
- the orbiting scroll 72 further turns, and the first expansion chamber 81 and the second expansion chamber 82 move toward the outer periphery of the scroll while expanding.
- the superheated steam refrigerant in the first expansion chamber 81 and the second expansion chamber 82 is formed.
- the refrigerant that has been reduced in pressure by expanding in the first expansion chamber 81 and the second expansion chamber 82 is discharged from the discharge port.
- the (low-pressure) refrigerant discharged from the discharge port flows toward the condenser 8.
- the scroll expander 7 converts the expansion of the superheated vapor refrigerant into a revolving motion of the movable scroll 72 by repeating the above operation. Then, as described above, the orbiting motion of the orbiting scroll 72 is converted into the rotational motion of the rotating shaft 10a by the eccentric bearing 42 and the driven crank mechanism 43 and the like.
- the scroll expander 7 includes the fluid passage 73 that guides the superheated vapor refrigerant (working fluid) from the heater 6 to the suction chamber 80, and the valve device 74 that opens and closes the fluid passage 73.
- the valve device 74 opens the fluid passage 73 for introducing the superheated vapor refrigerant into the suction chamber 80, and the suction chamber 80 is divided into two expansion chambers (a first expansion chamber 81 and a second expansion chamber 82). Before the cooling, the fluid passage 73 is closed to stop the introduction of the superheated vapor refrigerant (FIGS. 6B and 6E).
- the bottom area of the suction chamber 80 (expansion chamber 80 ') when the introduction of the superheated vapor refrigerant into the suction chamber 80 is stopped is reduced.
- the bottom area of the intake volume which is smaller than the bottom areas of the two expansion chambers (the first expansion chamber 81 and the second expansion chamber 82).
- the superheated vapor refrigerant is compared with the conventional scroll expander in which the introduction of the working fluid is continued until the suction chamber is divided into two expansion chambers.
- the bottom area of the intake volume can be reduced.
- the volume ratio can be increased without changing the bottom area of the discharge volume (and the intake volume), and that the bottom area of the discharge volume can be reduced without changing the volume ratio (and the intake volume) ( That is, the number of turns (the outer diameter of the scroll) of the scroll wall can be reduced. Therefore, according to the scroll expander 7 according to the present embodiment, it is possible to increase the volume ratio without increasing the size (especially, the size in the radial direction), or to maintain the volume ratio while maintaining the volume ratio (especially, in the radial direction). Size) can be reduced. As a result, the scroll expander 7 according to the present embodiment can achieve a higher volume ratio than a conventional scroll expander of substantially the same size used for the same kind of use, or is used for the same kind of use. The size can be reduced as compared with a conventional scroll expander that realizes substantially the same volume ratio.
- most of the conventional scroll expanders are configured such that one of the two expansion chambers is hermetically sealed before the other expansion chamber and / or immediately before being partitioned into the two expansion chambers.
- the suction chamber there is a difference between the flow resistances to the regions corresponding to the two expansion chambers, and the volume of the working fluid taken into the two expansion chambers (and the pressure of the two expansion chambers) is different. Had occurred.
- the fluid passage 73 is closed by the valve device 74 before the suction chamber 80 is divided into two expansion chambers (the first expansion chamber 81 and the second expansion chamber 82). Have been.
- the two expansion chambers (the first expansion chamber 81 and the second expansion chamber 82) are sealed almost simultaneously.
- the area corresponding to the first expansion chamber 81 and the area corresponding to the second expansion chamber 82 have the same shape ( (A symmetrical shape), and there is almost no difference between the flow resistance to the area corresponding to the first expansion chamber 81 and the flow resistance to the area corresponding to the second expansion chamber 82.
- the scroll expander 7 according to the present embodiment, the superheated vapor refrigerant is taken into the two expansion chambers (the first expansion chamber 81 and the second expansion chamber 82) in a well-balanced manner, and the space between the two expansion chambers is increased. Is also suppressed. As a result, the scroll expander 7 according to the present embodiment can operate more stably and efficiently than the conventional scroll expander.
- the valve device 74 opens and closes the fluid passage 73 in conjunction with the turning of the movable scroll 72, specifically, the second hole 712c (a part of the fluid passage 73).
- the outlet hole is opened and closed. For this reason, opening the fluid passage 73 at an appropriate timing to introduce the superheated vapor refrigerant into the suction chamber 80, closing the fluid passage 73 at an appropriate timing to stop the introduction of the superheated vapor refrigerant, and In addition, it is possible to suppress variations in the volume of the superheated vapor refrigerant taken into the two expansion chambers.
- the valve device 74 includes a rotating body 741 rotatably housed in a concave portion 712b formed on the upper surface of the first center-side starting end 712a, and the rotating body 741 rotates in conjunction with the turning of the movable scroll 72.
- the rotating body 741 is configured to open and close the second hole 712c (that is, the outlet hole of the fluid passage 73), one end of which is opened on the inner side surface of the concave portion 712b.
- the rotating body 741 (and the concave portion 712b) is disposed on the rotation center line O of the movable scroll 72, and the rotating body 741 is rotated in the concave portion 712b by a driving pin 742 fixed to the movable scroll 72.
- valve device 74 prevents the scroll expander 7 from increasing in size, and does not require a drive source for the valve device 74 (the rotator 741). Further, by adjusting the size of the opening 741a to adjust the timing of closing the fluid passage 73, the bottom area of the intake volume is adjusted, and the scroll (especially the size in the radial direction) is not enlarged. It is also possible to adjust the volume ratio of the expander 7.
- the heater 6 is configured to cause heat exchange between the engine cooling water and the refrigerant of the Rankine cycle 2.
- the heater 6 may be configured to cause heat exchange between the exhaust gas of the engine 20 and the refrigerant of the Rankine cycle 2.
- the exhaust of the engine 20 is higher in temperature than the engine cooling water, and a larger temperature difference is obtained in the Rankine cycle 2, so that the output of the Rankine cycle 2 increases.
- illustration is omitted, in this case, the exhaust of the engine 20 is configured to pass through the heater 6 instead of the engine cooling water.
- ethanol is used as a suitable refrigerant based on characteristic values (critical temperature, critical pressure, etc.). Can be selected. However, ethanol may corrode the aluminum-based material. For this reason, when ethanol is selected as the refrigerant, the scroll expander 7 uses the fixed scroll 71 and the movable scroll 72 formed of the iron-based material.
- the fixed scroll 71 and the movable scroll 72 formed from the iron-based material are heavier than those formed from the aluminum-based material.
- the weight of the fixed scroll 71 and the movable scroll 72 increases, even if the number of turns of the scroll wall (the outer diameter of the scroll) is the same, the number of parts for balancing and the shape for securing the strength increase, and / or the like.
- the size of the scroll expander 7 is increased as a result.
- the fixed scroll 71 and the movable scroll 72 formed of the iron-based material have a higher necessity to reduce the number of turns (the outer diameter of the scroll) of the scroll wall than those formed of the aluminum-based material. I can say.
- the scroll expander 7 according to the present embodiment can reduce the number of turns (scroll outer diameter) of the scroll wall without changing the volume ratio. This is particularly effective when the formed fixed scroll 71 and movable scroll 72 are used.
- the rotating body 741 is configured to be rotationally driven by the driving pin 742 fixed to the movable scroll 72.
- the rotating body 741 has a pin member 741 d protruding toward one surface 721 a of the second substrate portion 721 of the movable scroll 72 instead of the pin hole 741 b, and A pin hole (not shown) into which the tip of the pin member 741d is mounted (inserted) may be provided on one surface 721a of the two substrate portion 721 instead of the drive pin 742. That is, the rotating body 741 only needs to be configured to be rotationally driven via the pin portion (the driving pin 742, the pin portion 741d) connecting the movable scroll 72 and the rotating body 741.
- the communication path 75 is provided, which always connects the first hole 711c (the inlet hole) and the second hole 712c (the outlet hole).
- the communication passage 75 does not always require the first hole 711c and the second hole 712c to always communicate with each other, and at least when the valve device 74 closes the fluid passage 73, the first hole 711c and the second hole What is necessary is just to make it communicate with the part 712c.
- a groove 741e extending from one end to the other end in the circumferential direction of the opening 741a is formed on the outer surface of the peripheral wall of the rotating body 741.
- a communication path 75 is formed by the internal space 741c of the rotating body 741 and the groove 741e, and the formed communication path 75 is connected to the first hole 711c and the first hole 711c when the valve device 74 closes the fluid path 73.
- the two holes 712c are communicated.
- a plurality of through holes 741f are formed in the peripheral wall of the rotating body 741 instead of the grooves 741e.
- a communication passage 75 is formed by the internal space 741c of the rotating body 741 and at least one of the plurality of through holes 741f, and the formed communication passage 75 is formed when the valve device 74 closes the fluid passage 73.
- the one hole 711c and the second hole 712c are communicated.
- the first hole portion 711c and the second hole portion are formed by the gap between the outer surface of the peripheral wall of the rotating body 741 and the inner surface of the concave portion 712b and the internal space 741c of the rotating body 741.
- a communication passage 75 that constantly communicates with the 712c may be formed.
- the second hole portion 712c that constitutes the outlet hole of the fluid passage 73 is located at an intermediate position in the height direction on the flat side surface of the first center-side starting end portion 712a of the first scroll wall 712.
- the opening 741a of the rotator 741 is formed at an intermediate position in the height direction of the peripheral wall of the rotator 741 so as to correspond to this position.
- it is not limited to this.
- a concave portion 712 b is formed on the upper surface of the first center side start end 712 a of the first scroll wall 712.
- a groove 712d extending from the inner side surface to the flat side surface of the first center-side starting end 712a may be formed.
- a cutout 741g in which a part of the bottom wall and a part of the peripheral wall of the rotating body 741 are cut out is formed in the rotating body 741.
- the fluid passage 73 is formed mainly by the first hole 711c, the internal space 741c of the rotating body 741, the cutout 741g of the rotating body 741, and the groove 712d.
- the groove 712d forms the outlet hole of the fluid passage 73. Even in this case, the same effect as in the above-described embodiment can be obtained.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Hydraulic Motors (AREA)
- Rotary Pumps (AREA)
Abstract
[Problem] To provide a scroll expander with which it is possible to achieve an increase in volume ratio without an increase in size, or to achieve size reduction while maintaining a volume ratio. [Solution] A scroll expander 7 comprises: an intake chamber 80 which is formed in the vicinity of a scroll center portion by a first scroll wall 712 of a fixed scroll 71 and a second scroll wall 722 of a movable scroll 72, and of which the volume varies due to rotation of the movable scroll 72; a fluid passageway 73 which guides an operating fluid to the intake chamber 80; and a valve device 74 which opens the fluid passageway 73 in order to introduce the operating fluid into the intake chamber 80, and which closes the fluid passageway 73 before the intake chamber 80 is compartmentalized into two expanding chambers.
Description
本発明は、スクロール膨張機に関し、特にランキンサイクルに組み込まれて好適なスクロール膨張機に関する。
The present invention relates to a scroll expander, and more particularly, to a scroll expander suitable for being incorporated in a Rankine cycle.
従来のスクロール膨張機は、通常、次のような動作を繰り返すように構成されている。まず、固定スクロールのスクロール壁と可動スクロールのスクロール壁とがスクロール中心部近傍で当接する。次いで、前記可動スクロールが旋回して前記可動スクロールの前記スクロール壁が移動することで前記スクロール中心部近傍に吸入室が形成され、過熱蒸気冷媒などの高圧の作動流体が前記固定スクロールに設けられた導入部を介して前記吸入室に導入される。前記作動流体の前記吸入室への導入は、前記可動スクロールの旋回による前記吸入室の拡張に伴って継続される。次いで、前記可動スクロールが1回転(1周旋回)して前記固定スクロールの前記スクロール壁と前記可動スクロールの前記スクロール壁とが前記スクロール中心部近傍で再び当接すると、前記吸入室が二つの膨張室(密閉空間)に区画(分割)される。これにより、前記作動流体の導入が停止されると共に前記吸入室に導入された前記作動流体が前記二つの膨張室に取り込まれる。次いで、取り込まれた前記作動流体が前記二つの膨張室内で膨張し、これによって、前記可動スクロールが旋回すると共に、前記二つの膨張室が拡張しながらスクロール外周部に向かって移動する。そして、前記二つの膨張室がスクロール外周部近傍まで移動して吐出ポートに連通すると、前記作動流体の膨張が完了すると共に、前記二つの膨張室内で膨張して低圧となった前記作動流体が前記吐出ポートから吐出される。
A conventional scroll expander is generally configured to repeat the following operation. First, the scroll wall of the fixed scroll and the scroll wall of the movable scroll come into contact with each other near the center of the scroll. Next, the movable scroll was turned and the scroll wall of the movable scroll was moved to form a suction chamber near the center of the scroll, and a high-pressure working fluid such as a superheated vapor refrigerant was provided to the fixed scroll. It is introduced into the suction chamber via the introduction part. The introduction of the working fluid into the suction chamber is continued with the expansion of the suction chamber due to the turning of the movable scroll. Next, when the movable scroll makes one rotation (orbits), and the scroll wall of the fixed scroll and the scroll wall of the movable scroll come into contact again near the center of the scroll, the suction chamber expands two times. It is divided (divided) into a room (closed space). Thereby, the introduction of the working fluid is stopped, and the working fluid introduced into the suction chamber is taken into the two expansion chambers. Next, the taken-in working fluid expands in the two expansion chambers, whereby the orbiting scroll orbits and the two expansion chambers move toward the outer periphery of the scroll while expanding. Then, when the two expansion chambers move to the vicinity of the outer peripheral portion of the scroll and communicate with the discharge port, the expansion of the working fluid is completed, and the working fluid that has expanded to a low pressure in the two expansion chambers is discharged. Discharged from the discharge port.
従来のスクロール膨張機においては、上述のように、前記吸入室が前記二つの膨張室に区画されるまで前記作動流体の導入が継続される。そして、基本的には、前記吐出ポートに連通する(スクロール外周部側の)前記二つの膨張室の容積(以下「吐出容積」という)と前記作動流体を取り込む(スクロール中心部側の)前記二つの膨張室の容積(以下「取り込み容積」という)との比、すなわち、前記吐出ポートに連通する前記二つの膨張室の底面積(以下「吐出容積の底面積」という)と前記作動流体を取り込む前記二つの膨張室の底面積(以下「取り込み容積の底面積」という)との比が、スクロール膨張機の容積比となる。
In the conventional scroll expander, as described above, the introduction of the working fluid is continued until the suction chamber is divided into the two expansion chambers. Then, basically, the volumes (hereinafter referred to as “discharge volumes”) of the two expansion chambers (at the outer peripheral side of the scroll) communicating with the discharge port and the working fluid (at the center of the scroll) are taken in. The ratio between the volumes of the two expansion chambers (hereinafter referred to as “take-in volumes”), that is, the bottom areas of the two expansion chambers (hereinafter referred to as “bottom areas of discharge volumes”) communicating with the discharge ports and the working fluid are taken in. The ratio to the bottom area of the two expansion chambers (hereinafter referred to as the “bottom area of the intake volume”) is the volume ratio of the scroll expander.
従来のスクロール膨張機において、前記スクロール壁は、通常、円のインボリュート曲線に沿って形成されており、用途に応じて、前記スクロール壁の基礎円の半径、厚さ及び伸開角などのパラメータが決定される。そして、決定されたパラメータから前記取り込み容積の底面積がほぼ定まる。このため、同種の用途に使用されるスクロール膨張機において、前記取り込み容積の底面積を大幅に変更することは難しい。また、前記吐出容積の底面積、換言すれば、前記スクロール壁の巻数(スクロール外径)は前記取り込み容積の底面積とスクロール膨張機に要求される容積比とによって決定され、これによって、スクロール膨張機のサイズ(径方向のサイズ)もほぼ定まる。
In a conventional scroll expander, the scroll wall is generally formed along an involute curve of a circle, and parameters such as a radius, a thickness, and an opening angle of a base circle of the scroll wall are determined according to an application. It is determined. Then, the bottom area of the intake volume is substantially determined from the determined parameters. For this reason, it is difficult to largely change the bottom area of the intake volume in a scroll expander used for the same kind of application. Further, the bottom area of the discharge volume, in other words, the number of turns of the scroll wall (the outer diameter of the scroll) is determined by the bottom area of the intake volume and the volume ratio required for the scroll expander. The size of the machine (radial size) is almost fixed.
したがって、従来は、同種の用途に使用されるスクロール膨張機において、容積比を維持しながらサイズを小型化したり、サイズの大型化を招くことなく容積比を高くしたりすることが難しいという課題があった。近年、スクロール膨張機の小型化や高出力化のニーズがますます増えており、このようなニーズに対応できるようにすることが望まれる。
Therefore, conventionally, in a scroll expander used for the same kind of application, there is a problem that it is difficult to reduce the size while maintaining the volume ratio or to increase the volume ratio without increasing the size. there were. In recent years, scroll expanders have been increasingly required to be smaller and have higher output, and it is desired to be able to respond to such needs.
そこで、本発明は、サイズの大型化を招くことなく容積比を高くすること、又は、容積比を維持しながらサイズの小型化を図ることのできるスクロール膨張機を提供することを目的とする。
Therefore, an object of the present invention is to provide a scroll expander that can increase the volume ratio without increasing the size or reduce the size while maintaining the volume ratio.
本発明の一側面によると、スクロール膨張機は、第1基板部及び前記第1基板部に立設された渦巻状の第1スクロール壁を有する固定スクロールと、第2基板部及び前記第2基板部に立設された渦巻状の第2スクロール壁を有し、前記第2スクロール壁が前記固定スクロールの前記第1スクロール壁に噛み合うように配設される共に前記固定スクロールに対して旋回可能に保持された可動スクロールと、前記第1スクロール壁と前記第2スクロール壁とによってスクロール中心部近傍に形成され、前記可動スクロールの旋回によって容積が変化する吸入室と、作動流体を前記吸入室に導く流体通路と、を含み、前記吸入室が前記可動スクロールの旋回によって二つの膨張室に区画され、前記作動流体が前記二つの膨張室で膨張することによって前記可動スクロールがさらに旋回するように構成されている。前記スクロール膨張機は、前記作動流体を前記吸入室に導入するために前記流体通路を開放すると共に前記吸入室が前記二つの膨張室に区画される前に前記流体通路を閉鎖する弁装置をさらに含む。
According to one aspect of the present invention, a scroll expander includes a fixed scroll having a first substrate portion and a spiral first scroll wall erected on the first substrate portion, a second substrate portion, and the second substrate. A scroll-shaped second scroll wall erected on the portion, wherein the second scroll wall is disposed so as to mesh with the first scroll wall of the fixed scroll and is rotatable with respect to the fixed scroll. A suction chamber formed near the center of the scroll by the held movable scroll, the first scroll wall and the second scroll wall, and whose volume changes by turning the movable scroll, and guiding a working fluid to the suction chamber. A fluid passage, wherein the suction chamber is divided into two expansion chambers by turning the movable scroll, and the working fluid is expanded in the two expansion chambers. The movable scroll is further configured to pivot Te. The scroll expander further includes a valve device that opens the fluid passage for introducing the working fluid into the suction chamber and closes the fluid passage before the suction chamber is partitioned into the two expansion chambers. Including.
前記スクロール膨張機によれば、前記吸入室が前記二つの膨張室に区画される前に前記弁装置によって前記流体通路が閉鎖されて前記作動流体の導入が停止される。このため、前記吸入室が前記二つの膨張室に区画されるまで前記作動流体の導入が継続される構成の従来のスクロール膨張機に比べて、前記作動流体の前記取り込み容積の底面積を小さくすることができる。その結果、スクロール膨張機のサイズを大型化することなくスクロール膨張機の容積比を高くしたり、スクロール膨張機の容積比を維持しながらスクロール膨張機のサイズを小型化したりすることが可能になる。
According to the scroll expander, before the suction chamber is divided into the two expansion chambers, the fluid passage is closed by the valve device and the introduction of the working fluid is stopped. For this reason, compared with the conventional scroll expander in which the introduction of the working fluid is continued until the suction chamber is divided into the two expansion chambers, the bottom area of the intake volume of the working fluid is reduced. be able to. As a result, it is possible to increase the volume ratio of the scroll expander without increasing the size of the scroll expander, or to reduce the size of the scroll expander while maintaining the volume ratio of the scroll expander. .
以下、添付図面を参照しつつ本発明の実施形態について説明する。
図1は、本発明の一実施形態に係るスクロール膨張機が適用された廃熱回収装置1の概略構成を示している。廃熱回収装置1は、車両に搭載され、当該車両のエンジン20の廃熱を回収して利用するように構成されている。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 shows a schematic configuration of a waste heat recovery device 1 to which a scroll expander according to an embodiment of the present invention is applied. The waste heat recovery device 1 is mounted on a vehicle, and is configured to recover and use waste heat of anengine 20 of the vehicle.
図1は、本発明の一実施形態に係るスクロール膨張機が適用された廃熱回収装置1の概略構成を示している。廃熱回収装置1は、車両に搭載され、当該車両のエンジン20の廃熱を回収して利用するように構成されている。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 shows a schematic configuration of a waste heat recovery device 1 to which a scroll expander according to an embodiment of the present invention is applied. The waste heat recovery device 1 is mounted on a vehicle, and is configured to recover and use waste heat of an
図1に示されるように、廃熱回収装置1は、ランキンサイクル2と、伝達機構3と、制御ユニット4と、を含む。また、エンジン20は、水冷式エンジンであり、冷却水循環路21を循環するエンジン冷却水によって冷却される。冷却水循環路21には、ランキンサイクル2の構成要素である加熱器6(後述する)が配置されており、エンジン20から熱を吸収した(高温の)エンジン冷却水が加熱器6内を通過する。
廃 As shown in FIG. 1, the waste heat recovery device 1 includes a Rankine cycle 2, a transmission mechanism 3, and a control unit 4. The engine 20 is a water-cooled engine, and is cooled by engine cooling water circulating in a cooling water circulation path 21. A heater 6 (which will be described later), which is a component of the Rankine cycle 2, is disposed in the cooling water circulation path 21, and engine cooling water that has absorbed heat from the engine 20 (high temperature) passes through the inside of the heater 6. .
ランキンサイクル2は、前記エンジン冷却水からエンジン20の廃熱を回収して動力(駆動力)に変換して出力する装置である。ランキンサイクル2は、作動流体としての冷媒が循環する冷媒循環路5を有する。冷媒循環路5には、加熱器6、スクロール膨張機7、凝縮器8及びポンプ9が、前記冷媒の循環方向に沿って、この順に配設されている。特に制限されないが、前記作動流体(冷媒)としては、例えば、エタノール、HFC-134a、HFC-245fa又はHFO-1233zdが用いられ得る。
The Rankine cycle 2 is a device that recovers waste heat of the engine 20 from the engine cooling water, converts the waste heat into power (drive power), and outputs the power. The Rankine cycle 2 has a refrigerant circulation path 5 through which a refrigerant as a working fluid circulates. A heater 6, a scroll expander 7, a condenser 8, and a pump 9 are arranged in the refrigerant circulation path 5 in this order along the refrigerant circulation direction. Although not particularly limited, as the working fluid (refrigerant), for example, ethanol, HFC-134a, HFC-245fa, or HFO-1233zd can be used.
加熱器6は、エンジン20から熱を吸収した(高温の)前記エンジン冷却水とランキンサイクル2の前記冷媒との間で熱交換を行わせる熱交換器である。前記冷媒は、加熱器6を通過する際に前記エンジン冷却水により加熱されて高圧の過熱蒸気冷媒(高圧の作動流体)となる。
The heater 6 is a heat exchanger that exchanges heat between the engine coolant that has absorbed heat from the engine 20 (high temperature) and the refrigerant of the Rankine cycle 2. The refrigerant is heated by the engine cooling water when passing through the heater 6, and becomes a high-pressure superheated vapor refrigerant (high-pressure working fluid).
スクロール膨張機7は、加熱器6からの前記過熱蒸気冷媒を膨張させて動力(駆動力)を発生する。後述するように、スクロール膨張機7は、固定スクロールと可動スクロールを含み、前記固定スクロールと前記可動スクロールとの間に形成される膨張室で前記過熱蒸気冷媒を膨張させることによって前記可動スクロールが駆動されるように構成されている。駆動された前記可動スクロールは旋回運動を行い、前記可動スクロールの旋回運動が出力軸の回転運動に変換されて駆動力として出力される。そして、前記膨張室で膨張して低圧となった前記冷媒(低圧の作動流体)がスクロール膨張機7から吐出される。
The scroll expander 7 expands the superheated vapor refrigerant from the heater 6 to generate power (driving force). As described later, the scroll expander 7 includes a fixed scroll and a movable scroll, and the movable scroll is driven by expanding the superheated vapor refrigerant in an expansion chamber formed between the fixed scroll and the movable scroll. It is configured to be. The driven movable scroll performs a revolving motion, and the revolving motion of the movable scroll is converted into a rotational motion of an output shaft and output as a driving force. Then, the refrigerant (low-pressure working fluid) that has expanded to a low pressure in the expansion chamber is discharged from the scroll expander 7.
凝縮器8は、スクロール膨張機7から吐出された前記冷媒、すなわち、低圧の前記冷媒と外気との間で熱交換を行わせる熱交換器である。低圧の前記冷媒は、凝縮器8を通過する際に外気により冷却されて凝縮(液化)する。なお、図示は省略するが、凝縮器8の近傍に凝縮器8に向かって外気を送風するファンが設けられてもよい。
The condenser 8 is a heat exchanger for exchanging heat between the refrigerant discharged from the scroll expander 7, that is, the low-pressure refrigerant and the outside air. When passing through the condenser 8, the low-pressure refrigerant is cooled by outside air and condensed (liquefied). Although not shown, a fan that blows outside air toward the condenser 8 may be provided near the condenser 8.
ポンプ9は、機械式のポンプであり、駆動軸を介して駆動されることによって凝縮器8を通過して凝縮(液化)した前記冷媒を加熱器6へと圧送する。そして、ポンプ9が動作することで、前記冷媒がランキンサイクル2の各要素、すなわち、加熱器6、スクロール膨張機7、凝縮器8及びポンプ9を循環することになる。
The pump 9 is a mechanical pump, and pumps the refrigerant condensed (liquefied) through the condenser 8 by being driven through the drive shaft to the heater 6. When the pump 9 operates, the refrigerant circulates through each element of the Rankine cycle 2, that is, the heater 6, the scroll expander 7, the condenser 8, and the pump 9.
ここで、本実施形態において、スクロール膨張機7とポンプ(機械式ポンプ)9とは回転軸10aによって一体的に連結されてポンプ一体型膨張機10として構成されている。すなわち、ポンプ一体型膨張機10の回転軸10aは、スクロール膨張機7の前記出力軸としての機能及びポンプ9の前記駆動軸としての機能を有している。
Here, in the present embodiment, the scroll expander 7 and the pump (mechanical pump) 9 are integrally connected by a rotating shaft 10a to form a pump-integrated expander 10. That is, the rotary shaft 10 a of the pump-integrated expander 10 has a function as the output shaft of the scroll expander 7 and a function as the drive shaft of the pump 9.
また、本実施形態において、冷媒循環路5は、スクロール膨張機7を迂回して前記冷媒を循環させるためのバイパス路51と、バイパス路51を開閉するバイパス弁52とを有している。バイパス弁52の作動、すなわち、バイパス路51の開閉は、制御ユニット4によって制御される。
In addition, in the present embodiment, the refrigerant circulation path 5 has a bypass path 51 for circulating the refrigerant bypassing the scroll expander 7 and a bypass valve 52 for opening and closing the bypass path 51. The operation of the bypass valve 52, that is, the opening and closing of the bypass passage 51, is controlled by the control unit 4.
伝達機構3は、エンジン20とランキンサイクル2との間で動力を伝達する。具体的には、伝達機構3は、エンジン20の出力トルクをポンプ一体型膨張機10(のポンプ9)に伝達すると共に、ランキンサイクル2の出力であるポンプ一体型膨張機10のトルク(軸トルク)をエンジン20に伝達する。
The transmission mechanism 3 transmits power between the engine 20 and the Rankine cycle 2. Specifically, the transmission mechanism 3 transmits the output torque of the engine 20 to (the pump 9 of) the pump-integrated expander 10 and the torque (axial torque) of the pump-integrated expander 10 that is the output of the Rankine cycle 2. ) To the engine 20.
伝達機構3は、ポンプ一体型膨張機10の回転軸10aの端部に電磁クラッチ31を介して取り付けられたプーリ32と、エンジン20のクランクシャフト22に取り付けられたクランクプーリ33と、プーリ32及びクランクプーリ33に巻回されたベルト部材34と、を有する。そして、電磁クラッチ31がON(締結)されると、エンジン20とランキンサイクル2(ポンプ一体型膨張機10)との間で動力の伝達が行われ、電磁クラッチ31がOFF(解放)されると、エンジン20とランキンサイクル2(ポンプ一体型膨張機10)との間の動力の伝達が遮断される。電磁クラッチ31のON(締結)/OFF(解放)は、制御ユニット4によって制御される。
The transmission mechanism 3 includes a pulley 32 attached to an end of the rotating shaft 10a of the pump-integrated expander 10 via an electromagnetic clutch 31, a crank pulley 33 attached to the crankshaft 22 of the engine 20, a pulley 32, And a belt member 34 wound around the crank pulley 33. When the electromagnetic clutch 31 is turned on (engaged), power is transmitted between the engine 20 and the Rankine cycle 2 (the pump-integrated expander 10), and when the electromagnetic clutch 31 is turned off (released). Power transmission between the engine 20 and the Rankine cycle 2 (the pump-integrated expander 10) is shut off. ON (engagement) / OFF (release) of the electromagnetic clutch 31 is controlled by the control unit 4.
制御ユニット4は、例えば次のように電磁クラッチ31及びバイパス弁52を制御してランキンサイクル2の作動を制御する。ランキンサイクル2を起動させる場合、制御ユニット4は、バイパス弁52を開き、電磁クラッチ31をON(締結)してエンジン20によってポンプ9を駆動する。これにより、ランキンサイクル2において、前記冷媒がスクロール膨張機7を迂回して循環する。そして、制御ユニット4は、例えばスクロール膨張機7前後の圧力差が所定値以上となると、バイパス弁52を閉じる。これにより、ランキンサイクル2において、前記冷媒がスクロール膨張機7を経由して循環し、スクロール膨張機7は、加熱器6からの前記過熱蒸気冷媒を膨張させることによって駆動力を発生し始める。その後、スクロール膨張機7が十分な駆動力を発生するようになると、スクロール膨張機7で発生した駆動力の一部がポンプ9を駆動し、その余の駆動力が伝達機構3を介してエンジン20に伝達されてエンジン20の出力(駆動力)をアシストする。また、制御ユニット4は、ランキンサイクル2を停止させる場合、電磁クラッチ31をOFF(解放)し、ポンプ9を停止(すなわち、前記冷媒の循環を停止)させる。なお、図示は省略するが、スクロール膨張機7で発生した駆動力によって発電機を駆動し、発電機で発電した電力をバッテリ等に蓄電するようにしてもよい。この場合、前記バッテリ等からの電力によって動作する電動ポンプがポンプ9として用いられ得る。
The control unit 4 controls the operation of the Rankine cycle 2 by controlling the electromagnetic clutch 31 and the bypass valve 52 as follows, for example. When starting the Rankine cycle 2, the control unit 4 opens the bypass valve 52, turns on (engages) the electromagnetic clutch 31, and drives the pump 9 by the engine 20. Thereby, in the Rankine cycle 2, the refrigerant circulates around the scroll expander 7. The control unit 4 closes the bypass valve 52 when, for example, the pressure difference between the front and rear of the scroll expander 7 becomes a predetermined value or more. Accordingly, in the Rankine cycle 2, the refrigerant circulates through the scroll expander 7, and the scroll expander 7 starts generating a driving force by expanding the superheated vapor refrigerant from the heater 6. Thereafter, when the scroll expander 7 generates a sufficient driving force, a part of the driving force generated by the scroll expander 7 drives the pump 9, and the remaining driving force is transmitted to the engine via the transmission mechanism 3. 20 to assist the output (driving force) of the engine 20. Further, when stopping the Rankine cycle 2, the control unit 4 turns off (disengages) the electromagnetic clutch 31 and stops the pump 9 (that is, stops the circulation of the refrigerant). Although not shown, the generator may be driven by the driving force generated by the scroll expander 7, and the power generated by the generator may be stored in a battery or the like. In this case, an electric pump operated by electric power from the battery or the like can be used as the pump 9.
次に、本実施形態におけるスクロール膨張機7、すなわち、ポンプ一体型膨張機10の膨張機部分について説明する。なお、ポンプ9(ポンプ一体型膨張機10のポンプ部分)についての説明は省略するが、ポンプ9としては、回転軸10aによってスクロール膨張機7と連結可能な構成を有する公知の機械式ポンプ(ギヤポンプやベーンポンプなど)が採用され得る。
Next, the scroll expander 7 in the present embodiment, that is, the expander portion of the pump-integrated expander 10 will be described. The description of the pump 9 (the pump portion of the pump-integrated expander 10) is omitted, but the pump 9 is a known mechanical pump (gear pump) having a configuration that can be connected to the scroll expander 7 by a rotating shaft 10a. Or a vane pump).
図2は、スクロール膨張機7の概略断面図であり、図3は、図2の要部拡大図であり、図4は、図2のA-A断面図である。図2~図4に示されるように、本実施形態に係るスクロール膨張機7は、固定スクロール71と、可動スクロール72と、を含む。
2 is a schematic sectional view of the scroll expander 7, FIG. 3 is an enlarged view of a main part of FIG. 2, and FIG. 4 is a sectional view taken along line AA of FIG. As shown in FIGS. 2 to 4, the scroll expander 7 according to the present embodiment includes a fixed scroll 71 and a movable scroll 72.
固定スクロール71は、円盤状の基板部(以下「第1基板部」という)711と、第1基板部711の一方の面711a上に立設された渦巻状のスクロール壁(以下「第1スクロール壁」という)712と、を有する。固定スクロール71は、例えばスクロール膨張機7のハウジング部材(図示省略)に形成され又は固定される。
The fixed scroll 71 includes a disk-shaped substrate portion (hereinafter, referred to as a “first substrate portion”) 711 and a spiral scroll wall (hereinafter, referred to as a “first scroll portion”) erected on one surface 711 a of the first substrate portion 711. 712). The fixed scroll 71 is formed or fixed to a housing member (not shown) of the scroll expander 7, for example.
可動スクロール72は、固定スクロール71と同様、円盤状の基板部(以下「第2基板部」という)721と、第2基板部721の一方の面721a上に立設された渦巻状のスクロール壁(以下「第2スクロール壁」という)722と、を有する。
Similar to the fixed scroll 71, the movable scroll 72 includes a disk-shaped substrate portion (hereinafter, referred to as “second substrate portion”) 721, and a spiral scroll wall erected on one surface 721 a of the second substrate portion 721. (Hereinafter, referred to as “second scroll wall”) 722.
固定スクロール71及び可動スクロール72は、アルミニウムやアルミニウム合金などのアルミニウム系材料、又は、鋳鉄や鋼等などの鉄系材料から形成される。また、固定スクロール71の第1スクロール壁712及び可動スクロール72の第2スクロール壁722は、円のインボリュート曲線に沿って形成される。そして、可動スクロール72は、第2スクロール壁722が固定スクロール71の第1スクロール壁712に噛み合うように配置され、かつ、固定スクロール71に対して旋回可能に保持されている。具体的には、可動スクロール72は、固定スクロール71と一定の偏心距離を保ちながら旋回運動を行うことが可能である。
The fixed scroll 71 and the movable scroll 72 are formed of an aluminum-based material such as aluminum or an aluminum alloy, or an iron-based material such as cast iron or steel. The first scroll wall 712 of the fixed scroll 71 and the second scroll wall 722 of the movable scroll 72 are formed along a circular involute curve. The movable scroll 72 is disposed so that the second scroll wall 722 meshes with the first scroll wall 712 of the fixed scroll 71, and is held rotatably with respect to the fixed scroll 71. Specifically, the orbiting scroll 72 can perform a turning motion while maintaining a fixed eccentric distance from the fixed scroll 71.
本実施形態において、固定スクロール71の第1スクロール壁712の中心側始端部(以下「第1中心側始端部」という)712a及び可動スクロール72の第2スクロール壁722の中心側始端部(以下「第2中心側始端部」という)722aは、弓形(半円状)の横断面を有して形成され、互いの平坦な側面同士が略対面している(図4を参照)。
In the present embodiment, the center-side start end (hereinafter, referred to as a “first center-side start end”) 712a of the first scroll wall 712 of the fixed scroll 71 and the center-side start end (hereinafter, referred to as “first center-side start end”) of the movable scroll 72. The second center-side starting end 722a) is formed to have an arcuate (semicircular) cross section, and the flat side surfaces of the two substantially face each other (see FIG. 4).
本実施形態において、可動スクロール72の第2基板部721の他方の面721bとスクロール膨張機7の固定部分(図示省略)との間には、可動スクロール72の自転を阻止するための自転阻止機構41(例えば、ボールカップリング)が配置されている。また、可動スクロール72は、偏心軸受42及び従動クランク機構43などを介してポンプ一体型膨張機10の回転軸10aに連結されており、これによって、可動スクロール72の旋回運動が回転軸10aの回転運動に変換される。
In the present embodiment, between the other surface 721b of the second substrate portion 721 of the orbiting scroll 72 and a fixed portion (not shown) of the scroll expander 7, an anti-rotation mechanism for preventing the orbiting scroll 72 from rotating. 41 (for example, a ball coupling) are arranged. The orbiting scroll 72 is connected to the rotary shaft 10a of the pump-integrated expander 10 via an eccentric bearing 42 and a driven crank mechanism 43, so that the orbital motion of the orbiting scroll 72 is reduced by the rotation of the rotary shaft 10a. Converted to movement.
固定スクロール71において、第1スクロール壁712の第1中心側始端部712aの上面には、第1スクロール壁712の高さとほぼ同じ深さを有した円柱状の凹部(穴部)712bが形成されている。凹部712bの中心線は、可動スクロール72の旋回中心線Oに一致している。
In the fixed scroll 71, a column-shaped concave portion (hole portion) 712 b having substantially the same depth as the height of the first scroll wall 712 is formed on the upper surface of the first center-side start end 712 a of the first scroll wall 712. ing. The center line of the concave portion 712b coincides with the turning center line O of the orbiting scroll 72.
凹部712bの内部空間は、第1基板部711に形成された第1孔部711cを介して、スクロール膨張機7の外部、具体的には、冷媒循環路5におけるスクロール膨張機7の入口側の通路部分(加熱器6とスクロール膨張機7との間の通路部分)に連通している。本実施形態において、第1孔部711cは、第1基板部711を厚さ方向に貫通するように形成されている。そして、第1孔部711cの一端は、凹部712bの内面、具体的には、凹部712bの内底面に開口し、第1孔部711cの他端は、第1基板部711の他方の面711bに開口している。但し、これに限られるものではなく、第1孔部711cは、一端が凹部712bの前記内底面に開口し、他端が第1基板部711の周側面に開口するように形成されてもよい。
The internal space of the concave portion 712b is provided outside the scroll expander 7 via a first hole 711c formed in the first substrate portion 711, specifically, on the inlet side of the scroll expander 7 in the refrigerant circulation path 5. It communicates with a passage portion (a passage portion between the heater 6 and the scroll expander 7). In the present embodiment, the first hole 711c is formed so as to penetrate the first substrate 711 in the thickness direction. One end of the first hole 711c is opened on the inner surface of the recess 712b, specifically, on the inner bottom surface of the recess 712b, and the other end of the first hole 711c is connected to the other surface 711b of the first substrate 711. It is open to. However, the present invention is not limited to this, and the first hole portion 711c may be formed such that one end is opened on the inner bottom surface of the concave portion 712b and the other end is opened on the peripheral side surface of the first substrate portion 711. .
また、凹部712bの前記内部空間は、第1スクロール壁712の第1中心側始端部712aの前記平坦な側面に形成された第2孔部712cを介して、固定スクロール71の第1スクロール壁712と可動スクロール72の第2スクロール壁722によってスクロール中心部近傍に形成される吸入室80に連通している。すなわち、第2孔部712cの一端は、凹部712bの前記内面、具体的には、凹部712bの内側面に開口し、第2孔部712cの他端は、吸入室80内に開口している。なお、本実施形態においては、二つの第2孔部712cが第1スクロール壁712の高さ方向に並んで形成されている。しかし、これに限られるものではなく、第2孔部712cは一つであってもよい。
In addition, the internal space of the concave portion 712b is connected to the first scroll wall 712 of the fixed scroll 71 via a second hole 712c formed on the flat side surface of the first center side starting end 712a of the first scroll wall 712. And the second scroll wall 722 of the movable scroll 72 communicates with the suction chamber 80 formed near the center of the scroll. That is, one end of the second hole 712c opens to the inner surface of the recess 712b, specifically, the inner surface of the recess 712b, and the other end of the second hole 712c opens to the suction chamber 80. . In the present embodiment, two second holes 712c are formed side by side in the height direction of the first scroll wall 712. However, the present invention is not limited to this, and one second hole 712c may be provided.
第1中心側始端部712aの前記上面に形成された凹部712bには、回転体741が回転自在に収容されている。すなわち、回転体741は、可動スクロール72の旋回中心線O上に配置されている。図5は、回転体741の斜視図である。図4、図5に示されるように、回転体741は、有底円筒状に形成されており、その開口端が凹部712bの前記内底面側に位置するように、凹部712bに収容されている。したがって、回転体741の底壁の外側面(底面)は、可動スクロール72の第2基板部721の一方の面721aに対面している。
The rotating body 741 is rotatably accommodated in the concave portion 712b formed on the upper surface of the first center side starting end 712a. That is, the rotating body 741 is arranged on the center line O of the orbiting of the movable scroll 72. FIG. 5 is a perspective view of the rotating body 741. As shown in FIGS. 4 and 5, the rotating body 741 is formed in a cylindrical shape with a bottom, and is accommodated in the concave portion 712b such that the opening end is located on the inner bottom surface side of the concave portion 712b. . Therefore, the outer surface (bottom surface) of the bottom wall of the rotating body 741 faces one surface 721 a of the second substrate portion 721 of the movable scroll 72.
回転体741の周壁には、第2孔部712cの開口面積より大きな開口面積を有する開口部741aが形成されている。本実施形態においては、二つの第2孔部712cに対応する一つの開口部741aが回転体741の前記周壁に形成されている。しかし、これに限られるものではなく、第2孔部712cと同様、二つの開口部741aが回転体741の前記周壁に形成されてよい。
開口 An opening 741 a having an opening area larger than the opening area of the second hole 712 c is formed on the peripheral wall of the rotating body 741. In the present embodiment, one opening 741a corresponding to the two second holes 712c is formed in the peripheral wall of the rotating body 741. However, the present invention is not limited to this, and two openings 741a may be formed in the peripheral wall of the rotating body 741 like the second hole 712c.
また、回転体741の前記底面における回転体741の中心線(=凹部712bの中心線=可動スクロール72の旋回中心線O)から可動スクロール72の旋回半径Rだけシフトされた位置にはピン穴741bが形成されている。ピン穴741bには、可動スクロール72の第2基板部721の一方の面721aに基端部が固定された駆動ピン742の先端部が装着(挿入)される。
A pin hole 741b is provided at a position on the bottom surface of the rotating body 741 shifted from the center line of the rotating body 741 (= the center line of the concave portion 712b = the center line O of the orbiting scroll 72) by the turning radius R of the orbiting scroll 72. Are formed. The distal end of a drive pin 742 whose base end is fixed to one surface 721a of the second substrate portion 721 of the orbiting scroll 72 is mounted (inserted) into the pin hole 741b.
回転体741は、可動スクロール72が旋回することによって、駆動ピン742を介して凹部712b内で回転駆動される。すなわち、回転体741は、可動スクロール72の旋回に連動して動作するように構成されている。そして、回転体741は、開口部741aが第2孔部712cに重ならない位置にあるときに第2孔部712cを閉鎖し、開口部741aが第2孔部712cに重なる位置まで回転したときに第2孔部712cを開放するように構成されている。
The rotating body 741 is rotationally driven in the concave portion 712b via the driving pin 742 by the orbiting of the movable scroll 72. That is, the rotating body 741 is configured to operate in conjunction with the turning of the movable scroll 72. The rotating body 741 closes the second hole 712c when the opening 741a does not overlap the second hole 712c, and rotates when the opening 741a rotates to a position overlapping the second hole 712c. The second hole 712c is configured to be opened.
回転体741によって第2孔部712cが開放されると、第1孔部711cと第2孔部712cとが回転体741の内部空間741cを介して連通する。この場合、加熱器6からの前記過熱蒸気冷媒が第1孔部711cからスクロール膨張機7内に流入し、回転体741の内部空間741c及び第2孔部712cを通過して吸入室80に流出する。すなわち、前記過熱蒸気冷媒が吸入室80に導入される。一方、回転体741によって第2孔部712cが閉鎖されると、第1孔部711cと第2孔部712cとの連通が遮断されるため、前記過熱蒸気冷媒が吸入室80に導入されない。すなわち、前記過熱蒸気冷媒の吸入室80への導入が停止される。
と When the second hole 712c is opened by the rotating body 741, the first hole 711c and the second hole 712c communicate with each other via the internal space 741c of the rotating body 741. In this case, the superheated vapor refrigerant from the heater 6 flows into the scroll expander 7 from the first hole 711c, passes through the internal space 741c of the rotating body 741 and the second hole 712c, and flows out to the suction chamber 80. I do. That is, the superheated vapor refrigerant is introduced into the suction chamber 80. On the other hand, when the second hole 712c is closed by the rotating body 741, the communication between the first hole 711c and the second hole 712c is interrupted, so that the superheated vapor refrigerant is not introduced into the suction chamber 80. That is, the introduction of the superheated vapor refrigerant into the suction chamber 80 is stopped.
したがって、本実施形態においては、主に第1孔部711c、回転体741の内部空間741c、回転体741の開口部741a及び第2孔部712cによって、前記過熱蒸気冷媒を吸入室80に導く流体通路73が形成されている。また、第1孔部711cは、外部から前記過熱蒸気冷媒が流入する入口孔を構成し、第2孔部712cは、前記過熱蒸気冷媒が吸入室80に流出する出口孔を構成し、回転体741の内部空間741c及び開口部741aは、前記入口孔と前記出口孔とを接続する接続部を構成する。さらに、本実施形態においては、主に回転体741及び駆動ピン742によって、可動スクロール72の旋回に連動して流体通路73(の前記出口孔)を開閉する弁装置(ロータリーバルブ)74が構成されている。
Therefore, in the present embodiment, the fluid that guides the superheated vapor refrigerant to the suction chamber 80 is mainly provided by the first hole 711c, the internal space 741c of the rotating body 741, the opening 741a of the rotating body 741, and the second hole 712c. A passage 73 is formed. The first hole portion 711c forms an inlet hole through which the superheated vapor refrigerant flows in from the outside, and the second hole portion 712c forms an outlet hole through which the superheated vapor refrigerant flows out to the suction chamber 80. The internal space 741c of 741 and the opening 741a constitute a connecting part connecting the entrance hole and the exit hole. Further, in the present embodiment, a valve device (rotary valve) 74 for opening and closing the fluid passage 73 (the outlet hole) in conjunction with the turning of the movable scroll 72 is mainly constituted by the rotating body 741 and the driving pin 742. ing.
また、本実施形態においては、弁装置74(の回転体741)によって流体通路73(の前記出口孔)が閉鎖された状態で停止しているスクロール膨張機7(の可動スクロール72)を始動させるため、第1孔部711c(前記入口孔)と第2孔部712c(前記出口孔)とを常時連通させる連通路(絞り通路)75が設けられている。連通路75は、凹部712bの前記内底面に形成された第1溝部751と、凹部712bの前記内側面に形成されて前記第1溝部751に接続する第2溝部752とによって形成されている。
In the present embodiment, the scroll expander 7 (the movable scroll 72) that is stopped with the fluid passage 73 (the outlet hole) closed by the valve device 74 (the rotator 741) is started. For this reason, a communication path (throttle path) 75 is provided which constantly connects the first hole 711c (the inlet hole) and the second hole 712c (the outlet hole). The communication path 75 is formed by a first groove portion 751 formed on the inner bottom surface of the concave portion 712b and a second groove portion 752 formed on the inner side surface of the concave portion 712b and connected to the first groove portion 751.
次に、図6(A)~(F)を参照してスクロール膨張機7の動作の一例を説明する。
Next, an example of the operation of the scroll expander 7 will be described with reference to FIGS.
まず、図6(A)に示されるように、固定スクロール71の第1スクロール壁712の第1中心側始端部712aと可動スクロール72の第2スクロール壁722の第2中心側始端部722aとがスクロール中心部近傍で当接する。具体的には、第1中心側始端部712aの平坦な側面と第2中心側始端部722aの平坦な側面とが前記スクロール中心部近傍で当接する。このとき、回転体741の開口部741aは、第2孔部712cに重ならない位置にある。したがって、弁装置74は、第2孔部712c、すなわち、流体通路73(の前記出口孔)を閉鎖している。なお、第2孔部712cは、第2中心側始端部722aの前記平坦な側面によっても閉鎖される。
First, as shown in FIG. 6A, the first center-side starting end 712a of the first scroll wall 712 of the fixed scroll 71 and the second center-side starting end 722a of the second scroll wall 722 of the movable scroll 72 are formed. Contact near the center of the scroll. More specifically, the flat side surface of the first center-side start end 712a and the flat side surface of the second center-side start end 722a abut near the scroll center. At this time, the opening 741a of the rotating body 741 is at a position that does not overlap the second hole 712c. Therefore, the valve device 74 closes the second hole 712c, that is, the (the outlet hole of) the fluid passage 73. The second hole 712c is also closed by the flat side surface of the second center-side start end 722a.
上述のように、第1孔部711c(前記入口孔)と第2孔部712c(前記出口孔)とは連通路75を介して常時連通している。このため、加熱器6からスクロール膨張機7に前記過熱蒸気冷媒が供給されると、可動スクロール72の第2スクロール壁722の第2中心側始端部722aが前記過熱蒸気冷媒の圧力を受ける。これにより、図6(B)に示されるように、可動スクロール72が旋回して第2スクロール壁722(の第2中心側始端部722a)が移動し、第1スクロール壁712と第2スクロール壁722とによって前記スクロール中心部近傍に吸入室80が形成される。また、可動スクロール72の旋回に伴って回転体741の開口部741aが第2孔部712cに重なる位置まで移動する。したがって、弁装置74は、第2孔部712c、すなわち、流体通路73(の前記出口孔)を開放する。これにより、前記過熱蒸気冷媒が流体通路73を介して吸入室80に導入される。すなわち、前記過熱蒸気冷媒の吸入室80への導入が開始される。
As described above, the first hole 711c (the inlet hole) and the second hole 712c (the outlet hole) are always in communication with each other through the communication passage 75. Therefore, when the superheated vapor refrigerant is supplied from the heater 6 to the scroll expander 7, the second center-side start end 722a of the second scroll wall 722 of the movable scroll 72 receives the pressure of the superheated vapor refrigerant. Thereby, as shown in FIG. 6B, the orbiting scroll 72 turns and the second scroll wall 722 (the second center side start end 722a) moves, and the first scroll wall 712 and the second scroll wall 712. 722 forms the suction chamber 80 near the center of the scroll. In addition, with the turning of the movable scroll 72, the opening 741a of the rotating body 741 moves to a position overlapping the second hole 712c. Therefore, the valve device 74 opens the second hole portion 712c, that is, the (the outlet hole of) the fluid passage 73. Thereby, the superheated vapor refrigerant is introduced into the suction chamber 80 via the fluid passage 73. That is, introduction of the superheated vapor refrigerant into the suction chamber 80 is started.
前記過熱蒸気冷媒が吸入室80に導入されると、可動スクロール72が旋回し、第2スクロール壁722が移動して吸入室80が拡張される(吸入室80の容積が増加する)。また、弁装置74は、第2孔部712c、すなわち、流体通路73(の前記出口孔)の開放状態を維持する。このため、吸入室80の拡張及び前記過熱蒸気冷媒の吸入室80への導入が継続される(図6(C)、図6(D))。
(4) When the superheated vapor refrigerant is introduced into the suction chamber 80, the orbiting scroll 72 turns, the second scroll wall 722 moves, and the suction chamber 80 expands (the volume of the suction chamber 80 increases). Further, the valve device 74 maintains the open state of the second hole portion 712c, that is, (the outlet hole of) the fluid passage 73. Therefore, the expansion of the suction chamber 80 and the introduction of the superheated vapor refrigerant into the suction chamber 80 are continued (FIGS. 6C and 6D).
その後、可動スクロール72が図6(A)に示される状態から所定角度まで旋回したときに、回転体741の開口部741aが第2孔部712cに重ならない位置まで移動し、弁装置74は、第2孔部712c、すなわち、流体通路73(の前記出口孔)を閉鎖する(図6(E))。これにより、前記過熱蒸気冷媒の吸入室80への導入が停止されると共に吸入室80が密閉されて膨張室80′となる。そして、このときの吸入室80(膨張室80′)の容積がスクロール膨張機7の前記取り込み容積となり、このときの吸入室80(膨張室80′)の底面積が前記取り込み容積の底面積となる。
Thereafter, when the movable scroll 72 turns to a predetermined angle from the state shown in FIG. 6A, the opening 741a of the rotating body 741 moves to a position where it does not overlap the second hole 712c, and the valve device 74 The second hole 712c, that is, (the outlet hole of) the fluid passage 73 is closed (FIG. 6E). As a result, the introduction of the superheated vapor refrigerant into the suction chamber 80 is stopped, and the suction chamber 80 is closed to form an expansion chamber 80 '. The volume of the suction chamber 80 (expansion chamber 80 ') at this time becomes the intake volume of the scroll expander 7, and the bottom area of the suction chamber 80 (expansion chamber 80') at this time is equal to the bottom area of the intake volume. Become.
なお、前記過熱蒸気冷媒の吸入室80への導入が停止された後においても、すでに吸入室80(膨張室80′)に導入されている(取り込まれている)前記過熱蒸気冷媒が膨張することによって可動スクロール72の旋回は継続される(図6(F))。
Even after the introduction of the superheated vapor refrigerant into the suction chamber 80 is stopped, the superheated vapor refrigerant already introduced (taken) into the suction chamber 80 (expansion chamber 80 ') expands. As a result, the turning of the movable scroll 72 is continued (FIG. 6F).
そして、可動スクロール72が1回転(1旋回)して図6(A)に示される状態に戻ると、前記スクロール中心部近傍に形成された吸入室80が二つの密閉空間である第1膨張室81及び第2膨張室82に区画(分割)される。詳細には、吸入室80は、まず弁装置74が流体通路73を閉鎖することによって一つの密閉空間である膨張室80′になり、その後の前記過熱蒸気冷媒の膨張による可動スクロール72の旋回によって前記二つの密閉空間である第1膨張室81及び第2膨張室82に区画される。このとき、吸入室80に導入された前記過熱蒸気冷媒、換言すれば、膨張室80′に取り込まれた前記過熱蒸気冷媒が第1膨張室81及び第2膨張室82のそれぞれに取り込まれる。
Then, when the orbiting scroll 72 makes one rotation (orbit) and returns to the state shown in FIG. 6A, the suction chamber 80 formed near the center of the scroll is the first expansion chamber, which is two sealed spaces. It is partitioned (divided) into 81 and a second expansion chamber 82. More specifically, the suction chamber 80 becomes an expansion chamber 80 ′, which is one closed space by closing the fluid passage 73 by the valve device 74, and thereafter, the orbiting of the movable scroll 72 due to the expansion of the superheated steam refrigerant. It is divided into a first expansion chamber 81 and a second expansion chamber 82 which are the two closed spaces. At this time, the superheated vapor refrigerant introduced into the suction chamber 80, in other words, the superheated vapor refrigerant introduced into the expansion chamber 80 'is introduced into each of the first expansion chamber 81 and the second expansion chamber 82.
第1膨張室81及び第2膨張室82のそれぞれに取り込まれた前記過熱蒸気冷媒は、第1膨張室81内及び第2膨張室82内で膨張する。これにより、可動スクロール72がさらに旋回すると共に、第1膨張室81及び第2膨張室82が拡張しながらスクロール外周部に向かって移動する。
The superheated vapor refrigerant taken into each of the first expansion chamber 81 and the second expansion chamber 82 expands in the first expansion chamber 81 and the second expansion chamber 82. As a result, the orbiting scroll 72 further turns, and the first expansion chamber 81 and the second expansion chamber 82 move toward the outer periphery of the scroll while expanding.
そして、第1膨張室81及び第2膨張室82がスクロール外周部近傍まで移動して図示省略の吐出ポートに連通すると、第1膨張室81内及び第2膨張室82内での前記過熱蒸気冷媒の膨張が完了すると共に、第1膨張室81内及び第2膨張室82内で膨張することによって低圧となった前記冷媒が前記吐出ポートから吐出される。前記吐出ポートから吐出された(低圧の)前記冷媒は、凝縮器8に向かって流れる。
When the first expansion chamber 81 and the second expansion chamber 82 move to the vicinity of the outer peripheral portion of the scroll and communicate with a discharge port (not shown), the superheated steam refrigerant in the first expansion chamber 81 and the second expansion chamber 82 is formed. When the expansion of the refrigerant is completed, the refrigerant that has been reduced in pressure by expanding in the first expansion chamber 81 and the second expansion chamber 82 is discharged from the discharge port. The (low-pressure) refrigerant discharged from the discharge port flows toward the condenser 8.
スクロール膨張機7は、上記の動作を繰り返すことにより、前記過熱蒸気冷媒の膨張を可動スクロール72の旋回運動に変換する。そして、上述のように、可動スクロール72の旋回運動が偏心軸受42及び従動クランク機構43などによって回転軸10aの回転運動に変換される。
The scroll expander 7 converts the expansion of the superheated vapor refrigerant into a revolving motion of the movable scroll 72 by repeating the above operation. Then, as described above, the orbiting motion of the orbiting scroll 72 is converted into the rotational motion of the rotating shaft 10a by the eccentric bearing 42 and the driven crank mechanism 43 and the like.
以上説明したように、本実施形態に係るスクロール膨張機7は、吸入室80に加熱器6からの前記過熱蒸気冷媒(作動流体)を導く流体通路73と、流体通路73を開閉する弁装置74とを有している。弁装置74は、前記過熱蒸気冷媒を吸入室80に導入するために流体通路73を開放すると共に、吸入室80が二つの膨張室(第1膨張室81及び第2膨張室82)に区画される前に流体通路73を閉鎖して前記過熱蒸気冷媒の導入を停止させるように構成されている(図6(B)、図6(E))。
As described above, the scroll expander 7 according to the present embodiment includes the fluid passage 73 that guides the superheated vapor refrigerant (working fluid) from the heater 6 to the suction chamber 80, and the valve device 74 that opens and closes the fluid passage 73. And The valve device 74 opens the fluid passage 73 for introducing the superheated vapor refrigerant into the suction chamber 80, and the suction chamber 80 is divided into two expansion chambers (a first expansion chamber 81 and a second expansion chamber 82). Before the cooling, the fluid passage 73 is closed to stop the introduction of the superheated vapor refrigerant (FIGS. 6B and 6E).
ここで、上述のように、本実施形態に係るスクロール膨張機7においては、前記過熱蒸気冷媒の吸入室80への導入が停止されたときの吸入室80(膨張室80′)の底面積が前記取り込み容積の底面積であり、この底面積は、前記二つの膨張室(第1膨張室81及び第2膨張室82)の底面積よりも小さい。このため、本実施形態に係るスクロール膨張機7においては、吸入室が二つの膨張室に区画されるまで作動流体の導入が継続される構成の従来のスクロール膨張機に比べて、前記過熱蒸気冷媒の前記取り込み容積の底面積を小さくすることができる。このことは、前記吐出容積の底面積(及び前記取り込み容積)を変えることなく容積比を高くできること、及び、容積比(及び前記取り込み容積)を変えることなく前記吐出容積の底面積を小さくできること(前記スクロール壁の巻数(スクロール外径)を減らすことができること)を意味する。したがって、本実施形態に係るスクロール膨張機7によれば、サイズ(特に径方向のサイズ)を大型化することなく容積比を高くすること、又は、容積比を維持しながらサイズ(特に径方向のサイズ)を小型化することが可能になる。その結果、本実施形態にスクロール膨張機7は、同種の用途に使用されるほぼ同じサイズの従来のスクロール膨張機に比べて高い容積比を実現することができ、又は、同種の用途に使用されるほぼ同じ容積比を実現する従来のスクロール膨張機に比べてサイズを小さくすることができる。
Here, as described above, in the scroll expander 7 according to the present embodiment, the bottom area of the suction chamber 80 (expansion chamber 80 ') when the introduction of the superheated vapor refrigerant into the suction chamber 80 is stopped is reduced. The bottom area of the intake volume, which is smaller than the bottom areas of the two expansion chambers (the first expansion chamber 81 and the second expansion chamber 82). For this reason, in the scroll expander 7 according to the present embodiment, the superheated vapor refrigerant is compared with the conventional scroll expander in which the introduction of the working fluid is continued until the suction chamber is divided into two expansion chambers. The bottom area of the intake volume can be reduced. This means that the volume ratio can be increased without changing the bottom area of the discharge volume (and the intake volume), and that the bottom area of the discharge volume can be reduced without changing the volume ratio (and the intake volume) ( That is, the number of turns (the outer diameter of the scroll) of the scroll wall can be reduced. Therefore, according to the scroll expander 7 according to the present embodiment, it is possible to increase the volume ratio without increasing the size (especially, the size in the radial direction), or to maintain the volume ratio while maintaining the volume ratio (especially, in the radial direction). Size) can be reduced. As a result, the scroll expander 7 according to the present embodiment can achieve a higher volume ratio than a conventional scroll expander of substantially the same size used for the same kind of use, or is used for the same kind of use. The size can be reduced as compared with a conventional scroll expander that realizes substantially the same volume ratio.
ここで、従来のスクロール膨張機の多くは、前記二つ膨張室のうちの一方の膨張室が他方の膨張室よりも先に密閉され、及び/又は、前記二つの膨張室に区画される直前の前記吸入室において前記二つの膨張室に対応する領域への流通抵抗の間に差があり、前記二つの膨張室に取り込まれる作動流体の体積(ひいては、前記二つの膨張室の圧力)に差が生じていた。この点、本実施形態によるスクロール膨張機7において、流体通路73は、吸入室80が二つの膨張室(第1膨張室81及び第2膨張室82)に区画される前に弁装置74によって閉鎖されている。このため、前記二つの膨張室(第1膨張室81及び第2膨張室82)はほぼ同時に密閉される。また、吸入室80が第1膨張室81及び第2膨張室82に区画される過程の各段階において第1膨張室81に対応する領域と第2膨張室82に対応する領域とが同形状(対称形状)であり、第1膨張室81に対応する領域への流通抵抗と第2膨張室82に対応する領域への流通抵抗との間の差もほとんど生じない。したがって、本実施形態に係るスクロール膨張機7によれば、前記過熱蒸気冷媒が前記二つの膨張室(第1膨張室81及び第2膨張室82)にバランスよく取り込まれ、前記二つの膨張室間における圧力のアンバランスも抑制される。この結果、本実施形態に係るスクロール膨張機7は、従来のスクロール膨張機よりも、安定且つ効率的な動作が可能になる。
Here, most of the conventional scroll expanders are configured such that one of the two expansion chambers is hermetically sealed before the other expansion chamber and / or immediately before being partitioned into the two expansion chambers. In the suction chamber, there is a difference between the flow resistances to the regions corresponding to the two expansion chambers, and the volume of the working fluid taken into the two expansion chambers (and the pressure of the two expansion chambers) is different. Had occurred. In this regard, in the scroll expander 7 according to the present embodiment, the fluid passage 73 is closed by the valve device 74 before the suction chamber 80 is divided into two expansion chambers (the first expansion chamber 81 and the second expansion chamber 82). Have been. Therefore, the two expansion chambers (the first expansion chamber 81 and the second expansion chamber 82) are sealed almost simultaneously. In each stage of the process of dividing the suction chamber 80 into the first expansion chamber 81 and the second expansion chamber 82, the area corresponding to the first expansion chamber 81 and the area corresponding to the second expansion chamber 82 have the same shape ( (A symmetrical shape), and there is almost no difference between the flow resistance to the area corresponding to the first expansion chamber 81 and the flow resistance to the area corresponding to the second expansion chamber 82. Therefore, according to the scroll expander 7 according to the present embodiment, the superheated vapor refrigerant is taken into the two expansion chambers (the first expansion chamber 81 and the second expansion chamber 82) in a well-balanced manner, and the space between the two expansion chambers is increased. Is also suppressed. As a result, the scroll expander 7 according to the present embodiment can operate more stably and efficiently than the conventional scroll expander.
また、本実施形態において、弁装置74は、可動スクロール72の旋回に連動して流体通路73を開閉するように、具体的には、流体通路73の一部を構成する第2孔部712c(前記出口孔)を開閉するように構成されている。このため、適切なタイミングで流体通路73を開放して吸入室80に前記過熱蒸気冷媒を導入すること、適切なタイミングで流体通路73を閉鎖して前記過熱蒸気冷媒の導入を停止すること、及び、前記二つの膨張室に取り込まれる前記過熱蒸気冷媒の体積のバラツキを抑制することが可能である。
Further, in the present embodiment, the valve device 74 opens and closes the fluid passage 73 in conjunction with the turning of the movable scroll 72, specifically, the second hole 712c (a part of the fluid passage 73). The outlet hole is opened and closed. For this reason, opening the fluid passage 73 at an appropriate timing to introduce the superheated vapor refrigerant into the suction chamber 80, closing the fluid passage 73 at an appropriate timing to stop the introduction of the superheated vapor refrigerant, and In addition, it is possible to suppress variations in the volume of the superheated vapor refrigerant taken into the two expansion chambers.
特に、弁装置74は、第1中心側始端部712aの上面に形成された凹部712bに回転自在に収容された回転体741を含み、回転体741が可動スクロール72の旋回に連動して回転することによって、一端が凹部712bの前記内側面に開口する第2孔部712c(すなわち、流体通路73の前記出口孔)を開閉するように構成されている。具体的には、回転体741(及び凹部712b)は可動スクロール72の旋回中心線O上に配置されており、回転体741は、可動スクロール72に固定された駆動ピン742によって凹部712b内で回転駆動される。このため、弁装置74を設けることによるスクロール膨張機7のサイズの大型化が防止されると共に、弁装置74(回転体741)の駆動源を設ける必要がない。また、開口部741aの大きさを調整して流体通路73を閉鎖するタイミングを調整することにより、前記取り込み容積の底面積を調整し、サイズ(特に径方向のサイズ)を大型化することなくスクロール膨張機7の容積比を調整することも可能である。
In particular, the valve device 74 includes a rotating body 741 rotatably housed in a concave portion 712b formed on the upper surface of the first center-side starting end 712a, and the rotating body 741 rotates in conjunction with the turning of the movable scroll 72. Thereby, it is configured to open and close the second hole 712c (that is, the outlet hole of the fluid passage 73), one end of which is opened on the inner side surface of the concave portion 712b. Specifically, the rotating body 741 (and the concave portion 712b) is disposed on the rotation center line O of the movable scroll 72, and the rotating body 741 is rotated in the concave portion 712b by a driving pin 742 fixed to the movable scroll 72. Driven. Therefore, the provision of the valve device 74 prevents the scroll expander 7 from increasing in size, and does not require a drive source for the valve device 74 (the rotator 741). Further, by adjusting the size of the opening 741a to adjust the timing of closing the fluid passage 73, the bottom area of the intake volume is adjusted, and the scroll (especially the size in the radial direction) is not enlarged. It is also possible to adjust the volume ratio of the expander 7.
なお、上述の実施形態において、加熱器6は、前記エンジン冷却水とランキンサイクル2の前記冷媒との間で熱交換を行わせるように構成されている。しかし、これに限られるものではない。加熱器6は、エンジン20の排気とランキンサイクル2の前記冷媒との間で熱交換を行わせるように構成されてもよい。エンジン20の排気は前記エンジン冷却水よりも高温であり、ランキンサイクル2においてより大きな温度差が得られるため、ランキンサイクル2の出力が高くなる。図示は省略するが、この場合、前記エンジン冷却水に代えてエンジン20の排気が加熱器6内を通過するように構成される。
In the above-described embodiment, the heater 6 is configured to cause heat exchange between the engine cooling water and the refrigerant of the Rankine cycle 2. However, it is not limited to this. The heater 6 may be configured to cause heat exchange between the exhaust gas of the engine 20 and the refrigerant of the Rankine cycle 2. The exhaust of the engine 20 is higher in temperature than the engine cooling water, and a larger temperature difference is obtained in the Rankine cycle 2, so that the output of the Rankine cycle 2 increases. Although illustration is omitted, in this case, the exhaust of the engine 20 is configured to pass through the heater 6 instead of the engine cooling water.
加熱器6がエンジン20の排気とランキンサイクル2の前記冷媒との間で熱交換を行わせるように構成される場合、特性値(臨界温度、臨界圧力など)から、エタノールが適切な前記冷媒として選択され得る。但し、エタノールは前記アルミニウム系材料を腐食させるおそれがある。このため、前記冷媒としてエタノールが選択された場合、スクロール膨張機7においては、前記鉄系材料から形成された固定スクロール71及び可動スクロール72が用いられることになる。
When the heater 6 is configured to cause heat exchange between the exhaust gas of the engine 20 and the refrigerant of the Rankine cycle 2, ethanol is used as a suitable refrigerant based on characteristic values (critical temperature, critical pressure, etc.). Can be selected. However, ethanol may corrode the aluminum-based material. For this reason, when ethanol is selected as the refrigerant, the scroll expander 7 uses the fixed scroll 71 and the movable scroll 72 formed of the iron-based material.
前記鉄系材料から形成された固定スクロール71及び可動スクロール72は、前記アルミニウム系材料から形成されたそれらよりも重量が大きい。また、固定スクロール71及び可動スクロール72の重量が大きくなると、前記スクロール壁の巻数(スクロール外径)が同じ場合でも、バランスをとるための部位や強度を確保するための形状などが増加し及び/又は大型化し、その結果、スクロール膨張機7全体のサイズが大型化する。
固定 The fixed scroll 71 and the movable scroll 72 formed from the iron-based material are heavier than those formed from the aluminum-based material. In addition, when the weight of the fixed scroll 71 and the movable scroll 72 increases, even if the number of turns of the scroll wall (the outer diameter of the scroll) is the same, the number of parts for balancing and the shape for securing the strength increase, and / or the like. Alternatively, the size of the scroll expander 7 is increased as a result.
したがって、前記鉄系材料から形成された固定スクロール71及び可動スクロール72は、前記アルミニウム系材料から形成されたそれらに比べて前記スクロール壁の巻数(スクロール外径)を減少させる必要性がより高いといえる。この点に関し、上述のように、本実施形態に係るスクロール膨張機7は、容積比を変えることなく前記スクロール壁の巻数(スクロール外径)を減らすことが可能であるので、前記鉄系材料から形成された固定スクロール71及び可動スクロール72が用いられる場合に特に有効である。
Therefore, the fixed scroll 71 and the movable scroll 72 formed of the iron-based material have a higher necessity to reduce the number of turns (the outer diameter of the scroll) of the scroll wall than those formed of the aluminum-based material. I can say. In this regard, as described above, the scroll expander 7 according to the present embodiment can reduce the number of turns (scroll outer diameter) of the scroll wall without changing the volume ratio. This is particularly effective when the formed fixed scroll 71 and movable scroll 72 are used.
また、上述の実施形態において、回転体741は、可動スクロール72に固定された駆動ピン742によって回転駆動されるように構成されている。しかし、これに限られるものではない。図7に示されるように、回転体741が、可動スクロール72の第2基板部721の一方の面721aに向かって突出するピン部材741dをピン穴741bの代わりに有すると共に、可動スクロール72の第2基板部721の一方の面721aに、ピン部材741dの先端部が装着(挿入)されるピン穴(図示省略)が駆動ピン742の代わりに設けられてもよい。すなわち、回転体741は、可動スクロール72と回転体741とを連結するピン部(駆動ピン742、ピン部741d)を介して回転駆動されるように構成されていればよい。
Further, in the above-described embodiment, the rotating body 741 is configured to be rotationally driven by the driving pin 742 fixed to the movable scroll 72. However, it is not limited to this. As shown in FIG. 7, the rotating body 741 has a pin member 741 d protruding toward one surface 721 a of the second substrate portion 721 of the movable scroll 72 instead of the pin hole 741 b, and A pin hole (not shown) into which the tip of the pin member 741d is mounted (inserted) may be provided on one surface 721a of the two substrate portion 721 instead of the drive pin 742. That is, the rotating body 741 only needs to be configured to be rotationally driven via the pin portion (the driving pin 742, the pin portion 741d) connecting the movable scroll 72 and the rotating body 741.
さらに、上述の実施形態においては、第1孔部711c(前記入口孔)と第2孔部712c(前記出口孔)とを常時連通させる連通路75が設けられている。しかし、これに限られるものではない。連通路75は、必ずしも第1孔部711cと第2孔部712cとを常時連通させる必要はなく、少なくとも弁装置74が流体通路73を閉鎖しているときに第1孔部711cと第2孔部712cとを連通させればよい。
Further, in the above-described embodiment, the communication path 75 is provided, which always connects the first hole 711c (the inlet hole) and the second hole 712c (the outlet hole). However, it is not limited to this. The communication passage 75 does not always require the first hole 711c and the second hole 712c to always communicate with each other, and at least when the valve device 74 closes the fluid passage 73, the first hole 711c and the second hole What is necessary is just to make it communicate with the part 712c.
例えば、図8に示されるように、回転体741の前記周壁の外側面に開口部741aの周方向の一端から他端まで延びる溝741eが形成される。この場合、回転体741の内部空間741cと溝741eとによって連通路75が形成され、形成された連通路75は弁装置74が流体通路73を閉鎖しているときに第1孔部711cと第2孔部712cとを連通させる。あるいは、図9に示されるように、溝741eに代えて複数の貫通孔741fが回転体741の前記周壁に形成される。この場合、回転体741の内部空間741cと複数の貫通孔741fの少なくとも一つとによって連通路75が形成され、形成された連通路75は弁装置74が流体通路73を閉鎖しているときに第1孔部711cと第2孔部712cとを連通させる。なお、図示は省略するが、回転体741の前記周壁の前記外側面と凹部712bの前記内側面との隙間と、回転体741の内部空間741cとによって、第1孔部711cと第2孔部712cとを常時連通させる連通路75が形成されてもよい。
For example, as shown in FIG. 8, a groove 741e extending from one end to the other end in the circumferential direction of the opening 741a is formed on the outer surface of the peripheral wall of the rotating body 741. In this case, a communication path 75 is formed by the internal space 741c of the rotating body 741 and the groove 741e, and the formed communication path 75 is connected to the first hole 711c and the first hole 711c when the valve device 74 closes the fluid path 73. The two holes 712c are communicated. Alternatively, as shown in FIG. 9, a plurality of through holes 741f are formed in the peripheral wall of the rotating body 741 instead of the grooves 741e. In this case, a communication passage 75 is formed by the internal space 741c of the rotating body 741 and at least one of the plurality of through holes 741f, and the formed communication passage 75 is formed when the valve device 74 closes the fluid passage 73. The one hole 711c and the second hole 712c are communicated. Although not shown, the first hole portion 711c and the second hole portion are formed by the gap between the outer surface of the peripheral wall of the rotating body 741 and the inner surface of the concave portion 712b and the internal space 741c of the rotating body 741. A communication passage 75 that constantly communicates with the 712c may be formed.
さらにまた、上述の実施形態において、流体通路73の前記出口孔を構成する第2孔部712cは、第1スクロール壁712の第1中心側始端部712aの前記平坦な側面における高さ方向の中間位置に形成されており、これに対応するように、回転体741の開口部741aは、回転体741の前記周壁における高さ方向の中間位置に形成されている。しかし、これに限られるものではない。図10に示されるように、第1スクロール壁712の第1中心側始端部712aにおいて、第2孔部712cに代えて、第1スクロール壁712の第1中心側始端部712aの上面に凹部712bの前記内側面から第1中心側始端部712aの前記平坦な側面まで延びる溝部712dが形成されてもよい。この場合、回転体741においては、開口部741aに代えて、回転体741の前記底壁の一部及び前記周壁の一部を切り欠いた切欠部741gが形成される。そして、主に第1孔部711c、回転体741の内部空間741c、回転体741の切欠部741g及び溝部712dによって流体通路73が形成され、第1孔部711cが流体通路73の前記入口孔を構成し、溝部712dが流体通路73の前記出口孔を構成する。このようにしても上述の実施形態と同様の効果が得られる。
Furthermore, in the above-described embodiment, the second hole portion 712c that constitutes the outlet hole of the fluid passage 73 is located at an intermediate position in the height direction on the flat side surface of the first center-side starting end portion 712a of the first scroll wall 712. The opening 741a of the rotator 741 is formed at an intermediate position in the height direction of the peripheral wall of the rotator 741 so as to correspond to this position. However, it is not limited to this. As shown in FIG. 10, instead of the second hole 712 c at the first center side start end 712 a of the first scroll wall 712, a concave portion 712 b is formed on the upper surface of the first center side start end 712 a of the first scroll wall 712. A groove 712d extending from the inner side surface to the flat side surface of the first center-side starting end 712a may be formed. In this case, in the rotating body 741, instead of the opening 741a, a cutout 741g in which a part of the bottom wall and a part of the peripheral wall of the rotating body 741 are cut out is formed. The fluid passage 73 is formed mainly by the first hole 711c, the internal space 741c of the rotating body 741, the cutout 741g of the rotating body 741, and the groove 712d. The groove 712d forms the outlet hole of the fluid passage 73. Even in this case, the same effect as in the above-described embodiment can be obtained.
なお、上述の各変形例は、適宜組み合わせて適用され得る。
Note that the above-described modifications may be applied in appropriate combinations.
以上、本発明の実施形態及びその変形例について説明したが、本発明は上述の実施形態や変形例に限定されるものではなく、本発明の技術的思想に基づいて更なる変形や変更が可能である。
As described above, the embodiments of the present invention and the modifications thereof have been described. However, the present invention is not limited to the above-described embodiments and the modifications, and further modifications and changes are possible based on the technical idea of the present invention. It is.
7…スクロール膨張機、71…固定スクロール、72…可動スクロール、73…流体通路、74…弁装置、75…連通路、80…吸入室、80′…膨張室、81…第1膨張室、82…第2膨張室、711…固定スクロールの基板部、711c…第1孔部(入口孔)、712…固定スクロールのスクロール壁(第1スクロール壁)、712a…第1スクロール壁の中心側始端部、712b…凹部、712c…第2孔部(出口孔)、712d…溝部(出口孔)、721…可動スクロールの基板部、722…可動スクロールのスクロール壁(第2スクロール壁)、722a…第2スクロール壁の中心側始端部、741…回転体、741a…開口部、741b…ピン穴、741c…回転体の内部空間、741d…ピン部材(ピン部)、742…駆動ピン(ピン部)
7: scroll expander, 71: fixed scroll, 72: movable scroll, 73: fluid passage, 74: valve device, 75: communication passage, 80: suction chamber, 80 ': expansion chamber, 81: first expansion chamber, 82 ... Second expansion chamber, 711 ... Fixed scroll substrate portion, 711c ... First hole portion (entrance hole), 712 ... Fixed scroll scroll wall (First scroll wall), 712a ... Center end portion of first scroll wall , 712b: concave portion, 712c: second hole portion (exit hole), 712d: groove portion (exit hole), 721: movable scroll substrate portion, 722: movable scroll scroll wall (second scroll wall), 722a: second Central-side start end of the scroll wall, 741 ... rotating body, 741a ... opening, 741b ... pin hole, 741c ... internal space of the rotating body, 741d ... pin member (pin section), 742 ... drive Emissions (pin portion)
Claims (6)
- 第1基板部及び前記第1基板部に立設された渦巻状の第1スクロール壁を有する固定スクロールと、
第2基板部及び前記第2基板部に立設された渦巻状の第2スクロール壁を有し、前記第2スクロール壁が前記固定スクロールの前記第1スクロール壁に噛み合うように配設される共に前記固定スクロールに対して旋回可能に保持された可動スクロールと、
前記第1スクロール壁と前記第2スクロール壁とによってスクロール中心部近傍に形成され、前記可動スクロールの旋回によって容積が変化する吸入室と、
作動流体を前記吸入室に導く流体通路と、
を含み、
前記吸入室が前記可動スクロールの旋回によって二つの膨張室に区画され、前記作動流体が前記二つの膨張室で膨張することによって前記可動スクロールがさらに旋回するように構成されたスクロール膨張機であって、
前記作動流体を前記吸入室に導入するために前記流体通路を開放すると共に前記吸入室が前記二つの膨張室に区画される前に前記流体通路を閉鎖する弁装置をさらに含む、
スクロール膨張機。 A fixed scroll having a first substrate portion and a spiral first scroll wall erected on the first substrate portion;
A second scroll portion provided upright on the second substrate portion and the second scroll portion, the second scroll wall being disposed so as to mesh with the first scroll wall of the fixed scroll; A movable scroll held rotatably with respect to the fixed scroll,
A suction chamber formed in the vicinity of the center of the scroll by the first scroll wall and the second scroll wall, the volume of which changes with the turning of the movable scroll;
A fluid passage for guiding a working fluid to the suction chamber;
Including
A scroll expander configured such that the suction chamber is divided into two expansion chambers by turning the movable scroll, and the movable scroll further turns by expanding the working fluid in the two expansion chambers. ,
A valve device that opens the fluid passage for introducing the working fluid into the suction chamber and closes the fluid passage before the suction chamber is partitioned into the two expansion chambers;
Scroll expander. - 前記弁装置は、前記可動スクロールの旋回に連動して前記流体通路を開閉するように構成されている、請求項1に記載のスクロール膨張機。 The scroll expander according to claim 1, wherein the valve device is configured to open and close the fluid passage in conjunction with turning of the movable scroll.
- 前記流体通路は、前記固定スクロールの前記第1基板部に形成されて外部から前記作動流体が流入する入口孔と、前記固定スクロールの前記第1スクロール壁の中心側始端部の側面に形成されて前記入口孔から流入した前記作動流体が前記吸入室に流出する出口孔とを含み、
前記弁装置は、前記可動スクロールの旋回に連動して前記流体通路の前記出口孔を開閉するように構成されている、
請求項2に記載のスクロール膨張機。 The fluid passage is formed at an inlet hole formed in the first substrate portion of the fixed scroll and through which the working fluid flows from the outside, and at a side surface of a center-side start end of the first scroll wall of the fixed scroll. An outlet hole in which the working fluid flowing from the inlet hole flows out to the suction chamber,
The valve device is configured to open and close the outlet hole of the fluid passage in conjunction with turning of the movable scroll,
The scroll expander according to claim 2. - 前記固定スクロールの前記第1スクロール壁の前記中心側始端部の上面には凹部が形成されていると共に、前記凹部の内面には前記入口孔の一端及び前記出口孔の一端がそれぞれ開口しており、
前記弁装置は、前記凹部に回転自在に収容された回転体を含み、前記回転体が前記可動スクロールの旋回に連動して回転することによって前記出口孔を開閉するロータリーバルブとして構成されている、
請求項3に記載のスクロール膨張機。 A recess is formed on the upper surface of the center-side start end of the first scroll wall of the fixed scroll, and one end of the inlet hole and one end of the outlet hole are respectively opened on the inner surface of the recess. ,
The valve device includes a rotating body rotatably housed in the recess, and is configured as a rotary valve that opens and closes the outlet hole by rotating the rotating body in conjunction with turning of the movable scroll.
The scroll expander according to claim 3. - 前記回転体は、前記可動スクロールの旋回中心線上に配置され、前記可動スクロールと前記回転体とを連結するピン部材を介して回転駆動される、請求項4に記載のスクロール膨張機。 5. The scroll expander according to claim 4, wherein the rotating body is arranged on a turning center line of the movable scroll, and is rotationally driven via a pin member that connects the movable scroll and the rotating body.
- 少なくとも前記弁装置が前記流体通路の前記出口孔を閉鎖しているときに前記入口孔と前記出口孔とを連通させる連通路をさらに含む、請求項3~5のいずれか一つに記載のスクロール膨張機。 The scroll according to any one of claims 3 to 5, further comprising a communication path for communicating the inlet hole and the outlet hole when at least the valve device closes the outlet hole of the fluid passage. Expander.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-142104 | 2018-07-30 | ||
JP2018142104A JP7103714B2 (en) | 2018-07-30 | 2018-07-30 | Scroll inflator |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020026700A1 true WO2020026700A1 (en) | 2020-02-06 |
Family
ID=69232588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/026803 WO2020026700A1 (en) | 2018-07-30 | 2019-07-05 | Scroll expander |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7103714B2 (en) |
WO (1) | WO2020026700A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006242133A (en) * | 2005-03-04 | 2006-09-14 | Denso Corp | Fluid machine |
JP2007278242A (en) * | 2006-04-11 | 2007-10-25 | Matsushita Electric Ind Co Ltd | Hydraulic machinery |
JP2008133784A (en) * | 2006-11-29 | 2008-06-12 | Fujitsu General Ltd | Scroll expansion machine |
JP2011012595A (en) * | 2009-07-01 | 2011-01-20 | Nippon Soken Inc | Rotary machine |
JP2011038480A (en) * | 2009-08-12 | 2011-02-24 | Sanden Corp | Scroll fluid machine |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009103032A (en) | 2007-10-23 | 2009-05-14 | Sanden Corp | Asymmetrical scroll compressor |
-
2018
- 2018-07-30 JP JP2018142104A patent/JP7103714B2/en active Active
-
2019
- 2019-07-05 WO PCT/JP2019/026803 patent/WO2020026700A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006242133A (en) * | 2005-03-04 | 2006-09-14 | Denso Corp | Fluid machine |
JP2007278242A (en) * | 2006-04-11 | 2007-10-25 | Matsushita Electric Ind Co Ltd | Hydraulic machinery |
JP2008133784A (en) * | 2006-11-29 | 2008-06-12 | Fujitsu General Ltd | Scroll expansion machine |
JP2011012595A (en) * | 2009-07-01 | 2011-01-20 | Nippon Soken Inc | Rotary machine |
JP2011038480A (en) * | 2009-08-12 | 2011-02-24 | Sanden Corp | Scroll fluid machine |
Also Published As
Publication number | Publication date |
---|---|
JP7103714B2 (en) | 2022-07-20 |
JP2020020263A (en) | 2020-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4493531B2 (en) | Fluid pump with expander and Rankine cycle using the same | |
JP4722493B2 (en) | Fluid machinery | |
KR20070118963A (en) | Displacement fluid machine | |
JP2004190559A (en) | Displacement expander and fluid machine | |
JP5969226B2 (en) | Fluid machinery | |
WO2013137352A1 (en) | Fluid machine | |
US7784303B2 (en) | Expander | |
JP5592838B2 (en) | Fluid machinery | |
JP2000352385A (en) | Scroll compressor | |
JP2004340139A (en) | Fluid machine | |
WO2020026700A1 (en) | Scroll expander | |
KR100349479B1 (en) | scroll compressor | |
JP6228027B2 (en) | Scroll expander | |
JP4043144B2 (en) | Scroll compressor | |
JP2008157152A (en) | Rankine cycle | |
JP2014015901A (en) | Scroll type expander | |
JP4735159B2 (en) | Expander | |
JP5817605B2 (en) | Scroll compressor | |
JP2004324595A (en) | Positive displacement fluid machine | |
CN110886623A (en) | Scroll expander | |
JP4549884B2 (en) | Fluid machinery | |
WO2013105319A1 (en) | Expander | |
JP4650040B2 (en) | Positive displacement expander | |
JP4995290B2 (en) | Design method of scroll compressor | |
JP2000009065A (en) | Scroll type compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19844356 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19844356 Country of ref document: EP Kind code of ref document: A1 |