[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5969226B2 - Fluid machinery - Google Patents

Fluid machinery Download PDF

Info

Publication number
JP5969226B2
JP5969226B2 JP2012057341A JP2012057341A JP5969226B2 JP 5969226 B2 JP5969226 B2 JP 5969226B2 JP 2012057341 A JP2012057341 A JP 2012057341A JP 2012057341 A JP2012057341 A JP 2012057341A JP 5969226 B2 JP5969226 B2 JP 5969226B2
Authority
JP
Japan
Prior art keywords
suction port
working fluid
discharge port
fluid machine
bypass path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012057341A
Other languages
Japanese (ja)
Other versions
JP2013189930A (en
Inventor
和田 博文
博文 和田
中村 慎二
慎二 中村
雄太 田中
雄太 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Holdings Corp filed Critical Sanden Holdings Corp
Priority to JP2012057341A priority Critical patent/JP5969226B2/en
Priority to PCT/JP2013/057085 priority patent/WO2013137353A1/en
Priority to US14/385,444 priority patent/US20150033743A1/en
Priority to CN201380014043.9A priority patent/CN104169526A/en
Priority to DE112013001447.5T priority patent/DE112013001447B4/en
Publication of JP2013189930A publication Critical patent/JP2013189930A/en
Application granted granted Critical
Publication of JP5969226B2 publication Critical patent/JP5969226B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C20/00Control of, monitoring of, or safety arrangements for, machines or engines
    • F01C20/24Control of, monitoring of, or safety arrangements for, machines or engines characterised by using valves for controlling pressure or flow rate, e.g. discharge valves
    • F01C20/26Control of, monitoring of, or safety arrangements for, machines or engines characterised by using valves for controlling pressure or flow rate, e.g. discharge valves using bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F01C1/0207Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F01C1/0215Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/18Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/18Lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F01C1/0207Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F01C1/0246Details concerning the involute wraps or their base, e.g. geometry
    • F01C1/0253Details concerning the base
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C11/00Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type
    • F01C11/006Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of dissimilar working principle
    • F01C11/008Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of dissimilar working principle and of complementary function, e.g. internal combustion engine with supercharger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C13/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01C13/04Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby for driving pumps or compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C17/00Arrangements for drive of co-operating members, e.g. for rotary piston and casing
    • F01C17/06Arrangements for drive of co-operating members, e.g. for rotary piston and casing using cranks, universal joints or similar elements
    • F01C17/063Arrangements for drive of co-operating members, e.g. for rotary piston and casing using cranks, universal joints or similar elements with only rolling movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • F04C2240/56Bearing bushings or details thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)
  • Rotary Pumps (AREA)

Description

本発明は、吸入ポートから吸入した作動流体によって駆動される駆動部を有し、前記駆動部を通過した作動流体を吐出ポートから吐出する流体機械に関する。   The present invention relates to a fluid machine having a drive unit that is driven by a working fluid sucked from a suction port, and discharging the working fluid that has passed through the drive unit from a discharge port.

従来、流体機械として、吸入ポートから吸入される作動流体(冷媒)を駆動部を迂回して吐出ポートに導くバイパス路、及び、前記バイパス路を開閉する弁機構を一体的に備えた、流体機械があった(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, as a fluid machine, a fluid machine integrally including a bypass path that guides a working fluid (refrigerant) sucked from a suction port to a discharge port by bypassing a drive unit, and a valve mechanism that opens and closes the bypass path (For example, see Patent Document 1).

特開2010−236360号公報JP 2010-236360 A

しかし、従来の流体機械のバイパス路は、駆動部を迂回して作動流体を循環させるものの、駆動部をバイパスした作動流体が、駆動部の自転阻止機構(ボールカップリング)などの摺動部が配置される部分を通過した後、吐出ポートから吐出されるようになっている。
このため、駆動部をバイパスして循環する作動流体が液相状態であると、摺動部に液相の作動流体(液冷媒)が流れることで、摺動部の潤滑油が流されてしまい、摺動部の潤滑性が低下する可能性があった。
However, the bypass path of the conventional fluid machine bypasses the drive unit and circulates the working fluid. However, the working fluid bypassing the drive unit has a sliding part such as a rotation prevention mechanism (ball coupling) of the drive unit. After passing through the portion to be arranged, it is discharged from the discharge port.
For this reason, if the working fluid that circulates bypassing the drive unit is in a liquid phase, the liquid phase working fluid (liquid refrigerant) flows through the sliding unit, so that the lubricating oil in the sliding unit is caused to flow. There was a possibility that the lubricity of the sliding part was lowered.

そこで、本発明は、駆動部をバイパスして作動流体を循環させているときに、作動流体が液相であっても、摺動部の潤滑性が低下することを抑制できる、流体機械を提供することを目的とする。   Therefore, the present invention provides a fluid machine that can suppress a decrease in lubricity of the sliding portion even when the working fluid is in a liquid phase when the working fluid is circulated by bypassing the drive portion. The purpose is to do.

上記目的を達成するために、本発明に係る流体機械は、高圧の加熱蒸気となった作動流体が流入する吸入ポートと、前記吸入ポートから吸入した作動流体の膨張によって駆動される駆動部と、前記駆動部を通過して低圧となった作動流体が流出する吐出ポートとを有する流体機械であって、吸入ポートから吸入した作動流体を、流体機械の摺動部及び前記駆動部を迂回して吐出ポートに導くバイパス路を備え、前記バイパス路は、前記吸入ポートと前記吐出ポートとを直接連通させるようにした。
また、本発明に係る流体機械は、高圧の加熱蒸気となった作動流体が流入する吸入ポートと、前記吸入ポートから吸入した作動流体の膨張によって駆動される駆動部と、前記駆動部を通過して低圧となった作動流体が流出する吐出ポートとを有する流体機械であって、前記吸入ポート及び前記吐出ポートが、前記駆動部の回転軸の径方向に延び、かつ、前記回転軸の軸方向に並んで設けられ、前記吸入ポートと前記吐出ポートとを連通させて、前記吸入ポートから吸入した作動流体を前記流体機械の摺動部及び前記駆動部を迂回して前記吐出ポートに導くバイパス路と、前記バイパス路を開閉する弁機構とを備え、前記弁機構は、弁体を前記駆動部の回転軸の径方向に変位させて前記バイパス路を開閉するようにした。
In order to achieve the above object, a fluid machine according to the present invention includes a suction port into which a working fluid that has become high-pressure heating steam flows, a drive unit that is driven by expansion of the working fluid sucked from the suction port, A fluid machine having a discharge port through which a low-pressure working fluid flows out through the drive unit, the working fluid sucked from the suction port bypassing the sliding part of the fluid machine and the drive unit A bypass path leading to the discharge port is provided , and the bypass path directly connects the suction port and the discharge port.
The fluid machine according to the present invention includes a suction port into which a working fluid that has become high-pressure heated steam flows, a drive unit that is driven by the expansion of the working fluid sucked from the suction port, and a passage that passes through the drive unit. And a discharge port through which the low-pressure working fluid flows out, wherein the suction port and the discharge port extend in the radial direction of the rotary shaft of the drive unit, and the axial direction of the rotary shaft And a bypass path that leads the working fluid sucked from the suction port to the discharge port by bypassing the sliding portion and the drive portion of the fluid machine. And a valve mechanism for opening and closing the bypass path, wherein the valve mechanism is configured to open and close the bypass path by displacing a valve body in a radial direction of a rotation shaft of the drive unit.

本発明に係る流体機械によれば、バイパス路は、駆動部と共に摺動部を迂回して作動流体を循環させるから、作動流体が液相であっても、摺動部の潤滑油が流されて潤滑性が低下することを抑制できる。   According to the fluid machine of the present invention, the bypass passage bypasses the sliding portion together with the drive portion and circulates the working fluid, so that even when the working fluid is in a liquid phase, the lubricating oil of the sliding portion is allowed to flow. Therefore, it can suppress that lubricity falls.

本発明の実施形態における廃熱利用装置の概略構成を示す図である。It is a figure which shows schematic structure of the waste heat utilization apparatus in embodiment of this invention. 前記廃熱利用装置に組み込まれるポンプ一体型膨張機を示す断面図である。It is sectional drawing which shows the pump integrated expander integrated in the said waste heat utilization apparatus. 前記ポンプ一体型膨張機を構成するバイパス部を示す部分拡大断面図である。It is a partial expanded sectional view which shows the bypass part which comprises the said pump integrated expander.

以下、本発明の実施形態を添付図面に基づいて詳細に説明する。
図1は、流体機械としての膨張機が組み込まれる車両用の廃熱利用装置1Aを示す。
廃熱利用装置1Aは、エンジン10と共に車両に搭載され、エンジン10の廃熱を回収して利用する装置である。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
FIG. 1 shows a waste heat utilization apparatus 1A for a vehicle in which an expander as a fluid machine is incorporated.
The waste heat utilization apparatus 1A is an apparatus that is mounted on a vehicle together with the engine 10 and collects and uses the waste heat of the engine 10.

廃熱利用装置1Aは、ランキンサイクル装置2Aと、ランキンサイクル装置2Aの出力をエンジン10に伝達する伝達機構3と、制御ユニット4と、を備えている。
エンジン10は、水冷式の冷却装置を備えた内燃機関であり、前記冷却装置は、冷却水を循環させる冷却水循環路11を備える。
冷却水循環路11には、ランキンサイクル装置2Aの蒸発器22を配置してあり、エンジン10から熱を吸収した冷却水を、蒸発器22を通過させてから再度エンジン10に戻す。
The waste heat utilization apparatus 1A includes a Rankine cycle apparatus 2A, a transmission mechanism 3 that transmits the output of the Rankine cycle apparatus 2A to the engine 10, and a control unit 4.
The engine 10 is an internal combustion engine provided with a water-cooled cooling device, and the cooling device includes a cooling water circulation path 11 for circulating cooling water.
The cooling water circulation path 11 is provided with the evaporator 22 of the Rankine cycle device 2A, and the cooling water that has absorbed heat from the engine 10 passes through the evaporator 22 and then returns to the engine 10 again.

ランキンサイクル装置2Aは、エンジン10の冷却水からエンジン10の廃熱を回収し、回収した熱を駆動力に変換して出力する。
ランキンサイクル装置2Aは、作動流体を循環させる循環路21を備え、この循環路21に、作動流体の流れ方向に沿って、蒸発器22、膨張機23、凝縮器24及びポンプ25Aをこの順に配置してある。
前記作動流体(冷媒)としては、例えばフルオロカーボンからなる骨格を基本とするものが用いられ、また、潤滑油が作動流体と共に循環し、膨張機23やポンプ25Aの摺動部における潤滑、密封、冷却等の役割を担う。
Rankine cycle device 2 </ b> A collects waste heat of engine 10 from the cooling water of engine 10, converts the recovered heat into driving force, and outputs the driving force.
The Rankine cycle device 2A includes a circulation path 21 that circulates a working fluid, and an evaporator 22, an expander 23, a condenser 24, and a pump 25A are disposed in this circulation path 21 in this order along the flow direction of the working fluid. It is.
As the working fluid (refrigerant), for example, a fluid based on a skeleton made of fluorocarbon is used, and lubricating oil circulates together with the working fluid, and lubrication, sealing, and cooling in the sliding portions of the expander 23 and the pump 25A are performed. Take a role such as.

蒸発器22は、エンジン10から熱を吸収した高温の冷却水と、ランキンサイクル装置2Aの作動流体との間で熱交換を行わせることによって、作動流体を加熱して蒸発(気化)させる。
膨張機23(流体機械)は、蒸発器22で気化し高温,高圧となった作動流体を膨張させることで、駆動力を発生する装置であり、一例としてスクロール型膨張機を用いる。
The evaporator 22 heats and evaporates (vaporizes) the working fluid by causing heat exchange between the high-temperature cooling water that has absorbed heat from the engine 10 and the working fluid of the Rankine cycle device 2A.
The expander 23 (fluid machine) is a device that generates a driving force by expanding the working fluid that has been vaporized by the evaporator 22 and that has reached a high temperature and a high pressure. As an example, a scroll expander is used.

凝縮器24は、膨張機23を通過し低圧となった作動流体と外気との間で熱交換を行わせることによって、作動流体を冷却して凝縮(液化)させる。
ポンプ25Aは機械式ポンプであり、凝縮器24で液化した作動流体を蒸発器22へと圧送する。
このように、作動流体は、気化、膨張、凝縮を繰り返しながら循環路21を循環する。
The condenser 24 cools and condenses (liquefies) the working fluid by exchanging heat between the working fluid that has passed through the expander 23 and has a low pressure and the outside air.
The pump 25 </ b> A is a mechanical pump and pumps the working fluid liquefied by the condenser 24 to the evaporator 22.
As described above, the working fluid circulates in the circulation path 21 while repeating vaporization, expansion, and condensation.

ここで、膨張機23とポンプ25Aとを、回転軸28で連結して一体化することで、ポンプ一体型膨張機29A(流体機械)として設けてある。即ち、ポンプ一体型膨張機29Aの回転軸28は、膨張機23の出力軸としての機能及びポンプ25Aの駆動軸として機能を有する。
そして、ランキンサイクル装置2Aは、まずエンジン10の出力によってポンプ25Aを駆動することによって起動し、その後、膨張機23が十分な駆動力を発生するようになると、膨張機23の駆動力がポンプ25Aを駆動するようになる。
Here, the expander 23 and the pump 25 </ b> A are connected and integrated by the rotation shaft 28, thereby providing a pump-integrated expander 29 </ b> A (fluid machine). That is, the rotary shaft 28 of the pump-integrated expander 29A has a function as an output shaft of the expander 23 and a drive shaft of the pump 25A.
The Rankine cycle device 2A is activated by first driving the pump 25A with the output of the engine 10, and then when the expander 23 generates a sufficient driving force, the driving force of the expander 23 is changed to the pump 25A. Will come to drive.

伝達機構3は、ランキンサイクル装置2Aの出力であるポンプ一体型膨張機29Aのトルク(軸トルク)をエンジン10に伝達すると共に、ランキンサイクル装置2Aの起動時には、エンジン10の出力トルクを、ポンプ一体型膨張機29A(ポンプユニット)に伝達する。
伝達機構3は、ポンプ一体型膨張機29Aの回転軸28に取り付けたプーリ31と、エンジン10のクランクシャフト10aに取り付けたクランクプーリ32と、プーリ31及びクランクプーリ32に巻回したベルト33と、ポンプ一体型膨張機29Aの回転軸28とプーリ31との間に設けた電磁クラッチ34と、を備える。
The transmission mechanism 3 transmits the torque (shaft torque) of the pump-integrated expander 29A, which is the output of the Rankine cycle device 2A, to the engine 10, and at the time of startup of the Rankine cycle device 2A, the output torque of the engine 10 is This is transmitted to the body expander 29A (pump unit).
The transmission mechanism 3 includes a pulley 31 attached to the rotating shaft 28 of the pump-integrated expander 29A, a crank pulley 32 attached to the crankshaft 10a of the engine 10, a belt 33 wound around the pulley 31 and the crank pulley 32, And an electromagnetic clutch 34 provided between the rotary shaft 28 and the pulley 31 of the pump-integrated expander 29A.

そして、電磁クラッチ34をオン(締結)/オフ(解放)することで、エンジン10(クランクシャフト10a)とポンプ一体型膨張機29Aの回転軸28との間における動力の伝達、遮断が切り替えられる。
マイクロコンピュータを備える制御ユニット4は、電磁クラッチ34を制御する機能を有し、電磁クラッチ34をオン/オフ制御することで、ランキンサイクル装置2Aの作動/停止を制御する。
Then, by turning on (engaging) / off (releasing) the electromagnetic clutch 34, transmission and interruption of power between the engine 10 (crankshaft 10a) and the rotary shaft 28 of the pump-integrated expander 29A are switched.
The control unit 4 including a microcomputer has a function of controlling the electromagnetic clutch 34, and controls the operation / stop of the Rankine cycle device 2A by controlling the electromagnetic clutch 34 on / off.

即ち、制御ユニット4は、ランキンサイクル装置2Aの作動条件の成立を判断すると、電磁クラッチ34を締結(オン)して、エンジン10によってポンプ25Aを作動させることで、作動流体(冷媒)の循環を開始させ、ランキンサイクル装置2Aを起動する。
そして、膨張機23が作動して駆動力を発生するようになると、膨張機23で発生した駆動力の一部がポンプ25Aを駆動し、その余の駆動力を、伝達機構3を介してエンジン10に伝達し、エンジン10の出力(駆動力)をアシストする。
That is, when the control unit 4 determines that the operating condition of the Rankine cycle device 2A is satisfied, the electromagnetic clutch 34 is engaged (turned on) and the pump 25A is operated by the engine 10 to circulate the working fluid (refrigerant). Start the Rankine cycle device 2A.
When the expander 23 is activated to generate a driving force, a part of the driving force generated by the expander 23 drives the pump 25A, and the remaining driving force is transferred to the engine via the transmission mechanism 3. 10 and assists the output (driving force) of the engine 10.

また、制御ユニット4は、ランキンサイクル装置2Aの作動条件が不成立となった場合には、電磁クラッチ34を解放(オフ)して、作動流体の循環を停止させることで、ランキンサイクル装置2Aを停止させる。
尚、蒸発器22を、ランキンサイクル装置2Aの作動流体と、エンジン10の排気との間で熱交換を行う装置とすることができ、また、エンジン10の冷却水との間で熱交換を行うと共に、エンジン10の排気との間で熱交換を行う装置とすることができる。
Further, when the operating condition of the Rankine cycle device 2A is not satisfied, the control unit 4 releases (turns off) the electromagnetic clutch 34 and stops the circulation of the working fluid, thereby stopping the Rankine cycle device 2A. Let
The evaporator 22 can be a device that exchanges heat between the working fluid of the Rankine cycle device 2A and the exhaust of the engine 10, and also exchanges heat with the cooling water of the engine 10. At the same time, a device for exchanging heat with the exhaust of the engine 10 can be provided.

また、後述するように、膨張機23は、駆動部としてのスクロール部を迂回させて作動流体を循環させるためのバイパス路、及び、前記バイパス路を開閉する弁機構を一体的に備えている。
そして、制御ユニット4は、例えば、電磁クラッチ34を締結させたランキンサイクル装置2Aの起動直後において、弁機構を開に制御してバイパス路を開き、膨張機23のスクロールを迂回させて作動流体を循環させるようにする。
Further, as will be described later, the expander 23 is integrally provided with a bypass path for circulating the working fluid by bypassing the scroll section as a drive section, and a valve mechanism for opening and closing the bypass path.
And the control unit 4 controls the valve mechanism to be opened to open the bypass path immediately after the start of the Rankine cycle device 2A to which the electromagnetic clutch 34 is engaged, for example, to bypass the scroll of the expander 23, and to supply the working fluid. Try to circulate.

その後、例えば、膨張機23の入口の冷媒温度が閾値を上回るようになると、換言すれば、膨張機23が駆動力を発生し得るようになると、制御ユニット4は、弁機構を閉に制御してバイパス路を閉じ、作動流体がスクロールを通過して循環する状態に切り替える。
このように、ランキンサイクル装置2Aの起動直後に、膨張機23のスクロールを迂回して作動流体を循環させるようにすれば、蒸発器22内の圧力が低下して作動流体の蒸発温度が低くなるため、ランキンサイクル装置2Aの起動性を向上させることができる。また、ランキンサイクル装置2Aの停止時、電磁クラッチ34を解放(オフ)した時に、残圧力によって高回転になってしまうのを防ぐために、バイパス路を開にする。
Thereafter, for example, when the refrigerant temperature at the inlet of the expander 23 exceeds a threshold value, in other words, when the expander 23 can generate a driving force, the control unit 4 controls the valve mechanism to be closed. Then, the bypass path is closed, and the working fluid is switched to a state of circulating through the scroll.
Thus, if the working fluid is circulated by bypassing the scroll of the expander 23 immediately after the start of the Rankine cycle device 2A, the pressure in the evaporator 22 decreases and the evaporation temperature of the working fluid decreases. Therefore, the startability of the Rankine cycle device 2A can be improved. Further, when the Rankine cycle device 2A is stopped, when the electromagnetic clutch 34 is released (turned off), the bypass path is opened in order to prevent high rotation due to the residual pressure.

次に、ポンプ一体型膨張機29Aの構造を、図2に基づき詳細に説明する。
ポンプ一体型膨張機29Aは、前述のように、ランキンサイクル装置2Aの作動流体を循環させるポンプ25Aと、蒸発器22で加熱されて気化した作動流体の膨張によって回転駆動力を発生する膨張機23とが共通の回転軸28によって駆動される流体機械であり、伝達機構3を構成するプーリ31及び電磁クラッチ34を備えている。
Next, the structure of the pump-integrated expander 29A will be described in detail with reference to FIG.
As described above, the pump-integrated expander 29A includes the pump 25A that circulates the working fluid of the Rankine cycle apparatus 2A, and the expander 23 that generates a rotational driving force by the expansion of the working fluid heated and vaporized by the evaporator 22. Are fluid machines that are driven by a common rotating shaft 28, and include a pulley 31 and an electromagnetic clutch 34 that constitute the transmission mechanism 3.

ポンプ一体型膨張機29Aの膨張機23は、ポンプ一体型膨張機29Aの軸方向の一端部に配置される固定スクロール51と、該固定スクロール51に対して偏心して噛み合うように組み合わされる旋回スクロール(可動スクロール)52と、吐出ポート53を備えたハウジング部54と、吸入ポート55を備えたケーシング部56とを備える。
固定スクロール51は、円盤状の本体部51aと、本体部51aの一端面にリブ状に立設したスクロール部(渦巻き体)51bと、本体部51aの中央を貫通するように形成した作動流体の導入口51cとを有する。
The expander 23 of the pump-integrated expander 29A includes a fixed scroll 51 disposed at one end in the axial direction of the pump-integrated expander 29A and a orbiting scroll that is combined to be eccentrically engaged with the fixed scroll 51 ( A movable scroll) 52, a housing portion 54 having a discharge port 53, and a casing portion 56 having a suction port 55.
The fixed scroll 51 includes a disk-shaped main body 51a, a scroll portion (spiral body) 51b standing in a rib shape on one end surface of the main body 51a, and a working fluid formed so as to penetrate the center of the main body 51a. And an inlet 51c.

ハウジング部54は、両端開放の筒状に形成され、その内側にケーシング部56が嵌合し、固定スクロール51及び旋回スクロール52が収容される第1中空部54aと、旋回スクロール52と回転軸28との間の従動クランク機構を構成する大径部64を支持する第2中空部54bと、回転軸28を支持する第3中空部54cとを有する。
そして、第1中空部54aのポンプ25A側に、第1中空部54aの内空間(スクロールの吐出側空間)と外部空間とを連通させる吐出ポート53が、回転軸28の径方向に沿って形成されている。
The housing part 54 is formed in a cylindrical shape with both ends open, a casing part 56 is fitted inside the housing part 54, a first hollow part 54 a in which the fixed scroll 51 and the orbiting scroll 52 are accommodated, the orbiting scroll 52 and the rotating shaft 28. A second hollow portion 54b that supports the large-diameter portion 64 that constitutes the driven crank mechanism, and a third hollow portion 54c that supports the rotary shaft 28.
A discharge port 53 that communicates the inner space of the first hollow portion 54a (the discharge side space of the scroll) and the external space is formed along the radial direction of the rotary shaft 28 on the pump 25A side of the first hollow portion 54a. Has been.

ケーシング部56は、内側に固定スクロール51を一体的に備えると共に外側が第1中空部54aの内側に嵌合される円筒状部56aと、固定スクロール51の導入口51cに連通する作動流体導入室56bとを備え、作動流体導入室56bとケーシング部56の外部空間とを連通させる吸入ポート55が、回転軸28の径方向に沿って形成されている。
ここで、吐出ポート53及び吸入ポート55は、相互に略平行に、かつ、回転軸28の軸心から同一の角度方向に向けて延設され、回転軸28の軸方向に並んで設けられる。
The casing portion 56 is integrally provided with the fixed scroll 51 on the inner side and the outer side is fitted with the cylindrical portion 56a fitted inside the first hollow portion 54a, and the working fluid introduction chamber communicated with the introduction port 51c of the fixed scroll 51. 56b, and a suction port 55 that communicates the working fluid introduction chamber 56b and the outer space of the casing portion 56 is formed along the radial direction of the rotary shaft 28.
Here, the discharge port 53 and the suction port 55 are provided substantially parallel to each other, extending in the same angular direction from the axis of the rotary shaft 28, and arranged side by side in the axial direction of the rotary shaft 28.

吸入ポート55には、一端が蒸発器22の出口に接続される配管の他端が接続され、蒸発器22で加熱された作動流体が、吸入ポート55を介して膨張機23内に導入される。
吸入ポート55に導入された作動流体は、作動流体導入室56bに流入した後、導入口51cを介して固定スクロール51の中心部に導入される。
固定スクロール51の中心部に導入された作動流体は、旋回スクロール52の壁面を押して膨張室を形成し、作動流体が連続して供給されることで膨張室を外周側に移動させ、旋回スクロール52の旋回運動を生じさせる。
One end of a pipe whose one end is connected to the outlet of the evaporator 22 is connected to the suction port 55, and the working fluid heated by the evaporator 22 is introduced into the expander 23 through the suction port 55. .
The working fluid introduced into the suction port 55 flows into the working fluid introduction chamber 56b and is then introduced into the center portion of the fixed scroll 51 through the introduction port 51c.
The working fluid introduced into the center of the fixed scroll 51 pushes the wall surface of the orbiting scroll 52 to form an expansion chamber, and the working fluid is continuously supplied to move the expansion chamber to the outer peripheral side. This causes a swivel motion.

吐出ポート53には、一端が凝縮器24の入口に接続される配管の他端が接続され、膨張機23を経由した作動流体が凝縮器24に送られて凝縮(液化)される。
旋回スクロール52は、円盤状の本体部52aと、本体部52aの一端面にリブ状に立設したスクロール部(渦巻き体)52bとを有する。
One end of a pipe whose one end is connected to the inlet of the condenser 24 is connected to the discharge port 53, and the working fluid that has passed through the expander 23 is sent to the condenser 24 and condensed (liquefied).
The orbiting scroll 52 includes a disk-shaped main body 52a and a scroll portion (spiral body) 52b that is provided in a rib shape on one end surface of the main body 52a.

ここで、本体部52aのスクロール部52bを形成した端面の反対面と、前記ハウジング部54の第1中空部54aから第2中空部54bに至る段差部54dとの間に自転阻止機構60を設けてあり、旋回スクロール52は、自転阻止機構60によって、自転が防止されながら作動流体の膨張に伴って旋回運動を行う。
尚、自転阻止機構60としては、オルダムカップリング、ピン&リングカップリング、ボールカップリングなどがあるが、ここでは、ボールカップリングを用いており、特に、EMカップリングと呼ばれるボールカップリングを用いている(NTN TECHNICAL REVIEW No.68(2000)「スクロールコンプレッサ用EMカップリングについて」参照)。EMカップリングは、レースとリングを一体プレス成形した2枚のプレートと鋼球とから構成される。
Here, a rotation prevention mechanism 60 is provided between the surface opposite to the end surface of the main body portion 52a where the scroll portion 52b is formed and the step portion 54d from the first hollow portion 54a to the second hollow portion 54b of the housing portion 54. The orbiting scroll 52 performs the orbiting motion with the expansion of the working fluid while the rotation preventing mechanism 60 prevents the rotation.
As the rotation prevention mechanism 60, there are Oldham coupling, pin & ring coupling, ball coupling, and the like. Here, ball coupling is used, and in particular, ball coupling called EM coupling is used. (Refer to NTN TECHNICICAL REVIEW No. 68 (2000) “EM coupling for scroll compressor”). The EM coupling is composed of two plates and a steel ball obtained by integrally press-molding a race and a ring.

旋回スクロール52の本体部52aの自転阻止機構60側の端面には、筒状部52cを突出形成してあり、この筒状部52cの内側には、ドライブベアリング61を設けてある。ドライブベアリング61には、偏心ブッシュ62が嵌合され、この偏心ブッシュ62にはクランクピン孔62aが形成されている。
一方、ハウジング部54の第2中空部54bには、ベアリング63を介して大径部64が回転可能に支持され、この大径部64には、回転軸28と平行にかつ回転軸28に対して軸心をずらしてクランクピン64aを立設してあり、クランクピン64aは、前記偏心ブッシュ62のクランクピン孔62aに挿通される。
A cylindrical portion 52c is formed to protrude from the end surface of the main body 52a of the orbiting scroll 52 on the side of the rotation prevention mechanism 60, and a drive bearing 61 is provided inside the cylindrical portion 52c. An eccentric bush 62 is fitted to the drive bearing 61, and a crank pin hole 62 a is formed in the eccentric bush 62.
On the other hand, a large-diameter portion 64 is rotatably supported by the second hollow portion 54 b of the housing portion 54 via a bearing 63, and the large-diameter portion 64 is parallel to the rotary shaft 28 and with respect to the rotary shaft 28. The crank pin 64 a is erected by shifting the shaft center, and the crank pin 64 a is inserted into the crank pin hole 62 a of the eccentric bush 62.

大径部64には回転軸28が連結され、偏心ブッシュ62、クランクピン64a、大径部64からなる従動クランク機構によって、旋回スクロール52の回転軸28回りの旋回運動を、回転軸28の回転駆動力として伝達する。
また、膨張機23の振動発生を抑制するためのカウンタウェイト(バランスウェイト)74を、偏心ブッシュ62に対して取り付けてある。
The rotary shaft 28 is connected to the large diameter portion 64, and the turning motion around the rotary shaft 28 of the orbiting scroll 52 is rotated by the driven crank mechanism including the eccentric bush 62, the crank pin 64 a, and the large diameter portion 64. Transmit as driving force.
Further, a counterweight (balance weight) 74 for suppressing the occurrence of vibration of the expander 23 is attached to the eccentric bush 62.

更に、旋回スクロール52の旋回半径を規制するために、大径部64に規制用孔64bを設けると共に、規制用孔64bに嵌合する規制用突起62bを偏心ブッシュ62に設けてあり、規制用孔64bと規制用突起62bとの係合によって、クランクピン64a回りの偏心ブッシュ62の揺動を規制している。
回転軸28は、ハウジング部54の第3中空部54cに設けたベアリング65に支持されると共に、ハウジング部54に連結されるポンプハウジング66の端部に設けたベアリング67に支持されて回転する。
Further, in order to restrict the turning radius of the orbiting scroll 52, a restriction hole 64b is provided in the large diameter portion 64, and a restriction projection 62b that fits into the restriction hole 64b is provided in the eccentric bush 62. Oscillation of the eccentric bush 62 around the crank pin 64a is restricted by the engagement between the hole 64b and the restricting protrusion 62b.
The rotary shaft 28 is supported by a bearing 65 provided in the third hollow portion 54 c of the housing portion 54 and is supported by a bearing 67 provided at an end portion of a pump housing 66 connected to the housing portion 54 to rotate.

ポンプハウジング66には、ポンプ25Aを設けてある。ポンプ25Aは、一例としてギヤポンプであり、ギヤポンプは、回転軸28に軸支した駆動歯車(回転体)と、回転軸28と平行に回転可能に支持した従動軸と、従動軸に軸支され駆動歯車に噛み合う従動歯車とから構成される。
ポンプハウジング66には、ポンプ25Aの吸入口に連通するポンプ吸入ポート66a、及び、ポンプ25Aの吐出口に連通するポンプ吐出ポート66bが形成される。
The pump housing 66 is provided with a pump 25A. The pump 25A is a gear pump as an example, and the gear pump is driven and supported by a drive gear (rotary body) supported on the rotary shaft 28, a driven shaft rotatably supported in parallel with the rotary shaft 28, and the driven shaft. And a driven gear meshing with the gear.
The pump housing 66 is formed with a pump suction port 66a communicating with the suction port of the pump 25A and a pump discharge port 66b communicating with the discharge port of the pump 25A.

ポンプ吸入ポート66aには、一端が凝縮器24の出口に接続される配管の他端が接続され、凝縮器24で凝縮(液化)された作動流体がポンプ25Aに吸入される。また、ポンプ吐出ポート66bには、一端が蒸発器22の入口に接続される配管の他端が接続され、凝縮器24で凝縮(液化)された作動流体を蒸発器22に圧送し、作動流体を蒸発(気化)させる。
尚、ポンプ25Aとして、公知のポンプを適宜採用でき、ギヤポンプの他、ベーンポンプなどを用いることができる。
ポンプハウジング66を貫通して外部に延設した回転軸28の端部には、伝達機構3を構成するプーリ31と電磁クラッチ34とを配置してある。
One end of a pipe whose one end is connected to the outlet of the condenser 24 is connected to the pump suction port 66a, and the working fluid condensed (liquefied) by the condenser 24 is sucked into the pump 25A. The pump discharge port 66b is connected to the other end of a pipe whose one end is connected to the inlet of the evaporator 22, and the working fluid condensed (liquefied) by the condenser 24 is pumped to the evaporator 22 so that the working fluid is Is evaporated (vaporized).
In addition, a well-known pump can be employ | adopted suitably as the pump 25A, A vane pump etc. other than a gear pump can be used.
A pulley 31 and an electromagnetic clutch 34 that constitute the transmission mechanism 3 are arranged at the end of the rotary shaft 28 that extends through the pump housing 66 to the outside.

ポンプハウジング66の膨張機23側とは反対側の端面には、回転軸28を内包する筒状部66cを一体的に形成してある。この筒状部66cの内側の先端側に、回転軸28を支持するベアリング67を配置し、筒状部66cの底部側(膨張機23側)には、軸シール68を配置してある。
そして、筒状部66cから突き出た回転軸28の先端にクラッチ板71を取り付け、また、筒状部66cの外周に、ベアリング72を介してプーリ31を回転可能に取り付けてある。
A cylindrical portion 66c that encloses the rotary shaft 28 is integrally formed on the end surface of the pump housing 66 opposite to the expander 23 side. A bearing 67 that supports the rotary shaft 28 is disposed on the inner tip side of the tubular portion 66c, and a shaft seal 68 is disposed on the bottom side (expansion device 23 side) of the tubular portion 66c.
And the clutch board 71 is attached to the front-end | tip of the rotating shaft 28 protruded from the cylindrical part 66c, and the pulley 31 is rotatably attached to the outer periphery of the cylindrical part 66c via the bearing 72.

更に、プーリ31の膨張機23側の端面に形成した、回転軸28を中心とする環状の溝31aにクラッチコイル73を収容してあり、電磁クラッチ34は、上記のクラッチ板71、クラッチコイル73で構成される。
そして、クラッチコイル73に通電すると、磁気吸引力が発生することでクラッチ板71がプーリ31に接触し、プーリ31とクラッチ板71(回転軸28)とが連動するようになり、結果、ポンプ一体型膨張機29Aの回転軸28とエンジン10(クランクシャフト10a)との間で動力の伝達が行われるようになる。
Furthermore, a clutch coil 73 is accommodated in an annular groove 31a formed on the end face of the pulley 31 on the expander 23 side and centering on the rotary shaft 28. The electromagnetic clutch 34 includes the clutch plate 71 and the clutch coil 73 described above. Consists of.
When the clutch coil 73 is energized, a magnetic attractive force is generated, so that the clutch plate 71 comes into contact with the pulley 31 and the pulley 31 and the clutch plate 71 (rotary shaft 28) are interlocked. Power is transmitted between the rotary shaft 28 of the body expander 29A and the engine 10 (crankshaft 10a).

上記のポンプ一体型膨張機29Aの膨張機23は、更に、吸入ポート55から吸入される作動流体を、固定スクロール51,旋回スクロール52からなる駆動部(スクロール部)及び自転阻止機構60などの摺動部を迂回して吐出ポート53に導くためのバイパス部80を備えている。
バイパス部80は、バイパス路81が形成されるホルダ82と、該ホルダ82に支持されてバイパス路81を開閉する弁機構(電磁弁)83と、を有し、吸入ポート55を備えたケーシング部56と、吐出ポート53を備えたハウジング部54との間に挟持される。
The expander 23 of the pump-integrated expander 29 </ b> A further supplies the working fluid sucked from the suction port 55 to the drive unit (scroll unit) including the fixed scroll 51 and the orbiting scroll 52, and the rotation preventing mechanism 60. A bypass part 80 is provided for bypassing the moving part and leading to the discharge port 53.
The bypass part 80 includes a holder 82 in which a bypass path 81 is formed, and a valve mechanism (electromagnetic valve) 83 that is supported by the holder 82 and opens and closes the bypass path 81, and includes a suction port 55. 56 and a housing portion 54 having a discharge port 53.

以下では、バイパス部80の詳細を、図3を参照しつつ説明する。
ホルダ82は、バイパス路81が形成される先端部82aと、弁機構83のコイルなどを保持する基端部82bとからなり、先端部82aが、回転軸28の軸方向においてケーシング部56とハウジング部54との間に挟持される。
ケーシング部56の吸入ポート55が形成される部分と、ハウジング部54の吐出ポート53が形成される部分との間に、ホルダ82の先端部82aを挟持するための収容空間91を設けてある。前記収容空間91は、ケーシング部56及びハウジング部54で囲まれる、有底で、かつ、回転軸28の径方向の外方に向けて開放される空間である。
Below, the detail of the bypass part 80 is demonstrated, referring FIG.
The holder 82 includes a distal end portion 82 a where the bypass path 81 is formed and a proximal end portion 82 b that holds a coil of the valve mechanism 83. The distal end portion 82 a is in the axial direction of the rotary shaft 28 and the casing portion 56 and the housing. It is clamped between the parts 54.
An accommodation space 91 is provided between the portion of the casing portion 56 where the suction port 55 is formed and the portion of the housing portion 54 where the discharge port 53 is formed. The housing space 91 is a space that is surrounded by the casing portion 56 and the housing portion 54 and that is open toward the outside in the radial direction of the rotating shaft 28.

収容空間91においてホルダ82の先端部82aを軸方向に挟むケーシング部56側の面には、吸入ポート55に連通する吸入側連通路92が開口し、また、収容空間91において先端部82aを軸方向に挟むハウジング部54側の面には、吐出ポート53に連通する吐出側連通路93が開口する。
そして、ホルダ82の先端部82aには、回転軸28の軸方向に延びるバイパス路81が形成され、先端部82aが、回転軸28の軸方向においてケーシング部56とハウジング部54との間に挟持された状態で、バイパス路81の一端が吸入側連通路92に接続され、バイパス路81の他端が吐出側連通路93に接続されることで、作動流体のバイパス管路が形成される。
A suction side communication passage 92 communicating with the suction port 55 is opened on the surface of the casing portion 56 side that sandwiches the tip end portion 82 a of the holder 82 in the axial direction in the storage space 91, and the tip end portion 82 a is pivoted in the storage space 91. A discharge-side communication passage 93 communicating with the discharge port 53 is opened on the surface on the housing part 54 side sandwiched in the direction.
A bypass path 81 extending in the axial direction of the rotary shaft 28 is formed at the distal end portion 82 a of the holder 82, and the distal end portion 82 a is sandwiched between the casing portion 56 and the housing portion 54 in the axial direction of the rotary shaft 28. In this state, one end of the bypass passage 81 is connected to the suction-side communication passage 92, and the other end of the bypass passage 81 is connected to the discharge-side communication passage 93, thereby forming a bypass conduit for the working fluid.

このように、バイパス部80(ホルダ82)は、吸入ポート55と吐出ポート53との間に配設され、ホルダ82に形成したバイパス路81で吸入ポート55と吐出ポート53とを直接的に連通させる。換言すれば、ホルダ82に形成したバイパス路81は、回転軸28の軸方向に沿って延び、吸入ポート55と吐出ポート53とを直接的に連通させる連通路である。
バイパス路81のケーシング部56側の端部が開口するホルダ82の部分は、回転軸28の軸に平行な方向に沿って円筒状に突出形成された円筒状突起部82cをなし、この円筒状突起部82cの軸心部分にバイパス路81が延設されている。
Thus, the bypass portion 80 (holder 82) is disposed between the suction port 55 and the discharge port 53, and directly communicates the suction port 55 and the discharge port 53 with the bypass passage 81 formed in the holder 82. Let In other words, the bypass path 81 formed in the holder 82 is a communication path that extends along the axial direction of the rotary shaft 28 and directly communicates the suction port 55 and the discharge port 53.
The portion of the holder 82 where the end portion on the casing portion 56 side of the bypass path 81 opens forms a cylindrical protrusion 82 c that is formed in a cylindrical shape along a direction parallel to the axis of the rotary shaft 28. A bypass path 81 extends in the axial center portion of the protrusion 82c.

一方、吸入側連通路92は、ホルダ82側(ハウジング部54側)に、前記円筒状突起部82cが嵌挿される径の嵌合孔部(拡径部)92aを有する。即ち、吸入側連通路92は、吸入ポート55側からバイパス路81と略同等の径で形成され、途中で、円筒状突起部82cの外周が嵌挿される径に拡径される。
また、円筒状突起部82cの外周には、環状に溝82fが形成されており、ゴムなどの弾性材料で環状に形成したシール部材(Oリング)94を環状溝82fに嵌め込み、円筒状突起部82cを嵌合孔部92aに嵌挿させると、円筒状突起部82cの外周と、吸入側連通路92の嵌合孔部92aの内周との隙間が、シール部材94によってシールされる。
On the other hand, the suction side communication passage 92 has a fitting hole (a diameter-enlarged portion) 92a having a diameter into which the cylindrical projection 82c is fitted and inserted on the holder 82 side (housing portion 54 side). That is, the suction side communication path 92 is formed with a diameter substantially equal to that of the bypass path 81 from the suction port 55 side, and is expanded to a diameter in which the outer periphery of the cylindrical protrusion 82c is fitted.
An annular groove 82f is formed on the outer periphery of the cylindrical protrusion 82c, and a seal member (O-ring) 94 formed in an annular shape by an elastic material such as rubber is fitted into the annular groove 82f. When 82c is fitted into the fitting hole 92a, the gap between the outer periphery of the cylindrical projection 82c and the inner periphery of the fitting hole 92a of the suction side communication path 92 is sealed by the seal member 94.

即ち、円筒状突起部82cを吸入側連通路92の嵌合孔部92aに嵌合させることで、バイパス路81が吸入ポート55に連通すると共に、回転軸28の径方向におけるホルダ82の位置が吸入側連通路92を基準に位置決めされ、ホルダ82の円筒状突起部82cとケーシング部56の嵌合孔部92aとの間、換言すれば、バイパス路81の吸入ポート55側は、円筒シールによってシールされる。
ホルダ82とケーシング部56との回転軸28の軸方向における突き当りは、円筒状突起部82cの根本部分の平面部82eと、ケーシング部56の吸入側連通路92が開口する平面部56cとの間で行われる。そして、係るホルダ82とケーシング部56との間、及び、ハウジング部54とケーシング部56との間には、例えば金属製の挟み板であるシム96を挟着してあり、このシムによって回転軸28の軸方向における固定スクロール51と旋回スクロール52との隙間が調整される。
That is, by fitting the cylindrical protrusion 82 c into the fitting hole 92 a of the suction side communication path 92, the bypass path 81 communicates with the suction port 55 and the position of the holder 82 in the radial direction of the rotary shaft 28 is set. Positioned with reference to the suction side communication path 92, the cylindrical port portion 82 c of the holder 82 and the fitting hole portion 92 a of the casing portion 56, in other words, the suction port 55 side of the bypass path 81 is sealed by a cylindrical seal. Sealed.
The holder 82 and the casing portion 56 abut each other in the axial direction of the rotary shaft 28 between the flat portion 82e at the base portion of the cylindrical protrusion 82c and the flat portion 56c where the suction side communication passage 92 of the casing portion 56 opens. Done in And between the holder 82 and the casing part 56, and between the housing part 54 and the casing part 56, the shim 96 which is metal clamping plates, for example is pinched | interposed, and a rotating shaft is carried out by this shim. The clearance between the fixed scroll 51 and the orbiting scroll 52 in the axial direction 28 is adjusted.

また、バイパス路81のハウジング部54側の端部が開口するホルダ82の部分には、回転軸28の横断面に平行な突き当り面を形成する台座部82gを突出形成してある一方、ハウジング部54には、前記台座部82gが遊嵌されると共に、前記台座部82gの端面(平面部)と平行でかつ吐出側連通路93が開口する底面(平面部)を備えた凹陥部54eを形成してある。
そして、ホルダ82をハウジング部54とケーシング部56との間に挟持するときに、台座部82gが凹陥部54eに遊嵌されると、ホルダ82側のバイパス路81とハウジング部54側の吐出側連通路93とが連続し、バイパス路81が吐出側連通路93を介して吐出ポート53に接続される。
In addition, a pedestal portion 82g that forms an abutting surface parallel to the transverse section of the rotating shaft 28 protrudes from the portion of the holder 82 where the end portion of the bypass path 81 on the housing portion 54 side opens, while the housing portion 54 is formed with a recessed portion 54e having a bottom surface (planar portion) parallel to the end surface (planar portion) of the pedestal portion 82g and having an opening of the discharge side communication passage 93. It is.
When the holder 82 is sandwiched between the housing portion 54 and the casing portion 56 and the pedestal portion 82g is loosely fitted into the recessed portion 54e, the bypass path 81 on the holder 82 side and the discharge side on the housing portion 54 side The communication path 93 is continuous, and the bypass path 81 is connected to the discharge port 53 via the discharge side communication path 93.

即ち、バイパス路81は、円筒状突起部82cの先端から台座部82g(平面部)にかけて形成されており、ホルダ82をハウジング部54とケーシング部56との間に挟持することで、吸入ポート55と吐出ポート53とが、バイパス路81によって連通する。
凹陥部54eの底面には、吐出側連通路93の開口を囲むように、環状に溝54fを形成してあり、この溝54fに、ゴムなどの弾性材料で形成したシール部材95を嵌め込み、このシール部材95によって、ホルダ82とハウジング部54との突き当り面を囲むようにしてシールする。即ち、ホルダ82側のバイパス路81とハウジング部54側の吐出側連通路93との接続部は、その周囲が平面シールでシールされる。換言すれば、バイパス路81と吐出ポート53は、平面シールでシールされる。
In other words, the bypass path 81 is formed from the tip of the cylindrical protrusion 82 c to the pedestal portion 82 g (planar portion), and the holder 82 is sandwiched between the housing portion 54 and the casing portion 56, whereby the suction port 55. And the discharge port 53 communicate with each other by a bypass path 81.
An annular groove 54f is formed on the bottom surface of the recessed portion 54e so as to surround the opening of the discharge side communication passage 93, and a seal member 95 made of an elastic material such as rubber is fitted into the groove 54f. The sealing member 95 is sealed so as to surround the contact surface between the holder 82 and the housing portion 54. That is, the periphery of the connection portion between the bypass path 81 on the holder 82 side and the discharge side communication passage 93 on the housing portion 54 side is sealed with a flat seal. In other words, the bypass passage 81 and the discharge port 53 are sealed with a flat seal.

シール部材95は、ホルダ82で押し潰されることで、ホルダ82を、ケーシング部56側に向けて与勢する力を発生し、これによって、ホルダ82がケーシング部56側に突き当り、ホルダ82の回転軸28の軸方向における位置が、ケーシング部56を基準に位置決めされる。
また、バイパス部80のホルダ82は、バイパス路81を開閉する電磁弁である弁機構(パイロット式電磁弁)83を一体的に備えている。
The seal member 95 is crushed by the holder 82 to generate a force that urges the holder 82 toward the casing portion 56, whereby the holder 82 abuts against the casing portion 56 and the holder 82 rotates. The position of the shaft 28 in the axial direction is positioned with reference to the casing portion 56.
The holder 82 of the bypass unit 80 is integrally provided with a valve mechanism (pilot electromagnetic valve) 83 that is an electromagnetic valve that opens and closes the bypass path 81.

バイパス路81は、ケーシング部56側から回転軸28の軸方向と平行に延びる管路81aと、ハウジング部54側から回転軸28の軸方向と平行に延びる管路81bとを備え、管路81aが管路81bに比べて回転軸28からより遠い位置に形成されており、これら管路81a,81bは、回転軸28の径方向に延びる管路81cによって連通している。
管路81cには、回転軸28の径方向の外側から内側に向けて弁体83aが移動して着座し、係る着座状態で管路81c(バイパス路81)を閉塞するためのシート部81dが形成されており、また、シート部81dよりも前記径方向の外側において前記径方向に沿って変位可能に、プランジャ83bを支持してある。
The bypass path 81 includes a pipe line 81a that extends in parallel to the axial direction of the rotary shaft 28 from the casing part 56 side, and a pipe line 81b that extends in parallel to the axial direction of the rotary shaft 28 from the housing part 54 side. Is formed at a position farther from the rotary shaft 28 than the pipe 81b, and the pipes 81a and 81b communicate with each other through a pipe 81c extending in the radial direction of the rotary shaft 28.
In the pipe line 81c, there is a seat part 81d for closing the pipe line 81c (bypass path 81) in the seated state, with the valve body 83a moving and seating from the outside in the radial direction of the rotary shaft 28 to the inside. The plunger 83b is supported so as to be displaceable along the radial direction outside the seat portion 81d in the radial direction.

前記プランジャ83bは、コイルバネ(弾性体)83cによってシート部81dに向けて(回転軸28に近づく方向に)与勢されると共に、コイル(ソレノイド)83dの磁気力によりコイルバネ83cの与勢力に抗してシート部81d(回転軸28)から離れる方向に変位する。
ここで、コイル83dを収容するホルダ82の基端部82bは、ケーシング部56及びハウジング部54の外部に露出し、この外部に露出する部分に、コイル83dへの通電を行うための端子(図示省略)が設けられる。
The plunger 83b is urged toward the seat portion 81d by the coil spring (elastic body) 83c (in a direction approaching the rotation shaft 28) and resists the urging force of the coil spring 83c by the magnetic force of the coil (solenoid) 83d. Thus, it is displaced in a direction away from the sheet portion 81d (rotating shaft 28).
Here, the base end portion 82b of the holder 82 that accommodates the coil 83d is exposed to the outside of the casing portion 56 and the housing portion 54, and a terminal (not shown) for energizing the coil 83d is exposed to the outside. (Omitted) is provided.

前記プランジャ83bとシート部81dとの間には、弁体83aが、プランジャ83bの進退方向と同じ方向(回転軸28の径方向)に変位可能に支持されている。
弁体83aには、弁体83aの変位方向に貫通するパイロット路83eが形成されており、プランジャ83bの先端には、前記パイロット路83eのプランジャ83b側の開口を閉塞するパイロット弁83fが形成されている。
A valve body 83a is supported between the plunger 83b and the seat portion 81d so as to be displaceable in the same direction as the advance / retreat direction of the plunger 83b (the radial direction of the rotary shaft 28).
The valve body 83a is formed with a pilot path 83e penetrating in the displacement direction of the valve body 83a, and a pilot valve 83f for closing the opening of the pilot path 83e on the plunger 83b side is formed at the tip of the plunger 83b. ing.

そして、コイル83dへの非通電状態では、プランジャ83bがコイルバネ83cの与勢力によってシート部81dに向けて変位することで、プランジャ83bに押されて弁体83aがシート部81dに着座し、かつ、パイロット路83eのプランジャ83b側の開口がパイロット弁83fで閉塞されることで、バイバス路81を介した作動流体の流れが阻止される閉弁状態となる。   In the non-energized state of the coil 83d, the plunger 83b is displaced toward the seat portion 81d by the biasing force of the coil spring 83c, so that the valve body 83a is seated on the seat portion 81d by being pushed by the plunger 83b, and The opening on the plunger 83b side of the pilot path 83e is closed by the pilot valve 83f, so that the flow of the working fluid through the bypass path 81 is blocked.

係る閉塞状態からコイル83dに通電すると、コイル83dの磁気力によってプランジャ83bが、シート部81dに着座している弁体83aから離れることで、パイロット弁83fがパイロット路83eのプランジャ83b側の開口から離れ、パイロット路83eが開放される。
パイロット路83eが開放されると、弁体83aとプランジャ83bとで挟まれる空間(主弁室)内の圧力が、吐出ポート53側の圧力にまで低下する一方、弁体83aの外方下側には、吸入ポート55側の高圧が作用し、係る圧力差によって弁体83aがリフトしてシート部81dから離れ、バイバス路81を介して作動流体が流れる開弁状態となり、コイル83dへの通電が継続されている間、開弁状態を保持する。
When the coil 83d is energized from the closed state, the plunger 83b is separated from the valve body 83a seated on the seat portion 81d by the magnetic force of the coil 83d, so that the pilot valve 83f is opened from the opening on the plunger 83b side of the pilot path 83e. The pilot path 83e is released and the pilot path 83e is opened.
When the pilot passage 83e is opened, the pressure in the space (main valve chamber) sandwiched between the valve body 83a and the plunger 83b is reduced to the pressure on the discharge port 53 side, while the lower outer side of the valve body 83a. Then, the high pressure on the suction port 55 side acts, and the valve body 83a lifts away from the seat portion 81d due to the pressure difference, and the valve 83 is opened, and the working fluid flows through the bypass path 81, and the coil 83d is energized. While the operation is continued, the valve open state is maintained.

係る開弁状態(通電状態)から、コイル83dへの通電を遮断すると、プランジャ83bがコイルバネ83cの与勢力によってシート部81dに近づく方向に変位してパイロット路83eが閉塞され、更に、プランジャ83bに押されて弁体83aがシート部81dに近づく方向に変位し、弁体83aがシート部81dに着座して閉弁状態に戻り、コイル83dへの非通電が継続されている間、閉弁状態を保持する。
このように、バイパス路81を開閉する弁機構83は、弁体83a、プランジャ83b、コイルバネ83c、コイル83dなどで構成される、所謂パイロット式の電磁弁である。
尚、弁機構83は、流体の圧力差を用いて弁体を駆動させるパイロット式の電磁弁に限定されず、可動コアの駆動によって機械的に弁体を開閉動作させる直動式の電磁弁とすることができる。
When the energization to the coil 83d is interrupted from the valve open state (energized state), the plunger 83b is displaced in the direction approaching the seat portion 81d by the biasing force of the coil spring 83c, the pilot path 83e is closed, and the plunger 83b is further closed. The valve body 83a is displaced in a direction approaching the seat portion 81d by being pushed, the valve body 83a is seated on the seat portion 81d and returns to the valve closed state, and the valve 83 is closed while the coil 83d is continuously de-energized. Hold.
Thus, the valve mechanism 83 that opens and closes the bypass passage 81 is a so-called pilot-type electromagnetic valve that includes the valve body 83a, the plunger 83b, the coil spring 83c, the coil 83d, and the like.
The valve mechanism 83 is not limited to a pilot-type electromagnetic valve that drives a valve body using a pressure difference between fluids, and is a direct-acting electromagnetic valve that mechanically opens and closes the valve body by driving a movable core. can do.

制御ユニット4は、例えば、電磁クラッチ34を締結させたランキンサイクル装置2Aの起動直後などにおいて、前記コイル83dに通電させることで弁機構83を開弁状態とし、吸入ポート55と吐出ポート53とをバイパス路81で連通させると、吸入ポート55から膨張機23内に流入した作動流体を、バイパス路81を介して吐出ポート53にそのまま導いて膨張機23の外部に吐出させるバイパス経路が開通し、駆動部としてのスクロール51,52、及び、旋回スクロール52の自転阻止機構60やドライブベアリング61などの摺動部を迂回して、作動流体を循環させることになる。
このように、バイパス路81によって形成されるバイパス経路に、旋回スクロール52の自転阻止機構60やドライブベアリング61などの摺動部がないから、バイパス路81を開放しているときに気液混合状態又は液相状態の作動流体が循環されても、摺動部における潤滑油の流出を抑制でき、摺動部の潤滑性を十分に維持できる。
For example, immediately after the start of the Rankine cycle device 2A with the electromagnetic clutch 34 engaged, the control unit 4 energizes the coil 83d to open the valve mechanism 83, and the intake port 55 and the discharge port 53 are connected. When communicating with the bypass path 81, a bypass path is opened in which the working fluid that has flowed into the expander 23 from the suction port 55 is directly led to the discharge port 53 via the bypass path 81 and discharged to the outside of the expander 23. The working fluid is circulated by bypassing the sliding portions such as the scrolls 51 and 52 as drive units and the rotation preventing mechanism 60 and the drive bearing 61 of the orbiting scroll 52.
As described above, since the bypass path formed by the bypass path 81 has no sliding portions such as the rotation prevention mechanism 60 and the drive bearing 61 of the orbiting scroll 52, the gas-liquid mixed state is obtained when the bypass path 81 is opened. Or even if the working fluid in a liquid phase is circulated, the outflow of the lubricating oil in the sliding portion can be suppressed, and the lubricity of the sliding portion can be sufficiently maintained.

尚、ポンプ一体型膨張機29A(膨張機23)の設置状態における吸入ポート55及び吐出ポート53の垂直、水平方向に対する向きを限定するものではないが、バイパス路81を開いているときに、摺動部からの潤滑油の流出をなるべく抑制できる向きに設定することが好ましい。具体的には、吸入ポート55及び吐出ポート53の軸線が、回転軸28の径方向の内側から外側に向けて水平若しくは下り勾配となるように、ポンプ一体型膨張機29A(膨張機23)を設置することで、摺動部からの潤滑油の流出、換言すれば、摺動部に対する液相作動流体の流れ込みを効果的に抑制できる。特に、吸入ポート55及び吐出ポート53の軸線が、回転軸28の径方向の内側から外側に向けて垂直下向きになるように設置すれば、バイパス経路を外れて液相の作動流体が摺動部に流れ込むことを可及的に小さくできる。
また、上記の膨張機23は、バイパス路81と当該バイパス路81を開閉する弁機構83とを一体的に備えるから、作動流体を循環させるための配管に、弁機構を備えたバイパス路を接続する場合に比べて、ランキンサイクル装置2Aにおける作動流体の循環回路を簡略化できる。
Although the orientation of the suction port 55 and the discharge port 53 in the installed state of the pump-integrated expander 29A (expander 23) is not limited, the direction of sliding when the bypass passage 81 is open is not limited. It is preferable to set the direction so that the outflow of the lubricating oil from the moving part can be suppressed as much as possible. Specifically, the pump-integrated expander 29A (expander 23) is arranged so that the axes of the suction port 55 and the discharge port 53 become horizontal or descending from the inner side to the outer side in the radial direction of the rotary shaft 28. By installing, the outflow of the lubricating oil from the sliding portion, in other words, the flow of the liquid phase working fluid into the sliding portion can be effectively suppressed. In particular, if the suction port 55 and the discharge port 53 are installed so that the axes of the rotary shaft 28 are vertically downward from the inner side to the outer side in the radial direction, the working fluid in the liquid phase is separated from the bypass path. Can be made as small as possible.
Moreover, since the expander 23 is integrally provided with a bypass path 81 and a valve mechanism 83 that opens and closes the bypass path 81, a bypass path having a valve mechanism is connected to a pipe for circulating a working fluid. Compared with the case where it does, the circulation circuit of the working fluid in Rankine cycle device 2A can be simplified.

また、バイパス路81が形成されると共に弁機構83を一体的に備えるホルダ82(バイパス部80)を、吸入ポート55が形成されるケーシング部56と、吐出ポート53が形成されるハウジング部54との間に挟持するから、膨張機23(流体機械)に対して簡易な構造でバイパス路81及び弁機構83を設けることができ、膨張機23の加工を簡略化し、かつ、膨張機23の軸方向長さが拡大することを抑制できる。
また、弁機構83は、プランジャ83b及び弁体83aの移動方向が、回転軸28の径方向に設定されるから、プランジャ83b及び弁体83aの移動空間は回転軸28の径方向に長く、移動方向を回転軸28と平行な方向とする場合に比べて、膨張機23の軸方向長さを抑制できる。
In addition, a holder 82 (bypass portion 80) having a bypass passage 81 and integrally including a valve mechanism 83 is connected to a casing portion 56 in which a suction port 55 is formed, and a housing portion 54 in which a discharge port 53 is formed. Therefore, the bypass path 81 and the valve mechanism 83 can be provided with a simple structure with respect to the expander 23 (fluid machine), the processing of the expander 23 is simplified, and the shaft of the expander 23 is provided. Expansion of the direction length can be suppressed.
Further, in the valve mechanism 83, the movement direction of the plunger 83b and the valve body 83a is set in the radial direction of the rotary shaft 28. Therefore, the movement space of the plunger 83b and the valve body 83a is long in the radial direction of the rotary shaft 28 and moves. Compared with the case where the direction is a direction parallel to the rotation shaft 28, the axial length of the expander 23 can be suppressed.

更に、弁機構83のコイル(ソレノイド)83dが、ケーシング部56及びハウジング部54の外部に露出するホルダ82の基端部82bに収容されるから、コイル83dからの放熱を効率良く行わせることができる。
また、弁機構83を構成する部品の中でサイズが大きな部品であるコイル(ソレノイド)83dを、ケーシング部56とハウジング部54とで挟まれる部分の外側に配置するから、コイル(ソレノイド)83dの収容空間を、ケーシング部56とハウジング部54とで挟まれる部分に確保する必要がなく、これによっても、膨張機23の軸方向長さを抑制できる。
また、ケーシング部56とハウジング部54との間にホルダ82(バイパス部80)を挟持する構造において、バイパス路81の一方の接続部を円筒シールとし、他方の接続部を平面シールとするから、作動流体の漏れ経路を遮断しつつ、ホルダ82(バイパス部80)の位置決めを容易に行える。
Furthermore, since the coil (solenoid) 83d of the valve mechanism 83 is accommodated in the base end portion 82b of the holder 82 exposed to the outside of the casing portion 56 and the housing portion 54, heat can be efficiently radiated from the coil 83d. it can.
In addition, since the coil (solenoid) 83d, which is a large component among the components constituting the valve mechanism 83, is arranged outside the portion sandwiched between the casing portion 56 and the housing portion 54, the coil (solenoid) 83d There is no need to secure the accommodation space in a portion sandwiched between the casing portion 56 and the housing portion 54, and the axial length of the expander 23 can also be suppressed by this.
Further, in the structure in which the holder 82 (bypass portion 80) is sandwiched between the casing portion 56 and the housing portion 54, one connection portion of the bypass path 81 is a cylindrical seal, and the other connection portion is a planar seal. The holder 82 (bypass portion 80) can be easily positioned while blocking the leakage path of the working fluid.

以上、好ましい実施形態を参照して本発明の内容を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば、種々の変形態様を採り得ることは自明である。
例えば、図2に示した膨張機23は、ポンプ25Aを一体的に備えるが、ポンプ25Aに代えて又はポンプ25A共に発電機を膨張機23と一体的に備えることができ、また、ポンプ25Aや発電機を備えない膨張機にも、上記のバイパス構造を適用できる。
また、膨張機23は、スクロール式の他、駆動部としてロータリーピストンを備えたロータリー式の膨張機とすることができる。
Although the contents of the present invention have been specifically described with reference to the preferred embodiments, it is obvious that those skilled in the art can take various modifications based on the basic technical idea and teachings of the present invention. It is.
For example, the expander 23 shown in FIG. 2 is integrally provided with the pump 25A. However, instead of the pump 25A or together with the pump 25A, a generator can be integrally provided with the expander 23. The above bypass structure can also be applied to an expander that does not include a generator.
The expander 23 may be a rotary expander provided with a rotary piston as a drive unit in addition to the scroll type.

また、ホルダ82の円筒状突起部82cを、ハウジング部54に対向する面に設けて、当該円筒状突起部82cを吐出側連通路93に嵌合させ、ホルダ82の台座部82gを、ケーシング部56に対向する面に設け、当該台座部82gを吸入側連通路92が開口するケーシング部56の面に突き当てるようにすることができる。換言すれば、バイパス路81のハウジング部54側の接続部を、円筒シールでシールし、バイパス路81のケーシング部56側の接続部を、平面シールでシールすることができる。
また、吸入ポート55,吐出ポート53の延設方向を回転軸28の径方向に限定するものではなく、例えば、吸入ポート55が回転軸28の軸方向に延びる構成とすることができる。
Further, the cylindrical projection 82c of the holder 82 is provided on the surface facing the housing portion 54, the cylindrical projection 82c is fitted into the discharge side communication passage 93, and the pedestal portion 82g of the holder 82 is connected to the casing portion. The base portion 82g can be abutted against the surface of the casing portion 56 where the suction side communication passage 92 is opened. In other words, the connecting portion on the housing portion 54 side of the bypass passage 81 can be sealed with a cylindrical seal, and the connecting portion on the casing portion 56 side of the bypass passage 81 can be sealed with a flat seal.
Further, the extending direction of the suction port 55 and the discharge port 53 is not limited to the radial direction of the rotation shaft 28, and for example, the suction port 55 can be configured to extend in the axial direction of the rotation shaft 28.

また、バイパス路81は、吸入ポート55,吐出ポート53を直接連通させる構成の他、例えば、作動流体導入室56bと吐出ポート53とを接続させたり、吸入ポート55又は作動流体導入室56bと吐出ポート53直前の吐出側空間とを接続させたりすることができる。即ち、バイパス路81は、旋回スクロール52の自転阻止機構60やドライブベアリング61などの摺動部を経由しないバイパス経路を形成する範囲で、種々の変更が可能である。
また、流体機械は、膨張機23に限定されず、圧縮機とすることができる。
更に、膨張機23などの流体機械は、廃熱利用装置(ランキンサイクル装置)に組み込まれるものに限定されるものではない。
In addition to the configuration in which the suction port 55 and the discharge port 53 are in direct communication, the bypass path 81 connects, for example, the working fluid introduction chamber 56b and the discharge port 53, or discharges the suction port 55 or the working fluid introduction chamber 56b. The discharge side space immediately before the port 53 can be connected. That is, the bypass path 81 can be variously modified within a range in which a bypass path that does not pass through sliding portions such as the rotation prevention mechanism 60 and the drive bearing 61 of the orbiting scroll 52 is formed.
Further, the fluid machine is not limited to the expander 23, and may be a compressor.
Furthermore, fluid machines, such as the expander 23, are not limited to what is integrated in a waste-heat utilization apparatus (Rankine cycle apparatus).

1A…廃熱利用装置、2A…ランキンサイクル装置、10…エンジン、21…循環路、22…蒸発器、23…膨張機、24…凝縮器、25A…ポンプ、28…回転軸、29A…ポンプ一体型膨張機(流体機械)、31…プーリ、34…電磁クラッチ、51…固定スクロール、52…旋回スクロール、53…吐出ポート、54…ハウジング部、55…吸入ポート、56…ケーシング部、60…自転阻止機構、62…偏心ブッシュ、80…バイパス部、81…バイパス路(連通路)、82…ホルダ、82c…円筒状突起部、83…弁機構、83a…弁体、83b…プランジャ、83c…コイルバネ、83d…コイル83d、92…吸入側連通路、92a…嵌合孔部(拡径部)、93…吐出側連通路   DESCRIPTION OF SYMBOLS 1A ... Waste heat utilization apparatus, 2A ... Rankine cycle apparatus, 10 ... Engine, 21 ... Circulation path, 22 ... Evaporator, 23 ... Expander, 24 ... Condenser, 25A ... Pump, 28 ... Rotating shaft, 29A ... One pump Body expander (fluid machine), 31 ... pulley, 34 ... electromagnetic clutch, 51 ... fixed scroll, 52 ... orbiting scroll, 53 ... discharge port, 54 ... housing part, 55 ... suction port, 56 ... casing part, 60 ... spinning Blocking mechanism 62 ... Eccentric bush 80 ... Bypass part 81 ... Bypass path (communication path) 82 ... Holder, 82c ... Cylindrical protrusion, 83 ... Valve mechanism, 83a ... Valve body, 83b ... Plunger, 83c ... Coil spring , 83d ... Coil 83d, 92 ... Suction side communication path, 92a ... Fitting hole (expanded diameter part), 93 ... Discharge side communication path

Claims (6)

高圧の加熱蒸気となった作動流体が流入する吸入ポートと、
前記吸入ポートから吸入した作動流体の膨張によって駆動される駆動部と、
前記駆動部を通過して低圧となった作動流体が流出する吐出ポートとを有する流体機械であって、
前記吸入ポートから吸入した作動流体を、前記流体機械の摺動部及び前記駆動部を迂回して前記吐出ポートに導くバイパス路を備え、前記バイパス路は、前記吸入ポートと前記吐出ポートとを直接連通させる、流体機械。
A suction port into which the working fluid that has become high-pressure heating steam flows,
A drive unit driven by expansion of the working fluid sucked from the suction port;
A fluid machine having a discharge port through which the working fluid that has passed through the drive unit and has a low pressure flows out,
A bypass path that guides the working fluid sucked from the suction port to the discharge port by bypassing the sliding part and the drive part of the fluid machine, and the bypass path directly connects the suction port and the discharge port; A fluid machine that communicates.
前記吸入ポート及び前記吐出ポートが、前記駆動部の回転軸の径方向に延び、かつ、前記回転軸の軸方向に並んで設けられ、
前記バイパス路が、前記駆動部の回転軸の軸方向に延びて前記吸入ポートと前記吐出ポートとを直接連通させる、請求項1記載の流体機械。
The suction port and the discharge port extend in the radial direction of the rotary shaft of the drive unit, and are provided side by side in the axial direction of the rotary shaft,
The fluid machine according to claim 1, wherein the bypass passage extends in an axial direction of a rotation shaft of the drive unit to directly communicate the suction port and the discharge port .
高圧の加熱蒸気となった作動流体が流入する吸入ポートと、
前記吸入ポートから吸入した作動流体の膨張によって駆動される駆動部と、
前記駆動部を通過して低圧となった作動流体が流出する吐出ポートとを有する流体機械であって、
前記吸入ポート及び前記吐出ポートが、前記駆動部の回転軸の径方向に延び、かつ、前記回転軸の軸方向に並んで設けられ、
前記吸入ポートと前記吐出ポートとを連通させて、前記吸入ポートから吸入した作動流体を前記流体機械の摺動部及び前記駆動部を迂回して前記吐出ポートに導くバイパス路と、前記バイパス路を開閉する弁機構とを備え、
前記弁機構は、弁体を前記駆動部の回転軸の径方向に変位させて前記バイパス路を開閉する、流体機械。
A suction port into which the working fluid that has become high-pressure heating steam flows,
A drive unit driven by expansion of the working fluid sucked from the suction port;
A fluid machine having a discharge port through which the working fluid that has passed through the drive unit and has a low pressure flows out,
The suction port and the discharge port extend in the radial direction of the rotary shaft of the drive unit, and are provided side by side in the axial direction of the rotary shaft,
A bypass path that communicates the suction port and the discharge port, bypasses the sliding portion and the drive section of the fluid machine, and guides the working fluid sucked from the suction port to the discharge port; and the bypass path And a valve mechanism that opens and closes,
The said valve mechanism is a fluid machine which opens and closes the said bypass path by displacing a valve body to the radial direction of the rotating shaft of the said drive part .
前記バイパス路は、前記吸入ポートと前記吐出ポートとを直接連通させる連通路である、請求項3記載の流体機械。 The fluid machine according to claim 3 , wherein the bypass path is a communication path that directly connects the suction port and the discharge port . 前記流体機械が、前記駆動部として、固定スクロールと可動スクロールとからなるスクロール部を備え、前記摺動部として、前記可動スクロールの自転を阻止する自転阻止機構を含む、請求項1〜4のいずれか1つに記載の流体機械。   5. The fluid machine according to claim 1, wherein the fluid machine includes a scroll unit including a fixed scroll and a movable scroll as the drive unit, and includes a rotation prevention mechanism that prevents rotation of the movable scroll as the sliding unit. The fluid machine according to any one of the above. 前記流体機械が、スクロール型膨張機であって、かつ、車両用エンジンの廃熱を回収して利用するランキンサイクル装置に組み込まれる、請求項5記載の流体機械。   The fluid machine according to claim 5, wherein the fluid machine is a scroll type expander and is incorporated in a Rankine cycle device that collects and uses waste heat of a vehicle engine.
JP2012057341A 2012-03-14 2012-03-14 Fluid machinery Active JP5969226B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012057341A JP5969226B2 (en) 2012-03-14 2012-03-14 Fluid machinery
PCT/JP2013/057085 WO2013137353A1 (en) 2012-03-14 2013-03-13 Fluid machine
US14/385,444 US20150033743A1 (en) 2012-03-14 2013-03-13 Fluid Machine
CN201380014043.9A CN104169526A (en) 2012-03-14 2013-03-13 Fluid machine
DE112013001447.5T DE112013001447B4 (en) 2012-03-14 2013-03-13 fluid machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012057341A JP5969226B2 (en) 2012-03-14 2012-03-14 Fluid machinery

Publications (2)

Publication Number Publication Date
JP2013189930A JP2013189930A (en) 2013-09-26
JP5969226B2 true JP5969226B2 (en) 2016-08-17

Family

ID=49161258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012057341A Active JP5969226B2 (en) 2012-03-14 2012-03-14 Fluid machinery

Country Status (5)

Country Link
US (1) US20150033743A1 (en)
JP (1) JP5969226B2 (en)
CN (1) CN104169526A (en)
DE (1) DE112013001447B4 (en)
WO (1) WO2013137353A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5804879B2 (en) * 2011-09-30 2015-11-04 日産自動車株式会社 Waste heat utilization equipment
CN104603439B (en) * 2012-07-09 2016-08-17 三电控股株式会社 The waste heat utilization device of electromotor
DE102013226742A1 (en) * 2013-12-19 2015-06-25 Mahle International Gmbh flow machine
JP6228027B2 (en) * 2014-02-12 2017-11-08 サンデンホールディングス株式会社 Scroll expander
DE102016224323A1 (en) * 2016-12-07 2018-06-07 Robert Bosch Gmbh System for operating an internal combustion engine
EP3724463B1 (en) * 2017-12-13 2024-01-31 Hans Jensen Lubricators A/S An injector for a large slow-running two-stroke engine and method of lubricating such engine, as well as such engine
SE543286C2 (en) * 2019-03-20 2020-11-17 Scania Cv Ab Control unit, waste heat recovery system, vehicle comprising such a system, and method for starting an expansion device of a waste heat recovery system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122386A (en) * 1982-01-13 1983-07-21 Hitachi Ltd Scroll compressor
JPS6141882U (en) * 1984-08-22 1986-03-17 三菱重工業株式会社 Scroll type fluid machine
JP3562237B2 (en) * 1997-07-09 2004-09-08 株式会社日本自動車部品総合研究所 Combined type compressor
US7399167B2 (en) * 2003-01-28 2008-07-15 Denso Corporation Fluid machine operable in both pump mode and motor mode and waste heat recovering system having the same
JP4070740B2 (en) * 2004-03-31 2008-04-02 株式会社デンソー Switching valve structure for fluid machinery
JP2006009806A (en) * 2005-07-25 2006-01-12 Toyota Motor Corp Exhaust energy recovery device for combustion engine
US7870733B2 (en) * 2005-12-21 2011-01-18 Denso Corporation Fluid machine for rankine cycle
JP4689498B2 (en) * 2006-03-01 2011-05-25 株式会社デンソー Expander and its control device
DE102007013817B4 (en) * 2006-03-23 2009-12-03 DENSO CORPORATION, Kariya-shi Waste heat collection system with expansion device
JP5084342B2 (en) * 2007-04-27 2012-11-28 サンデン株式会社 Fluid machine, Rankine circuit using the fluid machine, and vehicle waste heat utilization system
KR101576459B1 (en) * 2009-02-25 2015-12-10 엘지전자 주식회사 Scoroll compressor and refrigsrator having the same
JP5106464B2 (en) * 2009-03-30 2012-12-26 サンデン株式会社 Fluid machine, refrigerant circuit and waste heat utilization apparatus using fluid machine

Also Published As

Publication number Publication date
US20150033743A1 (en) 2015-02-05
WO2013137353A1 (en) 2013-09-19
DE112013001447T5 (en) 2015-01-22
CN104169526A (en) 2014-11-26
JP2013189930A (en) 2013-09-26
DE112013001447B4 (en) 2017-01-12

Similar Documents

Publication Publication Date Title
JP5969226B2 (en) Fluid machinery
JP5969227B2 (en) Fluid machinery
JP5106464B2 (en) Fluid machine, refrigerant circuit and waste heat utilization apparatus using fluid machine
US20060196204A1 (en) Fluid pump and fluid machine
JP4689498B2 (en) Expander and its control device
JP5592838B2 (en) Fluid machinery
WO2013168682A1 (en) Fluid machinery
JP2001055988A (en) Scroll compressor
JP6735662B2 (en) Rotary compressor and refrigeration cycle device
JP2009270529A (en) Positive displacement fluid machine
JP6228027B2 (en) Scroll expander
JP6026750B2 (en) Scroll type expander and fluid machine having the same
JP2005030312A (en) Expansion machine which is also used for compressor
JP2008157152A (en) Rankine cycle
WO2015016018A1 (en) Rankine cycle device
JP4792142B2 (en) Fluid machinery
JP2014009647A (en) Compressor
JP2008180148A (en) Fluid machine
WO2020026700A1 (en) Scroll expander
KR100189001B1 (en) Rolling piston type expansion apparatus
JP2015007372A (en) Rankine cycle device
JP2002195173A (en) Scroll compressor
JP2018127926A (en) Pump for fluid, and rankine cycle device
JP2002242859A (en) Scroll compressor
JP2018127924A (en) Pump for fluid, and rankine cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160707

R150 Certificate of patent or registration of utility model

Ref document number: 5969226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350