[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020022311A1 - Water treatment device - Google Patents

Water treatment device Download PDF

Info

Publication number
WO2020022311A1
WO2020022311A1 PCT/JP2019/028772 JP2019028772W WO2020022311A1 WO 2020022311 A1 WO2020022311 A1 WO 2020022311A1 JP 2019028772 W JP2019028772 W JP 2019028772W WO 2020022311 A1 WO2020022311 A1 WO 2020022311A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
flow path
upstream
connection position
downstream
Prior art date
Application number
PCT/JP2019/028772
Other languages
French (fr)
Japanese (ja)
Inventor
廣田 達哉
ゆうこ 丸尾
藤田 浩史
太輔 五百崎
真治 西尾
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020532403A priority Critical patent/JPWO2020022311A1/en
Publication of WO2020022311A1 publication Critical patent/WO2020022311A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • C02F1/64Heavy metal compounds of iron or manganese
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone

Definitions

  • the present disclosure relates to a water treatment device.
  • the water treatment apparatus includes a main flow path and a circulation flow path branched from the main flow path.
  • water quality is improved a plurality of times by circulating raw water a plurality of times alternately through a part of a main flow path and a circulation flow path.
  • the treated water having a water quality higher than a predetermined standard is sent to the downstream of the main flow path.
  • JP 2013-86034 A Patent No. 5982626
  • an object of the present disclosure is to provide a water treatment apparatus in which raw water is supplied to a user at least once at least by a water treatment unit with its water quality improved.
  • a water treatment apparatus includes a main flow path that guides water from upstream to downstream, and a downstream side positioned relatively downstream of the main flow path.
  • a circulating flow path that branches from a connection position and joins an upstream connection position positioned relatively upstream of the main flow path; and the water that is connected to the circulating flow path and flows through the circulating flow path.
  • a pump that is connected to the main flow path between the upstream connection position and the downstream connection position, and that pumps the water from upstream to downstream in the main flow path, the upstream connection position, A water treatment unit connected to the main flow path between the downstream connection position and improving the quality of the water flowing through the main flow path, and connected to the main flow path upstream of the upstream connection position, or ,
  • the upstream connection position and the downstream connection A water quality measurement sensor that is connected to the main flow path between the water flow path and a water quality measurement sensor that measures the water quality of the water, and is connected to the main flow path on the upstream side of the upstream connection position to allow the water to pass therethrough.
  • a first on-off valve that switches to a closed state that does not allow the passage of water, and an open state that is connected to the main flow path downstream of the downstream connection position and that allows the water to pass therethrough and a closed state that does not allow the water to pass therethrough
  • a second on-off valve that switches between the tank and the circulation flow path between the tank and the upstream connection position, and is in one of an open state in which the water passes and a closed state in which the water does not pass.
  • a third on-off valve that is switched, and a third on-off valve that is connected to the circulation flow path between the tank and the downstream connection position and that switches between an open state in which the water passes and a closed state in which the water does not pass.
  • a water treatment apparatus is characterized in that a main flow path that guides water from upstream to downstream, and a branch from a downstream connection position positioned relatively downstream of the main flow path, A circulation channel that merges with an upstream connection position positioned relatively upstream of the road, a tank that is connected to the circulation channel, and stores the water that flows through the circulation channel, A pump that is connected to the main flow path between the side connection position and the downstream connection position and that sends out the water from upstream to downstream in the main flow path, between the upstream connection position and the downstream connection position A water treatment unit connected to the main flow path and improving the quality of the water flowing through the main flow path, connected to the main flow path upstream of the upstream connection position, or the upstream connection position and In the main flow path between the downstream connection position And a water quality measurement sensor for measuring the water quality of the water, provided at the upstream connection position, wherein the water flows from the main flow path upstream of the upstream connection position to the upstream connection position and the downstream connection position.
  • An upstream flow path switching valve that is switched to any of an upstream circulation state, and the water is provided at the downstream connection position, and the water flows from the main flow path between the upstream connection position and the downstream connection position.
  • a downstream passage state that flows to the main flow path downstream of the downstream connection position, and the main flow between the upstream connection position and the downstream connection position where the water flows from the circulation flow path downstream of the tank.
  • Downstream circulation to the road Includes a downstream-passage switching valve is switched to either the state, the.
  • FIG. 1 is a diagram for explaining the overall configuration of a water treatment system in which the water treatment device according to the first embodiment is incorporated.
  • FIG. 2 is a functional block diagram related to control of the water treatment device according to the first embodiment.
  • FIG. 3 is a flowchart for explaining a process executed by the control unit of the water treatment device according to the first embodiment.
  • FIG. 4 is a diagram for explaining the overall configuration of a water treatment system in which the water treatment device according to the second embodiment is incorporated.
  • FIG. 5 is a flowchart for explaining a process executed by the control unit of the water treatment device according to the second embodiment.
  • FIG. 6 is a diagram for explaining the overall configuration of a water treatment system in which the water treatment device according to the third embodiment is incorporated.
  • FIG. 1 is a diagram for explaining the overall configuration of a water treatment system in which the water treatment device according to the first embodiment is incorporated.
  • FIG. 2 is a functional block diagram related to control of the water treatment device according to the first embodiment.
  • FIG. 7 is a functional block diagram related to control of the water treatment device according to the third embodiment.
  • FIG. 8 is a flowchart illustrating a process performed by the control unit of the water treatment device according to the third embodiment.
  • FIG. 9 is a diagram for explaining an overall configuration of a water treatment system in which the water treatment device according to the fourth embodiment is incorporated.
  • FIG. 10 is a flowchart for explaining a process executed by the control unit of the water treatment apparatus according to the fourth embodiment.
  • a water treatment apparatus 100 is connected to the water treatment system 1000 of the present embodiment.
  • the water treatment apparatus 100 includes a main flow path 1, a circulation flow path 2, a tank TS, a pump P, a water treatment unit 3, and a water quality measurement sensor WQS.
  • the water treatment apparatus 100 includes a first on-off valve V1, a second on-off valve V2, a third on-off valve V3, and a fourth on-off valve V4.
  • the water treatment apparatus 100 includes a main flow path 1 that guides water from a water source W such as well water existing underground or a water pipe buried underground to a house H from upstream to downstream, specifically, underwater. .
  • a water source W such as well water existing underground or a water pipe buried underground to a house H from upstream to downstream, specifically, underwater.
  • the raw water flows to the water treatment unit 3, and after the water quality is improved by the water treatment unit 3, the treated water flows downstream.
  • the water quality measurement sensor WQS, the first on-off valve V1, the pump P, the water treatment unit 3, and the second on-off valve V2 are connected to the main flow path 1 in this order from upstream to downstream.
  • the water treatment device 100 includes a control unit C that controls the operation state of the water treatment device 100. Specifically, the control unit C controls the first to fourth on-off valves V1, V2, V3, V4, the pump P, and the water treatment unit 3.
  • a secondary tank TL is connected to the main flow path 1 downstream of the water treatment device 100. Treated water flows into the secondary tank TL.
  • the secondary tank TL has a larger capacity than the tank TS connected to the circulation channel 2.
  • the main flow path 1 extends from the secondary tank TL to the discharge port U in the house H.
  • the discharge port U is provided with a faucet that can be operated by a user.
  • the user in the house H uses the treated water discharged from the outlet U after flowing to the outlet U via the main flow path 1.
  • a circulation channel 2 is connected to the main channel 1. Both ends of the circulation flow path 2 are connected to the upstream connection position UPC of the main flow path 1 between the first on-off valve V1 and the pump P, and the main flow between the water treatment unit 3 and the second on-off valve V2, respectively. It is connected to the downstream side connection position LOC of the road 1.
  • the circulation flow path 2 branches from the downstream connection position LOC positioned relatively downstream of the main flow path 1, and the upstream connection position UPC positioned relatively upstream of the main flow path 1. To join.
  • a tank TS is connected to the circulation channel 2.
  • a third on-off valve V3 is connected to the circulation channel 2 between the upstream connection position UPC and the tank TS.
  • a fourth on-off valve V4 is connected to the circulation channel 2 between the downstream connection position LOC and the tank TS.
  • the tank TS is connected to the circulation channel 2 and stores water flowing through the circulation channel 2.
  • the pump P is connected to the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC, more specifically, to the main flow path 1 between the upstream connection position UPC and the water treatment unit 3, and In the road 1, water is sent from upstream to downstream.
  • the water treatment section 3 is connected to the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC, more specifically, to the main flow path 1 between the pump P and the downstream connection position LOC.
  • the quality of the water flowing through the road 1 is improved, that is, the raw water is changed to treated water.
  • Water treatment unit 3 includes an ozone generator and mixing section O 3 as an oxidizing agent supply unit and a filtration unit F. Therefore, when passing through the filtration unit F, foreign substances contained in the raw water are removed.
  • Filtration unit F is a sand filtration unit containing manganese sand in the present embodiment. Further, the raw water is sterilized by bubbles of ozone is mixed from the ozone generator and mixing section O 3.
  • the water treatment unit 3 may include an iron removing device that removes an iron component from raw water flowing through the main flow path 1. Further, the water treatment unit 3 may include a water softening device that softens hard water by removing calcium ions and magnesium ions from raw water flowing through the main flow path 1. That is, the water treatment unit 3 may include any device as long as it improves the water quality from some viewpoint.
  • the tank TS stores treated water whose quality has been improved once or more times by the water treatment unit 3.
  • the secondary tank TL is treated water whose water quality has been improved only once by the water treatment unit 3 without being stored in the tank TS, or treated water whose water quality has been improved plural times by the water treatment unit 3. We store water.
  • a water level sensor WHS1 for measuring the water level of the water stored in the tank TS is provided in the tank TS.
  • a water level sensor WHS2 for measuring the level of water stored in the secondary tank TL is provided.
  • the first on-off valve V1 is connected to the main flow path 1 on the upstream side of the upstream connection position UPC.
  • the first on-off valve V1 is switched between an open state in which water passes and a closed state in which water does not pass.
  • the second on-off valve V2 is connected to the main flow path 1 on the downstream side of the downstream connection position LOC.
  • the second on-off valve V2 is also switched between an open state where water passes and a closed state where water does not pass.
  • the third on-off valve V3 is connected to the circulation channel 2 between the tank TS and the upstream connection position UPC.
  • the third on-off valve V3 is also switched between an open state in which water passes and a closed state in which water does not pass.
  • the fourth on-off valve V4 is connected to the circulation channel 2 between the tank TS and the downstream connection position LOC.
  • the fourth on-off valve V4 is also switched between an open state in which water passes and a closed state in which water does not pass.
  • the raw water is supplied to the user at least once by the water treatment unit 3 with the water quality improved.
  • the water quality measurement sensor WQS is connected to the main flow path 1 upstream of the upstream connection position UPC. More specifically, the water quality measurement sensor WQS is connected to the main flow path 1 upstream of the first on-off valve V1. Accordingly, the control unit C receives information that can specify the water quality of the water measured by the water quality measurement sensor WQS.
  • the water quality measurement sensor WQS may be the concentration of bacteria to be destroyed by the ozone generator and mixing section O 3. Further, the ratio may be a ratio of the foreign matter to be filtered by the filtration unit F to water.
  • the control unit C controls the pump P, the water treatment unit 3, the first on-off valve V1, the second on-off valve V2, the third on-off valve V3, and the fourth on-off valve V4.
  • the control unit C includes a water quality determination unit (S9 in FIG. 3 described later) that determines whether the water quality measured by the water quality measurement sensor WQS has been improved from a predetermined reference.
  • the control unit C controls the water treatment unit 3 to improve the water quality of the water flowing through the main flow path 1 by causing the pump P to flow the water through the main flow path 1. In this state, when the water quality determination unit (S9 in FIG.
  • control unit C determines that the water quality has been improved beyond a predetermined reference in this state, the control unit C performs the first on-off valve V1 and the second on-off valve V2 is opened, and the third on-off valve V3 and the fourth on-off valve V4 are closed.
  • the tank TS or the circulation channel 2 may fail and the raw water may not flow through the circulation channel 2 in some cases.
  • the raw water is supplied to the user as treated water with the water quality improved at least once by the water treatment unit 3.
  • the raw water is supplied to the user as treated water in a state where the water quality has been improved at least once by the water treatment unit 3.
  • the operation of the water treatment apparatus 100 may not be stopped in some cases.
  • the first on-off valve V1 and the second on-off valve V2 are opened, and the third on-off valve V3 and the fourth on-off valve V4 are closed by manual operation.
  • the raw water is supplied to the user as treated water in a state where the water quality has been improved at least once by the water treatment unit 3.
  • the water treatment apparatus 100 of the present embodiment includes a display unit D controlled by the control unit C and displaying predetermined information.
  • the display unit D displays, for example, whether the current operation state of the water treatment apparatus 100 is the automatic operation state or the manual operation state.
  • the control unit C opens the first on-off valve V1 and the second on-off valve V2, Further, the third on-off valve V3 and the fourth on-off valve V4 are closed. Whether the current driving state is set to the automatic driving state or the manual driving state is determined by the user operating and selecting the driving course selecting unit S.
  • the user manually operates the operation course selection unit S when the circulation channel 2 or the tank TS is damaged due to, for example, an earthquake.
  • the state of the water treatment apparatus 100 can be set to a state in which water passes only through the main flow path 1 without passing through the circulation flow path 2.
  • the user opens the first on-off valve V1 and the second on-off valve V2 and touches the third on-off valve V3 by touching the manual operation icon (or one-pass icon) of the operation course selection unit S.
  • the fourth on-off valve V4 can be closed.
  • well water or tap water supplied from the water source W does not flow into the circulation flow path 2 but flows only through the main flow path 1 and reaches the secondary tank TL.
  • the user can use the treated water whose water quality has been improved at least once in the water treatment unit 3.
  • control unit C of the water treatment apparatus 100 will be described with reference to FIG.
  • the control unit C receives each command signal transmitted from each of the driving course selection unit S, the water level sensor WHS1, the water level sensor WHS2, the water quality measurement sensor WQS, and the power switch SW.
  • the operation course selection unit S is a selection switch for the user to select whether the operation state of the water treatment apparatus 100 is set to the automatic operation state or the manual operation.
  • the selection switch is, for example, a selection icon displayed on the liquid crystal display panel of the display unit D.
  • the water level sensor WHS1 measures the water level of the water in the tank TS, and transmits information on the measured water level to the control unit C. Specifically, the water level sensor WHS1 notifies when the water level in the tank TS is equal to or higher than the upper limit water level WH and when the water level in the tank TS is equal to or lower than the lower limit water level WL. The information is transmitted to the control unit C.
  • the water level sensor WHS2 measures the water level in the tank TL, and transmits information of the measured water level to the control unit C. Specifically, the water level sensor WHS2 is provided when the water level in the secondary tank TL is equal to or higher than the upper limit water level WH, and when the water level in the secondary tank TL is equal to or lower than the lower limit water level WL. Is transmitted to the control unit C.
  • the water quality measurement sensor WQS measures the quality of water flowing through the main flow path 1 upstream of the upstream connection position UPC, and transmits information on the measured water quality to the control unit C.
  • the water quality measurement sensor WQS is connected to the main flow path 1 upstream of the first on-off valve V1, but may be connected to the main flow path 1 between the first on-off valve V1 and the upstream connection position UPC. Good.
  • the power switch SW transmits a command signal for instructing the control unit C to be driven to the control unit C when operated by the user.
  • the control unit C is activated and receives various information from the driving course selection unit S, the water level sensor WHS1, the water level sensor WHS2, and the water quality measurement sensor WQS.
  • control unit C controls the ozone generation / mixing unit O 3 as an oxidant supply unit, the pump P, the first on-off valve V1, the second on-off valve V2, and the third on-off valve.
  • Each control signal is transmitted to each of V3, fourth on-off valve V4, and display unit D.
  • Ozone generation and mixing unit O 3 by being controlled based on a control signal transmitted from the control station C, a water flowing in the main flow path 1 between the upstream connecting position UPC and downstream connection position LOC Supply ozone as an oxidizing agent.
  • the pump P is controlled based on a control signal transmitted from the control unit C so that water flows from upstream to downstream in the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC. Is driven.
  • the first opening / closing valve V1, the second opening / closing valve V2, the third opening / closing valve V3, and the fourth opening / closing valve V4 are controlled based on control signals transmitted from the control unit C, respectively.
  • the state is switched between an open state in which water passes and a closed state in which water does not pass.
  • the display unit D is controlled based on the control signal transmitted from the control unit C, and displays whether the current operation state is the automatic operation state or the manual operation state.
  • step S1 the control unit C determines whether the water level in the secondary tank TL is equal to or higher than the upper limit water level WH based on the signal transmitted from the water level sensor WHS2.
  • step S1 when the water level of the water in the secondary tank TL is determined to be equal to or greater than the upper limit water level WH, in step S3, the control unit C, pump P and ozone generator and mixing section O 3 to OFF Are set, and the processing of steps S1 and S3 is repeated. Therefore, if the water level in the secondary tank TL is equal to or higher than the upper limit water level WH, the water treatment device 100 is not driven.
  • step S1 If it is determined in step S1 that the water level in the secondary tank TL has not reached the upper limit water level WH, the controller C determines in step S2 that the water level in the secondary tank TL has reached the lower limit water level WLH. It is determined whether or not: If it is determined in step S2 that the water level in the secondary tank TL is not lower than the lower limit water level WL, the process of step S3 is executed.
  • the control unit C The water treatment device 100 is not driven.
  • the reason why such a process is performed is that the amount of water in the secondary tank TL is equal to or more than the amount necessary for the user. Therefore, also in this case, the control unit C stops the pump P. Thereby, replenishment of the treated water from the tank TS to the secondary tank TL is not performed.
  • step S2 if it is determined that the water level of the water in the secondary tank TL is equal to or less than a lower limit water level WL in step S4, the control unit C is ozone generation and mixing unit O 3 and pump P Drive. Thereby, water flows from upstream to downstream in the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC. Also, ozone as an oxidizing agent is supplied to the water flowing in the main flow path 1 between the ozone generator and mixing section O 3 the upstream connection position UPC and downstream connection position LOC.
  • step S5 it is determined whether or not the user has selected the automatic operation as the current operation state of the water treatment apparatus 100 by operating the operation course selection unit S.
  • step S ⁇ b> 5 as the current operation status of the water treatment apparatus 100, it may be determined that the one-pass (manual) operation by the user is selected by the operation of the operation course selection unit S instead of the automatic operation.
  • step S6 the control unit C causes the display unit D to display information that can specify that the current operation status is the one-pass (manual) operation.
  • One-pass (manual) operation is an operation in which water flows only in the main flow path 1 without flowing water in the circulation flow path 2.
  • the display unit D displays that the current operation state of the water treatment apparatus 100 is in the one-pass state.
  • the user can change the current state of the water treatment apparatus 100 to the secondary tank through the main flow path 1 without passing through the treated water whose water quality has been improved by the water treatment unit 3 without passing through the circulation flow path 2. It is possible to understand that it is possible to set the state to be transmitted to the TL.
  • the water treatment apparatus 100 includes an operation course selection unit S for selecting whether the current operation state of the water treatment apparatus 100 is set to the automatic operation state or the manual operation state.
  • the control unit C may determine that the user has operated the driving course selecting unit S to change the current driving state to the manual driving state.
  • step S7 the control unit C opens each of the first on-off valve V1 and the second on-off valve V2, and opens each of the third on-off valve V3 and the fourth on-off valve V4. close.
  • the treated water whose water quality has been improved in the water treatment unit 3 is actually sent to the secondary tank TL only through the main flow path 1 without passing through the circulation flow path 2.
  • the process of step S1 is performed.
  • step S5 it may be determined that the automatic driving is selected by the driving course selecting unit S as the current driving state of the water treatment apparatus 100.
  • step S9 based on the information on the quality of the water flowing through the main flow path 1 upstream of the upstream connection position UPC transmitted from the water quality measurement sensor WQS, the control unit C determines that the water quality is a predetermined reference value. It is determined whether it is better.
  • step S9 If it is determined in step S9 that the water quality is better than the predetermined reference, the control unit C executes the processing of step S7. Thereby, the water of the water source W or the treated water whose water quality is improved in the tank TS is transferred to the secondary tank TL via the upstream connection position UPC, the water treatment unit 3 and the downstream connection position LOC. Sent.
  • the control unit C determines the circulation time in step S10.
  • the circulation time is a time period in which the water circulates, that is, water alternately flows through the circulation flow path 2 and a part of the main flow path 1. During the circulation time, the water is repeatedly improved in water quality by the water treatment unit 3. A shorter circulation time is set as the water quality measured by the water quality measurement sensor WQS is better, and a longer circulation time is set as the water quality measured by the water quality measurement sensor WQS is worse.
  • step S11 the control unit C closes each of the second on-off valve V2 and the third on-off valve V3 while opening each of the first on-off valve V1 and the fourth on-off valve V4.
  • the pump P is operating. Therefore, water that has not yet been improved water quality, water quality measurement sensor WQS, the first on-off valve V1, the upstream-side connection location UPC, the pump P, filtration unit F, an ozone generator and mixing section O 3, downstream connection position LOC , And the fourth on-off valve V4, and is guided to the tank TS.
  • the treated water gradually increases in the tank TS, and the water level rises.
  • step S12 the control unit C determines whether the level of the treated water stored in the tank TS is equal to or higher than the upper limit water level WH. In step S12, it may be determined that the level of the treated water stored in the tank TS is not higher than the upper limit water level WH. In this case, step S12 is repeated. At this time, since the pump P continues to be driven, the level of the treated water in the tank TS gradually rises.
  • step S12 the level of the treated water stored in the tank TS may be determined to be equal to or higher than the upper limit water level WH.
  • step S13 the control unit C closes the first on-off valve V1 and the second on-off valve V2, and opens the third on-off valve V3 and the fourth on-off valve V4.
  • the water stored in the tank TS moves from the circulation channel 2 to the main channel 1 between the upstream connection position UPC and the downstream connection position LOC.
  • the water moves from the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC to the circulation flow path 2. That is, a so-called circulation cycle is repeated.
  • the control unit C determines in step S14 whether the circulation time determined in step S10 has elapsed.
  • step S14 if it is determined that the circulation time has not elapsed, the control unit C determines that the treated water stored in the tank TS has not yet reached a water quality better than a predetermined standard. Then, the state set in step S13 is maintained. At this time, the pump P is operating. Therefore, water flows alternately between the circulation channel 2 and the main channel 1. Thereby, the water circulates, and the water quality is repeatedly improved by the water treatment unit 3. As a result, the quality of the water gradually improves over time. As described above, the circulation time is a predetermined time according to the degree of the water quality measured by the water quality measurement sensor WQS.
  • step S14 if the control unit C determines that the circulation time has elapsed, it regards the treated water stored in the tank TS as already having a water quality better than a predetermined standard. . Accordingly, in step S15, the control unit C closes each of the first on-off valve V1 and the fourth on-off valve V4 while opening each of the second on-off valve V2 and the third on-off valve V3. At this time, the pump P is in a driving state. Therefore, the treated water stored in the tank TS passes through the third on-off valve V3, the upstream connection position UPC, the water treatment unit 3, the downstream connection position LOC, and the second on-off valve V2. And is sent to the secondary tank TL.
  • step S16 the control unit C determines whether the level of the treated water in the tank TS is equal to or lower than the lower limit water level WL based on the information transmitted from the water level sensor WHS1.
  • step S16 if the water level of the treated water in the tank TS is not equal to or lower than the lower limit water level WL, the control unit C repeats the determination in step S16. At this time, the pump P continues to be driven. Therefore, the treated water in the tank TS passes through the third opening / closing valve V3, the upstream connection position UPC, the water treatment section 3, the downstream connection position LOC, and the second opening / closing valve V2, and then flows into the secondary tank. It continues to be sent to TL. On the other hand, if it is determined in step S16 that the water level of the processed water in the tank TS is equal to or lower than the lower limit water level WL, the control unit C executes the processing of step S1 again.
  • the water treatment apparatus 100 of the present embodiment shown in FIG. 4 differs from the water treatment apparatus 100 of the first embodiment shown in FIG. 1 only in the position of the main flow path 1 to which the water quality measurement sensor WQS is connected. I have. In other words, the water treatment apparatus 100 of the present embodiment shown in FIG. 4 and the water treatment apparatus 100 of the first embodiment shown in FIG. 1 are different from the position of the main flow path 1 to which the water quality measurement sensor WQS is connected. Have the same configuration.
  • the water quality measurement sensor WQS of the water treatment apparatus 100 of the present embodiment is connected to the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC.
  • the water quality measurement sensor WQS of the water treatment device 100 of the present embodiment is connected to the main flow path 1 between the water treatment unit 3 and the pump P. Therefore, the water quality measurement sensor WQS of the water treatment apparatus 100 of the present embodiment measures the quality of the water flowing in the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC.
  • control unit C of the water treatment apparatus 100 according to the present embodiment and the configuration related thereto are the same as the configuration of the control unit C according to the first embodiment described with reference to FIG. The description will not be repeated.
  • the processing executed by the control unit C according to the present embodiment in FIG. 5 and the processing executed by the control unit C according to the first embodiment in FIG. 3 include steps S9A, S10A, S11A, S12A, S13A, and S13A. Only the processing of step S14A is different. In other words, the process executed by the control unit C in the embodiment of FIG. 5 and the process executed by the control unit C in FIG. 3 are the same as those in steps S9A, S10A, S11A, S12A, S13A, and S14A. Perform the same processing.
  • control unit C is stored in tank TS measured by water level sensor WHS1. It is determined whether or not the water level of the treated water is equal to or higher than the upper limit water level WH. In step S9A, it may be determined that the level of the treated water stored in the tank TS is not higher than the upper limit water level WH. In this case, in step S10A, the control unit C opens each of the first on-off valve V1 and the fourth on-off valve V4, and opens each of the second on-off valve V2 and the third on-off valve V3. close.
  • the pump P is operating. Therefore, the water is transferred to the tank via the first on-off valve V1, the upstream connection position UPC, the pump P, the water quality measurement sensor WQS, the water treatment unit 3, the downstream connection position LOC, and the fourth on-off valve V4. Flow into TS. After that, the control unit C repeats the processing of steps S9A and S10A until it is determined that the level of the treated water stored in the tank TS is equal to or higher than the upper limit water level WH.
  • step S9A it may be determined that the level of the treated water stored in the tank TS is equal to or higher than the upper limit water level WH.
  • the control unit C determines whether or not the water quality is better than a predetermined reference based on the water quality information transmitted from the water quality measurement sensor WQS in step S11A.
  • step S12A If it is determined in step S11A that the water quality is not better than the predetermined standard, in step S12A, the first on-off valve V1 and the second on-off valve V2 are closed, while the third on-off valve V3 and The fourth on-off valve V4 is opened. Thereby, the treated water circulates alternately through a part of the main flow path 1 and the circulation flow path 2. Specifically, after the treated water flows from the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC to the circulation flow path 2, the treated water flows from the circulation flow path 2 to the upstream connection position. The operation of flowing to the main flow path 1 between the UPC and the downstream connection position LOC is repeated. Thereby, the water quality is repeatedly improved by the water treatment unit 3. Then, the process of step S1 is performed.
  • step S11A it may be determined that the quality of the treated water is better than a predetermined standard.
  • the control unit C closes each of the first on-off valve V1 and the fourth on-off valve V4, and closes each of the second on-off valve V2 and the third on-off valve V3. open.
  • the pump P is operating. Therefore, the treated water stored in the tank TS is supplied to the third opening / closing valve V3, the upstream connection position UPC, the water quality measurement sensor WQS, the water treatment unit 3, the downstream connection position LOC, and the second opening / closing valve. It is sent out to the secondary tank TL via the valve V2.
  • step S14A the control unit C determines whether or not the treated water in the tank TS measured by the water level sensor WHS1 is equal to or lower than the lower limit water level WL. If it is not determined in step S14A that the treated water in the tank TS is equal to or lower than the lower limit water level WL, the control unit C repeats the determination in step S14A. On the other hand, if it is determined in step S14A that the treated water in the tank TS is equal to or lower than the lower limit water level WL, the control unit C executes the processing in step S1.
  • the quality of the treated water flowing through the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC measured by the water quality measurement sensor WQS is a predetermined value. May be better than standard. Only in this case, the treated water is sent from the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC to the secondary tank TL. Therefore, if the circulation flow path 2 and the tank TS are not out of order, the user can more reliably perform the secondary tank TL having a better water quality than the predetermined standard as compared with the water treatment apparatus 100 according to the first embodiment.
  • the treated water inside can be used.
  • the water treatment apparatus 100 of the present embodiment even when the tank TS breaks down and the raw water cannot flow through the circulation channel 2, the water quality of the raw water is improved at least once by the water treatment unit 3.
  • the water is supplied to the user as treated water.
  • the raw water in both the manual operation and the automatic operation, the raw water is treated as water that has been treated at least once by the water treatment unit 3 with the water quality improved. Supplied to the user.
  • the water treatment apparatus 100 of the present embodiment includes a main flow path 1, an upstream connection position UPC, a downstream connection position LOC, a circulation flow path 2, a tank TS, a pump P, a water treatment unit 3, and a water quality measurement sensor WQS. Have. These configurations are the same as the corresponding configurations of the first embodiment. However, the water treatment apparatus 100 of the present embodiment includes the upstream-side passage switching valve SWV1 and the downstream-side passage switching valve SWV2.
  • the first to fourth on-off valves V1, V2, V3, and V4 of the water treatment apparatus 100 of the present embodiment in FIG. 6 and the water treatment apparatus 100 of the first embodiment in FIG. The only difference is that the switching valve SWV1 and the downstream flow path switching valve SWV2 are replaced.
  • the first to fourth on-off valves V1, V2, V3, and V4 have the upstream-side flow path switching valve SWV1 and the downstream-side flow path switching Except for being replaced by the valve SWV2, it has the same configuration.
  • Each of the upstream flow path switching valve SWV1 and the downstream flow path switching valve SWV2 is a so-called three-way valve.
  • the upstream flow path switching valve SWV1 is provided at an upstream connection position UPC that is a connection position between the main flow path 1 and the circulation flow path 2 on the relatively upstream side.
  • the upstream flow path switching valve SWV1 is switched between an upstream passage state and an upstream circulation state.
  • the upstream passage state is a state in which water flows from the main flow path 1 upstream of the upstream connection position UPC to the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC.
  • the upstream circulation state is a state in which water flows from the circulation flow path 2 downstream of the tank TS to the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC.
  • the downstream flow path switching valve SWV2 is provided at a downstream connection position LOC that is a relatively downstream connection position between the main flow path 1 and the circulation flow path 2.
  • the downstream flow path switching valve SWV2 is switched to one of a downstream passage state and a downstream circulation state.
  • the downstream passage state is a state in which water flows from the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC to the main flow path 1 downstream of the downstream connection position LOC.
  • the downstream circulation state is a state in which water flows from the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC to the circulation flow path 2 upstream of the tank TS.
  • the raw water is supplied to the user at least once by the water treatment unit 3 in a state where the water quality is improved.
  • the water quality measurement sensor WQS is connected to the main flow path 1 upstream of the upstream connection position UPC. Therefore, the control unit C receives information that can specify the water quality of the water measured by the water quality measurement sensor WQS. Further, the control unit C controls the pump P, the water treatment unit 3, the upstream-side passage switching valve SWV1, and the downstream-side passage switching valve SWV2.
  • the control unit C further includes a water quality determination unit (S9 in FIG. 8) that determines whether the water quality measured by the water quality measurement sensor WQS is better than a predetermined reference.
  • the control unit C is in a state where the pump P causes the water to flow through the main flow path 1 and the water treatment unit 3 executes control for improving the quality of the water flowing through the main flow path 1.
  • the water quality determination unit (S9 in FIG. 8) may determine that the water quality is better than a predetermined standard.
  • the control unit C sets the upstream passage switching valve SWV1 to the upstream passage state and sets the downstream passage switching valve SWV2 to the downstream passage state.
  • the water is sent to the secondary tank TL via the water quality measurement sensor WQS, the upstream flow path switching valve SWV1, the water treatment unit 3, and the downstream flow path switching valve SWV2. That is, the water flows only through the main flow path 1 without flowing into the circulation flow path 2 and is sent to the secondary tank TL.
  • the raw water is treated at least once by the water treatment unit 3 as the treated water in a state where the water quality is improved by the water treatment apparatus 100 of the present embodiment. Supplied to the user.
  • the water treatment apparatus 100 includes the display unit D that indicates whether the current state is the state of the automatic operation or the state of the manual operation.
  • the upstream passage switching valve SWV1 is manually set to the upstream passage state
  • the downstream passage switching valve SWV2 is manually passed to the downstream passage switch.
  • the user operates the operation course selection unit S to set the upstream flow path switching valve SWV1 to the upstream passage state and set the downstream flow path switching valve SWV2 to the downstream passage state. Can be.
  • control unit C of the water treatment apparatus 100 of the present embodiment and a configuration related thereto will be described.
  • the related configuration of the control unit C of the present embodiment in FIG. 7 and the related configuration of the control unit C of the first embodiment in FIG. 2 are such that the first to fourth on-off valves V1, V2, V3, and V4 are on the upstream side. The only difference is that the flow path switching valve SWV1 and the downstream flow path switching valve SWV2 are replaced.
  • the related configuration of the control unit C in FIG. 7 and the related configuration of the control unit C in FIG. 2 are different from each other in that the first to fourth on-off valves V1, V2, V3, and V4 are the upstream-side flow switching valve SWV1 and It is the same except that it is replaced with the side passage switching valve SWV2.
  • control unit C controls the upstream-side flow path switching valve SWV1 and the downstream-side flow path switching valve SWV2, respectively. Control.
  • the processing of the control unit C of the present embodiment shown in FIG. 8 is different from the processing of the control unit C of the first embodiment shown in FIG. 3 only in steps S7C, S11C, S13C, and S15C. different. Specifically, the operations of the first to fourth opening / closing valves V1, V2, V3, and V4 of the first embodiment are replaced with the operations of the upstream flow path switching valve SWV1 and the downstream flow path switching valve SWV2. I have. Other processes are the same as those of the control unit C of the present embodiment shown in FIG. 8 and those of the control unit C of the first embodiment shown in FIG.
  • step S7C the control unit C sets the upstream passage switching valve SWV1 to the upstream passage state and sets the downstream passage switching valve SWV2 to the downstream passage state.
  • the water is sent to the secondary tank TL via the water quality measurement sensor WQS, the upstream flow path switching valve SWV1, the water treatment unit 3, and the downstream flow path switching valve SWV2. That is, the water flows only through the main flow path 1 without flowing into the circulation flow path 2 and is sent to the secondary tank TL.
  • step S11C the control unit C sets the upstream passage switching valve SWV1 to the upstream passage state and sets the downstream passage switching valve SWV2 to the downstream circulation state.
  • water is sent to the tank TS via the water quality measurement sensor WQS, the upstream flow path switching valve SWV1, the water treatment unit 3, and the downstream flow path switching valve SWV2. That is, water flows from the main flow path 1 to the circulation flow path 2 via the downstream connection position LOC, and is sent to the tank TS instead of the secondary tank TL.
  • step S13C the control unit C sets the upstream flow path switching valve SWV1 to the upstream circulation state, and also sets the downstream flow path switching valve SWV2 to the circulation state.
  • the cycle in which water reaches the tank TS again from the tank TS via the upstream flow path switching valve SWV1, the water treatment unit 3, and the downstream flow path switching valve SWV2 is repeated. That is, a cycle in which water flows from the circulation channel 2 to the main channel 1 and then flows from the main channel 1 to the circulation channel 2 is repeated.
  • step S15C the control unit C sets the upstream flow path switching valve SWV1 to the upstream circulation state and sets the downstream flow path switching valve SWV2 to the downstream passage state.
  • water is sent from the tank TS to the secondary tank TL via the upstream flow path switching valve SWV1, the water treatment unit 3, and the downstream flow path switching valve SWV2. That is, the water flows from the circulation channel 2 to the main channel 1 and is then sent to the secondary tank TL.
  • the raw water treatment apparatus 100 of the present embodiment for example, even when the tank TS breaks down and the raw water cannot flow through the circulation channel 2, the raw water is treated at least once by the water treatment unit 3. Is supplied to the user as treated water in an improved condition. Further, according to the water treatment apparatus 100 of the present embodiment, in both of the manual operation and the automatic operation, the raw water is treated at least once by the water treatment unit 3 in a state where the water quality is improved. As supplied to the user.
  • the water treatment apparatus 100 of the present embodiment shown in FIG. 9 differs from the water treatment apparatus 100 of the third embodiment shown in FIG. 6 only in the position of the main flow path 1 to which the water quality measurement sensor WQS is connected. I have. In other words, the water treatment apparatus 100 of the present embodiment shown in FIG. 9 and the water treatment apparatus 100 of the third embodiment shown in FIG. 6 are different from the position of the main flow path 1 to which the water quality measurement sensor WQS is connected. Have the same configuration.
  • the water quality measurement sensor WQS of the water treatment apparatus 100 of the present embodiment is connected to the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC. More specifically, the water quality measurement sensor WQS of the present embodiment is connected to the main flow path 1 between the water treatment unit 3 and the pump P.
  • control unit C of the water treatment apparatus 100 according to the present embodiment and the configuration related thereto are the same as the configuration of the control unit C according to the third embodiment described with reference to FIG. The description will not be repeated.
  • the processing executed by the control unit C according to the present embodiment in FIG. 10 and the processing executed by the control unit C according to the third embodiment in FIG. 8 include steps S9B, S10B, S11B, S12B, S13B, It differs only in the processing of step S14B.
  • the control unit C in FIG. 10 and the control unit C in the third embodiment in FIG. 8 perform the same processing except for steps S9B, S10B, S11B, S12B, S13B, and S14B. Execute.
  • control unit C is stored in tank TS measured by water level sensor WHS1. It is determined whether or not the water level of the treated water is equal to or higher than the upper limit water level WH. In step S9B, it may be determined that the level of the treated water stored in the tank TS is not higher than the upper limit water level WH. In this case, in step S10B, the control unit C sets the upstream flow path switching valve SWV1 to the upstream passage state while setting the downstream flow path switching valve SWV2 to the downstream circulation state.
  • the pump P is being driven. Therefore, the water is sent to the tank TS via the upstream flow path switching valve SWV1, the water quality measurement sensor WQS, the water treatment unit 3, and the downstream flow path switching valve SWV2. That is, the water flows into the circulation channel 2 and is sent not to the secondary tank TL but to the tank TS.
  • the control unit C repeats the processes of step S9B and step S10B until it is determined that the level of the treated water stored in the tank TS is equal to or higher than the upper limit water level WH.
  • step S9B the level of the treated water stored in the tank TS may be determined to be equal to or higher than the upper limit water level WH.
  • the control unit C determines whether or not the water quality is better than a predetermined standard based on the water quality information transmitted from the water quality measurement sensor WQS.
  • step S12B If it is determined in step S11B that the water quality is not better than the predetermined standard, in step S12B, the upstream passage switching valve SWV1 is set to the upstream circulation state, and the downstream passage switching valve SWV2 is set to the downstream circulation. State. At this time, the pump P is being driven. Therefore, the so-called circulation cycle is repeated by the treated water alternately passing through a part of the main flow path 1 and the circulation flow path 2. Thereby, the water quality is repeatedly improved by the water treatment unit 3.
  • step S1 is performed.
  • step S13B when it is determined in step S11B that the treated water is better than the predetermined reference, in step S13B, the control unit C sets the upstream flow path switching valve SWV1 to the circulation state and The passage switching valve SWV2 is set to the passing state. At this time, the pump P is being driven. Therefore, the treated water stored in the tank TS is sent out to the secondary tank TL via the upstream flow path switching valve SWV1, the water treatment unit 3, and the downstream flow path switching valve SWV2.
  • step S14B the control unit C determines whether or not the treated water in the tank TS is equal to or lower than the lower limit water level WL. If it is not determined in step S14B that the treated water in the tank TS is equal to or lower than the lower limit water level WL, the control unit C repeats the determination in step S14B. On the other hand, if it is determined in step S14B that the treated water in the tank TS is equal to or lower than the lower limit water level WL, the control unit C executes the processing in step S1.
  • the raw water is not removed by the water treatment unit 3 at least once.
  • the water is supplied to the user as treated water with improved water quality.
  • the raw water is treated as water that has been treated at least once by the water treatment unit 3 with the water quality improved. Supplied to the user.
  • the quality of the treated water flowing through the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC measured by the water quality measurement sensor WQS is a predetermined value. May be better than standard. Only in this case, the treated water is sent from the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC to the secondary tank TL. Therefore, the treated user in the secondary tank TL can more reliably use the treated water better than the predetermined standard.
  • Embodiment 5 Although the water treatment apparatuses 100 according to Embodiments 1 to 4 are provided with the control unit C, the control unit C may not be provided.
  • the first to fourth on-off valves V1, V2, V3, and V4 of the first and second embodiments have a structure that can be opened and closed by a user's manual operation. Therefore, if the user causes the first to fourth on-off valves V1, V2, V3, and V4 to open and close instead of the control unit C, the water treatment apparatus according to the first and second embodiments can be used. Water flow similar to 100 can be formed.
  • the upstream side flow path switching valve SWV1 and the downstream side flow path switching valve SWV2 of the above third and fourth embodiments can be configured such that the flow path can be switched by a manual operation of the user. have. Therefore, if the user causes the upstream flow path switching valve SWV1 and the downstream flow path switching valve SWV2 to perform the flow path switching operation in place of the control unit C, the water in the third and fourth embodiments can be reduced. A water flow similar to that of the treatment apparatus 100 can be formed.
  • the water treatment apparatus 100 includes a main flow path 1, a circulation flow path 2, a tank TS, a pump P, a water treatment unit 3, and a water quality measurement sensor WQS.
  • the water treatment apparatus 100 includes a first on-off valve V1, a second on-off valve V2, a third on-off valve V3, and a fourth on-off valve V4.
  • the main flow path 1 guides water from upstream to downstream.
  • the circulation flow path 2 branches from a downstream connection position LOC positioned relatively downstream of the main flow path 1 and merges with an upstream connection position UPC positioned relatively upstream of the main flow path 1.
  • the tank TS is connected to the circulation channel 2 and stores water flowing through the circulation channel 2.
  • the pump P is connected to the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC, and sends out water in the main flow path 1 from upstream to downstream.
  • the water treatment unit 3 is connected to the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC, and improves the quality of water flowing through the main flow path 1.
  • the water quality measurement sensor WQS is connected to the main flow path 1 upstream of the upstream connection position UPC, or is connected to the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC, and Is measured.
  • the first on-off valve V1 is connected to the main flow path 1 on the upstream side of the upstream connection position UPC, and switches between an open state in which water passes and a closed state in which water does not pass.
  • the second on-off valve V2 is connected to the main flow path 1 on the downstream side of the downstream connection position LOC, and switches between an open state in which water passes and a closed state in which water does not pass.
  • the third on-off valve V3 is connected to the circulation flow path 2 between the tank TS and the upstream connection position UPC, and switches between an open state in which water passes and a closed state in which water does not pass.
  • the fourth on-off valve V4 is connected to the circulation flow path 2 between the tank TS and the downstream connection position LOC, and switches between an open state in which water passes and a closed state in which water does not pass.
  • the raw water is supplied to the user at least once by the water treatment unit 3 with the water quality improved.
  • the water quality measurement sensor WQS may be connected to the main flow path 1 upstream of the upstream connection position UPC.
  • the water treatment apparatus 100 receives the water quality information that can specify the water quality measured by the water quality measurement sensor WQS, and receives the pump P, the water treatment unit 3, the first on-off valve V1, the second on-off valve V2, A control unit C for controlling the third on-off valve V3 and the fourth on-off valve V4 is provided.
  • the control unit C includes a water quality determination unit (S9 in FIG. 3) that determines whether the water quality measured by the water quality measurement sensor WQS is better than a predetermined reference.
  • the control unit C is in a state where the pump P causes the water to flow through the main flow path 1 and the water treatment unit 3 executes control for improving the quality of the water flowing through the main flow path 1.
  • the control unit C sets the first on-off valve V1 and the second on-off valve V2 when the water quality determination unit (S9 in FIG. 3) determines that the water quality is better than a predetermined standard. Open and close the third on-off valve V3 and the fourth on-off valve V4.
  • the water treatment apparatus 100 may further include an operation course selection unit S for selecting whether the current operation state is the automatic operation state or the manual operation state.
  • the control unit C sets the first on-off valve V1 and the second on-off valve V2 when the user operates the driving course selection unit S to change the current operation state to the manual operation state. Open and close the third on-off valve V3 and the fourth on-off valve V4. According to this, the state in which water flows only through the main flow path 1 can be manually formed.
  • the water treatment apparatus 100 includes a main flow path 1, a circulation flow path 2, a tank TS, a pump P, a water treatment unit 3, and a water quality measurement sensor WQS.
  • the water treatment apparatus 100 includes an upstream-side passage switching valve SWV1 and a downstream-side passage switching valve SWV2.
  • the main flow path 1 guides water from upstream to downstream.
  • the circulation flow path 2 branches from a downstream connection position LOC positioned relatively downstream of the main flow path 1 and joins an upstream connection position UPC positioned relatively upstream of the main flow path 1.
  • the tank TS is connected to the circulation channel 2 and stores water flowing through the circulation channel 2.
  • the pump P is connected to the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC, and sends out water in the main flow path 1 from upstream to downstream.
  • the water treatment unit 3 is connected to the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC, and improves the quality of water flowing through the main flow path 1.
  • the water quality measurement sensor WQS is connected to the main flow path 1 upstream of the upstream connection position UPC, or is connected to the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC, and Is measured.
  • the upstream-side switching valve SWV1 is provided at the upstream connection position UPC.
  • the upstream flow path switching valve SWV1 is switched between an upstream passage state and an upstream circulation state.
  • the upstream passage state is a state in which water flows from the main flow path 1 upstream of the upstream connection position UPC to the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC.
  • the upstream circulation state is a state in which water flows from the circulation flow path 2 downstream of the tank TS to the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC.
  • the downstream-side flow switching valve SWV2 is provided at the downstream connection position LOC.
  • the downstream flow path switching valve SWV2 is switched to one of a downstream passage state and a downstream circulation state.
  • the downstream passage state is a state in which water flows from the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC to the main flow path 1 downstream of the downstream connection position LOC.
  • the downstream circulation state is a state in which water flows from the circulation flow path 2 downstream of the tank TS to the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC.
  • the raw water is supplied to the user as treated water in a state where the water quality has been improved at least once by the water treatment unit 3.
  • the water quality measurement sensor WQS may be connected to the main flow path 1 upstream of the upstream connection position UPC.
  • the water treatment apparatus 100 receives the water quality information that can specify the quality of the water measured by the water quality measurement sensor WQS, and receives the pump P, the water treatment unit 3, the upstream flow path switching valve SWV1, and the downstream flow
  • a control unit C for controlling the road switching valve SWV2 may be further provided.
  • the control unit C includes a water quality determination unit (S9 in FIG. 8) that determines whether the water quality measured by the water quality measurement sensor WQS is better than a predetermined reference.
  • the control unit C is in a state where the pump P causes the water to flow through the main flow path 1 and the water treatment unit 3 executes control for improving the quality of the water flowing through the main flow path 1.
  • the water quality determination unit (S9 in FIG. 8) may determine that the water quality is better than a predetermined standard.
  • the controller C sets the upstream flow path switching SWV1 to the upstream passage state and sets the downstream flow path switching valve SWV2 to the downstream passage state.
  • the water treatment apparatus 100 may further include an operation course selection unit S for selecting whether to set the current operation state to the automatic operation state or the manual operation state.
  • the control unit C sets the upstream flow path switching valve SWV1 to the upstream passage state when the current operation state is selected to be the manual operation state by the operation of the driving course selection unit S by the user,
  • the downstream passage switching valve SWV2 is set to the downstream passage state. According to this, the state in which water flows only through the main flow path 1 can be manually formed.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

A water treatment device 100 that comprises a main flow channel 1 and a circulation flow channel 2. The circulation flow channel 2: branches from a downstream-side connection location LOC that is located relatively on the downstream side of the main flow channel 1; and merges at an upstream-side connection location UPC that is located relatively on the upstream side of the main flow channel 1. A water treatment unit 3 is connected to the main flow channel 1 between the upstream-side connection location UPC and the downstream-side connection location LOC and improves the quality of water that flows through the main flow channel 1.

Description

水処理装置Water treatment equipment
 本開示は、水処理装置に関する。 The present disclosure relates to a water treatment device.
 従来から、井戸、河川もしくは池の水源の水または雨水等の原水を処理する水処理装置の開発が行われている。水処理装置には、特許文献1(図1参照)に開示されているように、主流路と主流路から分岐した循環用流路とを備えている。このような水処理装置においては、主流路の一部と循環用流路と交互に経由して、原水を、複数回循環させることによって、水質の改善を複数回実行している。それにより、所定の基準より高い水質を有する処理済の水にしてから、主流路の下流に送り出している。 水 Conventionally, a water treatment device for treating raw water such as water from a well, a river or a pond, or rainwater has been developed. As disclosed in Patent Document 1 (see FIG. 1), the water treatment apparatus includes a main flow path and a circulation flow path branched from the main flow path. In such a water treatment apparatus, water quality is improved a plurality of times by circulating raw water a plurality of times alternately through a part of a main flow path and a circulation flow path. Thereby, the treated water having a water quality higher than a predetermined standard is sent to the downstream of the main flow path.
特開2013-86034号公報(特許第5982626号)JP 2013-86034 A (Patent No. 5982626)
 上記した特許文献1に開示されている水処理装置において、循環用流路または循環用流路に接続されたタンクに不具合が生じた場合には、循環用流路を経由することなく、主流路のみに原水を流すことを必要とする。一方、上記した特許文献1に開示された水処理装置においては、循環用流路に濾過部および酸化剤供給部等の水処理部が接続されている。そのため、前述の不具合が生じた場合に、原水が、循環用流路を経由することなく、主流路のみを流れると、水処理部によって一回も水質を改善されない状態で、利用者に利用されてしまう。しかしながら、一定の基準よりも良好な水質を確保する観点から、いかなる場合においても、原水は、少なくとも一回だけは、水処理部によってその水質を改善されることが好ましい。 In the water treatment apparatus disclosed in Patent Document 1 described above, when a problem occurs in the circulation channel or the tank connected to the circulation channel, the main channel is not passed through the circulation channel. Only the raw water needs to be flushed. On the other hand, in the water treatment device disclosed in Patent Document 1 described above, a water treatment unit such as a filtration unit and an oxidant supply unit is connected to the circulation channel. Therefore, when the above-described problem occurs, if the raw water flows only through the main flow path without passing through the circulation flow path, the raw water is used by the user in a state where the water quality is not improved by the water treatment unit at least once. Would. However, in any case, it is preferable that the water quality of the raw water is improved at least once by the water treatment unit from the viewpoint of securing a better water quality than a certain standard.
 本開示は、このような従来技術の有する課題に鑑みてなされたものである。そして、本開示の目的は、いかなる場合においても、原水が少なくとも一回だけは水処理部によってその水質を改善された状態で利用者に供給される水処理装置を提供することである。 The present disclosure has been made in view of such problems of the related art. In addition, an object of the present disclosure is to provide a water treatment apparatus in which raw water is supplied to a user at least once at least by a water treatment unit with its water quality improved.
 上記課題を解決するために、本開示の第1の態様に係る水処理装置は、上流から下流へ向かって水を導く主流路と、前記主流路の相対的に下流側に位置付けられた下流側接続位置から分岐し、前記主流路の相対的に上流側に位置付けられた上流側接続位置に合流する循環用流路と、前記循環用流路に接続され、前記循環用流路を流れる前記水を貯留するタンクと、前記上流側接続位置と前記下流側接続位置との間の前記主流路に接続され、前記主流路において上流から下流へ前記水を送り出すポンプと、前記上流側接続位置と前記下流側接続位置との間の前記主流路に接続され、前記主流路を流れる前記水の水質を改善する水処理部と、前記上流側接続位置の上流の前記主流路に接続されるか、または、前記上流側接続位置と前記下流側接続位置との間の前記主流路に接続され、前記水の水質を測定する水質測定センサと、前記上流側接続位置の上流側の前記主流路に接続され、前記水を通過させる開状態および前記水を通過させない閉状態のいずれかに切り替わる第1の開閉弁と、前記下流側接続位置の下流側の前記主流路に接続され、前記水を通過させる開状態および前記水を通過させない閉状態のいずれかに切り替わる第2の開閉弁と、前記タンクと前記上流側接続位置との間の前記循環用流路に接続され、前記水を通過させる開状態および前記水を通過させない閉状態のいずれかに切り替わる第3の開閉弁と、前記タンクと前記下流側接続位置との間の前記循環用流路に接続され、前記水を通過させる開状態および前記水を通過させない閉状態のいずれかに切り替わる第4の開閉弁と、を備えている。 In order to solve the above problems, a water treatment apparatus according to a first aspect of the present disclosure includes a main flow path that guides water from upstream to downstream, and a downstream side positioned relatively downstream of the main flow path. A circulating flow path that branches from a connection position and joins an upstream connection position positioned relatively upstream of the main flow path; and the water that is connected to the circulating flow path and flows through the circulating flow path. And a pump that is connected to the main flow path between the upstream connection position and the downstream connection position, and that pumps the water from upstream to downstream in the main flow path, the upstream connection position, A water treatment unit connected to the main flow path between the downstream connection position and improving the quality of the water flowing through the main flow path, and connected to the main flow path upstream of the upstream connection position, or , The upstream connection position and the downstream connection A water quality measurement sensor that is connected to the main flow path between the water flow path and a water quality measurement sensor that measures the water quality of the water, and is connected to the main flow path on the upstream side of the upstream connection position to allow the water to pass therethrough. A first on-off valve that switches to a closed state that does not allow the passage of water, and an open state that is connected to the main flow path downstream of the downstream connection position and that allows the water to pass therethrough and a closed state that does not allow the water to pass therethrough A second on-off valve that switches between the tank and the circulation flow path between the tank and the upstream connection position, and is in one of an open state in which the water passes and a closed state in which the water does not pass. A third on-off valve that is switched, and a third on-off valve that is connected to the circulation flow path between the tank and the downstream connection position and that switches between an open state in which the water passes and a closed state in which the water does not pass. Comprises a closing valve, the.
 本開示の第2の態様に係る水処理装置は、上流から下流へ向かって水を導く主流路と、前記主流路の相対的に下流側に位置付けられた下流側接続位置から分岐し、前記主流路の相対的に上流側に位置付けられた上流側接続位置に合流する循環用流路と、前記循環用流路に接続され、前記循環用流路を流れる前記水を貯留するタンクと、前記上流側接続位置と前記下流側接続位置との間の前記主流路に接続され、前記主流路において上流から下流へ前記水を送り出すポンプと、前記上流側接続位置と前記下流側接続位置との間の前記主流路に接続され、前記主流路を流れる前記水の水質を改善する水処理部と、前記上流側接続位置の上流の前記主流路に接続されるか、または、前記上流側接続位置と前記下流側接続位置との間の前記主流路に接続され、前記水の水質を測定する水質測定センサと、前記上流側接続位置に設けられ、前記水が前記上流側接続位置の上流の前記主流路から前記上流側接続位置と前記下流側接続位置との間の前記主流路へ流れる上流側通過状態、および、前記水が前記タンクの下流の前記循環用流路から前記上流側接続位置と前記下流側接続位置との間の前記主流路へ流れる上流側循環状態のいずれかに切り替えられる上流側流路切替弁と、前記下流側接続位置に設けられ、前記水が前記上流側接続位置と前記下流側接続位置との間の前記主流路から前記下流側接続位置の下流の前記主流路へ流れる下流側通過状態、および、前記水が前記タンクの下流の前記循環用流路から前記上流側接続位置と前記下流側接続位置との間の前記主流路へ流れる下流側循環状態のいずれかに切り替えられる下流側流路切替弁と、を備えている。 A water treatment apparatus according to a second aspect of the present disclosure is characterized in that a main flow path that guides water from upstream to downstream, and a branch from a downstream connection position positioned relatively downstream of the main flow path, A circulation channel that merges with an upstream connection position positioned relatively upstream of the road, a tank that is connected to the circulation channel, and stores the water that flows through the circulation channel, A pump that is connected to the main flow path between the side connection position and the downstream connection position and that sends out the water from upstream to downstream in the main flow path, between the upstream connection position and the downstream connection position A water treatment unit connected to the main flow path and improving the quality of the water flowing through the main flow path, connected to the main flow path upstream of the upstream connection position, or the upstream connection position and In the main flow path between the downstream connection position And a water quality measurement sensor for measuring the water quality of the water, provided at the upstream connection position, wherein the water flows from the main flow path upstream of the upstream connection position to the upstream connection position and the downstream connection position. And the water flows from the circulation flow path downstream of the tank to the main flow path between the upstream connection position and the downstream connection position. An upstream flow path switching valve that is switched to any of an upstream circulation state, and the water is provided at the downstream connection position, and the water flows from the main flow path between the upstream connection position and the downstream connection position. A downstream passage state that flows to the main flow path downstream of the downstream connection position, and the main flow between the upstream connection position and the downstream connection position where the water flows from the circulation flow path downstream of the tank. Downstream circulation to the road Includes a downstream-passage switching valve is switched to either the state, the.
図1は、実施の形態1の水処理装置が組み込まれた水処理システムの全体構成を説明するための図である。FIG. 1 is a diagram for explaining the overall configuration of a water treatment system in which the water treatment device according to the first embodiment is incorporated. 図2は、実施の形態1の水処理装置の制御に関する機能ブロック図である。FIG. 2 is a functional block diagram related to control of the water treatment device according to the first embodiment. 図3は、実施の形態1の水処理装置の制御部が実行する処理を説明するためのフローチャートである。FIG. 3 is a flowchart for explaining a process executed by the control unit of the water treatment device according to the first embodiment. 図4は、実施の形態2の水処理装置が組み込まれた水処理システムの全体構成を説明するための図である。FIG. 4 is a diagram for explaining the overall configuration of a water treatment system in which the water treatment device according to the second embodiment is incorporated. 図5は、実施の形態2の水処理装置の制御部が実行する処理を説明するためのフローチャートである。FIG. 5 is a flowchart for explaining a process executed by the control unit of the water treatment device according to the second embodiment. 図6は、実施の形態3の水処理装置が組み込まれた水処理システムの全体構成を説明するための図である。FIG. 6 is a diagram for explaining the overall configuration of a water treatment system in which the water treatment device according to the third embodiment is incorporated. 図7は、実施の形態3の水処理装置の制御に関する機能ブロック図である。FIG. 7 is a functional block diagram related to control of the water treatment device according to the third embodiment. 図8は、実施の形態3の水処理装置の制御部が実行する処理を説明するためのフローチャートである。FIG. 8 is a flowchart illustrating a process performed by the control unit of the water treatment device according to the third embodiment. 図9は、実施の形態4の水処理装置が組み込まれた水処理システムの全体構成を説明するための図である。FIG. 9 is a diagram for explaining an overall configuration of a water treatment system in which the water treatment device according to the fourth embodiment is incorporated. 図10は、実施の形態4の水処理装置の制御部が実行する処理を説明するためのフローチャートである。FIG. 10 is a flowchart for explaining a process executed by the control unit of the water treatment apparatus according to the fourth embodiment.
 以下、図面を参照しながら、各実施の形態の水処理装置を説明する。以下の複数の実施の形態においては、同一の参照符号が付された部分同士は、図面上における形状に多少の相違があっても、特段の記載がない限り、互いに同一の機能を有するものとする。 Hereinafter, the water treatment apparatus of each embodiment will be described with reference to the drawings. In the following embodiments, portions denoted by the same reference numerals have the same function as each other unless otherwise specified, even if there is a slight difference in shape in the drawings. I do.
 (実施の形態1)
 図1~図3を用いて、実施の形態1の水処理装置100および水処理システム1000を説明する。
(Embodiment 1)
The water treatment apparatus 100 and the water treatment system 1000 according to the first embodiment will be described with reference to FIGS.
 まず、図1を用いて、本実施の形態の水処理システム1000の全体構成を説明する。 First, the overall configuration of the water treatment system 1000 according to the present embodiment will be described with reference to FIG.
 図1に示されるように、本実施の形態の水処理システム1000には、水処理装置100が接続されている。水処理装置100は、主流路1、循環用流路2、タンクTS、ポンプP、水処理部3、および水質測定センサWQSを備えている。水処理装置100は、第1の開閉弁V1、第2の開閉弁V2、第3の開閉弁V3、および第4の開閉弁V4を備えている。 As shown in FIG. 1, a water treatment apparatus 100 is connected to the water treatment system 1000 of the present embodiment. The water treatment apparatus 100 includes a main flow path 1, a circulation flow path 2, a tank TS, a pump P, a water treatment unit 3, and a water quality measurement sensor WQS. The water treatment apparatus 100 includes a first on-off valve V1, a second on-off valve V2, a third on-off valve V3, and a fourth on-off valve V4.
 水処理装置100は、上流から下流へ向かって、具体的には、地下に存在する井水または地下に埋設された水道管等の水源Wから住宅Hへ水を導く主流路1を備えている。主流路1において、原水が、水処理部3まで流れ、水処理部3によって水質を改善された後、処理済の水が下流へ流れる。 The water treatment apparatus 100 includes a main flow path 1 that guides water from a water source W such as well water existing underground or a water pipe buried underground to a house H from upstream to downstream, specifically, underwater. . In the main flow path 1, the raw water flows to the water treatment unit 3, and after the water quality is improved by the water treatment unit 3, the treated water flows downstream.
 主流路1には、水質測定センサWQS、第1の開閉弁V1、ポンプP、水処理部3、および第2の開閉弁V2が上流から下流へ向かってこの順番で接続されている。本実施の形態の水処理装置100は、水処理装置100の運転状態を制御する制御部Cを備えている。具体的には、制御部Cは、第1~第4の開閉弁V1,V2,V3,V4、ポンプP、および水処理部3を制御する。水処理装置100の下流の主流路1には、二次タンクTLが接続されている。二次タンクTLには、処理済の水が流れ込む。二次タンクTLは、循環用流路2に接続されたタンクTSより大きい容量を有している。 水 The water quality measurement sensor WQS, the first on-off valve V1, the pump P, the water treatment unit 3, and the second on-off valve V2 are connected to the main flow path 1 in this order from upstream to downstream. The water treatment device 100 according to the present embodiment includes a control unit C that controls the operation state of the water treatment device 100. Specifically, the control unit C controls the first to fourth on-off valves V1, V2, V3, V4, the pump P, and the water treatment unit 3. A secondary tank TL is connected to the main flow path 1 downstream of the water treatment device 100. Treated water flows into the secondary tank TL. The secondary tank TL has a larger capacity than the tank TS connected to the circulation channel 2.
 主流路1は、二次タンクTLから住宅H内の放出口Uまで延びている。放出口Uには、ユーザが操作可能な蛇口が設けられている。住宅H内のユーザは、主流路1を経由して放出口Uまで流れてきた後、放出口Uから放出される処理済の水を利用する。 The main flow path 1 extends from the secondary tank TL to the discharge port U in the house H. The discharge port U is provided with a faucet that can be operated by a user. The user in the house H uses the treated water discharged from the outlet U after flowing to the outlet U via the main flow path 1.
 主流路1には、循環用流路2が接続されている。循環用流路2の両端は、それぞれ、第1の開閉弁V1とポンプPとの間の主流路1の上流側接続位置UPCおよび水処理部3と第2の開閉弁V2との間の主流路1の下流側接続位置LOCに接続されている。 循環 A circulation channel 2 is connected to the main channel 1. Both ends of the circulation flow path 2 are connected to the upstream connection position UPC of the main flow path 1 between the first on-off valve V1 and the pump P, and the main flow between the water treatment unit 3 and the second on-off valve V2, respectively. It is connected to the downstream side connection position LOC of the road 1.
 言い換えると、循環用流路2は、主流路1の相対的に下流側に位置付けられた下流側接続位置LOCから分岐し、主流路1の相対的に上流側に位置付けられた上流側接続位置UPCに合流する。 In other words, the circulation flow path 2 branches from the downstream connection position LOC positioned relatively downstream of the main flow path 1, and the upstream connection position UPC positioned relatively upstream of the main flow path 1. To join.
 循環用流路2には、タンクTSが接続されている。上流側接続位置UPCとタンクTSとの間の循環用流路2には、第3の開閉弁V3が接続されている。下流側接続位置LOCとタンクTSとの間の循環用流路2には、第4の開閉弁V4が接続されている。 タ ン ク A tank TS is connected to the circulation channel 2. A third on-off valve V3 is connected to the circulation channel 2 between the upstream connection position UPC and the tank TS. A fourth on-off valve V4 is connected to the circulation channel 2 between the downstream connection position LOC and the tank TS.
 タンクTSは、循環用流路2に接続され、循環用流路2を流れる水を貯留する。ポンプPは、上流側接続位置UPCと下流側接続位置LOCとの間の主流路1、より具体的には上流側接続位置UPCと水処理部3との間の主流路1に接続され、主流路1において上流から下流へ水を送り出す。 The tank TS is connected to the circulation channel 2 and stores water flowing through the circulation channel 2. The pump P is connected to the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC, more specifically, to the main flow path 1 between the upstream connection position UPC and the water treatment unit 3, and In the road 1, water is sent from upstream to downstream.
 水処理部3は、上流側接続位置UPCと下流側接続位置LOCとの間の主流路1、より具体的にはポンプPと下流側接続位置LOCとの間の主流路1に接続され、主流路1を流れる水の水質を改善する、つまり、原水を処理済みの水へ変化させる。水処理部3は、酸化剤供給部としてのオゾン生成・混合部Oと濾過部Fとを含んでいる。そのため、濾過部Fを通過するときに、原水に含まれていた異物が除去される。濾過部Fは、本実施の形態においては、マンガン砂を含む砂ろ過部である。また、原水は、オゾン生成・混合部Oから混合されたオゾンの気泡により殺菌される。 The water treatment section 3 is connected to the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC, more specifically, to the main flow path 1 between the pump P and the downstream connection position LOC. The quality of the water flowing through the road 1 is improved, that is, the raw water is changed to treated water. Water treatment unit 3 includes an ozone generator and mixing section O 3 as an oxidizing agent supply unit and a filtration unit F. Therefore, when passing through the filtration unit F, foreign substances contained in the raw water are removed. Filtration unit F is a sand filtration unit containing manganese sand in the present embodiment. Further, the raw water is sterilized by bubbles of ozone is mixed from the ozone generator and mixing section O 3.
 ただし、水処理部3は、主流路1を流れる原水から鉄成分を除去する鉄除去装置を含んでいてもよい。また、水処理部3は、主流路1を流れる原水からカルシウムイオンおよびマグネシウムイオンを除去することにより硬水を軟化させる硬水軟化装置を含んでいてもよい。つまり、水処理部3は、何等かの観点で水質を改善するものであれば、いかなる装置を含んでいてもよい。 However, the water treatment unit 3 may include an iron removing device that removes an iron component from raw water flowing through the main flow path 1. Further, the water treatment unit 3 may include a water softening device that softens hard water by removing calcium ions and magnesium ions from raw water flowing through the main flow path 1. That is, the water treatment unit 3 may include any device as long as it improves the water quality from some viewpoint.
 タンクTSは、水処理部3によって一回または複数回水質を改善された処理済の水を貯留している。二次タンクTLは、タンクTSに貯留されることなく水処理部3によって一回だけ水質改善された処理済の水、または、水処理部3によって複数回繰り返して水質を改善された処理済の水を貯留している。 The tank TS stores treated water whose quality has been improved once or more times by the water treatment unit 3. The secondary tank TL is treated water whose water quality has been improved only once by the water treatment unit 3 without being stored in the tank TS, or treated water whose water quality has been improved plural times by the water treatment unit 3. We store water.
 タンクTS内には、タンクTS内に貯留されている水の水位を測定する水位センサWHS1が設けられている。二次タンクTL内には、二次タンクTL内に貯留されている水の水位を測定する水位センサWHS2が設けられている。 A water level sensor WHS1 for measuring the water level of the water stored in the tank TS is provided in the tank TS. In the secondary tank TL, a water level sensor WHS2 for measuring the level of water stored in the secondary tank TL is provided.
 第1の開閉弁V1は、上流側接続位置UPCの上流側の主流路1に接続されている。第1の開閉弁V1は、水を通過させる開状態および水を通過させない閉状態のいずれかに切り替えられる。第2の開閉弁V2は、下流側接続位置LOCの下流側の主流路1に接続されている。第2の開閉弁V2も、水を通過させる開状態および水を通過させない閉状態のいずれかに切り替えられる。 The first on-off valve V1 is connected to the main flow path 1 on the upstream side of the upstream connection position UPC. The first on-off valve V1 is switched between an open state in which water passes and a closed state in which water does not pass. The second on-off valve V2 is connected to the main flow path 1 on the downstream side of the downstream connection position LOC. The second on-off valve V2 is also switched between an open state where water passes and a closed state where water does not pass.
 第3の開閉弁V3は、タンクTSと上流側接続位置UPCとの間の循環用流路2に接続されている。第3の開閉弁V3も、水を通過させる開状態および水を通過させない閉状態のいずれかに切り替えられる。第4の開閉弁V4は、タンクTSと下流側接続位置LOCとの間の循環用流路2に接続されている。第4の開閉弁V4も、水を通過させる開状態および水を通過させない閉状態のいずれかに切り替えられる。 The third on-off valve V3 is connected to the circulation channel 2 between the tank TS and the upstream connection position UPC. The third on-off valve V3 is also switched between an open state in which water passes and a closed state in which water does not pass. The fourth on-off valve V4 is connected to the circulation channel 2 between the tank TS and the downstream connection position LOC. The fourth on-off valve V4 is also switched between an open state in which water passes and a closed state in which water does not pass.
 上記の構成によれば、原水が水処理部3によって少なくとも一回だけは水質を改善された状態でユーザに供給される。 According to the above configuration, the raw water is supplied to the user at least once by the water treatment unit 3 with the water quality improved.
 水質測定センサWQSは、上流側接続位置UPCの上流の主流路1に接続されている。より具体的には、水質測定センサWQSは、第1の開閉弁V1の上流の主流路1に接続されている。これにより、制御部Cは、水質測定センサWQSによって測定された水の水質を特定可能な情報を受け取る。本実施の形態においては、水質測定センサWQSは、オゾン生成・混合部Oによって消滅させられる菌の濃度であってもよい。また、濾過部Fで濾過される予定の異物の水に対する比率であってもよい。 The water quality measurement sensor WQS is connected to the main flow path 1 upstream of the upstream connection position UPC. More specifically, the water quality measurement sensor WQS is connected to the main flow path 1 upstream of the first on-off valve V1. Accordingly, the control unit C receives information that can specify the water quality of the water measured by the water quality measurement sensor WQS. In this embodiment, the water quality measurement sensor WQS may be the concentration of bacteria to be destroyed by the ozone generator and mixing section O 3. Further, the ratio may be a ratio of the foreign matter to be filtered by the filtration unit F to water.
 制御部Cは、ポンプP、水処理部3、第1の開閉弁V1、第2の開閉弁V2、第3の開閉弁V3、および第4の開閉弁V4を制御する。制御部Cは、水質測定センサWQSによって測定された水質が所定の基準よりも改善されているか否かを判定する水質判定部(後述される図3のS9)を含んでいる。制御部Cは、ポンプPに主流路1に水を流させることによって、水処理部3に主流路1を流れる水の水質を改善させる制御を実行する。この状態で、制御部Cは、水質判定部(後述される図3のS9)によって水質が所定の基準よりも改善されたと判定された場合に、第1の開閉弁V1および第2の開閉弁V2を開き、かつ、第3の開閉弁V3および第4の開閉弁V4を閉じる。 The control unit C controls the pump P, the water treatment unit 3, the first on-off valve V1, the second on-off valve V2, the third on-off valve V3, and the fourth on-off valve V4. The control unit C includes a water quality determination unit (S9 in FIG. 3 described later) that determines whether the water quality measured by the water quality measurement sensor WQS has been improved from a predetermined reference. The control unit C controls the water treatment unit 3 to improve the water quality of the water flowing through the main flow path 1 by causing the pump P to flow the water through the main flow path 1. In this state, when the water quality determination unit (S9 in FIG. 3 described later) determines that the water quality has been improved beyond a predetermined reference in this state, the control unit C performs the first on-off valve V1 and the second on-off valve V2 is opened, and the third on-off valve V3 and the fourth on-off valve V4 are closed.
 本実施の形態の水処理装置100によれば、たとえば、タンクTSまたは循環用流路2が故障し、循環用流路2に原水を流すことができない場合がある。この場合においても、原水が水処理部3によって少なくとも一回だけは水質を改善された状態で処理済の水としてユーザに供給される。具体的には、後述される手動運転および自動運転のいずれの場合においても、原水が水処理部3によって少なくとも一回だけは水質を改善された状態で処理済の水としてユーザに供給される。また、水質測定センサWQSが故障しても水処理装置100の運転を停止できない場合がある。この場合において、手動操作で、第1の開閉弁V1および第2の開閉弁V2を開き、かつ、第3の開閉弁V3および第4の開閉弁V4を閉じる。それにより、この場合においても、原水が水処理部3によって少なくとも一回だけは水質を改善された状態で処理済の水としてユーザに供給される。 According to the water treatment apparatus 100 of the present embodiment, for example, the tank TS or the circulation channel 2 may fail and the raw water may not flow through the circulation channel 2 in some cases. Also in this case, the raw water is supplied to the user as treated water with the water quality improved at least once by the water treatment unit 3. Specifically, in both the manual operation and the automatic operation described below, the raw water is supplied to the user as treated water in a state where the water quality has been improved at least once by the water treatment unit 3. Further, even if the water quality measurement sensor WQS fails, the operation of the water treatment apparatus 100 may not be stopped in some cases. In this case, the first on-off valve V1 and the second on-off valve V2 are opened, and the third on-off valve V3 and the fourth on-off valve V4 are closed by manual operation. Thereby, also in this case, the raw water is supplied to the user as treated water in a state where the water quality has been improved at least once by the water treatment unit 3.
 本実施の形態の水処理装置100は、制御部Cによって制御され、所定の情報を表示する表示部Dを備えている。表示部Dは、たとえば、現在の水処理装置100の運転状態が、自動運転状態であるのか、それとも、手動運転状態であるのかを表示する。現在の水処理装置100の運転状態が手動運転状態であることを表示部Dが表示している場合には、制御部Cは、第1の開閉弁V1および第2の開閉弁V2を開き、かつ、第3の開閉弁V3および第4の開閉弁V4を閉じる。現在の運転状態を、自動運転状態にするのか、それとも、手動運転状態にするのかは、ユーザが運転コース選択部Sを操作して選択することによって決定される。 水 The water treatment apparatus 100 of the present embodiment includes a display unit D controlled by the control unit C and displaying predetermined information. The display unit D displays, for example, whether the current operation state of the water treatment apparatus 100 is the automatic operation state or the manual operation state. When the display unit D indicates that the current operation state of the water treatment apparatus 100 is the manual operation state, the control unit C opens the first on-off valve V1 and the second on-off valve V2, Further, the third on-off valve V3 and the fourth on-off valve V4 are closed. Whether the current driving state is set to the automatic driving state or the manual driving state is determined by the user operating and selecting the driving course selecting unit S.
 これにより、ユーザは、たとえば、地震等によって循環用流路2またはタンクTSが破損等した場合に、運転コース選択部Sを手動操作する。それによって、水処理装置100の状態を、水が循環用流路2を通過することなく主流路1のみを通過する状態にすることができる。たとえば、ユーザは、運転コース選択部Sの手動運転アイコン(またはワンパスアイコン)をタッチすることにより、第1の開閉弁V1および第2の開閉弁V2を開き、かつ、第3の開閉弁V3および第4の開閉弁V4を閉じることができる。それにより、水源Wから供給された井水または水道水が、循環用流路2に流れ込むことなく、主流路1のみを流れて、二次タンクTLに至る。これにより、ユーザは、タンクTSまたは循環用流路2が故障している場合等においても、水処理部3で少なくとも一回は水質を改善された処理済の水を使用することができる。 Accordingly, the user manually operates the operation course selection unit S when the circulation channel 2 or the tank TS is damaged due to, for example, an earthquake. Thereby, the state of the water treatment apparatus 100 can be set to a state in which water passes only through the main flow path 1 without passing through the circulation flow path 2. For example, the user opens the first on-off valve V1 and the second on-off valve V2 and touches the third on-off valve V3 by touching the manual operation icon (or one-pass icon) of the operation course selection unit S. The fourth on-off valve V4 can be closed. As a result, well water or tap water supplied from the water source W does not flow into the circulation flow path 2 but flows only through the main flow path 1 and reaches the secondary tank TL. Thus, even when the tank TS or the circulation channel 2 is out of order, the user can use the treated water whose water quality has been improved at least once in the water treatment unit 3.
 次に、図2を用いて、本実施の形態の水処理装置100の制御部Cおよびそれに関連する構成を説明する。 Next, the control unit C of the water treatment apparatus 100 according to the present embodiment and the configuration related thereto will be described with reference to FIG.
 図2に示されるように、制御部Cは、運転コース選択部S、水位センサWHS1、水位センサWHS2、水質測定センサWQS、および電源スイッチSWのそれぞれから送信された各指令信号を受信する。 制 御 As shown in FIG. 2, the control unit C receives each command signal transmitted from each of the driving course selection unit S, the water level sensor WHS1, the water level sensor WHS2, the water quality measurement sensor WQS, and the power switch SW.
 運転コース選択部Sは、ユーザが、操作により、水処理装置100の運転状態を自動運転状態とするのか、それとも、手動運転とするのかを選択するための選択スイッチである。選択スイッチは、たとえば、表示部Dの液晶表示パネル上に表示される選択アイコンである。 The operation course selection unit S is a selection switch for the user to select whether the operation state of the water treatment apparatus 100 is set to the automatic operation state or the manual operation. The selection switch is, for example, a selection icon displayed on the liquid crystal display panel of the display unit D.
 水位センサWHS1は、タンクTS内の水の水位を測定し、測定された水位の情報を制御部Cへ送信する。具体的には、水位センサWHS1は、タンクTS内の水の水位が上限水位WH以上になった場合、および、タンクTS内の水の水位が下限水位WL以下となった場合に、それぞれを知らせる情報を制御部Cに送信する。 The water level sensor WHS1 measures the water level of the water in the tank TS, and transmits information on the measured water level to the control unit C. Specifically, the water level sensor WHS1 notifies when the water level in the tank TS is equal to or higher than the upper limit water level WH and when the water level in the tank TS is equal to or lower than the lower limit water level WL. The information is transmitted to the control unit C.
 水位センサWHS2は、タンクTL内の水の水位を測定し、測定された水位の情報を制御部Cへ送信する。具体的には、水位センサWHS2は、二次タンクTL内の水の水位が上限水位WH以上になった場合、および、二次タンクTL内の水の水位が下限水位WL以下になった場合に、それぞれを知らせる情報を制御部Cに送信する。 The water level sensor WHS2 measures the water level in the tank TL, and transmits information of the measured water level to the control unit C. Specifically, the water level sensor WHS2 is provided when the water level in the secondary tank TL is equal to or higher than the upper limit water level WH, and when the water level in the secondary tank TL is equal to or lower than the lower limit water level WL. Is transmitted to the control unit C.
 水質測定センサWQSは、上流側接続位置UPCよりも上流の主流路1を流れる水の水質を測定し、測定された水質の情報を制御部Cへ送信する。水質測定センサWQSは、第1の開閉弁V1の上流の主流路1に接続されているが、第1の開閉弁V1と上流側接続位置UPCとの間の主流路1に接続されていてもよい。 The water quality measurement sensor WQS measures the quality of water flowing through the main flow path 1 upstream of the upstream connection position UPC, and transmits information on the measured water quality to the control unit C. The water quality measurement sensor WQS is connected to the main flow path 1 upstream of the first on-off valve V1, but may be connected to the main flow path 1 between the first on-off valve V1 and the upstream connection position UPC. Good.
 電源スイッチSWは、ユーザに操作されることにより、制御部Cを駆動状態にすることを指令する指令信号を制御部Cへ送信する。これにより、制御部Cは、起動し、運転コース選択部S、水位センサWHS1、水位センサWHS2、および水質測定センサWQSから各情報を受信する。 (4) The power switch SW transmits a command signal for instructing the control unit C to be driven to the control unit C when operated by the user. As a result, the control unit C is activated and receives various information from the driving course selection unit S, the water level sensor WHS1, the water level sensor WHS2, and the water quality measurement sensor WQS.
 制御部Cは、その受信した各情報に基づいて、酸化剤供給部としてのオゾン生成・混合部O、ポンプP、第1の開閉弁V1、第2の開閉弁V2、第3の開閉弁V3、第4の開閉弁V4、および表示部Dのそれぞれへ各制御信号を送信する。 Based on the received information, the control unit C controls the ozone generation / mixing unit O 3 as an oxidant supply unit, the pump P, the first on-off valve V1, the second on-off valve V2, and the third on-off valve. Each control signal is transmitted to each of V3, fourth on-off valve V4, and display unit D.
 オゾン生成・混合部Oは、制御部Cから送信されてきた制御信号に基づいて制御されることにより、上流側接続位置UPCと下流側接続位置LOCとの間の主流路1を流れる水へ酸化剤としてのオゾンを供給する。ポンプPは、制御部Cから送信されてきた制御信号に基づいて制御されることにより、上流側接続位置UPCと下流側接続位置LOCとの間の主流路1で上流から下流へ水が流れるように駆動される。 Ozone generation and mixing unit O 3, by being controlled based on a control signal transmitted from the control station C, a water flowing in the main flow path 1 between the upstream connecting position UPC and downstream connection position LOC Supply ozone as an oxidizing agent. The pump P is controlled based on a control signal transmitted from the control unit C so that water flows from upstream to downstream in the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC. Is driven.
 第1の開閉弁V1、第2の開閉弁V2、第3の開閉弁V3、および第4の開閉弁V4は、それぞれ、制御部Cから送信されてきた制御信号に基づいて制御されることにより、水を通過させる開状態と水を通過させない閉状態とに切替えられる。表示部Dは、制御部Cから送信されてきた制御信号に基づいて制御されることにより、現在の運転状態が自動運転状態であるのかそれとも手動運転状態であるのか等を表示する。 The first opening / closing valve V1, the second opening / closing valve V2, the third opening / closing valve V3, and the fourth opening / closing valve V4 are controlled based on control signals transmitted from the control unit C, respectively. The state is switched between an open state in which water passes and a closed state in which water does not pass. The display unit D is controlled based on the control signal transmitted from the control unit C, and displays whether the current operation state is the automatic operation state or the manual operation state.
 次に、図3を用いて、本実施の形態の水処理装置100の制御部Cが実行する制御における各処理を説明する。 Next, each process in the control executed by the control unit C of the water treatment apparatus 100 of the present embodiment will be described with reference to FIG.
 ステップS1において、制御部Cは、水位センサWHS2から送信されてきた信号に基づいて、二次タンクTL内の水の水位が上限水位WH以上であるか否かを判定する。 In step S1, the control unit C determines whether the water level in the secondary tank TL is equal to or higher than the upper limit water level WH based on the signal transmitted from the water level sensor WHS2.
 ステップS1において、二次タンクTL内の水の水位が上限水位WH以上であると判定された場合には、ステップS3において、制御部Cは、ポンプPおよびオゾン生成・混合部OをOFFに設定し、ステップS1およびステップS3の処理を繰り返す。したがって、二次タンクTL内の水の水位が上限水位WH以上であれば、水処理装置100は駆動されない。 In step S1, when the water level of the water in the secondary tank TL is determined to be equal to or greater than the upper limit water level WH, in step S3, the control unit C, pump P and ozone generator and mixing section O 3 to OFF Are set, and the processing of steps S1 and S3 is repeated. Therefore, if the water level in the secondary tank TL is equal to or higher than the upper limit water level WH, the water treatment device 100 is not driven.
 このような処理を実行する理由は、二次タンクTL内の水の水位が上限水位WH以上であると、二次タンクTLから処理済みの水が溢れ出るおそれがあるためである。したがって、この場合には、制御部CはポンプPを停止する。これにより、タンクTSから二次タンクTLへの処理済みの水の補充は行われない。 理由 The reason why such processing is performed is that if the water level in the secondary tank TL is equal to or higher than the upper limit water level WH, the treated water may overflow from the secondary tank TL. Therefore, in this case, the control unit C stops the pump P. Thus, replenishment of the treated water from the tank TS to the secondary tank TL is not performed.
 ステップS1において、二次タンクTL内の水の水位が上限水位WHに到達していないと判定されれば、制御部Cは、ステップS2において、二次タンクTL内の水の水位が下限水位WL以下になっているか否かを判定する。ステップS2において、二次タンクTL内の水の水位が下限水位WL以下になっていないと判定されれば、ステップS3の処理を実行する。 If it is determined in step S1 that the water level in the secondary tank TL has not reached the upper limit water level WH, the controller C determines in step S2 that the water level in the secondary tank TL has reached the lower limit water level WLH. It is determined whether or not: If it is determined in step S2 that the water level in the secondary tank TL is not lower than the lower limit water level WL, the process of step S3 is executed.
 つまり、二次タンクTL内の水の水位が上限水位WH以下であっても、二次タンクTLに下限水位WLよりも多い処理済の水が残存している場合には、制御部Cは、水処理装置100を駆動させない。このような処理を実行する理由は、二次タンクTL内の水がユーザにとって必要な量以上であるためである。したがって、この場合にも、制御部CはポンプPを停止している。それにより、タンクTSから二次タンクTLへの処理済の水の補充は行われない。 That is, even if the water level in the secondary tank TL is equal to or lower than the upper limit water level WH, if more treated water than the lower limit water level WL remains in the secondary tank TL, the control unit C The water treatment device 100 is not driven. The reason why such a process is performed is that the amount of water in the secondary tank TL is equal to or more than the amount necessary for the user. Therefore, also in this case, the control unit C stops the pump P. Thereby, replenishment of the treated water from the tank TS to the secondary tank TL is not performed.
 一方、ステップS2において、二次タンクTL内の水の水位が下限水位WL以下になっていると判定されれば、ステップS4において、制御部Cは、オゾン生成・混合部OおよびポンプPを駆動する。それにより、上流側接続位置UPCと下流側接続位置LOCとの間の主流路1において上流から下流へ水が流れる。また、オゾン生成・混合部Oから上流側接続位置UPCと下流側接続位置LOCとの間の主流路1において流れている水に酸化剤としてのオゾンが供給される。 On the other hand, in step S2, if it is determined that the water level of the water in the secondary tank TL is equal to or less than a lower limit water level WL in step S4, the control unit C is ozone generation and mixing unit O 3 and pump P Drive. Thereby, water flows from upstream to downstream in the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC. Also, ozone as an oxidizing agent is supplied to the water flowing in the main flow path 1 between the ozone generator and mixing section O 3 the upstream connection position UPC and downstream connection position LOC.
 ステップS4の後、ステップS5において、ユーザが、運転コース選択部Sの操作により、水処理装置100の現在の運転状況として、自動運転を選択したのか否かを判定する。ステップS5において、水処理装置100の現在の運転状況として、自動運転ではなく、ユーザによるワンパス(手動)運転が運転コース選択部Sの操作によって選択されたと判定される場合がある。この場合には、ステップS6において、制御部Cは、現在の運転状況がワンパス(手動)運転であることを特定可能な情報を表示部Dに表示させる。 After step S4, in step S5, it is determined whether or not the user has selected the automatic operation as the current operation state of the water treatment apparatus 100 by operating the operation course selection unit S. In step S <b> 5, as the current operation status of the water treatment apparatus 100, it may be determined that the one-pass (manual) operation by the user is selected by the operation of the operation course selection unit S instead of the automatic operation. In this case, in step S6, the control unit C causes the display unit D to display information that can specify that the current operation status is the one-pass (manual) operation.
 ワンパス(手動)運転とは、循環用流路2を水が流れることなく、主流路1においてのみ水が流れる状態にする運転である。それにより、水処理装置100の現在の運転状況が、ワンパス状態であることが表示部Dに表示される。それにより、ユーザは、現在の水処理装置100の状態を、水処理部3によって水質改善された処理済の水が循環用流路2を経由することなく主流路1のみを通って二次タンクTLまで送られる状態にすることが可能であることを把握することができる。 One-pass (manual) operation is an operation in which water flows only in the main flow path 1 without flowing water in the circulation flow path 2. Thereby, the display unit D displays that the current operation state of the water treatment apparatus 100 is in the one-pass state. Thereby, the user can change the current state of the water treatment apparatus 100 to the secondary tank through the main flow path 1 without passing through the treated water whose water quality has been improved by the water treatment unit 3 without passing through the circulation flow path 2. It is possible to understand that it is possible to set the state to be transmitted to the TL.
 つまり、水処理装置100の現在の運転状態を自動運転状態とするのか、それとも、手動運転状態とするのかを選択するための運転コース選択部Sを備えている。制御部Cは、ユーザによる運転コース選択部Sの操作により、現在の運転状態を手動運転状態とすることが選択されていると判定する場合がある。 That is, the water treatment apparatus 100 includes an operation course selection unit S for selecting whether the current operation state of the water treatment apparatus 100 is set to the automatic operation state or the manual operation state. The control unit C may determine that the user has operated the driving course selecting unit S to change the current driving state to the manual driving state.
 この場合には、ステップS7において、制御部Cは、第1の開閉弁V1および第2の開閉弁V2のそれぞれを開く一方で、第3の開閉弁V3および第4の開閉弁V4のそれぞれを閉じる。それにより、実際に、水処理部3で水質を改善された処理済の水が、循環用流路2を経由することなく、主流路1のみを通って、二次タンクTLまで送られる。その後、ステップS1の処理が実行される。 In this case, in step S7, the control unit C opens each of the first on-off valve V1 and the second on-off valve V2, and opens each of the third on-off valve V3 and the fourth on-off valve V4. close. Thereby, the treated water whose water quality has been improved in the water treatment unit 3 is actually sent to the secondary tank TL only through the main flow path 1 without passing through the circulation flow path 2. Then, the process of step S1 is performed.
 一方、ステップS5において、水処理装置100の現在の運転状況として、自動運転が運転コース選択部Sによって選択されていると判定される場合がある。この場合には、ステップS9において、水質測定センサWQSから送信されてきた上流側接続位置UPCの上流の主流路1を流れる水の水質の情報に基づいて、制御部Cは、水質が所定の基準より良好であるか否かを判定する。 On the other hand, in step S5, it may be determined that the automatic driving is selected by the driving course selecting unit S as the current driving state of the water treatment apparatus 100. In this case, in step S9, based on the information on the quality of the water flowing through the main flow path 1 upstream of the upstream connection position UPC transmitted from the water quality measurement sensor WQS, the control unit C determines that the water quality is a predetermined reference value. It is determined whether it is better.
 ステップS9において、水質が所定の基準よりも良好であると判定された場合には、制御部Cは、ステップS7の処理を実行する。それにより、水源Wの水またはタンクTS内の水質を改善された処理済の水が、上流側接続位置UPC、水処理部3、および下流側接続位置LOCを経由して、二次タンクTLまで送られる。一方、ステップS9において、水質が所定の基準よりも良好ではないと判定された場合には、制御部Cは、ステップS10において、循環時間を決定する。循環時間は、水が循環用流路2と主流路1の一部とを交互に流れる、いわゆる水の循環が行われる時間である。循環時間においては、水は水処理部3によって繰り返して水質を改善される。水質測定センサWQSによって測定された水質がより良好であるほどより短い循環時間が設定され、水質測定センサWQSによって測定された水質がより劣悪であるほどより長い循環時間が設定される。 制 御 If it is determined in step S9 that the water quality is better than the predetermined reference, the control unit C executes the processing of step S7. Thereby, the water of the water source W or the treated water whose water quality is improved in the tank TS is transferred to the secondary tank TL via the upstream connection position UPC, the water treatment unit 3 and the downstream connection position LOC. Sent. On the other hand, when it is determined in step S9 that the water quality is not better than the predetermined reference, the control unit C determines the circulation time in step S10. The circulation time is a time period in which the water circulates, that is, water alternately flows through the circulation flow path 2 and a part of the main flow path 1. During the circulation time, the water is repeatedly improved in water quality by the water treatment unit 3. A shorter circulation time is set as the water quality measured by the water quality measurement sensor WQS is better, and a longer circulation time is set as the water quality measured by the water quality measurement sensor WQS is worse.
 その後、ステップS11において、制御部Cは、第1の開閉弁V1および第4の開閉弁V4のそれぞれを開く一方で、第2の開閉弁V2および第3の開閉弁V3のそれぞれを閉じる。このとき、ポンプPは駆動している。そのため、未だ水質を改善されていない水が、水質測定センサWQS、第1の開閉弁V1、上流側接続位置UPC、ポンプP、濾過部F、オゾン生成・混合部O、下流側接続位置LOC、および第4の開閉弁V4を経由して、タンクTSに導かれる。その結果、タンクTS内において、処理済の水が、徐々に増加し、その水位は上昇する。 Then, in step S11, the control unit C closes each of the second on-off valve V2 and the third on-off valve V3 while opening each of the first on-off valve V1 and the fourth on-off valve V4. At this time, the pump P is operating. Therefore, water that has not yet been improved water quality, water quality measurement sensor WQS, the first on-off valve V1, the upstream-side connection location UPC, the pump P, filtration unit F, an ozone generator and mixing section O 3, downstream connection position LOC , And the fourth on-off valve V4, and is guided to the tank TS. As a result, the treated water gradually increases in the tank TS, and the water level rises.
 ステップS12において、制御部Cは、タンクTS内に貯留されている処理済の水の水位が上限水位WH以上であるか否かを判定する。ステップS12において、タンクTS内に貯留されている処理済の水の水位が上限水位WH以上ではないと判定される場合がある。この場合には、ステップS12が繰り返される。このとき、ポンプPは駆動し続けているため、タンクTS内の処理済の水の水位は徐々に上昇する。 In step S12, the control unit C determines whether the level of the treated water stored in the tank TS is equal to or higher than the upper limit water level WH. In step S12, it may be determined that the level of the treated water stored in the tank TS is not higher than the upper limit water level WH. In this case, step S12 is repeated. At this time, since the pump P continues to be driven, the level of the treated water in the tank TS gradually rises.
 ステップS12において、タンクTS内に貯留されている処理済の水の水位が上限水位WH以上であると判定される場合がある。この場合には、ステップS13において、制御部Cは、第1の開閉弁V1および第2の開閉弁V2を閉じ、かつ、第3の開閉弁V3および第4の開閉弁V4を開く。これにより、タンクTSに貯留されている水が、循環用流路2から上流側接続位置UPCと下流側接続位置LOCとの間の主流路1へ移動する。その後、水は、上流側接続位置UPCと下流側接続位置LOCとの間の主流路1から循環用流路2へ移動する。つまり、いわゆる循環サイクルが繰り返される。その後、制御部Cは、ステップS14において、ステップS10において決定された循環時間が経過したか否かを判定する。 に お い て In step S12, the level of the treated water stored in the tank TS may be determined to be equal to or higher than the upper limit water level WH. In this case, in step S13, the control unit C closes the first on-off valve V1 and the second on-off valve V2, and opens the third on-off valve V3 and the fourth on-off valve V4. Thereby, the water stored in the tank TS moves from the circulation channel 2 to the main channel 1 between the upstream connection position UPC and the downstream connection position LOC. Thereafter, the water moves from the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC to the circulation flow path 2. That is, a so-called circulation cycle is repeated. Thereafter, the control unit C determines in step S14 whether the circulation time determined in step S10 has elapsed.
 ステップS14において、制御部Cは、循環時間が経過していないと判定すれば、タンクTS内に貯留されている処理済みの水は、未だ所定の基準よりも良好な水質になっていないと判断して、ステップS13で設定した状態を維持する。このとき、ポンプPは駆動している。したがって、水は、循環用流路2と主流路1とを交互に流れる。それによって、水は、循環し、水処理部3によって繰り返して水質を改善される。その結果、水の水質が時間の経過にともなって徐々により良好になる。循環時間は、前述のように、水質測定センサWQSによって測定された水質の優劣の程度に応じて予め決められた時間である。 In step S14, if it is determined that the circulation time has not elapsed, the control unit C determines that the treated water stored in the tank TS has not yet reached a water quality better than a predetermined standard. Then, the state set in step S13 is maintained. At this time, the pump P is operating. Therefore, water flows alternately between the circulation channel 2 and the main channel 1. Thereby, the water circulates, and the water quality is repeatedly improved by the water treatment unit 3. As a result, the quality of the water gradually improves over time. As described above, the circulation time is a predetermined time according to the degree of the water quality measured by the water quality measurement sensor WQS.
 ステップS14において、制御部Cは、循環時間が経過していると判定すれば、タンクTS内に貯留されている処理済みの水は、既に所定の基準よりも良好な水質になっているとみなす。それにより、ステップS15において、制御部Cは、第2の開閉弁V2および第3の開閉弁V3のそれぞれを開く一方で、第1の開閉弁V1および第4の開閉弁V4のそれぞれを閉じる。このとき、ポンプPが駆動状態である。そのため、タンクTS内に貯留されている処理済の水が、第3の開閉弁V3、上流側接続位置UPC、水処理部3、下流側接続位置LOC、および第2の開閉弁V2を経由して、二次タンクTLへ送り出される。 In step S14, if the control unit C determines that the circulation time has elapsed, it regards the treated water stored in the tank TS as already having a water quality better than a predetermined standard. . Accordingly, in step S15, the control unit C closes each of the first on-off valve V1 and the fourth on-off valve V4 while opening each of the second on-off valve V2 and the third on-off valve V3. At this time, the pump P is in a driving state. Therefore, the treated water stored in the tank TS passes through the third on-off valve V3, the upstream connection position UPC, the water treatment unit 3, the downstream connection position LOC, and the second on-off valve V2. And is sent to the secondary tank TL.
 その後、ステップS16において、制御部Cは、水位センサWHS1から送信されてきた情報に基づいて、タンクTS内の処理済の水の水位が下限水位WL以下であるか否かを判定する。ステップS16において、タンクTS内の処理済の水の水位が下限水位WL以下でなければ、制御部Cは、ステップS16の判定を繰り返す。このとき、ポンプPは駆動し続けている。そのため、タンクTS内の処理済の水は、第3の開閉弁V3、上流側接続位置UPC、水処理部3、下流側接続位置LOC、第2の開閉弁V2を経由して、二次タンクTLまで送り出され続ける。一方、ステップS16において、タンクTS内の処理済の水の水位が下限水位WL以下になっていると判定されれば、制御部Cは、再びステップS1の処理を実行する。 Thereafter, in step S16, the control unit C determines whether the level of the treated water in the tank TS is equal to or lower than the lower limit water level WL based on the information transmitted from the water level sensor WHS1. In step S16, if the water level of the treated water in the tank TS is not equal to or lower than the lower limit water level WL, the control unit C repeats the determination in step S16. At this time, the pump P continues to be driven. Therefore, the treated water in the tank TS passes through the third opening / closing valve V3, the upstream connection position UPC, the water treatment section 3, the downstream connection position LOC, and the second opening / closing valve V2, and then flows into the secondary tank. It continues to be sent to TL. On the other hand, if it is determined in step S16 that the water level of the processed water in the tank TS is equal to or lower than the lower limit water level WL, the control unit C executes the processing of step S1 again.
 (実施の形態2)
 図4および図5を用いて、実施の形態2の水処理装置100および水処理システム1000を説明する。
(Embodiment 2)
The water treatment apparatus 100 and the water treatment system 1000 according to the second embodiment will be described with reference to FIGS.
 まず、図4を用いて、本実施の形態の水処理装置100および水処理システム1000の全体構成を説明する。 First, the overall configuration of the water treatment apparatus 100 and the water treatment system 1000 according to the present embodiment will be described with reference to FIG.
 図4に示される本実施の形態の水処理装置100と図1に示される実施の形態1の水処理装置100とは、水質測定センサWQSが接続されている主流路1の位置のみが異なっている。言い換えると、図4に示される本実施の形態の水処理装置100と図1に示される実施の形態1の水処理装置100とは、水質測定センサWQSが接続されている主流路1の位置以外においては、同一の構成を備えている。 The water treatment apparatus 100 of the present embodiment shown in FIG. 4 differs from the water treatment apparatus 100 of the first embodiment shown in FIG. 1 only in the position of the main flow path 1 to which the water quality measurement sensor WQS is connected. I have. In other words, the water treatment apparatus 100 of the present embodiment shown in FIG. 4 and the water treatment apparatus 100 of the first embodiment shown in FIG. 1 are different from the position of the main flow path 1 to which the water quality measurement sensor WQS is connected. Have the same configuration.
 具体的には、本実施の形態の水処理装置100の水質測定センサWQSは、上流側接続位置UPCと下流側接続位置LOCとの間の主流路1に接続されている。具体的には、本実施の形態の水処理装置100の水質測定センサWQSは、水処理部3とポンプPとの間の主流路1に接続されている。したがって、本実施の形態の水処理装置100の水質測定センサWQSは、上流側接続位置UPCと下流側接続位置LOCとの間の主流路1を流れている水の水質を測定する。 Specifically, the water quality measurement sensor WQS of the water treatment apparatus 100 of the present embodiment is connected to the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC. Specifically, the water quality measurement sensor WQS of the water treatment device 100 of the present embodiment is connected to the main flow path 1 between the water treatment unit 3 and the pump P. Therefore, the water quality measurement sensor WQS of the water treatment apparatus 100 of the present embodiment measures the quality of the water flowing in the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC.
 本実施の形態の水処理装置100の制御部Cおよびそれに関連する構成は、図2を用いて説明された実施の形態1の制御部Cの構成およびそれに関連する構成と同一であるため、その説明は繰り返さない。 The control unit C of the water treatment apparatus 100 according to the present embodiment and the configuration related thereto are the same as the configuration of the control unit C according to the first embodiment described with reference to FIG. The description will not be repeated.
 次に、図5を用いて、本実施の形態の水処理装置100の制御部Cが実行する制御における各処理を説明する。 Next, each process in the control executed by the control unit C of the water treatment apparatus 100 of the present embodiment will be described with reference to FIG.
 図5の本実施の形態の制御部Cが実行する処理と図3の実施の形態1の制御部Cが実行する処理とは、ステップS9A、ステップS10A、ステップS11A、ステップS12A、ステップS13A、およびステップS14Aの処理のみが異なっている。言い換えると、図5の形態の制御部Cが実行する処理と図3の制御部Cが実行する処理とは、ステップS9A、ステップS10A、ステップS11A、ステップS12A、ステップS13A、およびステップS14A以外においては、同一の処理を実行する。 The processing executed by the control unit C according to the present embodiment in FIG. 5 and the processing executed by the control unit C according to the first embodiment in FIG. 3 include steps S9A, S10A, S11A, S12A, S13A, and S13A. Only the processing of step S14A is different. In other words, the process executed by the control unit C in the embodiment of FIG. 5 and the process executed by the control unit C in FIG. 3 are the same as those in steps S9A, S10A, S11A, S12A, S13A, and S14A. Perform the same processing.
 具体的には、図5に示される本実施の形態の制御部Cが実行する処理においては、ステップS9Aにおいては、制御部Cは、水位センサWHS1によって測定されたタンクTS内に貯留されている処理済の水の水位が上限水位WH以上であるか否かを判定する。ステップS9Aにおいて、タンクTS内に貯留されている処理済の水の水位が上限水位WH以上ではないと判定される場合がある。この場合には、制御部Cは、ステップS10Aにおいて、第1の開閉弁V1および第4の開閉弁V4のそれぞれを開く一方で、第2の開閉弁V2および第3の開閉弁V3のそれぞれを閉じる。 Specifically, in the processing executed by control unit C of the present embodiment shown in FIG. 5, in step S9A, control unit C is stored in tank TS measured by water level sensor WHS1. It is determined whether or not the water level of the treated water is equal to or higher than the upper limit water level WH. In step S9A, it may be determined that the level of the treated water stored in the tank TS is not higher than the upper limit water level WH. In this case, in step S10A, the control unit C opens each of the first on-off valve V1 and the fourth on-off valve V4, and opens each of the second on-off valve V2 and the third on-off valve V3. close.
 このとき、ポンプPは駆動している。そのため、水が、第1の開閉弁V1、上流側接続位置UPC、ポンプP、水質測定センサWQS、水処理部3、下流側接続位置LOC、および第4の開閉弁V4を経由して、タンクTSに流れ込む。その後、制御部Cは、タンクTS内に貯留されている処理済の水の水位が上限水位WH以上であると判定されるまで、ステップS9AおよびステップS10Aの処理を繰り返す。 と き At this time, the pump P is operating. Therefore, the water is transferred to the tank via the first on-off valve V1, the upstream connection position UPC, the pump P, the water quality measurement sensor WQS, the water treatment unit 3, the downstream connection position LOC, and the fourth on-off valve V4. Flow into TS. After that, the control unit C repeats the processing of steps S9A and S10A until it is determined that the level of the treated water stored in the tank TS is equal to or higher than the upper limit water level WH.
 ステップS9Aにおいて、タンクTS内に貯留されている処理済の水の水位が上限水位WH以上であると判定される場合がある。この場合には、制御部Cは、ステップS11Aにおいて、水質測定センサWQSから送信されてきた水質の情報に基づいて、水質が所定の基準より良好であるか否かを判定する。 に お い て In step S9A, it may be determined that the level of the treated water stored in the tank TS is equal to or higher than the upper limit water level WH. In this case, the control unit C determines whether or not the water quality is better than a predetermined reference based on the water quality information transmitted from the water quality measurement sensor WQS in step S11A.
 ステップS11Aにおいて、水質が所定の基準より良好ではないと判定されれば、ステップS12Aにおいて、第1の開閉弁V1および第2の開閉弁V2のそれぞれを閉じる一方で、第3の開閉弁V3および第4の開閉弁V4を開く。これにより、主流路1の一部と循環用流路2とを交互に経由して、処理済の水が循環する。具体的には、処理済の水が、上流側接続位置UPCと下流側接続位置LOCとの間の主流路1から循環用流路2へ流れた後、循環用流路2から上流側接続位置UPCと下流側接続位置LOCとの間の主流路1へ流れる動作が繰り返される。それにより、水は、水処理部3によって繰り返して水質を改善される。その後、ステップS1の処理が実行される。 If it is determined in step S11A that the water quality is not better than the predetermined standard, in step S12A, the first on-off valve V1 and the second on-off valve V2 are closed, while the third on-off valve V3 and The fourth on-off valve V4 is opened. Thereby, the treated water circulates alternately through a part of the main flow path 1 and the circulation flow path 2. Specifically, after the treated water flows from the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC to the circulation flow path 2, the treated water flows from the circulation flow path 2 to the upstream connection position. The operation of flowing to the main flow path 1 between the UPC and the downstream connection position LOC is repeated. Thereby, the water quality is repeatedly improved by the water treatment unit 3. Then, the process of step S1 is performed.
 一方、ステップS11Aにおいて、処理済の水が所定の基準より水質が良好であると判定される場合がある。この場合には、ステップS13Aにおいて、制御部Cは、第1の開閉弁V1および第4の開閉弁V4のそれぞれを閉じる一方で、第2の開閉弁V2および第3の開閉弁V3のそれぞれを開く。このとき、ポンプPが駆動している。そのため、タンクTS内に貯留されている処理済の水が、第3の開閉弁V3、上流側接続位置UPC、水質測定センサWQS、水処理部3、下流側接続位置LOC、および第2の開閉弁V2を経由して、二次タンクTLへ送り出される。 On the other hand, in step S11A, it may be determined that the quality of the treated water is better than a predetermined standard. In this case, in step S13A, the control unit C closes each of the first on-off valve V1 and the fourth on-off valve V4, and closes each of the second on-off valve V2 and the third on-off valve V3. open. At this time, the pump P is operating. Therefore, the treated water stored in the tank TS is supplied to the third opening / closing valve V3, the upstream connection position UPC, the water quality measurement sensor WQS, the water treatment unit 3, the downstream connection position LOC, and the second opening / closing valve. It is sent out to the secondary tank TL via the valve V2.
 その後、ステップS14Aにおいて、制御部Cは、水位センサWHS1によって測定されたタンクTS内の処理済の水が下限水位WL以下であるか否かを判定する。ステップS14Aにおいて、タンクTS内の処理済の水が下限水位WL以下であると判定されなければ、制御部Cは、ステップS14Aの判定を繰り返す。一方、ステップS14Aにおいて、タンクTS内の処理済の水が下限水位WL以下であると判定されれば、制御部Cは、ステップS1の処理を実行する。 Thereafter, in step S14A, the control unit C determines whether or not the treated water in the tank TS measured by the water level sensor WHS1 is equal to or lower than the lower limit water level WL. If it is not determined in step S14A that the treated water in the tank TS is equal to or lower than the lower limit water level WL, the control unit C repeats the determination in step S14A. On the other hand, if it is determined in step S14A that the treated water in the tank TS is equal to or lower than the lower limit water level WL, the control unit C executes the processing in step S1.
 本実施の形態の水処理装置100によれば、水質測定センサWQSによって測定された上流側接続位置UPCと下流側接続位置LOCとの間の主流路1を流れる処理済の水の水質が所定の基準よりも良好である場合がある。この場合にのみ、処理済の水が上流側接続位置UPCと下流側接続位置LOCとの間の主流路1から二次タンクTLへ送り出される。そのため、循環用流路2およびタンクTSが故障していなければ、ユーザは、実施の形態1の水処理装置100に比較して、より確実に所定の基準よりも水質が良好な二次タンクTL内の処理済の水を利用することができる。 According to the water treatment apparatus 100 of the present embodiment, the quality of the treated water flowing through the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC measured by the water quality measurement sensor WQS is a predetermined value. May be better than standard. Only in this case, the treated water is sent from the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC to the secondary tank TL. Therefore, if the circulation flow path 2 and the tank TS are not out of order, the user can more reliably perform the secondary tank TL having a better water quality than the predetermined standard as compared with the water treatment apparatus 100 according to the first embodiment. The treated water inside can be used.
 本実施の形態の水処理装置100によっても、タンクTSが故障し、循環用流路2に原水を流すことができない場合においても、原水が水処理部3によって少なくとも一回だけは水質を改善された状態で処理済の水としてユーザに供給される。また、本実施の形態の水処理装置100によっても、手動運転および自動運転のいずれの場合においても、原水が水処理部3によって少なくとも一回だけは水質を改善された状態で処理済の水としてユーザに供給される。 According to the water treatment apparatus 100 of the present embodiment, even when the tank TS breaks down and the raw water cannot flow through the circulation channel 2, the water quality of the raw water is improved at least once by the water treatment unit 3. The water is supplied to the user as treated water. In addition, according to the water treatment apparatus 100 of the present embodiment, in both the manual operation and the automatic operation, the raw water is treated as water that has been treated at least once by the water treatment unit 3 with the water quality improved. Supplied to the user.
 (実施の形態3)
 図6~図8を用いて、実施の形態3の水処理装置100および水処理システム1000を説明する。
(Embodiment 3)
Third Embodiment A water treatment apparatus 100 and a water treatment system 1000 according to a third embodiment will be described with reference to FIGS.
 まず、図6を用いて、本実施の形態の水処理装置100および水処理システム1000の全体構成を説明する。 First, the overall configurations of the water treatment apparatus 100 and the water treatment system 1000 according to the present embodiment will be described with reference to FIG.
 本実施の形態の水処理装置100は、主流路1、上流側接続位置UPC、下流側接続位置LOC、循環用流路2、タンクTS、ポンプP、水処理部3、および水質測定センサWQSを備えている。これらの構成は、実施の形態1の対応する構成と同一である。ただし、本実施の形態の水処理装置100は、上流側流路切替弁SWV1および下流側流路切替弁SWV2を備えている。 The water treatment apparatus 100 of the present embodiment includes a main flow path 1, an upstream connection position UPC, a downstream connection position LOC, a circulation flow path 2, a tank TS, a pump P, a water treatment unit 3, and a water quality measurement sensor WQS. Have. These configurations are the same as the corresponding configurations of the first embodiment. However, the water treatment apparatus 100 of the present embodiment includes the upstream-side passage switching valve SWV1 and the downstream-side passage switching valve SWV2.
 したがって、図6の本実施の形態の水処理装置100と図1の実施の形態1の水処理装置100とは、第1~第4の開閉弁V1,V2,V3,V4が上流側流路切替弁SWV1および下流側流路切替弁SWV2に置換されている点のみ異なっている。言い換えると、図6の水処理装置100と図1の水処理装置100とは、第1~第4の開閉弁V1,V2,V3,V4が上流側流路切替弁SWV1および下流側流路切替弁SWV2に置き換えられている点以外においては、同一の構成を備えている。上流側流路切替弁SWV1および下流側流路切替弁SWV2は、それぞれ、いわゆる三方弁である。 Therefore, the first to fourth on-off valves V1, V2, V3, and V4 of the water treatment apparatus 100 of the present embodiment in FIG. 6 and the water treatment apparatus 100 of the first embodiment in FIG. The only difference is that the switching valve SWV1 and the downstream flow path switching valve SWV2 are replaced. In other words, in the water treatment apparatus 100 of FIG. 6 and the water treatment apparatus 100 of FIG. 1, the first to fourth on-off valves V1, V2, V3, and V4 have the upstream-side flow path switching valve SWV1 and the downstream-side flow path switching Except for being replaced by the valve SWV2, it has the same configuration. Each of the upstream flow path switching valve SWV1 and the downstream flow path switching valve SWV2 is a so-called three-way valve.
 上流側流路切替弁SWV1は、主流路1と循環用流路2との相対的に上流側の接続位置である上流側接続位置UPCに設けられている。上流側流路切替弁SWV1は、上流側通過状態および上流側循環状態のいずれかに切り替えられる。上流側通過状態は、水が上流側接続位置UPCの上流の主流路1から上流側接続位置UPCと下流側接続位置LOCとの間の主流路1へ流れる状態である。上流側循環状態は、水がタンクTSの下流の循環用流路2から上流側接続位置UPCと下流側接続位置LOCとの間の主流路1へ流れる状態である。 The upstream flow path switching valve SWV1 is provided at an upstream connection position UPC that is a connection position between the main flow path 1 and the circulation flow path 2 on the relatively upstream side. The upstream flow path switching valve SWV1 is switched between an upstream passage state and an upstream circulation state. The upstream passage state is a state in which water flows from the main flow path 1 upstream of the upstream connection position UPC to the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC. The upstream circulation state is a state in which water flows from the circulation flow path 2 downstream of the tank TS to the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC.
 下流側流路切替弁SWV2は、主流路1と循環用流路2との相対的に下流側の接続位置である下流側接続位置LOCに設けられている。下流側流路切替弁SWV2は、下流側通過状態および下流側循環状態のいずれかに切り替えられる。下流側通過状態は、水が上流側接続位置UPCと下流側接続位置LOCとの間の主流路1から下流側接続位置LOCの下流の主流路1へ流れる状態である。下流側循環状態は、水が上流側接続位置UPCと下流側接続位置LOCとの間の主流路1からタンクTSの上流の循環用流路2へ流れる状態である。 (4) The downstream flow path switching valve SWV2 is provided at a downstream connection position LOC that is a relatively downstream connection position between the main flow path 1 and the circulation flow path 2. The downstream flow path switching valve SWV2 is switched to one of a downstream passage state and a downstream circulation state. The downstream passage state is a state in which water flows from the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC to the main flow path 1 downstream of the downstream connection position LOC. The downstream circulation state is a state in which water flows from the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC to the circulation flow path 2 upstream of the tank TS.
 本実施の形態の水処理装置100によっても、原水が水処理部3によって少なくとも一回だけは水質を改善された状態でユーザに供給される。 According to the water treatment apparatus 100 of the present embodiment, the raw water is supplied to the user at least once by the water treatment unit 3 in a state where the water quality is improved.
 また、本実施の形態においても、実施の形態1と同様に、水質測定センサWQSが上流側接続位置UPCの上流の主流路1に接続されている。そのため、制御部Cは、水質測定センサWQSによって測定された水の水質を特定可能な情報を受け取る。また、制御部Cは、ポンプP、水処理部3、上流側流路切替弁SWV1、および下流側流路切替弁SWV2を制御する。 Also, in the present embodiment, similarly to the first embodiment, the water quality measurement sensor WQS is connected to the main flow path 1 upstream of the upstream connection position UPC. Therefore, the control unit C receives information that can specify the water quality of the water measured by the water quality measurement sensor WQS. Further, the control unit C controls the pump P, the water treatment unit 3, the upstream-side passage switching valve SWV1, and the downstream-side passage switching valve SWV2.
 さらに、制御部Cは、水質測定センサWQSによって測定された水質が所定の基準よりも良好であるか否かを判定する水質判定部(図8のS9)を含んでいる。制御部Cは、ポンプPが主流路1に水を流し、かつ、水処理部3が主流路1を流れる水の水質を改善する制御を実行している状態になる。この状態で、水質判定部(図8のS9)によって水質が所定の基準よりも良好であると判定される場合がある。この場合に、制御部Cは、上流側流路切替弁SWV1を上流側通過状態にし、かつ、下流側流路切替弁SWV2を下流側通過状態にする。 制 御 The control unit C further includes a water quality determination unit (S9 in FIG. 8) that determines whether the water quality measured by the water quality measurement sensor WQS is better than a predetermined reference. The control unit C is in a state where the pump P causes the water to flow through the main flow path 1 and the water treatment unit 3 executes control for improving the quality of the water flowing through the main flow path 1. In this state, the water quality determination unit (S9 in FIG. 8) may determine that the water quality is better than a predetermined standard. In this case, the control unit C sets the upstream passage switching valve SWV1 to the upstream passage state and sets the downstream passage switching valve SWV2 to the downstream passage state.
 これにより、水が水質測定センサWQS、上流側流路切替弁SWV1、水処理部3、および下流側流路切替弁SWV2を経由して、二次タンクTLへ送り込まれる。つまり、水は、循環用流路2に流れ込むことなく、主流路1のみを流れて、二次タンクTLに送り込まれる。 に よ り Thereby, the water is sent to the secondary tank TL via the water quality measurement sensor WQS, the upstream flow path switching valve SWV1, the water treatment unit 3, and the downstream flow path switching valve SWV2. That is, the water flows only through the main flow path 1 without flowing into the circulation flow path 2 and is sent to the secondary tank TL.
 したがって、本実施の形態の水処理装置100によっても、手動運転および自動運転のいずれの場合においても、原水が水処理部3によって少なくとも一回だけは水質を改善された状態で処理済の水としてユーザに供給される。 Therefore, even in the case of the manual operation and the automatic operation, the raw water is treated at least once by the water treatment unit 3 as the treated water in a state where the water quality is improved by the water treatment apparatus 100 of the present embodiment. Supplied to the user.
 本実施の形態においても、水処理装置100は、現在の状態が自動運転の状態かそれとも手動運転の状態かを表示する表示部Dを備えている。表示部Dが手動運転の状態であることを表示している場合には、手動で、上流側流路切替弁SWV1を上流側通過状態にし、かつ、下流側流路切替弁SWV2を下流側通過状態にすることができる。具体的には、ユーザは、運転コース選択部Sを操作することによって、上流側流路切替弁SWV1を上流側通過状態にし、かつ、下流側流路切替弁SWV2を下流側通過状態にすることができる。 も Also in the present embodiment, the water treatment apparatus 100 includes the display unit D that indicates whether the current state is the state of the automatic operation or the state of the manual operation. When the display unit D indicates that the operation is in the manual operation mode, the upstream passage switching valve SWV1 is manually set to the upstream passage state, and the downstream passage switching valve SWV2 is manually passed to the downstream passage switch. State. Specifically, the user operates the operation course selection unit S to set the upstream flow path switching valve SWV1 to the upstream passage state and set the downstream flow path switching valve SWV2 to the downstream passage state. Can be.
 次に、図7を用いて、本実施の形態の水処理装置100の制御部Cおよびそれに関連する構成を説明する。 Next, with reference to FIG. 7, the control unit C of the water treatment apparatus 100 of the present embodiment and a configuration related thereto will be described.
 図7の本実施の形態の制御部Cの関連構成と図2の実施の形態1の制御部Cの関連構成とは、第1~第4の開閉弁V1,V2,V3,V4が上流側流路切替弁SWV1および下流側流路切替弁SWV2に置換されている点においてのみ異なる。言い換えると、図7の制御部Cの関連構成と図2の制御部Cの関連構成とは、第1~第4の開閉弁V1,V2,V3,V4が上流側流路切替弁SWV1および下流側流路切替弁SWV2に置換されている点以外においては同一である。 The related configuration of the control unit C of the present embodiment in FIG. 7 and the related configuration of the control unit C of the first embodiment in FIG. 2 are such that the first to fourth on-off valves V1, V2, V3, and V4 are on the upstream side. The only difference is that the flow path switching valve SWV1 and the downstream flow path switching valve SWV2 are replaced. In other words, the related configuration of the control unit C in FIG. 7 and the related configuration of the control unit C in FIG. 2 are different from each other in that the first to fourth on-off valves V1, V2, V3, and V4 are the upstream-side flow switching valve SWV1 and It is the same except that it is replaced with the side passage switching valve SWV2.
 本実施の形態においては、制御部Cは、第1~第4の開閉弁V1,V2,V3,V4を制御する代わりに、上流側流路切替弁SWV1および下流側流路切替弁SWV2のそれぞれを制御する。 In the present embodiment, instead of controlling the first to fourth on-off valves V1, V2, V3, and V4, the control unit C controls the upstream-side flow path switching valve SWV1 and the downstream-side flow path switching valve SWV2, respectively. Control.
 次に、図8を用いて、本実施の形態の水処理装置100の制御部Cが実行する制御における各処理を説明する。 Next, each process in the control executed by the control unit C of the water treatment apparatus 100 of the present embodiment will be described with reference to FIG.
 図8に示されている本実施の形態の制御部Cの処理は、ステップS7C、ステップS11C、S13C、ステップS15Cにおいてのみ、図3に示されている実施の形態1の制御部Cの処理と異なる。具体的には、実施の形態1の第1~第4の開閉弁V1,V2,V3,V4の動作が、上流側流路切替弁SWV1および下流側流路切替弁SWV2の動作に置き換えられている。これ以外の処理については、図8に示されている本実施の形態の制御部Cの処理と図3に示されている実施の形態1の制御部Cの処理とは同一である。 The processing of the control unit C of the present embodiment shown in FIG. 8 is different from the processing of the control unit C of the first embodiment shown in FIG. 3 only in steps S7C, S11C, S13C, and S15C. different. Specifically, the operations of the first to fourth opening / closing valves V1, V2, V3, and V4 of the first embodiment are replaced with the operations of the upstream flow path switching valve SWV1 and the downstream flow path switching valve SWV2. I have. Other processes are the same as those of the control unit C of the present embodiment shown in FIG. 8 and those of the control unit C of the first embodiment shown in FIG.
 具体的には、ステップS7Cにおいて、制御部Cは、上流側流路切替弁SWV1を上流側通過状態にするとともに、下流側流路切替弁SWV2を下流側通過状態にする。これにより、水は、水質測定センサWQS、上流側流路切替弁SWV1、水処理部3、および下流側流路切替弁SWV2を経由して、二次タンクTLへ送り込まれる。つまり、水は、循環用流路2に流れ込むことなく、主流路1のみを流れて、二次タンクTLに送り込まれる。 Specifically, in step S7C, the control unit C sets the upstream passage switching valve SWV1 to the upstream passage state and sets the downstream passage switching valve SWV2 to the downstream passage state. As a result, the water is sent to the secondary tank TL via the water quality measurement sensor WQS, the upstream flow path switching valve SWV1, the water treatment unit 3, and the downstream flow path switching valve SWV2. That is, the water flows only through the main flow path 1 without flowing into the circulation flow path 2 and is sent to the secondary tank TL.
 ステップS11Cにおいて、制御部Cは、上流側流路切替弁SWV1を上流側通過状態にするとともに、下流側流路切替弁SWV2を下流側循環状態にする。これにより、水が、水質測定センサWQS、上流側流路切替弁SWV1、水処理部3、および下流側流路切替弁SWV2を経由して、タンクTSへ送り込まれる。つまり、水は、主流路1から下流側接続位置LOCを経由して循環用流路2に流れ込み、二次タンクTLではなく、タンクTSに送り込まれる。 In step S11C, the control unit C sets the upstream passage switching valve SWV1 to the upstream passage state and sets the downstream passage switching valve SWV2 to the downstream circulation state. Thereby, water is sent to the tank TS via the water quality measurement sensor WQS, the upstream flow path switching valve SWV1, the water treatment unit 3, and the downstream flow path switching valve SWV2. That is, water flows from the main flow path 1 to the circulation flow path 2 via the downstream connection position LOC, and is sent to the tank TS instead of the secondary tank TL.
 ステップS13Cにおいて、制御部Cは、上流側流路切替弁SWV1を上流側循環状態にするとともに、下流側流路切替弁SWV2も循環状態にする。これにより、水が、タンクTSから上流側流路切替弁SWV1、水処理部3、および下流側流路切替弁SWV2を経由して、再び、タンクTSへ至るサイクルを繰り返す。つまり、水は、循環用流路2から主流路1へ流れた後、主流路1から循環用流路2へ流れるサイクルを繰り返す。 In step S13C, the control unit C sets the upstream flow path switching valve SWV1 to the upstream circulation state, and also sets the downstream flow path switching valve SWV2 to the circulation state. Thus, the cycle in which water reaches the tank TS again from the tank TS via the upstream flow path switching valve SWV1, the water treatment unit 3, and the downstream flow path switching valve SWV2 is repeated. That is, a cycle in which water flows from the circulation channel 2 to the main channel 1 and then flows from the main channel 1 to the circulation channel 2 is repeated.
 ステップS15Cにおいて、制御部Cは、上流側流路切替弁SWV1を上流側循環状態にするとともに、下流側流路切替弁SWV2を下流側通過状態にする。これにより、水が、タンクTSから上流側流路切替弁SWV1、水処理部3、および下流側流路切替弁SWV2を経由して、二次タンクTLへ送り込まれる。つまり、水は、循環用流路2から主流路1へ流れた後、二次タンクTLに送り込まれる。 In step S15C, the control unit C sets the upstream flow path switching valve SWV1 to the upstream circulation state and sets the downstream flow path switching valve SWV2 to the downstream passage state. Thereby, water is sent from the tank TS to the secondary tank TL via the upstream flow path switching valve SWV1, the water treatment unit 3, and the downstream flow path switching valve SWV2. That is, the water flows from the circulation channel 2 to the main channel 1 and is then sent to the secondary tank TL.
 本実施の形態の水処理装置100においても、実施の形態1の水処理装置100の水の流れと実質的に同一の水の流れを実現することができる。 水 Also in the water treatment apparatus 100 of the present embodiment, it is possible to realize substantially the same flow of water as that of the water treatment apparatus 100 of the first embodiment.
 本実施の形態の水処理装置100によれば、たとえば、タンクTSが故障し、循環用流路2に原水を流すことができない場合においても、原水が水処理部3によって少なくとも一回だけは水質を改善された状態で処理済の水としてユーザに供給される。また、本実施の形態の水処理装置100によれば、手動運転および自動運転のいずれの場合においても、原水が水処理部3によって少なくとも一回だけは水質を改善された状態で処理済の水としてユーザに供給される。 According to the water treatment apparatus 100 of the present embodiment, for example, even when the tank TS breaks down and the raw water cannot flow through the circulation channel 2, the raw water is treated at least once by the water treatment unit 3. Is supplied to the user as treated water in an improved condition. Further, according to the water treatment apparatus 100 of the present embodiment, in both of the manual operation and the automatic operation, the raw water is treated at least once by the water treatment unit 3 in a state where the water quality is improved. As supplied to the user.
 (実施の形態4)
 図9および図10を用いて、実施の形態4の水処理装置100および水処理システム1000を説明する。
(Embodiment 4)
Fourth Embodiment A water treatment apparatus 100 and a water treatment system 1000 according to a fourth embodiment will be described with reference to FIGS. 9 and 10.
 まず、図9を用いて、本実施の形態の水処理装置100および水処理システム1000の全体構成を説明する。 First, the overall configuration of the water treatment apparatus 100 and the water treatment system 1000 according to the present embodiment will be described with reference to FIG.
 図9に示される本実施の形態の水処理装置100と図6に示される実施の形態3の水処理装置100とは、水質測定センサWQSが接続されている主流路1の位置のみが異なっている。言い換えると、図9に示される本実施の形態の水処理装置100と図6に示される実施の形態3の水処理装置100とは、水質測定センサWQSが接続されている主流路1の位置以外においては、同一の構成を備えている。 The water treatment apparatus 100 of the present embodiment shown in FIG. 9 differs from the water treatment apparatus 100 of the third embodiment shown in FIG. 6 only in the position of the main flow path 1 to which the water quality measurement sensor WQS is connected. I have. In other words, the water treatment apparatus 100 of the present embodiment shown in FIG. 9 and the water treatment apparatus 100 of the third embodiment shown in FIG. 6 are different from the position of the main flow path 1 to which the water quality measurement sensor WQS is connected. Have the same configuration.
 本実施の形態の水処理装置100の水質測定センサWQSは、上流側接続位置UPCと下流側接続位置LOCとの間の主流路1に接続されている。より具体的には、本実施の形態の水質測定センサWQSは、水処理部3とポンプPとの間の主流路1に接続されている。 水 The water quality measurement sensor WQS of the water treatment apparatus 100 of the present embodiment is connected to the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC. More specifically, the water quality measurement sensor WQS of the present embodiment is connected to the main flow path 1 between the water treatment unit 3 and the pump P.
 本実施の形態の水処理装置100の制御部Cおよびそれに関連する構成は、図7を用いて説明された実施の形態3の制御部Cの構成およびそれに関連する構成と同一であるため、その説明は繰り返さない。 The control unit C of the water treatment apparatus 100 according to the present embodiment and the configuration related thereto are the same as the configuration of the control unit C according to the third embodiment described with reference to FIG. The description will not be repeated.
 次に、図10を用いて、本実施の形態の水処理装置100の制御部Cが実行する処理を説明する。 Next, the processing executed by the control unit C of the water treatment apparatus 100 of the present embodiment will be described with reference to FIG.
 図10の本実施の形態の制御部Cが実行する処理と図8の実施の形態3の制御部Cが実行する処理とは、ステップS9B、ステップS10B、ステップS11B、ステップS12B、ステップS13B、およびステップS14Bの処理においてのみ異なる。言い換えると、図10の制御部Cと図8の実施の形態3の制御部Cとは、ステップS9B、ステップS10B、ステップS11B、ステップS12B、ステップS13B、およびステップS14B以外においては、同一の処理を実行する。 The processing executed by the control unit C according to the present embodiment in FIG. 10 and the processing executed by the control unit C according to the third embodiment in FIG. 8 include steps S9B, S10B, S11B, S12B, S13B, It differs only in the processing of step S14B. In other words, the control unit C in FIG. 10 and the control unit C in the third embodiment in FIG. 8 perform the same processing except for steps S9B, S10B, S11B, S12B, S13B, and S14B. Execute.
 具体的には、図10に示される本実施の形態の制御部Cが実行する処理においては、ステップS9Bにおいては、制御部Cは、水位センサWHS1によって測定されたタンクTS内に貯留されている処理済の水の水位が上限水位WH以上であるか否かを判定する。ステップS9Bにおいて、タンクTS内に貯留されている処理済の水の水位が上限水位WH以上でないと判定される場合がある。この場合には、制御部Cは、ステップS10Bにおいて、上流側流路切替弁SWV1を上流側通過状態にする一方で、下流側流路切替弁SWV2を下流側循環状態にする。 Specifically, in the process executed by control unit C of the present embodiment shown in FIG. 10, in step S9B, control unit C is stored in tank TS measured by water level sensor WHS1. It is determined whether or not the water level of the treated water is equal to or higher than the upper limit water level WH. In step S9B, it may be determined that the level of the treated water stored in the tank TS is not higher than the upper limit water level WH. In this case, in step S10B, the control unit C sets the upstream flow path switching valve SWV1 to the upstream passage state while setting the downstream flow path switching valve SWV2 to the downstream circulation state.
 このとき、ポンプPは駆動されている。そのため、水が、上流側流路切替弁SWV1、水質測定センサWQS、水処理部3、および下流側流路切替弁SWV2を経由して、タンクTSへ送り込まれる。つまり、水は、循環用流路2に流れ込み、二次タンクTLではなく、タンクTSに送り込まれる。その後、制御部Cは、タンクTS内に貯留されている処理済の水の水位が上限水位WH以上になっていると判定されるまで、ステップS9BおよびステップS10Bの処理を繰り返す。 と き At this time, the pump P is being driven. Therefore, the water is sent to the tank TS via the upstream flow path switching valve SWV1, the water quality measurement sensor WQS, the water treatment unit 3, and the downstream flow path switching valve SWV2. That is, the water flows into the circulation channel 2 and is sent not to the secondary tank TL but to the tank TS. After that, the control unit C repeats the processes of step S9B and step S10B until it is determined that the level of the treated water stored in the tank TS is equal to or higher than the upper limit water level WH.
 ステップS9Bにおいて、タンクTS内に貯留されている処理済の水の水位が上限水位WH以上であると判定される場合がある。この場合には、ステップS11Bにおいて、制御部Cは、水質測定センサWQSから送信されてきた水質の情報に基づいて、水質が所定の基準より良好であるか否かを判定する。 、 In step S9B, the level of the treated water stored in the tank TS may be determined to be equal to or higher than the upper limit water level WH. In this case, in step S11B, the control unit C determines whether or not the water quality is better than a predetermined standard based on the water quality information transmitted from the water quality measurement sensor WQS.
 ステップS11Bにおいて、水質が所定の基準よりも良好でないと判定されれば、ステップS12Bにおいて、上流側流路切替弁SWV1を上流側循環状態にするとともに、下流側流路切替弁SWV2を下流側循環状態にする。このとき、ポンプPは駆動されている。そのため、処理済の水が主流路1の一部と循環用流路2とを交互に経由することによって、いわゆる循環サイクルを繰り返す。これにより、水は水処理部3によって繰り返して水質を改善される。 If it is determined in step S11B that the water quality is not better than the predetermined standard, in step S12B, the upstream passage switching valve SWV1 is set to the upstream circulation state, and the downstream passage switching valve SWV2 is set to the downstream circulation. State. At this time, the pump P is being driven. Therefore, the so-called circulation cycle is repeated by the treated water alternately passing through a part of the main flow path 1 and the circulation flow path 2. Thereby, the water quality is repeatedly improved by the water treatment unit 3.
 具体的には、処理済の水が、上流側接続位置UPCと下流側接続位置LOCとの間の主流路1から循環用流路2へ流れた後、循環用流路2から上流側接続位置UPCと下流側接続位置LOCとの間の主流路1へ流れる動作が繰り返される。その後、ステップS1の処理が実行される。 Specifically, after the treated water flows from the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC to the circulation flow path 2, the treated water flows from the circulation flow path 2 to the upstream connection position. The operation of flowing to the main flow path 1 between the UPC and the downstream connection position LOC is repeated. Then, the process of step S1 is performed.
 一方、ステップS11Bにおいて、処理済の水が所定の基準よりも良好であると判定されると、ステップS13Bにおいて、制御部Cは、上流側流路切替弁SWV1を循環状態にするとともに、下流側流路切替弁SWV2を通過状態にする。このとき、ポンプPが駆動されている。そのため、タンクTS内に貯留されている処理済の水が、上流側流路切替弁SWV1、水処理部3、下流側流路切替弁SWV2を経由して、二次タンクTLへ送り出される。 On the other hand, when it is determined in step S11B that the treated water is better than the predetermined reference, in step S13B, the control unit C sets the upstream flow path switching valve SWV1 to the circulation state and The passage switching valve SWV2 is set to the passing state. At this time, the pump P is being driven. Therefore, the treated water stored in the tank TS is sent out to the secondary tank TL via the upstream flow path switching valve SWV1, the water treatment unit 3, and the downstream flow path switching valve SWV2.
 その後、ステップS14Bにおいて、制御部Cは、タンクTS内の処理済の水が下限水位WL以下であるか否かを判定する。ステップS14Bにおいて、タンクTS内の処理済の水が下限水位WL以下であると判定されなければ、制御部Cは、ステップS14Bの判定を繰り返す。一方、ステップS14Bにおいて、タンクTS内の処理済の水が下限水位WL以下であると判定されれば、制御部Cは、ステップS1の処理を実行する。 Thereafter, in step S14B, the control unit C determines whether or not the treated water in the tank TS is equal to or lower than the lower limit water level WL. If it is not determined in step S14B that the treated water in the tank TS is equal to or lower than the lower limit water level WL, the control unit C repeats the determination in step S14B. On the other hand, if it is determined in step S14B that the treated water in the tank TS is equal to or lower than the lower limit water level WL, the control unit C executes the processing in step S1.
 上記の水処理装置100によれば、タンクTSまたは循環用流路2が故障し、循環用流路2に原水を流すことができない場合においても、原水が水処理部3によって少なくとも一回だけは水質を改善された状態で処理済の水としてユーザに供給される。また、本実施の形態の水処理装置100によっても、手動運転および自動運転のいずれの場合においても、原水が水処理部3によって少なくとも一回だけは水質を改善された状態で処理済の水としてユーザに供給される。 According to the above water treatment apparatus 100, even when the tank TS or the circulation flow path 2 fails and the raw water cannot flow through the circulation flow path 2, the raw water is not removed by the water treatment unit 3 at least once. The water is supplied to the user as treated water with improved water quality. In addition, according to the water treatment apparatus 100 of the present embodiment, in both the manual operation and the automatic operation, the raw water is treated as water that has been treated at least once by the water treatment unit 3 with the water quality improved. Supplied to the user.
 本実施の形態の水処理装置100によれば、水質測定センサWQSによって測定された上流側接続位置UPCと下流側接続位置LOCとの間の主流路1を流れる処理済の水の水質が所定の基準よりも良好である場合がある。この場合にのみ、処理済の水が上流側接続位置UPCと下流側接続位置LOCとの間の主流路1から二次タンクTLへ送り出される。そのため、二次タンクTL内の処理済のユーザは、より確実に所定の基準よりも良好な処理済の水を利用することができる。 According to the water treatment apparatus 100 of the present embodiment, the quality of the treated water flowing through the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC measured by the water quality measurement sensor WQS is a predetermined value. May be better than standard. Only in this case, the treated water is sent from the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC to the secondary tank TL. Therefore, the treated user in the secondary tank TL can more reliably use the treated water better than the predetermined standard.
 (実施の形態5)
 上記した実施の形態1~4の水処理装置100は、制御部Cが設けられているが、制御部Cが設けられていなくてもよい。
(Embodiment 5)
Although the water treatment apparatuses 100 according to Embodiments 1 to 4 are provided with the control unit C, the control unit C may not be provided.
 本実施の形態においては、上記した実施の形態1および2の第1~第4の開閉弁V1,V2,V3,V4がユーザの手動操作によって開閉され得る構造を有している。そのため、ユーザが、上記した制御部Cの代わりに、上記した第1~第4の開閉弁V1,V2,V3,V4にその開閉動作をさせれば、実施の形態1および2の水処理装置100と同様の水の流れを形成することができる。 In this embodiment, the first to fourth on-off valves V1, V2, V3, and V4 of the first and second embodiments have a structure that can be opened and closed by a user's manual operation. Therefore, if the user causes the first to fourth on-off valves V1, V2, V3, and V4 to open and close instead of the control unit C, the water treatment apparatus according to the first and second embodiments can be used. Water flow similar to 100 can be formed.
 また、本実施の形態の他の例においては、上記した実施の形態3および4の上流側流路切替弁SWV1および下流側流路切替弁SWV2がユーザの手動操作によって流路が切り替えられ得る構造を有している。そのため、ユーザが、上記した制御部Cの代わりに、上記した上流側流路切替弁SWV1および下流側流路切替弁SWV2にその流路切替動作をさせれば、実施の形態3および4の水処理装置100と同様の水の流れを形成することができる。 Further, in another example of the present embodiment, the upstream side flow path switching valve SWV1 and the downstream side flow path switching valve SWV2 of the above third and fourth embodiments can be configured such that the flow path can be switched by a manual operation of the user. have. Therefore, if the user causes the upstream flow path switching valve SWV1 and the downstream flow path switching valve SWV2 to perform the flow path switching operation in place of the control unit C, the water in the third and fourth embodiments can be reduced. A water flow similar to that of the treatment apparatus 100 can be formed.
 以下、実施の形態の水処理装置100の特徴的構成およびそれにより得られる効果が述べられる。 Hereinafter, the characteristic configuration of the water treatment apparatus 100 according to the embodiment and the effects obtained thereby will be described.
 (1) 水処理装置100は、主流路1、循環用流路2、タンクTS、ポンプP、水処理部3、および水質測定センサWQSを備えている。水処理装置100は、第1の開閉弁V1、第2の開閉弁V2、第3の開閉弁V3、および第4の開閉弁V4を備えている。 {(1)} The water treatment apparatus 100 includes a main flow path 1, a circulation flow path 2, a tank TS, a pump P, a water treatment unit 3, and a water quality measurement sensor WQS. The water treatment apparatus 100 includes a first on-off valve V1, a second on-off valve V2, a third on-off valve V3, and a fourth on-off valve V4.
 主流路1は、上流から下流へ向かって水を導く。循環用流路2は、主流路1の相対的に下流側に位置付けられた下流側接続位置LOCから分岐し、主流路1の相対的に上流側に位置付けられ上流側接続位置UPCに合流する。タンクTSは、循環用流路2に接続され、循環用流路2を流れる水を貯留する。 The main flow path 1 guides water from upstream to downstream. The circulation flow path 2 branches from a downstream connection position LOC positioned relatively downstream of the main flow path 1 and merges with an upstream connection position UPC positioned relatively upstream of the main flow path 1. The tank TS is connected to the circulation channel 2 and stores water flowing through the circulation channel 2.
 ポンプPは、上流側接続位置UPCと下流側接続位置LOCとの間の主流路1に接続され、主流路1において上流から下流へ水を送り出す。水処理部3は、上流側接続位置UPCと下流側接続位置LOCとの間の主流路1に接続され、主流路1を流れる水の水質を改善する。水質測定センサWQSは、上流側接続位置UPCの上流の主流路1に接続されるか、または、上流側接続位置UPCと下流側接続位置LOCとの間の主流路1に接続され、水の水質を測定する。 The pump P is connected to the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC, and sends out water in the main flow path 1 from upstream to downstream. The water treatment unit 3 is connected to the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC, and improves the quality of water flowing through the main flow path 1. The water quality measurement sensor WQS is connected to the main flow path 1 upstream of the upstream connection position UPC, or is connected to the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC, and Is measured.
 第1の開閉弁V1は、上流側接続位置UPCの上流側の主流路1に接続され、水を通過させる開状態および水を通過させない閉状態のいずれかに切り替わる。第2の開閉弁V2は、下流側接続位置LOCの下流側の主流路1に接続され、水を通過させる開状態および水を通過させない閉状態のいずれかに切り替わる。第3の開閉弁V3は、タンクTSと上流側接続位置UPCとの間の循環用流路2に接続され、水を通過させる開状態および水を通過させない閉状態のいずれかに切り替わる。第4の開閉弁V4は、タンクTSと下流側接続位置LOCとの間の循環用流路2に接続され、水を通過させる開状態および水を通過させない閉状態のいずれかに切り替わる。 The first on-off valve V1 is connected to the main flow path 1 on the upstream side of the upstream connection position UPC, and switches between an open state in which water passes and a closed state in which water does not pass. The second on-off valve V2 is connected to the main flow path 1 on the downstream side of the downstream connection position LOC, and switches between an open state in which water passes and a closed state in which water does not pass. The third on-off valve V3 is connected to the circulation flow path 2 between the tank TS and the upstream connection position UPC, and switches between an open state in which water passes and a closed state in which water does not pass. The fourth on-off valve V4 is connected to the circulation flow path 2 between the tank TS and the downstream connection position LOC, and switches between an open state in which water passes and a closed state in which water does not pass.
 上記の構成によれば、原水が水処理部3によって少なくとも一回だけは水質を改善された状態でユーザに供給される。 According to the above configuration, the raw water is supplied to the user at least once by the water treatment unit 3 with the water quality improved.
 (2) 水質測定センサWQSが上流側接続位置UPCの上流の主流路1に接続されていてもよい。水処理装置100は、水質測定センサWQSによって測定された水の水質を特定可能な水質情報を受けて、ポンプP、水処理部3、第1の開閉弁V1、第2の開閉弁V2、第3の開閉弁V3、および第4の開閉弁V4を制御する制御部Cを備えている。制御部Cは、水質測定センサWQSによって測定された水質が所定の基準よりも良好であるか否かを判定する水質判定部(図3のS9)を含んでいる。制御部Cは、ポンプPが主流路1に水を流し、かつ、水処理部3が主流路1を流れる水の水質を改善する制御を実行している状態になる。この状態で、制御部Cは、水質判定部(図3のS9)によって水質が所定の基準よりも良好であると判定された場合に、第1の開閉弁V1および第2の開閉弁V2を開き、かつ、第3の開閉弁V3および第4の開閉弁V4を閉じる。 {(2)} The water quality measurement sensor WQS may be connected to the main flow path 1 upstream of the upstream connection position UPC. The water treatment apparatus 100 receives the water quality information that can specify the water quality measured by the water quality measurement sensor WQS, and receives the pump P, the water treatment unit 3, the first on-off valve V1, the second on-off valve V2, A control unit C for controlling the third on-off valve V3 and the fourth on-off valve V4 is provided. The control unit C includes a water quality determination unit (S9 in FIG. 3) that determines whether the water quality measured by the water quality measurement sensor WQS is better than a predetermined reference. The control unit C is in a state where the pump P causes the water to flow through the main flow path 1 and the water treatment unit 3 executes control for improving the quality of the water flowing through the main flow path 1. In this state, the control unit C sets the first on-off valve V1 and the second on-off valve V2 when the water quality determination unit (S9 in FIG. 3) determines that the water quality is better than a predetermined standard. Open and close the third on-off valve V3 and the fourth on-off valve V4.
 これによれば、水が循環用流路2を流れる必要がないほど水質が良好である場合に、水が主流路1のみを流れる状態を自動的に形成することができる。 According to this, when the water quality is so good that the water does not need to flow through the circulation channel 2, it is possible to automatically form a state in which the water flows only through the main channel 1.
 (3) 当該水処理装置100の現在の運転状態を自動運転状態とするのか、それとも、手動運転状態とするのかを選択するための運転コース選択部Sをさらに備えていてもよい。制御部Cは、ユーザによる運転コース選択部Sの操作により、現在の運転状態を手動運転状態とすることが選択されている場合には、第1の開閉弁V1および第2の開閉弁V2を開き、かつ、第3の開閉弁V3および第4の開閉弁V4を閉じる。これによれば、水が主流路1のみを流れる状態を手動で形成することができる。 {(3)} The water treatment apparatus 100 may further include an operation course selection unit S for selecting whether the current operation state is the automatic operation state or the manual operation state. The control unit C sets the first on-off valve V1 and the second on-off valve V2 when the user operates the driving course selection unit S to change the current operation state to the manual operation state. Open and close the third on-off valve V3 and the fourth on-off valve V4. According to this, the state in which water flows only through the main flow path 1 can be manually formed.
 (4) 水処理装置100は、主流路1、循環用流路2、タンクTS、ポンプP、水処理部3、および水質測定センサWQSを備えている。水処理装置100は、上流側流路切替弁SWV1および下流側流路切替弁SWV2を備えている。 {(4)} The water treatment apparatus 100 includes a main flow path 1, a circulation flow path 2, a tank TS, a pump P, a water treatment unit 3, and a water quality measurement sensor WQS. The water treatment apparatus 100 includes an upstream-side passage switching valve SWV1 and a downstream-side passage switching valve SWV2.
 主流路1は、上流から下流へ向かって水を導く。循環用流路2は、主流路1の相対的に下流側に位置付けられた下流側接続位置LOCから分岐し、主流路1の相対的に上流側に位置付けられた上流側接続位置UPCに合流する。タンクTSは、循環用流路2に接続され、循環用流路2を流れる水を貯留する。ポンプPは、上流側接続位置UPCと下流側接続位置LOCとの間の主流路1に接続され、主流路1において上流から下流へ水を送り出す。水処理部3は、上流側接続位置UPCと下流側接続位置LOCとの間の主流路1に接続され、主流路1を流れる水の水質を改善する。水質測定センサWQSは、上流側接続位置UPCの上流の主流路1に接続されるか、または、上流側接続位置UPCと下流側接続位置LOCとの間の主流路1に接続され、水の水質を測定する。 The main flow path 1 guides water from upstream to downstream. The circulation flow path 2 branches from a downstream connection position LOC positioned relatively downstream of the main flow path 1 and joins an upstream connection position UPC positioned relatively upstream of the main flow path 1. . The tank TS is connected to the circulation channel 2 and stores water flowing through the circulation channel 2. The pump P is connected to the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC, and sends out water in the main flow path 1 from upstream to downstream. The water treatment unit 3 is connected to the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC, and improves the quality of water flowing through the main flow path 1. The water quality measurement sensor WQS is connected to the main flow path 1 upstream of the upstream connection position UPC, or is connected to the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC, and Is measured.
 上流側流路切替弁SWV1は、上流側接続位置UPCに設けられている。上流側流路切替弁SWV1は、上流側通過状態および上流側循環状態のいずれかに切り替えられる。上流側通過状態は、水が上流側接続位置UPCの上流の主流路1から上流側接続位置UPCと下流側接続位置LOCとの間の主流路1へ流れる状態である。上流側循環状態は、水がタンクTSの下流の循環用流路2から上流側接続位置UPCと下流側接続位置LOCとの間の主流路1へ流れる状態である。 The upstream-side switching valve SWV1 is provided at the upstream connection position UPC. The upstream flow path switching valve SWV1 is switched between an upstream passage state and an upstream circulation state. The upstream passage state is a state in which water flows from the main flow path 1 upstream of the upstream connection position UPC to the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC. The upstream circulation state is a state in which water flows from the circulation flow path 2 downstream of the tank TS to the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC.
 下流側流路切替弁SWV2は、下流側接続位置LOCに設けられている。下流側流路切替弁SWV2は、下流側通過状態および下流側循環状態のいずれかに切り替えられる。下流側通過状態は、水が上流側接続位置UPCと下流側接続位置LOCとの間の主流路1から下流側接続位置LOCの下流の主流路1へ流れる状態である。下流側循環状態は、水がタンクTSの下流の循環用流路2から上流側接続位置UPCと下流側接続位置LOCとの間の主流路1へ流れる状態である。 The downstream-side flow switching valve SWV2 is provided at the downstream connection position LOC. The downstream flow path switching valve SWV2 is switched to one of a downstream passage state and a downstream circulation state. The downstream passage state is a state in which water flows from the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC to the main flow path 1 downstream of the downstream connection position LOC. The downstream circulation state is a state in which water flows from the circulation flow path 2 downstream of the tank TS to the main flow path 1 between the upstream connection position UPC and the downstream connection position LOC.
 上記の構成によれば、原水が水処理部3によって少なくとも一回だけは水質を改善された状態で処理済の水としてユーザに供給される。 According to the above configuration, the raw water is supplied to the user as treated water in a state where the water quality has been improved at least once by the water treatment unit 3.
 (5) 水質測定センサWQSが上流側接続位置UPCの上流の主流路1に接続されていてもよい。この場合、水処理装置100は、水質測定センサWQSによって測定された水の水質を特定可能な水質情報を受けて、ポンプP、水処理部3、上流側流路切替弁SWV1、および下流側流路切替弁SWV2を制御する制御部Cをさらに備えていてもよい。制御部Cは、水質測定センサWQSによって測定された水質が所定の基準よりも良好であるか否かを判定する水質判定部(図8のS9)を含んでいる。制御部Cは、ポンプPが主流路1に水を流し、かつ、水処理部3が主流路1を流れる水の水質を改善する制御を実行している状態になる。この状態で、水質判定部(図8のS9)によって水質が所定の基準よりも良好であると判定された場合がある。この場合に、制御部Cは、上流側流路切替SWV1を上流側通過状態にし、かつ、下流側流路切替弁SWV2を下流側通過状態にする。 {(5)} The water quality measurement sensor WQS may be connected to the main flow path 1 upstream of the upstream connection position UPC. In this case, the water treatment apparatus 100 receives the water quality information that can specify the quality of the water measured by the water quality measurement sensor WQS, and receives the pump P, the water treatment unit 3, the upstream flow path switching valve SWV1, and the downstream flow A control unit C for controlling the road switching valve SWV2 may be further provided. The control unit C includes a water quality determination unit (S9 in FIG. 8) that determines whether the water quality measured by the water quality measurement sensor WQS is better than a predetermined reference. The control unit C is in a state where the pump P causes the water to flow through the main flow path 1 and the water treatment unit 3 executes control for improving the quality of the water flowing through the main flow path 1. In this state, the water quality determination unit (S9 in FIG. 8) may determine that the water quality is better than a predetermined standard. In this case, the controller C sets the upstream flow path switching SWV1 to the upstream passage state and sets the downstream flow path switching valve SWV2 to the downstream passage state.
 これによれば、水が循環用流路2を流れる必要がないほど水質が良好である場合に、水が主流路1のみを流れる状態を自動的に形成することができる。 According to this, when the water quality is so good that the water does not need to flow through the circulation channel 2, it is possible to automatically form a state in which the water flows only through the main channel 1.
 (6) 当該水処理装置100の現在の運転状態を自動運転状態とするのか、それとも、手動運転状態とするのかを選択するための運転コース選択部Sをさらに備えていてもよい。制御部Cは、ユーザによる運転コース選択部Sの操作により、現在の運転状態を手動運転状態とすることが選択されている場合には、上流側流路切替弁SWV1を上流側通過状態にし、かつ、下流側流路切替弁SWV2を下流側通過状態にする。 これによれば、水が主流路1のみを流れる状態を手動で形成することができる。 {(6)} The water treatment apparatus 100 may further include an operation course selection unit S for selecting whether to set the current operation state to the automatic operation state or the manual operation state. The control unit C sets the upstream flow path switching valve SWV1 to the upstream passage state when the current operation state is selected to be the manual operation state by the operation of the driving course selection unit S by the user, In addition, the downstream passage switching valve SWV2 is set to the downstream passage state. According to this, the state in which water flows only through the main flow path 1 can be manually formed.
 特願2018-141143(出願日:2018年7月27日)の全内容は、ここに援用される。 全 The entire contents of Japanese Patent Application No. 2018-141143 (filing date: July 27, 2018) are incorporated herein.
 本実施形態によれば、いかなる場合においても、原水が水処理部によって少なくとも一回だけは水質を改善された状態で利用者に供給される水処理装置を提供することができる。 According to the present embodiment, in any case, it is possible to provide a water treatment apparatus in which raw water is supplied to a user at least once by the water treatment section with the water quality improved.
 1 主流路
 2 循環用流路
 3 水処理部
 100 水処理装置
 D 表示部
 TS タンク
 LOC 下流側接続位置
 P ポンプ
 S9 水質判定部
 SWV1 上流側流路切替弁
 SWV2 下流側流路切替弁
 UPC 上流側接続位置
 V1 第1の開閉弁
 V2 第2の開閉弁
 V3 第3の開閉弁
 V4 第4の開閉弁
 WQS 水質測定センサ
Reference Signs List 1 Main flow path 2 Circulation flow path 3 Water treatment unit 100 Water treatment device D Display unit TS tank LOC Downstream connection position P Pump S9 Water quality judgment unit SWV1 Upstream flow path switching valve SWV2 Downstream flow path switching valve UPC Upstream connection Position V1 First on-off valve V2 Second on-off valve V3 Third on-off valve V4 Fourth on-off valve WQS Water quality measurement sensor

Claims (6)

  1.  上流から下流へ向かって水を導く主流路と、
     前記主流路の相対的に下流側に位置付けられた下流側接続位置から分岐し、前記主流路の相対的に上流側に位置付けられた上流側接続位置に合流する循環用流路と、
     前記循環用流路に接続され、前記循環用流路を流れる前記水を貯留するタンクと、
     前記上流側接続位置と前記下流側接続位置との間の前記主流路に接続され、前記主流路において上流から下流へ前記水を送り出すポンプと、
     前記上流側接続位置と前記下流側接続位置との間の前記主流路に接続され、前記主流路を流れる前記水の水質を改善する水処理部と、
     前記上流側接続位置の上流の前記主流路に接続されるか、または、前記上流側接続位置と前記下流側接続位置との間の前記主流路に接続され、前記水の水質を測定する水質測定センサと、
     前記上流側接続位置の上流側の前記主流路に接続され、前記水を通過させる開状態および前記水を通過させない閉状態のいずれかに切り替わる第1の開閉弁と、
     前記下流側接続位置の下流側の前記主流路に接続され、前記水を通過させる開状態および前記水を通過させない閉状態のいずれかに切り替わる第2の開閉弁と、
     前記タンクと前記上流側接続位置との間の前記循環用流路に接続され、前記水を通過させる開状態および前記水を通過させない閉状態のいずれかに切り替わる第3の開閉弁と、
     前記タンクと前記下流側接続位置との間の前記循環用流路に接続され、前記水を通過させる開状態および前記水を通過させない閉状態のいずれかに切り替わる第4の開閉弁と、
    を備えた、水処理装置。
    A main channel for guiding water from upstream to downstream;
    A circulation flow path that branches off from a downstream connection position positioned relatively downstream of the main flow path and merges with an upstream connection position positioned relatively upstream of the main flow path;
    A tank that is connected to the circulation channel and stores the water flowing through the circulation channel,
    A pump that is connected to the main flow path between the upstream connection position and the downstream connection position, and that pumps the water from upstream to downstream in the main flow path;
    A water treatment unit that is connected to the main flow path between the upstream connection position and the downstream connection position and improves the quality of the water flowing through the main flow path;
    Water quality measurement that is connected to the main flow path upstream of the upstream connection position, or connected to the main flow path between the upstream connection position and the downstream connection position, and measures the water quality of the water Sensors and
    A first on-off valve that is connected to the main flow path on the upstream side of the upstream connection position and that switches between an open state in which the water passes and a closed state in which the water does not pass;
    A second opening / closing valve that is connected to the main flow path on the downstream side of the downstream connection position and that switches between an open state in which the water passes and a closed state in which the water does not pass;
    A third opening / closing valve that is connected to the circulation channel between the tank and the upstream connection position and that switches between an open state in which the water passes and a closed state in which the water does not pass;
    A fourth on-off valve that is connected to the circulation channel between the tank and the downstream connection position and that switches between an open state in which the water passes and a closed state in which the water does not pass;
    , A water treatment device.
  2.  前記水質測定センサが前記上流側接続位置の上流の前記主流路に接続されており、
     前記水質測定センサによって測定された前記水の水質を特定可能な水質情報を受けて、前記ポンプ、前記水処理部、前記第1の開閉弁、前記第2の開閉弁、前記第3の開閉弁、
    および前記第4の開閉弁を制御する制御部をさらに備え、
     前記制御部は、
      前記水質測定センサによって測定された前記水質が所定の基準よりも良好であるか否かを判定する水質判定部を含み、
      前記ポンプが前記主流路に前記水を流し、かつ、前記水処理部が前記主流路を流れる前記水の水質を改善する制御を実行している状態で、
      前記水質判定部によって前記水質が所定の基準よりも良好であると判定された場合に、前記第1の開閉弁および前記第2の開閉弁を開き、かつ、前記第3の開閉弁および前記第4の開閉弁を閉じる、請求項1に記載の水処理装置。
    The water quality measurement sensor is connected to the main flow path upstream of the upstream connection position,
    The pump, the water treatment unit, the first opening / closing valve, the second opening / closing valve, and the third opening / closing valve, upon receiving water quality information capable of specifying the quality of the water measured by the water quality measuring sensor. ,
    And a control unit for controlling the fourth on-off valve,
    The control unit includes:
    Including a water quality determination unit that determines whether the water quality measured by the water quality measurement sensor is better than a predetermined reference,
    In a state where the pump causes the water to flow through the main flow path, and the water treatment unit is executing control for improving the quality of the water flowing through the main flow path,
    When the water quality determining unit determines that the water quality is better than a predetermined standard, the first open / close valve and the second open / close valve are opened, and the third open / close valve and the second open / close valve are opened. The water treatment apparatus according to claim 1, wherein the on-off valve of (4) is closed.
  3.  前記水処理装置の現在の運転状態を自動運転状態とするのか、それとも、手動運転状態とするのかを選択するための運転コース選択部をさらに備え、
     前記制御部は、ユーザによる前記運転コース選択部の操作により、前記現在の運転状態を前記手動運転状態とすることが選択されている場合には、前記第1の開閉弁および前記第2の開閉弁を開き、かつ、前記第3の開閉弁および前記第4の開閉弁を閉じる、請求項2に記載の水処理装置。
    Whether the current operation state of the water treatment device is an automatic operation state or a manual operation state is further provided with an operation course selection unit for selecting whether to be a manual operation state,
    The control unit is configured to, when a current operation state is selected to be the manual operation state by an operation of the driving course selection unit by a user, perform the first opening / closing valve and the second opening / closing operation. The water treatment apparatus according to claim 2, wherein the valve is opened and the third on-off valve and the fourth on-off valve are closed.
  4.  上流から下流へ向かって水を導く主流路と、
     前記主流路の相対的に下流側に位置付けられた下流側接続位置から分岐し、前記主流路の相対的に上流側に位置付けられた上流側接続位置に合流する循環用流路と、
     前記循環用流路に接続され、前記循環用流路を流れる前記水を貯留するタンクと、
     前記上流側接続位置と前記下流側接続位置との間の前記主流路に接続され、前記主流路において上流から下流へ前記水を送り出すポンプと、
     前記上流側接続位置と前記下流側接続位置との間の前記主流路に接続され、前記主流路を流れる前記水の水質を改善する水処理部と、
     前記上流側接続位置の上流の前記主流路に接続されるか、または、前記上流側接続位置と前記下流側接続位置との間の前記主流路に接続され、前記水の水質を測定する水質測定センサと、
     前記上流側接続位置に設けられ、前記水が前記上流側接続位置の上流の前記主流路から前記上流側接続位置と前記下流側接続位置との間の前記主流路へ流れる上流側通過状態、
    および、前記水が前記タンクの下流の前記循環用流路から前記上流側接続位置と前記下流側接続位置との間の前記主流路へ流れる上流側循環状態のいずれかに切り替えられる上流側流路切替弁と、
     前記下流側接続位置に設けられ、前記水が前記上流側接続位置と前記下流側接続位置との間の前記主流路から前記下流側接続位置の下流の前記主流路へ流れる下流側通過状態、
    および、前記水が前記タンクの下流の前記循環用流路から前記上流側接続位置と前記下流側接続位置との間の前記主流路へ流れる下流側循環状態のいずれかに切り替えられる下流側流路切替弁と、を備えた、水処理装置。
    A main channel for guiding water from upstream to downstream;
    A circulation flow path that branches off from a downstream connection position positioned relatively downstream of the main flow path and merges with an upstream connection position positioned relatively upstream of the main flow path;
    A tank that is connected to the circulation channel and stores the water flowing through the circulation channel,
    A pump that is connected to the main flow path between the upstream connection position and the downstream connection position, and that pumps the water from upstream to downstream in the main flow path;
    A water treatment unit that is connected to the main flow path between the upstream connection position and the downstream connection position and improves the quality of the water flowing through the main flow path;
    Water quality measurement that is connected to the main flow path upstream of the upstream connection position, or connected to the main flow path between the upstream connection position and the downstream connection position, and measures the water quality of the water Sensors and
    An upstream passage state provided at the upstream connection position, wherein the water flows from the main flow path upstream of the upstream connection position to the main flow path between the upstream connection position and the downstream connection position,
    And an upstream channel in which the water is switched to any of an upstream circulation state in which the water flows from the circulation channel downstream of the tank to the main channel between the upstream connection position and the downstream connection position. A switching valve,
    A downstream passage state provided at the downstream connection position, wherein the water flows from the main flow path between the upstream connection position and the downstream connection position to the main flow path downstream of the downstream connection position,
    And a downstream channel in which the water is switched to a downstream circulation state in which the water flows from the circulation channel downstream of the tank to the main channel between the upstream connection position and the downstream connection position. A water treatment device comprising: a switching valve.
  5.  前記水質測定センサが前記上流側接続位置の上流の前記主流路に接続されており、
     前記水質測定センサによって測定された前記水の水質を特定可能な水質情報を受けて、前記ポンプ、前記水処理部、前記上流側流路切替弁、および前記下流側流路切替弁を制御する制御部をさらに備え、
     前記制御部は、
      前記水質測定センサによって測定された前記水質が所定の基準よりも良好であるか否かを判定する水質判定部を含み、
      前記ポンプが前記主流路に前記水を流し、かつ、前記水処理部が前記主流路を流れる前記水の水質を改善する制御を実行している状態で、
      前記水質判定部によって前記水質が所定の基準よりも良好であると判定された場合に、前記上流側流路切替弁を前記上流側通過状態にし、かつ、前記下流側流路切替弁を前記下流側通過状態にする、請求項4に記載の水処理装置。
    The water quality measurement sensor is connected to the main flow path upstream of the upstream connection position,
    Control for receiving the water quality information capable of specifying the water quality of the water measured by the water quality measurement sensor, and controlling the pump, the water treatment unit, the upstream passage switching valve, and the downstream passage switching valve. Part further,
    The control unit includes:
    Including a water quality determination unit that determines whether the water quality measured by the water quality measurement sensor is better than a predetermined reference,
    In a state where the pump causes the water to flow through the main flow path, and the water treatment unit is executing control for improving the quality of the water flowing through the main flow path,
    When the water quality is determined by the water quality determination unit to be better than a predetermined reference, the upstream flow path switching valve is set to the upstream passage state, and the downstream flow path switching valve is set to the downstream side. The water treatment device according to claim 4, wherein the water treatment device is set to a side passage state.
  6.  前記水処理装置の現在の運転状態を自動運転状態とするのか、それとも、手動運転状態とするのかを選択するための運転コース選択部をさらに備え、
     前記制御部は、前記運転コース選択部の操作により、前記現在の運転状態を前記手動運転状態とすることが選択されている場合には、前記上流側流路切替弁を前記上流側通過状態にし、かつ、前記下流側流路切替弁を前記下流側通過状態にする、請求項5に記載の水処理装置。
    Whether the current operation state of the water treatment device is an automatic operation state or a manual operation state is further provided with an operation course selection unit for selecting whether to be a manual operation state,
    The control unit sets the upstream flow path switching valve to the upstream passage state when the current operation state is selected to be the manual operation state by the operation of the operation course selection unit. The water treatment apparatus according to claim 5, wherein the downstream flow path switching valve is set to the downstream passage state.
PCT/JP2019/028772 2018-07-27 2019-07-23 Water treatment device WO2020022311A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020532403A JPWO2020022311A1 (en) 2018-07-27 2019-07-23 Water treatment equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018141143 2018-07-27
JP2018-141143 2018-07-27

Publications (1)

Publication Number Publication Date
WO2020022311A1 true WO2020022311A1 (en) 2020-01-30

Family

ID=69182303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028772 WO2020022311A1 (en) 2018-07-27 2019-07-23 Water treatment device

Country Status (2)

Country Link
JP (1) JPWO2020022311A1 (en)
WO (1) WO2020022311A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347549A (en) * 1998-06-03 1999-12-21 Toray Ind Inc Membrane module apparatus
JP2003305454A (en) * 2003-02-17 2003-10-28 Meidensha Corp Intake water quality controller
JP2013086034A (en) * 2011-10-19 2013-05-13 Panasonic Corp Water purification system
JP2018061921A (en) * 2016-10-11 2018-04-19 パナソニックIpマネジメント株式会社 Water purifying system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347549A (en) * 1998-06-03 1999-12-21 Toray Ind Inc Membrane module apparatus
JP2003305454A (en) * 2003-02-17 2003-10-28 Meidensha Corp Intake water quality controller
JP2013086034A (en) * 2011-10-19 2013-05-13 Panasonic Corp Water purification system
JP2018061921A (en) * 2016-10-11 2018-04-19 パナソニックIpマネジメント株式会社 Water purifying system

Also Published As

Publication number Publication date
JPWO2020022311A1 (en) 2021-08-02

Similar Documents

Publication Publication Date Title
US9604264B2 (en) Washing device for water treatment apparatus and washing method thereof
WO2020022311A1 (en) Water treatment device
JP5190674B2 (en) Operation method of boiler system
JP2019141766A (en) Water treatment apparatus
KR102524681B1 (en) Drainage Control Method of Pipe Cleaning by Using Ice and System thereof
JP2018103098A (en) Water softening device and method
US20220009802A1 (en) Ion removal kit
JP4061716B2 (en) Control method of water softener
JP7256804B2 (en) Water purification and dispensing system and method of operating such system
JP2009178666A (en) Water treating device
JP2020122588A (en) Bath hot water supply device
JP7492383B2 (en) Dialysis wastewater neutralization system, control device, dialysis wastewater neutralization method, and dialysis wastewater neutralization program
JP2776279B2 (en) Control method of water softener
CA3018634A1 (en) Method and device for controlling water hardness in a dwelling
KR20210020477A (en) A membrane bioreactor system and method thereof with the same operating direction of the treated water pump and the microbubble generator in filtration process and bachwashing process
JP3147774B2 (en) Water treatment device and water treatment method
JP4317328B2 (en) Water treatment equipment
JPH01317588A (en) Domestic drinking water treatment device
CN115475665B (en) Control method for water softener and water softener
JP6018833B2 (en) Flow control system
JP2022180812A (en) neutralization unit
JP2011224467A (en) Water purifier
JP5102134B2 (en) Shower equipment
JPS60143825A (en) Reaction and maturation apparatus
JPH07204649A (en) Ionic water generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19841221

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020532403

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19841221

Country of ref document: EP

Kind code of ref document: A1