[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020013033A1 - Antiviral resin composition - Google Patents

Antiviral resin composition Download PDF

Info

Publication number
WO2020013033A1
WO2020013033A1 PCT/JP2019/026321 JP2019026321W WO2020013033A1 WO 2020013033 A1 WO2020013033 A1 WO 2020013033A1 JP 2019026321 W JP2019026321 W JP 2019026321W WO 2020013033 A1 WO2020013033 A1 WO 2020013033A1
Authority
WO
WIPO (PCT)
Prior art keywords
antiviral
resin composition
resin
antibacterial
composition according
Prior art date
Application number
PCT/JP2019/026321
Other languages
French (fr)
Japanese (ja)
Inventor
素美 夏目
英雄 竹内
靖弘 井戸田
掛樋 浩司
Original Assignee
株式会社Lixil
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Lixil filed Critical 株式会社Lixil
Publication of WO2020013033A1 publication Critical patent/WO2020013033A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • A01N25/10Macromolecular compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/06Aluminium; Calcium; Magnesium; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present disclosure relates to an antiviral resin composition.
  • JP-A-2000-302615 discloses various functional resin compositions in which a functional material such as an antiviral agent is added to impart functionalities to the surface.
  • the functional material existing near the surface exerts its effect, whereas the functional material buried inside the resin cannot exert its effect, so it is important to arrange the functional material on the surface. is there.
  • the functional resin composition is required to have abrasion resistance and water resistance. When the surface of the functional resin composition disappears due to abrasion, the functional material buried inside the functional resin composition is exposed to the surface, so that the functionality can be maintained. On the other hand, when the functional material on the surface of the functional resin composition is eluted by water, the resin on the surface remains without being lost, and the functionality is reduced. In other words, there is a problem that the functional material is lost at an early stage due to the elution of the functional material upon contact with water during use.
  • the functional material buried inside the resin when the functional material buried inside the resin is a low-molecular-weight and easily movable substance of less than the order of submicron, it may move (bleed) inside the resin and move to the surface. That is, by increasing the fluidity of the functional material inside the resin, the functional material buried inside the resin can function on the surface.
  • the present disclosure uses a water-soluble antiviral agent and, by using a resin having water absorbability, transfers a functional material buried in the resin to the resin surface, and can exhibit a function for a long period of time.
  • the purpose is to provide.
  • An antiviral resin composition of the present disclosure is an antiviral resin composition, comprising a polyamide resin and an antiviral agent that exhibits water solubility and has a decomposition temperature higher than the melting temperature of the polyamide resin. .
  • FIG. 1 shows bleeding of an antiviral agent in an antiviral resin composition according to an embodiment
  • FIG. 2 shows bleeding of an antiviral agent in an antiviral resin composition containing glass fibers according to the embodiment
  • FIG. 3 shows the relationship between the amount of antiviral agent added and the amount of calcium ion (Ca 2+ ) eluted in water in the antiviral resin composition according to the embodiment
  • FIG. 4 shows the relationship between the amount of calcium ion eluted in water and the antiviral property of each virus in the antiviral resin composition according to the embodiment.
  • the antiviral resin composition 1 includes a polyamide base resin 2 and an antiviral agent 3 that exhibits water solubility and has a decomposition temperature higher than the melting temperature of the base resin 2. You.
  • the antiviral resin composition 1 exerts an antiviral effect on its surface by the antiviral agent 3 existing near the surface. Antiviral agent 3 also exerts an antibacterial effect.
  • Other raw materials can be blended with the antiviral resin composition 1 as long as the effects of the present disclosure are not impaired. Examples include polymerization inhibitors, curing agents, curing accelerators, dyes, plasticizers, ultraviolet absorbers, thixotropic agents, fillers, defoamers, stabilizers, leveling agents, and the like.
  • a polyamide resin is used as the base resin 2. Since the polyamide resin has high water absorption, bleeding occurs when the water-soluble antiviral agent 3 dissolves in the absorbed water, and the antiviral agent 3 inside the base resin 2 is applied to the surface of the antiviral resin composition 1. As a result, the antibacterial and antiviral actions are exerted continuously (see FIG. 1).
  • Specific examples of the polyamide resin include 6-nylon and 6,6-nylon. Bleeding is more likely to occur as the water absorption is higher, and an antiviral effect is more likely to be obtained.
  • a polyamide resin having a water absorption of 1% by mass or more is used as the base resin 2. The method of measuring the water absorption will be described in detail later.
  • the antiviral agent 3 is added to the base resin 2.
  • the base resin 2 is formed by either injection molding or extrusion molding.
  • the decomposition temperature of the antiviral agent 3 is required to be higher than the melting temperature (molding temperature) of the base resin 2.
  • Substances exhibiting antibacterial and antiviral properties include quaternary ammonium salts, calcium hydroxide (slaked lime), TiO 2 supported on copper, and copper iodide.
  • slaked lime is more preferably used. This is because slaked lime is water-soluble and its decomposition temperature is as high as 400 ° C. or higher, which is higher than the melting temperature of various polyamide resins (for example, 250 ° C. to 320 ° C.).
  • the antiviral agent 3 has an antibacterial activity against bacteria such as Escherichia coli and Staphylococcus aureus, and has an antiviral activity against enveloped viruses and non-enveloped viruses. Regarding the above antiviral properties, it is possible to evaluate the antiviral properties by measuring the infectious titer of the influenza A virus as an enveloped virus and the feline calicivirus as a non-enveloped virus by the TCID50 method. is there.
  • the antiviral resin composition 1 contains the filler 4.
  • the antiviral agent 3 dissolves in the absorbed water and bleeds inside the antiviral resin composition 1, compared to when the antiviral agent 3 passes through the infinite number of complicated crosslinked structures in the base resin 2, This is because the inclusion of No. 4 results in formation of a path that easily passes through the boundary between the filler 4 and the base resin 2, thereby promoting bleeding of the antiviral agent 3 (see FIG. 2).
  • the filler 4 is preferably one that can be kneaded with a resin, for example, glass fiber or the like is more preferably used. This is because, along with the improvement of the strength, the long fiber shape well forms a route for transferring the antiviral agent 3 to the surface of the antibacterial / antiviral antiviral resin composition 1.
  • Examples of the method for producing the antiviral resin composition 1 include a pelletizing method, a direct addition method, a master batch method, and the like.
  • the base resin 2 and the antiviral agent 3 are kneaded using a kneader to produce a pellet of the target antiviral resin composition 1.
  • the temperature of the base resin 2 is raised to a melting temperature or higher to melt the base resin 2.
  • the antiviral agent 3 according to the target content is added to the melted base resin 2 and kneaded well, and when it becomes uniform, it is molded into a pellet.
  • a member is manufactured by molding into a desired shape.
  • the antiviral / antiviral agent is directly added, whereby the antiviral resin composition 1 molded into a desired shape can be obtained.
  • the antiviral resin composition 1 can be obtained by putting the base resin 2 and the antiviral agent 3 mixed in advance into an injection molding machine. The temperature during injection molding is equal to or higher than the melting temperature of the base resin 2 as in the pelletizing method.
  • pellets having a large content of the antiviral agent 3 in the pelletizing method are prepared, and the pellets are added to the injection molding machine together with the base resin 2, whereby the antiviral resin composition 1 having the desired composition is obtained. can get.
  • the feed amount of the feeder was controlled so that the content of the antibacterial / antiviral agent in the resin composition was 5% by mass.
  • Antibacterial and antiviral agents were kneaded into each resin by a kneader to produce pellets.
  • a molded product of a resin composition having a length and width of 150 mm ⁇ 150 mm and a thickness of 3 mm was produced with an injection molding machine (ROBOSHOT S-2000i100B FANUC).
  • the cylinder temperature was 270 ° C. for the polyamide resin, 200 ° C. for the PP resin, and 200 ° C. for the ABS resin.
  • the above molded article was subjected to an antibacterial test, an antiviral test, an abrasion test, a water resistance test, and a dissolution test to evaluate antibacterial performance, antiviral performance, and its durability.
  • the test results are shown in Tables 1 to 5 below.
  • the water absorption of the resin composition after molding was calculated by multiplying the weight composition ratio based on the water absorption of the base resin. [test]
  • ⁇ Antiviral test> With respect to the antiviral properties of the resin, an evaluation test of the antiviral properties was carried out using influenza A virus as an enveloped virus and feline calicivirus as a non-enveloped virus with a contact time of 24 hours with reference to JIS Z 2801. Was. When the infectious titer log reduction value was 2.0 or more, it was judged as effective.
  • ⁇ Wear test> Using a base cloth width as a contact, a load of 9.8 N was applied to the test piece per 10 cm ⁇ 10 cm area, and friction was applied 7,300 times by a sliding wear tester. Thereafter, the antibacterial and antiviral tests described above were performed to evaluate the antibacterial and antiviral properties of the resin surface after abrasion.
  • ⁇ Dissolution test> In the resin composition using PA66 resin as the base resin, the test surface of a test piece prepared with the addition amount of the antiviral agent of 0 to 6% by mass for each of those containing glass fiber and those not containing the glass fiber was tested. The side and back surfaces of the test piece processed into a size of 50 mm ⁇ 50 mm were sealed with a melt coat so that the antibacterial and antiviral agents were not eluted from other than the test surface. The test surface was immersed in water using 10 ml of ultrapure water with respect to the surface area of 25 cm 2 of the test piece, wrapped so that the water did not evaporate, and allowed to stand at a temperature of 25 ⁇ 1 ° C. for 24 hours. FIG.
  • FIG. 3 is a diagram plotting the amount of the antibacterial / antiviral agent eluted per unit area of the test piece after ionization using ion chromatography and plotting the amount of the antibacterial / antiviral agent added to the test piece. It is.
  • FIG. 4 is a diagram plotting the logarithm of the infectious titer in the antibacterial and antiviral tests described above to clarify the relationship between the amount of calcium ion eluted and the antibacterial and antiviral properties.
  • Examples 1 to 4 Comparative Examples 1 and 8> ⁇ PA66 resin Amilan CM3007 (Toray) Water absorption 1.5% by mass
  • A No glass fiber When no glass fiber was contained, in Examples 1 and 2, good antibacterial properties were exhibited even after the water resistance test.
  • Example 2 also showed antiviral properties against only the non-enveloped virus. It is estimated that the antibacterial and antiviral agents inside the resin eluted on the surface.
  • B With Glass Fiber When glass fiber was contained, in Examples 3 and 4, good antibacterial and antiviral properties were exhibited even after the water resistance test.
  • the glass fiber Since the glass fiber is present inside the resin, a path through which moisture easily passes is formed at the interface between the glass fiber and the resin, and as compared with Examples 1 and 2 having no filler, a larger amount of the resin inside is provided. It is estimated that antibacterial and antiviral agents eluted on the surface.
  • Example 5 ⁇ Examples 5 to 16, Comparative Example 15> ⁇ PA66 resin Leona 90G50 (Asahi Kasei)
  • the resin product is a resin product containing glass fiber from the time of marketing.
  • Example 5 only the antibacterial property was shown.
  • Examples 6 to 16 all exhibited antibacterial and antiviral properties, and particularly, Examples 12 to 16 exhibited antiviral properties for both enveloped and non-enveloped viruses.
  • the addition amount of the antibacterial / antiviral agent is preferably 1.5% by mass or more, and good antiviral properties are exhibited.
  • Example 17 to 23 Comparative Example 16> ⁇ PAMXD resin Reny 1022F (Mitsubishi Engineering Plastics)
  • the resin product is a resin product containing glass fiber from the time of marketing.
  • Examples 17 to 23 all exhibited antibacterial and antiviral properties, and particularly Examples 19 to 23 exhibited antiviral properties against any type of virus.
  • the results of the dissolution test shown in FIG. 3 indicate that the dissolution amount of calcium ions tends to increase with the addition amount of the antibacterial / antiviral agent regardless of the presence or absence of the glass fiber.
  • Calcium ions are presumed to be derived from slaked lime, and as shown in FIG. 4, the antiviral performance was improved as the amount of eluted calcium ions increased.
  • the amount of eluted calcium ions was 0.06 ⁇ mol / cm 2 or more, it exhibited antiviral properties against both influenza virus and feline calicivirus.
  • the resin composition containing glass fiber as a filler significantly increased the amount of calcium ions eluted as compared with the resin composition containing no filler. It is presumed that the glass fiber promotes the dissolution of slaked lime, and the slaked lime inside the resin functions on the resin surface. Therefore, it is presumed that the antiviral effect can be continuously exerted even after dissolution by the water resistance test.
  • the resin composition containing no glass fiber shows good antibacterial and antiviral properties in the resin composition having a water absorption of 1.5% by mass. It was observed. Although the antibacterial property was observed in the resin composition of 0.4% by mass, the antiviral property was not observed. On the other hand, in the resin composition containing glass fibers, good antibacterial and antiviral properties were observed in the resin composition having a water absorption of 0.3% by mass or more. That is, by containing glass fibers in the resin composition, the antibacterial and antiviral effects can be increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

An antiviral resin composition comprising a polyamide-based resin and an antiviral agent that is soluble in water and has a decomposition temperature higher than the melting temperature of the polyamide-based resin. Due to moisture absorbed in the polyamide-based resin, the water-soluble antiviral agent existing inside the antiviral resin composition is gradually eluted toward the surface of the resin composition. As a result, the antiviral agent can sustainably exert the antiviral effect over a long period of time on the surface of the antiviral resin composition.

Description

抗ウイルス性樹脂組成物Antiviral resin composition
 本開示は、抗ウイルス性樹脂組成物に関する。 The present disclosure relates to an antiviral resin composition.
 特開2000-302615号公報は、抗ウイルス剤等の機能材を添加し、表面に機能性を付与した種々の機能性樹脂組成物を開示している。 JP-A-2000-302615 discloses various functional resin compositions in which a functional material such as an antiviral agent is added to impart functionalities to the surface.
 この機能性樹脂組成物では、表面近傍に存在する機能材が効果を発揮するのに対して、樹脂内部に埋もれた機能材は効果を発揮できないため、表面に機能材を配置することが重要である。上記機能性樹脂組成物は、耐摩耗性及び耐水性が求められている。機能性樹脂組成物の表面が摩耗により消失した場合には、機能性樹脂組成物の内部に埋もれた機能材が表面に露出するため、機能性を維持できる。これに対して、機能性樹脂組成物の表面の機能材が水により溶出した場合には、表面の樹脂は消失せず残存するため、機能性が低下する。即ち、使用下において、水分と接触した際の機能材の溶出により、機能性が早期に喪失するという課題があった。 In this functional resin composition, the functional material existing near the surface exerts its effect, whereas the functional material buried inside the resin cannot exert its effect, so it is important to arrange the functional material on the surface. is there. The functional resin composition is required to have abrasion resistance and water resistance. When the surface of the functional resin composition disappears due to abrasion, the functional material buried inside the functional resin composition is exposed to the surface, so that the functionality can be maintained. On the other hand, when the functional material on the surface of the functional resin composition is eluted by water, the resin on the surface remains without being lost, and the functionality is reduced. In other words, there is a problem that the functional material is lost at an early stage due to the elution of the functional material upon contact with water during use.
 ところで、樹脂内部に埋もれた機能材は、サブミクロンオーダー未満の低分子で動きやすい物質である場合に、樹脂内部を移動(ブリーディング)して表面に移行することがある。即ち、樹脂内部での機能材の流動性を高めることによって、樹脂内部に埋もれた機能材を表面において機能させることが可能である。 機能 By the way, when the functional material buried inside the resin is a low-molecular-weight and easily movable substance of less than the order of submicron, it may move (bleed) inside the resin and move to the surface. That is, by increasing the fluidity of the functional material inside the resin, the functional material buried inside the resin can function on the surface.
 本開示は、水溶性の抗ウイルス剤を用いるとともに、吸水性を有する樹脂を用いることにより、樹脂内部に埋もれた機能材を樹脂表面に移行させ、長期にわたって機能を発揮できる抗ウイルス性樹脂組成物の提供を目的とする。 The present disclosure uses a water-soluble antiviral agent and, by using a resin having water absorbability, transfers a functional material buried in the resin to the resin surface, and can exhibit a function for a long period of time. The purpose is to provide.
 本開示の抗ウイルス性樹脂組成物は、ポリアミド系樹脂と、水溶性を示し、分解温度が前記ポリアミド系樹脂の溶融温度よりも高い抗ウイルス剤と、を含む、抗ウイルス性樹脂組成物である。 An antiviral resin composition of the present disclosure is an antiviral resin composition, comprising a polyamide resin and an antiviral agent that exhibits water solubility and has a decomposition temperature higher than the melting temperature of the polyamide resin. .
図1は、実施形態に係る抗ウイルス性樹脂組成物における、抗ウイルス剤のブリーディングを示し、FIG. 1 shows bleeding of an antiviral agent in an antiviral resin composition according to an embodiment, 図2は、実施形態に係るガラス繊維を含んだ抗ウイルス性樹脂組成物における、抗ウイルス剤のブリーディングを示し、FIG. 2 shows bleeding of an antiviral agent in an antiviral resin composition containing glass fibers according to the embodiment, 図3は、実施形態に係る抗ウイルス性樹脂組成物における、抗ウイルス剤添加量と水中でのカルシウムイオン(Ca2+)溶出量の関係を示し、FIG. 3 shows the relationship between the amount of antiviral agent added and the amount of calcium ion (Ca 2+ ) eluted in water in the antiviral resin composition according to the embodiment, 図4は、実施形態に係る抗ウイルス性樹脂組成物における、水中でのカルシウムイオン溶出量と各ウイルスに対する抗ウイルス性の関係を示す。FIG. 4 shows the relationship between the amount of calcium ion eluted in water and the antiviral property of each virus in the antiviral resin composition according to the embodiment.
 本実施形態に係る抗ウイルス性樹脂組成物1は、ポリアミド系のベース樹脂2と、水溶性を示し、分解温度がベース樹脂2の溶融温度よりも高い抗ウイルス剤3と、を含んで構成される。抗ウイルス性樹脂組成物1は、表面近傍に存在する抗ウイルス剤3により、その表面で抗ウイルス効果を発揮する。抗ウイルス剤3は、抗菌効果も発揮する。抗ウイルス性樹脂組成物1には、本開示の効果を阻害しない範囲で他の原料を配合することができる。例えば、重合禁止剤、硬化剤、硬化促進剤、染料、可塑剤、紫外線吸収剤、揺変剤、充填剤、消泡剤、安定剤、レベリング剤等が挙げられる。 The antiviral resin composition 1 according to the present embodiment includes a polyamide base resin 2 and an antiviral agent 3 that exhibits water solubility and has a decomposition temperature higher than the melting temperature of the base resin 2. You. The antiviral resin composition 1 exerts an antiviral effect on its surface by the antiviral agent 3 existing near the surface. Antiviral agent 3 also exerts an antibacterial effect. Other raw materials can be blended with the antiviral resin composition 1 as long as the effects of the present disclosure are not impaired. Examples include polymerization inhibitors, curing agents, curing accelerators, dyes, plasticizers, ultraviolet absorbers, thixotropic agents, fillers, defoamers, stabilizers, leveling agents, and the like.
 ベース樹脂2としては、ポリアミド系樹脂を用いる。ポリアミド系樹脂は吸水性が大きいため、吸収した水分に水溶性の抗ウイルス剤3が溶解することによりブリーディングが生じ、ベース樹脂2内部の抗ウイルス剤3が抗ウイルス性樹脂組成物1の表面に移行する結果、持続的に抗菌・抗ウイルス作用が発揮される(図1参照)。ポリアミド系樹脂の具体例としては、6-ナイロン及び6,6-ナイロン等が挙げられる。吸水率が大きいほどブリーディングが生じやすく、抗ウイルス効果が得られやすい。好ましくは、吸水率が1質量%以上のポリアミド系樹脂がベース樹脂2として用いられる。吸水率の測定方法については後段で詳述する。 ポ リ ア ミ ド As the base resin 2, a polyamide resin is used. Since the polyamide resin has high water absorption, bleeding occurs when the water-soluble antiviral agent 3 dissolves in the absorbed water, and the antiviral agent 3 inside the base resin 2 is applied to the surface of the antiviral resin composition 1. As a result, the antibacterial and antiviral actions are exerted continuously (see FIG. 1). Specific examples of the polyamide resin include 6-nylon and 6,6-nylon. Bleeding is more likely to occur as the water absorption is higher, and an antiviral effect is more likely to be obtained. Preferably, a polyamide resin having a water absorption of 1% by mass or more is used as the base resin 2. The method of measuring the water absorption will be described in detail later.
 抗ウイルス剤3は、ベース樹脂2に添加される。ベース樹脂2は、射出成形及び押出成形の何れかで成形される。このため、抗ウイルス剤3の分解温度はベース樹脂2の溶融温度(成形温度)よりも高いことが求められる。更に、抗ウイルス性樹脂組成物1中でのブリーディングのしやすさの観点から、水溶性であることが必要である。抗菌・抗ウイルス性を示す物質としては、4級アンモニウム塩、水酸化カルシウム(消石灰)、銅担持TiOおよびヨウ化銅などが挙げられる。上記の観点から、消石灰がより好ましく用いられる。消石灰は、水溶性であるとともに、その分解温度は400℃以上と高温であり、種々のポリアミド系樹脂の溶融温度(例えば、250℃~320℃)よりも高いからである。 The antiviral agent 3 is added to the base resin 2. The base resin 2 is formed by either injection molding or extrusion molding. For this reason, the decomposition temperature of the antiviral agent 3 is required to be higher than the melting temperature (molding temperature) of the base resin 2. Furthermore, from the viewpoint of easiness of bleeding in the antiviral resin composition 1, it is necessary to be water-soluble. Substances exhibiting antibacterial and antiviral properties include quaternary ammonium salts, calcium hydroxide (slaked lime), TiO 2 supported on copper, and copper iodide. In view of the above, slaked lime is more preferably used. This is because slaked lime is water-soluble and its decomposition temperature is as high as 400 ° C. or higher, which is higher than the melting temperature of various polyamide resins (for example, 250 ° C. to 320 ° C.).
 抗ウイルス剤3は、大腸菌や黄色ブドウ球菌等の菌に対して抗菌作用を有するとともに、エンベロープ型ウイルスや非エンベロープ型ウイルスに対して抗ウイルス作用を有する。上記の抗ウイルス性については、エンベロープ型ウイルスとしてA型インフルエンザウイルスを、非エンベロープ型ウイルスとしてネコカリシウイルスを対象に、TCID50法によりウイルス感染価を測定することで、抗ウイルス性の評価が可能である。 (4) The antiviral agent 3 has an antibacterial activity against bacteria such as Escherichia coli and Staphylococcus aureus, and has an antiviral activity against enveloped viruses and non-enveloped viruses. Regarding the above antiviral properties, it is possible to evaluate the antiviral properties by measuring the infectious titer of the influenza A virus as an enveloped virus and the feline calicivirus as a non-enveloped virus by the TCID50 method. is there.
 さらに抗ウイルス性樹脂組成物1は、フィラー4を含有していることが好ましい。抗ウイルス性樹脂組成物1内部において、吸水された水分に抗ウイルス剤3が溶解してブリーディングする際に、ベース樹脂2の無数の複雑な架橋構造の隙間を通過する際と比較して、フィラー4が含有されていることでフィラー4とベース樹脂2の境界部に通過しやすい経路が形成される結果、抗ウイルス剤3のブリーディングが促進されるためである(図2参照)。 Further, it is preferable that the antiviral resin composition 1 contains the filler 4. When the antiviral agent 3 dissolves in the absorbed water and bleeds inside the antiviral resin composition 1, compared to when the antiviral agent 3 passes through the infinite number of complicated crosslinked structures in the base resin 2, This is because the inclusion of No. 4 results in formation of a path that easily passes through the boundary between the filler 4 and the base resin 2, thereby promoting bleeding of the antiviral agent 3 (see FIG. 2).
 フィラー4としては樹脂に混練可能なものが好ましく、例えばガラス繊維等がより好ましく用いられる。強度の向上とともに、その長い繊維形状により、抗ウイルス剤3を抗菌・抗ウイルス性抗ウイルス性樹脂組成物1の表面へ移行させる経路をよく形成するためである。 The filler 4 is preferably one that can be kneaded with a resin, for example, glass fiber or the like is more preferably used. This is because, along with the improvement of the strength, the long fiber shape well forms a route for transferring the antiviral agent 3 to the surface of the antibacterial / antiviral antiviral resin composition 1.
 次に、本実施形態の抗ウイルス性樹脂組成物1の製造方法について説明する。 Next, a method for producing the antiviral resin composition 1 of the present embodiment will be described.
 抗ウイルス性樹脂組成物1の製造方法としては、ペレタイズ法、直接添加法、マスターバッチ法などの製法が挙げられる。 製造 Examples of the method for producing the antiviral resin composition 1 include a pelletizing method, a direct addition method, a master batch method, and the like.
 ペレタイズ法では、ベース樹脂2および抗ウイルス剤3を、混練機を用いて混練し、目的の抗ウイルス性樹脂組成物1のペレットを作製する。混練時には、ベース樹脂2の温度を溶融温度以上に上昇させ、ベース樹脂2を溶融させる。溶融したベース樹脂2に目的の含有量に応じた抗ウイルス剤3を添加してよく混練し、均一になったところでペレット状に成型する。このペレットを用いて、目的の形状へと成型して部材を製造する。 In the pelletizing method, the base resin 2 and the antiviral agent 3 are kneaded using a kneader to produce a pellet of the target antiviral resin composition 1. At the time of kneading, the temperature of the base resin 2 is raised to a melting temperature or higher to melt the base resin 2. The antiviral agent 3 according to the target content is added to the melted base resin 2 and kneaded well, and when it becomes uniform, it is molded into a pellet. Using the pellets, a member is manufactured by molding into a desired shape.
 直接添加法では、ベース樹脂2を射出成型する際に、抗菌・抗ウイルス剤を直接添加することで、目的の形状へと成型された抗ウイルス性樹脂組成物1を得ることができる。あらかじめ混合したベース樹脂2および抗ウイルス剤3を射出成型機に投入することで、抗ウイルス性樹脂組成物1を得ることができる。射出成形時の温度はペレタイズ法と同様、ベース樹脂2の溶融温度以上である。 In the direct addition method, when the base resin 2 is injection-molded, the antiviral / antiviral agent is directly added, whereby the antiviral resin composition 1 molded into a desired shape can be obtained. The antiviral resin composition 1 can be obtained by putting the base resin 2 and the antiviral agent 3 mixed in advance into an injection molding machine. The temperature during injection molding is equal to or higher than the melting temperature of the base resin 2 as in the pelletizing method.
 マスターバッチ法では、ペレタイズ法において抗ウイルス剤3の含有比が大きいペレットを作製し、さらにベース樹脂2と合わせて射出成型機へ投入することで、目的の組成の抗ウイルス性樹脂組成物1が得られる。 In the masterbatch method, pellets having a large content of the antiviral agent 3 in the pelletizing method are prepared, and the pellets are added to the injection molding machine together with the base resin 2, whereby the antiviral resin composition 1 having the desired composition is obtained. can get.
 下記に示す実施例および比較例は、ペレタイズ法及びマスターバッチ法の何れかを用いて作製した例である。本開示の効果は上記の製法にかかわらず同様に発揮される。 実 施 The following examples and comparative examples are examples produced using either the pelletizing method or the master batch method. The effects of the present disclosure are similarly exerted regardless of the above-mentioned manufacturing method.
 次に、実施例に基づいてさらに詳細に説明する。本開示はこれに限定されるものではない。実施例の詳細な配合比は、評価結果とともに表1に後述する。 Next, the present invention will be described in more detail based on embodiments. The present disclosure is not limited to this. Detailed mixing ratios of the examples are described later in Table 1 together with the evaluation results.
<実施例および比較例>
 ベース樹脂としてポリアミド系樹脂を、抗菌・抗ウイルス剤として消石灰(関東化学 試薬特級)を用いた。樹脂組成物中の抗菌・抗ウイルス剤含有量が5質量%となるようフィーダーの送り量を制御した。混練機により抗菌・抗ウイルス剤を各樹脂に練り込み、ペレットを作製した。混練条件はスクリュー径φ25mm、L/D=41、混練室数は8区分とし、混練温度は樹脂の溶融温度を考慮して設定した。フィラーとしてガラス繊維を含む例については、混練時に所要量のガラス繊維を合わせて投入してペレットを作製した。各実施例および比較例において、ベース樹脂は下記のものを使用した。
(実施例1~4、比較例1および8)
PA66樹脂   アミランCM3007  (東レ)
(比較例2~4および9~11)
ABS樹脂    トヨラック700-314(東レ)
(比較例5~7および12~14)
PP樹脂     ノバテックMA3UD  (日本ポリプロ)
(実施例5~16、比較例15)
PA66樹脂   レオナ90G50    (旭化成)
(実施例17~23、比較例16)
PAMXD樹脂  レニー1022F    (三菱エンジニアリングプラスチックス)
 レオナ90G50(旭化成)およびレニー1022F(三菱エンジニアリングプラスチックス)は、市販製品のベース樹脂内にあらかじめガラス繊維が50質量%混合された樹脂製品である。
<Examples and Comparative Examples>
Polyamide resin was used as the base resin, and slaked lime (Kanto Chemical Reagents) was used as the antibacterial and antiviral agent. The feed amount of the feeder was controlled so that the content of the antibacterial / antiviral agent in the resin composition was 5% by mass. Antibacterial and antiviral agents were kneaded into each resin by a kneader to produce pellets. The kneading conditions were a screw diameter of φ25 mm, L / D = 41, the number of kneading chambers was eight, and the kneading temperature was set in consideration of the melting temperature of the resin. For the example containing glass fiber as a filler, a required amount of glass fiber was put together during kneading to produce a pellet. In each of Examples and Comparative Examples, the following base resins were used.
(Examples 1 to 4, Comparative Examples 1 and 8)
PA66 resin Amilan CM3007 (Toray)
(Comparative Examples 2 to 4 and 9 to 11)
ABS resin Toyolac 700-314 (Toray)
(Comparative Examples 5 to 7 and 12 to 14)
PP resin Novatec MA3UD (Nippon Polypro)
(Examples 5 to 16, Comparative Example 15)
PA66 resin Leona 90G50 (Asahi Kasei)
(Examples 17 to 23, Comparative Example 16)
PAMXD resin Reny 1022F (Mitsubishi Engineering Plastics)
Leona 90G50 (Asahi Kasei) and Reny 1022F (Mitsubishi Engineering Plastics) are resin products in which 50% by mass of glass fiber is mixed in advance in a commercially available base resin.
 得られたペレットを用い、射出成形機(ROBOSHOT S-2000i100B FANUC)で縦横150mm×150mm、厚さ3mmの樹脂組成物の成形品を作製した。シリンダ温度は、ポリアミド系樹脂が270℃、PP樹脂が200℃、ABS樹脂が200℃とした。 (4) Using the obtained pellets, a molded product of a resin composition having a length and width of 150 mm × 150 mm and a thickness of 3 mm was produced with an injection molding machine (ROBOSHOT S-2000i100B FANUC). The cylinder temperature was 270 ° C. for the polyamide resin, 200 ° C. for the PP resin, and 200 ° C. for the ABS resin.
 上記の成形品に対し、抗菌試験、抗ウイルス試験、摩耗試験、耐水試験および溶出試験を行い、抗菌性能および抗ウイルス性能と、その持続性を評価した。試験結果を後述の表1~5に示す。成型後の樹脂組成物の吸水率は、ベース樹脂の吸水率をもとに、重量組成比を乗じて算出した。
[試験]
The above molded article was subjected to an antibacterial test, an antiviral test, an abrasion test, a water resistance test, and a dissolution test to evaluate antibacterial performance, antiviral performance, and its durability. The test results are shown in Tables 1 to 5 below. The water absorption of the resin composition after molding was calculated by multiplying the weight composition ratio based on the water absorption of the base resin.
[test]
<抗菌試験>
 樹脂の抗菌性について、JIS Z 2801に準拠して抗菌性の評価試験を行った。感染価対数減少値が2.0以上の場合に効果ありとして判定した。
<Antibacterial test>
With respect to the antibacterial property of the resin, an antibacterial property evaluation test was performed in accordance with JIS Z2801. When the infectious titer log reduction value was 2.0 or more, it was judged as effective.
<抗ウイルス試験>
 樹脂の抗ウイルス性について、JIS Z 2801を参考に、エンベロープ型ウイルスとしてA型インフルエンザウイルスを、非エンベロープ型ウイルスとしてネコカリシウイルスを用いて、接触時間を24時間として抗ウイルス性の評価試験を行った。感染価対数減少値が2.0以上の場合に効果ありとして判定した。
<Antiviral test>
With respect to the antiviral properties of the resin, an evaluation test of the antiviral properties was carried out using influenza A virus as an enveloped virus and feline calicivirus as a non-enveloped virus with a contact time of 24 hours with reference to JIS Z 2801. Was. When the infectious titer log reduction value was 2.0 or more, it was judged as effective.
<耐水試験>
 試験片の表面積25cmに対して超純水50mlの割合で、超純水中に16時間浸漬した後に上述の抗菌・抗ウイルス試験を行い、水浸漬後の樹脂表面の抗菌・抗ウイルス性について評価した。
<Water resistance test>
At a rate of ultrapure water 50ml of the surface area 25 cm 2 of the test specimen, subjected to antibacterial and antiviral test described above was immersed for 16 hours in ultrapure water, the antibacterial and antiviral resin surface after water immersion evaluated.
<摩耗試験>
 試験片に対し、接触子として台布巾を用いて、試験片10cm×10cmの面積当たりに9.8Nの荷重をかけ、摺動摩耗試験機により7300回の摩擦を加えた。その後、上述の抗菌・抗ウイルス試験を行い、摩耗後の樹脂表面の抗菌・抗ウイルス性について評価した。
<Wear test>
Using a base cloth width as a contact, a load of 9.8 N was applied to the test piece per 10 cm × 10 cm area, and friction was applied 7,300 times by a sliding wear tester. Thereafter, the antibacterial and antiviral tests described above were performed to evaluate the antibacterial and antiviral properties of the resin surface after abrasion.
<溶出試験>
 ベース樹脂にPA66樹脂を用いた樹脂組成物において、ガラス繊維を含むものと、含まないものと、のそれぞれについて抗ウイルス剤の添加量を0~6質量%として作製した試験片について、試験面を50mm×50mmの大きさに加工した上記の試験片の側面および裏面をメルコートを用いて封止し、試験面以外から抗菌・抗ウイルス剤が溶出しないようにした。試験片の表面積25cmに対して超純水10mlを用いて、試験面を水に浸漬し、水が蒸発しないようラップをかけて、温度25±1℃で24時間静置した。
 図3は、静置後、試験片の単位面積当たりの抗菌・抗ウイルス剤の溶出量をイオンクロマトグラフィーを用いて定量し、試験片への抗菌・抗ウイルス剤添加量に対してプロットした図である。図4は、カルシウムイオンの溶出量に対して、抗菌・抗ウイルス性との関係性を明らかにするため、上述の抗菌・抗ウイルス試験における感染価対数減少値をプロットした図である。
<Dissolution test>
In the resin composition using PA66 resin as the base resin, the test surface of a test piece prepared with the addition amount of the antiviral agent of 0 to 6% by mass for each of those containing glass fiber and those not containing the glass fiber was tested. The side and back surfaces of the test piece processed into a size of 50 mm × 50 mm were sealed with a melt coat so that the antibacterial and antiviral agents were not eluted from other than the test surface. The test surface was immersed in water using 10 ml of ultrapure water with respect to the surface area of 25 cm 2 of the test piece, wrapped so that the water did not evaporate, and allowed to stand at a temperature of 25 ± 1 ° C. for 24 hours.
FIG. 3 is a diagram plotting the amount of the antibacterial / antiviral agent eluted per unit area of the test piece after ionization using ion chromatography and plotting the amount of the antibacterial / antiviral agent added to the test piece. It is. FIG. 4 is a diagram plotting the logarithm of the infectious titer in the antibacterial and antiviral tests described above to clarify the relationship between the amount of calcium ion eluted and the antibacterial and antiviral properties.
<吸水率の測定>
 作製した試験片について、24時間水浸漬後の質量増加をもとに、吸水率の測定を行った。
<Measurement of water absorption>
With respect to the prepared test piece, the water absorption was measured based on the increase in mass after immersion in water for 24 hours.
 上記の試験結果を、下記の表1~5に示す。 The above test results are shown in Tables 1 to 5 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Figure JPOXMLDOC01-appb-T000003

Figure JPOXMLDOC01-appb-T000004

Figure JPOXMLDOC01-appb-T000005

[評価]
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Figure JPOXMLDOC01-appb-T000003

Figure JPOXMLDOC01-appb-T000004

Figure JPOXMLDOC01-appb-T000005

[Evaluation]
 抗菌・抗ウイルス性能について、製造後、耐水試験を行う前の初期状態の樹脂組成物について、抗菌試験及び抗ウイルス試験を行った結果、抗菌・抗ウイルス剤を含有する全ての樹脂組成物で、抗菌・抗ウイルス性能を示した。 For antibacterial and antiviral performance, after production, the initial state of the resin composition before conducting a water resistance test, antibacterial test and antiviral test results, in all resin compositions containing antibacterial and antiviral agents, It showed antibacterial and antiviral performance.
 次に、抗菌・抗ウイルス性能の持続性について、摩耗試験及び耐水試験を行った後の樹脂組成物、それぞれ抗菌・抗ウイルス試験を行った。本開示において「持続的な抗菌・抗ウイルス性を有する」とは、耐水試験後に少なくとも抗菌作用が持続していることを要件とした。 (4) Next, regarding the persistence of antibacterial and antiviral performance, antibacterial and antiviral tests were respectively performed on the resin compositions after the abrasion test and the water resistance test. In the present disclosure, “having sustained antibacterial and antiviral properties” requires that at least the antibacterial action is maintained after the water resistance test.
 摩耗試験後に行った抗菌・抗ウイルス試験の結果は、初期状態における同試験の結果とほぼ同様の結果となった。摩耗により樹脂自体が消失するとともに、樹脂組成物内部の抗菌・抗ウイルス剤が露出する結果、初期状態の樹脂組成物と変わらない表面状態を保つことができるためと考えられる。即ち、樹脂組成物が摩耗しても、抗菌・抗ウイルス剤は摩耗部においてのみ消失するため、抗菌・抗ウイルス効果の持続性への影響は小さい。 抗菌 The results of the antibacterial and antiviral tests performed after the abrasion test were almost the same as the results of the same test in the initial state. This is considered to be because the resin itself disappears due to abrasion and the antibacterial and antiviral agents inside the resin composition are exposed, so that the surface state which is the same as that of the resin composition in the initial state can be maintained. That is, even if the resin composition is worn, the antibacterial / antiviral agent disappears only in the worn portion, so that the effect on the durability of the antibacterial / antiviral effect is small.
 さらに、耐水試験後に行った抗菌・抗ウイルス試験の結果に基づき、抗菌・抗ウイルス性能の持続性について評価した。 Furthermore, based on the results of antibacterial and antiviral tests performed after the water resistance test, the sustainability of antibacterial and antiviral performance was evaluated.
<実施例1~4、比較例1および8>
・PA66樹脂 アミランCM3007(東レ)吸水率1.5質量%
(a)ガラス繊維無
 ガラス繊維を含有しない場合、実施例1および2において、耐水試験後にも良好な抗菌性を示した。実施例2においては、非エンベロープ型ウイルスのみに対し抗ウイルス性も示した。樹脂内部の抗菌・抗ウイルス剤が表面に溶出したものと推定される。
(b)ガラス繊維有
 ガラス繊維を含有する場合、実施例3および4において、耐水試験後にも良好な抗菌・抗ウイルス性を示した。ガラス繊維が樹脂内部に存在することで、ガラス繊維と樹脂の境界面に水分の通過しやすい経路が形成され、フィラーを有さない実施例1および2と比較して、より多くの樹脂内部の抗菌・抗ウイルス剤が表面に溶出したものと推定される。
<Examples 1 to 4, Comparative Examples 1 and 8>
・ PA66 resin Amilan CM3007 (Toray) Water absorption 1.5% by mass
(A) No glass fiber When no glass fiber was contained, in Examples 1 and 2, good antibacterial properties were exhibited even after the water resistance test. Example 2 also showed antiviral properties against only the non-enveloped virus. It is estimated that the antibacterial and antiviral agents inside the resin eluted on the surface.
(B) With Glass Fiber When glass fiber was contained, in Examples 3 and 4, good antibacterial and antiviral properties were exhibited even after the water resistance test. Since the glass fiber is present inside the resin, a path through which moisture easily passes is formed at the interface between the glass fiber and the resin, and as compared with Examples 1 and 2 having no filler, a larger amount of the resin inside is provided. It is estimated that antibacterial and antiviral agents eluted on the surface.
<比較例2~4および9~11>
・ABS樹脂 トヨラック700-314(東レ)吸水率0.4質量%
(a)ガラス繊維無
 ガラス繊維を含有しない場合、いずれの例においても、抗菌・抗ウイルス性を示さなかった。耐水試験における水中浸漬により表面の抗菌・抗ウイルス剤が流出し、表面に十分な量の抗菌・抗ウイルス剤が存在しなかったものと推定される。
(b)ガラス繊維有
 ガラス繊維を含有する場合、比較例10において抗菌・抗ウイルス性を示さず、比較例11において、耐水試験後にも良好な抗菌性のみを示した。ABS樹脂はポリアミド系樹脂と比較して吸水性が低く、樹脂表面への十分な量の抗菌・抗ウイルス剤の溶出が得られなかったものと推定される。
<Comparative Examples 2 to 4 and 9 to 11>
・ ABS resin Toyolac 700-314 (Toray) Water absorption 0.4% by mass
(A) No glass fiber When no glass fiber was contained, no antibacterial and antiviral properties were exhibited in any of the examples. It is estimated that the antimicrobial / antiviral agent on the surface flowed out by immersion in water in the water resistance test, and a sufficient amount of the antibacterial / antiviral agent did not exist on the surface.
(B) With glass fiber When glass fiber was contained, antibacterial and antiviral properties were not shown in Comparative Example 10, and only good antibacterial property was shown in Comparative Example 11 even after the water resistance test. It is presumed that the ABS resin had lower water absorption than the polyamide resin, and a sufficient amount of the antibacterial / antiviral agent could not be eluted on the resin surface.
<比較例5~7および12~14>
・PP樹脂 ノバテックMA3UD(日本ポリプロ)吸水率0.1質量%
 ガラス繊維の有無に関わらず、耐水試験後には抗菌・抗ウイルス性を示さなかった。PP樹脂はABS樹脂と比較しても吸水性がさらに低く、樹脂表面への十分な量の抗菌・抗ウイルス剤の溶出が得られなかったものと推定される。
<Comparative Examples 5 to 7 and 12 to 14>
・ PP resin Novatec MA3UD (Nippon Polypro) water absorption 0.1% by mass
No antibacterial / antiviral properties were observed after the water resistance test, regardless of the presence or absence of glass fibers. It is presumed that the PP resin had even lower water absorption than the ABS resin, and a sufficient amount of the antibacterial / antiviral agent could not be eluted on the resin surface.
<実施例5~16、比較例15>
・PA66樹脂 レオナ90G50(旭化成)
 当該樹脂製品は、市販時よりガラス繊維を含有する樹脂製品である。実施例5では抗菌性のみを示した。実施例6~16においていずれも抗菌・抗ウイルス性を示し、特に実施例12~16についてはエンベロープ型および非エンベロープ型いずれのウイルスについても、抗ウイルス性を示した。抗菌・抗ウイルス剤の添加量は1.5質量%以上が好ましく、良好な抗ウイルス性が発揮される。
<Examples 5 to 16, Comparative Example 15>
・ PA66 resin Leona 90G50 (Asahi Kasei)
The resin product is a resin product containing glass fiber from the time of marketing. In Example 5, only the antibacterial property was shown. Examples 6 to 16 all exhibited antibacterial and antiviral properties, and particularly, Examples 12 to 16 exhibited antiviral properties for both enveloped and non-enveloped viruses. The addition amount of the antibacterial / antiviral agent is preferably 1.5% by mass or more, and good antiviral properties are exhibited.
<実施例17~23、比較例16>
・PAMXD樹脂 レニー1022F(三菱エンジニアリングプラスチックス)
 当該樹脂製品は、市販時よりガラス繊維を含有する樹脂製品である。実施例17~23においていずれも抗菌・抗ウイルス性を示し、特に実施例19~23においてはいずれの型のウイルスに対しても抗ウイルス性を示した。
<Examples 17 to 23, Comparative Example 16>
・ PAMXD resin Reny 1022F (Mitsubishi Engineering Plastics)
The resin product is a resin product containing glass fiber from the time of marketing. Examples 17 to 23 all exhibited antibacterial and antiviral properties, and particularly Examples 19 to 23 exhibited antiviral properties against any type of virus.
 さらに、図3に示す溶出試験の結果を見ると、ガラス繊維含有の有無に関わらず、カルシウムイオンの溶出量は抗菌・抗ウイルス剤の添加量とともに増加傾向であった。ガラス繊維有の場合、抗菌・抗ウイルス剤の添加量が1~3質量%にかけてカルシウムイオンの溶出量は大きく増加し、さらに3質量%以上では、緩やかに増加していた。カルシウムイオンは消石灰に由来するものと推定され、図4に示すように、カルシウムイオン溶出量の増加とともに抗ウイルス性能が向上していた。特に、カルシウムイオンの溶出量が0.06μmol/cm以上である場合には、インフルエンザウイルスとネコカリシウイルスの両方に対して抗ウイルス性を発揮した。 Further, the results of the dissolution test shown in FIG. 3 indicate that the dissolution amount of calcium ions tends to increase with the addition amount of the antibacterial / antiviral agent regardless of the presence or absence of the glass fiber. When glass fibers were used, the amount of calcium ions eluted greatly increased when the amount of the antibacterial / antiviral agent added was 1 to 3% by mass, and gradually increased when the amount was 3% by mass or more. Calcium ions are presumed to be derived from slaked lime, and as shown in FIG. 4, the antiviral performance was improved as the amount of eluted calcium ions increased. In particular, when the amount of eluted calcium ions was 0.06 μmol / cm 2 or more, it exhibited antiviral properties against both influenza virus and feline calicivirus.
 ガラス繊維をフィラーとして含有する樹脂組成物は、フィラーを含有しない樹脂組成物に比べて、カルシウムイオンの溶出量が顕著に増加していた。ガラス繊維が消石灰の溶出を促進しており、樹脂内部の消石灰が樹脂表面で機能するため、耐水試験による溶出後も抗ウイルス効果を持続的に発揮できるものと推定される。 (4) The resin composition containing glass fiber as a filler significantly increased the amount of calcium ions eluted as compared with the resin composition containing no filler. It is presumed that the glass fiber promotes the dissolution of slaked lime, and the slaked lime inside the resin functions on the resin surface. Therefore, it is presumed that the antiviral effect can be continuously exerted even after dissolution by the water resistance test.
 さらに樹脂組成物の吸水率と耐水試験後の抗菌・抗ウイルス性についてみると、ガラス繊維を含まない樹脂組成物では、吸水率1.5質量%の樹脂組成物において良好な抗菌・抗ウイルス性が見られた。0.4質量%の樹脂組成物においては抗菌性がみられるものの、抗ウイルス性は見られなかった。
 対して、ガラス繊維を含んだ樹脂組成物においては、吸水率0.3質量%以上の樹脂組成物で良好な抗菌・抗ウイルス性が見られた。即ち、ガラス繊維が樹脂組成物中に含まれることで、抗菌・抗ウイルス効果を増大させることができる。
Further, regarding the water absorption of the resin composition and the antibacterial and antiviral properties after the water resistance test, the resin composition containing no glass fiber shows good antibacterial and antiviral properties in the resin composition having a water absorption of 1.5% by mass. It was observed. Although the antibacterial property was observed in the resin composition of 0.4% by mass, the antiviral property was not observed.
On the other hand, in the resin composition containing glass fibers, good antibacterial and antiviral properties were observed in the resin composition having a water absorption of 0.3% by mass or more. That is, by containing glass fibers in the resin composition, the antibacterial and antiviral effects can be increased.

Claims (11)

  1.  ポリアミド系樹脂と、
     水溶性を示し、分解温度が前記ポリアミド系樹脂の溶融温度よりも高い抗ウイルス剤と、を含む抗ウイルス性樹脂組成物。
    Polyamide-based resin,
    An antiviral resin composition comprising: an antiviral agent that exhibits water solubility and has a decomposition temperature higher than the melting temperature of the polyamide resin.
  2.  前記抗ウイルス剤は、消石灰である、請求項1に記載の抗ウイルス性樹脂組成物。 抗 The antiviral resin composition according to claim 1, wherein the antiviral agent is slaked lime.
  3.  前記抗ウイルス性樹脂組成物が、さらにフィラーを有する、請求項1または2に記載の抗ウイルス性樹脂組成物。 The antiviral resin composition according to claim 1 or 2, wherein the antiviral resin composition further has a filler.
  4.  前記フィラーは、ガラス繊維である、請求項3に記載の抗ウイルス性樹脂組成物。 The antiviral resin composition according to claim 3, wherein the filler is a glass fiber.
  5.  前記抗ウイルス剤は、抗菌性を有する請求項1から4までのいずれか1項に記載の抗ウイルス性樹脂組成物。 The antiviral resin composition according to any one of claims 1 to 4, wherein the antiviral agent has antibacterial properties.
  6.  前記抗ウイルス剤の添加量は、1.5質量%以上である請求項1から5までのいずれか1項に記載の抗ウイルス性樹脂組成物。 The antiviral resin composition according to any one of claims 1 to 5, wherein the amount of the antiviral agent added is 1.5% by mass or more.
  7.  前記抗ウイルス剤の添加量は、3質量%以上である請求項6に記載の抗ウイルス性樹脂組成物。 The antiviral resin composition according to claim 6, wherein the amount of the antiviral agent added is 3% by mass or more.
  8.  前記ポリアミド系樹脂の吸水率は、0.3質量%以上である請求項1から7までのいずれか1項に記載の抗ウイルス性樹脂組成物。 The antiviral resin composition according to any one of claims 1 to 7, wherein the polyamide resin has a water absorption of 0.3% by mass or more.
  9.  前記ポリアミド系樹脂の吸水率は、0.4質量%以上である請求項8に記載の抗ウイルス性樹脂組成物。 The antiviral resin composition according to claim 8, wherein the polyamide resin has a water absorption of 0.4% by mass or more.
  10.  前記ポリアミド系樹脂の吸水率は、1.5質量%以上である請求項9に記載の抗ウイルス性樹脂組成物。 The antiviral resin composition according to claim 9, wherein the polyamide resin has a water absorption of 1.5% by mass or more.
  11.  前記樹脂組成物の単位面積当たりのカルシウムイオンの溶出量は、0.06μmol/cm以上である請求項2から10までのいずれか1項に記載の抗ウイルス性樹脂組成物。 The antiviral resin composition according to any one of claims 2 to 10, wherein the elution amount of calcium ions per unit area of the resin composition is 0.06 µmol / cm 2 or more.
PCT/JP2019/026321 2018-07-09 2019-07-02 Antiviral resin composition WO2020013033A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018130091A JP7198601B2 (en) 2018-07-09 2018-07-09 Antibacterial/antiviral resin composition
JP2018-130091 2018-07-09

Publications (1)

Publication Number Publication Date
WO2020013033A1 true WO2020013033A1 (en) 2020-01-16

Family

ID=69142806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026321 WO2020013033A1 (en) 2018-07-09 2019-07-02 Antiviral resin composition

Country Status (2)

Country Link
JP (1) JP7198601B2 (en)
WO (1) WO2020013033A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162135A1 (en) * 2022-02-25 2023-08-31 株式会社トラスト化学 Antiviral article and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310519A (en) * 1992-05-08 1993-11-22 Matsushita Electric Ind Co Ltd Germicidal carpet, malodor-preventing pet food, germicidal wax
JPH06271472A (en) * 1992-10-14 1994-09-27 Matsushita Electric Ind Co Ltd Antiviral composition and its production
JP2004323706A (en) * 2003-04-25 2004-11-18 Toyo Ink Mfg Co Ltd Resin composition and molded product obtained by using the same resin composition
WO2016194284A1 (en) * 2015-05-29 2016-12-08 王子ホールディングス株式会社 Sheet containing metal oxide and/or metal hydroxide

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3042980A4 (en) * 2013-09-05 2017-04-26 Mitsubishi Engineering-Plastics Corporation Thermoplastic resin composition, resin molded article, and method for producing plating-layer-equipped resin molded article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310519A (en) * 1992-05-08 1993-11-22 Matsushita Electric Ind Co Ltd Germicidal carpet, malodor-preventing pet food, germicidal wax
JPH06271472A (en) * 1992-10-14 1994-09-27 Matsushita Electric Ind Co Ltd Antiviral composition and its production
JP2004323706A (en) * 2003-04-25 2004-11-18 Toyo Ink Mfg Co Ltd Resin composition and molded product obtained by using the same resin composition
WO2016194284A1 (en) * 2015-05-29 2016-12-08 王子ホールディングス株式会社 Sheet containing metal oxide and/or metal hydroxide

Also Published As

Publication number Publication date
JP2020007265A (en) 2020-01-16
JP7198601B2 (en) 2023-01-04

Similar Documents

Publication Publication Date Title
CN105504661B (en) A kind of remote controller casing material and preparation method with antibacterial functions
US20160069001A1 (en) Method of preparing antimicrobial 3d-printing filament
US10138358B2 (en) Moldable compositions and methods of using the same
WO2012077721A1 (en) Antimicrobial water treatment agent
WO2020013033A1 (en) Antiviral resin composition
US20200165450A1 (en) Chemically resistant thermoplastic compositions
JP2004526029A5 (en)
CN105037816A (en) Anti-bacterial plastic applicable to mobile phone shells and preparation method of anti-bacterial plastic
KR20060013677A (en) Flame retardant polyamide composition
JPH08134295A (en) Ionomer composition and application thereof
US5939481A (en) Polyoxymethylene compositions
JP6992319B2 (en) Hygroscopic antibacterial resin composition and molded product
JP7166815B2 (en) Antibacterial/antiviral resin composition
JP2020007266A (en) Antibacterial-antiviral resin composition
JP2001010850A (en) Inorganic filling admixture
CN105924728B (en) A kind of antibiotic plastic and preparation method thereof
KR20180057236A (en) Antibacterial thermoplastic resin composition and article produced therefrom
JP2583381B2 (en) Rubber composition
KR20200065139A (en) Manufacturing method of antibacterial plastics molded articles for parts of air cleaner
CN108239396A (en) A kind of novel environment friendly plastics
JPH03182554A (en) Polyamide resin composition for molding
JPH07138477A (en) Polyamide resin composition
KR20130142876A (en) Antibacterial water treatment agent
KR20230030378A (en) Thermoplastic resin composition, method for preparing the same and article prepared therefrom
CZ2015119A3 (en) Polyamide-containing composition, silicagel and silver nanoparticles and stabilization additives

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19833572

Country of ref document: EP

Kind code of ref document: A1