WO2020008791A1 - 測位システム、測位装置およびセンタ装置 - Google Patents
測位システム、測位装置およびセンタ装置 Download PDFInfo
- Publication number
- WO2020008791A1 WO2020008791A1 PCT/JP2019/022321 JP2019022321W WO2020008791A1 WO 2020008791 A1 WO2020008791 A1 WO 2020008791A1 JP 2019022321 W JP2019022321 W JP 2019022321W WO 2020008791 A1 WO2020008791 A1 WO 2020008791A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positioning
- delay amount
- location
- dependent delay
- unit
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/03—Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
- G01S19/07—Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
- G01S19/072—Ionosphere corrections
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/03—Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
- G01S19/07—Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/0009—Transmission of position information to remote stations
- G01S5/0018—Transmission from mobile station to base station
- G01S5/0027—Transmission from mobile station to base station of actual mobile position, i.e. position determined on mobile
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/40—Correcting position, velocity or attitude
- G01S19/41—Differential correction, e.g. DGPS [differential GPS]
Definitions
- the present disclosure relates to a positioning system, a positioning device and a center device provided in the positioning system, and particularly to a technology for receiving a positioning signal transmitted by a positioning satellite and performing positioning.
- a precise single positioning method As a technique for receiving and positioning signals, a precise single positioning method has been proposed (for example, Patent Document 1). In the precise single positioning method, an error amount such as a tropospheric delay amount is corrected. In the technique described in Patent Literature 2, a center station calculates correction information such as a tropospheric delay amount using a satellite signal collected at an electronic reference point. Then, the center station uploads the correction information to the quasi-zenith satellite, and the quasi-zenith satellite distributes the correction information to the ground.
- correction information such as a tropospheric delay amount using a satellite signal collected at an electronic reference point. Then, the center station uploads the correction information to the quasi-zenith satellite, and the quasi-zenith satellite distributes the correction information to the ground.
- the tropospheric delay is a value that varies depending on the location.
- the correction information may include an ionospheric delay amount.
- the amount of ionospheric delay also varies depending on the location.
- these delay amounts are calculated based on satellite signals collected at electronic reference points. Therefore, in order to increase the positioning accuracy in Patent Document 2, it is necessary to arrange the electronic reference points densely. However, increasing the number of electronic reference points for densely arranging the electronic reference points increases the cost.
- the present disclosure has an object to provide a positioning system capable of performing high-accuracy positioning while suppressing an increase in electronic reference points, and a positioning device and a center device provided in the positioning system.
- a positioning system is a positioning system including a plurality of positioning devices and a center device that communicates with the positioning devices.
- the positioning device can be used in a mobile object, and has a location-dependent delay amount and a convergence value of an observation equation including as parameters a location-dependent delay amount and a propagation distance including at least one of a tropospheric delay amount and an ionospheric delay amount. It includes a positioning calculation unit that calculates a propagation distance and calculates a current position based on the propagation distance, and a positioning communication unit that transmits the location-dependent delay amount calculated by the positioning calculation unit to the center device together with the position.
- the center device based on the location-dependent delay amount transmitted by the positioning device, updates the location-dependent delay amount for distribution, and the location-dependent delay amount for distribution updated by the updating unit, the location-dependent delay amount of the plurality of positioning devices. And a distribution communication unit for transmitting to at least one of them.
- the positioning device calculates the location-dependent delay amount as a convergence value of the observation equation including the location-dependent delay amount and the propagation distance as parameters, and also calculates the current position.
- the location-dependent delay amount is transmitted to the center device together with the location. Since this positioning device can be used in a moving object, unlike an electronic reference point, the positioning device can be mounted on a moving object such as a vehicle that needs positioning and can be used for sequentially measuring the position of the moving object. Therefore, it is easy to increase the number than the electronic reference points, and by increasing the number of the positioning devices, it is possible to increase the number of places where the place-dependent delay amount is observed. If the number of locations where the location-dependent delay amount is observed can be increased, the location-dependent delay amount can be updated for each smaller area. Therefore, highly accurate positioning can be performed while suppressing an increase in the number of electronic reference points.
- the positioning device can be used in a mobile object, and includes a location-dependent delay amount including at least one of a tropospheric delay amount and an ionospheric delay amount and an observation including a propagation distance as parameters.
- a location calculation unit that calculates a location-dependent delay amount and a propagation distance as a convergence value of the equation, and calculates a current position based on the propagation distance, and transmits the location-dependent delay amount calculated by the positioning calculation unit to the center device together with the position.
- a positioning-side communication unit that calculates a location-dependent delay amount and a propagation distance as a convergence value of the equation, and calculates a current position based on the propagation distance, and transmits the location-dependent delay amount calculated by the positioning calculation unit to the center device together with the position.
- the center device communicates with a plurality of positioning devices.
- the center unit updates the location-dependent delay amount for distribution based on the location-dependent delay amount transmitted by the positioning device, the location-dependent delay amount including at least one of the tropospheric delay amount and the ionospheric delay amount.
- a distribution-side communication unit that transmits the distribution-dependent delay amount for distribution to at least one of the plurality of positioning devices.
- the positioning device and the center device are the positioning device and the center device included in the positioning system.
- FIG. 1 is a diagram showing an overall configuration of a positioning system
- FIG. 2 is a diagram illustrating a configuration of a positioning device.
- FIG. 3 is a diagram showing the configuration of the center device.
- FIG. 4 is a diagram showing a structure of a set of correction information;
- FIG. 5 is a diagram showing a structure of upload data uploaded by the positioning device,
- FIG. 6 is a diagram showing a structure of download data downloaded by the positioning device,
- FIG. 7 is a diagram showing a data structure of a download request.
- FIG. 8 is a diagram showing a data structure of an upload request.
- FIG. 9 is a diagram showing a structure of correction information estimation data
- FIG. 10 is a diagram showing the structure of the correction information database.
- FIG. 11 is a diagram illustrating an area to which one piece of correction information is applied
- FIG. 12 is a flowchart illustrating a process executed by the calculation unit of the positioning device;
- FIG. 13 is a flowchart illustrating processing executed by the calculation unit subsequent to FIG.
- FIG. 14 is a flowchart showing the processing in S1 of FIG. 12 in detail
- FIG. 15 is a flowchart showing the details of the process of S4 in FIG.
- FIG. 16 is a flowchart showing the details of the process of S8 in FIG.
- FIG. 17 is a flowchart showing the details of the process in S9 of FIG.
- FIG. 10 is a diagram showing the structure of the correction information database.
- FIG. 11 is a diagram illustrating an area to which one piece of correction information is applied
- FIG. 12 is a flowchart illustrating a process executed
- FIG. 18 is a flowchart showing the details of the process in S10 of FIG.
- FIG. 19 is a flowchart showing the details of the process of S12 in FIG.
- FIG. 20 is a flowchart showing the processing of S13 in FIG. 13 in detail
- FIG. 21 is a flowchart showing the details of the processing of S131 in FIG.
- FIG. 22 is a flowchart showing the processing of S132 of FIG. 20 in detail.
- FIG. 23 is a flowchart illustrating a process performed by the calculation unit of the positioning device in parallel with FIGS.
- FIG. 24 is a flowchart illustrating processing related to upload data, which is performed by the calculation unit of the center device.
- FIG. 25 is a flowchart showing processing relating to download data executed by the calculation unit of the center device;
- FIG. 26 is a flowchart illustrating processing related to an upload request executed by the arithmetic unit of the center device.
- FIG. 1 is a diagram illustrating an overall configuration of a positioning system 1 according to the embodiment.
- the positioning system 1 includes a positioning device 100 and a center device 200.
- the positioning device 100 is attached to various objects.
- one positioning device 100 is mounted on a vehicle 2
- another positioning device 100 is mounted on a drone 3
- another positioning device 100 is fixed to a traffic light 4.
- the positioning device 100 may be attached to a moving object such as the vehicle 2 or the drone 3 or may be fixed to a stationary object such as the traffic light 4.
- three positioning devices 100 are shown in FIG. 1, the number of the positioning devices 100 is not limited, and a large number of moving objects and stationary objects can include the positioning devices 100.
- the positioning device 100 receives the satellite signal transmitted by the positioning satellite 5 and sequentially calculates the position of the own device based on the satellite signal.
- the calculation method used when calculating the position of the own device is the same as a method called precise single positioning, and corrects the tropospheric delay amount. Further, the ionospheric delay may be corrected in addition to the tropospheric delay.
- the positioning satellite 5 is a satellite provided in a satellite positioning system such as GPS, GLONASS, Galileo, IRNSS, QZSS, and Beidou.
- the positioning device 100 and the center device 200 can communicate with each other via the base station 6 and the public communication network 7 provided on the ground, and correction information including a delay amount is transmitted from the center device 200 to the positioning device 100. Provided. Further, the positioning device 100 estimates an error that varies depending on a place such as a tropospheric delay error at the same time as the positioning in the case of the precise single positioning. As described in Patent Document 1, a method of estimating a tropospheric delay error is a method of converging an estimated value of a delay amount using an observation equation including a delay amount as a parameter. The positioning device 100 transmits correction information including the estimated delay amount to the center device 200. The center device 200 can update the correction information stored in the correction information database (see FIG. 10) based on the correction information received from the positioning device 100.
- the positioning device 100 includes a wide-area communication unit 110, a short-range communication unit 120, a satellite receiver 130, an autonomous sensor 140, a map storage unit 150, and a calculation unit 160.
- the wide area communication unit 110 is one of the positioning side communication units, and performs wireless communication with the center device 200 via the base station 6 and the public communication network 7.
- LTE can be adopted as the communication method.
- the short-range communication unit 120 is a communication unit that performs wireless communication with another short-range communication unit 120 existing around the positioning device 100.
- the communication range of the short-range communication unit 120 is, for example, about several hundred meters in radius.
- the satellite receiver 130 receives a satellite signal transmitted by the positioning satellite 5 and outputs observation data.
- the observation data is, for example, a pseudorange and a carrier phase.
- the observation data may include a CN ratio (Carrier to Noise Ratio), satellite orbit information, and the like.
- the autonomous sensor 140 is a camera, a rider, or the like that captures an image around the positioning device 100, and includes one or more sensors that estimate the current position by combining with a high-accuracy map.
- the map storage unit 150 stores a high-accuracy map.
- the high-accuracy map is a map on which road markings such as road lane markings are expressed, and on which three-dimensional objects around the road such as road signs and buildings are expressed.
- the operation unit 160 is realized by a computer including a CPU, a ROM, a RAM, an I / O, and a bus line connecting these components.
- the ROM stores a program for causing a general-purpose computer to function as the arithmetic unit 160.
- the arithmetic unit 160 determines the positioning arithmetic unit 161, the download request unit 162, the position estimating unit 163, the test unit 164, and the upload. It functions as the determination unit 165. When these functions are executed, a method corresponding to the program is executed.
- the positioning calculation unit 161 determines the current position from the observation data provided from the satellite receiver 130 and the correction information acquired via the wide area communication unit 110.
- the positioning calculation unit 161 estimates a delay amount including a tropospheric delay amount when positioning the current position.
- the positioning calculation unit 161 may calculate the speed from the time change of the current position.
- the positioning calculation unit 161 outputs calculated information such as the current position to the application.
- the application is, for example, a driving assistance application, an automatic driving application, or a parking assistance application.
- the download request unit 162 determines whether the positioning calculation unit 161 needs to download the correction information used for the positioning calculation. If it is determined that it is necessary to download, a download request for requesting transmission of correction information is transmitted from the wide area communication unit 110 to the center device 200.
- the position estimating unit 163 estimates the current position by comparing the surrounding situation of the positioning device 100 detected by the autonomous sensor 140 with a high-accuracy map. This current position is used in a test by the test unit 164 described below. Therefore, the position estimating unit 163 estimates the current position at a timing that can be provided to the test by the test unit 164. Note that the position estimating unit 163 can also continuously estimate the current position.
- the test unit 164 compares the current position calculated by the positioning calculation unit 161 with the current position estimated by the position estimation unit 163, and thus the delay amount estimated by the positioning calculation unit 161 when positioning the current position is correct. Test whether or not. When it is determined that the delay amount is not correct, the delay amount and the current position calculated by the positioning calculation unit 161 are set to values indicating that the solution is not a normal solution.
- the upload determining unit 165 determines whether to upload correction information including the delay amount based on the test result of the test performed by the test unit 164. If it is determined that the correction information should be uploaded, the upload data including the correction information is transmitted from the wide area communication unit 110 to the center device 200.
- FIG. 3 shows the configuration of the center device 200.
- the center device 200 includes a wide area communication unit 210, a database storage unit 220, and a calculation unit 230.
- the wide-area communication unit 210 is a communication unit for performing wireless communication with the positioning device 100, and corresponds to a distribution-side communication unit.
- the database storage unit 220 stores a correction information database.
- the operation unit 230 is realized by a computer including a CPU, a ROM, a RAM, an I / O, and a bus line connecting these components.
- the ROM stores a program for causing a general-purpose computer to function as the arithmetic unit 230.
- the arithmetic unit 230 executes the upload data processing unit 231, the database update unit 232, the download data generation unit 233, and the upload request generation unit 233. It functions as the unit 234.
- a method corresponding to the program is executed.
- the upload data processing unit 231 performs a process of determining whether or not the correction information uploaded from the positioning device 100 is correction information to be updated in the correction information database and an ID assignment process.
- the database update unit 232 updates the correction information for distribution stored in the correction information database at each update cycle based on the upload data sequentially uploaded.
- the download data generation unit 233 acquires the request from the wide area communication unit 210. Then, it generates download data determined by the download request, and transmits the download data from the wide area communication unit 210 to the positioning device 100 that has transmitted the download request.
- the structure of the download data will be described later with reference to FIG.
- the upload request generating unit 234 determines that the correction information database should be updated, the upload request indicating the data to be updated is transmitted from the wide area communication unit 210.
- FIG. 4 shows the structure of a set of correction information.
- the correction information of the present embodiment has a structure including a zenith tropospheric delay and an ionospheric delay. Each delay includes a delay amount and reliability.
- the reliability is, for example, a positive value meaning that when the reliability is 1 m, the precision of the corresponding delay amount is 1 m at 1 ⁇ .
- PRNn (n is a natural number) is a PRN number, and PRN is a pseudo random noise.
- L1 means an L1 signal in GPS. Since a different PRN is used for each positioning satellite 5, PRNn distinguishes the positioning satellite 5.
- FIG. 5 shows a structure of data uploaded by the positioning device 100 (hereinafter, upload data).
- the upload data includes the date and time to upload, the device ID of the positioning device 100 to upload the data, the latitude and longitude where the positioning device 100 is located, the latest download correction information ID, and the correction information estimated value.
- the latest download correction information ID is an ID for identifying the latest correction information among the correction information downloaded from the center device 200.
- the correction information estimated value has the structure shown in FIG.
- FIG. 6 shows a structure of download data generated by the center device 200 and downloaded by the positioning device 100.
- the download data includes a download correction information ID, a target latitude lower limit, a target latitude upper limit, a target longitude lower limit, a target longitude upper limit, a valid start time, a valid end time, and correction information.
- the correction information is a location-dependent delay amount for distribution. Therefore, the download data includes a location-dependent delay amount for distribution.
- the download correction information ID is an ID given to the download data each time the center device 200 generates the download data.
- the target latitude lower limit and the target latitude upper limit are the lower limit and the upper limit of the latitude at which the correction information can be used.
- the target longitude lower limit and the target longitude upper limit are the lower limit and the upper limit of the longitude in which the correction information can be used. Since the tropospheric delay amount and the ionospheric delay amount included in the correction information have different values depending on the region to be measured, the upper and lower limits are set for the latitude and longitude where the correction information can be used.
- the valid start time and the valid end time are the start time and the end time at which the correction information can be used.
- the amount of ionospheric delay and the amount of tropospheric delay change with time. Therefore, a start time and an end time at which the correction information can be used are set.
- FIG. 7 shows a data structure of a download request transmitted from positioning device 100 to center device 200.
- the download request is a request for downloading the correction information.
- the download request includes the request time, the device ID of the positioning device 100, and the latitude and longitude indicating the current position of the positioning device 100.
- FIG. 8 shows a data structure of an upload request transmitted from center device 200 to positioning device 100.
- the upload request requests upload of correction information.
- the upload request includes a target time lower limit, a target time upper limit, a target latitude lower limit, a target latitude upper limit, a target longitude lower limit, and a target longitude upper limit.
- the target time is the time at which the positioning device 100 estimated the correction information.
- the lower limit and the upper limit are also set at the time when the correction information requesting the upload is estimated. Further, since the correction information has different values depending on the area to be measured, a lower limit and an upper limit are set for the target latitude and the target longitude.
- one line of data shown in FIG. 8 is a set of data for one area for which upload is requested.
- the upload request includes the number of sets of data corresponding to the number of areas for which correction information upload is requested.
- the positioning device 100 When the positioning device 100 receives the upload request, the positioning device 100 stores the upload request until the upper limit of the target time has elapsed. However, if a new upload request is received before the upper limit of the target time has elapsed, the stored upload request is overwritten on the newly received upload request.
- FIG. 9 shows the structure of the correction information estimation data stored in the positioning device 100.
- the positioning device 100 stores correction information in a predetermined memory in a structure shown in FIG.
- a flash memory or the like included in the arithmetic unit 160 can be used. Further, a memory may be provided outside the arithmetic unit 160.
- the correction information estimation data includes the time, the latitude, the longitude, the latest download correction information ID, the time at which the latest download correction information was obtained, and the correction information estimated value.
- the estimated value of the correction information here is the correction information estimated by the positioning after the positioning, and the downloaded correction information before the positioning.
- the correction information has the structure shown in FIG.
- the time is the time when the correction information estimated value was updated, and the latitude and longitude indicate the position when the correction information estimated value was updated.
- the positioning apparatus 100 creates the correction information estimation data shown in FIG. 9 every time the correction information estimation value is updated.
- the correction information estimation data that has become out-of-date due to the creation of the new correction information estimation data is also stored as correction information log data without being discarded.
- the correction information log data has a structure in which the correction information estimation data shown in FIG. 9 is sequentially recorded.
- FIG. 10 shows the structure of the correction information database stored in the database storage unit 220 provided in the center device 200.
- the correction information database includes, as attributes, an area number, correction information, and an upload data log.
- the area number is a number for identifying an area to which one piece of correction information is applied.
- the size of one area is set to a size where the same correction information can be used.
- each area can be a rectangular area obtained by dividing the terrain by lines at regular intervals in the latitude direction and the longitude direction.
- the areas may overlap with each other or may have different areas.
- the correction information is correction information for distribution to be distributed to the positioning device 100.
- the correction information for distribution is sequentially updated using correction information uploaded from one or more positioning devices 100.
- the structure of the correction information for distribution is the same as that shown in FIG.
- the correction information for distribution is updated by averaging the correction information estimation values within the validity period.
- the upload data log includes the upload data shown in FIG. 5 uploaded from the positioning device 100.
- the maximum number of upload data stored as the upload data log is N. Note that N is a positive integer.
- a device ID is shown separately from the upload data so that it can be understood from the figure that each upload data is data uploaded from another positioning device 100. However, as shown in FIG. 5, the device ID is included in the upload data.
- the computing unit 160 of the positioning device 100 periodically executes the processing shown in FIGS. S1 to S4, S10, S15, and S16 are processes executed by the positioning calculation unit 161; S5 to S9 are processes executed by the download request unit 162; S11 and S12 are processes executed by the verification unit 164; This is a process executed by the upload determination unit 165.
- an upload request receiving process is executed. This processing is the processing shown in FIG. In FIG. 14, in S101, it is determined whether or not a new upload request has been received from the center device 200. The upload request is as shown in FIG. If the determination in S101 is Yes, the process proceeds to S102, and if No, the process in FIG. 14 ends, and the process proceeds to S2 in FIG.
- an approximate position and an approximate time are obtained by pseudo-range positioning.
- pseudo distance positioning a pseudo distance is calculated by multiplying the propagation time of a satellite signal by the speed of light. Then, the coordinates and the clock error of the positioning device 100 are obtained by solving an equation using the coordinates of the positioning device 100 and the clock error as unknowns. These coordinates are the approximate position, and the time when the clock provided in the satellite receiver 130 is corrected due to the clock error is the approximate time.
- S4 the reliability included in the correction information is updated based on the approximate position and approximate time acquired in S3. Since the reliability changes depending on the time and the fluctuation amount of the position, the process of S4 is executed. Details of S4 are shown in FIG.
- the Euclidean distance (hereinafter, distance difference A) between the position (that is, latitude and longitude) indicated by the latest correction information log data stored in the positioning device 100 and the approximate position is acquired.
- distance difference B a difference between the time indicated by the latest correction information log data and the approximate time
- S403 is a process performed for each reliability, and a new reliability is calculated. Then, the reliability included in the correction information estimated value is set as the new reliability.
- the new reliability is calculated from the following equation (1).
- Equation 1 i is the number of loops, and k A i and k B i are weighting factors set in consideration of the influence of the distance difference A and the time difference B on the reliability, and are set in advance at the time of shipment or the like. It is a value to keep.
- the weight coefficients k A and k B are positive real numbers.
- New reliability Old reliability + (A ⁇ k A i + B ⁇ k B i )
- the new reliability calculated by Expression 1 has a larger value as the distance difference A and the time difference B are larger.
- the unit of the reliability is meters, and the larger the value of the reliability, the larger the variation of the delay amount. That is, the larger the value of the reliability, the lower the reliability.
- the smaller the value of the reliability the smaller the variation of the delay amount. That is, the smaller the value of the reliability, the higher the reliability.
- step S5 it is determined whether the correction information needs to be downloaded.
- step S5 in detail, among the delay amounts included in the correction information estimated value stored in the positioning device 100, it is determined whether there is a delay amount used for the precise positioning calculation and whose reliability is larger than the threshold.
- the delay amounts used for the precise positioning operation are a tropospheric delay amount and an ionospheric delay amount corresponding to a satellite signal that can be observed. If even one delay amount satisfies the condition, it is determined that the correction information needs to be downloaded. On the other hand, if no delay amount satisfies the condition, it is determined that it is not necessary to download the correction information.
- S6 a download request for requesting download of correction information is transmitted to center device 200.
- the data structure of the download request is the structure shown in FIG.
- S7 it is determined whether the correction information has been downloaded. If the determination in S7 is Yes, the process proceeds to S8, and if No, the process proceeds to S10 in FIG. In S8, it is determined whether the downloaded correction information is usable. For this determination, the processing shown in FIG. 16 is executed.
- the download data downloaded from the center device 200 includes a lower limit and an upper limit of the target latitude, a lower limit and an upper limit of the target longitude, a valid start time and a valid end time. Whether the current time is valid or not is determined based on whether the current time is between the valid start time and the valid end time included in the download data.
- step S803 it is determined whether the longitude is valid. Whether or not the valid longitude is determined based on whether or not the current longitude is between the lower limit of the target longitude and the upper limit of the target longitude included in the download data. If the determination in S803 is No, the determination in S8 is No. If the determination in S803 is Yes, the determination in S8 is Yes. If the determination in S8 is Yes, the process proceeds to S9.
- the processing shown in FIG. 17 is executed to overwrite the correction information estimation data stored in the positioning device 100 with the download data.
- the latest download correction information ID included in the correction information estimation data is overwritten with the download correction information ID included in the download data downloaded this time.
- the time at which the latest download correction information included in the correction information estimation data is obtained is overwritten with the current download time.
- the correction information estimation value included in the correction information estimation data is overwritten with the correction information included in the download data downloaded this time.
- S10 high-precision positioning calculation is performed.
- the high-accuracy positioning calculation is sometimes called a PPP (Precise @ Point @ Positioning) method.
- PPP Precision @ Point @ Positioning
- high-precision positioning calculation is performed using the correction information estimated value.
- the high-precision positioning calculation is a method of calculating the current position based on the phase difference of the carrier wave phase, and can be performed by the same method as that described in Patent Document 1.
- Patent Document 1 by solving an observation equation including the ionospheric propagation delay (the ionospheric delay amount of the present embodiment) and the tropospheric propagation delay (the tropospheric delay amount of the present embodiment) as parameters, the positioning satellite antenna and the receiving antenna are connected. The geometric distance between them, that is, the propagation distance of the observation signal is obtained. Then, the current position is obtained using the geometric distance and an expression representing the geometric distance by the distance between the coordinates of the satellite antenna and the coordinates of the receiving antenna.
- Patent Document 1 also discloses a method of receiving observation signals of two types of frequencies and removing the influence of ionospheric propagation delay to obtain a current position as an observation equation not including ionospheric propagation delay.
- the convergence value is obtained by continuous observation.
- a clock error can be obtained as in the pseudo-range positioning.
- the clock (ie, the current time) of the positioning device 100 is corrected based on the clock error acquired in S1001.
- Step S1005 is a process performed for each delay amount included in the correction information estimated value, and overwrites the delay amount and the reliability.
- the delay amount is, specifically, a tropospheric delay amount and an ionospheric delay amount, and is obtained by the high-accuracy positioning calculation in S1001.
- the reliability is the maximum variation of each delay amount until a convergence value is obtained.
- the integer value bias is determined. However, the integer value bias may not be determined as an integer value, and the integer value bias may be an approximate solution including a decimal value. In S11, it is determined whether or not an integer value has been obtained as the integer value bias. When the solution of the integer value bias becomes an integer value, it is called a Fix solution. If a Fix solution is obtained, the positioning result will be highly accurate.
- the processing shown in FIG. 19 is executed in detail.
- the position estimating unit 163 acquires the current position estimated using the autonomous sensor 140 and the high-accuracy map.
- S1202 it is determined whether the estimated position has been acquired. If this determination is No, the process shown in FIG. 19 ends. On the other hand, if the determination in S1202 is Yes, the process proceeds to S1203. In S1203, a difference C between the position obtained by the high-accuracy positioning and the position estimated by the position estimating unit 163 is calculated.
- step S1205 the latitude and longitude indicating the current position, the delay amount and the reliability included in the correction information estimated value are rewritten into constants.
- the latitude and longitude, and the delay amount are values indicating that they are not normal solutions, for example, Nan values.
- the reliability is a predetermined positive real number.
- S1311 it is determined whether or not there is an acquired upload request. If the determination in S1311 is No, the determination in S131 is No and the process returns to FIG. If the determination in S1311 is Yes, the process proceeds to S1312.
- S1312 it is determined whether the current time is a valid time. Specifically, referring to the upload request, it is determined whether or not the current time is between the target time lower limit and the target time upper limit. If this determination is No, the determination in S131 is No and the process returns to FIG. If the determination in S1312 is Yes, the process proceeds to S1313.
- S1313 it is determined whether or not the current latitude is an effective latitude. Specifically, referring to the upload request, it is determined whether or not the current latitude is between the lower limit of the target latitude and the upper limit of the target latitude. If this determination is No, the determination in S131 is No and the process returns to FIG. If the determination in S1313 is Yes, the process proceeds to S1314.
- S1314 it is determined whether or not the current longitude is an effective latitude. Specifically, referring to the upload request, it is determined whether or not the current longitude is between the lower limit of the target longitude and the upper limit of the target longitude. If this determination is No, the determination in S131 is No and the process returns to FIG. If the determination in S1314 is Yes, the process proceeds to S1315.
- S132 it is determined whether or not the time variation of the delay amount is large. This is because the amount of delay may fluctuate rapidly in a short time due to climate or the like, and in such a case, it is necessary to upload a large amount of data. In S132, the processing shown in FIG. 22 is executed in detail.
- S1322 it is determined whether X + Y seconds or more have elapsed since the last download data was obtained.
- the time at which the download data was obtained last is the “time at which the latest download correction information was obtained” in the correction information log data.
- Y is a positive integer. If the determination in S1322 is No, the processing in FIG. 22 ends. If the determination in S1322 is Yes, the process proceeds to S1323.
- a difference E between the position corresponding to the correction information X seconds before and the current position is calculated.
- the position corresponding to the correction information X seconds ago is the latitude and longitude included in the log data X seconds ago in the correction information log data. This difference E is the Euclidean distance. If the determination in S1323 is No, the processing in FIG. 22 ends. If the determination in S1323 is Yes, the process proceeds to S1324.
- S1324 it is determined whether or not the absolute value of the difference E is smaller than a threshold value F. If the determination in S1324 is No, the processing in FIG. 22 ends. If the determination in S1324 is Yes, the loop from S1325 is executed. The reasons for performing the processing from S1321 to S1324 up to this point are as follows.
- Steps S1325 to S1328 are performed for each delay amount and reliability included in the correction information estimated value.
- S1325 it is determined whether or not the reliability of the delay amount estimated X seconds ago is smaller than a threshold value G.
- the threshold value G is a value for determining whether or not the reliability indicates that accuracy is good, and is a positive real number. If the reliability is larger than the threshold G, it means that the accuracy is poor. If the accuracy is poor, the magnitude of the time variation caused by the atmospheric delay and the ionospheric delay cannot be effectively determined by looking at the difference I of the delay for X seconds in S1328 described later, and thus the determination in S1325 is performed. . If the determination in S1325 is No, the processing for the delay amount currently targeted ends. If the determination in S1325 is Yes, the process proceeds to S1326.
- S1326 it is determined whether the reliability of the latest delay amount included in the correction information estimated value is smaller than the threshold value H.
- the threshold value H is a value for determining whether or not the reliability indicates that accuracy is good, and is a positive real number. The reason for making this determination is the same as the reason for making the determination in S1325. If the determination in S1326 is No, the processing for the currently targeted delay amount ends. If the determination in S1326 is Yes, the process proceeds to S1327.
- the difference I between the delay amount before X seconds and the latest delay amount (that is, the variation amount with the passage of time) I is calculated.
- the threshold value J is a positive real number determined for each delay amount.
- the threshold value J is a value for determining whether or not the difference I indicating the change in the delay amount is a change in the delay amount that can normally occur in a short time.
- the processing for the currently targeted delay amount ends. If the determination in S1328 is No, the determination in S132 is Yes, that is, the correction information estimated value should be uploaded, and the process in FIG. 22 ends. Therefore, if at least one time variation of the delay amount is large, it is determined that the correction information estimated value should be uploaded. On the other hand, when the determination in S1328 is Yes for all delay amounts, the determination in S132 is No, and the processing in FIG. 22 ends.
- correction information estimation data including the correction information estimated value is created and added to the correction information log data.
- the current time and position are transmitted to the application.
- FIG. 23 illustrates a process that the calculation unit 160 of the positioning device 100 periodically executes in parallel with FIGS.
- the positioning device 100 compares the correction information estimated value stored in the own device with the corrected information estimated value stored in another positioning device 100 present around the own device. .
- S21 it is determined whether or not the presence of another positioning device 100 (hereinafter, a peripheral other device) is detected around the own device.
- the periphery can be, for example, within a radius of several hundred meters around the own device.
- the detection method can be, for example, position acquisition by communication via the wide-area communication unit 110 or the short-range communication unit 120, or object detection by an autonomous sensor 140 such as a camera or a rider. If the determination in S21 is Yes, the processing in FIG. 23 ends. If the determination in S21 is Yes, the process proceeds to S22.
- the correction information estimation value is transmitted to the peripheral other device, and the correction information estimation value stored in the peripheral other device is acquired from the peripheral other device.
- the data structure to be transmitted may be the same as the upload data.
- the short-range communication unit 120 may be used, or the wide-area communication unit 110 may be used.
- Steps S23 to S26 are performed for each delay amount.
- S23 it is determined whether or not the reliability acquired from the peripheral device is smaller than the threshold value L. If the determination in S23 is No, the processing for the currently targeted delay amount ends. If the determination in S23 is Yes, the process proceeds to S24.
- S24 it is determined whether or not the reliability of the own device is smaller than a threshold value L. If the determination in S24 is No, the process for the currently targeted delay amount ends. If the determination in S24 is Yes, the process proceeds to S25. If the reliability of the delay amount of the own device and the reliability of the delay amount of the peripheral other device are not small, the suitability of the delay amount can be determined by comparing the delay amount of the own device with the delay amount acquired from the peripheral other device. Cannot judge accurately. Therefore, the determinations in S23 and S24 are performed.
- a difference M between the delay amount acquired from the peripheral device and the delay amount stored in the own device is calculated.
- the amount of delay depends on time and position. In other words, if the time and the position are similar, the delay amount should be similar. Therefore, when the difference M is large, there is a possibility that an error is included in either the delay amount of the own device or the delay amounts of the other peripheral devices.
- S26 it is determined whether or not the absolute value of the difference M is smaller than the threshold value O. If the determination in S26 is Yes, the processing for the currently targeted delay amount ends. If the determination in S26 is No, the process proceeds to S27.
- the latest latitude and longitude, and all delay amounts and reliability included in the correction information estimated value are set to values (for example, Nan values) indicating that they are not normal solutions.
- the reliability is a predetermined positive real number. Since S27 is a process outside the loop, if it is recognized that even one of the delay amounts has a large difference M from other peripheral devices, the latest latitude and longitude and all delays included in the correction information estimated value are determined. The quantity and the reliability are set to values indicating that they are not normal solutions.
- FIGS. 24, 25, and 26 show processing executed by the arithmetic unit 230 of the center device 200.
- the center device 200 repeatedly executes the processes shown in FIGS. 24, 25, and 26 in a predetermined cycle in parallel.
- FIG. 24 shows processing related to upload data, which is executed by the upload data processing unit 231.
- S31 it is determined whether or not the upload data has been received. If the determination in S31 is No, the process in FIG. 24 ends, and if Yes, the process proceeds to S32.
- S32 outlier processing is performed on the received upload data, and when the correction information estimated value included in the received upload data is not an outlier, the correction information database is updated based on the received upload data. When updating the correction information database, an ID is given to the received upload data.
- the correction information database stores upload data for each area. Therefore, by determining the area including the latitude and longitude included in the upload data received this time, the location where the upload data received this time is stored is determined.
- FIG. 25 shows processing relating to download data, which is executed by the download data generation unit 233.
- S41 it is determined whether a download request has been received. If the determination in S41 is No, the process in FIG. 25 ends, and if Yes, the process proceeds to S42.
- download data is created based on the download request.
- the download request has the structure shown in FIG. 7 and includes latitude and longitude. Based on the latitude and longitude, the correction information stored in the area corresponding to the latitude and longitude is extracted from the correction information database, and the download data shown in FIG. 6 is created.
- the download data created in S42 is transmitted from the wide area communication unit 210 to the positioning device 100 that transmitted the download request.
- FIG. 26 shows processing related to an upload request, in which S51 and S52 are executed by the database update unit 232, and S53 and S54 are executed by the upload request generation unit 234.
- S51 it is determined whether or not P seconds or more have elapsed since the last time the distribution correction information was updated. P seconds is an update cycle and is set as appropriate. If the determination in S51 is No, the process in FIG. 26 ends, and if Yes, the process proceeds to S52.
- Steps S52 to S54 are performed for each area illustrated in FIG.
- the correction information for distribution stored in the correction information database is updated.
- the update of the distribution correction information is performed based on the upload data included in the upload data log. For example, by determining the validity period based on the current time and averaging the delay amount and reliability included in the upload data whose upload time is within the validity period for each type of delay amount and reliability And updates the correction information for distribution.
- the average may be a simple average or a weighted average in which the newer the time, the heavier the weight.
- a weighted average may be performed so that the closer to the center of the area, the heavier the weight is, together with or instead of the weight based on time.
- S53 it is determined whether or not the updated reliability exceeds the threshold Q.
- the reliability here may be an average value of all the reliability levels or any one of the reliability levels. If the determination in S53 is No, the process in FIG. 26 ends, and if Yes, the process proceeds to S54.
- S54 an upload request for requesting correction information for the corresponding area is created and distributed.
- the positioning device 100 includes the positioning calculation unit 161.
- the positioning calculation unit 161 uses the observation equation including the tropospheric delay amount and the ionospheric delay amount as parameters in the positioning calculation. (S1001). Then, the correction information estimated value including the estimated value is transmitted to the center device 200 together with the position where the corrected information estimated value is obtained (S14).
- the positioning device 100 can be used on a moving object, unlike the electronic reference point, the positioning device 100 can be mounted on a moving object such as the vehicle 2 that needs positioning and used for sequentially measuring the position of the moving object. . Therefore, it is easy to increase the number than the electronic reference points, and by increasing the number of the positioning devices 100, it is possible to increase the number of locations where the tropospheric delay amount and the ionospheric delay amount are observed. If the tropospheric delay amount and the ionospheric delay amount can be increased, the tropospheric delay amount and the ionospheric delay amount can be updated for each smaller area. Therefore, highly accurate positioning can be performed while suppressing an increase in the number of electronic reference points.
- the wide area communication unit 210 of the center device 200 and the wide area communication unit 110 of the positioning device 100 communicate with each other via the base station 6 and the public communication network 7 to download the download data including the correction information. Is delivered. Therefore, the limitation of the data amount for distributing the correction information is eased as compared with the case where the correction information is distributed from the quasi-zenith satellite. Also in this respect, the tropospheric delay amount and the ionospheric delay amount can be updated for each smaller area.
- the positioning device 100 does not always upload the upload data but determines whether or not the upload is necessary (S13). Thereby, the communication amount of the positioning device 100 can be reduced while securing the upload data necessary for the center device 200 to deliver the accurate correction information.
- the positioning device 100 stores reliability for the tropospheric delay amount and the ionospheric delay amount, and determines whether it is necessary to download the correction information based on the reliability ( S5). By doing so, the communication volume of the positioning device 100 can be reduced while maintaining the positioning accuracy.
- the positioning device 100 further includes a position estimating unit 163 that estimates the position of the own device using the autonomous sensor 140, and a testing unit 164.
- the verification unit 164 compares the current position estimated by the position estimation unit 163 with the current position calculated by the positioning calculation unit 161 to determine whether the current position calculated by the positioning calculation unit 161 is correct (S12). .
- the delay amount included in the current position and the correction information estimated value is set to a value indicating that it is not a normal solution. As a result, it is possible to suppress the execution of the control based on the incorrect current position, and to suppress the upload of the incorrect delay amount.
- the positioning device 100 calculates a difference M between the delay amount calculated by the own device and the delay amount calculated by the peripheral device. If the difference M is abnormal in the threshold value O (S26: Yes), the positioning device 100 calculates the difference. It is assumed that the current position and the delay amount calculated by the unit 161 are not normal solutions (S27). As a result, the control based on the incorrect current position can be prevented from being executed, and the upload of an incorrect delay amount can also be suppressed.
- the tropospheric delay amount and the ionospheric delay amount are shown as the correction information.
- the correction information includes a satellite orbit error and a satellite clock error, and these errors may be corrected to calculate the current position.
- the satellite orbit error and the satellite clock error do not depend on the positioning location. That is, the satellite orbit error and the satellite clock error are not location-dependent delay amounts. Therefore, the satellite orbit error and the satellite clock error need only be observed by one device.
- the satellite orbit error and the satellite clock error may be observed by the positioning device 100 provided on the stationary object.
- a center device may calculate a satellite orbit error and a satellite clock error using satellite signals collected at an electronic reference point.
- the tropospheric delay amount and the ionospheric delay amount are corrected, but only the tropospheric delay amount may be corrected.
- the ionospheric delay amount in the L1 band is corrected, the electrode layer delay amount in another band may be corrected in addition to or instead of this.
- the positioning device 100 may be configured to be portable by a person riding a vehicle.
- the base station 6 may be communicable with the short-range communication unit 120, and the positioning device 100 may be communicable with the center device 200 by the short-range communication unit 120.
- the process of S12 may be omitted. If the process of S12 is omitted, there is a possibility that the positioning device 100 may upload incorrect correction information to the center device 200. However, the center device 200 can usually acquire correction information from many positioning devices 100. If the center device 200 can acquire the correction information from many positioning devices 100, the accuracy of the correction information for distribution due to the elimination of the process of S12 is small, so the process of S12 may be omitted. It is. When the processing in S12 is omitted, the positioning device 100 has an advantage that the autonomous sensor 140 and the high-accuracy map are not required.
- the storage medium for storing the program executed by the CPU is not limited to the ROM, and may be any storage medium as long as it is stored in a non-transitional substantial storage medium.
- the program may be stored in a flash memory.
- some or all of the functions of the arithmetic units 160 and 230 may be realized using one or more ICs (in other words, as hardware). Further, some or all of the functions of the arithmetic units 160 and 230 may be realized by a combination of software execution by a CPU and hardware members.
- each step is expressed as, for example, S1. Further, each step can be divided into a plurality of sub-steps, while a plurality of steps can be combined into one step.
- the embodiments, configurations, and aspects of the positioning system, the positioning device, and the center device according to one aspect of the present disclosure have been exemplified.
- the embodiments, configurations, and aspects according to the present disclosure are the above-described embodiments, configurations, It is not limited to each embodiment.
- embodiments, configurations, and aspects obtained by appropriately combining technical parts disclosed in different embodiments, configurations, and aspects are also included in the scope of the embodiments, configurations, and aspects according to the present disclosure.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
- Navigation (AREA)
Abstract
測位システムは、複数の測位装置と、測位装置と通信するセンタ装置とを備える。測位装置は、移動体で用いることが可能であり、対流圏遅延量および電離層遅延量の少なくとも一方を含んでいる場所依存遅延量および伝播距離をパラメータとして含む観測方程式の収束値として場所依存遅延量および伝播距離を演算し、伝播距離に基づいて現在位置を演算する測位演算部と、測位演算部が演算した場所依存遅延量を、位置とともにセンタ装置へ送信する測位側通信部とを備える。センタ装置は、測位装置が送信した場所依存遅延量に基づいて、配信用の場所依存遅延量を更新する更新部と、更新部が更新した配信用の場所依存遅延量を、複数の測位装置のうちの少なくとも一つへ送信する配信側通信部とを備える。
Description
本出願は、2018年7月4日に出願された日本国特許出願2018-127612号に基づくものであり、ここにその記載内容を参照により援用する。
本開示は、測位システム、その測位システムが備える測位装置およびセンタ装置に関し、特に、測位衛星が送信する測位信号を受信して測位する技術に関する。
測位信号を受信して測位する手法として、精密単独測位法が提案されている(たとえば特許文献1)。精密単独測位法では、対流圏遅延量などの誤差量を補正する。特許文献2に記載の技術では、電子基準点で収集した衛星信号を用いて、センタ局が対流圏遅延量などの補正情報を計算する。そして、センタ局は、その補正情報を準天頂衛星にアップロードし、準天頂衛星が補正情報を地上に配信する。
対流圏遅延量は、場所により変化する値である。また、補正情報には電離層遅延量が含まれることもある。電離層遅延量も場所により変化する。特許文献2では、これらの遅延量は、電子基準点で収集した衛星信号をもとにして計算している。したがって、特許文献2において測位精度を高めようとすると、電子基準点を密に配置する必要がある。しかし、電子基準点を密に配置するめに、電子基準点の数を増やすとコストアップになる。
本開示は、電子基準点の増加を抑制しつつ、高精度な測位が可能な測位システム、その測位システムが備える測位装置およびセンタ装置を提供することを目的とする。
本開示の一態様によると、測位システムは、複数の測位装置と、測位装置と通信するセンタ装置とを備えた測位システムである。測位装置は、移動体で用いることが可能であり、対流圏遅延量および電離層遅延量の少なくとも一方を含んでいる場所依存遅延量および伝播距離をパラメータとして含む観測方程式の収束値として場所依存遅延量および伝播距離を演算し、伝播距離に基づいて現在位置を演算する測位演算部と、測位演算部が演算した場所依存遅延量を、位置とともにセンタ装置へ送信する測位側通信部とを備える。センタ装置は、測位装置が送信した場所依存遅延量に基づいて、配信用の場所依存遅延量を更新する更新部と、更新部が更新した配信用の場所依存遅延量を、複数の測位装置のうちの少なくとも一つへ送信する配信側通信部とを備える。
この測位システムにおいて、測位装置は、場所依存遅延量および伝播距離をパラメータとして含む観測方程式の収束値として場所依存遅延量を演算し、かつ、現在位置も演算する。この場所依存遅延量を位置とともに、センタ装置へ送信する。この測位装置は、移動体で用いることが可能であることから、電子基準点と異なり、測位が必要な車両などの移動体に搭載してその移動体の位置を逐次測定する用途に利用できる。そのため、電子基準点よりも数を多くすることが容易であり、この測位装置の数を増やすことにより、場所依存遅延量を観測する箇所を増やすことができる。場所依存遅延量を観測する箇所を増やすことができれば、より狭いエリア毎に場所依存遅延量を更新することができる。したがって、電子基準点の増加を抑制しつつ、高精度な測位が可能になる。
本開示の他の一態様によると、測位装置は、移動体で用いることが可能であり、対流圏遅延量および電離層遅延量の少なくとも一方を含んでいる場所依存遅延量および伝播距離をパラメータとして含む観測方程式の収束値として場所依存遅延量および伝播距離を演算し、伝播距離に基づいて現在位置を演算する測位演算部と、測位演算部が演算した場所依存遅延量を、位置とともにセンタ装置へ送信する測位側通信部とを備える。
更に、本開示の他の一態様によると、センタ装置は、複数の測位装置と通信する。センタ装置は、測位装置が送信した、対流圏遅延量および電離層遅延量の少なくとも一方を含んでいる場所依存遅延量に基づいて、配信用の場所依存遅延量を更新する更新部と、更新部が更新した配信用の場所依存遅延量を、複数の測位装置のうちの少なくとも一つへ送信する配信側通信部とを備える。
これら測位装置およびセンタ装置は、測位システムが備える測位装置とセンタ装置である。
本開示についての上記および他の目的、特徴や利点は、添付図面を参照した下記詳細な説明から、より明確になる。添付図面において、
図1は、測位システムの全体構成を示す図であり、
図2は、測位装置の構成を示す図であり、
図3は、センタ装置の構成を示す図であり、
図4は、一組の補正情報の構造を示す図であり、
図5は、測位装置がアップロードするアップロードデータの構造を示す図であり、
図6は、測位装置がダウンロードするダウンロードデータの構造を示す図であり、
図7は、ダウンロード要求のデータ構造を示す図であり、
図8は、アップロード要求のデータ構造を示す図であり、
図9は、補正情報推定データの構造を示す図であり、
図10は、補正情報データベースの構造を示す図であり、
図11は、1つの補正情報が適用されるエリアを例示する図であり、
図12は、測位装置の演算部が実行する処理を示すフローチャートであり、
図13は、図12に続いて演算部が実行する処理を示すフローチャートであり、
図14は、図12のS1の処理を詳しく示すフローチャートであり、
図15は、図12のS4の処理を詳しく示すフローチャートであり、
図16は、図12のS8の処理を詳しく示すフローチャートであり、
図17は、図12のS9の処理を詳しく示すフローチャートであり、
図18は、図13のS10の処理を詳しく示すフローチャートであり、
図19は、図13のS12の処理を詳しく示すフローチャートであり、
図20は、図13のS13の処理を詳しく示すフローチャートであり、
図21は、図20のS131の処理を詳しく示すフローチャートであり、
図22は、図20のS132の処理を詳しく示すフローチャートであり、
図23は、測位装置の演算部が図12、13と並列的に実行する処理を示すフローチャートであり、
図24は、センタ装置の演算部が実行するアップロードデータに関する処理を示すフローチャートであり、
図25は、センタ装置の演算部が実行するダウンロードデータに関する処理を示すフローチャートであり、
図26は、センタ装置の演算部が実行するアップロード要求に関する処理を示すフローチャートである。
以下、実施形態を図面に基づいて説明する。図1は、実施形態の測位システム1の全体構成を示す図である。
(全体構成)
測位システム1は、測位装置100とセンタ装置200とを備えている。測位装置100は、種々の物体に取り付けられる。図1では、ある測位装置100は車両2に搭載され、別の測位装置100はドローン3に搭載され、また別の測位装置100は信号機4に固定されている。このように、測位装置100は、車両2、ドローン3などの移動体に取り付けられていてもよいし、信号機4などの静止物に固定されていてもよい。なお、図1には、測位装置100を3つ示しているが、測位装置100の数に制限はなく、多数の移動体および静止物が測位装置100を備えることができる。
測位システム1は、測位装置100とセンタ装置200とを備えている。測位装置100は、種々の物体に取り付けられる。図1では、ある測位装置100は車両2に搭載され、別の測位装置100はドローン3に搭載され、また別の測位装置100は信号機4に固定されている。このように、測位装置100は、車両2、ドローン3などの移動体に取り付けられていてもよいし、信号機4などの静止物に固定されていてもよい。なお、図1には、測位装置100を3つ示しているが、測位装置100の数に制限はなく、多数の移動体および静止物が測位装置100を備えることができる。
測位装置100は、測位衛星5が送信する衛星信号を受信し、その衛星信号に基づいて自装置の位置を逐次算出する。自装置の位置を算出する際に用いる算出方法は、精密単独測位と呼ばれる方法と同様であり、対流圏遅延量を補正する。また、対流圏遅延量に加えて電離層遅延量を補正してもよい。測位衛星5は、GPS、GLONASS、Galileo、IRNSS、QZSS、Beidouなどの衛星測位システムが備える衛星である。
測位装置100とセンタ装置200は、地上に設けられた基地局6と公衆通信回線網7とを介して相互に通信可能であり、遅延量を含む補正情報が、センタ装置200から測位装置100に提供される。また、測位装置100は、精密単独測位の際、測位と同時に、対流圏遅延誤差などの場所により変動する誤差を推定する。対流圏遅延誤差を推定する手法は、特許文献1にも記載されているように、遅延量をパラメータとして含む観測方程式を用いて、遅延量の推定値を収束させる手法である。測位装置100は、推定した遅延量を含む補正情報をセンタ装置200に送信する。センタ装置200は、測位装置100から受信した補正情報により、補正情報データベース(図10参照)に保存している補正情報を更新することができる。
(測位装置の構成)
図2を用いて測位装置100の構成を説明する。測位装置100は、広域通信部110、近距離通信部120、衛星受信機130、自律センサ140、地図記憶部150、演算部160を備える。
図2を用いて測位装置100の構成を説明する。測位装置100は、広域通信部110、近距離通信部120、衛星受信機130、自律センサ140、地図記憶部150、演算部160を備える。
広域通信部110は、測位側通信部の一つであり、基地局6と公衆通信回線網7とを介してセンタ装置200との間で無線通信を行う。通信方式には、たとえば、LTEを採用することができる。
近距離通信部120は、この測位装置100の周囲に存在する他の近距離通信部120との間で無線通信を行う通信部である。近距離通信部120の通信範囲は、たとえば、半径数百メートル程度である。
衛星受信機130は、測位衛星5が送信する衛星信号を受信し、観測データを出力する。観測データは、たとえば、疑似距離、搬送波位相である。また、観測データは、CN比(Carrier to Noise Ratio)、衛星軌道情報などを含んでいてもよい。
自律センサ140は、測位装置100の周辺を撮影するカメラ、ライダーなどであり、高精度地図と組み合わせることで、現在位置を推定する1つ以上のセンサを備える。
地図記憶部150には高精度地図が記憶されている。高精度地図は、道路区画線などの路面標示が表現され、かつ、道路標識、建物などの道路周辺の立体物が表現された地図である。
演算部160は、CPU、ROM、RAM、I/O、およびこれらの構成を接続するバスラインなどを備えたコンピュータにより実現される。ROMには、汎用的なコンピュータを演算部160として機能させるためのプログラムが格納されている。CPUが、RAMの一時記憶機能を利用しつつ、ROMに記憶されたプログラムを実行することで、演算部160は、測位演算部161、ダウンロード要求部162、位置推定部163、検定部164、アップロード判定部165として機能する。これらの機能が実行されると、プログラムに対応する方法が実行される。
次に、演算部160が備える機能を概略的に説明する。演算部160が備える機能は、後にフローチャートを用いて詳しく説明する。
測位演算部161は、衛星受信機130から提供される観測データと、広域通信部110を介して取得した補正情報とから、現在位置を測位する。測位演算部161は現在位置を測位する際、対流圏遅延量を含む遅延量を推定する。また、測位演算部161は、現在位置を測位することに加えて、現在位置の時間変化から速度を算出してもよい。測位演算部161は、現在位置などの演算した情報をアプリケーションに出力する。アプリケーションは、測位装置100が車両2に搭載される場合、たとえば、運転支援アプリケーション、自動運転アプリケーション、駐車支援アプリケーションである。
ダウンロード要求部162は、測位演算部161が測位演算に用いる補正情報をダウンロードする必要があるか否かを判断する。ダウンロードする必要があると判断した場合には、補正情報の送信を要求するダウンロード要求を広域通信部110からセンタ装置200へ送信する。
位置推定部163は、自律センサ140が検出した測位装置100の周辺状況と高精度地図とを照合することで現在位置を推定する。この現在位置は、次に説明する検定部164による検定で用いる。したがって、位置推定部163は、検定部164による検定に提供できるタイミングで現在位置を推定する。なお、位置推定部163は、現在位置の推定を継続して行うこともできる。
検定部164は、測位演算部161が演算した現在位置と、位置推定部163が推定した現在位置とを比較することで、測位演算部161が現在位置の測位の際に推定した遅延量が正しいか否かを検定する。そして、遅延量が正しくないと判断した場合には、測位演算部161が演算した遅延量および現在位置を、正常解でないことを示す値とする。
アップロード判定部165は、検定部164が検定した検定結果に基づいて、遅延量を含む補正情報をアップロードすべきか否かを判定する。補正情報をアップロードすべきと判定した場合には、補正情報を含むアップロードデータを広域通信部110からセンタ装置200へ送信する。
(センタ装置の構成)
図3にセンタ装置200の構成を示す。センタ装置200は、広域通信部210、データベース記憶部220、演算部230を備える。広域通信部210は、測位装置100との間で無線通信を行うための通信部であり、配信側通信部に相当する。データベース記憶部220には、補正情報データベースが記憶されている。
図3にセンタ装置200の構成を示す。センタ装置200は、広域通信部210、データベース記憶部220、演算部230を備える。広域通信部210は、測位装置100との間で無線通信を行うための通信部であり、配信側通信部に相当する。データベース記憶部220には、補正情報データベースが記憶されている。
演算部230は、CPU、ROM、RAM、I/O、およびこれらの構成を接続するバスラインなどを備えたコンピュータにより実現される。ROMには、汎用的なコンピュータを演算部230として機能させるためのプログラムが格納されている。CPUが、RAMの一時記憶機能を利用しつつ、ROMに記憶されたプログラムを実行することで、演算部230は、アップロードデータ処理部231、データベース更新部232、ダウンロードデータ生成部233、アップロード要求生成部234として機能する。これらの機能が実行されると、プログラムに対応する方法が実行される。
次に、演算部230が備える機能を概略的に説明する。演算部230が備える機能は、後にフローチャートを用いて詳しく説明する。アップロードデータ処理部231は、測位装置100からアップロードされた補正情報に対して、補正情報データベースを更新すべき補正情報か否かの判定処理およびID付与処理を行う。データベース更新部232は、逐次アップロードされるアップロードデータに基づき、更新周期ごとに補正情報データベースに保存されている配信用の補正情報を更新する。
ダウンロードデータ生成部233は、測位装置100から補正情報のダウンロード要求が送信された場合に、その要求を広域通信部210から取得する。そして、ダウンロード要求により定まるダウンロードデータを生成して、広域通信部210から、ダウンロード要求を送信した測位装置100へ、ダウンロードデータを送信する。ダウンロードデータの構造は、図6を用いて後述する。
アップロード要求生成部234は、補正情報データベースを更新すべきと判断した場合に、更新すべきデータを示したアップロード要求を、広域通信部210から送信する。
(補正情報の構造)
図4に一組の補正情報の構造を示す。本実施形態の補正情報は、天頂方向対流圏遅延と電離層遅延とを含んだ構造である。各遅延は、遅延量と信頼度とを含んでいる。信頼度は、たとえば、信頼度が1mだった場合、対応する遅延量の精度が、1σで1mであることを意味する正の値である。なお、PRNn(nは自然数)はPRN番号であり、PRNは擬似乱数(pseudo random noise)である。L1は、GPSにおけるL1信号を意味する。測位衛星5ごとに異なるPRNを使うことから、PRNnは、測位衛星5を区別していることになる。
図4に一組の補正情報の構造を示す。本実施形態の補正情報は、天頂方向対流圏遅延と電離層遅延とを含んだ構造である。各遅延は、遅延量と信頼度とを含んでいる。信頼度は、たとえば、信頼度が1mだった場合、対応する遅延量の精度が、1σで1mであることを意味する正の値である。なお、PRNn(nは自然数)はPRN番号であり、PRNは擬似乱数(pseudo random noise)である。L1は、GPSにおけるL1信号を意味する。測位衛星5ごとに異なるPRNを使うことから、PRNnは、測位衛星5を区別していることになる。
(アップロードデータ構造)
図5に測位装置100がアップロードするデータ(以下、アップロードデータ)の構造を示す。アップロードデータは、アップロードする日付および時刻と、データをアップロードする測位装置100の装置IDと、測位装置100が位置する緯度、経度と、最新ダウンロード補正情報IDと、補正情報推定値とを含んでいる。最新ダウンロード補正情報IDは、センタ装置200からダウンロードした補正情報のうち、最新の補正情報を識別するIDである。補正情報推定値は図4に示した構造である。
図5に測位装置100がアップロードするデータ(以下、アップロードデータ)の構造を示す。アップロードデータは、アップロードする日付および時刻と、データをアップロードする測位装置100の装置IDと、測位装置100が位置する緯度、経度と、最新ダウンロード補正情報IDと、補正情報推定値とを含んでいる。最新ダウンロード補正情報IDは、センタ装置200からダウンロードした補正情報のうち、最新の補正情報を識別するIDである。補正情報推定値は図4に示した構造である。
(ダウンロードデータ構造)
図6に、センタ装置200が生成して測位装置100がダウンロードするダウンロードデータの構造を示す。ダンロードデータは、ダウンロード補正情報IDと、対象緯度下限と、対象緯度上限と、対象経度下限と、対象経度上限と、有効開始時刻と、有効終了時刻と、補正情報とを含んでいる。補正情報は、配信用の場所依存遅延量である。よって、ダウンロードデータは配信用の場所依存遅延量を含んでいる。
図6に、センタ装置200が生成して測位装置100がダウンロードするダウンロードデータの構造を示す。ダンロードデータは、ダウンロード補正情報IDと、対象緯度下限と、対象緯度上限と、対象経度下限と、対象経度上限と、有効開始時刻と、有効終了時刻と、補正情報とを含んでいる。補正情報は、配信用の場所依存遅延量である。よって、ダウンロードデータは配信用の場所依存遅延量を含んでいる。
ダウンロード補正情報IDは、センタ装置200がダウンロードデータを生成する毎に、ダウンロードデータに付与するIDである。対象緯度下限、対象緯度上限は、補正情報を使うことができる緯度の下限と上限である。対象経度下限、対象経度上限は、補正情報を使うことができる経度の下限と上限である。補正情報に含まれている対流圏遅延量および電離層遅延量は、測位する地域により値が異なるので、補正情報を使うことができる緯度と経度に上限と下限が設定されているのである。
有効開始時刻と有効終了時刻は、補正情報を使うことができる開始時刻と終了時刻である。時間の経過とともに電離層遅延量と対流圏遅延量は変化する。そのため、補正情報を使うことができる開始時刻と終了時刻が設定されているのである。
(ダウンロード要求データ構造)
図7に、測位装置100がセンタ装置200へ送信するダウンロード要求のデータ構造を示す。前述したように、ダウンロード要求は補正情報のダウンロードを要求するものである。ダウンロード要求には、要求時刻、測位装置100の装置ID、測位装置100の現在位置を表す緯度と経度が含まれる。
図7に、測位装置100がセンタ装置200へ送信するダウンロード要求のデータ構造を示す。前述したように、ダウンロード要求は補正情報のダウンロードを要求するものである。ダウンロード要求には、要求時刻、測位装置100の装置ID、測位装置100の現在位置を表す緯度と経度が含まれる。
(アップロード要求のデータ構造)
図8に、センタ装置200が測位装置100に送信するアップロード要求のデータ構造を示す。アップロード要求は補正情報のアップロードを要求するものである。アップロード要求には、対象時刻下限と、対象時刻上限と、対象緯度下限と、対象緯度上限と、対象経度下限と、対象経度上限とが含まれる。
図8に、センタ装置200が測位装置100に送信するアップロード要求のデータ構造を示す。アップロード要求は補正情報のアップロードを要求するものである。アップロード要求には、対象時刻下限と、対象時刻上限と、対象緯度下限と、対象緯度上限と、対象経度下限と、対象経度上限とが含まれる。
対象時刻は、測位装置100が補正情報を推定した時刻である。図6を用いて説明したように、測位装置100がダウンロードする補正情報に有効期間があることから、アップロードを要求する補正情報を推定した時刻にも、下限と上限が設定されている。また、補正情報は、測位する地域により値が異なるので、対象緯度と対象経度に下限と上限が設定されている。
なお、図8に示す1行分のデータが、アップロードを要求する1つのエリアに対する1組のデータである。アップロード要求には、補正情報のアップロードを要求するエリア数に応じた組数のデータが含まれる。
測位装置100は、アップロード要求を受信した場合、そのアップロード要求を、対象時刻の上限が経過するまで保存する。ただし、対象時刻の上限が経過する前に新たなアップロード要求を受信した場合、保存済みのアップロード要求を新たに受信したアップロード要求に上書きする。
(測位装置内の補正情報のデータ構造)
図9に、測位装置100が記憶している補正情報推定データの構造を示している。測位装置100は、所定のメモリに図9に示す構造で補正情報を記憶している。メモリには、演算部160が備えるフラッシュメモリなどを用いることができる。また、演算部160の外部にメモリを備えていてもよい。
図9に、測位装置100が記憶している補正情報推定データの構造を示している。測位装置100は、所定のメモリに図9に示す構造で補正情報を記憶している。メモリには、演算部160が備えるフラッシュメモリなどを用いることができる。また、演算部160の外部にメモリを備えていてもよい。
補正情報推定データには、時刻と、緯度と、経度と、最新のダウンロード補正情報IDと、最新のダウンロード補正情報を取得した時刻、補正情報推定値を含んでいる。ここでの補正情報推定値は、測位をした後であれば、測位により推定した補正情報であり、測位前であればダウンロードした補正情報である。また、補正情報は、図4に示した構造である。時刻は、補正情報推定値を更新した時刻であり、緯度、経度は、補正情報推定値を更新したときの位置を示す。
測位装置100は、図9に示した補正情報推定データを、補正情報推定値を更新する毎に作成する。新しい補正情報推定データが作成されたことにより最新ではなくなった補正情報推定データも破棄せずに、補正情報ログデータとして保存する。補正情報ログデータは、図9に示す補正情報推定データが順次、記録された構造である。
(センタ装置内の補正情報データベースの構造)
図10に、センタ装置200が備えるデータベース記憶部220に記憶されている補正情報データベースの構造を示す。補正情報データベースは、属性として、エリア番号、補正情報、アップロードデータログを備える。
図10に、センタ装置200が備えるデータベース記憶部220に記憶されている補正情報データベースの構造を示す。補正情報データベースは、属性として、エリア番号、補正情報、アップロードデータログを備える。
エリア番号は、1つの補正情報が適用されるエリアを識別するための番号である。1つのエリアの大きさは、同じ補正情報が使用可能である広さに設定される。簡単な例としては、図11に示すように、各エリアは、地形を、緯度方向および経度方向にそれぞれ一定の間隔の線で区切った矩形エリアとすることができる。ただし、他の例として、エリアは互いに重複していてもよいし、エリアごとに面積が異なっていてもよい。
補正情報は、測位装置100へ配信する配信用の補正情報である。配信用の補正情報は、1つまたは複数の測位装置100からアップロードされる補正情報を用いて逐次更新される。配信用の補正情報の構造は図4に示したものと同じである。複数の測位装置100から、互いに同じエリアに対する補正情報推定値がアップロードされた場合、有効期間内の補正情報推定値を平均するなどして、配信用の補正情報を更新する。
アップロードデータログは、測位装置100からアップロードされた、図5に示すアップロードデータを含んでいる。アップロードデータログとして保存されるアップロードデータの数は最大Nである。なお、Nは正の整数である。なお、図10では、各アップロードデータがそれぞれ別の測位装置100からアップロードされたデータであることを、図から理解できるようにするために、アップロードデータとは別に装置IDを示している。しかし、図5に示したように、装置IDはアップロードデータに含まれている。
(測位装置の演算部が実行する処理)
測位装置100の演算部160は、図12、図13に示す処理を周期的に実行する。なお、S1~S4、S10、S15、S16は測位演算部161が実行する処理、S5~S9はダウンロード要求部162が実行する処理、S11、S12は検定部164が実行する処理、S13~S14はアップロード判定部165が実行する処理である。
測位装置100の演算部160は、図12、図13に示す処理を周期的に実行する。なお、S1~S4、S10、S15、S16は測位演算部161が実行する処理、S5~S9はダウンロード要求部162が実行する処理、S11、S12は検定部164が実行する処理、S13~S14はアップロード判定部165が実行する処理である。
S1では、アップロード要求受信処理を実行する。この処理は、図14に示す処理である。図14において、S101では、新しいアップロード要求をセンタ装置200から受信したか否かを判断する。アップロード要求は図8に示したものである。S101の判断がYesであればS102に進み、Noであれば、図14の処理を終了し、図12のS2に進む。
S102では、受信したアップロード要求により、記憶済みのアップロード要求を上書きする。S102を実行したら図12のS2に進む。
図12のS2では、擬似距離を算出できる数以上の衛星信号を受信したか否かを判断する。この判断がNoであれば図12の処理を終了する。この場合、一定周期経過後に再びS1を実行する。一方、S2の判断がYesであればS3に進む。
S3では、擬似距離測位により概算位置および概算時刻を取得する。疑似距離測位では、衛星信号の伝播時間に光速を乗じて擬似距離を算出する。そして、測位装置100の座標と時計誤差の4つを未知数として方程式を解くことで、測位装置100の座標と時計誤差を求める。この座標が概算位置であり、また、時計誤差により衛星受信機130が備える時計を補正した時刻が概算時刻である。
S4では、S3で取得した概算位置および概算時刻により、補正情報に含まれる信頼度を更新する。信頼度は、時刻と位置の変動量により変化するため、S4の処理を実行する。S4の詳細は図15に示す。
図15において、S401では、測位装置100が記憶している最新の補正情報ログデータが示す位置(すなわち緯度と経度)と、概算位置との間のユークリッド距離(以下、距離差分A)を取得する。S402では、最新の補正情報ログデータが示す時刻と概算時刻との差(以下、時刻差分B)を取得する。
S403は、信頼度ごとに行う処理であり、新しい信頼度を算出する。そして、補正情報推定値に含まれる信頼度を、この新しい信頼度とする。S403では、新しい信頼度は、以下の式1から算出する。式1において、iはループ数であり、kA
i、kB
iは、信頼度に与える距離差分Aと時刻差分Bの影響を鑑みて設定する重み係数であり、出荷時等に予め設定しておく値である。重み係数kA、kBは正の実数である。
(式1) 新しい信頼度=古い信頼度+(A×kA
i+B×kB
i)
この式1により算出される新しい信頼度は、距離差分Aと時刻差分Bが大きいほど大きい値になる。信頼度の単位はメートルであり、信頼度の値が大きいほど、遅延量のばらつきが大きいことになる。つまり、信頼度は値が大きいほど、信頼性が低いことを意味する。また、信頼度の値が小さいほど、遅延量のばらつきが小さいことになる。つまり、信頼度は値が小さいほど、信頼性が大きいことを意味する。
この式1により算出される新しい信頼度は、距離差分Aと時刻差分Bが大きいほど大きい値になる。信頼度の単位はメートルであり、信頼度の値が大きいほど、遅延量のばらつきが大きいことになる。つまり、信頼度は値が大きいほど、信頼性が低いことを意味する。また、信頼度の値が小さいほど、遅延量のばらつきが小さいことになる。つまり、信頼度は値が小さいほど、信頼性が大きいことを意味する。
説明を図12に戻す。S5では、補正情報をダウンロードする必要があるか否かを判断する。このS5では詳しくは、測位装置100が記憶している補正情報推定値に含まれる遅延量のうち、精密測位演算に用いる遅延量であって、信頼度が閾値よりも大きい遅延量があるか否かを判断する。精密測位演算に用いる遅延量は、対流圏遅延量と、観測できている衛星信号に対応する電離層遅延量である。条件を満たす遅延量が1つでもあれば、補正情報をダウンロードする必要があると判断する。一方、条件を満たす遅延量が1つもない場合には、補正情報をダウンロードする必要はないと判断する。
S5の判断がYesであればS6に進む。S6では、補正情報のダウンロードを要求するダウンロード要求をセンタ装置200へ送信する。ダウンロード要求のデータ構造は図7に示した構造である。
S7では、補正情報をダウンロードできたか否かを判断する。S7の判断がYesであればS8へ進み、Noであれば図13のS10へ進む。S8では、ダウンロードした補正情報が使用可能か否かを判断する。この判断は、詳しくは、図16に示す処理を実行する。
図16において、S801では、有効時刻か否か判断する。センタ装置200からダウンロードするダウンロードデータは、図6に示すように、対象緯度の下限と上限、対象経度の下限と上限、有効開始時刻と有効終了時刻を含んでいる。有効時刻か否かは、現在時刻がダウンロードデータに含まれる有効開始時刻と有効終了時刻との間であるか否かにより判断する。
S801の判断がNoであれば、S8の判断をNoとする。この場合、図13のS10に進む。S801の判断がYesであればS802に進む。S802では、有効緯度か否か判断する。有効緯度か否かは、現在の緯度がダウンロードデータに含まれる対象緯度下限と対象緯度上限との間であるか否かにより判断する。S802の判断がNoであれば、S8の判断をNoとする。
S802の判断がYesであればS803に進む。S803では、有効経度か否か判断する。有効経度か否かは、現在の経度がダウンロードデータに含まれる対象経度下限と対象経度上限との間であるか否かにより判断する。S803の判断がNoであれば、S8の判断をNoとする。S803の判断がYesであればS8の判断をYesとする。S8の判断がYesであればS9へ進む。
S9では、図17に示す処理を実行して、測位装置100が記憶している補正情報推定データを、ダウンロードデータで上書きする。図17において、S901では、補正情報推定データに含まれる、最新のダウンロード補正情報IDを、今回ダウンロードしたダウンロードデータに含まれているダウンロード補正情報IDで上書きする。また、補正情報推定データに含まれる、最新のダウンロード補正情報を取得した時刻を、今回のダウンロード時刻で上書きする。S902では、補正情報推定データに含まれる補正情報推定値を、今回ダウンロードしたダウンロードデータに含まれている補正情報で上書きする。
続いて図13に示すS10以降を説明する。S10では、高精度測位演算を行う。高精度測位演算は、PPP(Precise Point Positioning)法と呼ばれることもある。S10の処理は、詳しくは図18に示す。
図18においてS1001では、補正情報推定値を用いて高精度測位演算を行う。高精度測位演算は、搬送波位相の位相差に基づいて現在位置を演算する方法であり、特許文献1に記載されている方法と同じ方法で行うことができる。特許文献1では、電離層伝搬遅延(本実施形態の電離層遅延量)と対流圏伝搬遅延(本実施形態の対流圏遅延量)とをパラメータとして含む観測方程式を解くことで、測位衛星アンテナと受信アンテナとの間の幾何距離すなわち観測信号の伝播距離を求める。そして、この幾何距離と、衛星アンテナ座標と受信アンテナ座標との座標間距離で幾何距離を表す式とを用いて、現在位置を求める。
また、特許文献1には、2種類の周波数の観測信号を受信して電離層伝搬遅延の影響を削除することで、電離層伝搬遅延を含まない観測方程式として現在位置を求める方法も開示されている。いずれの方法においても、これら電離層伝搬遅延および対流圏伝播遅延の一方または両方をパラメータとして含む場合は、継続的に観測することで収束値を求めることになる。また、高精度測位演算でも、擬似距離測位と同様、時計誤差も得られる。
S1002では、測位装置100が備える時計(すなわち現在時刻)を、S1001で取得した時計誤差に基づいて補正する。
S1003では、現在位置の緯度を、S1001で取得した緯度に上書きする。S1004では、現在位置の経度を、S1001で取得した経度に上書きする。
S1005は、補正情報推定値に含まれる遅延量ごとに行う処理であり、遅延量と信頼度を上書きする。遅延量は、具体的には、対流圏遅延量と電離層遅延量であり、S1001の高精度測位演算により得られる。信頼度は、収束値が得られるまでの各遅延量の最大のばらつきである。
説明を図13に戻す。S11では、高精度測位演算によりFix解が得られたか否かを判断する。高精度測位演算では整数値バイアスを決定することになるが、整数値バイアスを整数値に決定できずに、整数値バイアスが少数値を含む近似解になるときもある。このS11では、この整数値バイアスとして整数値が得られたか否かを判断する。整数値バイアスの解が整数値となることはFix解と言われる。Fix解が得られた場合には、測位結果が高精度であることになる。
S11の判断がYesであればS12に進み、NoであればS15に進む。S12では、自律センサ140を用いた位置推定による検定を行う。高精度測位によってFix解が得られ、高精度な測位結果が得られたと判断された場合でも、測位誤差が存在する場合がある。このとき、補正情報推定値に含まれる遅延量も誤差を含んでいる可能性があるため検定を行う。
S12では、詳しくは、図19に示す処理を実行する。図19において、S1201では、位置推定部163が自律センサ140と高精度地図とを用いて推定した現在位置を取得する。
S1202では、推定位置を取得できたか否かを判断する。この判断がNoであれば図19に示す処理を終了する。一方、S1202の判断がYesであればS1203に進む。S1203では、高精度測位で得られた位置と、位置推定部163が推定した位置との差分Cを算出する。
S1204では、差分Cの絶対値が、予め設定した閾値Dよりも大きいか否かを判断する。なお、閾値Dは正の実数である。差分Cが大きい場合、高精度測位で得られた位置か、位置推定部163が自律センサ140と高精度地図を用いて推定した位置のどちらかが誤差を含んでいる可能性がある。
S1204の判断がNoであれば図19の処理を終了し、YesであればS1205に進む。S1205では、現在位置を示す緯度と経度、補正情報推定値に含まれている遅延量と信頼度を定数に書き換える。緯度と経度、および遅延量については、正常解でないことを示す値、たとえば、Nan値とする。信頼度については、予め決定しておいた正の実数とする。
説明を図13に戻す。S13では、補正情報推定値をアップロードすべきか否かを判断する。補正情報推定値を更新したとしても、補正情報推定値のアップロードを常に行う必要はない。そこで、このS13において、補正情報推定値をアップロードすべきか否かを判断する。
S13では、詳しくは、図20に示す処理を実行する。図20において、S131では、センタ装置200から送信され、所定のメモリに記憶しているアップロード要求を参照し、現在位置を対象とするアップロード要求があったか否かを判断する。S131は、詳しくは図21に示す処理を実行する。
図21において、S1311では、取得したアップロード要求があるか否かを判断する。S1311の判断がNoであれば、S131の判断をNoとして図20に戻る。S1311の判断がYesであればS1312に進む。
S1312では、現在時刻が有効時刻か否かを判断する。具体的には、アップロード要求を参照し、現在時刻が対象時刻下限と対象時刻上限との間であるか否かを判断する。この判断がNoであれば、S131の判断をNoとして図20に戻る。S1312の判断がYesであればS1313に進む。
S1313では、現在の緯度が有効緯度か否かを判断する。具体的には、アップロード要求を参照し、現在の緯度が対象緯度下限と対象緯度上限との間であるか否かを判断する。この判断がNoであれば、S131の判断をNoとして図20に戻る。S1313の判断がYesであればS1314に進む。
S1314では、現在の経度が有効緯度か否かを判断する。具体的には、アップロード要求を参照し、現在の経度が対象経度下限と対象経度上限との間であるか否かを判断する。この判断がNoであれば、S131の判断をNoとして図20に戻る。S1314の判断がYesであればS1315に進む。
S1315では、一時的に所定のメモリに記憶しているアップロード要求を削除する。そして、S131の判断をYesとして図20に戻る。
説明を図20に戻す。S131の判断がYesであればS13の判断をYesとして図13に戻る。S131の判断がNoであればS132に進む。S132では、遅延量の時間変動が大きいか否かを判断する。遅延量は気候などにより短時間で急激に変動する場合があり、そのような場合はデータを多くアップロードする必要があるからである。S132は、詳しくは図22に示す処理を実行する。
図22において、S1321では、補正情報ログデータに、X秒前のログデータがあるか否かを判断する。Xは正の整数である。S1321の判断がNoであればS132の判断をNoとして図20に戻る。S1321の判断がYesであればS1322へ進む。
S1322では、最後にダウンロードデータを取得したときからX+Y秒以上経過したか否かを判断する。最後にダウンロードデータを取得した時刻は、補正情報ログデータの「最新ダウンロード補正情報の取得時刻」である。また、Yは正の整数である。S1322の判断がNoであれば図22の処理を終了する。S1322の判断がYesであればS1323へ進む。
S1323では、X秒前の補正情報に対応する位置と現在位置との差分Eを算出する。X秒前の補正情報に対応する位置は、補正情報ログデータにおいてX秒前のログデータに含まれる緯度と経度である。この差分Eはユークリッド距離である。S1323の判断がNoであれば図22の処理を終了する。S1323の判断がYesであればS1324へ進む。
S1324では、差分Eの絶対値が閾値Fよりも小さいか否かを判断する。S1324の判断がNoであれば図22の処理を終了する。S1324の判断がYesであればS1325以下のループを実行する。ここまでのS1321からS1324の処理を行う理由は次の通りである。
補正情報は位置によって変動するため、測位装置100が短時間に大きな距離を移動していた場合、補正情報に大きな時間変動が認められても、アップロードの必要があるかを判断できない。そこで、S1321からS1324の処理を行って、測位装置100が短時間に大きな距離を移動していないことを判断する。したがって、Y秒は短時間を意味する値に設定され、閾値Fは、大きな距離を移動していることを判断できる値に設定される。また、X秒は最近のデータであることを意味する値に設定される。
S1325からS1328は補正情報推定値に含まれる遅延量および信頼度ごとに行う。S1325では、X秒前に推定した遅延量に対する信頼度が閾値Gよりも小さいか否かを判断する。閾値Gは、信頼度が、精度がよいことを示しているか否かを判断するための値であり、正の実数である。信頼度が閾値Gよりも大きい場合、精度が悪いことを意味する。精度が悪い場合、後述するS1328でX秒間の遅延量の差分Iを見ても、大気圏遅延量および電離層遅延量に起因する時間変動の大きさを有効に判断できないため、このS1325の判断を行う。S1325の判断がNoであれば現時点で対象としている遅延量に対する処理は終了する。S1325の判断がYesであればS1326へ進む。
S1326では、補正情報推定値に含まれている最新の遅延量に対する信頼度が閾値Hよりも小さいか否かを判断する。閾値Hは、信頼度が、精度がよいことを示しているか否かを判断するための値であり、正の実数である。この判断を行う理由は、S1325の判断を行う理由と同じである。S1326の判断がNoであれば現時点で対象としている遅延量に対する処理は終了する。S1326の判断がYesであればS1327へ進む。
S1327では、X秒前の遅延量と最新の遅延量の差分(すなわち時間経過に伴う変動量)Iを算出する。S1328では、S1327で算出した差分Iが閾値Jよりも小さいか否かを判断する。閾値Jは遅延量ごとに定められる正の実数である。閾値Jは、遅延量の変動を示す差分Iが、短時間に通常生じ得る遅延量の変動であるか否かを判断する値である。
S1328の判断がYesであれば現時点で対象としている遅延量に対する処理は終了する。S1328の判断がNoであればS132の判断をYes、すなわち補正情報推定値をアップロードすべきとして図22の処理を終了する。よって、遅延量の少なくとも1つの時間変動が大きい場合、補正情報推定値をアップロードすべきと判断することになる。一方、全部の遅延量について、S1328の判断がYesになった場合には、S132の判断をNoとして図22の処理を終了する。
説明を図13に戻す。S13の判断がNoであればS15に進み、YesであればS14に進む。S14では、図5に示すアップロードデータを生成して、そのアップロードデータをセンタ装置200へアップロードする。
S15では、補正情報推定値を含む補正情報推定データを作成して、補正情報ログデータに追加する。S16では、アプリケーションへ、現在の時刻と位置を送信する。
(周辺に存在する他の装置との比較処理)
図23は、測位装置100の演算部160が、図12、13と並列的に周期的に実行する処理である。図23を実行することで、測位装置100は、自装置が記憶している補正情報推定値を、自装置の周辺に存在する他の測位装置100が記憶している補正情報推定値と比較する。
図23は、測位装置100の演算部160が、図12、13と並列的に周期的に実行する処理である。図23を実行することで、測位装置100は、自装置が記憶している補正情報推定値を、自装置の周辺に存在する他の測位装置100が記憶している補正情報推定値と比較する。
S21では、自装置の周辺に、他の測位装置100(以下、周辺他装置)の存在を検知したか否かを判断する。周辺は、たとえば、自装置を中心とする半径数百メートル以内とすることができる。検知法は、広域通信部110または近距離通信部120を介した通信による位置取得、カメラ、ライダーなどの自律センサ140による物体検知などとすることができる。S21の判断がYesであれば図23の処理を終了する。S21の判断がYesであればS22へ進む。
S22では、周辺他装置へ補正情報推定値を送信し、かつ、周辺他装置から、周辺他装置が記憶している補正情報推定値を取得する。送信するデータ構造は、アップロードデータと同じでよい。また、データの送受信には、近距離通信部120を用いてもよいし、広域通信部110を用いてもよい。
S23からS26は遅延量ごとに行う。S23では、周辺他装置から取得した信頼度が閾値Lよりも小さいか否かを判断する。S23の判断がNoであれば、現時点で対象としている遅延量に対する処理は終了する。S23の判断がYesであればS24へ進む。
S24では、自装置の信頼度が閾値Lよりも小さいか否かを判断する。S24の判断がNoであれば、現時点で対象としている遅延量に対する処理は終了する。S24の判断がYesであればS25へ進む。自装置の遅延量に対する信頼度と周辺他装置の遅延量に対する信頼度が、ともに小さくないと、自装置の遅延量と周辺他装置から取得した遅延量を比較しても、遅延量の適否を精度よく判断できない。そのため、S23、S24の判断を行う。
S25では、周辺他装置から取得した遅延量と、自装置が記憶している遅延量との差分Mを算出する。遅延量は時間と位置に依存する。換言すれば、時間と位置が近似すれば、遅延量も近似するはずである。したがって、この差分Mが大きい場合、自装置の遅延量と周辺他装置の遅延量のどちらかに誤差が含まれている可能性がある。
S26では、差分Mの絶対値が閾値Oよりも小さいか否かを判断する。S26の判断がYesであれば現時点で対象としている遅延量に対する処理は終了する。S26の判断がNoであればS27へ進む。
S27に進む場合、補正情報推定値に誤差が含まれている可能性がある。また、補正情報推定値を使って演算する緯度と経度にも誤差が含まれている可能性がある。そこで、S27では、最新の緯度と経度、および、補正情報推定値に含まれるすべての遅延量と信頼度を、正常解でないことを示す値(例えばNan値)とする。また、信頼度については、予め定めておいた正の実数とする。S27はループ外の処理であるので、遅延量のうち1つでも周辺他装置との差分Mが大きいと認められた場合、最新の緯度と経度、および、補正情報推定値に含まれるすべての遅延量と信頼度を、正常解でないことを示す値にすることになる。
(センタ装置が実行する処理)
図24、図25、図26にセンタ装置200の演算部230が実行する処理を示す。センタ装置200は、図24、図25、図26に示す各処理を、並列的に所定周期で繰り返し実行する。図24は、アップロードデータに関する処理であり、アップロードデータ処理部231が実行する。
図24、図25、図26にセンタ装置200の演算部230が実行する処理を示す。センタ装置200は、図24、図25、図26に示す各処理を、並列的に所定周期で繰り返し実行する。図24は、アップロードデータに関する処理であり、アップロードデータ処理部231が実行する。
S31では、アップロードデータを受信したか否かを判断する。S31の判断がNoであれば図24の処理を終了し、YesであればS32へ進む。S32では、受信したアップロードデータに対して外れ値処理を行い、受信したアップロードデータに含まれている補正情報推定値が外れ値でない場合、受信したアップロードデータに基づいて補正情報データベースを更新する。補正情報データベースを更新する際には、受信したアップロードデータに対してIDを付与する。
また、図10に示すように、補正情報データベースは、エリア別にアップロードデータが保存されている。そこで、今回受信したアップロードデータに含まれている緯度と経度を含むエリアを決定することで、今回受信したアップロードデータを保存する場所を決定する。
図25は、ダウンロードデータに関する処理であり、ダウンロードデータ生成部233が実行する。S41では、ダウンロード要求を受信したか否かを判断する。S41の判断がNoであれば図25の処理を終了し、YesであればS42へ進む。
S42では、ダウンロード要求に基づいてダウンロードデータを作成する。ダウンロード要求は、図7に示す構造であり、緯度と経度とを含む。この緯度と経度とに基づいて、補正情報データベースから、その緯度と経度が該当するエリアについて保存されている補正情報を抽出して、図6に示すダウンロードデータを作成する。S43では、S42で作成したダウンロードデータを、ダウンロード要求を送信した測位装置100へ広域通信部210から送信する。
図26は、アップロード要求に関する処理であり、S51、S52はデータベース更新部232が実行し、S53、S54はアップロード要求生成部234が実行する。
S51では、前回、配信用の補正情報を更新してからP秒以上経過したか否かを判断する。P秒は更新周期であり、適宜、設定される。S51の判断がNoであれば図26の処理を終了し、YesであればS52へ進む。
S52からS54は、図11に例示したエリアごとに行う。S52では、補正情報データベースに保存されている配信用の補正情報を更新する。配信用の補正情報の更新は、アップロードデータログに含まれているアップロードデータに基づいて行う。たとえば、現在時刻に基づいて有効期間を決定し、アップロードされた時刻がその有効期間内であるアップロードデータに含まれる各遅延量および信頼度を、遅延量および信頼度の種類ごとに平均することで、配信用の補正情報を更新する。平均は、単純平均でもよいし、時間が新しいほど重みを重くする加重平均でもよい。また、時間による重みとともに、あるいは、時間による重みに代えて、エリア中心に近いほど重みを重くする加重平均をおこなってもよい。
S53では、更新後の信頼度が閾値Qを上回ったか否かを判断する。ここでの信頼度は全部の信頼度の平均値でもよいし、いずれか1つの信頼度でもよい。S53の判断がNoであれば図26の処理を終了し、YesであればS54へ進む。S54では、該当エリアに対して補正情報を要求するアップロード要求を作成して配信する。
以上、説明した本実施形態では、測位装置100は測位演算部161を備えており、測位演算部161は、測位演算において、対流圏遅延量および電離層遅延量をパラメータとして含む観測方程式を用いて、これらの遅延量の推定値を得る(S1001)。そして、その推定値を含む補正情報推定値を、補正情報推定値を得た位置とともに、センタ装置200へ送信する(S14)。
測位装置100は、移動体で用いることが可能であることから、電子基準点と異なり、測位が必要な車両2などの移動体に搭載してその移動体の位置を逐次測定する用途に利用できる。そのため、電子基準点よりも数を多くすることが容易であり、この測位装置100の数を増やすことにより、対流圏遅延量および電離層遅延量を観測する箇所を増やすことができる。対流圏遅延量および電離層遅延量を観測する箇所を増やすことができれば、より狭いエリア毎に対流圏遅延量および電離層遅延量を更新することができる。したがって、電子基準点の増加を抑制しつつ、高精度な測位が可能になる。
また、本実施形態では、基地局6と公衆通信回線網7とを介して、センタ装置200の広域通信部210と測位装置100の広域通信部110とが通信して、補正情報を含むダウンロードデータが配信される。よって、これにより、準天頂衛星から補正情報を配信する場合よりも、補正情報を配信するデータ量の制限が緩和される。この点でも、より狭いエリア毎に対流圏遅延量および電離層遅延量を更新することができる。
また、測位装置100は、補正情報推定値を更新した場合に必ずアップロードデータをアップロードするのではなく、アップロードの要否を判断する(S13)。これにより、センタ装置200が精度の良い補正情報を配信するために必要なアップロードデータを確保しつつ、測位装置100の通信量を低減できる。
また、測位装置100は、対流圏遅延量および電離層遅延量に対してそれぞれ信頼度を記憶しており、この信頼度に基づいて、補正情報をダウンロードする必要があるか否かを判断している(S5)。このようにすることで、測位精度を維持しつつ、測位装置100の通信量を低減できる。
また、測位装置100は、自律センサ140を用いて自装置の位置を推定する位置推定部163と、検定部164を備えている。検定部164は、位置推定部163が推定した現在位置と測位演算部161が演算した現在位置とを比較して、測位演算部161が演算した現在位置が正しいか否かを検定する(S12)。検定の結果、測位演算部161が演算した現在位置が正しくないと判断した場合(S1204)、現在位置、補正情報推定値に含まれている遅延量を、正常解でないことを示す値とする。これにより、正しくない現在位置に基づいた制御が実行されてしまうことを抑制でき、かつ、正しくない遅延量をアップロードしてしまうことも抑制される。
また、測位装置100は、自装置が演算した遅延量と、周辺他装置が演算した遅延量との差分Mを算出し、その差分Mが閾値O異常であれば(S26:Yes)、測位演算部161が演算した現在位置および遅延量を正常解でないとする(S27)。これによっても、正しくない現在位置に基づいた制御が実行されてしまうことを抑制でき、かつ、正しくない遅延量をアップロードしてしまうことも抑制される。
以上、実施形態を説明したが、開示した技術は上述の実施形態に限定されるものではなく、次の変形例も開示した範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施できる。なお、以下の説明において、それまでに使用した符号と同一番号の符号を有する要素は、特に言及する場合を除き、それ以前の実施形態における同一符号の要素と同一である。また、構成の一部のみを説明している場合、構成の他の部分については先に説明した実施形態を適用できる。
(変形例1)
実施形態では、補正情報として、対流圏遅延量と電離層遅延量とを示した。しかし、補正情報に衛星軌道誤差と衛星時計誤差が含まれ、これらの誤差も補正して現在位置を演算してもよい。衛星軌道誤差と衛星時計誤差は、測位場所に依存しない。すなわち、衛星軌道誤差と衛星時計誤差は、場所依存遅延量ではない。よって、衛星軌道誤差と衛星時計誤差は、1つの装置が観測すればよい。たとえば、衛星軌道誤差と衛星時計誤差は、静止物に備えられた測位装置100が観測すればよい。また、特許文献2に記載されているように、電子基準点で収集した衛星信号を用いて、センタ装置が衛星軌道誤差と衛星時計誤差を演算してもよい。
実施形態では、補正情報として、対流圏遅延量と電離層遅延量とを示した。しかし、補正情報に衛星軌道誤差と衛星時計誤差が含まれ、これらの誤差も補正して現在位置を演算してもよい。衛星軌道誤差と衛星時計誤差は、測位場所に依存しない。すなわち、衛星軌道誤差と衛星時計誤差は、場所依存遅延量ではない。よって、衛星軌道誤差と衛星時計誤差は、1つの装置が観測すればよい。たとえば、衛星軌道誤差と衛星時計誤差は、静止物に備えられた測位装置100が観測すればよい。また、特許文献2に記載されているように、電子基準点で収集した衛星信号を用いて、センタ装置が衛星軌道誤差と衛星時計誤差を演算してもよい。
(変形例2)
また、実施形態では、対流圏遅延量と電離層遅延量とを補正していたが、対流圏遅延量のみを補正してもよい。また、L1帯域の電離層遅延量を補正していたが、これに加えて、あるいは、これに変えて、他の帯域の電層遅延量を補正してもよい。
また、実施形態では、対流圏遅延量と電離層遅延量とを補正していたが、対流圏遅延量のみを補正してもよい。また、L1帯域の電離層遅延量を補正していたが、これに加えて、あるいは、これに変えて、他の帯域の電層遅延量を補正してもよい。
(変形例3)
測位装置100は、乗り物に乗る者が携帯可能な構成であってもよい。
測位装置100は、乗り物に乗る者が携帯可能な構成であってもよい。
(変形例4)
基地局6が近距離通信部120と通信可能になっており、測位装置100が、近距離通信部120により、センタ装置200と通信可能になっていてもよい。
基地局6が近距離通信部120と通信可能になっており、測位装置100が、近距離通信部120により、センタ装置200と通信可能になっていてもよい。
(変形例5)
図20において、S131とS132のどちらか1つのみを判断してもよい。また、S131とS132の判断順序を入れ替えてもよい。
図20において、S131とS132のどちらか1つのみを判断してもよい。また、S131とS132の判断順序を入れ替えてもよい。
(変形例6)
図13においてS12の処理をなくしてもよい。S12の処理をなくす場合、測位装置100がセンタ装置200へ誤った補正情報をアップロードしてしまう恐れはある。しかし、センタ装置200は、通常、多くの測位装置100から補正情報を取得することができる。センタ装置200が、多くの測位装置100から補正情報を取得することができていれば、S12の処理をなくすことによる配信用の補正情報の精度低下は少ないので、S12の処理をなくしてもよいのである。そして、S12の処理をなくす場合、測位装置100は自律センサ140および高精度地図が不要になるという利点がある。
図13においてS12の処理をなくしてもよい。S12の処理をなくす場合、測位装置100がセンタ装置200へ誤った補正情報をアップロードしてしまう恐れはある。しかし、センタ装置200は、通常、多くの測位装置100から補正情報を取得することができる。センタ装置200が、多くの測位装置100から補正情報を取得することができていれば、S12の処理をなくすことによる配信用の補正情報の精度低下は少ないので、S12の処理をなくしてもよいのである。そして、S12の処理をなくす場合、測位装置100は自律センサ140および高精度地図が不要になるという利点がある。
(変形例7)
CPUが実行するプログラムを記憶する記憶媒体はROMに限られず、非遷移的実体的記録媒体に記憶されていればよい。たとえば、フラッシュメモリにプログラムが記憶されていてもよい。また、演算部160、230が備える機能の一部または全部を、一つあるいは複数のIC等を用いて(換言すればハードウェアとして)実現してもよい。また、演算部160、230が備える機能の一部又は全部を、CPUによるソフトウェアの実行とハードウェア部材の組み合わせによって実現してもよい。
CPUが実行するプログラムを記憶する記憶媒体はROMに限られず、非遷移的実体的記録媒体に記憶されていればよい。たとえば、フラッシュメモリにプログラムが記憶されていてもよい。また、演算部160、230が備える機能の一部または全部を、一つあるいは複数のIC等を用いて(換言すればハードウェアとして)実現してもよい。また、演算部160、230が備える機能の一部又は全部を、CPUによるソフトウェアの実行とハードウェア部材の組み合わせによって実現してもよい。
ここで、本開示に記載されるフローチャート、あるいは、フローチャートの処理は、複数のステップ(あるいはセクションと言及される)から構成され、各ステップは、たとえば、S1と表現される。さらに、各ステップは、複数のサブステップに分割されることができる、一方、複数のステップが合わさって一つのステップにすることも可能である。
以上、本開示の一態様に係る測位システム、測位装置およびセンタ装置の実施形態、構成、態様を例示したが、本開示に係る実施形態、構成、態様は、上述した各実施形態、各構成、各態様に限定されるものではない。例えば、異なる実施形態、構成、態様にそれぞれ開示された技術的部を適宜組み合わせて得られる実施形態、構成、態様についても本開示に係る実施形態、構成、態様の範囲に含まれる。
Claims (11)
- 複数の測位装置(100)と、各測位装置と通信するセンタ装置(200)とを備えた測位システムであって、
前記複数の測位装置のうち少なくとも一つの測位装置は、
移動体で用いることが可能であり、
対流圏遅延量および電離層遅延量の少なくとも一方を含んでいる場所依存遅延量および伝播距離をパラメータとして含む観測方程式の収束値として前記場所依存遅延量および前記伝播距離を演算し、前記伝播距離に基づいて前記複数の測位装置のうち前記少なくとも一つの測位装置の現在位置を演算する測位演算部(161)と、
前記測位演算部が演算した前記場所依存遅延量を、前記測位演算部による前記場所依存遅延量の演算時における前記複数の測位装置のうち前記少なくとも一つの測位装置の位置とともに前記センタ装置へ送信する測位側通信部(110)とを備え、
前記センタ装置は、
前記測位装置が送信した前記場所依存遅延量に基づいて、配信用の場所依存遅延量を更新する更新部(232)と、
前記更新部が更新した前記配信用の場所依存遅延量を、複数の前記測位装置のうちの少なくとも一つへ送信する配信側通信部(210)とを備える、測位システム。 - 前記センタ装置は地上に設けられており、
前記配信側通信部は、前記測位装置へ、地上の基地局(6)を介して前記配信用の場所依存遅延量を送信する請求項1に記載の測位システム。 - 前記測位装置は、前記測位演算部が演算した前記場所依存遅延量を前記センタ装置へアップロードすべきか否かを判定するアップロード判定部(165)を更に備える、請求項1または2に記載の測位システム。
- 前記アップロード判定部は、前記センタ装置からアップロード要求があった場合に、前記場所依存遅延量を前記センタ装置へアップロードすべきであると判定する、請求項3に記載の測位システム。
- 前記アップロード判定部は、前記場所依存遅延量の時間経過に伴う変動量(I)が閾値(J)よりも大きい場合に、前記場所依存遅延量を前記センタ装置へアップロードすべきであると判定する、請求項3または4に記載の測位システム。
- 前記配信用の場所依存遅延量を送信することを前記センタ装置へ要求するダウンロード要求部(162)を更に備える請求項1~5のいずれか1項に記載の測位システム。
- 前記ダウンロード要求部は、前記測位演算部が演算に用いる前記場所依存遅延量の信頼度が閾値より大きいと判断した場合に、前記配信用の場所依存遅延量を送信することを前記センタ装置へ要求する請求項6に記載の測位システム。
- 前記測位装置は移動体(2、3)に搭載され、
前記移動体に搭載された自律センサ(140)が検出した検出値に基づいて現在位置を推定する位置推定部(163)と、
前記位置推定部が推定した現在位置と前記測位演算部が演算した前記現在位置との比較に基づいて、前記測位演算部が演算した前記場所依存遅延量が正しいか否かを検定し、前記場所依存遅延量が正しくないと判断した場合には、前記測位演算部が演算した前記場所依存遅延量および現在位置を、正常解でないことを示す値とする検定部(164)とを更に備える請求項1~7のいずれか1項に記載の測位システム。 - 前記測位演算部は、周辺に存在する他の測位装置が演算した前記場所依存遅延量を取得し、自装置が演算した前記場所依存遅延量と前記他の測位装置が演算した前記場所依存遅延量との差分(M)が閾値(O)以上である場合、前記測位演算部が演算した前記場所依存遅延量を正常解でないことを示す値とする、請求項1~8のいずれか1項に記載の測位システム。
- 移動体で用いることが可能であり、
対流圏遅延量および電離層遅延量の少なくとも一方を含んでいる場所依存遅延量および伝播距離をパラメータとして含む観測方程式の収束値として前記場所依存遅延量および前記伝播距離を演算し、前記伝播距離に基づいて現在位置を演算する測位演算部(161)と、
前記測位演算部が演算した前記場所依存遅延量を、前記測位演算部による前記場所依存遅延量の演算時における位置とともにセンタ装置へ送信する測位側通信部(110)とを備える測位装置。 - 複数の測位装置と通信するセンタ装置であって、
前記測位装置が送信した、対流圏遅延量および電離層遅延量の少なくとも一方を含んでいる場所依存遅延量に基づいて、配信用の場所依存遅延量を更新する更新部(232)と、
前記更新部が更新した前記配信用の場所依存遅延量を、複数の前記測位装置のうちの少なくとも一つへ送信する配信側通信部(210)とを備えるセンタ装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/137,161 US20210116577A1 (en) | 2018-07-04 | 2020-12-29 | Positioning system, positioning device, and center device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-127612 | 2018-07-04 | ||
JP2018127612A JP2020008346A (ja) | 2018-07-04 | 2018-07-04 | 測位システム、測位装置およびセンタ装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/137,161 Continuation US20210116577A1 (en) | 2018-07-04 | 2020-12-29 | Positioning system, positioning device, and center device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020008791A1 true WO2020008791A1 (ja) | 2020-01-09 |
Family
ID=69060644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/022321 WO2020008791A1 (ja) | 2018-07-04 | 2019-06-05 | 測位システム、測位装置およびセンタ装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20210116577A1 (ja) |
JP (1) | JP2020008346A (ja) |
WO (1) | WO2020008791A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111708043B (zh) * | 2020-05-13 | 2023-09-26 | 阿波罗智能技术(北京)有限公司 | 定位方法及装置 |
WO2022049737A1 (ja) * | 2020-09-04 | 2022-03-10 | 三菱電機株式会社 | 測位補強信号配信装置および測位補強信号配信方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004271317A (ja) * | 2003-03-07 | 2004-09-30 | Mitsubishi Electric Corp | データセンター及び移動局及び測位システム及び移動体端末 |
JP2011517771A (ja) * | 2008-03-21 | 2011-06-16 | テールズ | 電離層補正値を算出するネットワーク及び方法 |
JP2015125119A (ja) * | 2013-12-27 | 2015-07-06 | 日本電気株式会社 | 衛星測位システム、測位端末、測位方法、及びプログラム |
CN106093967A (zh) * | 2016-08-22 | 2016-11-09 | 中国科学院上海天文台 | 一种伪距相位综合的电离层延迟求解方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2339098B (en) * | 1995-10-24 | 2000-05-31 | Inmarsat Ltd | Satellite radiodetermination |
-
2018
- 2018-07-04 JP JP2018127612A patent/JP2020008346A/ja active Pending
-
2019
- 2019-06-05 WO PCT/JP2019/022321 patent/WO2020008791A1/ja active Application Filing
-
2020
- 2020-12-29 US US17/137,161 patent/US20210116577A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004271317A (ja) * | 2003-03-07 | 2004-09-30 | Mitsubishi Electric Corp | データセンター及び移動局及び測位システム及び移動体端末 |
JP2011517771A (ja) * | 2008-03-21 | 2011-06-16 | テールズ | 電離層補正値を算出するネットワーク及び方法 |
JP2015125119A (ja) * | 2013-12-27 | 2015-07-06 | 日本電気株式会社 | 衛星測位システム、測位端末、測位方法、及びプログラム |
CN106093967A (zh) * | 2016-08-22 | 2016-11-09 | 中国科学院上海天文台 | 一种伪距相位综合的电离层延迟求解方法 |
Non-Patent Citations (1)
Title |
---|
GODHAVN, J. M. ET AL.: "Do we need to complement GPS with an INS as position reference in dynamic positioning?", ION GPS, September 2001 (2001-09-01), pages 1636 - 1662, XP056008813 * |
Also Published As
Publication number | Publication date |
---|---|
US20210116577A1 (en) | 2021-04-22 |
JP2020008346A (ja) | 2020-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8768617B2 (en) | Method and system for a data interface for aiding a satellite positioning system receiver | |
JP2018066577A (ja) | 測位処理システム、方法、コンピュータプログラム、測位処理装置及びユーザ端末 | |
JP2008039786A (ja) | ハイブリッド位置判断システムにおける誤差推定値を判断するための方法および装置 | |
JP2018520335A (ja) | 自動車用gnssリアルタイムキネマティックデッドレコニング受信機 | |
US9389317B2 (en) | Method and apparatus for determining position in a global navigation satellite system | |
JP6684821B2 (ja) | 自動車用アドホックリアルタイムキネマティックロービングネットワーク | |
CN110320536B (zh) | 卫星定位参数校准方法、装置、终端设备及存储介质 | |
US20120176270A1 (en) | Method for providing reliability of reckoning location and mobile terminal therefor | |
CN102455426A (zh) | 处理信号的方法及系统 | |
JP2013246038A (ja) | 車両用現在位置決定装置 | |
CN110632635A (zh) | 自动驾驶车辆的定位方法、装置、电子设备及可读介质 | |
US8638258B2 (en) | Method and system for a virtual wide area GNSS reference network | |
US20110199257A1 (en) | Method and system for updating altitude information for a location by using terrain model information to prime altitude sensors | |
US20190113365A1 (en) | Automatic pressure sensor output calibration for reliable altitude determination | |
WO2020008791A1 (ja) | 測位システム、測位装置およびセンタ装置 | |
JP5094589B2 (ja) | 現在位置推定装置、方法及びシステム | |
JP6878982B2 (ja) | 車載装置 | |
JP6439437B2 (ja) | Gnss測位装置 | |
JP7334503B2 (ja) | 測位方法、測位システム、および移動局 | |
KR102031838B1 (ko) | 위성항법 시스템의 보정정보를 처리하는 장치 및 방법 | |
WO2019162877A1 (en) | System for providing location corrections | |
JP2022541855A (ja) | 少なくとも1つの環境固有のgnssプロファイルを記述するモデルを求めるための方法 | |
EP3475730B1 (en) | Method, apparatus and computer-readable medium for reducing tropospheric effects in gnss positioning | |
RU2379702C1 (ru) | Способ нахождения охранного предела с компенсацией на задержки вычисления | |
CN113179480A (zh) | 用于定位车辆的方法和设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19831233 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19831233 Country of ref document: EP Kind code of ref document: A1 |