WO2020001379A1 - 用于压缩机中排气阀的阻尼装置、排气阀组件和压缩机 - Google Patents
用于压缩机中排气阀的阻尼装置、排气阀组件和压缩机 Download PDFInfo
- Publication number
- WO2020001379A1 WO2020001379A1 PCT/CN2019/092246 CN2019092246W WO2020001379A1 WO 2020001379 A1 WO2020001379 A1 WO 2020001379A1 CN 2019092246 W CN2019092246 W CN 2019092246W WO 2020001379 A1 WO2020001379 A1 WO 2020001379A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- exhaust valve
- exhaust
- cavity
- compressor
- damping device
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/02—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
- F04C18/0207—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
- F04C18/0215—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/02—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
- F04C18/0207—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
- F04C18/0246—Details concerning the involute wraps or their base, e.g. geometry
- F04C18/0253—Details concerning the base
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/008—Hermetic pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/06—Silencing
- F04C29/065—Noise dampening volumes, e.g. muffler chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/12—Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/12—Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
- F04C29/124—Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
- F04C29/126—Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2250/00—Geometry
- F04C2250/10—Geometry of the inlet or outlet
- F04C2250/102—Geometry of the inlet or outlet of the outlet
Definitions
- the present disclosure relates to the field of compressors, and in particular, to a damping device for an exhaust valve in a compressor.
- the present disclosure also relates to an exhaust valve assembly including the damping device and a compressor employing the exhaust valve assembly.
- FIG. 1 is a longitudinal sectional view of a scroll compressor provided with an exhaust valve.
- a scroll compressor (hereinafter simply referred to as a “compressor”) 100 may include a housing 110.
- the housing 110 may include a housing body 112 having a substantially cylindrical shape, a top cover 114 mounted to a top of the housing body 112, and a bottom cover 116 mounted to a bottom of the housing body 112.
- the housing 110 defines an internal volume of the scroll compressor 100.
- a partition plate 119 may also be provided in the casing 110, so that the partition plate 119 and the top cover 114 define a high-pressure region HR (the high-pressure region HR is suitable for temporarily storing high-pressure working fluid to be discharged to the outside of the compressor), and the partition plate 119 and the case body 112 and the bottom cover 116 define a low-pressure region LR.
- the scroll compressor 100 further includes a compression mechanism CM provided in the casing 110 and adapted to compress a working fluid such as a refrigerant.
- the compression mechanism CM may include a movable scroll member 150 and a fixed scroll member 160.
- the orbiting scroll member 150 may include a base plate 152; a spiral orbiting scroll 154 extending upward from the upper surface of the base plate 152; and a hub portion 156 extending downward from the lower surface of the base plate 152.
- the fixed scroll member 160 may include: a base plate 162; a spiral fixed scroll 164 extending downward from a lower surface of the base plate 162; and an exhaust gas formed at a substantially center of the base plate 162 and adapted to communicate with a discharge chamber of the compression mechanism CM A hole 166; and a recess 168 formed at a substantially center of the substrate 162, the recess 168 is located above the exhaust hole 166 and is adapted to communicate with the exhaust hole 166 and to communicate with the high-pressure region HR.
- the fixed scroll 164 may be engaged with the movable scroll 154 to define a series of crescent-shaped working fluid chambers. These cavities may include closed compression chambers that are under increasing pressure.
- FIG. 2 is a partially exploded perspective view showing an exhaust valve provided at an exhaust hole of a compression mechanism of a compressor of the related art, where the exhaust valve 190 includes a valve plate 191, valve disc 192, and limiter 193.
- 3 is a partial perspective cross-sectional view showing an exhaust valve installed at an exhaust hole of the compressor of FIG. 2.
- the pressure in the compression chamber defined between the movable scroll member 150 and the fixed scroll member 160 is lower than the pressure in the exhaust chamber (ie, the high-pressure region HR), and the pressure difference between the chambers.
- the exhaust valve in a closed state that is, the valve disc 192 covers the valve hole closing the valve plate
- the gas in the compression chamber will continue to compress until the compression chamber pressure reaches the sum of the exhaust chamber pressure and pressure loss.
- the valve disc 192 can be opened and exhausted.
- the related art provides a muffler M at the exhaust hole (as shown in FIG. 4, where FIG. 4 is a perspective view showing the muffler M according to the related art).
- noise for example, high-frequency noise
- FIG. 4 is a perspective view showing the muffler M according to the related art.
- noise for example, high-frequency noise
- a pressure drop is also caused, which adversely affects the performance of the compressor and the entire refrigeration system.
- the additional installation of the muffler will increase the number of parts, which will complicate the manufacturing process, increase the manufacturing cost, and require additional installation space for the muffler. At the same time, the reliability of the compressor will be deteriorated accordingly.
- the damping device of the present disclosure avoids the use of a muffler.
- it can significantly reduce the noise of the exhaust valve while maintaining or improving the exhaust performance of the compressor , which increases the service life of the exhaust valve and improves the reliability of compressor operation.
- the present disclosure provides a damping device for an exhaust valve in a compressor.
- the damping device includes a fixed body including an exhaust hole that fluidly communicates a compression cavity and an exhaust cavity.
- the exhaust hole includes An inlet, an outlet, and an intermediate cavity provided between the inlet and the outlet to fluidly communicate the inlet and the outlet, the intermediate cavity being configured to return gas from the exhaust cavity to the gas Vortex is generated in the intermediate cavity.
- a cross-sectional area perpendicular to the gas flow direction of the intermediate cavity is larger than a cross-sectional area perpendicular to the gas flow direction of the outlet and larger than a cross-sectional area perpendicular to the gas flow direction of the inlet.
- the cross-sectional area of the outlet that is perpendicular to the airflow flow direction is greater than the cross-sectional area of the inlet that is perpendicular to the airflow flow direction.
- connection portion between the intermediate cavity and the outlet is provided to allow a gradual transition from the intermediate cavity to the outlet.
- a maximum dimension of a section of the intermediate cavity substantially along a gas flow direction is greater than or equal to an equivalent diameter of the inlet.
- the fixed body includes a separate first half body and a second half body, the first half body includes the outlet and a first intermediate cavity, and the second half body includes the inlet and a second The intermediate cavity, wherein when the first half body and the second half body are connected, the first intermediate cavity and the second intermediate cavity cooperate to form the intermediate cavity.
- the contour of the intermediate cavity is configured as a contour formed by a curve, a line segment, or a connection between a curve and a line segment.
- the intermediate cavity is a rotating cavity with a longitudinal center axis of the exhaust hole as a rotating axis.
- the lowest point of the intermediate cavity along the longitudinal center axis of the exhaust hole extends from the exhaust cavity toward the compression cavity beyond the following plane or is flush with the following plane:
- the plane is a plane perpendicular to the direction of air flow where the contour of the intermediate cavity intersects the contour of the inlet.
- the present disclosure also provides an exhaust valve assembly including an exhaust valve and the above-mentioned damping device, and the exhaust valve further includes a valve plate provided at an outlet of an exhaust hole of the damping device. , Valve disc and limiter.
- the present disclosure also provides a compressor including the above-mentioned exhaust valve assembly.
- the compressor is a scroll compressor
- a compression mechanism of the scroll compressor includes a fixed scroll member and a movable scroll member, and a compression is defined between the fixed scroll member and the movable scroll member.
- the base plate of the fixed scroll member is formed as the fixed body of the damping device of the exhaust valve assembly, wherein an exhaust hole of the damping device is provided in the fixed scroll member Approximately the center of the substrate.
- the beneficial effect is that the gas recirculates to form a vortex in the exhaust hole, thereby generating resistance, reducing the pressure difference between the pressure of the exhaust chamber and the pressure of the compression chamber, and extending the pressure.
- the valve closing time reduces the impact of the valve disc and the valve plate of the exhaust valve to reduce noise; reducing the impact force and frequency of the valve plate can significantly increase the life of the valve plate and further improve the reliability of the compressor; avoid Eliminates the use of prior art silencers M, reduces the weight of the casting and reduces costs
- FIG. 1 is a longitudinal sectional view showing a related art compressor provided with an exhaust valve.
- Fig. 2 is a partially exploded perspective view showing that an exhaust valve is provided at an exhaust hole of a fixed scroll part of the compressor in Fig. 1, wherein the exhaust valve includes a valve plate, a valve plate, and a stopper.
- FIG 3 is a partial perspective cross-sectional view showing a related art after an exhaust valve is installed at an exhaust hole of a fixed scroll member of a compressor.
- FIG. 4 is a perspective view showing a muffler for an exhaust valve of the related art.
- FIG. 5 is a cross-sectional view illustrating a damping device for an exhaust valve according to an embodiment of the present disclosure, wherein the damping device includes an exhaust hole having an inlet, an outlet, and an intermediate cavity.
- FIG. 6 is a perspective sectional view showing a damping device for an exhaust valve according to an embodiment of the present disclosure, wherein the damping device includes an exhaust hole having an inlet, an outlet, and an intermediate cavity.
- FIG. 7 is a schematic diagram showing the cross-sectional areas of the respective contours of the inlet, outlet, and intermediate cavity of the exhaust hole in FIG. 5 as viewed from the gas return direction from the exhaust cavity. Dotted lines.
- FIG. 8 is a perspective cross-sectional view illustrating an exhaust valve assembly including the damping device of FIG. 5 according to the present disclosure.
- FIG. 9 is a cross-sectional view illustrating a damping device for an exhaust valve according to another embodiment of the present disclosure, wherein the damping device is a split structure.
- FIG. 10 is a streamline diagram showing the formation of a vortex in an exhaust hole using a damping device according to the present disclosure.
- FIG. 11 is a streamline diagram showing an air flow in a vent hole of the related art.
- the compressors referred to in the embodiments in the drawings are scroll compressors, however, it should be understood that the present disclosure is not limited to scroll compressors, but can be applied to any suitable type of compressor.
- the compression mechanism of a scroll compressor includes a fixed scroll component and a movable scroll component (not shown).
- a compression cavity C is defined between the fixed scroll component and the movable scroll component, and the compression cavity C passes through the exhaust hole and the exhaust cavity.
- D is in fluid communication, wherein the gas is compressed in the compression chamber C and then discharged into the exhaust chamber D through the exhaust hole.
- the fixed scroll member of the compression mechanism of the scroll compressor includes a substrate forming the fixed body 10 and a spiral fixed scroll extending downward from the lower surface of the substrate.
- the fixed body 10 of the substrate is substantially disk-shaped, and an exhaust hole adapted to communicate with the discharge chamber of the compression mechanism is provided at a substantially center of the fixed body 10.
- the exhaust hole includes an inlet 13, an outlet 12, and an intermediate cavity 11 disposed between the inlet 13 and the outlet 12 to fluidly communicate the inlet 13 and the outlet 12.
- the pressure in the compression chamber C is smaller than the sum of the pressure in the exhaust chamber D and the pressure loss.
- the gas recirculation occurs, the gas recirculation from the exhaust chamber D generates a substantially vortex V in the intermediate cavity 11 (as shown in FIG. 10). Because the gas backflow forms a strong vortex in the middle cavity of the exhaust hole, it consumes a lot of energy, reduces the pressure difference between the pressure of the exhaust cavity and the pressure of the compression cavity, prolongs the valve closing time, and weakens the valve plate and valve of the exhaust valve.
- the impact of the plate can achieve the purpose of noise reduction; reducing the impact force and frequency of the valve plate can significantly improve the life of the valve plate, and further improve the reliability of the compressor; at the same time, avoid the muffler M of the prior art (as shown in Figure 3) (Shown), reduce the weight of the casting and reduce costs.
- the fixed scroll member can be used as a damping device for an exhaust valve of a scroll compressor, wherein the base plate of the fixed scroll member forms a fixed body of the damping device.
- the exhaust hole structure of the fixed body of the damping device can be applied to the fixed compression member of the compression structure of any type of compressor provided with an exhaust valve.
- the cross-sectional area A1 of the intermediate cavity 11 that is perpendicular to the gas flow direction F (shown in the drawing generally along the longitudinal direction of the exhaust hole) is larger than the outlet 12 that is perpendicular to the gas flow direction F
- the cross-sectional area A2 of the inlet 13 is greater than the cross-sectional area A3 of the inlet 13 that is perpendicular to the gas flow direction F, and the cross-section of the fixed body 10 in the gas flow direction F can be configured as a curve or a line segment. Or a contour formed by connecting a curve with a line segment.
- the cross-sectional area A1 of the intermediate cavity 11 may be smaller than the cross-sectional area A2 of the outlet 12.
- the contour of the intermediate cavity 11 may be any shape suitable for causing the gas to flow back to generate a vortex, such as a funnel shape, a tapered groove, or the like.
- the P region represents an intermediate pressure region in the exhaust hole
- the configuration of the exhaust hole (particularly, the middle chamber) of the damping device (ie, the base plate of the fixed scroll member) according to the present disclosure may be Significantly increase the area of the medium pressure zone to improve the gas flow distribution, thereby reducing the pressure difference between the valve and the valve, and thus reducing the noise caused by flapping the valve.
- a vortex V is generated in the intermediate cavity (radially outward).
- the embodiment according to the present disclosure can reduce the pressure drop of the exhaust chamber and the compression chamber by about 35% compared with the related art.
- the newly designed pressure drop according to the embodiment of the present disclosure only increases the pressure drop by 5% compared to the conventional design. That is, using the damping device of the present disclosure can significantly reduce the pressure difference between the pressure of the exhaust chamber and the pressure of the compression chamber while maintaining the exhaust performance of the exhaust valve, thereby reducing the noise caused by the impact of the valve disc.
- the intermediate cavity 11 may be a rotating cavity (imaginary rotating forming cavity) with respect to a substantially longitudinal center axis L of the exhaust hole to facilitate processing.
- the expressions related to the terms "high”, “low”, or “height” are defined along the longitudinal axis of the exhaust hole as the height direction, where the exhaust cavity is along the longitudinal direction
- the direction of the axis toward the compression chamber is from high to low.
- the lowest point of the intermediate cavity 11 along the longitudinal center axis L of the exhaust hole from the exhaust cavity D toward the compression cavity C extends beyond the plane or is flush with the following plane:
- the plane Y where the contour of the intermediate cavity 11 and the contour of the inlet 13 intersect is perpendicular to the flow direction F of the air flow. This makes it easier to form eddy current resistance at the lowest point of the middle cavity to reduce the impact of the valve disc and further reduce noise. At the same time, this can avoid the phenomenon that the exhaust performance is reduced due to the existence of the central cavity's upturn in the exhaust direction, which causes the exhaust resistance to increase during exhaust, thereby ensuring that the exhaust performance is not affected.
- the maximum dimension T in the cross section of the intermediate cavity 11 along the gas flow direction F may be larger than the equivalent diameter d of the inlet 13 to ensure that the intermediate cavity 11 has sufficient space to generate eddy currents.
- the cross-sectional area A2 of the outlet 12 of the exhaust hole perpendicular to the airflow direction F is larger than the cross-sectional area A3 of the inlet 13 perpendicular to the airflow direction F, so that there is Facilitates exhaust from the inlet 13 through the central cavity 11 to the outlet 12, thereby improving exhaust performance.
- the connection portion 14 between the intermediate cavity 11 and the outlet 12 may be provided to allow a gradual transition from the intermediate cavity 11 to the outlet 12, for example, the profile of the cross section of the connection portion along the gas flow direction F does not have an acute angle transition, The gradual transition may be a curved transition or a stepped transition to further improve exhaust performance.
- the fixed body 10 of the fixed scroll component includes a separated first half body 10 a and a second half body 10 b, and a first half body 10 a and a second half body 10 b. It can be coupled, for example, by means of a screw connection.
- the first half body 10a includes an outlet 12 and a first intermediate cavity 11a
- the second half body 10b includes an inlet 13 and a second intermediate cavity 11b.
- the first An intermediate cavity 11 a and a second intermediate cavity 11 b cooperate to form the intermediate cavity 11.
- the split design of the fixed scroll component facilitates mold splitting and processing, such as the use of CNC machine tools to process the intermediate cavity.
- the exhaust valve assembly includes the above-mentioned damping device, that is, a fixed scroll member, and an exhaust valve.
- the exhaust valve further includes a valve plate 15, a valve disc 16, and a stopper 17 disposed at an outlet 12 of an exhaust hole of the damping device.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Rotary Pumps (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
一种用于压缩机中排气阀的阻尼装置以及包括该阻尼装置的排气阀组件和采用该排气阀组件的压缩机,该阻尼装置包括固定本体(10),固定本体(10)包括将压缩腔(C)和排气腔(D)流体连通的排气孔,排气孔包括入口(13)、出口(12)以及设置在入口(13)和出口(12)之间将入口(13)和出口(12)流体连通的中间腔体(11),中间腔体(11)构造成使来自排气腔(D)的气体回流在中间腔体(11)内产生涡流(V)。该阻尼装置具有减小排气阀片撞击力和频率,提高阀片寿命的优点。
Description
本公开要求于2018年6月29日提交中国专利局、申请号为201810700723.0、名称为“用于压缩机中排气阀的阻尼装置、排气阀组件和压缩机”的中国专利申请的优先权,并且要求于2018年6月29日提交中国专利局、申请号为201821023368.X、名称为“用于压缩机中排气阀的阻尼装置、排气阀组件和压缩机”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
本公开涉及压缩机领域,特别地,涉及一种用于压缩机中排气阀的阻尼装置。本公开还涉及一种包括该阻尼装置的排气阀组件和采用该排气阀组件的压缩机。
本部分提供与本公开相关的背景技术信息,这些信息并不一定构成本公开的现有技术。
通常市场需要压缩机在较大温度范围内保持高效率运行,为了应对压缩机压比多样性的需求,动态的排气阀(HVE)就得到了很大的应用,其中,该动态排气阀是一种包括阀片(运动件)和阀板(止推件)的单向流通阀,处于正向时,流体介质冲击力的大小决定阀的开度,处于反向时,阀关闭以禁止流通。例如,以相关技术的包括排气阀的涡旋压缩机进行说明,参照图1,图1是设置有排气阀的涡旋压缩机的纵向剖视图。涡旋压缩机(下文中简称为“压缩机”)100可以包括壳体110。壳体110可以包括呈大致筒状的壳体本体112、安装至壳体本体112的顶部的顶盖114以及安装至壳体本体112的底部的底盖116。壳体110限定涡旋压缩机100的内部容积。另外,在壳体110内还可以设置有隔板119,使得隔板119与顶盖114限定高压区HR(高压区HR适于临时储存待排出至压缩机外部的高压工作流体),而隔板119与壳体本体112和底盖116限定低压区LR。
涡旋压缩机100还包括设置在壳体110内且适于压缩工作流体(比如制冷剂)的压缩机构CM。压缩机构CM可以包括动涡旋部件150和定涡旋部件160。
动涡旋部件150可以包括:基板152;从基板152的上表面向上延伸的螺 旋状动涡卷154;以及从基板152的下表面向下延伸的毂部156。
定涡旋部件160可以包括:基板162;从基板162的下表面向下延伸的螺旋状定涡卷164;形成于基板162的大致中心处的适于与压缩机构CM的排出室连通的排气孔166;以及形成于基板162的大致中心处的凹部168,凹部168位于排气孔166上方并且适于与排气孔166连通以及适于与高压区HR连通。
定涡卷164可以与动涡卷154接合,从而限定出一系列月牙形工作流体腔。这些腔体可以包括:已封闭的正在进行压缩的压力增大的压缩腔。
其中,在定涡旋部件160的凹部168中可以设置有排出阀(比如HVE阀)190,以便控制压缩机构CM的排气。具体地,参见图2至图3,其中,图2是示出了相关技术的压缩机的压缩机构的排气孔处设置有排气阀的部分分解立体图,其中,排气阀190包括阀板191、阀片192和限位器193。图3是示出了图2的压缩机的排气孔处安装排气阀后的部分立体剖视图。在压缩机的压缩机构运行初期,动涡旋部件150与定涡旋部件160之间限定的压缩腔中的压力低于排气腔(即,高压区HR)的压力,腔之间的压差使得排气阀处于关闭状态(即,阀片192覆盖封闭阀板的阀孔),接着,压缩腔内的气体将继续压缩,直至压缩腔压力达到排气腔压力与压力损失之和时,才能够使阀片192打开排气。随着压缩机构继续排气,压缩腔压力小于排气腔压力与压力损失之和时,这时会产生气体回流,回流气体拍击排气阀的阀片192,致使排气阀关闭(即,阀片192再次覆盖封闭阀板191的阀孔)。然而,在气体回流期间,由于没有任何的缓冲区,在气体回流拍击阀片以及阀片192本身的回弹力的作用下,阀片192撞击阀板191的速度很大,这将会产生很大的撞击噪声,同时也会降低排气阀的寿命。经过实验证明,安装有排气阀的压缩机与没有安装排气阀的压缩机相比,噪声提高了至少5至10分贝。并且由于压缩机的排气、回流、排气是不断循环的,导致持续不断地产生噪声。
为了抑制这种噪声,相关技术在排气孔处设置消音器M(如图4所示,其中图4是示出根据相关技术的消音器M的立体图)。然而,在采用消音器M的情况下,一般仅仅能够抑制整个频率带中的部分频率范围内的噪声(例如高频率噪声)。而且,由于消音器的设置,还会引起压力降从而不利地影响压缩机和整个制冷系统的性能。另外,额外地设置消音器会由于增加部件数量而使 制造工艺复杂、制造成本增大并且需要用于消音器的额外安装空间,同时也会相应地劣化压缩机的工作可靠性。
发明内容
本公开所解决的技术问题
本公开的阻尼装置避免了消音器的使用,特别地,在使用的排气阀的欠压缩的压缩机中,在维持或改进压缩机的排气性能的同时能够显著地降低排气阀的噪音,提高了排气阀的使用寿命,改善压缩机运行的可靠性。
技术方案
本公开提供一种用于压缩机中排气阀的阻尼装置,所述阻尼装置包括固定本体,所述固定本体包括将压缩腔和排气腔流体连通的排气孔,所述排气孔包括入口、出口以及设置在所述入口和所述出口之间将所述入口和所述出口流体连通的中间腔体,所述中间腔体构造成使来自所述排气腔的气体回流在所述中间腔体内产生涡流。
优选地,所述中间腔体的垂直于气体流动方向的截面积大于所述出口的垂直于气体流动方向的截面积并且大于所述入口的垂直于气体流动方向的截面积。
更优选地,所述出口的垂直于气流流动方向的所述截面积大于所述入口的垂直于气流流动方向的所述截面积。
优选地,所述中间腔体与所述出口之间的连接部设置为允许所述中间腔体至所述出口的渐进过渡。
优选地,所述中间腔体的大致沿气体流动方向的截面上的最大尺寸大于等于所述入口的当量直径。
优选地,所述固定本体包括分离的第一半本体和第二半本体,所述第一半本体包括所述出口和第一中间腔体,所述第二半本体包括所述入口和第二中间腔体,其中,在第一半本体与第二半本体连接时,所述第一中间腔体和所述第二中间腔体配合形成所述中间腔体。
优选地,从所述固定本体的沿气体流动方向的截面看,所述中间腔体的轮 廓构造为由曲线、由线段或者由曲线和线段连接形成的轮廓。
优选地,所述中间腔体是以所述排气孔的纵向中心轴线作为回转轴线的回转腔体。
优选地,所述中间腔体的沿所述排气孔的纵向中心轴线从所述排气腔朝向所述压缩腔的方向的最低点延伸超出下述平面或者与下述平面齐平:所述平面为所述中间腔体的轮廓与所述入口的轮廓相交处的垂直于气流流动方向的平面。
本公开还提供一种排气阀组件,所述排气阀组件包括排气阀和上述的阻尼装置,所述排气阀还包括设置在所述阻尼装置的排气孔的出口处的阀板、阀片和限位器。
本公开还提供一种压缩机,所述压缩机包括上述排气阀组件。
优选地,所述压缩机为涡旋压缩机,所述涡旋压缩机的压缩机构包括定涡旋部件和动涡旋部件,所述定涡旋部件与所述动涡旋部件之间限定压缩腔,所述定涡旋部件的基板形成为所述排气阀组件的所述阻尼装置的所述固定本体,其中,所述阻尼装置的排气孔设置在所述定涡旋部件的所述基板的大致径向中心处。
技术效果
根据本公开提供的用于排气阀的阻尼装置,其有益效果在于:使得气体回流在排气孔内形成涡流,进而产生阻力,降低排气腔压力与压缩腔压力之间的压差、延长阀关闭时间、减弱排气阀的阀片与阀板的撞击,从而达到降噪的目的;减小阀片的撞击力和频率可以显著提高阀片的寿命,进一步改善压缩机的可靠性;避免了现有技术消音器M的使用,减少铸件的重量并且减少了成本
通过以下参照附图提供的具体实施方式部分,将更加容易地理解本公开的特征和优点,在附图中:
图1是示出了相关技术的设置有排气阀的压缩机的纵向剖视图。
图2是示出了图1的在压缩机的定涡旋部件的排气孔处设置排气阀的部分 分解立体图,其中,排气阀包括阀片、阀板和限位器。
图3是示出了相关技术的在压缩机的定涡旋部件的排气孔处安装排气阀后的部分立体剖视图。
图4是示出了相关技术的用于排气阀的消音器的立体图。
图5是示出了根据本公开的一个实施方式的用于排气阀的阻尼装置的剖面图,其中,该阻尼装置包括具有入口、出口和中间腔体的排气孔。
图6是示出根据本公开的一个实施方式的用于排气阀的阻尼装置的立体剖视图,其中,该阻尼装置包括具有入口、出口和中间腔体的排气孔。
图7是示出了从来自于排气腔的气体回流方向看图5中的排气孔的入口、出口和中间腔体的各自轮廓的截面积的示意图,其中中间腔体的截面积轮廓以虚线表示。
图8是示出了包括根据本公开的图5的阻尼装置的排气阀组件的立体剖视图。
图9是示出了根据本公开的根据本公开的另一个实施方式的用于排气阀的阻尼装置的剖面图,其中,该阻尼装置为分体式结构。
图10是示出了使用了根据本公开的阻尼装置在排气孔中形成涡流的流线图。
图11是示出了现有技术的排气孔中气流的流线图。
下面对优选实施方式的描述仅仅是示范性的,而绝不是对本公开及其应用或用法的限制。
接下来结合图5至图9对本公开的一种实施方式的用于排气阀的阻尼装置进行描述。
附图中的实施方式中所涉及的压缩机为涡旋压缩机,然而,应理解的是,本公开不局限于涡旋压缩机,而是可以应用于任何合适类型的压缩机。涡旋压缩机的压缩机构包括定涡旋部件和动涡旋部件(未示出),定涡旋部件与动涡旋部件之间限定压缩腔C,压缩腔C通过排气孔与排气腔D流体连通,其中,气体在压缩腔C中进行压缩并且然后通过排气孔排出到排气腔D中。
如图5和图6所示,涡旋压缩机的压缩机构的定涡旋部件包括:形成固定本体10的基板,以及从基板的下表面向下延伸的螺旋状定涡卷。其中,基板的固定本体10大致呈盘状,在固定本体10的大致中心处设置有适于与压缩机构的排出室连通的排气孔。该排气孔包括入口13、出口12以及设置在入口13与出口12之间将入口13和出口12流体连通的中间腔体11。在定涡旋部件的基板的排气孔处安装排气阀以控制压缩机构排气的情况下,并且随着压缩机构排气使得压缩腔C压力小于排气腔D压力与压力损失之和而产生气体回流时,来自排气腔D的气体回流在中间腔体11内产生大致涡流V(如图10所示)。由于气体回流在排气孔的中间腔体内形成强烈涡流,额外消耗了大量能量,降低排气腔压力与压缩腔压力之间的压差、延长阀关闭时间、减弱排气阀的阀片与阀板的撞击,从而达到降噪的目的;减小阀片的撞击力和频率可以显著提高阀片的寿命,进一步改善压缩机的可靠性;同时避免了现有技术消音器M(如图3所示)的使用,减少铸件的重量并且减少了成本。
也就是说,定涡旋部件可以作为用于涡旋压缩机的排气阀的阻尼装置,其中定涡旋部件的基板形成阻尼装置的固定本体。本领域的技术人员应当理解的是,该阻尼装置(定涡旋部件)的固定本体的排气孔构造可以应用于设置有排气阀的任何类型的压缩机的压缩结构的固定压缩部件。
具体地,如图7所示,中间腔体11的垂直于气体流动方向F(附图中示出为大致沿排气孔的纵向方向)的截面积A1大于出口12的垂直于气体流动方向F的截面积A2并且大于入口13的垂直于气体流动方向F的截面积A3,并且其中,从固定本体10的沿气体流动方向F的截面看,中间腔体11的轮廓可以构造为由曲线、线段或曲线与线段连接形成的轮廓。本领域的技术人员可以理解的是,在实施方式的其他方面中,中间腔体11的截面积A1也可以小于出口12的截面积A2。此外,中间腔体11的轮廓可以是适于使气体回流产生涡流的任意形状,例如,漏斗状、锥形槽等。
参见图10和图11,P区域表示排气孔中的中压区,根据本公开的阻尼装置(即,定涡旋部件的基板)的排气孔(特别地,中间腔室)的构造可以显著增大中压区的面积以改善气体流动分布,从而减小阀片上下压差进而减少由于拍击阀片引起的噪声。并且,如图10所示,在中间腔体(径向外部)产生涡 流V。此外,根据相关实验证明,在压缩机的气体回流过程中,根据本公开的实施方式可以使得排气腔与压缩腔的压降与相关技术相比减少大约35%。同时,在压缩机的正常排气过程中,根据本公开的实施方式的新设计的压降较传统设计仅仅增加了5%的压降。也就是说,使用本公开的阻尼装置在维持排气阀的排气性能的同时能够显著地降低排气腔压力与压缩腔压力之间的压差进而减少由于阀片撞击导致的噪声。
仍然参见图5,有利地,中间腔体11可以是相对于排气孔的大致纵向中心轴线L的回转腔体(假想回转成形腔体)以便于加工。
此外,在本申请中,为了方便描述,涉及术语“高”、“低”或“高度”的表述,沿排气孔的纵向轴线的方向定义为高度方向,其中,从排气腔沿该纵向轴线朝向压缩腔的方向为从高到低的方向。如图5所示,该中间腔体11的沿排气孔的纵向中心轴线L从排气腔D朝向压缩腔C的方向的最低点延伸超出下述平面或者与下述平面齐平:该平面为中间腔体11的轮廓与入口13的轮廓相交处的垂直于气流流动方向F的平面Y。这样使得在中间腔体的最低点处更加容易形成涡流阻力以减弱阀片的撞击而进一步减少噪音。同时这样可以避免由于中央腔体的轮廓沿排气方向上翘存在的使得在排气时排气阻力变大而导致降低排气性能的现象,从而确保排气性能不受影响。
并且,中间腔体11的沿气体流动方向F的截面上的最大尺寸T可以大于入口13的当量直径d,以确保中间腔体11具有足够的空间产生涡流。
根据本公开的一个实施方式的一个方面,参见图7,排气孔的出口12的垂直于气流流动方向F的截面积A2大于入口13的垂直于气流流动方向F的截面积A3,这样使得有利于从入口13通过中央腔体11至出口12的排气,从而改善排气性能。有利地,中间腔体11与出口12之间的连接部14可以设置为允许中间腔体11至出口12的渐进过渡,例如,连接部的沿气体流动方向F的截面的轮廓不存在锐角过渡,该渐进过渡可以是弧形过渡或者阶梯式过渡,以进一步改善排气性能。
根据本公开的一个实施方式的另一方面,参见图9,定涡旋部件的固定本体10包括分离的第一半本体10a和第二半本体10b,第一半本体10a和第二半本体10b可以以例如螺纹连接的方式联接。第一半本体10a包括出口12和 第一中间腔体11a,第二半本体10b包括入口13和第二中间腔体11b,其中,在第一半本体10a与第二半本体10b连接时,第一中间腔体11a和第二中间腔体11b配合形成中间腔体11。与整体式设计对铸件分模和机加工等工艺要求高相比,定涡旋部件的分体式设计方便分模和加工例如采用数控机床等对中间腔体加工。
根据本公开的另一个实施方式提供了一种排气阀阀组件,参见图8,该排气阀组件包括上述的阻尼装置,即,定涡旋部件,以及排气阀。其中,该排气阀还包括设置在阻尼装置的排气孔的出口12处的阀板15、阀片16和限位器17。
尽管在此已详细描述本公开的实施方式的各个方面,但是应该理解本公开并不局限于这里详细描述和示出的具体实施方式,在不偏离本公开的实质和范围的情况下可由本领域的技术人员实现其它的变型和变体。所有这些变型和变体都落入本公开的范围内。而且,所有在此描述的构件都可以由其他技术性上等同的构件来代替。
Claims (12)
- 一种用于压缩机中排气阀的阻尼装置,其特征在于,所述阻尼装置包括固定本体(10),所述固定本体(10)包括将压缩腔(C)和排气腔(D)流体连通的排气孔,所述排气孔包括入口(13)、出口(12)以及设置在所述入口(13)和所述出口(12)之间将所述入口(13)和所述出口(12)流体连通的中间腔体(11),所述中间腔体(11)构造成使来自所述排气腔(D)的气体回流在所述中间腔体(11)内产生涡流(V)。
- 根据权利要求1所述的用于压缩机中排气阀的阻尼装置,其中,所述中间腔体(11)的垂直于气体流动方向(F)的截面积(A1)大于所述出口(12)的垂直于气体流动方向(F)的截面积(A2)并且大于所述入口(13)的垂直于气体流动方向(F)的截面积(A3)。
- 根据权利要求2所述的用于压缩机中排气阀的阻尼装置,其中,所述出口(12)的所述截面积(A2)大于所述入口(13)的所述截面积(A3)。
- 根据权利要求1至3中任一项所述的用于压缩机中排气阀的阻尼装置,其中,所述中间腔体(11)与所述出口(12)之间的连接部(14)设置为允许所述中间腔体(11)至所述出口(12)的渐进过渡。
- 根据权利要求1至3中任一项所述的用于压缩机中排气阀的阻尼装置,其中,所述中间腔体(11)的大致沿气体流动方向(F)的截面上的最大尺寸(T)大于等于所述入口(13)的当量直径(d)。
- 根据权利要求1至3中任一项所述的用于压缩机中排气阀的阻尼装置,其中,所述固定本体(10)包括分离的第一半本体(10a)和第二半本体(10b),所述第一半本体(10a)包括所述出口(12)和第一中间腔体(11a),所述第二半本体(10b)包括所述入口(13)和第二中间腔体(11b),其中,在所述第一半本体(10a)与所述第二半本体(10b)连接时,所述第一中间腔体(11a) 和所述第二中间腔体(11b)配合形成所述中间腔体(11)。
- 根据权利要求1至3中任一项所述的用于压缩机中排气阀的阻尼装置,其中,从所述固定本体(10)的沿气体流动方向(F)的截面看,所述中间腔体(11)的轮廓构造为由曲线、由线段或者由曲线和线段连接形成的轮廓。
- 根据权利要求1至3中任一项所述的用于压缩机中排气阀的阻尼装置,其中,所述中间腔体(11)是以所述排气孔的纵向中心轴线(L)作为回转轴线的回转腔体。
- 根据权利要求1至3中任一项所述的用于压缩机中排气阀的阻尼装置,其中,所述中间腔体的沿所述排气孔的纵向中心轴线(L)从所述排气腔朝向所述压缩腔的方向的最低点延伸超出下述平面或者与下述平面齐平:所述平面为所述中间腔体(11)的轮廓与所述入口(13)的轮廓相交处的垂直于气流流动方向(F)的平面(Y)。
- 一种排气阀组件,其特征在于,所述排气阀组件包括排气阀和根据权利要求1至9中的任一项所述的阻尼装置,所述排气阀包括设置在所述阻尼装置的排气孔的出口(12)处的阀板(15)、阀片(16)和限位器(17)。
- 一种压缩机,其特征在于,所述压缩机包括根据权利要求10所述的排气阀组件。
- 根据权利要求11所述的压缩机,所述压缩机为涡旋压缩机,所述涡旋压缩机的压缩机构包括定涡旋部件和动涡旋部件,所述定涡旋部件与所述动涡旋部件之间限定所述压缩腔,所述定涡旋部件的基板形成为所述排气阀组件的所述阻尼装置的所述固定本体,其中,所述阻尼装置的排气孔设置在所述定涡旋部件的所述基板的大致径向中心处。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/256,905 US11493040B2 (en) | 2018-06-29 | 2019-06-21 | Damping apparatus for exhaust valve in compressor, exhaust valve assembly, and compressor |
EP19826326.1A EP3816450B8 (en) | 2018-06-29 | 2019-06-21 | Damping apparatus for exhaust valve in compressor, exhaust valve assembly, and compressor |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810700723.0A CN110657097B (zh) | 2018-06-29 | 2018-06-29 | 用于压缩机中排气阀的阻尼装置、排气阀组件和压缩机 |
CN201821023368.XU CN208416954U (zh) | 2018-06-29 | 2018-06-29 | 用于压缩机中排气阀的阻尼装置、排气阀组件和压缩机 |
CN201810700723.0 | 2018-06-29 | ||
CN201821023368.X | 2018-06-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020001379A1 true WO2020001379A1 (zh) | 2020-01-02 |
Family
ID=68985770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/092246 WO2020001379A1 (zh) | 2018-06-29 | 2019-06-21 | 用于压缩机中排气阀的阻尼装置、排气阀组件和压缩机 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11493040B2 (zh) |
EP (1) | EP3816450B8 (zh) |
WO (1) | WO2020001379A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115450909A (zh) * | 2022-10-11 | 2022-12-09 | 珠海格力电器股份有限公司 | 泵体组件和涡旋压缩机 |
US11965507B1 (en) | 2022-12-15 | 2024-04-23 | Copeland Lp | Compressor and valve assembly |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1566704A (zh) * | 2003-06-17 | 2005-01-19 | 乐金电子(天津)电器有限公司 | 涡旋式压缩机的噪音降低装置 |
CN1880773A (zh) * | 2005-06-13 | 2006-12-20 | 乐金电子(天津)电器有限公司 | 涡旋式压缩机的防逆流装置 |
JP2011017292A (ja) * | 2009-07-09 | 2011-01-27 | Daikin Industries Ltd | スクロール圧縮機 |
CN101983288A (zh) * | 2008-04-04 | 2011-03-02 | Lg电子株式会社 | 涡旋式压缩机 |
CN202520563U (zh) * | 2012-02-29 | 2012-11-07 | 安徽美芝压缩机有限公司 | 一种涡旋压缩机用消音器 |
CN103867435A (zh) * | 2014-02-24 | 2014-06-18 | 苏州英华特涡旋技术有限公司 | 新式降噪型涡旋压缩机 |
CN105190041A (zh) * | 2013-06-27 | 2015-12-23 | 三菱重工业株式会社 | 涡旋式压缩机 |
CN208416954U (zh) * | 2018-06-29 | 2019-01-22 | 艾默生环境优化技术(苏州)有限公司 | 用于压缩机中排气阀的阻尼装置、排气阀组件和压缩机 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08319963A (ja) * | 1995-03-22 | 1996-12-03 | Mitsubishi Electric Corp | スクロール圧縮機 |
US6139291A (en) * | 1999-03-23 | 2000-10-31 | Copeland Corporation | Scroll machine with discharge valve |
JP6147605B2 (ja) * | 2013-08-02 | 2017-06-14 | 三菱重工業株式会社 | 圧縮機 |
-
2019
- 2019-06-21 WO PCT/CN2019/092246 patent/WO2020001379A1/zh unknown
- 2019-06-21 US US17/256,905 patent/US11493040B2/en active Active
- 2019-06-21 EP EP19826326.1A patent/EP3816450B8/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1566704A (zh) * | 2003-06-17 | 2005-01-19 | 乐金电子(天津)电器有限公司 | 涡旋式压缩机的噪音降低装置 |
CN1880773A (zh) * | 2005-06-13 | 2006-12-20 | 乐金电子(天津)电器有限公司 | 涡旋式压缩机的防逆流装置 |
CN101983288A (zh) * | 2008-04-04 | 2011-03-02 | Lg电子株式会社 | 涡旋式压缩机 |
JP2011017292A (ja) * | 2009-07-09 | 2011-01-27 | Daikin Industries Ltd | スクロール圧縮機 |
CN202520563U (zh) * | 2012-02-29 | 2012-11-07 | 安徽美芝压缩机有限公司 | 一种涡旋压缩机用消音器 |
CN105190041A (zh) * | 2013-06-27 | 2015-12-23 | 三菱重工业株式会社 | 涡旋式压缩机 |
CN103867435A (zh) * | 2014-02-24 | 2014-06-18 | 苏州英华特涡旋技术有限公司 | 新式降噪型涡旋压缩机 |
CN208416954U (zh) * | 2018-06-29 | 2019-01-22 | 艾默生环境优化技术(苏州)有限公司 | 用于压缩机中排气阀的阻尼装置、排气阀组件和压缩机 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3816450A4 |
Also Published As
Publication number | Publication date |
---|---|
US11493040B2 (en) | 2022-11-08 |
EP3816450B1 (en) | 2024-01-24 |
EP3816450A4 (en) | 2022-04-13 |
EP3816450B8 (en) | 2024-02-28 |
EP3816450A1 (en) | 2021-05-05 |
US20210277896A1 (en) | 2021-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016119456A1 (zh) | 滑片式压缩机及其排气结构 | |
WO2020001379A1 (zh) | 用于压缩机中排气阀的阻尼装置、排气阀组件和压缩机 | |
CN110360111A (zh) | 气缸、泵体组件、压缩机和空调器 | |
JP4218373B2 (ja) | 圧縮機 | |
CN104912795B (zh) | 变容量涡旋压缩机 | |
WO2022016934A1 (zh) | 压缩机和空调器 | |
CN110657097B (zh) | 用于压缩机中排气阀的阻尼装置、排气阀组件和压缩机 | |
CN208416954U (zh) | 用于压缩机中排气阀的阻尼装置、排气阀组件和压缩机 | |
JP2004503715A (ja) | 密閉型コンプレッサ用バルブ装置 | |
US6390792B1 (en) | Venting passage for isolation block of scroll compressor and check valve for the same | |
CN210829717U (zh) | 气缸、泵体组件、压缩机和空调器 | |
CN111963431A (zh) | 一种压缩机和空调器 | |
CN209100281U (zh) | 泵体结构、压缩机及换热设备 | |
CN112594424B (zh) | 排气结构、压缩机及空调器 | |
CN215521262U (zh) | 压缩机、固定装置及空调器 | |
CN111005874A (zh) | 消音结构、压缩机、空调器 | |
CN209908769U (zh) | 一种转子式压缩机的降噪型气缸盖 | |
CN112483396A (zh) | 压缩机泵体及压缩机 | |
JP2013092051A (ja) | 気体圧縮機 | |
CN108050072B (zh) | 一种压缩机消声组件、压缩机和空调器 | |
JP2003155985A (ja) | 気体圧縮機 | |
CN109209894A (zh) | 泵体结构、压缩机及换热设备 | |
CN214742064U (zh) | 压缩机泵体及压缩机 | |
CN217735751U (zh) | 压缩机和具有它的温度调节装置 | |
CN114183369B (zh) | 一种压缩机的排气结构和压缩机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19826326 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019826326 Country of ref document: EP Effective date: 20210129 |