[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020098288A1 - 一种超快冷工艺生产q690d厚板及制造方法 - Google Patents

一种超快冷工艺生产q690d厚板及制造方法 Download PDF

Info

Publication number
WO2020098288A1
WO2020098288A1 PCT/CN2019/093665 CN2019093665W WO2020098288A1 WO 2020098288 A1 WO2020098288 A1 WO 2020098288A1 CN 2019093665 W CN2019093665 W CN 2019093665W WO 2020098288 A1 WO2020098288 A1 WO 2020098288A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultra
fast cooling
cooling process
thick plate
rolling
Prior art date
Application number
PCT/CN2019/093665
Other languages
English (en)
French (fr)
Inventor
姜在伟
张清辉
闫强军
侯中华
姜辉
张仪杰
Original Assignee
南京钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京钢铁股份有限公司 filed Critical 南京钢铁股份有限公司
Priority to AU2019381076A priority Critical patent/AU2019381076B2/en
Publication of WO2020098288A1 publication Critical patent/WO2020098288A1/zh
Priority to ZA2021/03240A priority patent/ZA202103240B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese

Definitions

  • the invention relates to the technical field of metallurgy, in particular to an ultra-fast cooling process for producing Q690D thick plates and a manufacturing method.
  • the present invention provides an ultra-fast cooling process for producing Q690D thick plates. Its chemical composition and mass percentage are as follows: C: 0.05% to 0.10%, Si: 0.20% to 0.50%, Mn: 1.40% to 1.80 %, P ⁇ 0.020%, S ⁇ 0.003%, Cr: 0.10% to 0.50%, Mo: 0.018% to 0.30%, Ti: 0.008% to 0.030%, Nb: 0.015% to 0.050%, B: 0.0008% to 0.0025 %, Ceq ⁇ 0.43, and the rest are Fe and inevitable impurities.
  • the present invention adopts a low-carbon and alloyed composition design, and through the cooperation of carbon, manganese, chromium, molybdenum and other alloy elements and niobium, titanium, vanadium and other micro-alloy elements, provides a high-strength steel Q690D thick plate
  • the production process is simple, the production rhythm is fast, and the cost is low.
  • the chemical composition and mass percentage of the Q690D thick plate produced by an ultra-fast cooling process as described above are as follows: C: 0.07%, Si: 0.27%, Mn: 1.55%, P: 0.017%, S: 0.0015%, Cr: 0.20%, Mo: 0.11%, Ti: 0.015%, Nb: 0.028%, B: 0.0015%, Ceq: 0.39%, and the balance is Fe and inevitable impurities.
  • the chemical composition and mass percentage of the Q690D thick plate produced by the above-mentioned ultra-fast cooling process are as follows: C: 0.08%, Si: 0.25%, Mn: 1.51%, P: 0.014%, S: 0.0019%, Cr: 0.18%, Mo: 0.10%, Ti: 0.017%, Nb: 0.021%, B: 0.0016%, Ceq: 0.40%, the balance is Fe and inevitable impurities.
  • the aforementioned ultra-fast cooling process produces Q690D thick plates with a thickness of 50 mm.
  • Another object of the present invention is to provide a method for manufacturing Q690D thick plate by ultra-fast cooling process, which is characterized by including hot metal desulfurization pretreatment-converter smelting-LF + RH refining-continuous casting-billet slow cooling-casting billet heating- Phosphorus removal-rolling-cooling-flaw detection-shot blasting-tempering-straightening-cutting-sampling-spray printing identification-inspection-storage, in which the molten steel is subjected to continuous casting after vacuum degassing, the billet is at 1180 °C After heating at -1240 ° C, rolling is performed in the austenite recrystallization region and the non-recrystallization region.
  • the manufacturing method of the Q690D thick plate produced by the ultra-fast cooling process described above has a continuous casting billet thickness of 260 mm.
  • the manufacturing method of Q690D thick plate produced by the ultra-fast cooling process mentioned above the rolling in the recrystallization zone requires a pass reduction of above 12%, and the final rolling temperature is above 980 ° C; rolling in the non-recrystallization zone requires cumulative pressure
  • the reduction rate is above 50%, the open rolling temperature is below 900 ° C, and the final rolling temperature is above 800 ° C.
  • the manufacturing method of the Q690D thick plate produced by the ultra-fast cooling process mentioned above uses the ultra-fast cooling process after rolling.
  • the ultra-fast cooling roll speed is 0.40m / s
  • the water volume is 13000m2 / h ⁇ 15000m2 / h
  • the redness temperature is below 200 °C.
  • the manufacturing method of Q690D thick plate produced by the ultra-fast cooling process mentioned above is followed by tempering heat treatment after ultra-fast cooling, and the tempering temperature is 580 ° C-630 ° C.
  • the structure of the steel plate obtained by the present invention is tempered sorbite, the yield strength is greater than 690MPa, the tensile strength is 770MPa-930MPa, the elongation after break is greater than 35%, and the impact toughness at -20 ° C is above 150J;
  • the present invention uses ultra-fast cooling process + tempering heat treatment to produce 50mm thick high-strength steel with a yield strength of 690MPa, simple production process, fast production rhythm, strong applicability and low cost;
  • the high-strength steel plate obtained by the present invention has a low carbon equivalent Ceq ⁇ 0.43 and has good welding performance.
  • This embodiment provides an ultra-quick cooling process to produce 50mm thick Q690D steel plate. Its chemical composition and mass percentage are as follows: C: 0.07%, Si: 0.27%, Mn: 1.55%, P: 0.017%, S: 0.0015% , Cr: 0.20%, Mo: 0.11%, Ti: 0.015%, Nb: 0.028%, B: 0.0015%, Ceq: 0.39%, the rest is Fe and inevitable impurities.
  • the main production process route is: hot metal desulfurization pretreatment-converter smelting-LF + RH refining-continuous casting-slow cooling of billet-heating of casting billet-dephosphorization-rolling-cooling-flaw detection-shot blasting-tempering-straightening-cutting -Sampling-printing logo-inspection-storage.
  • the molten steel undergoes continuous casting after vacuum degassing.
  • the thickness of the continuous casting slab is 260 mm.
  • the casting slab is heated at 1180 ° C to 1240 ° C, it is rolled separately in the austenite recrystallization zone and the non-recrystallization zone. Due to the thicker plate thickness, in order to ensure the redness temperature required by the plan after rolling, the reciprocating water cooling process is used.
  • the steel plate passes through three times in the ultra-fast cooling working section, and the final redness temperature accurately hits the program requirements.
  • Rolling in the recrystallization zone requires a pass reduction of above 12% and a final rolling temperature of above 980 ° C; rolling in the non-recrystallization zone requires a cumulative reduction of above 50%, an open rolling temperature of 865 ° C and a final rolling temperature of 850 °C.
  • the ultra-fast cooling process is adopted.
  • the water inlet temperature is 810 ° C
  • the ultra-fast cooling roller speed is 0.40m / s
  • the water volume is 13500m2 / h
  • swinging back and forth 3 times and the redness temperature is 200 ° C.
  • a tempering heat treatment is carried out.
  • the tempering temperature is 610 ° C and the furnace time is 173 min.
  • This embodiment provides an ultra-fast cooling process to produce 50mm-thick Q690D steel plates.
  • the chemical composition and mass percentage are as follows: C: 0.08%, Si: 0.25%, Mn: 1.51%, P: 0.014%, S: 0.0019% , Cr: 0.18%, Mo: 0.10%, Ti: 0.017%, Nb: 0.021%, B: 0.0016%, Ceq: 0.40%, the balance is Fe and inevitable impurities.
  • the main production process route is: hot metal desulfurization pretreatment-converter smelting-LF + RH refining-continuous casting-slow cooling of billet-heating of casting billet-dephosphorization-rolling-cooling-flaw detection-shot blasting-tempering-straightening-cutting -Sampling-printing logo-inspection-storage.
  • the molten steel undergoes continuous casting after vacuum degassing.
  • the thickness of the continuous casting slab is 260 mm.
  • the casting slab is heated at 1180 ° C to 1240 ° C, it is rolled separately in the austenite recrystallization zone and the non-recrystallization zone. Due to the thicker plate thickness, in order to ensure the redness temperature required by the plan after rolling, the reciprocating water cooling process is used.
  • the steel plate passes through three times in the ultra-fast cooling working section, and the final redness temperature accurately hits the program requirements.
  • Rolling in the recrystallization zone requires a pass reduction of above 12% and a final rolling temperature of above 980 ° C; rolling in the non-recrystallization zone requires a cumulative reduction of above 50%, an open rolling temperature of 872 ° C and a final rolling temperature 855 °C.
  • the ultra-fast cooling process is adopted, the water inlet temperature is 808 °C, the ultra-fast cooling roller speed is 0.40m / s, the water volume is 14100m2 / h, the swing is reciprocated 3 times, and the redness temperature is 180 °C.
  • tempering heat treatment is carried out. The tempering temperature is 615 °C, and the furnace time is 175min.
  • Example 1 The mechanical properties of the steel plates obtained in Example 1 and Example 2 were tested, in which the strength was tested in accordance with GB / T228-2002 metal material room temperature tensile test method, and the low temperature impact toughness was tested in accordance with GB / T229-2007 Metal Charpy V-notch impact test Method determination, the results obtained are shown in the following table:
  • the performance index of the high-strength steel obtained by the present invention is greater than 690Mpa
  • the tensile strength is 770MPa-930MPa
  • the elongation after break is greater than 35%
  • the impact toughness at -20 ° C is above 150J.
  • the Q690D steel plate designed by the invention has high strength and good extensibility, and at the same time has good low temperature impact toughness, a simple process, and can be applied to coal mine machinery hydraulic supports.
  • the present invention may have other embodiments. All technical solutions formed by equivalent replacement or equivalent transformation fall within the scope of protection required by the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本发明公开了一种超快冷工艺生产Q690D厚板,涉及冶金技术领域,其化学成分及质量百分比如下:C:0.05%~0.10%,Si:0.20%~0.50%,Mn:1.40%~1.80%,P≤0.020%,S≤0.003%,Cr:0.10%~0.50%,Mo:0.08%~0.30%,Ti:0.008%~0.030%,Nb:0.015%~0.050%,B:0.0008%~0.0025%,Ceq≤0.43,其余为Fe和不可避免的杂质。本发明采用低碳和合金化的成分设计,提供一种高强钢Q690D厚板,生产工艺流程简单,生产节奏快,成本低。

Description

一种超快冷工艺生产Q690D厚板及制造方法 技术领域
本发明涉及冶金技术领域,特别是涉及一种超快冷工艺生产Q690D厚板及制造方法。
背景技术
随着我国煤矿领域的不断高速发展,煤矿机械的要求向大吨位和大厚度发展,对高强钢的厚板需求越来越大。国内很多钢厂均采用离线淬火+回火的方式生产Q690D的厚板,生产流程长,合金含量多,成本高,碳当量高不易焊接。
发明内容
为了解决以上技术问题,本发明提供一种超快冷工艺生产Q690D厚板,其化学成分及质量百分比如下:C:0.05%~0.10%,Si:0.20%~0.50%,Mn:1.40%~1.80%,P≤0.020%,S≤0.003%,Cr:0.10%~0.50%,Mo:0.08%~0.30%,Ti:0.008%~0.030%,Nb:0.015%~0.050%,B:0.0008%~0.0025%,Ceq≤0.43,其余为Fe和不可避免的杂质。
技术效果:本发明采用低碳和合金化的成分设计,并通过碳、锰、铬、钼等合金元素以及铌、钛、钒等微合金元素的相互配合作用,提供一种高强钢Q690D厚板,生产工艺流程简单,生产节奏快,成本低。
本发明进一步限定的技术方案是:
前所述的一种超快冷工艺生产Q690D厚板,其化学成分及质量百分比如下:C:0.07%,Si:0.27%,Mn:1.55%,P:0.017%,S:0.0015%,Cr:0.20%,Mo:0.11%,Ti:0.015%,Nb:0.028%,B:0.0015%,Ceq:0.39%,其余为Fe和不可避免的杂质。
前所述的一种超快冷工艺生产Q690D厚板,其化学成分及质量百分比如下:C:0.08%,Si:0.25%,Mn:1.51%,P:0.014%,S:0.0019%,Cr:0.18%,Mo:0.10%,Ti:0.017%,Nb:0.021%,B:0.0016%,Ceq:0.40%,其余为Fe和不可避免的杂质。
前所述的一种超快冷工艺生产Q690D厚板,所得钢板厚度为50mm。
本发明的另一目的在于提供一种超快冷工艺生产Q690D厚板制造方法,其特征在于:包括铁水脱硫预处理-转炉冶炼-LF+RH精炼-连铸-坯料缓冷-铸坯加热-除磷-轧制-冷却-探伤-抛丸-回火-矫直-切割-取样-喷印标识-检验-入库,其中,钢水经真空脱气处理后进行连铸,铸坯于1180℃~1240℃加热后在奥氏体再结晶区和未再结晶区分别进行轧制。
前所述的一种超快冷工艺生产Q690D厚板制造方法,连铸的铸坯厚度为260mm。
前所述的一种超快冷工艺生产Q690D厚板制造方法,再结晶区轧制要求道次压下率在12%以上,终轧温度在980℃以上;未再结晶区轧制要求累积压下率在50%以上,开轧温度在900℃以下,终轧温度在800℃以上。
前所述的一种超快冷工艺生产Q690D厚板制造方法,轧后采用超快冷工艺,超快冷辊速为0.40m/s,水量为13000㎡/h~15000㎡/h,摆动往复3次,返红温度200℃以下。
前所述的一种超快冷工艺生产Q690D厚板制造方法,超快冷后进行回火热处理,回火温度为580℃~630℃。
本发明的有益效果是:
(1)本发明所得钢板的组织为回火索氏体,屈服强度大于690MPa,抗拉强度为770MPa~930MPa,断后延伸率大于35%,-20℃冲击韧性在150J以上;
(2)本发明用超快冷工艺+回火热处理生产出屈服强度690MPa级别50mm厚高强钢,生产工艺流程简单,生产节奏快,适用性强,成本低;
(3)本发明得到的高强钢板碳当量低Ceq≤0.43,具有良好的焊接性能。
具体实施方式
实施例1
本实施例提供的一种超快冷工艺生产规格50mm厚Q690D钢板,其化学成分及质量百分比如下:C:0.07%,Si:0.27%,Mn:1.55%,P:0.017%,S:0.0015%,Cr:0.20%,Mo:0.11%,Ti:0.015%,Nb:0.028%,B:0.0015%,Ceq:0.39%,其余为Fe和不可避免的杂质。
主要生产工艺路线为:铁水脱硫预处理-转炉冶炼-LF+RH精炼-连铸-坯料缓冷-铸坯加热-除磷-轧制-冷却-探伤-抛丸-回火-矫直-切割-取样-喷印标识-检验-入库。
钢水经真空脱气处理后进行连铸,连铸的铸坯厚度为260mm,铸坯于1180℃~1240℃加热后在奥氏体再结晶区和未再结晶区分别进行轧制。由于板厚较厚,轧后为保证实现方案要求的返红温度,采用往复式水冷工艺,钢板在超快冷工作段往复通过3次,最终返红温度准确命中方案要求。
再结晶区轧制要求道次压下率在12%以上,终轧温度在980℃以上;未再结晶区轧制要求累积压下率在50%以上,开轧温度865℃,终轧温度850℃。轧后采用超快冷工艺,入水温度810℃,超快冷辊速为0.40m/s,水量为13500㎡/h,摆动往复3次,返红温度200℃。超快冷后进行回火热处理,回火温度为610℃,在炉时间173min。
实施例2
本实施例提供的一种超快冷工艺生产规格50mm厚Q690D钢板,其化学成分及质量百分比如下:C:0.08%,Si:0.25%,Mn:1.51%,P:0.014%,S:0.0019%,Cr:0.18%,Mo:0.10%,Ti:0.017%,Nb:0.021%,B:0.0016%,Ceq:0.40%,其余为Fe和不可避免的杂质。
主要生产工艺路线为:铁水脱硫预处理-转炉冶炼-LF+RH精炼-连铸-坯料缓冷-铸坯加热-除磷-轧制-冷却-探伤-抛丸-回火-矫直-切割-取样-喷印标识-检 验-入库。
钢水经真空脱气处理后进行连铸,连铸的铸坯厚度为260mm,铸坯于1180℃~1240℃加热后在奥氏体再结晶区和未再结晶区分别进行轧制。由于板厚较厚,轧后为保证实现方案要求的返红温度,采用往复式水冷工艺,钢板在超快冷工作段往复通过3次,最终返红温度准确命中方案要求。
再结晶区轧制要求道次压下率在12%以上,终轧温度在980℃以上;未再结晶区轧制要求累积压下率在50%以上,开轧温度在872℃,终轧温度855℃。轧后采用超快冷工艺,入水温度808℃,超快冷辊速为0.40m/s,水量为14100㎡/h,摆动往复3次,返红温度180℃。超快冷后进行回火热处理,回火温度为615℃,在炉时间175min。
对实施例1、实施例2所得钢板进行力学性能测试,其中强度按照GB/T228-2002金属材料室温拉伸试验方法进行,低温冲击韧性按GB/T 229-2007金属夏比V型缺口冲击试验方法测定,得到的结果如下表所示:
Figure PCTCN2019093665-appb-000001
由表可知,本发明所得的高强钢的性能指标屈服强度大于690Mpa,抗拉强度为770MPa~930MPa,断后延伸率大于35%,-20℃冲击韧性在150J以上。可见本发明设计的Q690D钢板具有较高的强度和良好的延伸性,同时具有较好的低温冲击韧性,工艺简单,可以应用到煤矿机械液压支架上。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (9)

  1. 一种超快冷工艺生产Q690D厚板,其特征在于,其化学成分及质量百分比如下:C:0.05%~0.10%,Si:0.20%~0.50%,Mn:1.40%~1.80%,P≤0.020%,S≤0.003%,Cr:0.10%~0.50%,Mo:0.08%~0.30%,Ti:0.008%~0.030%,Nb:0.015%~0.050%,B:0.0008%~0.0025%,Ceq≤0.43,其余为Fe和不可避免的杂质。
  2. 根据权利要求1所述的一种超快冷工艺生产Q690D厚板,其特征在于,其化学成分及质量百分比如下:C:0.07%,Si:0.27%,Mn:1.55%,P:0.017%,S:0.0015%,Cr:0.20%,Mo:0.11%,Ti:0.015%,Nb:0.028%,B:0.0015%,Ceq:0.39%,其余为Fe和不可避免的杂质。
  3. 根据权利要求1所述的一种超快冷工艺生产Q690D厚板,其特征在于,其化学成分及质量百分比如下:C:0.08%,Si:0.25%,Mn:1.51%,P:0.014%,S:0.0019%,Cr:0.18%,Mo:0.10%,Ti:0.017%,Nb:0.021%,B:0.0016%,Ceq:0.40%,其余为Fe和不可避免的杂质。
  4. 根据权利要求1所述的一种超快冷工艺生产Q690D厚板,其特征在于:所得钢板厚度为50mm。
  5. 一种超快冷工艺生产Q690D厚板制造方法,其特征在于:包括铁水脱硫预处理-转炉冶炼-LF+RH精炼-连铸-坯料缓冷-铸坯加热-除磷-轧制-冷却-探伤-抛丸-回火-矫直-切割-取样-喷印标识-检验-入库,其中,钢水经真空脱气处理后进行连铸,连铸坯1180℃~1240℃加热后在奥氏体再结晶区和未再结晶区分别进行轧制。
  6. 根据权利要求5所述的一种超快冷工艺生产Q690D厚板制造方法,其特征在于:连铸的铸坯厚度为260mm。
  7. 根据权利要求5所述的一种超快冷工艺生产Q690D厚板制造方法,其特征在于:再结晶区轧制要求道次压下率在12%以上,终轧温度在980℃以上;未再结晶区轧制要求累积压下率在50%以上,开轧温度在900℃以下, 终轧温度在800℃以上。
  8. 根据权利要求7所述的一种超快冷工艺生产Q690D厚板制造方法,其特征在于:轧后采用超快冷工艺,超快冷辊速为0.40m/s,水量为13000㎡/h~15000㎡/h,摆动往复3次,返红温度200℃以下。
  9. 根据权利要求8所述的一种超快冷工艺生产Q690D厚板制造方法,其特征在于:超快冷后进行回火热处理,回火温度为580℃~630℃。
PCT/CN2019/093665 2018-11-12 2019-06-28 一种超快冷工艺生产q690d厚板及制造方法 WO2020098288A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2019381076A AU2019381076B2 (en) 2018-11-12 2019-06-28 Q690D thick plate produced by ultra fast cooling process and manufacturing method
ZA2021/03240A ZA202103240B (en) 2018-11-12 2021-05-13 Q690d thick plate produced by ultra fast cooling process and manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811342554.4 2018-11-12
CN201811342554.4A CN109338225A (zh) 2018-11-12 2018-11-12 一种超快冷工艺生产q690d厚板及制造方法

Publications (1)

Publication Number Publication Date
WO2020098288A1 true WO2020098288A1 (zh) 2020-05-22

Family

ID=65315226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/093665 WO2020098288A1 (zh) 2018-11-12 2019-06-28 一种超快冷工艺生产q690d厚板及制造方法

Country Status (4)

Country Link
CN (1) CN109338225A (zh)
AU (1) AU2019381076B2 (zh)
WO (1) WO2020098288A1 (zh)
ZA (1) ZA202103240B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111876558A (zh) * 2020-07-21 2020-11-03 安阳钢铁股份有限公司 一种基于lf+vd工艺生产包晶高强钢精准控制碳含量的方法
CN113770176A (zh) * 2021-06-29 2021-12-10 张家港宏昌钢板有限公司 在线识别探伤板、代表板的目视化物料跟踪方法及系统
CN114160580A (zh) * 2021-11-22 2022-03-11 南京钢铁股份有限公司 一种改善耐候钢A709Gr50平直度的冷却方法
CN114231718A (zh) * 2021-11-18 2022-03-25 首钢京唐钢铁联合有限责任公司 一种窄强度同板差的管线钢及其生产方法
CN114480969A (zh) * 2022-01-24 2022-05-13 南阳汉冶特钢有限公司 一种压缩比≤4高韧性高z向性能特厚钢q460gj的生产方法
CN116288046A (zh) * 2023-02-16 2023-06-23 唐山钢铁集团有限责任公司 具有良好折弯性能的q690d热轧钢带及生产方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109338225A (zh) * 2018-11-12 2019-02-15 南京钢铁股份有限公司 一种超快冷工艺生产q690d厚板及制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102851604A (zh) * 2012-09-22 2013-01-02 内蒙古包钢钢联股份有限公司 一种屈服强度690MPa级高强度钢板的生产方法
CN102888565A (zh) * 2012-09-22 2013-01-23 内蒙古包钢钢联股份有限公司 一种屈服强度690MPa级高强度钢板及其制造方法
CN107675097A (zh) * 2017-08-15 2018-02-09 河钢股份有限公司邯郸分公司 具有良好侧弯性能的高强钢q690d钢板及其生产方法
CN109338225A (zh) * 2018-11-12 2019-02-15 南京钢铁股份有限公司 一种超快冷工艺生产q690d厚板及制造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102268607A (zh) * 2010-06-07 2011-12-07 鞍钢股份有限公司 煤矿液压支架专用高强韧钢板及其制造方法
CN102345061B (zh) * 2011-06-28 2013-06-12 南阳汉冶特钢有限公司 一种q690d优质结构钢中厚板及其生产方法
KR102275814B1 (ko) * 2014-12-31 2021-07-09 두산중공업 주식회사 해양 구조물용 초고강도 고인성 극후 강판 및 그 제조방법
CN104947000A (zh) * 2015-06-14 2015-09-30 秦皇岛首秦金属材料有限公司 屈服强度700MPa级高强钢及TMCP制造方法
KR20160149640A (ko) * 2015-06-18 2016-12-28 현대제철 주식회사 초고강도 강재 및 그 제조방법
CN106282774B (zh) * 2016-08-31 2018-04-20 南京钢铁股份有限公司 一种高横纵向冲击比值大厚度q690e高强钢生产方法
CN106756544B (zh) * 2016-12-12 2019-06-04 南京钢铁股份有限公司 一种超低碳当量大厚度q690d高强钢的生产方法
CN107447167A (zh) * 2017-07-30 2017-12-08 湖南华菱湘潭钢铁有限公司 一种低屈强比高强度中厚钢板的生产方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102851604A (zh) * 2012-09-22 2013-01-02 内蒙古包钢钢联股份有限公司 一种屈服强度690MPa级高强度钢板的生产方法
CN102888565A (zh) * 2012-09-22 2013-01-23 内蒙古包钢钢联股份有限公司 一种屈服强度690MPa级高强度钢板及其制造方法
CN107675097A (zh) * 2017-08-15 2018-02-09 河钢股份有限公司邯郸分公司 具有良好侧弯性能的高强钢q690d钢板及其生产方法
CN109338225A (zh) * 2018-11-12 2019-02-15 南京钢铁股份有限公司 一种超快冷工艺生产q690d厚板及制造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111876558A (zh) * 2020-07-21 2020-11-03 安阳钢铁股份有限公司 一种基于lf+vd工艺生产包晶高强钢精准控制碳含量的方法
CN113770176A (zh) * 2021-06-29 2021-12-10 张家港宏昌钢板有限公司 在线识别探伤板、代表板的目视化物料跟踪方法及系统
CN113770176B (zh) * 2021-06-29 2024-05-14 张家港宏昌钢板有限公司 在线识别探伤板、代表板的目视化物料跟踪方法及系统
CN114231718A (zh) * 2021-11-18 2022-03-25 首钢京唐钢铁联合有限责任公司 一种窄强度同板差的管线钢及其生产方法
CN114231718B (zh) * 2021-11-18 2024-03-19 首钢京唐钢铁联合有限责任公司 一种窄强度同板差的管线钢及其生产方法
CN114160580A (zh) * 2021-11-22 2022-03-11 南京钢铁股份有限公司 一种改善耐候钢A709Gr50平直度的冷却方法
CN114480969A (zh) * 2022-01-24 2022-05-13 南阳汉冶特钢有限公司 一种压缩比≤4高韧性高z向性能特厚钢q460gj的生产方法
CN116288046A (zh) * 2023-02-16 2023-06-23 唐山钢铁集团有限责任公司 具有良好折弯性能的q690d热轧钢带及生产方法

Also Published As

Publication number Publication date
ZA202103240B (en) 2023-03-29
AU2019381076B2 (en) 2022-05-12
CN109338225A (zh) 2019-02-15
AU2019381076A1 (en) 2021-05-27

Similar Documents

Publication Publication Date Title
WO2020098288A1 (zh) 一种超快冷工艺生产q690d厚板及制造方法
CN109280850B (zh) 一种80mm大厚度高韧性低合金耐磨钢板及其制造方法
JP5928654B2 (ja) 厚肉高靭性高張力鋼板およびその製造方法
US10443110B2 (en) High toughness and high tensile strength thick steel plate and production method therefor
JP6466582B2 (ja) 降伏強度800MPa級高強度鋼及びその製造方法
CN103014554B (zh) 一种低屈强比高韧性钢板及其制造方法
EP2218801B1 (en) Steel plate with yield strength of 800mpa grade and low weld cracking sensitivity, and manufacture method thereof
WO2022011936A1 (zh) 一种具有优良低温韧性的高强度容器板及制造方法
WO2016095721A1 (zh) 一种屈服强度900~1000MPa级调质高强钢及制造方法
JP5979338B1 (ja) 材質均一性に優れた厚肉高靭性高張力鋼板およびその製造方法
WO2016045266A1 (zh) 一种屈服强度800MPa级高韧性热轧高强钢及其制造方法
JP6048626B1 (ja) 厚肉高靭性高強度鋼板およびその製造方法
CN105543669B (zh) 一种厚规格和窄硬度区间耐磨钢板及其制备方法
CN109536846B (zh) 屈服强度700MPa级高韧性热轧钢板及其制造方法
CN105112806A (zh) 屈服强度460MPa级高止裂韧性钢板及其生产方法
WO2020062564A1 (zh) 一种超高钢q960e厚板及制造方法
WO2022052335A1 (zh) 一种大厚度低碳当量高韧性耐磨钢板及其制造方法
WO2022067962A1 (zh) 低成本高性能Q370qE-HPS桥梁钢及生产方法
AU2018387506A1 (en) High-grade low-alloy wear-resistant steel plate having brookfield hardness of greater than 550 HB and manufacturing method
CN103882344A (zh) 加钒铬钼钢板及其生产方法
CN103695807A (zh) 止裂性优良的超高强x100管线钢板及其制备方法
CN111748737B (zh) 一种冷裂纹敏感系数≤0.25的易焊接超高强钢及生产方法
CN114107819A (zh) 一种800MPa级抗回火性高强钢板及其制备方法
CN110846571A (zh) 一种高韧性低合金耐磨钢厚板及其制造方法
CN105112810B (zh) 一种抗大线能量焊接用钢及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019381076

Country of ref document: AU

Date of ref document: 20190628

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19884327

Country of ref document: EP

Kind code of ref document: A1