WO2022011936A1 - 一种具有优良低温韧性的高强度容器板及制造方法 - Google Patents
一种具有优良低温韧性的高强度容器板及制造方法 Download PDFInfo
- Publication number
- WO2022011936A1 WO2022011936A1 PCT/CN2020/133953 CN2020133953W WO2022011936A1 WO 2022011936 A1 WO2022011936 A1 WO 2022011936A1 CN 2020133953 W CN2020133953 W CN 2020133953W WO 2022011936 A1 WO2022011936 A1 WO 2022011936A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- rolling
- strength
- excellent low
- temperature toughness
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
Definitions
- the invention relates to the technical field of steel production, in particular to a high-strength container plate with excellent low-temperature toughness and a manufacturing method.
- the Chinese invention patent with publication number CN110724878A proposes a 0.5Ni low-temperature steel and its manufacturing method, adding B element, adopting two-stage controlled rolling, normalizing + tempering process heat treatment, the minimum use
- the temperature can be lowered to -80°C, but the actual yield strength is about 400MPa, and the tensile strength is only about 520MPa.
- the Chinese patent with publication number CN106467951B proposes a high-strength, high-toughness, low-yield-strength-ratio low-temperature steel for -70°C and its manufacturing method, adding Mo ⁇ 0.10, Nb ⁇ 0.05, Ti ⁇ 0.025, Ca ⁇ 0.005 Any one or several of them can meet the requirements of -70 °C, but the physical yield strength is less than 400MPa.
- the Chinese patent with publication number CN108893681A proposes a high-strength and high-toughness pressure vessel steel plate and a preparation method thereof. The V-Ni-N alloy system is used to improve the low-temperature fracture toughness and reduce the ductile-brittle transition temperature.
- the fine dispersion effect of the core and the control methods of Al, N and V components enable the obtained steel to exhibit good low temperature, high strength and high toughness, yield strength ⁇ 480MPa, tensile strength 640-740MPa, yield ratio ⁇ 0.85, elongation ⁇ 21% , the transverse direction of the steel plate is -60°C KV 2 ⁇ 80J, the ferrite grain size reaches 10.5 to 13.5, and the minimum operating temperature is only -60°C.
- the present invention provides a high-strength container plate with excellent low-temperature toughness, whose chemical composition and mass percentage are as follows: C: 0.07%-0.11%, Si: 0.10%-0.30%, Mn: 1.30%- 1.60%, Ni: 0.40% ⁇ 0.80%, Mo: 0.05% ⁇ 0.12%, V: 0.02% ⁇ 0.05%, Alt: 0.02% ⁇ 0.05%, P ⁇ 0.008%, S ⁇ 0.002%, the balance is Fe and inevitable impurities.
- the present invention realizes the material strength upgrade by adding a small amount of alloy Mo and V, the alloy cost is not high and it is easy to achieve precise control, not only the use temperature is lower, but the strength is also significantly improved, which can reduce the material consumption for the construction of the storage tank.
- the aforementioned high-strength container plate with excellent low-temperature toughness has the following chemical composition and mass percentage: C: 0.07%-0.08%, Si: 0.10%-0.21%, Mn: 1.30%-1.55%, Ni: 0.40% ⁇ 0.47%, Mo: 0.05% ⁇ 0.07%, V: 0.02% ⁇ 0.045%, Alt: 0.02% ⁇ 0.038%, P ⁇ 0.005%, S ⁇ 0.001%, the balance is Fe and inevitable impurities.
- the aforementioned high-strength container plate with excellent low-temperature toughness has the following chemical composition and mass percentage: C: 0.09%-0.10%, Si: 0.15%-0.24%, Mn: 1.32%-1.47%, Ni: 0.50% ⁇ 0.65%, Mo: 0.08% ⁇ 0.11%, V: 0.029% ⁇ 0.035%, Alt: 0.030% ⁇ 0.044%, P: 0.004% ⁇ 0.005%, S: 0.0007% ⁇ 0.002%, the balance is Fe and inevitable impurities.
- the thickness of the steel plate is 10-50 mm.
- Another object of the present invention is to provide a method for manufacturing a high-strength container plate with excellent low-temperature toughness, comprising:
- Slab heating The slab is heated to 1130 ⁇ 1160°C, the total time in the furnace is ⁇ 220min, the holding time of the soaking section is 30 ⁇ 60min, and the temperature uniformity of the whole slab is ⁇ 10°C;
- Controlled rolling and controlled cooling After the slab is released from the furnace, high-pressure water is used for descaling, and the descaling water pressure is ⁇ 18MPa. Two-stage controlled rolling is adopted. The first stage is rolled in the austenite recrystallization zone, and the second stage is rolled in the austenite unprocessed Finish rolling in the recrystallization zone, and control cooling after rolling;
- Heat treatment adopt off-line quenching + tempering process for heat treatment.
- the aforementioned manufacturing method of a high-strength container plate with excellent low-temperature toughness, steelmaking and continuous casting pretreatment of molten iron, S content in molten iron ⁇ 0.002wt%, converter steelmaking, deep desulfurization and deoxidation in LF furnace, Adjust the alloy composition to achieve the target range and superheat control, degas the RH furnace, vacuum degree ⁇ 0.3torr, feed pure calcium wire for calcium treatment after RH refining, static stirring time after feeding wire ⁇ 15min, and continuously cast into 260mm thick billets , The billet is subjected to stack cooling treatment, and the stack cooling time is ⁇ 48 hours.
- the above-mentioned manufacturing method of a high-strength container plate with excellent low-temperature toughness adopts controlled rolling and controlled cooling in the hot rolling process: rolling in the austenite recrystallization zone in the first stage, and the cumulative reduction in rough rolling is 55% to 85%.
- finish rolling is carried out in the austenite unrecrystallized area.
- the accumulated reduction of finishing rolling is 50% to 80%, and the final rolling temperature is 820 to 860°C. , control the temperature of returning red to 600 ⁇ 640°C.
- the above-mentioned manufacturing method of a high-strength container plate with excellent low temperature toughness adopts off-line quenching and tempering, the quenching temperature is 880-910 ° C, the quenching cooling rate is ⁇ 15 ° C/s, directly quenched to room temperature, and offline quenching
- the steel plate is heated to 600 ⁇ 640°C and tempered for 40-75min to obtain a tempered sorbite structure.
- composition design thinking of the present invention is a composition design thinking of the present invention
- Ni It can form ⁇ and ⁇ phase solid solutions with Fe, and can be infinitely dissolved in the ⁇ phase. It can expand the ⁇ phase region. It is austenite forming and stabilizing element, making the screw dislocation difficult to decompose and ensuring cross slip. The occurrence of Ni can improve the plastic deformation performance of the material; Ni is also a precious metal element, and the addition amount should be minimized under the premise of ensuring performance;
- Austenite stabilizing element also a matrix strengthening element, can improve the strength through solid solution strengthening and precipitation strengthening. When the content is below 1.8%, the steel can still maintain high plasticity and toughness while improving the strength of the steel;
- Si a deoxidizing element, which can dissolve into ferrite and produce solid solution strengthening, which increases the strength and hardness of ferrite, but decreases its plasticity and toughness, which is not conducive to the low temperature toughness of the heat-affected zone (HAZ) of welding;
- Mo It can improve the hardenability, thereby improving the strength and the tempering stability of the steel. When coexisting with chromium or manganese, it can reduce or suppress the tempering brittleness caused by other elements, but Mo is also a precious metal. Too much will significantly increase the alloy cost;
- V A strong carbonitride forming element, it can improve the strength of steel by refining grains and carbide precipitation. When V, Cr and Mo exist at the same time, it will form complex carbides during tempering and reduce For the plastic toughness of welded joints, the V amount is strictly controlled to ensure plastic toughness or stress relief to avoid cracks;
- S and P S is easy to form the precipitate MnS with Mn, which reduces the low temperature toughness, and P is easy to segregate at the grain boundary, which reduces the crack growth resistance of the grain boundary and deteriorates the low temperature toughness;
- Al The main deoxidizing element in the steel, which is beneficial to refine the grains.
- Al content is too high, it is easy to lead to the increase of inclusions in the steel, which is not good for the toughness of the steel;
- the present invention significantly improves the low-temperature toughness and strength, and develops a brand-new low-temperature C-Mn steel, which can replace the domestic and foreign 0.5Ni steel grades such as 09MnNiDR for ethylene Wait for the construction of low-temperature spherical tanks or storage tanks, and realize the upgrade and upgrade of low-temperature C-Mn steel materials.
- Figure 1 is a photo of the tempered microstructure at a 1/4 thickness of a 50mm steel plate corroded by a 4% nitric acid alcohol solution.
- the following examples provide a high-strength container plate with excellent low-temperature toughness and its manufacturing method.
- the chemical composition is shown in Table 1, the smelting and rolling process parameters are shown in Table 2, and the heat treatment process parameters are shown in Table 3.
- the steps are:
- Steelmaking and continuous casting Steelmaking and continuous casting: Pretreatment of molten iron, S content in molten iron ⁇ 0.002wt%, converter steelmaking, deep desulfurization and deoxidation in LF furnace, adjusting alloy composition to achieve the target range and superheat control, RH furnace desulfurization Gas, vacuum degree ⁇ 0.3torr, RH refining and feeding pure calcium wire for calcium treatment, static stirring time ⁇ 15min after feeding, continuous casting into 260mm thick billet, casting billet for stack cooling treatment, stack cooling time ⁇ 48 hours;
- Slab heating The slab is heated to 1130 ⁇ 1160°C, the total time in the furnace is ⁇ 220min, the holding time of the soaking section is 30 ⁇ 60min, and the temperature uniformity of the whole slab is ⁇ 10°C;
- Controlled rolling and controlled cooling After the slab is released from the furnace, high-pressure water is used for descaling, and the descaling water pressure is ⁇ 18MPa. Two-stage controlled rolling is adopted. The first stage is rolled in the austenite recrystallization zone, and the cumulative reduction in rough rolling is 55 % ⁇ 85%, in the second stage, finish rolling is carried out in the austenite unrecrystallized area, the accumulated reduction of finishing rolling is 50% ⁇ 80%, and the final rolling temperature is 820 ⁇ 860°C; after rolling, the steel plate is cooled by laminar flow, Control the reddening temperature to 600 ⁇ 640°C;
- Heat treatment adopt off-line quenching + tempering process for heat treatment, quenching temperature is 880 ⁇ 910°C, quenching cooling rate is ⁇ 15°C/s, directly quenched to room temperature, off-line quenched steel plate is heated to 600 ⁇ 640°C and tempered for 40-75min. Pyrostenite structure.
- Example 1 0.08 1.55 0.21 0.001 0.005 0.47 0.07 0.045 0.038
- Example 2 0.10 1.47 0.15 0.0007 0.004 0.50 0.08 0.029 0.044
- Example 3 0.09 1.32 0.24 0.002 0.005 0.65 0.11 0.035 0.030
- the structure obtained by the product of the present invention is a tempered sorbite structure that retains the lath orientation, has excellent strength and toughness, and can obtain good comprehensive mechanical properties. Charpy impact under the low temperature condition of -80 ° C Work ⁇ 150J, yield strength ⁇ 460MPa, tensile strength ⁇ 570MPa. On the basis of the existing 0.5Ni steel, the strength is significantly improved, the wall thickness of the material used in the construction of the low temperature spherical tank or storage tank is reduced, the construction period is shortened and the cost is saved.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
一种具有优良低温韧性的高强度容器板及制造方法,涉及钢铁生产技术领域,其化学成分及质量百分比如下:C:0.07%~0.11%,Si:0.10%~0.30%,Mn:1.30%~1.60%,Ni:0.40%~0.80%,Mo:0.05%~0.12%,V:0.02%~0.05%,Alt:0.02%~0.05%,P≤0.008%,S≤0.002%,余量为Fe和不可避免的杂质。通过添加少量合金实现材料强度升级,合金成本不高且易实现精准控制,不仅使用温度更低,强度还明显提高,可以降低储罐建造的材料用量。
Description
本发明涉及钢铁生产技术领域,特别是涉及一种具有优良低温韧性的高强度容器板及制造方法。
随着化工行业低温容器用钢高参数化发展,一些低强度成熟牌号如09MnNiDR等已很难满足乙烯等低温球罐大型化发展需要,亟需在确保材料低温韧性基础上,大幅提高材料强度以减少用钢厚度,降低大厚度钢板焊接接头韧性风险,减少施工量和焊缝,提升设备建造效率、降低材料成本。
国内高强度低温钢研发方面,公开号为CN110724878A的中国发明专利提出了一种0.5Ni低温钢及其制造方法,添加B元素,采用两阶段控制轧制、正火+回火工艺热处理,最低使用温度可以降低到-80℃,但其实物屈服强度为400MPa左右,抗拉强度只有520MPa左右。公开号为CN106467951B的中国专利提出了一种用于-70℃的高强度、高韧性、低屈强比低温钢及其制造方法,添加Mo≤0.10,Nb≤0.05,Ti≤0.025,Ca≤0.005中的任意一种或几种,可满足-70℃使用要求,但实物屈服强度不到400MPa。公开号为CN108893681A的中国专利提出了一种高强高韧性压力容器钢板及其制备方法,采用V-Ni-N合金系,提高低温断裂韧性并降低韧脆转变温度,并利用引入Mg形成的异质核心微细弥散效应以及Al、N、V成分调控手段,使所得钢材可表现出良好的低温高强高韧性,屈服强度≥480MPa,抗拉强度640~740MPa,屈强比≤0.85,延伸率≥21%,钢板横向-60℃KV
2≥80J,铁素体晶粒度达到10.5~13.5级,满足最低使用温度只到-60℃。
综上,现有技术中尚未有使用温度达到-80℃,同时能满足屈服强度≥460MPa、抗拉强度≥570MPa的低温C-Mn钢的相关报道。
发明内容
为了解决以上技术问题,本发明提供一种具有优良低温韧性的高强度容器板,其化学成分及质量百分比如下:C:0.07%~0.11%,Si:0.10%~0.30%,Mn:1.30%~1.60%,Ni:0.40%~0.80%,Mo:0.05%~0.12%,V:0.02%~0.05%,Alt:0.02%~0.05%,P≤0.008%,S≤0.002%,余量为Fe和不可避免的杂质。
技术效果:本发明通过添加少量合金Mo和V实现材料强度升级,合金成本不高且易实现精准控制,不仅使用温度更低,强度还明显提高,可以降低储罐建造的材料用量。
本发明进一步限定的技术方案是:
前所述的一种具有优良低温韧性的高强度容器板,其化学成分及质量百分比如下:C:0.07%~0.08%,Si:0.10%~0.21%,Mn:1.30%~1.55%,Ni:0.40%~0.47%,Mo:0.05%~0.07%,V:0.02%~0.045%,Alt:0.02%~0.038%,P≤0.005%,S≤0.001%,余量为Fe和不可避免的杂质。
前所述的一种具有优良低温韧性的高强度容器板,其化学成分及质量百分比如下:C:0.09%~0.10%,Si:0.15%~0.24%,Mn:1.32%~1.47%,Ni:0.50%~0.65%,Mo:0.08%~0.11%,V:0.029%~0.035%,Alt:0.030%~0.044%,P:0.004%~0.005%,S:0.0007%~0.002%,余量为Fe和不可避免的杂质。
前所述的一种具有优良低温韧性的高强度容器板,钢板厚度为10~50mm。
本发明的另一目的在于提供一种具有优良低温韧性的高强度容器板的制造方法,包括
炼钢连铸:采用铁水预处理,转炉顶底复吹冶炼,LF+RH精炼,按照成分设计要求进行成分控制,生产260mm厚坯料;
板坯加热:板坯加热到1130~1160℃,在炉总时间≥220min,均热段保温时间30~60min,整张板坯温度均匀性≤10℃;
控轧控冷:板坯出炉后采用高压水除鳞,除鳞水压力≥18MPa,采用两阶段控制轧制,第一阶段在奥氏体再结晶区轧制,第二阶段在奥氏体未再结晶区进行精轧,轧后控制冷却;
热处理:采用离线淬火+回火工艺进行热处理。
前所述的一种具有优良低温韧性的高强度容器板的制造方法,炼钢连铸:对铁水进行预处理,铁水中S含量<0.002wt%,转炉炼钢,LF炉深脱硫、脱氧,调整合金成分达到目标范围和过热度控制,RH炉脱气,真空度≤0.3torr,RH精炼后喂入纯钙线进行钙处理,喂线后静搅时间≥15min,连连铸成260mm厚度坯料,铸坯进行堆冷处理,堆冷时间≥48小时。
前所述的一种具有优良低温韧性的高强度容器板的制造方法,热轧过程采用控制轧制和控制冷却:第一阶段在奥氏体再结晶区轧制,粗轧累计压下量为55%~85%,第二阶段在奥氏体未再结晶区进行精轧,精轧累计压下量为50%~80%,终轧温度为820~860℃;轧后钢板采用层流冷却,控制返红温度为600~640℃。
前所述的一种具有优良低温韧性的高强度容器板的制造方法,热处理采用离线淬火+回火,淬火温度880~910℃,淬火冷速≥15℃/s,直接淬火到室温,离线淬火钢板加热到600~640℃回火40-75min,得到回火索氏体组织。
本发明的有益效果是:
(1)本发明的成分设计思路:
C:钢的强化元素和奥氏体稳定元素,钢中含碳量增加,屈服点和抗拉强度升高,碳含量每增加0.1%,抗拉强度大约提高90MPa,屈服强度大约提高40~50MPa,但塑性和冲击性降低,韧-脆转变温度升高,对HAZ低温韧性有害,设计时确保强度;
Ni:可以与Fe形成α和γ相固溶体,在γ相中可以无限固溶,它能扩 大γ相区,是奥氏体形成和稳定元素,能使螺型位错不易分解,保证交叉滑移的发生,提高材料塑变性能;Ni也是贵金属元素,在确保性能前提下尽量减少加入量;
Mn:奥氏体稳定元素,也是基体强化元素,可以通过固溶强化和沉淀强化提高强度,含量在1.8%以下时,在提高钢的强度时仍可使钢保持较高的塑性和韧性;
Si:脱氧元素,能溶入铁素体,产生固溶强化作用,使得铁素体的强度和硬度提高,但塑性和韧性却有所下降,不利于焊接热影响区(HAZ)低温韧性;
Mo:可以提高淬透性,从而提高强度,提高钢的回火稳定性,与铬或锰等并存时,可降低或抑止因其他元素所导致的回火脆性,但Mo也是贵重金属,加入量过多会显著提高合金成本;
V:强烈的碳氮化物形成元素,它通过细化晶粒与碳化物析出可提高钢材的强度,当V与Cr、Mo同时存在时,则会在回火过程中形成复杂的碳化物而降低焊接接头的塑韧性,为保证塑韧性或去应力避免裂纹产生都严格控制V量;
S和P:S易与Mn形成析出物MnS,降低低温韧性,P容易在晶界偏聚,降低晶界抗裂纹扩展能力,恶化低温韧性;
Al:钢中的主要脱氧元素,有利于细化晶粒,当Al含量偏高时,易导致钢中夹杂增多,对钢的韧性不利;
(2)本发明中采用离线淬火+回火热处理,得到钢板组织性能均匀,板形控制良好;
(3)本发明在现有低温C-Mn钢基础上,显著提高了低温韧性和强度,开发出了一种全新的低温C-Mn钢材,可以替代09MnNiDR等国内外0.5Ni钢牌号用于乙烯等低温球罐或储罐建造,实现低温C-Mn钢材料的提档升级。
图1为4%硝酸酒精溶液腐蚀的50mm钢板1/4厚度处回火态组织照片。
以下实施例提供的一种具有优良低温韧性的高强度容器板及制造方法,化学成分如表1所示,冶炼、轧制工艺参数如表2所示,热处理工艺参数如表3所示,具体步骤为:
炼钢连铸:炼钢连铸:对铁水进行预处理,铁水中S含量<0.002wt%,转炉炼钢,LF炉深脱硫、脱氧,调整合金成分达到目标范围和过热度控制,RH炉脱气,真空度≤0.3torr,RH精炼后喂入纯钙线进行钙处理,喂线后静搅时间≥15min,连连铸成260mm厚度坯料,铸坯进行堆冷处理,堆冷时间≥48小时;
板坯加热:板坯加热到1130~1160℃,在炉总时间≥220min,均热段保温时间30~60min,整张板坯温度均匀性≤10℃;
控轧控冷:板坯出炉后采用高压水除鳞,除鳞水压力≥18MPa,采用两阶段控制轧制,第一阶段在奥氏体再结晶区轧制,粗轧累计压下量为55%~85%,第二阶段在奥氏体未再结晶区进行精轧,精轧累计压下量为50%~80%,终轧温度为820~860℃;轧后钢板采用层流冷却,控制返红温度为600~640℃;
热处理:采用离线淬火+回火工艺进行热处理,淬火温度880~910℃,淬火冷速≥15℃/s,直接淬火到室温,离线淬火钢板加热到600~640℃回火40-75min,得到回火索氏体组织。
表1
实例 | C(%) | Mn(%) | Si(%) | S(%) | P(%) | Ni(%) | Mo(%) | V(%) | Al(%) |
实例1 | 0.08 | 1.55 | 0.21 | 0.001 | 0.005 | 0.47 | 0.07 | 0.045 | 0.038 |
实例2 | 0.10 | 1.47 | 0.15 | 0.0007 | 0.004 | 0.50 | 0.08 | 0.029 | 0.044 |
实例3 | 0.09 | 1.32 | 0.24 | 0.002 | 0.005 | 0.65 | 0.11 | 0.035 | 0.030 |
表2
表3
钢样 | 淬火温度 | 淬火保温时间,min | 冷速,℃/s | 回火温度,℃ | 回火保温时间,min |
A | 908 | 30 | 50 | 632 | 47 |
B | 898 | 40 | 30 | 622 | 55 |
C | 895 | 45 | 18 | 613 | 62 |
D | 885 | 50 | 16 | 605 | 70 |
实施例产品的力学性能如表4所示,
表4
同时,由图1可见,本发明产品得到的组织为保留板条位向的回火索氏体组织,具有优良的强韧性,可获得良好的综合力学性能,-80℃低温条件下夏比冲击功≥150J,屈服强度≥460MPa,抗拉强度≥570MPa。在现有0.5Ni钢基础上,显著提高强度,减少低温球罐或储罐建造用材料壁厚,缩短建造周期并节约成本。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。
Claims (8)
- 一种具有优良低温韧性的高强度容器板,其特征在于:其化学成分及质量百分比如下:C:0.07%~0.11%,Si:0.10%~0.30%,Mn:1.30%~1.60%,Ni:0.40%~0.80%,Mo:0.05%~0.12%,V:0.02%~0.05%,Alt:0.02%~0.05%,P≤0.008%,S≤0.002%,余量为Fe和不可避免的杂质。
- 根据权利要求1所述的一种具有优良低温韧性的高强度容器板,其特征在于:其化学成分及质量百分比如下:C:0.07%~0.08%,Si:0.10%~0.21%,Mn:1.30%~1.55%,Ni:0.40%~0.47%,Mo:0.05%~0.07%,V:0.02%~0.045%,Alt:0.02%~0.038%,P≤0.005%,S≤0.001%,余量为Fe和不可避免的杂质。
- 根据权利要求1所述的一种具有优良低温韧性的高强度容器板,其特征在于:C:0.09%~0.10%,Si:0.15%~0.24%,Mn:1.32%~1.47%,Ni:0.50%~0.65%,Mo:0.08%~0.11%,V:0.029%~0.035%,Alt:0.030%~0.044%,P:0.004%~0.005%,S:0.0007%~0.002%,余量为Fe和不可避免的杂质。
- 根据权利要求1所述的一种具有优良低温韧性的高强度容器板,其特征在于:钢板厚度为10~50mm。
- 如权利要求1-4任意一项所述的一种具有优良低温韧性的高强度容器板的制造方法,其特征在于:包括炼钢连铸:采用铁水预处理,转炉顶底复吹冶炼,LF+RH精炼,按照成分设计要求进行成分控制,生产260mm厚坯料;板坯加热:板坯加热到1130~1160℃,在炉总时间≥220min,均热段保温时间30~60min,整张板坯温度均匀性≤10℃;控轧控冷:板坯出炉后采用高压水除鳞,除鳞水压力≥18MPa,采用两阶段控制轧制,第一阶段在奥氏体再结晶区轧制,第二阶段在奥氏体未再结晶区进行精轧,轧后控制冷却;热处理:采用离线淬火+回火工艺进行热处理。
- 根据权利要求5所述的一种具有优良低温韧性的高强度容器板的制造方 法,其特征在于:炼钢连铸:对铁水进行预处理,铁水中S含量<0.002wt%,转炉炼钢,LF炉深脱硫、脱氧,调整合金成分达到目标范围和过热度控制,RH炉脱气,真空度≤0.3torr,RH精炼后喂入纯钙线进行钙处理,喂线后静搅时间≥15min,连连铸成260mm厚度坯料,铸坯进行堆冷处理,堆冷时间≥48小时。
- 根据权利要求5所述的一种具有优良低温韧性的高强度容器板的制造方法,其特征在于:热轧过程采用控制轧制和控制冷却:第一阶段在奥氏体再结晶区轧制,粗轧累计压下量为55%~85%,第二阶段在奥氏体未再结晶区进行精轧,精轧累计压下量为50%~80%,终轧温度为820~860℃;轧后钢板采用层流冷却,控制返红温度为600~640℃。
- 根据权利要求5所述的一种具有优良低温韧性的高强度容器板的制造方法,其特征在于:热处理采用离线淬火+回火,淬火温度880~910℃,淬火冷速≥15℃/s,直接淬火到室温,离线淬火钢板加热到600~640℃回火40-75min,得到回火索氏体组织。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010690127.6A CN111893399A (zh) | 2020-07-17 | 2020-07-17 | 一种具有优良低温韧性的高强度容器板及制造方法 |
CN202010690127.6 | 2020-07-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022011936A1 true WO2022011936A1 (zh) | 2022-01-20 |
Family
ID=73190659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/133953 WO2022011936A1 (zh) | 2020-07-17 | 2020-12-04 | 一种具有优良低温韧性的高强度容器板及制造方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111893399A (zh) |
WO (1) | WO2022011936A1 (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114752863A (zh) * | 2022-05-28 | 2022-07-15 | 日钢营口中板有限公司 | 一种薄规格tmcp+回火管件用钢板及其制造方法 |
CN114875309A (zh) * | 2022-04-08 | 2022-08-09 | 鞍钢股份有限公司 | 一种厚规格高强度核反应堆安全壳用钢及其制造方法 |
CN114875304A (zh) * | 2022-03-31 | 2022-08-09 | 新余钢铁股份有限公司 | 一种sa537mcl2压力容器用调质高强度钢板及其生产方法 |
CN115094331A (zh) * | 2022-07-18 | 2022-09-23 | 柳州钢铁股份有限公司 | 一种低成本的q690钢板及其生产方法 |
CN115433873A (zh) * | 2022-08-31 | 2022-12-06 | 鞍钢股份有限公司 | 一种经济型且强韧性优异的e级球扁钢及其生产方法 |
CN115505852A (zh) * | 2022-10-26 | 2022-12-23 | 河北普阳钢铁有限公司 | 一种耐蚀农机用钢材及其制造方法 |
CN116875903A (zh) * | 2023-07-24 | 2023-10-13 | 鞍钢股份有限公司 | 一种低温延展性优异的690MPa级钢板及制造方法 |
CN116875904A (zh) * | 2023-07-24 | 2023-10-13 | 鞍钢股份有限公司 | 一种750MPa级石油储罐用钢板及其生产方法 |
CN118497591A (zh) * | 2024-07-22 | 2024-08-16 | 湖南华菱湘潭钢铁有限公司 | 一种高层建筑结构用高强韧钢板的生产方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111893399A (zh) * | 2020-07-17 | 2020-11-06 | 南京钢铁股份有限公司 | 一种具有优良低温韧性的高强度容器板及制造方法 |
CN112080684B (zh) * | 2020-07-17 | 2021-11-19 | 南京钢铁股份有限公司 | 一种具有优良心部韧性的高强度容器用厚板及制造方法 |
CN112877597A (zh) * | 2021-01-08 | 2021-06-01 | 南京钢铁股份有限公司 | 一种低温液态烃储罐用13MnNi6钢及其制造方法 |
CN113444969B (zh) * | 2021-06-17 | 2022-11-18 | 南京钢铁股份有限公司 | 一种美标容器低温服役条件用钢板及其生产方法 |
CN115786820B (zh) * | 2022-11-29 | 2023-12-15 | 南京钢铁股份有限公司 | 一种p690ql2船用储罐钢的制造方法 |
CN115747616B (zh) * | 2022-11-29 | 2024-06-14 | 南京钢铁股份有限公司 | 一种p690ql2船用储罐钢的冶炼方法 |
CN117026093A (zh) * | 2023-09-16 | 2023-11-10 | 湖南华菱湘潭钢铁有限公司 | 一种低表面硬度球罐用钢及其生产方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003089845A (ja) * | 2001-07-10 | 2003-03-28 | Nkk Corp | 低温靭性に優れた溶接構造用鋼 |
EP1726675A2 (en) * | 2005-05-25 | 2006-11-29 | The Japan Steel Works, Ltd. | Base material for a clad steel and method for the production of clad steel from same |
CN101831594A (zh) * | 2010-04-12 | 2010-09-15 | 首钢总公司 | 一种低温环境下使用的高强度钢板的制造方法 |
CN102181804A (zh) * | 2011-05-16 | 2011-09-14 | 舞阳钢铁有限责任公司 | 一种核一级关键设备用钢板及其生产方法 |
KR20130076569A (ko) * | 2011-12-28 | 2013-07-08 | 주식회사 포스코 | 황화물 응력균열 저항성 및 저온인성이 우수한 압력용기용 강재 및 그 제조방법 |
CN103540838A (zh) * | 2013-09-29 | 2014-01-29 | 舞阳钢铁有限责任公司 | 一种低温容器用钢板及生产方法 |
CN103882312A (zh) * | 2014-03-04 | 2014-06-25 | 南京钢铁股份有限公司 | 低成本高韧性-140℃低温用钢板及其制造方法 |
CN104726787A (zh) * | 2013-12-23 | 2015-06-24 | 鞍钢股份有限公司 | 一种低温韧性良好的高强度压力容器厚板及生产方法 |
CN110184531A (zh) * | 2018-07-20 | 2019-08-30 | 江阴兴澄特种钢铁有限公司 | 一种40-60mm厚易焊接心部低温韧性优良的容器钢板及其制造方法 |
CN111270149A (zh) * | 2020-03-30 | 2020-06-12 | 南京钢铁股份有限公司 | 一种超低温高心部冲击大厚度13MnNi6-3容器钢生产方法 |
CN111893399A (zh) * | 2020-07-17 | 2020-11-06 | 南京钢铁股份有限公司 | 一种具有优良低温韧性的高强度容器板及制造方法 |
-
2020
- 2020-07-17 CN CN202010690127.6A patent/CN111893399A/zh not_active Withdrawn
- 2020-12-04 WO PCT/CN2020/133953 patent/WO2022011936A1/zh active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003089845A (ja) * | 2001-07-10 | 2003-03-28 | Nkk Corp | 低温靭性に優れた溶接構造用鋼 |
EP1726675A2 (en) * | 2005-05-25 | 2006-11-29 | The Japan Steel Works, Ltd. | Base material for a clad steel and method for the production of clad steel from same |
CN101831594A (zh) * | 2010-04-12 | 2010-09-15 | 首钢总公司 | 一种低温环境下使用的高强度钢板的制造方法 |
CN102181804A (zh) * | 2011-05-16 | 2011-09-14 | 舞阳钢铁有限责任公司 | 一种核一级关键设备用钢板及其生产方法 |
KR20130076569A (ko) * | 2011-12-28 | 2013-07-08 | 주식회사 포스코 | 황화물 응력균열 저항성 및 저온인성이 우수한 압력용기용 강재 및 그 제조방법 |
CN103540838A (zh) * | 2013-09-29 | 2014-01-29 | 舞阳钢铁有限责任公司 | 一种低温容器用钢板及生产方法 |
CN104726787A (zh) * | 2013-12-23 | 2015-06-24 | 鞍钢股份有限公司 | 一种低温韧性良好的高强度压力容器厚板及生产方法 |
CN103882312A (zh) * | 2014-03-04 | 2014-06-25 | 南京钢铁股份有限公司 | 低成本高韧性-140℃低温用钢板及其制造方法 |
CN110184531A (zh) * | 2018-07-20 | 2019-08-30 | 江阴兴澄特种钢铁有限公司 | 一种40-60mm厚易焊接心部低温韧性优良的容器钢板及其制造方法 |
CN111270149A (zh) * | 2020-03-30 | 2020-06-12 | 南京钢铁股份有限公司 | 一种超低温高心部冲击大厚度13MnNi6-3容器钢生产方法 |
CN111893399A (zh) * | 2020-07-17 | 2020-11-06 | 南京钢铁股份有限公司 | 一种具有优良低温韧性的高强度容器板及制造方法 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114875304A (zh) * | 2022-03-31 | 2022-08-09 | 新余钢铁股份有限公司 | 一种sa537mcl2压力容器用调质高强度钢板及其生产方法 |
CN114875309A (zh) * | 2022-04-08 | 2022-08-09 | 鞍钢股份有限公司 | 一种厚规格高强度核反应堆安全壳用钢及其制造方法 |
CN114752863A (zh) * | 2022-05-28 | 2022-07-15 | 日钢营口中板有限公司 | 一种薄规格tmcp+回火管件用钢板及其制造方法 |
CN115094331A (zh) * | 2022-07-18 | 2022-09-23 | 柳州钢铁股份有限公司 | 一种低成本的q690钢板及其生产方法 |
CN115433873A (zh) * | 2022-08-31 | 2022-12-06 | 鞍钢股份有限公司 | 一种经济型且强韧性优异的e级球扁钢及其生产方法 |
CN115433873B (zh) * | 2022-08-31 | 2024-04-19 | 鞍钢股份有限公司 | 一种经济型且强韧性优异的e级球扁钢及其生产方法 |
CN115505852A (zh) * | 2022-10-26 | 2022-12-23 | 河北普阳钢铁有限公司 | 一种耐蚀农机用钢材及其制造方法 |
CN116875903A (zh) * | 2023-07-24 | 2023-10-13 | 鞍钢股份有限公司 | 一种低温延展性优异的690MPa级钢板及制造方法 |
CN116875904A (zh) * | 2023-07-24 | 2023-10-13 | 鞍钢股份有限公司 | 一种750MPa级石油储罐用钢板及其生产方法 |
CN118497591A (zh) * | 2024-07-22 | 2024-08-16 | 湖南华菱湘潭钢铁有限公司 | 一种高层建筑结构用高强韧钢板的生产方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111893399A (zh) | 2020-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022011936A1 (zh) | 一种具有优良低温韧性的高强度容器板及制造方法 | |
CN111363973B (zh) | 一种心部低温冲击韧性优良的特厚容器钢板及其制造方法 | |
CN110184532B (zh) | 一种具有优良-60℃超低温冲击韧性的耐磨钢板及其生产方法 | |
CN107974612B (zh) | 一种抗sscc球罐用高强韧钢板及其制造方法 | |
WO2022011935A1 (zh) | 一种具有优良心部韧性的高强度容器用厚板及制造方法 | |
CN108070789B (zh) | 屈服强度不小于480MPa级超细晶特厚钢及制备方法 | |
CN109913750B (zh) | 具有高表面质量的高强度薄钢板及其制备方法 | |
CN110172646A (zh) | 一种船用储罐p690ql1钢板及制造方法 | |
CN110747409B (zh) | 一种低温储罐用低镍钢及其制造方法 | |
CN110616372A (zh) | 一种大厚度14Cr1MoR钢板及其生产方法 | |
CN114000056A (zh) | 一种屈服强度960MPa级低屈强比海工用钢板及其制备方法 | |
CN110846571A (zh) | 一种高韧性低合金耐磨钢厚板及其制造方法 | |
CN111996462B (zh) | 一种纵向变厚度超高强船板及生产方法 | |
CN111270169A (zh) | 一种具有优异低温韧性的含Ni合金钢板及其生产方法 | |
CN111004978B (zh) | 一种低合金耐高温压力容器钢板及其生产方法 | |
CN114875331B (zh) | 一种具有优良心部疲劳性能的610MPa级厚钢板及其生产方法 | |
CN116043130B (zh) | 一种模焊性能优良的经济型700MPa级储罐钢板及其制造方法 | |
CN116377328B (zh) | 一种x60钢板及其制造方法 | |
CN114086051B (zh) | 一种60~120mm厚850MPa级高强度高韧性易焊接纳米钢及其制备方法 | |
CN110592469A (zh) | 一种550MPa级无预热焊接厚规格海洋工程用钢板及其制备方法 | |
CN113502439B (zh) | 一种易加工高强钢及其生产方法 | |
CN118581405A (zh) | 一种储氢设备用300系不锈钢钢板及其制造方法 | |
CN118531296A (zh) | 一种高强韧性的压力容器用调质钢板及其制造方法 | |
CN118703883A (zh) | 一种耐晶间腐蚀的高碳奥氏体不锈钢钢板及其制备方法 | |
CN117070840A (zh) | 经济型235MPa级热轧钢板及其延伸率稳定控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20945355 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20945355 Country of ref document: EP Kind code of ref document: A1 |