[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020094090A1 - 离子选择性复合隔膜及其制备方法和应用 - Google Patents

离子选择性复合隔膜及其制备方法和应用 Download PDF

Info

Publication number
WO2020094090A1
WO2020094090A1 PCT/CN2019/116215 CN2019116215W WO2020094090A1 WO 2020094090 A1 WO2020094090 A1 WO 2020094090A1 CN 2019116215 W CN2019116215 W CN 2019116215W WO 2020094090 A1 WO2020094090 A1 WO 2020094090A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
selective composite
coating
lithium
inorganic ceramic
Prior art date
Application number
PCT/CN2019/116215
Other languages
English (en)
French (fr)
Inventor
何平
王鹏飞
周豪慎
Original Assignee
苏州迪思伏新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州迪思伏新能源科技有限公司 filed Critical 苏州迪思伏新能源科技有限公司
Publication of WO2020094090A1 publication Critical patent/WO2020094090A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • H01M50/4295Natural cotton, cellulose or wood
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of battery separators, in particular to an ion selective composite separator, its preparation method and application.
  • the current commercial lithium-ion battery has a maximum actual energy density of about 240Wh ⁇ kg -1 , which is only higher than that of the first-generation lead-acid battery (40Wh ⁇ kg -1 ) 5 times higher.
  • the original battery system has an urgent need for the development of new battery systems with high energy density due to its inherent theoretical upper limit.
  • Lithium-sulfur battery is an ideal choice for the next-generation battery composed of S cathode and Li anode. Its theoretical energy density is as high as 2600Wh ⁇ kg -1 , and it is environmentally friendly and low cost.
  • the technical problem to be solved by the present invention is to provide an ion-selective composite membrane, which can effectively suppress the shuttle of polysulfide ions and the generation of lithium dendrites.
  • the present invention provides an ion-selective composite membrane, which includes a polymer porous layer, a carboxymethylcellulose sodium coating and an inorganic ceramic coating respectively coated on both sides of the polymer porous layer .
  • the sodium carboxymethyl cellulose coating is located on the positive side of the separator
  • the inorganic ceramic coating is located on the negative side of the separator.
  • the sodium carboxymethyl cellulose is a series of modified products of natural cellulose, including commonly used modification methods of natural cellulose such as etherification or esterification, the production process is mature, and the output Rich, and rich in natural sources, environmentally friendly, very suitable for large-scale production.
  • a preferred solution in the present invention is that the thickness of the inorganic ceramic coating is 0.01-40 ⁇ m, and the thickness of the sodium carboxymethyl cellulose coating is 0.01-20 ⁇ m.
  • a preferred solution in the present invention is that the total thickness of the ion-selective composite separator is 0.1-100 ⁇ m.
  • the inorganic ceramic coating is a coating formed of one or more components of Al 2 O 3 , other transition metal oxides or sulfides.
  • other transition metal oxides or sulfides include CeO 2 , MoS 2 , ZrO 2 , MoO 2 , and ZnO. More preferably, the inorganic ceramic coating is Al 2 O 3 coating.
  • the polymer porous layer is a polypropylene (PP) layer or a polyethylene (PE) layer; or includes at least two layers of alternately stacked PP layers and PE layers.
  • PP polypropylene
  • PE polyethylene
  • the polymer porous layer can also be made of other commercially available polymer films, including but not limited to polyester films, cellulose films, polyimide films, and polyamide films.
  • Another aspect of the present invention provides a method for preparing the above ion-selective composite membrane, including the following steps:
  • porous polymer layer coated with an inorganic ceramic coating on one side dissolve sodium carboxymethylcellulose in a solvent, apply the resulting solution to the other side of the porous polymer layer, and bake at 35 to 80 ° C 1 ⁇ 72h, the ion selective composite membrane is obtained.
  • a preferred solution in the present invention is to apply the sodium carboxymethyl cellulose solution by a doctor blade coating method, the gap width of the doctor blade is 0.1-30 ⁇ m, and the speed of the doctor blade is 0.1-10 cm / s.
  • the inorganic ceramic coating is prepared through the following steps:
  • the inorganic ceramic powder, binder and solvent are prepared into a slurry, which is sprayed on the surface of the porous polymer layer to obtain an inorganic ceramic coating; wherein, the mass ratio of the inorganic ceramic powder to the binder is 1: 99 ⁇ 30 : 70.
  • a preferred solution in the present invention is that the binder is PVDF and / or sodium alginate.
  • a preferred solution in the present invention is that the solvent used for dissolving sodium carboxymethyl cellulose and inorganic ceramic powder is water and / or an organic solvent; wherein the organic solvent is selected from N-methylpyrrolidone (NMP), N, One or more of N-dimethylformamide (DMF), tetrahydrofuran (THF), acetonitrile, and acetone.
  • NMP N-methylpyrrolidone
  • DMF N-dimethylformamide
  • THF tetrahydrofuran
  • acetonitrile acetone
  • the preferred solution in the present invention is to spray the slurry onto the surface of the polymer porous layer using an industrial transfer or extrusion spray method.
  • Another aspect of the present invention provides the application of the ion-selective composite separator in lithium batteries, especially in lithium-sulfur batteries and lithium-lithium symmetric batteries.
  • Step 1 S powder and Ketchen black are mixed by hand grinding, the resulting mixed material is packed in glass bottles, pre-fired in Ar atmosphere at 155 °C for 0.5-10 hours; take out and continue grinding for 0.5-3 hours, then at 200 °C It is further annealed in an Ar gas atmosphere, and finally a highly conductive composite material of S @ ⁇ ⁇ ⁇ is obtained.
  • the ratio of S to Ketjen Black is 95: 5 ⁇ 50: 50.
  • Step 2 Grind S @ ⁇ ⁇ ⁇ , conductive agent (SP) uniformly in the ratio of 6: 1 ⁇ 9: 1, then add the pre-prepared glue solution and stir for 0.5 ⁇ 12h to form a uniform and stable slurry;
  • SP conductive agent
  • Step 3 Apply the slurry from the above step to the aluminum current collector, vacuum dry at 35-80 ° C overnight, cut into circular electrode pieces with a diameter of 0.2-1.5 cm using a mold, and assemble the button battery for use.
  • Step 4 Assemble the negative electrode case, lithium sheet, composite separator, electrolyte, S electrode sheet, and positive electrode case into a button cell.
  • Step 1 Cut the metal Li sheet into small discs with a preset diameter, the diameter must be smaller than the diameter of the cut composite diaphragm;
  • Step 2 Assemble the negative electrode casing, the cut lithium sheet, the composite separator, the electrolyte, the cut lithium sheet, and the positive electrode casing into a button cell.
  • the CMC coating on the positive electrode side can adsorb polysulfide ions through chemical bonds to form a polysulfide ion adsorption layer, which blocks the polysulfide ions through the double action of electric field and physics; at the same time, it suppresses to a certain extent
  • the migration of anions in LiTFSI improves the migration number of Li + and also makes the contact between the separator and the electrode closer, shortening the migration distance of ions in the electrode;
  • the inorganic ceramic coating on the negative electrode side serves as a stable interface layer , Maintaining a uniform lithium ion anode interface flux, which facilitates the uniform deposition of lithium ions on the anode and avoids the formation of lithium anode cracks.
  • the synergistic effect of the two can further avoid a series of problems caused by the so-called "shuttle effect" of lithium-sulfur batteries, such as reduced Coulomb efficiency, increased negative side reactions, and abrupt capacity decay.
  • the test of the symmetrical battery also showed that the composite separator facilitated the uniform deposition of lithium ions, and the surface of the lithium metal electrode showed a uniform surface morphology. The method is simple to operate, is beneficial to large-scale preparation, and is helpful for the wide commercial application of high energy density lithium-sulfur batteries.
  • FIG. 1 (a) is a schematic structural view of the application of the composite separator of the present invention in a lithium-sulfur battery
  • Figures 1 (b)-(e) are the surface topography of three kinds of separators; where, b is the scanning electron microscope (SEM) image of the CMC coated surface, c is the SEM image of the pure polymer film, and d and e are SEM image of polymer surface and Al 2 O 3 surface coated with Al 2 O 3 separator;
  • SEM scanning electron microscope
  • FIG. 2 is a schematic diagram of the blocking effect of the three membranes in FIG. 1 on polysulfide ions; where, a is a pure polymer membrane, b is an Al 2 O 3 coated membrane, and c is Al 2 O 3 and CMC coated Diaphragm
  • Example 3 is a graph of the cycle performance and Coulomb efficiency of the lithium-sulfur battery in Example 2, the test current is 0.5C;
  • the three types of separators are pure polymer separators, Al 2 O 3 -polymer separators and Al 2 O 3 -polymers -CMC composite diaphragm;
  • Figure 4 is a graph of the adsorption effect of CMC coating on polysulfide; a and b are the comparison before and after the addition of CMC powder, and cf is the test of the coated membrane soaked in polysulfide solution and then repeatedly rinsed with DME XPS map;
  • Example 5 is a charge-discharge diagram of a lithium-lithium symmetric battery in Example 3, in which the deposition capacity is 4 mAh ⁇ cm -2 and the current is 20 mA ⁇ cm -2 ;
  • FIG. 6 is a SEM image of the lithium metal surface obtained after disassembly of the lithium-lithium symmetric battery in Example 3 after the same number of charge and discharge cycles; where a and b are the lithium metal surfaces on both sides of the pure polymer separator, c, d are Al 2 O 3 - Li 2 O 3 metal surface of the polymer surface and the surface of an Al polymer membrane, e, f are Al 2 O 3 - CMC side and Al 2 O polymer membrane -CMC Lithium metal surface on 3 sides;
  • Example 7 is the Li + lithium symmetrical battery in Example 3 using the AC impedance and potentiostat chronoamperometry to test the number of Li + migration, where a, b, and c are the AC impedance graphs before and after polarization of the three membranes, respectively.
  • the specific migration number of Li + of the three separators calculated by the formula;
  • FIG. 8 is a graph of the surface change of the Al 2 O 3 coating after baking at 120 °C and 150 °C for 1 hour.
  • Example 1 Preparation of ion-selective composite separator and lithium-sulfur battery
  • An ion-selective composite separator comprising a sodium carboxymethyl cellulose (CMC) coating applied on the positive side of the separator, an Al 2 O 3 coating applied on the negative side of the separator, and a polymer porous layer in the middle.
  • the thickness of the polymer porous layer is 12 ⁇ m
  • the thickness of the CMC coating is 10 ⁇ m
  • the thickness of the Al 2 O 3 coating is 4 ⁇ m.
  • the preparation method of the ion selective composite membrane is as follows:
  • Step 1 S powder and Ketjen Black are mixed by hand grinding, the obtained mixed materials are packed in glass bottles, pre-fired in Ar atmosphere at 155 °C for 5h; take out and continue grinding for 1h, and then in Ar atmosphere at 200 °C After further annealing for 2h, S @ ⁇ ⁇ ⁇ 's highly conductive composite material was finally obtained.
  • the mass ratio of S to Ketjen Black is 70:30.
  • Step 2 Grind S @ ⁇ ⁇ ⁇ and conductive agent SP at a ratio of 8: 1, then add the pre-prepared 5% PVDF glue solution and stir for 2h to form a uniform and stable slurry;
  • Step 3 Coat the obtained slurry on an aluminum current collector, vacuum dry at 60 ° C overnight, and cut into circular electrode pieces with a diameter of 1.2 cm using a mold;
  • Step 4 Assemble the negative electrode case, lithium sheet, composite separator, electrolyte, S electrode sheet, and positive electrode case into a button cell.
  • FIG. 1 (a) is a schematic diagram of the lithium-sulfur battery prepared in Example 1.
  • FIG. The cross-sectional SEM images show the thickness of each coating and polymer layer.
  • the thickness of the polymer layer is 12 ⁇ m
  • the thickness of the CMC coating is 10 ⁇ m
  • the thickness of the Al 2 O 3 coating is 4 ⁇ m.
  • Figure 1 (b)-(e) shows that the coating has a porous structure, which can allow the smooth passage of ions.
  • Figure 2 shows the blocking effect of different coating layers on polysulfide ions.
  • Figure 2 (a) is a pure polymer membrane, and polysulfide ions can easily shuttle to the other side of the mold; while Figure 2 (b) is a polymer membrane coated with Al 2 O 3 coating only , Showing a better barrier effect than pure polymer membranes, but some polysulfide ions will still shuttle after 24h; and the composite membrane with Al 2 O 3 and CMC coating in Fig. 2 (c) remains at 24h Good polysulfide barrier effect.
  • Example 2 Preparation of ion-selective composite separator and lithium-sulfur battery
  • An ion selective composite separator comprising a sodium carboxymethyl cellulose (CMC) coating applied on the positive side of the separator, an Al 2 O 3 coating on the negative side and a porous polymer layer in the middle, the polymer
  • the thickness of the porous layer is 12 ⁇ m
  • the thickness of the CMC coating is 2 ⁇ m
  • the thickness of the Al 2 O 3 coating is 4 ⁇ m.
  • the preparation method of the ion selective composite membrane is as follows:
  • CMC sodium carboxymethyl cellulose
  • Step 1 S powder and Ketjen Black are mixed by hand grinding, the obtained mixed materials are packed in glass bottles, pre-fired in Ar atmosphere at 155 °C for 5h; take out and continue grinding for 1h, and then in Ar atmosphere at 200 °C After further annealing for 2h, S @ ⁇ ⁇ ⁇ 's highly conductive composite material was finally obtained.
  • the ratio of S to Ketjen Black is 70:30.
  • Step 2 Grind S @ ⁇ ⁇ ⁇ , conductive agent (SP) at a ratio of 8: 1, then add the pre-prepared 5% PVDF glue solution and stir for 2h to form a uniform and stable slurry;
  • SP conductive agent
  • Step 3 Apply the slurry from the above step to the aluminum current collector, vacuum dry at 60 ° C overnight, cut into circular electrode pieces with a mold, and assemble a 1.2cm diameter button cell for use.
  • Step 4 Assemble the negative electrode case, lithium sheet, composite separator, electrolyte, S electrode sheet and positive electrode case into a coin cell, and perform relevant electrochemical tests such as charge and discharge.
  • FIG. 3 is a graph of electrochemical performance of the lithium-sulfur battery of Example 2.
  • FIG. It can be seen from the figure that after 300 cycles of 0.5C, the capacity of pure polymer membrane, Al 2 O 3 coated membrane, Al 2 O 3 and CMC coated membrane can be maintained at 626.3, 681.3 and 812.2mAh ⁇ g -1 , in which Al 2 O 3 and CMC-coated separators can maintain a specific capacity of 718.2 mAh ⁇ g -1 in 500 cycles, showing good cycle stability.
  • the change graph of Coulomb efficiency also shows that the pure polymer membrane has a strong shuttle phenomenon, resulting in severe capacity overcharge.
  • CMC has a strong adsorption effect on polysulfide, and the adsorbed polysulfide further inhibits the shuttle of polysulfide through the action of physical and electric fields;
  • Figure 4 (f) shows that the surface of CMC adsorbs firmly Layer of polysulfide, some of which are oxidized to other sulfur-containing substances during the test; at the same time, c, d, and e in the figure also show that CMC has rich functional groups such as hydroxyl, carboxyl, and ether groups. The layer can effectively adsorb and inhibit the polysulfide shuttle to provide theoretical support.
  • An ion-selective composite separator comprising a sodium carboxymethyl cellulose (CMC) coating applied on the positive side of the separator, an Al 2 O 3 coating applied on the negative side, and a polymer porous layer in the middle, said The thickness of the polymer porous layer was 12 ⁇ m, the thickness of the CMC coating was 2 ⁇ m, and the thickness of the Al 2 O 3 coating was 4 ⁇ m.
  • CMC sodium carboxymethyl cellulose
  • the preparation method of the ion selective composite membrane is as follows:
  • CMC sodium carboxymethyl cellulose
  • Step 1 Cut the metal Li piece into a small 1.2cm diameter wafer
  • Step 2 Assemble the negative electrode case, the cut lithium sheet, the composite separator, the electrolyte, the cut lithium sheet, and the positive electrode case into a button cell, and perform electrochemically related characterization of the symmetric battery.
  • FIG. 5 is a charge-discharge curve of the lithium-lithium symmetric battery prepared in this example, in which the deposition capacity is 4 mAh ⁇ cm ⁇ 2 and the current is 20 mA ⁇ cm ⁇ 2 .
  • Al 2 O 3 and CMC-coated separators have the smallest charge-discharge overpotential, about 55mV, and can be stably charged and discharged for 900h at a large current of 20mA ⁇ cm -2 ; for comparison, only Al 2 overpotential separator O 3 coating of about 160mV, and the pure polymer membrane overpotential of 280mV. This shows that the CMC coating can significantly reduce the overpotential of the battery, possibly because it can make the electrode and the separator contact more closely, reducing the charge transfer resistance.
  • FIG. 6 shows the surface morphology of Li metal after disassembling the lithium-lithium symmetrical batteries with different separators after cycling 10 cycles under the conditions of 4 mAh ⁇ cm -2 and current of 20 mA ⁇ cm -2 .
  • Fig. 6 (a) and (b) are pure polymer separators, and it can be clearly seen that dendrites are generated due to uneven lithium deposition; Fig.
  • FIG. 6 (c) is only the polymer side lithium of Al 2 O 3 coated separators The surface also shows uneven lithium deposition;
  • Figures 6 (d) and (f) are the Al 2 O 3 coated separator and Al 2 O 3 , and the Al 2 O 3 surface Li metal surface shape of the CMC coated separator The appearance is relatively uniform, and the Li surface on the CMC side in Figure 6 (e) appears as a unified whole, showing a uniform Li deposition; further proof that the Al 2 O 3 and CMC coated separators have good lithium -Lithium symmetric battery performance.
  • the ion-selective composite separator of the present invention can suppress the shuttle effect of the lithium-sulfur battery on the one hand, improve the cycle stability and coulombic efficiency of the lithium-sulfur battery; on the other hand, make the separator and electrode pads contact more closely and reduce the charge
  • the transfer resistance enables Li + to be deposited uniformly at the interface; meanwhile, Al 2 O 3 coating can effectively improve the safety performance of the separator.
  • the scheme can also be extended to battery systems such as lithium air and traditional cathode material systems, and can also be applied to other battery systems that use lithium metal anodes, which can reduce the interface impedance and improve the interface stability of the battery;
  • the design is easy to operate, safe and stable during battery operation, and is an effective method to improve the performance of commercial batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种离子选择性复合隔膜,包括聚合物多孔层和分别涂敷于所述聚合物多孔层两侧的羧甲基纤维素钠涂层和无机陶瓷涂层。本发明还提供了所述离子选择性复合隔膜的制备方法以及其在锂电池中的应用。本发明的离子选择性复合隔膜,能够有效抑制多硫离子的穿梭以及锂枝晶的产生。

Description

离子选择性复合隔膜及其制备方法和应用 技术领域
本发明涉及电池隔膜技术领域,具体涉及一种离子选择性复合隔膜,其制备方法和应用。
背景技术
相较于电子产品的内存每18个月就可以实现翻倍的增长,当下商用的锂离子电池最高实际能量密度约为240Wh·kg -1,仅比第一代的铅酸电池(40Wh·kg -1)高了5倍。在此背景下,特别是电动汽车,小型电子设备等产品的推广,原有电池体系由于本身固有的理论上限,迫切需要高能量密度新电池体系的开发。锂硫电池是一种由S阴极和Li阳极组成的下一代电池的理想选择。其理论能量密度高达2600Wh·kg -1,且环境友好、成本低廉。然而,仍然存在几个急需克服的技术缺陷:(1)充放电过程中较大体积膨胀,约80%;(2)S及其放电产物Li 2S的电子导电性较差(5×10 -30S·cm -1);(3)锂硫电池的反应属于溶解-沉积反应,其中间产物多硫化物(Li 2S n,4≤n≤8)溶于电解液,进而穿梭到负极,与锂金属发生副反应造成不可逆容量损失及库伦效率低下,在充电过程中部分被还原的多硫离子又穿梭回正极,导致过充现象。(4)作为以金属锂做负极的电池体系,不可避免地要面对金属锂负极所引起的枝晶生长,库伦效率低下等问题,其中枝晶生长导致的安全隐患是主要问题。以上四点主要技术问题中,(3)和(4)是阻碍锂硫电池商用化的主要问题。因此,寻求一种更加方便有效、适用范围广的措施来解决这些阻碍锂硫电池应用的问题对开发下一代高比能二次电池具有深远的意义。
发明内容
本发明要解决的技术问题是提供一种离子选择性复合隔膜,该复合隔膜能够有效抑制多硫离子的穿梭以及锂枝晶的产生。
为了解决上述技术问题,本发明提供了一种离子选择性复合隔膜,包括聚合物多孔层和分别涂敷于所述聚合物多孔层两侧的羧甲基纤维素钠涂层和无机陶瓷涂层。其中,羧甲基纤维素钠涂层位于隔膜的正极侧,无机陶瓷涂层位于隔膜的负极侧。
本发明中,所述羧甲基纤维素钠(CMC)为天然纤维素的一系列改性产物,包括醚化或者酯化等常用的对天然纤维素的改性方式,其生产工艺成熟,产量丰富,且自然界来源丰富,环境友好,非常适于应用在大规模生产。
本发明中优选的方案为,所述无机陶瓷涂层的厚度为0.01~40μm,所述羧甲基纤维素钠涂层的厚度为0.01~20μm。
本发明中优选的方案为,所述离子选择性复合隔膜的总厚度为0.1~100μm。
本发明中,所述无机陶瓷涂层是由Al 2O 3、其它过渡金属氧化物或硫化物中的一种或多种组分形成的涂层。其中,其它过渡金属氧化物或硫化物,可以举出CeO 2,MoS 2,ZrO 2,MoO 2,ZnO等例子。更优选的,所述无机陶瓷涂层为Al 2O 3涂层。
本发明中优选的方案为,所述聚合物多孔层为聚丙烯(PP)层或聚乙烯(PE)层;或包括至少两层交替叠设的PP层和PE层。当然,该聚合物多孔层也可以为其他商业化的聚合物膜制成的,包括但不限于聚酯膜、纤维素膜、聚酰亚胺膜、聚酰胺膜。
本发明的另一方面提供了上述离子选择性复合隔膜的制备方法,包括以下步骤:
提供一面涂敷有无机陶瓷涂层的聚合物多孔层;将羧甲基纤维素钠溶于溶剂中,得到的溶液涂敷于聚合物多孔层的另一面,于35~80℃下烘烤1~72h,即得所述离子选择性复合隔膜。
本发明中优选的方案为,采用刮刀涂敷法进行羧甲基纤维素钠溶液的涂敷,刮刀的缝隙宽度为0.1~30μm,刮刀的速度为0.1~10cm/s。
本发明中,所述无机陶瓷涂层是经如下步骤制备而成的:
将无机陶瓷粉料、粘结剂和溶剂调制成浆料,喷涂于聚合物多孔层的表面,得到无机陶瓷涂层;其中,无机陶瓷粉料与粘结剂的质量比为1:99~30:70。
本发明中优选的方案为,所述粘结剂为PVDF和/或海藻酸钠。
本发明中优选的方案为,溶解羧甲基纤维素钠和无机陶瓷粉料所用的溶剂为水和/或有机溶剂;其中,所述有机溶剂选自N-甲基吡咯烷酮(NMP)、N,N-二甲基甲酰胺(DMF)、四氢呋喃(THF)、乙腈、丙酮中的一种或多种。
本发明中优选的方案为,采用工业用转移式或挤压式喷涂方法将浆料喷涂于聚合物多孔层的表面。
本发明又一方面提供了所述的离子选择性复合隔膜在锂电池中的应用,尤其是在锂硫电池和锂-锂对称电池中的应用。
作为在锂硫电池中的应用,其具体步骤如下:
步骤一:将S粉和科琴黑通过手工研磨混匀,得到的混合材料装于玻璃瓶中,于155℃Ar气氛围中预烧0.5~10h;取出继续研磨0.5~3h,再于200℃Ar气氛围中进一步退火,最终得到S@科琴黑的高导电性复合材料。其中,S与科琴黑的比例为95:5~50:50。
步骤二:将S@科琴黑,导电剂(SP)按6:1~9:1的比例研磨均匀,之后加入预先配好的胶液,搅拌0.5~12h至形成均一稳定的浆料;
步骤三:将上述步骤的浆料涂布在铝集流体,真空35~80℃过夜烘干, 用模具裁成直径为0.2~1.5cm的圆形电极片,扣式电池装配备用。
步骤四:将负极壳、锂片、复合隔膜、电解液、S电极片和正极壳组装成扣式电池。
作为在锂-锂对称电池中的应用,具体步骤如下:
步骤一:将金属Li片裁成预先设定好的直径的小圆片,直径须小于所裁复合隔膜的直径;
步骤二:将负极壳、裁好的锂片、复合隔膜、电解液、裁好锂片和正极壳组装成扣式电池。
本发明的有益效果:
本发明的离子选择性复合隔膜,一方面正极侧的CMC涂层可以通过化学键吸附多硫离子,形成多硫离子吸附层,通过电场和物理双重作用阻隔多硫离子;同时,一定程度上抑制了LiTFSI中阴离子的迁移,提高了Li +的迁移数,也使隔膜与电极的接触更加紧密,缩短了离子在电极的迁移距离;另一方面,负极侧的无机陶瓷涂层作为一个稳定的界面层,维持了均匀的锂离子负极界面通量,利于锂离子于负极的均匀沉积,避免了锂阳极裂纹的形成。此外,两者的协同作用可进一步避免锂硫电池所谓的“穿梭效应”所引起的一系列诸如库伦效率降低、负极副反应加剧、容量急剧衰减等问题。另外,对称电池的测试也显示了该复合隔膜利于锂离子的均匀沉积,锂金属电极表面表现出均一的表面形貌。该方法操作简单,有利于大规模制备,有助于高能量密度锂硫电池的广泛的商业应用。
附图说明
图1(a)是本发明的复合隔膜在锂硫电池中应用的结构示意图;
图1(b)-(e)为三种隔膜的表面形貌图;其中,b为CMC涂覆表面的扫描电镜(SEM)图,c为纯聚合物膜的SEM图,d和e分别为涂覆Al 2O 3隔膜 的聚合物面及Al 2O 3面SEM图;
图2是图1中的三种隔膜对多硫离子的阻隔效果示意图;其中,a为纯聚合物隔膜,b为涂覆Al 2O 3的隔膜,c为涂覆Al 2O 3和CMC的隔膜;
图3是实施例2中锂硫电池的循环性能和库伦效率图,测试电流为0.5C;三种隔膜分别为纯聚合物隔膜,Al 2O 3-聚合物隔膜和Al 2O 3-聚合物-CMC复合隔膜;
图4是CMC涂层对多硫化物的吸附效果图;其中a,b分别为加入CMC粉末的前后对比图,c-f为该涂覆隔膜在多硫溶液浸泡再用DME反复润洗后的测试的XPS图谱;
图5是实施例3中锂-锂对称电池的充放电图,其中沉积容量为4mAh·cm -2,电流为20mA·cm -2
图6是是实施例3中锂-锂对称电池在同样充放电循环圈数后,拆解后得到的金属锂表面的SEM图;其中a,b为纯聚合物隔膜的两侧锂金属表面,c,d分别为Al 2O 3-聚合物隔膜的聚合物面和Al 2O 3面的锂金属表面,e,f分别为Al 2O 3-聚合物-CMC隔膜的CMC侧和Al 2O 3侧的锂金属表面;
图7是实施例3中锂-锂对称电池用交流阻抗和恒电位计时电流法所测试的Li +迁移数,其中a,b,c分别为三种隔膜极化前后的交流阻抗图,d为通过公式计算出的三种隔膜的Li +的具体迁移数;
图8为Al 2O 3涂层分别在120℃和150℃烘烤1h后的表面变化图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例1:制备离子选择性复合隔膜及锂硫电池
一种离子选择性复合隔膜,包括涂敷于隔膜正极侧的羧甲基纤维素钠(CMC) 涂层,涂敷于隔膜负极侧的Al 2O 3涂层以及中间的聚合物多孔层,所述聚合物多孔层的厚度为12μm,CMC涂层的厚度为10μm,Al 2O 3涂层的厚度为4μm。
所述的离子选择性复合隔膜的制备方法如下:
A、选取工业用涂覆法制备的单面Al 2O 3隔膜,另外一面为聚合物层;
B、将CMC溶于H 2O和有机溶剂的混合溶剂中,搅拌12h,使CMC均匀分散于溶剂;
C、将分散均匀的CMC胶液转移至涂膜板的隔膜上,用刮刀法涂覆制得涂层均一的复合隔膜,调控涂层厚度10μm;
D、将涂覆好的隔膜转移到真空烘箱中,于45℃48h烘干,然后裁成直径为1.6cm的圆形,以备扣式电池的装配及隔膜的性能测试。
将上述制备的离子选择性复合隔膜应用于锂硫电池中,具体步骤如下:
步骤一:将S粉和科琴黑通过手工研磨混匀,得到的混合材料装于玻璃瓶中,于155℃Ar气氛围中预烧5h;取出继续研磨1h,再于200℃Ar气氛围中进一步退火2h,最终得到S@科琴黑的高导电性复合材料。其中,S与科琴黑的质量比为70:30。
步骤二:将S@科琴黑、导电剂SP按8:1的比例研磨均匀,之后加入预先配好的5%PVDF胶液,搅拌2h至形成均一稳定的浆料;
步骤三:将得到的浆料涂布在铝集流体上,真空60℃过夜烘干,用模具裁成直径为1.2cm的圆形电极片;
步骤四:将负极壳、锂片、复合隔膜、电解液、S电极片以及正极壳组装成扣式电池。
图1(a)为实施例1制备的锂硫电池的示意图。其中的截面SEM图显示出各个涂层及聚合物层的厚度,聚合物层的厚度为12μm,CMC涂层的厚度为10μm,Al 2O 3涂层的厚度为4μm。
图1(b)-(e)显示了涂层为多孔结构,可以允许离子的顺利通过。
图2显示了不同涂覆层对多硫离子的阻隔效果。从图中可以发现,图2(a)为纯聚合物隔膜,多硫离子很容易穿梭到模具的另一边;而图2(b)为仅涂覆了Al 2O 3涂层的聚合物隔膜,显示了比纯聚合物隔膜更好的阻隔效果,但是24h后仍会有部分多硫离子穿梭;而图2(c)为Al 2O 3和CMC涂层的复合隔膜则在24h仍保持了良好的多硫化物阻隔效果。
实施例2:制备离子选择性复合隔膜及锂硫电池
一种离子选择性复合隔膜,包括涂敷于隔膜正极侧的羧甲基纤维素钠(CMC)涂层,位于负极侧的Al 2O 3涂层以及中间的聚合物多孔层,所述聚合物多孔层的厚度为12μm,CMC涂层的厚度为2μm,Al 2O 3涂层的厚度为4μm。
所述的离子选择性复合隔膜的制备方法如下:
A、选取工业用涂覆法制备的单面Al 2O 3隔膜,另外一面为聚合物层;
B、将羧甲基纤维素钠(CMC)溶于H 2O和有机溶剂的混合溶剂,搅拌12h,使CMC均匀分散于溶剂;
C、将分散均匀的CMC胶液转移至涂膜板的隔膜上,用刮刀法涂覆制得涂层均一的复合隔膜,调控涂层厚度2μm;
D、将涂覆好的隔膜转移到真空烘箱45℃48h,烘干,裁成圆形以备扣式电池的装配及隔膜的性能测试。
将上述制备的离子选择性复合隔膜应用于锂硫电池中,具体步骤如下:
步骤一:将S粉和科琴黑通过手工研磨混匀,得到的混合材料装于玻璃瓶中,于155℃Ar气氛围中预烧5h;取出继续研磨1h,再于200℃Ar气氛围中进一步退火2h,最终得到S@科琴黑的高导电性复合材料。其中,S与科琴黑的比例为70:30。
步骤二:将S@科琴黑,导电剂(SP)按8:1的比例研磨均匀,之后加入预先 配好的5%PVDF胶液,搅拌2h至形成均一稳定的浆料;
步骤三:将上述步骤的浆料涂布在铝集流体,真空60℃过夜烘干,用模具裁成圆形电极片,直径1.2cm扣式电池装配备用。
步骤四:将负极壳、锂片、复合隔膜、电解液、S电极片和正极壳组装成扣式电池,进行充放电等相关电化学测试。
图3是实施例2的锂硫电池的电化学性能图。从图中可以看出,在0.5C循环300圈后,纯聚合物隔膜,Al 2O 3涂覆隔膜,Al 2O 3和CMC涂覆隔膜的容量分别可以维持在626.3、681.3和812.2mAh·g -1,其中Al 2O 3和CMC涂覆隔膜在500圈可以维持在718.2mAh·g -1的比容量,显示出了较好的循环稳定性。同时,库伦效率的变化图也显示出纯聚合物隔膜有较强的穿梭现象,导致严重的容量过充产生。
此外,我们对CMC涂层对多硫化物的阻隔机制进行了探究。如图4所示,CMC对多硫化物有较强的吸附作用,而吸附的多硫化物进一步通过物理和电场作用抑制多硫化物的穿梭;图4(f)显示,CMC表面牢牢吸附一层多硫化物,其中部分在取出测试过程中被氧化成其它含硫物质;同时,图中c,d,e也显示了CMC具有丰富的羟基、羧基、醚基等官能团,这也为该涂层能够有效吸附并抑制多硫化物穿梭提供了理论支持。
实施例3
一种离子选择性复合隔膜,包括涂敷于隔膜正极侧的羧甲基纤维素钠(CMC)涂层,涂敷于负极侧的Al 2O 3涂层以及中间的聚合物多孔层,所述聚合物多孔层的厚度为12μm,CMC涂层的厚度为2μm,Al 2O 3涂层的厚度为4μm。
所述的离子选择性复合隔膜的制备方法如下:
A、选取工业用涂覆法制备的单面Al 2O 3隔膜,另外一面为聚合物层;
B、将羧甲基纤维素钠(CMC)溶于H 2O和有机溶剂的混合溶剂,搅拌12h,使CMC均匀分散于溶剂;
C、将分散均匀的CMC胶液转移至涂膜板的隔膜上,用刮刀法涂覆制得涂层均一的复合隔膜,调控涂层厚度2μm;
D、将涂覆好的隔膜转移到真空烘箱45℃48h,烘干,裁成圆形以备扣式电池的装配及隔膜的性能测试。
将上述制备的离子选择性复合隔膜应用于锂-锂对称电池中,具体步骤如下:
步骤一:将金属Li片裁成预先设定好的直径的小圆片1.2cm;
步骤二:将负极壳、裁好的锂片、复合隔膜、电解液、裁好锂片和正极壳组装成扣式电池,进行对称电池的电化学相关表征。
图5为本实施例制备的锂-锂对称电池的充放电曲线,其中沉积容量为4mAh·cm -2,电流为20mA·cm -2。从图中可以看出,Al 2O 3和CMC涂覆隔膜具有最小的充放电过电位,约为55mV,且能在20mA·cm -2大电流下稳定充放900h;作为对比,仅Al 2O 3涂覆的隔膜的过电位约为160mV,而纯聚合物隔膜的过电位为280mV。这表明CMC涂层能够明显降低电池的过电位,可能由于其能够使电极与隔膜的接触更为紧密,减小了电荷转移电阻。
此外,图6为不同隔膜的锂-锂对称电池在4mAh·cm -2,电流为20mA·cm -2条件下循环10圈后拆解,Li金属的表面形貌图。其中图6(a),(b)为纯聚合物隔膜,可以明显看出有不均匀锂沉积导致的枝晶产生;图6(c)为仅Al 2O 3涂覆隔膜的聚合物侧锂表面,也显示出了不均一的锂沉积;图6(d),(f)分别为Al 2O 3涂覆隔膜和Al 2O 3,CMC涂覆隔膜的Al 2O 3面Li金属表面形貌,相对比较均一,而图6(e)中的CMC侧Li表面则表现为一个统一的整体,显示了均匀的Li沉积;进一步证明了该Al 2O 3和CMC涂覆隔膜具有良好的锂-锂对称电池性能。
图7通过用交流阻抗和恒电位计时电流法测试了三种不同隔膜的Li +迁移数,Al 2O 3和CMC涂覆隔膜为0.642,Al 2O 3涂覆隔膜为0.410,纯聚合物隔膜 为0.315。可以进一步佐证其抑制多硫离子穿梭的效应,同时,吸附的多硫离子也起到了抑制TFSI -的迁移,从而更加有利于Li +的快速迁移及Li +的均匀沉积。图8的烘烤实验也表明Al 2O 3涂层能够提高电池的安全性能。
以上结果说明,本发明的离子选择性复合隔膜,一方面能够抑制锂硫电池的穿梭效应,提高锂硫电池循环稳定性和库伦效率;另一方面使得隔膜和电极片接触更紧密,减小电荷转移电阻,使Li +能够在界面处均匀沉积;同时,Al 2O 3涂覆能有效改善隔膜的安全性能。此外,该方案还可以延伸到锂空气、传统正极材料体系等电池体系中,也可以应用于其他使用锂金属负极的电池体系中,对电池起到减小界面阻抗及提高界面稳定性的效果;另外,更重要的是,该设计操作简便,在电池工作过程中安全稳定,是提高商用化电池性能的一种有效方法。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (10)

  1. 一种离子选择性复合隔膜,其特征在于,包括聚合物多孔层和分别涂敷于所述聚合物多孔层两侧的羧甲基纤维素钠涂层和无机陶瓷涂层。
  2. 如权利要求1所述的离子选择性复合隔膜,其特征在于,所述羧甲基纤维素钠涂层的厚度为0.01~20μm,所述无机陶瓷涂层的厚度为0.01~40μm。
  3. 如权利要求1所述的离子选择性复合隔膜,其特征在于,所述复合隔膜的厚度为0.1~100μm。
  4. 如权利要求1所述的离子选择性复合隔膜,其特征在于,所述无机陶瓷涂层是由选自Al 2O 3、CeO 2、MoS 2、ZrO 2、MoO 2、ZnO中的一种或多种组分形成的涂层。
  5. 如权利要求1所述的离子选择性复合隔膜,其特征在于,所述聚合物多孔层为聚丙烯层或聚乙烯层;或所述聚合物多孔层包括至少两层交替叠设的聚丙烯层和聚乙烯层。
  6. 根据权利要求1-5任一项所述的离子选择性复合隔膜的制备方法,其特征在于,包括以下步骤:
    提供一面涂敷有无机陶瓷涂层的聚合物多孔层;
    将羧甲基纤维素钠溶于溶剂中,得到的溶液涂敷于聚合物多孔层的另一面,35~80℃下烘烤1~72h,即得所述离子选择性复合隔膜。
  7. 如权利要求6所述的离子选择性复合隔膜的制备方法,其特征在于,所述溶剂为水和/或有机溶剂;所述有机溶剂选自NMP、DMF、THF、乙腈、丙酮中的一种或多种。
  8. 如权利要求6所述的离子选择性复合隔膜的制备方法,其特征在于,所 述无机陶瓷涂层是经如下步骤制备而成的:
    将无机陶瓷粉料、粘结剂和溶剂调制成浆料,喷涂于聚合物多孔层的表面,得到无机陶瓷涂层;其中,无机陶瓷粉料与粘结剂的质量比为1:99~30:70。
  9. 如权利要求8所述的离子选择性复合隔膜的制备方法,其特征在于,所述粘结剂为PVDF和/或海藻酸钠。
  10. 根据权利要求1-5任一项所述的离子选择性复合隔膜在锂电池中的应用。
PCT/CN2019/116215 2018-11-09 2019-11-07 离子选择性复合隔膜及其制备方法和应用 WO2020094090A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811330782.XA CN109599524B (zh) 2018-11-09 2018-11-09 离子选择性复合隔膜及其制备方法和应用
CN201811330782.X 2018-11-09

Publications (1)

Publication Number Publication Date
WO2020094090A1 true WO2020094090A1 (zh) 2020-05-14

Family

ID=65957200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116215 WO2020094090A1 (zh) 2018-11-09 2019-11-07 离子选择性复合隔膜及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN109599524B (zh)
WO (1) WO2020094090A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115842214A (zh) * 2022-10-18 2023-03-24 福州大学 一种具有筛分效应耐高压低自放电隔膜、制备方法及应用
CN117801346A (zh) * 2024-02-29 2024-04-02 西北工业大学 高机械强度和高锂离子通量的轻薄改性pe隔膜制备方法
CN117977115A (zh) * 2024-03-28 2024-05-03 西北工业大学 一种可抑制钠枝晶生长的电池隔膜及其制备方法和应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109599524B (zh) * 2018-11-09 2021-04-06 苏州迪思伏新能源科技有限公司 离子选择性复合隔膜及其制备方法和应用
CN110112349A (zh) * 2019-05-14 2019-08-09 东华大学 一种锂硫电池隔膜及其制备方法
CN114944538B (zh) * 2022-07-07 2024-04-16 贵州航盛锂能科技有限公司 钠离子电池陶瓷隔膜及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5371227A (en) * 1976-12-07 1978-06-24 Seiko Instr & Electronics Method of manufacturing separator for alkaline battery
CN105514328A (zh) * 2016-01-13 2016-04-20 浙江天能能源科技有限公司 一种锂离子电池用陶瓷隔膜及其制备方法
CN105810981A (zh) * 2016-04-21 2016-07-27 常州大学 一种离子选择性聚合物复合膜及其制备方法
CN108172739A (zh) * 2017-12-22 2018-06-15 哈尔滨工业大学深圳研究生院 锂硫电池的附加自组装层的羧基化隔膜及制备方法
CN109599524A (zh) * 2018-11-09 2019-04-09 苏州迪思伏新能源科技有限公司 离子选择性复合隔膜及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104916802B (zh) * 2015-04-09 2017-11-07 厦门大学 一种复合隔膜及其应用
CN107665966A (zh) * 2016-07-27 2018-02-06 中国科学院大连化学物理研究所 一种锂硫电池
US20180226635A1 (en) * 2017-02-07 2018-08-09 Shi Yuan Lithium ion battery positive electrode composition and preparation method thereof
CN107834007A (zh) * 2017-11-14 2018-03-23 欣旺达电子股份有限公司 隔膜和锂离子电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5371227A (en) * 1976-12-07 1978-06-24 Seiko Instr & Electronics Method of manufacturing separator for alkaline battery
CN105514328A (zh) * 2016-01-13 2016-04-20 浙江天能能源科技有限公司 一种锂离子电池用陶瓷隔膜及其制备方法
CN105810981A (zh) * 2016-04-21 2016-07-27 常州大学 一种离子选择性聚合物复合膜及其制备方法
CN108172739A (zh) * 2017-12-22 2018-06-15 哈尔滨工业大学深圳研究生院 锂硫电池的附加自组装层的羧基化隔膜及制备方法
CN109599524A (zh) * 2018-11-09 2019-04-09 苏州迪思伏新能源科技有限公司 离子选择性复合隔膜及其制备方法和应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115842214A (zh) * 2022-10-18 2023-03-24 福州大学 一种具有筛分效应耐高压低自放电隔膜、制备方法及应用
CN117801346A (zh) * 2024-02-29 2024-04-02 西北工业大学 高机械强度和高锂离子通量的轻薄改性pe隔膜制备方法
CN117977115A (zh) * 2024-03-28 2024-05-03 西北工业大学 一种可抑制钠枝晶生长的电池隔膜及其制备方法和应用

Also Published As

Publication number Publication date
CN109599524A (zh) 2019-04-09
CN109599524B (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
WO2020094090A1 (zh) 离子选择性复合隔膜及其制备方法和应用
US20150288029A1 (en) Lithium battery and the preparation method thereof
CN102694158A (zh) 一种含硅锂负极、其制备方法及包含该负极的锂硫电池
CN104900830A (zh) 一种碳纤维布作为阻挡层的锂硫电池
CN112850796B (zh) 一种制备锂硫电池正极材料S/Fe3O4/MXene的方法
CN111009682A (zh) 一种全固态电池及其制备方法
CN111799470B (zh) 正极极片及钠离子电池
CN114566650B (zh) 一种钠离子电池正极补钠添加剂、补钠方法、正极、柔性电极
CN105742695B (zh) 一种锂离子电池及其制备方法
CN103035925A (zh) 一种锂离子动力电池、锂离子动力电池集流体及负极极片
CN115566170A (zh) 一种高能量密度快充锂离子电池负极材料的制备方法
WO2018059180A1 (zh) 一种高功率高能量化学电源及其制备方法
CN113113565B (zh) 一种负极片及电池
CN117096279A (zh) 一种含锂复合负极的制备,其在锂二次电池中的应用
CN114709398B (zh) 一种含硫快离子导体包覆石墨复合材料及其制备方法
CN109244370B (zh) 一种二次锂金属电池负极蒸汽保护膜的制备方法
CN110311167A (zh) 一种复合固体电解质片及其制备方法和固态电池
CN110416506A (zh) 一种改性磷酸铁锂正极材料及其制备方法
CN109478638A (zh) 电极干燥方法
CN109659475B (zh) 一种高性能高压锂离子电池的制备方法
JP2023513815A (ja) 陽極片、当該極片を採用した電池及び電子装置
CN108258244B (zh) 一种新型锂离子/钾离子电池负极材料及其制备方法
CN113097482B (zh) 一种负极材料及其制备方法和具有负极材料的锂电池
CN109301198B (zh) 一种镍纳米片阵列负载氧化锌复合电极及制备方法
CN114583137A (zh) 一种在碳表面进行硫掺杂磷修饰的方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19882858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19882858

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19882858

Country of ref document: EP

Kind code of ref document: A1