[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020066980A1 - 光輝性顔料分散体及び複層塗膜形成方法 - Google Patents

光輝性顔料分散体及び複層塗膜形成方法 Download PDF

Info

Publication number
WO2020066980A1
WO2020066980A1 PCT/JP2019/037193 JP2019037193W WO2020066980A1 WO 2020066980 A1 WO2020066980 A1 WO 2020066980A1 JP 2019037193 W JP2019037193 W JP 2019037193W WO 2020066980 A1 WO2020066980 A1 WO 2020066980A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating film
mass
paint
pigment dispersion
parts
Prior art date
Application number
PCT/JP2019/037193
Other languages
English (en)
French (fr)
Inventor
健次 酒井
成田 信彦
Original Assignee
関西ペイント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 関西ペイント株式会社 filed Critical 関西ペイント株式会社
Priority to CN201980062292.2A priority Critical patent/CN112739784B/zh
Priority to EP19866128.2A priority patent/EP3858928A4/en
Priority to CA3113957A priority patent/CA3113957C/en
Priority to JP2020549198A priority patent/JP7378415B2/ja
Priority to US17/278,428 priority patent/US11932781B2/en
Publication of WO2020066980A1 publication Critical patent/WO2020066980A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/36Pearl essence, e.g. coatings containing platelet-like pigments for pearl lustre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/56Three layers or more
    • B05D7/57Three layers or more the last layer being a clear coat
    • B05D7/572Three layers or more the last layer being a clear coat all layers being cured or baked together
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/06Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/56Three layers or more
    • B05D7/57Three layers or more the last layer being a clear coat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/56Three layers or more
    • B05D7/57Three layers or more the last layer being a clear coat
    • B05D7/577Three layers or more the last layer being a clear coat some layers being coated "wet-on-wet", the others not
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/062Copolymers with monomers not covered by C09D133/06
    • C09D133/066Copolymers with monomers not covered by C09D133/06 containing -OH groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • C09D17/001Pigment pastes, e.g. for mixing in paints in aqueous medium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • C09D17/004Pigment pastes, e.g. for mixing in paints containing an inorganic pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/002Priming paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/47Levelling agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2201/00Polymeric substrate or laminate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/10Metallic substrate based on Fe
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances

Definitions

  • the present invention relates to a glitter pigment dispersion and a method for forming a multilayer coating film.
  • the purpose of applying paint is mainly to protect the material and give it aesthetic appearance.
  • aesthetics especially, "texture” is important from the viewpoint of enhancing the product power.
  • the texture of industrial products demanded by consumers is diverse, but in recent years, in the fields of automobile outer panels, automobile parts, home appliances and the like, glossiness such as metal or pearl has been required (hereinafter, metal pearls).
  • metal pearls Such luster and pearl-like luster are referred to as "metal or pearly luster").
  • Metal or pearly luster means that there is no grain on the surface like a mirror surface, and when viewed close to perpendicular to the coated plate (highlight), it shines brightly and when viewed obliquely from above the coated plate (Shade) is a texture characterized by a dark appearance, that is, a large difference in luminance between the highlight area and the shade area.
  • Techniques for imparting such a metal or pearlescent luster to the surface of an industrial product include metal plating and metal vapor deposition (for example, Patent Document 1).
  • metal plating and metal vapor deposition for example, Patent Document 1.
  • Patent Document 2 discloses a brilliant pigment obtained by pulverizing a vapor-deposited metal film into metal pieces, and an aqueous cellulose derivative having an acid value of 20 to 150 mgKOH / g (solid content). There is disclosed an aqueous base coating composition which is a resin and has a glitter pigment content of 20 to 70% by mass in terms of pigment weight concentration (PWC).
  • PWC pigment weight concentration
  • the coating film formed by the paint described in Patent Document 2 has insufficient metal or pearlescent luster.
  • Patent Document 3 discloses a method of applying an aqueous basecoat paint containing a scaly glitter pigment, the aqueous basecoat paint (A1) being adjusted so that the solid content in the paint is 20 to 40% by weight.
  • An aqueous base coat paint (which is adjusted so that the solid content in the paint is 2 to 15% by weight) is applied to the object to be coated so as to have a dry film thickness of 1 to 15 ⁇ m, and then on the uncured coating film.
  • a method of applying an aqueous base coat paint, wherein A2) is applied so as to have a dry film thickness of 0.1 to 5 ⁇ m is disclosed.
  • the coating film formed by the coating method described in Patent Document 3 has insufficient metal or pearlescent luster.
  • Patent Document 4 discloses a brilliant pigment dispersion containing water, a flaky aluminum pigment and a cellulose-based viscosity modifier, and a solid content based on 100 parts by mass of all components of the brilliant pigment dispersion. Is 0.1 to 10 parts by mass, and the viscosity measured with a B-type viscometer is in the range of 400 to 10000 mPa ⁇ sec under the condition that the number of rotations is 6 rotations / minute.
  • a brilliant pigment dispersion containing 30 to 200 parts by mass of a flaky aluminum pigment as a solid content with respect to 100 parts by mass of the total amount of components other than the flaked aluminum pigment is disclosed.
  • the glitter pigment dispersion described in Patent Document 4 is excellent in metal gloss, in recent years, even after coating the glitter pigment dispersion after forming the glitter pigment dispersion for a certain period to form a coating film, the metal pigment gloss is still excellent. (Hereinafter referred to as “stability”) is required. Further, further improvement in water resistance is also required.
  • An object of the present invention is to provide a brilliant pigment dispersion which is excellent in water resistance, can form a metallic or pearly luster, and has excellent stability, and a method for forming a multilayer coating film.
  • a glittering pigment dispersion containing water, a wetting agent (A), a scaly glittering pigment (B) and a cellulose nanofiber (C), wherein the cellulose nanofiber is used.
  • (C) has a carboxyl group content of 0.4 to 1.0 mmol / g with respect to the absolute dry mass of the cellulose nanofiber, and a transparency in a 1.0% by mass aqueous dispersion of the cellulose nanofiber of 80% or more.
  • a brilliant pigment dispersion having a viscosity measured by using a B-type viscometer within a range of 100 to 10000 mPa ⁇ sec at a rotation speed of 6 rotations / minute is provided.
  • the wetting agent (A) has a solid content of 4 to 400 parts by mass based on 100 mass parts of the solid content of the scaly glitter pigment (B).
  • the glitter pigment dispersion contains 2 to 97 parts by mass of the scaly glitter pigment (B) as a solid content based on 100 mass parts of the glitter pigment dispersion solid content.
  • the brilliant pigment dispersion further contains a resin aqueous dispersion.
  • the glitter pigment according to any one of the above Provided is a method for forming a multi-layer coating film, which comprises applying a body to form a glitter coating film, and applying a clear paint on the glitter coating film to form a clear coating film. .
  • the glitter coating film has a thickness of 0.1 to 4 ⁇ m as a dry film thickness.
  • the multilayer coating film has a 60-degree specular gloss within a range of 90 to 240.
  • a colored coating formed from a colored coating, and a glitter coating formed from the glitter pigment dispersion according to any of the above, formed on the colored coating formed on the colored coating.
  • a multilayer coating film comprising a film and a clear coating film formed from a clear coating formed on the glitter coating film.
  • the thickness of the glittering coating film as a dry film thickness is 0.1 to 4 ⁇ m.
  • the multilayer coating has a 60-degree specular gloss within a range of 90 to 240.
  • a brilliant pigment dispersion which is excellent in water resistance, can form a metallic or pearly luster, and has high stability, and a method for forming a multilayer coating film can be obtained.
  • the present invention comprises water, a wetting agent (A), a scaly glittering pigment (B) and a cellulose nanofiber (C), wherein the cellulose nanofiber (C) has a carboxyl group based on the absolute dry mass of the cellulose nanofiber.
  • the present invention also provides that the glitter pigment dispersion is applied on a colored coating film formed by a coloring paint to form a glitter coating film, and that a clear paint is applied on the glitter coating film.
  • a method for forming a multilayer coating film The present invention further relates to a multilayer coating film provided with the glitter coating film.
  • the glitter pigment dispersion of one embodiment of the present invention contains water, a wetting agent (A), a scaly glitter pigment (B), and a cellulose nanofiber (C).
  • A wetting agent
  • B scaly glitter pigment
  • C cellulose nanofiber
  • the viscosity measured with a B-type viscometer is 100 to 10000 mPa ⁇ sec, preferably 200 to 8000 mPa ⁇ sec, more preferably 400 to 6000 m when the rotation speed is 6 revolutions / minute. It is a glitter pigment dispersion in the range of Pa ⁇ sec.
  • the wetting agent (A) in the brilliant pigment dispersion has an effect of assisting in uniformly orienting the brilliant pigment dispersion on the substrate when the brilliant pigment dispersion is coated on the substrate. Any material can be used without particular limitation.
  • the wetting agent (A) in the dispersion includes a dispersing agent, a wetting agent, a leveling agent, a surface conditioner, an antifoaming agent, a surfactant, and a super wetter.
  • wetting agent (A) examples include wetting agents such as silicone wetting agents, acrylic wetting agents, vinyl wetting agents, fluorine wetting agents, and acetylenic diol wetting agents.
  • wetting agents such as silicone wetting agents, acrylic wetting agents, vinyl wetting agents, fluorine wetting agents, and acetylenic diol wetting agents.
  • the above wetting agents can be used alone or in combination of two or more.
  • an acetylenic diol-based wetting agent is used from the viewpoint of obtaining a glittering pigment dispersion excellent in water resistance, capable of forming a metallic or pearly luster, and having high stability and a multilayer coating film forming method. Preference is given to using wetting agents and / or wetting agents with ethylene oxide chains.
  • the wetting agent (A) is preferably an ethylene oxide adduct of acetylene diol.
  • wetting agent (A) Commercial products of the wetting agent (A) include, for example, BYK series manufactured by Big Chemie, Tego series manufactured by Evonik, Granol series and Polyflow series manufactured by Kyoeisha Chemical Co., Ltd., Dispalon series manufactured by Kusumoto Kasei, and Evonik Industries. Surfynol series.
  • silicone wetting agent polydimethylsiloxane and a modified silicone obtained by modifying the same are used.
  • modified silicone include polyether-modified silicone, acryl-modified silicone, and polyester-modified silicone.
  • the amount of the wetting agent (A) in the glittering pigment dispersion is determined based on 100 parts by mass of the solid content of the scaly glittering pigment (B) from the viewpoint of the metallic or pearlescent luster of the obtained multilayer coating film.
  • the amount is preferably 4 to 400 parts by mass, more preferably 5 to 100 parts by mass, even more preferably 8 to 60 parts by mass.
  • the content of the wetting agent (A) in the glittering pigment dispersion is determined in terms of solid content based on 100 parts by mass of the glittering pigment dispersion, from the viewpoint that the resulting multilayer coating film has excellent metallic or pearly luster. It is preferably 0.01 to 20 parts by mass, more preferably 0.02 to 15 parts by mass, and still more preferably 0.05 to 10 parts by mass.
  • Flaky glittering pigment (B) examples include vapor-deposited metal flake pigments, aluminum flake pigments, and light interference pigments.
  • vapor-deposited metal flake pigments aluminum flake pigments
  • light interference pigments One or more of these pigments can be appropriately selected and used depending on the texture required for the obtained coating film. From the viewpoint of obtaining a coating film having excellent metallic gloss, a vapor-deposited metal flake pigment and an aluminum flake pigment are preferred. On the other hand, from the viewpoint of obtaining a coating film having excellent pearlescent luster, a light interference pigment is preferred.
  • the vapor-deposited metal flake pigment is obtained by vapor-depositing a metal film on a base substrate, peeling the base substrate, and then pulverizing the vapor-deposited metal film.
  • the substrate include a film and the like.
  • the material of the metal is not particularly limited, and examples thereof include aluminum, gold, silver, copper, brass, titanium, chromium, nickel, nickel chrome, and stainless steel. Among them, aluminum or chromium is preferable from the viewpoint of availability and handling.
  • a vapor-deposited metal flake pigment obtained by vapor-depositing aluminum is referred to as “vapor-deposited aluminum flake pigment”
  • a vapor-deposited metal flake pigment obtained by vapor-depositing chromium is referred to as “vapor-deposited chrome flake pigment”.
  • vapor-deposited metal flake pigment a pigment formed from one layer of vapor-deposited metal film can be used, but a multi-layer type in which other metal or metal oxide is further formed on the vapor-deposited metal film is used. You may.
  • the vapor-deposited aluminum flake pigment is preferably silica-treated from the viewpoint of obtaining a coating film having excellent storage stability and metallic luster.
  • Examples of commercially available products that can be used as the above-mentioned vapor-deposited aluminum flake pigment include “METALURE” series (trade name, manufactured by Ecart), “Hydroshine @ WS” series (trade name, manufactured by Ecart), and “Decomet” series (trade name, Schlenk) And “Metasheen” series (trade name, manufactured by BASF).
  • vapor-deposited chrome flake pigment examples include the “Metalure Liquid Black” series (trade name, manufactured by Ecart Corporation).
  • the average thickness of the vapor-deposited metal flake pigment is preferably from 0.01 to 1.0 ⁇ m, more preferably from 0.015 to 0.1 ⁇ m.
  • the average particle size (D50) of the metal flake pigment is preferably 1 to 50 ⁇ m, more preferably 5 to 20 ⁇ m.
  • the average particle size here refers to the median size of the volume-based particle size distribution measured by a laser diffraction scattering method using a Microtrac particle size distribution analyzer MT3300 (trade name, manufactured by Nikkiso Co., Ltd.).
  • the thickness is measured by using an image processing software by observing the cross section of the coating film containing the scaly bright pigment with a microscope, and is defined as an average value of 100 or more measured values. .
  • the average particle diameter exceeds the upper limit, in the multilayer coating film, a grainy feeling may be generated.
  • the average particle diameter is less than the lower limit, the change in brightness from highlight to shade is too small, and in any case. Lack of metallic luster.
  • Aluminum flake pigments are generally produced by grinding and grinding aluminum in a ball mill or attritor mill using a grinding aid in the presence of a grinding medium solution.
  • the grinding aid in the production process of the aluminum flake pigment include oleic acid, stearic acid, isostearic acid, lauric acid, palmitic acid, higher fatty acids such as myristic acid, aliphatic amines, aliphatic amides, and aliphatic alcohols. used.
  • Aliphatic hydrocarbons such as mineral spirits are used as the grinding medium liquid.
  • the aluminum flake pigments can be broadly classified into leafing types and non-leafing types depending on the type of grinding aid.
  • a non-leafing type scaly aluminum pigment is used from the viewpoint of having excellent water resistance, having a high glossiness in highlights, and having a small metal feeling with a small graininess. Is preferred.
  • the non-leafing scale-like aluminum pigment those whose surface is not particularly treated can be used, but those whose surface is coated with a resin, those treated with silica, phosphoric acid, molybdic acid, silane coupling agent Can also be used.
  • those subjected to one kind of treatment can be used, but those subjected to plural kinds of treatments may be used.
  • the aluminum flake pigment may be a colored aluminum pigment such as a pigment coated on a surface of an aluminum flake pigment and further coated with a resin, or a pigment coated on a surface of an aluminum flake pigment with a metal oxide such as iron oxide. You may.
  • the aluminum flake pigment having an average particle diameter in a range of 1 to 100 ⁇ m from the viewpoint of forming a dense metal-like coating film having a high glossiness in highlights, a small graininess and a small graininess.
  • the average particle diameter is more preferably in the range of 5 to 50 ⁇ m, and particularly preferably in the range of 7 to 30 ⁇ m.
  • the thickness is in the range of 0.01 to 1.0 ⁇ m, particularly preferably in the range of 0.02 to 0.5 ⁇ m.
  • the scaly glitter pigment (B) in the glitter pigment dispersion is preferably used in combination with the vapor-deposited metal flake pigment and the aluminum flake pigment from the viewpoint of water resistance and stability.
  • the compounding ratio of the vapor-deposited metal flake pigment and the aluminum flake pigment may be 9/1 to 1/9, preferably 2/8 to 8/2 by mass ratio. It is suitable.
  • Light interference pigment is a metal having a different refractive index from the surface of a transparent or translucent flaky substrate such as mica, artificial mica, glass, iron oxide, aluminum oxide, and various metal oxides. It is a glitter pigment coated with an oxide. Examples of the metal oxide include titanium oxide and iron oxide, and the light interference pigment can exhibit various different interference colors depending on the thickness of the metal oxide.
  • the light interference pigment is preferably a light interference pigment obtained by coating a transparent or translucent substrate with titanium oxide and / or iron oxide, and a light interference pigment obtained by coating a transparent or translucent substrate with titanium oxide. More preferred.
  • a transparent substrate refers to a substrate that transmits at least 90% of visible light.
  • a translucent substrate refers to a substrate that transmits at least 10% to less than 90% of visible light.
  • the light interference pigment examples include metal oxide-coated mica pigments, metal oxide-coated alumina flake pigments, metal oxide-coated glass flake pigments, metal oxide-coated silica flake pigments and the like shown below. it can.
  • the metal oxide-coated mica pigment is a pigment in which natural mica or artificial mica is used as a base material and the surface of the base material is coated with a metal oxide.
  • Natural mica is a scaly substrate obtained by grinding ore mica (mica).
  • Artificial mica is synthesized by heating industrial materials such as SiO 2 , MgO, Al 2 O 3 , K 2 SiF 6 , and Na 2 SiF 6 , melting at a high temperature of about 1500 ° C., cooling and crystallizing. When compared to natural mica, it has less impurities and is uniform in size and thickness.
  • fluorophlogopite KMg 3 AlSi 3 O 10 F 2
  • potassium tetrasilicic mica KMg 2.5 AlSi 4 O 10 F 2
  • sodium tetrasilicic mica NaMg 2.5 AlSi 4) O 10 F 2
  • Na teniolite NaMg 2 LiSi 4 O 10 F 2
  • LiNa teniolite LiMg 2 LiSi 4 O 10 F 2
  • Alumina flake pigment coated with metal oxide is a pigment in which alumina flake is a base material and the surface of the base material is coated with a metal oxide.
  • Alumina flakes mean scale-like (flake-like) aluminum oxide and are colorless and transparent. The alumina flakes need not be a single component of aluminum oxide, but may contain oxides of other metals.
  • the metal oxide-coated glass flake pigment is a pigment having scaly glass as a base material and the base material surface coated with a metal oxide. Since the metal oxide-coated glass flake pigment has a smooth substrate surface, strong light reflection occurs.
  • the metal oxide-coated silica flake pigment is a pigment in which flaky silica, which is a substrate having a smooth surface and a uniform thickness, is coated with a metal oxide.
  • the light interference pigment may have been subjected to a surface treatment for improving dispersibility, water resistance, chemical resistance, weather resistance and the like.
  • the above-mentioned light interference pigment having an average particle diameter of 5 to 30 ⁇ m, particularly 7 to 20 ⁇ m.
  • the particle size here means a median size of a volume-based particle size distribution measured by a laser diffraction scattering method using a Microtrac particle size distribution analyzer MT3300 (trade name, manufactured by Nikkiso Co., Ltd.).
  • the light interference pigment preferably has a thickness of 0.05 to 1 ⁇ m, particularly 0.1 to 0.8 ⁇ m, from the viewpoint of obtaining a coating film having excellent pearlescent luster. .
  • the scaly glittering pigment (B) in the glittering pigment dispersion those having an average particle diameter in the range of 1 to 100 ⁇ m can be used to obtain a high glossiness in highlights, a small particle feeling, and a high density.
  • the average particle diameter is more preferably in the range of 5 to 50 ⁇ m, and particularly preferably in the range of 7 to 30 ⁇ m.
  • the thickness is in the range of 0.01 to 1.0 ⁇ m, particularly preferably in the range of 0.02 to 0.5 ⁇ m.
  • the content of the scaly glitter pigment (B) in the glitter pigment dispersion is from the viewpoint of obtaining a coating film having excellent metallic or pearlescent luster, based on 100 parts by mass of the total solid content in the glitter pigment dispersion.
  • the solid content is preferably in the range of 2 to 97 parts by mass, particularly preferably in the range of 5 to 65 parts by mass, and further preferably in the range of 10 to 60 parts by mass.
  • the cellulose nanofiber (C) in the glitter pigment dispersion has a carboxyl group content of 0.4 to 1.0 mmol / g based on the absolute dry mass of the cellulose nanofiber and 1.0% by mass of the cellulose nanofiber.
  • the transparency in the aqueous dispersion is 80% or more.
  • cellulose nanofiber in the glitter pigment dispersion water resistance, and a coating film excellent in metal or pearlescent luster can be formed, and from the viewpoint of obtaining a glitter pigment dispersion having high viscosity stability, A cellulose nanofiber having a low amount of carboxyl groups and high transparency is used.
  • cellulose nanofiber is sometimes referred to as cellulose nanofibril, fibrilated cellulose, or nanocellulose crystal.
  • the cellulose nanofiber is preferably an oxidized cellulose nanofiber (hereinafter, sometimes referred to as “oxidized CNF”) that can be obtained by fibrillating oxidized cellulose obtained by introducing a carboxyl group into a cellulose raw material. .
  • the cellulose nanofiber has a carboxyl group content of 0.4 to 1.0 mmol / g, more preferably 0.4 to 0.8 mmol / g, and still more preferably 0.4 to 1.0 mmol / g, based on the absolute dry mass of the cellulose nanofiber.
  • 0.4 to 0.6 mmol / g, and the transparency in a 1.0% by mass aqueous dispersion of cellulose nanofibers is 80% or more, more preferably 85% or more, and still more preferably 90% or more. is there.
  • Cellulose raw materials include, for example, vegetable materials (eg, wood, bamboo, hemp, jute, kenaf, agricultural waste, cloth, pulp (softwood unbleached kraft pulp (NUKP), softwood bleached kraft pulp (NBKP), hardwood Bleached Kraft Pulp (LUKP), Hardwood Bleached Kraft Pulp (LBKP), Softwood Unbleached Sulfite Pulp (NUSP), Softwood Bleached Sulfite Pulp (NBSP), Thermomechanical Pulp (TMP), Recycled Pulp, Used Paper, etc.), Animal Materials (for example, ascidians), algae, microorganisms (for example, acetic acid bacteria (Acetobacter)), and those derived from microbial products can be used, and any of them can be used. It is a cellulose raw material derived from a plant, and more preferably a cellulose raw material derived from a plant.
  • NUKP softwood bleached kraft pulp
  • LKP hardwood Bleached Kraft Pul
  • oxidation there is a method in which a cellulose raw material is oxidized in water using an oxidizing agent in the presence of an N-oxyl compound, bromide, iodide, or a mixture thereof.
  • an oxidizing agent in the presence of an N-oxyl compound, bromide, iodide, or a mixture thereof.
  • the primary hydroxyl group at the C6 position of the pyranose ring on the cellulose surface is selectively oxidized.
  • oxidized cellulose having an aldehyde group and a carboxyl group (—COOH) or a carboxylate group (—COO ⁇ ) on the surface can be obtained.
  • the concentration of cellulose during the reaction is not particularly limited, but is preferably 5% by mass or less.
  • N-oxyl compound refers to a compound capable of generating a nitroxy radical.
  • any compound can be used as long as it promotes a desired oxidation reaction.
  • TEMPO 2,2,6,6-tetramethylpiperidine-1-oxy radical
  • a derivative thereof eg, 4-hydroxy TEMPO
  • the amount of the N-oxyl compound used is not particularly limited as long as it is a catalyst amount capable of oxidizing cellulose as a raw material.
  • the amount is preferably 0.01 mmol to 10 mmol, more preferably 0.01 mmol to 1 mmol, still more preferably 0.05 mmol to 0.5 mmol, based on 1 g of absolutely dried cellulose.
  • the concentration is preferably about 0.1 mmol / L to 4 mmol / L with respect to the reaction system.
  • Bromide is a compound containing bromine and contains an alkali metal bromide that can be dissociated and ionized in water.
  • iodide is a compound containing iodine and includes an alkali metal iodide.
  • the amount of bromide or iodide used can be selected within a range that can promote the oxidation reaction.
  • the total amount of bromide and iodide is preferably 0.1 mmol to 100 mmol, more preferably 0.1 mmol to 10 mmol, still more preferably 0.5 mmol to 5 mmol, based on 1 g of absolutely dried cellulose.
  • oxidizing agent known agents can be used, and examples thereof include halogen, hypohalous acid, halogenous acid, perhalic acid or salts thereof, halogen oxides and peroxides.
  • halogen sodium hypochlorite which is inexpensive and has a low environmental load is preferable.
  • the amount of the oxidizing agent used is preferably 0.5 mmol to 500 mmol, more preferably 0.5 mmol to 50 mmol, still more preferably 1 mmol to 25 mmol, based on 1 g of absolutely dried cellulose. Further, for example, 1 mol to 40 mol is preferable for 1 mol of the N-oxyl compound.
  • the reaction temperature is preferably 4 ° C. to 40 ° C., and may be room temperature of about 15 ° C. to 30 ° C.
  • the pH of the reaction solution decreases.
  • an alkaline solution such as an aqueous sodium hydroxide solution during the reaction to maintain the pH of the reaction solution at about 8 to 12, preferably about 10 to 11. Water is preferred as the reaction medium because of its ease of handling and the difficulty of side reactions.
  • the reaction time in the oxidation reaction can be appropriately set according to the degree of progress of the oxidation, and is usually 0.5 to 6 hours, preferably 0.5 to 4 hours.
  • the oxidation reaction may be performed in two stages. For example, by oxidizing the carboxylated cellulose obtained by filtration after the completion of the first-stage reaction again under the same or different reaction conditions, without being inhibited by the salt produced as a by-product in the first-stage reaction, It can be oxidized efficiently.
  • the ozone concentration in the gas containing ozone is preferably from 50 g / m 3 to 250 g / m 3 , more preferably from 50 g / m 3 to 220 g / m 3 .
  • the amount of ozone added to the cellulose raw material is preferably 0.1 to 30 parts by mass, more preferably 5 to 30 parts by mass, when the solid content of the cellulose raw material is 100 parts by mass. .
  • the ozone treatment temperature is preferably 0 ° C to 50 ° C, more preferably 20 ° C to 50 ° C.
  • the ozone treatment time is not particularly limited, but is about 1 minute to 360 minutes, preferably about 30 minutes to 360 minutes. When the conditions of the ozone treatment are within these ranges, the cellulose can be prevented from being excessively oxidized and decomposed, and the yield of oxidized cellulose is improved.
  • an additional oxidation treatment may be performed using an oxidizing agent.
  • the oxidizing agent used for the additional oxidation treatment is not particularly limited, and examples thereof include chlorine compounds such as chlorine dioxide and sodium chlorite, oxygen, hydrogen peroxide, persulfuric acid, and peracetic acid.
  • these oxidizing agents may be dissolved in a polar organic solvent such as water or alcohol to prepare an oxidizing agent solution, and the additional oxidation treatment may be performed by immersing the cellulose raw material in the solution.
  • the amount of the carboxyl group indicating the degree of modification of the oxidized cellulose can be adjusted by controlling the reaction conditions such as the amount of the oxidizing agent and the reaction time.
  • the amount of the carboxyl group is 0.4 to 1.0 mmol / g based on the absolute dry mass of the oxidized cellulose. If it is less than 0.4 mmol / g, a large amount of energy is required to defibrate to CNF oxide. Further, when oxidized cellulose exceeding 1.0 mmol is used as a raw material, the viscosity stability of the glitter pigment dispersion becomes insufficient.
  • the amount of the carboxyl group is preferably 0.4 to 0.8 mmol / g with respect to the absolute dry mass of the oxidized cellulose from the viewpoint of the appearance of the formed coating film and the viscosity stability of the glittering pigment dispersion. And more preferably 0.4 to 0.6 mmol / g.
  • the amount of the carboxyl group indicates the total amount of the carboxyl group (—COOH) and the amount of the carboxylate group (—COO ⁇ ).
  • Devices used for defibration are not particularly limited, for example, high-speed rotation type, colloid mill type, high pressure type, roll mill type, ultrasonic type and other types of devices, high pressure or ultra high pressure homogenizer is preferable, wet high pressure or Ultra high pressure homogenizers are more preferred. It is preferable that the device can apply a strong shearing force to the cellulose raw material or the oxidized cellulose (usually a dispersion).
  • the pressure that can be applied by the device is preferably 50 MPa or more, more preferably 100 MPa or more, and even more preferably 140 MPa or more.
  • the apparatus is preferably a wet high-pressure or ultra-high-pressure homogenizer that can apply the above pressure to a cellulose raw material or oxidized cellulose (usually a dispersion) and can apply a strong shearing force. Thereby, defibration can be performed efficiently.
  • the number of processes (passes) in the defibrating device may be one, two or more, and preferably two or more.
  • oxidized cellulose is dispersed in a solvent.
  • the solvent is not particularly limited as long as it can disperse oxidized cellulose, and examples thereof include water, an organic solvent (eg, a hydrophilic organic solvent such as methanol), and a mixed solvent thereof. Since the cellulose raw material is hydrophilic, the solvent is preferably water.
  • the solid content concentration of oxidized cellulose in the glitter pigment dispersion is usually 0.1% by mass or more, preferably 0.2% by mass or more, more preferably 0.3% by mass or more. This makes the liquid amount appropriate for the amount of the cellulose fiber raw material, which is efficient.
  • the upper limit is usually 10% by mass or less, preferably 6% by mass or less. Thereby, fluidity can be maintained.
  • the order of the defibrating process and the dispersing process is not particularly limited, and either may be performed first or may be performed simultaneously, but it is preferable to perform the defibrating process after the dispersing process.
  • the combination of the processes may be performed at least once, and may be repeated two or more times.
  • a preliminary treatment may be performed if necessary.
  • the preliminary treatment may be performed using a mixing, stirring, emulsifying, or dispersing device such as a high-speed shear mixer.
  • the transparency refers to the transmittance of light having a wavelength of 660 nm when CNF oxide is used as an aqueous dispersion having a solid content of 1% (w / v).
  • the method for measuring the transparency of oxidized CNF is as follows: A CNF dispersion (solid content 1% (w / v), dispersion medium: water) was prepared, and using a UV-VIS spectrophotometer UV-1800 (manufactured by Shimadzu Corporation) using a square cell having an optical path length of 10 mm. 660 nm light transmittance is measured.
  • the transparency in the aqueous dispersion of 1.0% by mass of the cellulose nanofiber is 80% or more, the particle feeling is small, and a glittering coating film excellent in metal or pearlescent luster is formed. If it is less than this, the graininess is relatively large, and the metallic or pearly luster is inferior.
  • the transparency of the CNF oxide can be adjusted by those skilled in the art by appropriately setting the reaction conditions (for example, adjusting the amount of the oxidizing agent) when producing the CNF oxide from the cellulose raw material.
  • the average fiber diameter of the oxidized CNF is preferably at least 3 nm or at most 500 nm, more preferably at least 3 nm or at most 50 nm, even more preferably at least 3 nm or at most 20 nm.
  • the average fiber diameter and average fiber length of the cellulose nanofibers are measured, for example, by preparing a 0.001% by mass aqueous dispersion of oxidized CNF, spreading this diluted dispersion thinly on a mica sample table, and drying by heating at 50 ° C. Thus, a sample for observation is prepared, and a cross-sectional height of a shape image observed by an atomic force microscope (AFM) is measured, whereby the number average fiber diameter or fiber length can be calculated.
  • AFM atomic force microscope
  • the average aspect ratio of the oxidized CNF is usually 50 or more.
  • the upper limit is not particularly limited, but is usually 1,000 or less, more preferably 700 or less, and further preferably 500 or less.
  • the cellulose nanofiber (C) used in the present invention desirably has a viscosity that does not easily change even when a long-term shear is applied. Specifically, 300 ml of an aqueous dispersion of cellulose nanofiber having a solid concentration of 0.5% (put into a 500 ml beaker, stir the inside of the beaker up and down to obtain a uniform state, and then use a magnet stirrer to adjust the liquid temperature to 23 ° C.
  • the viscosity of the aqueous dispersion after stirring for viscosity of the aqueous dispersion before stirring is 50% or more, preferably 70% or more), the viscosity stability of the glittering pigment dispersion and the appearance of the coating film obtained. It is preferable from the viewpoint of the above.
  • the glittering pigment dispersion of the present invention containing the cellulose nanofiber (C) is prepared by preparing the glittering pigment dispersion, allowing a part of the dispersion to stand for 6 hours, and shearing the dispersion.
  • the viscosity (v 1 ) at a speed of 0.1 (s ⁇ 1 ) was measured, and 300 g of the remaining glittering pigment dispersion was transferred to a 500 mL beaker, and the inside of the beaker was stirred up and down to obtain a uniform state. After stirring for 24 hours at a temperature of 23 ° C.
  • the rate of change of the viscosity (v 2 ) after stirring with respect to the viscosity (v 1 ) is preferably less than 60%, more preferably less than 40%, More preferably, it is less than 30%.
  • cellulose nanofibers in addition to the above-mentioned cellulose nanofibers (C), in addition to the above-mentioned cellulose nanofibers (C), other viscosity modifier bright pigment dispersions are excellent in water resistance, metallic tone or pearlescent gloss and obtain a coating film having high viscosity stability. Can be used in combination.
  • cellulose nanofibers other than cellulose nanofiber (C) polyamide-based viscosity modifiers, mineral-based viscosity modifiers, polyacrylic acid-based viscosity modifiers, and the like can be used.
  • the carboxylmethylated cellulose nanofiber As the cellulose nanofiber other than the cellulose nanofiber (C), the carboxylmethylated cellulose nanofiber, the phosphate group-containing cellulose nanofiber, and the carboxyl group content of 0.4 to 1.0 mmol based on the absolute dry mass of the cellulose nanofiber. / g, or a carboxylated cellulose nanofiber having a transparency of less than 80% in a 1.0% by mass aqueous dispersion of cellulose nanofiber.
  • polyamide-based viscosity modifier examples include polyamidoamine salts and fatty acid polyamides.
  • the mineral-based viscosity modifier includes a swellable layered silicate having a 2: 1 crystal structure.
  • smectite group clay minerals such as natural or synthetic montmorillonite, saponite, hectorite, stevensite, beidellite, nontronite, bentonite, laponite, Na-type tetrasilicic mica, and Li-type tetrasilicic mica Swelling mica group clay minerals and vermiculite, such as Na salt-type fluorine teniolite and Li-type fluorine teniolite, or a substituted or derivative thereof, or a mixture thereof.
  • polyacrylic acid-based viscosity modifier examples include sodium polyacrylate and polyacrylic acid- (meth) acrylate copolymer.
  • polyacrylic acid-based viscosity modifiers include, for example, “Primal ASE-60”, “Primal TT615", and “Primal RM5" (trade names) manufactured by Dow Chemical Company, and “SN Thickener” manufactured by San Nopco. 613 “,” SN thickener 618 “,” SN thickener 630 “,” SN thickener 634 “,” SN thickener 636 “(above, trade names) and the like.
  • the solid content acid value of the polyacrylic acid-based viscosity modifier is preferably in the range of 30 to 300 mgKOH / g, more preferably 80 to 280 mgKOH / g.
  • the content thereof is preferably in the range of 1 to 200 parts by mass on a solid basis based on 100 parts by mass of the solid content of the cellulose nanofiber (C). , More preferably in the range of 50 to 150 parts by mass.
  • the glitter pigment dispersion may further contain a resin aqueous dispersion from the viewpoint of water resistance of the obtained coating film.
  • the resin aqueous dispersion is a dispersion in which the resin is dispersed in an aqueous solvent, and examples of the resin include urethane resin, acrylic resin, polyester resin, olefin resin, alkyd resin, epoxy resin, and polycarboxylic acid resin. .
  • the aqueous resin dispersion contains, for example, at least one selected from the group consisting of an aqueous urethane resin dispersion, an aqueous acrylic resin dispersion, an aqueous polyester resin dispersion, an aqueous olefin resin dispersion and a composite of these resins. be able to.
  • the aqueous dispersion may be modified.
  • a urethane resin aqueous dispersion and an acrylic resin aqueous dispersion are preferable, and a hydroxyl group-containing urethane resin aqueous dispersion and a hydroxyl group-containing acrylic resin aqueous dispersion are more preferable.
  • the aqueous hydroxyl group-containing acrylic resin dispersion is particularly preferably a core-shell type.
  • a resin aqueous dispersion When a resin aqueous dispersion is used, its content is preferably in the range of 1 to 60 parts by mass, more preferably 10 to 40 parts by mass, based on 100 parts by mass of the total solids in the glittering pigment dispersion. It is within the range of parts by mass.
  • the crosslinkable component glittering pigment dispersion may further contain a crosslinkable component from the viewpoint of the water resistance of the resulting coating film.
  • the crosslinkable component is a component for crosslinking and curing by heating when the glittering pigment dispersion contains the resin aqueous dispersion, and even if it is self-crosslinking when not containing it. It may be a component for cross-linking and curing a part of a colored coating forming a colored coating film or a part of a clear coating forming a clear coating film described later.
  • the crosslinkable component include amino resins, urea resins, polyisocyanate compounds, blocked polyisocyanate compounds, polyisocyanate compounds blocked with active methylene compounds, epoxy group-containing compounds, carboxyl group-containing compounds, carbodiimide group-containing compounds, and hydrazides.
  • Group-containing compounds semicarbazide group-containing compounds, silane coupling agents and the like.
  • an amino resin a polyisocyanate compound and a blocked polyisocyanate compound that can react with a hydroxyl group, and a carbodiimide group-containing compound that can react with a carboxyl group are preferable.
  • the polyisocyanate compound and the blocked polyisocyanate compound those described in the section of the clear paint described below can be used.
  • the crosslinkable components can be used alone or in combination of two or more.
  • the glitter pigment dispersion contains a crosslinkable component
  • its content is determined based on the scaly glitter pigment solid content of 100 parts by mass in the glitter pigment dispersion from the viewpoint of the water resistance of the coating film. It is preferably in the range of 1 to 100 parts by mass, more preferably in the range of 5 to 95 parts by mass, and still more preferably in the range of 10 to 90 parts by mass.
  • the total amount of the binder resin and the crosslinkable component forms a coating film having a metallic gloss.
  • the solid content is in the range of 0.1 to 500 parts by mass based on 100 parts by mass of the flaky glittering pigment solid content in the glittering pigment dispersion from the viewpoint of the water resistance of the coating film. It is preferably in the range of 1 to 300 parts by mass, more preferably in the range of 10 to 100 parts by mass.
  • the brilliant pigment dispersion may further include, if necessary, an organic solvent, a pigment other than the scaly brilliant pigment (B), a pigment dispersant, an anti-settling agent, an ultraviolet absorber, and a light stabilizer. You may mix suitably.
  • Examples of pigments other than the flaky glittering pigment (B) include coloring pigments and extender pigments. These pigments can be used alone or in combination of two or more.
  • Examples of the coloring pigment include titanium oxide, zinc oxide, carbon black, molybdenum red, Prussian blue, cobalt blue, azo pigments, phthalocyanine pigments, quinacridone pigments, isoindoline pigments, sulene pigments, and perylene pigments. And dioxazine pigments and diketopyrrolopyrrole pigments.
  • Examples of the extender include clay, kaolin, barium sulfate, barium carbonate, calcium carbonate, talc, silica, and alumina white.
  • the brilliant pigment dispersion can contain a binder resin such as a base resin or a dispersion resin from the viewpoint of the adhesion and storage stability of the obtained coating film, but the effects of the present invention can be obtained even if these are not substantially contained. Can be demonstrated.
  • Examples of the base resin include acrylic resin, polyester resin, alkyd resin, urethane resin and the like.
  • an existing dispersion resin such as an acrylic resin, an epoxy resin, a polycarboxylic acid resin, and a polyester resin can be used.
  • the binder resin can be used in the form of the resin aqueous dispersion.
  • the compounding amount thereof is 0.01 to 500 parts by mass, preferably 5 to 300 parts by mass, and more preferably 10 to 300 parts by mass, based on 100 parts by mass of the flaky aluminum pigment. It is preferable that the content be 200 parts by mass.
  • the total amount thereof is 0.1 to 8% by mass, preferably 0.2 to 5% by mass, more preferably 0.2 to 5% by mass, based on the mass of the glitter pigment dispersion. Is preferably 0.3 to 4% by mass.
  • the brilliant pigment dispersion in the present specification has a viscosity of 100 to 10,000 mPa ⁇ sec, preferably 200 to 8000 mPa ⁇ sec, more preferably 400 to 6000 mPa ⁇ s at a rotation speed of 6 revolutions / minute (6 rpm). -Determine the amount and composition of the above components so as to be within the range of sec.
  • Viscosity is defined as the viscosity one minute after the start of measurement under certain conditions. Specifically, the prepared brilliant pigment dispersion is put in a predetermined container, and the mixture is stirred and mixed using a rotary stirrer until the number of rotations is set at 1000 rpm, until the dispersion becomes uniform. Thereafter, measurement is started at a temperature of 20 ° C. with a B-type viscometer at 6 rpm, and the viscosity is defined as the viscosity one minute after the start (also referred to as “B6 value” in this specification). At this time, the viscometer used is LVDV-I (trade name, manufactured by BROOKFIELD, B-type viscometer).
  • the rotation speed of 6 rpm is a general condition for controlling the viscosity of a liquid having pseudoplasticity.
  • the viscosity of the brilliant pigment dispersion under the condition of 6 rpm is less than 100 mPa ⁇ sec, the liquid drips when coated and the orientation of the flaky aluminum pigment is disturbed. Can not. If the viscosity of the brilliant pigment dispersion under the condition of 6 rpm exceeds 10,000 mPa ⁇ sec, the viscosity is too high and it is difficult to apply uniformly, so that a fine metallic coating film having a small particle feeling cannot be obtained.
  • the rotation is measured at a temperature of 20 ° C. with a B-type viscometer at 60 rpm.
  • the viscosity one minute after the start of rotation (also referred to as “B60 value” in the present specification) is preferably in the range of 30 to 2000 mPa ⁇ s, and more preferably in the range of 40 to 1800 mPa ⁇ s. More preferably, it is more preferably in the range of 50 to 1500 mPa ⁇ s.
  • the viscometer used is LVDV-I (trade name, manufactured by BROOKFIELD, B-type viscometer).
  • Ti value (thixotropic index) is a value described in JIS K 5101-6-2 (2004), Pigment Test Method, Section 2, Rotational Viscometer Method, and has a B-type viscosity. Using a meter, the viscosity (mPa ⁇ s) at 20 ° C. and a rotation speed of 6 rpm and 60 rpm was measured, and the value of the viscosity measurement value at “viscosity measurement value at 6 rpm / viscosity measurement value at 60 rpm” was calculated. You can ask.
  • the Ti value satisfies the requirements of the pigment-dispersed paste composed of the glittering pigment dispersion, if the measured value falls within the range of 1.5 to 350, preferably 2 to 200, and more preferably 2.5 to 200. More preferably, it is 120.
  • a Ti value of 1.5 or more is preferred in terms of difficulty in sedimentation of the pigment, and a Ti value of 10 or less is preferred in terms of suppressing aggregation of the pigment.
  • the multi-layer coating film forming method of one embodiment of the present invention is to form a colored coating film by applying a colored paint on an object to be coated, and to form a cured or uncured colored film. On the coating film, coating the glitter pigment dispersion to form a glitter coating film, and, on the formed cured or uncured glitter coating film, apply a clear paint to form a clear coating film. Including forming.
  • a base coating film of a base coating material may be formed between the colored coating film and the glittering coating film.
  • the base paint is preferably a clear paint.
  • the method for forming a multilayer coating film according to one embodiment of the present invention can include, for example, a step in which coating films are stacked in the following specific order.
  • Multi-layer coating film forming method (1) coated object / colored coating film / brilliant coating film / clear coated film
  • the colored coating, the glitter coating, and the clear coating are each laminated by wet-on-wet, and it is preferable that three layers are simultaneously cured.
  • the coating film is cured, and thereafter, the base layer, the glitter coating film, and the clear coating film are each laminated on a wet-on-wet basis, and three layers are simultaneously cured. Is preferred.
  • the multilayer coating film according to one embodiment of the present invention is formed on a substrate to be described below.
  • objects to be coated include metal materials such as iron, zinc, and aluminum, and metal materials such as alloys containing these materials, and molded products of these metals, and molded products and films of glass, plastic, foam, and the like.
  • An object to be coated can be appropriately subjected to a degreasing treatment or a surface treatment according to these materials. Examples of the surface treatment include a phosphate treatment, a chromate treatment, and a complex oxide treatment.
  • the material of the object to be coated is a metal, it is preferable that an undercoat film is formed on the surface-treated metal material by a cationic electrodeposition paint or the like.
  • a primer coating film is formed on the degreased plastic material by a primer paint.
  • thermosetting paint known per se containing a base resin, a crosslinking agent, a pigment, and a solvent such as an organic solvent and / or water as main components can be used.
  • examples of the thermosetting paint include an intermediate paint and a base paint.
  • the base resin used for the coloring paint examples include a thermosetting resin and a room temperature curable resin. From the viewpoints of water resistance, chemical resistance, weather resistance, and the like, the thermosetting resin is preferable.
  • a resin having good weather resistance and transparency is preferable, and specific examples include an acrylic resin, a polyester resin, an epoxy resin, and a urethane resin.
  • acrylic resin examples include (meth) acrylic esters having a functional group such as ⁇ , ⁇ -ethylenically unsaturated carboxylic acid, hydroxyl group, amide group, methylol group, epoxy group, and other (meth) acrylic acid. Resins obtained by copolymerizing esters, styrene and the like can be mentioned.
  • polyester resin examples include polyhydric alcohols such as ethylene glycol, propylene glycol, butylene glycol, 1,6-hexanediol, trimethylolpropane, and pentaerythritol, and adipic acid, isophthalic acid, terephthalic acid, phthalic anhydride, and hexahydrogen.
  • a polyester resin obtained by a condensation reaction with a polycarboxylic acid component such as phthalic anhydride and trimellitic anhydride can be used.
  • epoxy resin for example, a so-called bisphenol A type epoxy resin produced by a condensation reaction between bisphenol A and epichlorohydrin can be exemplified.
  • urethane resin examples include a compound obtained by an addition reaction of a diisocyanate compound and a polyhydric alcohol, and a resin obtained by reacting the above-mentioned acrylic resin, polyester resin or epoxy resin with a diisocyanate compound to increase the molecular weight.
  • the coloring paint may be either a water-based paint or a solvent-based paint, but is preferably a water-based paint from the viewpoint of reducing the VOC of the paint.
  • the base resin is a hydrophilic group in an amount sufficient to make the resin water-soluble or water-dispersible, such as a carboxyl group, a hydroxyl group, a methylol group, an amino group, a sulfonic acid group, Most commonly, a resin containing a carboxyl group such as an oxyethylene bond is used, and the hydrophilic group is neutralized to an alkali salt to make the base resin water-soluble or water-dispersible.
  • the amount of the hydrophilic group, for example, a carboxyl group at that time is not particularly limited and can be arbitrarily selected depending on the degree of water-solubilization or water-dispersion. In general, about 10 mgKOH / g, preferably in the range of 30 to 200 mg KOH / g.
  • the alkaline substance used for neutralization include sodium hydroxide and amine compounds.
  • the resin can be dispersed in water by emulsion polymerization of a polymerizable component in the presence of a surfactant or a water-soluble resin. Further, it can be obtained by dispersing the above resin in water in the presence of, for example, an emulsifier.
  • the hydrophilic group may not be contained at all in the base resin, or may be contained in a smaller amount than the above-mentioned water-soluble resin.
  • the cross-linking agent is for cross-linking and curing the base resin by heating, and those exemplified as the cross-linking component in the glittering pigment dispersion can be used.
  • the ratio of each of the above components in the coloring paint can be arbitrarily selected as necessary.However, from the viewpoint of water resistance, finish, etc., the base resin and the crosslinking agent are generally added to the total mass of the two components. Based on this, the former is preferably in the range of 60 to 90% by mass, particularly 70 to 85% by mass, and the latter is preferably in the range of 10 to 40% by mass, particularly 15 to 30% by mass.
  • the pigment imparts color and background concealment to a colored coating film formed by the coloring paint.
  • the type and amount of the pigment can be appropriately adjusted according to the hue or brightness required for the multilayer coating film.
  • the lightness L * value of the coating film obtained from the colored paint is 0.1 to 80, preferably 0.1 to 70, more preferably 0.1 to 60.
  • the pigment include a metallic pigment, a rust-preventive pigment, a coloring pigment, an extender pigment and the like. Among them, it is preferable to use a coloring pigment, and to obtain a coating film having excellent base concealing property and metallic luster. From the viewpoint of, it is more preferable to use a black pigment. It is preferable to adjust the kind and amount of the pigment in the coloring paint so that L * of the coloring coating film is within the above range.
  • the cured film thickness of the colored coating film obtained from the coloring paint is preferably from 3 ⁇ m to 50 ⁇ m, more preferably from 5 to 45 ⁇ m, and still more preferably from the viewpoint of the concealability of the undercoat and the metallic glossiness of the multilayer coating film. Is 8 to 40 ⁇ m.
  • the cured film thickness can be 15 ⁇ m to 50 ⁇ m, preferably 18 to 45 ⁇ m, more preferably 20 to 40 ⁇ m.
  • the coating of the coloring paint can be performed according to a usual method.
  • the coloring paint is an aqueous paint
  • an additive such as deionized water, a thickener, and an antifoaming agent is added to the coloring paint.
  • the surface of the object to be coated can be applied by spray coating, rotary atomization coating, or the like.
  • electrostatic application can be performed as needed.
  • the colored coating (X) has a black-and-white opaque film thickness of preferably 80 ⁇ m or less, more preferably 10 to 60 ⁇ m, and still more preferably 15 to 50 ⁇ m, from the viewpoint of color stability and the like.
  • black and white opaque film thickness refers to a black and white checkerboard opacity test paper specified in 4.1.2 of JIS K5600-4-1 attached to a steel sheet, The paint is obliquely applied so that it changes continuously, and after drying or curing, the coated surface is visually observed under diffused daylight, and the minimum black and white border of the checkerboard of the opacity test paper becomes invisible. This is a value obtained by measuring the film thickness with an electromagnetic film thickness meter.
  • the colored paint is applied and then left at room temperature for 15 to 30 minutes. Or after heating at a temperature of 50 to 100 ° C. for 30 seconds to 10 minutes, the glitter pigment dispersion can be applied.
  • a base paint when a base paint is applied on an uncured coating film of a colored paint, the paint is applied and then left at room temperature for 15 to 30 minutes, After heating at a temperature of 100100 ° C. for 30 seconds to 10 minutes, the base paint can be applied.
  • the heating temperature is preferably in the range of 110 to 180 ° C, particularly preferably in the range of 120 to 160 ° C.
  • the heating time is preferably in the range of 10 to 60 minutes, particularly preferably in the range of 15 to 40 minutes.
  • Base Paint As the base paint, a coating composition known per se can be used. In particular, it is preferable to use, as the base paint, a paint composition usually used when painting an automobile body or the like.
  • the base paint is preferably a paint containing a base resin and a curing agent, and a medium composed of water and / or an organic solvent.
  • a resin having good weather resistance and transparency is preferable, and specific examples include an acrylic resin, a polyester resin, an epoxy resin, and a urethane resin.
  • acrylic resin examples include (meth) acrylic esters having functional groups such as ⁇ , ⁇ -ethylenically unsaturated carboxylic acid, hydroxyl group, amide group, and methylol group; other (meth) acrylic esters; Resins obtained by copolymerizing monomer components can be mentioned.
  • polyester resin those obtained by subjecting a polybasic acid, a polyhydric alcohol, and a denatured oil to a condensation reaction by a conventional method can be used.
  • an epoxy ester is synthesized by a reaction between an epoxy group and an unsaturated fatty acid, and an epoxy resin obtained by a method of adding an ⁇ , ⁇ -unsaturated acid to the unsaturated group, a hydroxyl group of the epoxy ester, And an epoxy resin obtained by a method of esterifying a polybasic acid such as phthalic acid and trimellitic acid.
  • the urethane resin is selected from, for example, at least one diisocyanate compound selected from the group consisting of an aliphatic diisocyanate compound, an alicyclic diisocyanate compound, and an aromatic diisocyanate compound, and a polyether polyol, a polyester polyol, and a polycarbonate polyol.
  • the base paint may be either a water-based paint or a solvent-based paint, but is preferably a water-based paint from the viewpoint of reducing the VOC of the paint.
  • the base resin is a hydrophilic group in an amount sufficient to make the resin water-soluble or water-dispersible, such as a carboxyl group, a hydroxyl group, a methylol group, an amino group, a sulfonic acid group,
  • the base resin can be made water-soluble or water-dispersible by using a resin containing a carboxyl group, most preferably an oxyethylene group, and neutralizing the hydrophilic group to form an alkali salt.
  • the amount of the hydrophilic group, for example, a carboxyl group at that time is not particularly limited and can be arbitrarily selected depending on the degree of water-solubilization or water-dispersion. In general, about 10 mgKOH / g, preferably in the range of 30 to 200 mg KOH / g.
  • the alkaline substance used for neutralization include, for example, sodium hydroxide and amine compounds.
  • the resin can be dispersed in water by subjecting the monomer component to emulsion polymerization in the presence of a surfactant and optionally a water-soluble resin. Further, it can be obtained by dispersing the above resin in water in the presence of, for example, an emulsifier.
  • the base resin may not contain the hydrophilic group at all, or may contain less hydrophilic group than the water-soluble resin.
  • the curing agent is for crosslinking and curing the base resin by heating, and includes, for example, an amino resin, a polyisocyanate compound (including a non-blocked polyisocyanate compound and a blocked polyisocyanate compound), an epoxy group-containing compound, Examples thereof include a carboxyl group-containing compound, a carbodiimide group-containing compound, a hydrazide group-containing compound, and a semicarbazide group-containing compound.
  • an amino resin that can react with a hydroxyl group, a polyisocyanate compound, and a carbodiimide group-containing compound that can react with a carboxyl group are preferable.
  • the above curing agents can be used alone or in combination of two or more.
  • an amino resin obtained by condensation or cocondensation of melamine, benzoguanamine, urea, etc. with formaldehyde, or etherification with a lower monohydric alcohol is preferably used.
  • a polyisocyanate compound can also be suitably used.
  • the ratio of each of the above components in the base paint can be arbitrarily selected as necessary.However, from the viewpoints of water resistance, finish, etc., the base resin and the curing agent are generally added to the total mass of the two components. Based on the above, it is preferable that the former is in the range of 50 to 90% by mass, particularly 60 to 85% by mass, and the latter is in the range of 10 to 50% by mass, particularly 15 to 40% by mass.
  • An organic solvent can be used for the base paint if necessary. Specifically, those commonly used for paints can be used.
  • the organic solvent include hydrocarbons such as toluene, xylene, hexane, and heptane; esters such as ethyl acetate, butyl acetate, ethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, and diethylene glycol monobutyl acetate; ethylene glycol monomethyl ether; Ethers such as ethylene glycol diethyl ether, diethylene glycol monomethyl ether and diethylene glycol dibutyl ether; alcohols such as butanol, propanol, octanol, cyclohexanol and diethylene glycol; and organic solvents of ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and isophorone. These can be used alone or
  • the base coating material may appropriately contain a coloring pigment, an extender pigment, an ultraviolet absorber, an antifoaming agent, a viscosity adjusting agent, a rust preventive, a surface adjusting agent, and the like, in addition to the above components, if desired.
  • the base paint may be a transparent paint or a colored paint, but is preferably a transparent paint from the viewpoint of obtaining a coating film having excellent metallic or pearlescent luster.
  • the base paint being a transparent paint means that the haze value of a 35 ⁇ m-thick dry film obtained by applying the base paint is 25% or less.
  • the haze value is determined by the diffusion measured by applying a base paint to a smooth PTFE plate, and curing and peeling the coating film using a turbidimeter COH-300A (trade name, manufactured by Nippon Denshoku Industries Co., Ltd.).
  • the light transmittance (DF) and the parallel light transmittance (PT) are defined as numerical values calculated by the following equation (2).
  • Haze value 100 * DF / (DF + PT) (2)
  • the base paint does not contain a coloring pigment, but may contain an extender pigment as needed.
  • the extender include barium sulfate, barium carbonate, calcium carbonate, aluminum silicate, silica, magnesium carbonate, talc, and alumina white.
  • the blending amount is preferably in the range of 0.1 to 30 parts by mass, more preferably 0.1 to 20 parts by mass, based on 100 parts by mass of the resin solid content in the base paint. Part within the range.
  • the base paint when it is a colored paint, it contains a colored pigment.
  • the base paint can contain a coloring pigment such as titanium oxide and carbon black from the viewpoint of light transmission control, and can further contain a conventionally known coloring pigment other than titanium oxide and carbon black, if necessary.
  • Such color pigments are not particularly limited, but specifically include iron oxide pigments, composite metal oxide pigments such as titanium yellow, azo pigments, quinacridone pigments, diketopyrrolopyrrole pigments, and perylene pigments.
  • Pigment perinone pigment, benzimidazolone pigment, isoindoline pigment, isoindolinone pigment, metal chelate azo pigment, phthalocyanine pigment, indanthrone pigment, dioxane pigment, sulene pigment, indigo pigment, Any one of brilliant pigments and the like can be used in combination of one or more kinds.
  • the brilliant pigment those exemplified in the section of the coloring paint can be exemplified.
  • the compounding amount is preferably in the range of 0.1 to 50 parts by mass, more preferably 0.2 to 40 parts by mass, based on 100 parts by mass of the resin solid content in the base paint. Part within the range.
  • the cured film thickness of the base coating film obtained from the base paint is preferably 3 ⁇ m or more, more preferably 3 to 20 ⁇ m, and still more preferably 5 to 15 ⁇ m, from the viewpoint of smoothness and metallic glossiness.
  • the coating of the base paint can be performed according to a usual method, and examples thereof include methods such as air spray coating, airless spray coating, and rotary atomization coating.
  • methods such as air spray coating, airless spray coating, and rotary atomization coating.
  • static electricity may be applied.
  • a rotary atomization type electrostatic coating and an air spray type electrostatic coating are preferable, and a rotary atomization type electrostatic coating is preferable. Paint is particularly preferred.
  • the base coating contains water and / or an organic solvent and additives such as a viscosity modifier and an antifoaming agent as required. It is preferable to adjust the solid content and the viscosity to be suitable for coating.
  • the solid content of the base paint is preferably in the range of 10 to 60% by mass, preferably 15 to 55% by mass, and more preferably 20 to 50% by mass.
  • the viscosity of the base paint measured by a B-type viscometer at 20 ° C. and 6 rpm is preferably in the range of 200 to 7000 cps, more preferably 300 to 6000 cps, and further preferably 500 to 5000 cps.
  • the brilliant pigment dispersion In the method for forming a multilayer coating film of an embodiment of the paint present invention bright pigment dispersion, the brilliant pigment dispersion, from the viewpoint of obtaining a coating film excellent in metallic or pearl luster, solids content during coating
  • the ratio is adjusted to 0.1 to 10 parts by mass, preferably 0.5 to 8 parts by mass, more preferably 2 to 6 parts by mass, based on 100 parts by mass of all components of the glittering pigment dispersion, and
  • the viscosity measured using a B-type viscometer is adjusted within the range of 100 to 10000 mPa ⁇ sec, preferably 200 to 8000 mPa ⁇ sec, more preferably 400 to 6000 mPa ⁇ sec under the condition that the rotation speed is 6 rotations / minute. I do.
  • the brilliant pigment dispersion can be applied by a method such as electrostatic coating, air spray, or airless spray.
  • a method for forming a multilayer coating film according to one embodiment of the present invention a rotary atomization type electrostatic coating is particularly preferable.
  • the film thickness after 30 seconds from the attachment of the glitter pigment dispersion to the object to be coated is preferably from 3 to 55 ⁇ m, more preferably from 4 to 50 ⁇ m, further preferably from the viewpoint of obtaining a coating film having excellent metallic gloss. It is preferably from 5 to 45 ⁇ m.
  • the film thickness 30 seconds after the glitter pigment dispersion adheres to the object to be coated is preferable. Is 3 to 45 ⁇ m, more preferably 4 to 24 ⁇ m, and still more preferably 5 to 23 ⁇ m.
  • the clear paint can be applied after leaving it at room temperature for 15 to 30 minutes or heating at a temperature of 50 to 100 ° C. for 30 seconds to 10 minutes.
  • the thickness of the glittering coating film is preferably, as a dry film thickness, preferably 0.1 to 4 ⁇ m, more preferably 0.15 to 3 ⁇ m.
  • the thickness of the glitter coating film is preferably 0.05 to 2. It is 0 ⁇ m, more preferably 0.08 to 1.6 ⁇ m.
  • a clear paint is applied on a glitter coating film obtained by coating a glitter pigment dispersion to form a clear coating film.
  • thermosetting clear coating composition any known thermosetting clear coating composition can be used.
  • thermosetting clear coat coating composition include, for example, an organic solvent type thermosetting coating composition containing a base resin having a crosslinkable functional group and a curing agent, an aqueous thermosetting coating composition, and powder thermosetting. Paint compositions and the like.
  • Examples of the crosslinkable functional group of the base resin include a carboxyl group, a hydroxyl group, an epoxy group, and a silanol group.
  • Examples of the type of the base resin include an acrylic resin, a polyester resin, an alkyd resin, a urethane resin, an epoxy resin, and a fluororesin.
  • Examples of the curing agent include a polyisocyanate compound, a blocked polyisocyanate compound, a melamine resin, a urea resin, a carboxyl group-containing compound, a carboxyl group-containing resin, an epoxy group-containing resin, and an epoxy group-containing compound.
  • a carboxyl group-containing resin / epoxy group-containing resin, a hydroxyl group-containing resin / polyisocyanate compound, a hydroxyl group-containing resin / blocked polyisocyanate compound, a hydroxyl group-containing resin / melamine resin and the like are preferable.
  • the clear paint may be a one-pack paint or a multi-pack paint such as a two-pack paint.
  • a two-pack clear paint containing the following hydroxyl group-containing resin and a polyisocyanate compound is preferable as the clear paint from the viewpoint of the adhesion of the obtained coating film.
  • hydroxyl group-containing resin conventionally known resins can be used without limitation as long as they have a hydroxyl group.
  • the hydroxyl group-containing resin include a hydroxyl group-containing acrylic resin, a hydroxyl group-containing polyester resin, a hydroxyl group-containing polyether resin, a hydroxyl group-containing polyurethane resin, and the like, and preferred examples include a hydroxyl group-containing acrylic resin and a hydroxyl group-containing polyester resin. Hydroxy group-containing acrylic resins are particularly preferred.
  • the hydroxyl value of the hydroxyl group-containing acrylic resin is preferably in the range of 80 to 200 mgKOH / g, more preferably in the range of 100 to 180 mgKOH / g, from the viewpoint of the scratch resistance and water resistance of the coating film. .
  • the weight average molecular weight of the hydroxyl group-containing acrylic resin is preferably in the range of 2,500 to 40,000, more preferably in the range of 5,000 to 30,000, from the viewpoint of acid resistance and smoothness of the coating film.
  • the weight average molecular weight is a value calculated from a chromatogram measured by gel permeation chromatography based on the molecular weight of standard polystyrene.
  • gel permeation chromatograph "HLC8120GPC” (manufactured by Tosoh Corporation) was used.
  • columns four columns of "TSKgel @ G-4000HXL”, “TSKgel @ G-3000HXL”, “TSKgel @ G-2500HXL”, and “TSKgel @ G-2000HXL” (all trade names, manufactured by Tosoh Corporation) were used.
  • Mobile phase tetrahydrofuran
  • measurement temperature 40 ° C.
  • flow rate 1 cc / min
  • detector detector: RI
  • the glass transition temperature of the hydroxyl group-containing acrylic resin is preferably from -40 ° C to 20 ° C, particularly preferably from -30 ° C to 10 ° C.
  • the coating film hardness is sufficient, and when the glass transition temperature is 20 ° C. or lower, the coating surface smoothness of the coating film can be maintained.
  • polyisocyanate compound is a compound having at least two isocyanate groups in one molecule, for example, aliphatic polyisocyanate, alicyclic polyisocyanate, araliphatic polyisocyanate, aromatic polyisocyanate, Derivatives of polyisocyanate and the like can be mentioned.
  • aliphatic polyisocyanate examples include trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, pentamethylene diisocyanate, 1,2-propylene diisocyanate, 1,2-butylene diisocyanate, 2,3-butylene diisocyanate, 1,3 Aliphatic diisocyanates such as butylene diisocyanate, 2,4,4- or 2,2,4-trimethylhexamethylene diisocyanate, dimer acid diisocyanate, methyl 2,6-diisocyanatohexanoate (common name: lysine diisocyanate); 2-isocyanatoethyl 1,6-diisocyanatohexanoate, 1,6-diisocyanato-3-isocyanatomethylhexane, 1,4,8-triisocyanatooctane, 1, 1,11-triisocyanatoundecane, 1,8-d
  • alicyclic polyisocyanate examples include 1,3-cyclopentene diisocyanate, 1,4-cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate, and 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (common name).
  • Isophorone diisocyanate 4-methyl-1,3-cyclohexylene diisocyanate (common name: hydrogenated TDI), 2-methyl-1,3-cyclohexylene diisocyanate, 1,3- or 1,4-bis (isocyanato Methyl) cyclohexane (common name: hydrogenated xylylene diisocyanate) or a mixture thereof, methylenebis (4,1-cyclohexanediyl) diisocyanate (common name: hydrogenated MDI), alicyclic diisocyanate such as norbornane diisocyanate Cyanate; 1,3,5-triisocyanatocyclohexane, 1,3,5-trimethylisocyanatocyclohexane, 2- (3-isocyanatopropyl) -2,5-di (isocyanatomethyl) -bicyclo (2.2 .1) heptane, 2- (3-isocyanatopropyl)
  • araliphatic polyisocyanate examples include methylene bis (4,1-phenylene) diisocyanate (common name: MDI), 1,3- or 1,4-xylylene diisocyanate or a mixture thereof, ⁇ , ⁇ ′-diisocyanato- Araliphatic diisocyanates such as 1,4-diethylbenzene, 1,3- or 1,4-bis (1-isocyanato-1-methylethyl) benzene (common name: tetramethylxylylene diisocyanate) or a mixture thereof; 1,3 And araliphatic triisocyanates such as 5,5-triisocyanatomethylbenzene.
  • MDI methylene bis (4,1-phenylene) diisocyanate
  • ⁇ , ⁇ ′-diisocyanato- Araliphatic diisocyanates such as 1,4-diethylbenzene, 1,3- or 1,4-bis (1-isocyanato-1
  • aromatic polyisocyanate examples include m-phenylene diisocyanate, p-phenylene diisocyanate, 4,4′-diphenyl diisocyanate, 1,5-naphthalene diisocyanate, and 2,4-tolylene diisocyanate (common name: 2,4- TDI) or 2,6-tolylene diisocyanate (common name: 2,6-TDI) or a mixture thereof, aromatic diisocyanate such as 4,4′-toluidine diisocyanate, 4,4′-diphenyl ether diisocyanate; triphenylmethane-4 Aromatic triisocyanates such as 4,4 ', 4' '-triisocyanate, 1,3,5-triisocyanatobenzene, 2,4,6-triisocyanatotoluene; 4,4'-diphenylmethane-2,2' , 5,5'-tetraisocyanate And the like aromatic tetracarboxylic
  • polyisocyanate derivatives examples include dimers, trimers, biurets, allophanates, uretdione, uretimines, isocyanurates, oxadiazine triones, and polymethylene polyphenyl polyisocyanates (crude MDI, polymeric MDI). , Crude TDI, and the like.
  • the derivatives of the polyisocyanate may be used alone or in combination of two or more.
  • the above polyisocyanates and derivatives thereof may be used alone or in combination of two or more.
  • aliphatic diisocyanates hexamethylene diisocyanate compounds, and among the alicyclic diisocyanates, 4,4′-methylenebis (cyclohexyl isocyanate) can be preferably used. Among them, a derivative of hexamethylene diisocyanate is most preferable from the viewpoints of adhesion, compatibility and the like.
  • the polyisocyanate compound the polyisocyanate and its derivative, and a compound capable of reacting with the polyisocyanate, for example, a compound having an active hydrogen group such as a hydroxyl group and an amino group are reacted under an isocyanate group excess condition.
  • a prepolymer consisting of the following may be used.
  • the compound that can react with the polyisocyanate include a polyhydric alcohol, a low molecular weight polyester resin, an amine, and water.
  • a blocked polyisocyanate compound which is a compound obtained by blocking an isocyanate group in the above-mentioned polyisocyanate and its derivative with a blocking agent can also be used.
  • the blocking agent examples include phenols such as phenol, cresol, xylenol, nitrophenol, ethylphenol, hydroxydiphenyl, butylphenol, isopropylphenol, nonylphenol, octylphenol and methyl hydroxybenzoate; ⁇ -caprolactam, ⁇ -valerolactam, Lactams such as ⁇ -butyrolactam and ⁇ -propiolactam; aliphatic alcohols such as methanol, ethanol, propyl alcohol, butyl alcohol, amyl alcohol and lauryl alcohol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono Butyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, professional Ethers such as lenglycol monomethyl ether and methoxymethanol; benzyl alcohol, glycolic acid, methyl glycolate, ethyl glycolate, butyl glycolate,
  • Acid amides such as succinimide, phthalic imide and maleic imide; diphenylamine, phenylnaphthylamine, xylidine, N-phenylxylidine, carbazole, aniline, naphthylamine, butylamine, dibutylamine, butylphenylamine and the like Amines; imidazoles such as imidazole and 2-ethylimidazole; urea, thiourea, ethylene urea, ethylene thiourea, diphenyl Urea such as urea; carbamates such as phenyl N-phenylcarbamate; imines such as ethyleneimine and propyleneimine; sulfites such as sodium bisulfite and potassium bisulfite; azole compounds; .
  • azole compounds examples include pyrazole, 3,5-dimethylpyrazole, 3-methylpyrazole, 4-benzyl-3,5-dimethylpyrazole, 4-nitro-3,5-dimethylpyrazole, 4-bromo-3, Pyrazole or pyrazole derivatives such as 5-dimethylpyrazole and 3-methyl-5-phenylpyrazole; imidazole or imidazole derivatives such as imidazole, benzimidazole, 2-methylimidazole, 2-ethylimidazole and 2-phenylimidazole; 2-methylimidazoline And imidazoline derivatives such as 2-phenylimidazoline.
  • solvents used for the blocking reaction are preferably those which are not reactive with isocyanate groups.
  • solvents include ketones such as acetone and methyl ethyl ketone, esters such as ethyl acetate, and N-methyl-2-pyrrolidone (NMP). Such solvents can be mentioned.
  • the polyisocyanate compounds can be used alone or in combination of two or more.
  • the polyisocyanate compounds can be used alone or in combination of two or more.
  • the equivalent ratio (OH / NCO) of the hydroxyl group of the hydroxyl group-containing resin to the isocyanate group of the polyisocyanate compound is preferably 0.5 to 2.0, from the viewpoints of the curability and the scratch resistance of the coating film. Preferably it is in the range of 0.8 to 1.5.
  • the hydroxyl group-containing resin and the polyisocyanate compound are separated from each other in view of storage stability. It is adjusted by mixing both.
  • a one-pack type paint may be used as the clear paint.
  • the combination of the base resin / curing agent in the one-pack type paint include carboxyl group-containing resin / epoxy group-containing resin, hydroxyl group-containing resin / blocked polyisocyanate compound, and hydroxyl group-containing resin / melamine resin.
  • the clear paint may further contain a solvent such as water or an organic solvent, a curing catalyst, an antifoaming agent, an ultraviolet absorber and other additives as necessary.
  • a coloring pigment can be appropriately added to the clear coating as long as the transparency is not impaired.
  • the coloring pigment one or a combination of two or more kinds of conventionally known pigments for inks and paints can be blended.
  • the amount of addition may be appropriately determined, but is not more than 30 parts by mass, preferably 0.01 to 10 parts by mass, per 100 parts by mass of the vehicle-forming resin composition in the clear coating composition (Z).
  • the form of the clear paint is not particularly limited, but is usually used as an organic solvent type paint composition.
  • organic solvent used in this case, various organic solvents for paints, for example, aromatic or aliphatic hydrocarbon solvents; ester solvents; ketone solvents; ether solvents, and the like can be used.
  • organic solvent to be used the one used at the time of preparing the hydroxyl group-containing resin or the like may be used as it is or may be added as appropriate.
  • the solid content of the clear paint is preferably about 30 to 70% by mass, more preferably about 40 to 60% by mass.
  • the above-mentioned clear paint is applied on the bright coating film.
  • the application of the clear paint is not particularly limited, and can be performed in the same manner as the above-mentioned colored paint.
  • the clear paint can be applied by a coating method such as air spray, airless spray, rotary atomization coating, and curtain coating. In these coating methods, you may apply an electrostatic as needed. Of these, rotary atomization coating by electrostatic application is preferred. It is preferable that the amount of the clear coating applied is usually about 10 to 50 ⁇ m as a cured film thickness.
  • the viscosity of the clear paint is adjusted to a viscosity range suitable for the coating method, for example, at 20 ° C. in the case of Ford Cup No. It is preferable that the viscosity is appropriately adjusted using a solvent such as an organic solvent so that the viscosity becomes about 15 to 60 seconds as measured by a 4 viscometer.
  • the method for forming a multilayer coating film by heating an uncured colored coating film, an uncured glittering coating film, and an uncured clear coating film, these three coating films are simultaneously formed.
  • the heating temperature is in the range 70-150 ° C, preferably 80-140 ° C.
  • the heating time is not particularly limited, but is preferably in the range of 10 to 40 minutes, more preferably 20 to 30 minutes.
  • the present invention provides a colored coating formed from a colored coating, a glittered coating formed from a glitter pigment dispersion formed on the colored coating, and a clear coating formed on the glittering coating. And a clear coating formed from a paint.
  • the coloring paint, the brilliant pigment dispersion, the clear paint, and the method for forming the multilayer coating film are as described above.
  • they can be cured simultaneously by heating, or after forming a colored coating film, the cured coating film is cured.
  • a base coating film, a bright coating film, and a clear coating film may be formed on the film, and the three uncured coating films may be simultaneously heated and cured.
  • the glitter pigment dispersion of the present invention is applied on a colored coating film or a base coating film laminated on the colored coating film so as to have a dry film thickness of 0.1 to 4 ⁇ m.
  • the multilayer coating film obtained by further forming a clear coating film on the glittering coating film preferably has a 60-degree specular gloss within the range of 90 to 240, Preferably it is in the range of 90 to 220, more preferably in the range of 90 to 200.
  • a 60-degree specular gloss is defined for a multilayer coating film in which a clear coating film is further laminated on a glittering coating film obtained by applying a dried coating film to have a thickness of 0.1 to 4 ⁇ m.
  • the 60-degree specular gloss does not mean that the thickness of the glittering coating film is within the above range when the thickness is 0.1 to 4 ⁇ m in all cases. It is assumed that the 60-degree specular glossiness at a certain time is specified.
  • Specular gloss means a ratio of specular reflection from the surface of an object to specular reflection from a reference surface (glass having a refractive index of 1.567), and is a numerical value defined in JIS-Z8741. Specifically, a light beam with a specified opening angle is incident on the measurement sample surface at a specified angle of incidence, and the light beam with a specified opening angle reflected in the mirror reflection direction is measured by a light receiver, and a so-called gloss meter is used. It is a numerical value measured by In the present specification, it is defined as a 60-degree specular gloss (60-degree gloss) measured using a gloss meter (micro-TRI-gloss, manufactured by BYK-Gardner). The greater the numerical value of the 60-degree specular gloss, the higher the gloss of the coating film.
  • the glitter pigment dispersion of the present invention containing a vapor-deposited metal flake pigment as a scaly glitter pigment dispersion (B) is coated on a colored coating film in a dry film thickness of 0.1 to 4 ⁇ m.
  • the multi-layer coating film obtained has a 60-degree specular gloss of 130 to It is preferably in the range of 240, preferably 135 to 235, more preferably 140 to 230 from the viewpoint of the denseness of the metallic coating film.
  • the HG value of a multilayer coating film in which a clear coating film is further laminated on a glittering coating film obtained by coating a dried coating film to have a particle size of 0.1 to 4 ⁇ m is defined.
  • the brilliant pigment dispersion of the present invention containing a vapor-deposited metal flake pigment and / or an aluminum flake pigment as a flaky brilliant pigment dispersion (B), on a colored coating film, as a dry film thickness,
  • a HG value of a multilayer coating film obtained by forming a transparent clear coating film is as follows: , 10-55, preferably 10-50, more preferably 10-48, from the viewpoint of the denseness of the metallic coating film.
  • the glitter pigment dispersion of the present invention containing a light interference pigment as a scaly glitter pigment dispersion (B) is coated on a colored coating film in a dry film thickness of 0.1 to 4 ⁇ m.
  • the HG value of the multilayer coating film obtained is 10 to 65, It is preferably from 10 to 63, more preferably from 10 to 60, in view of the denseness of the metallic coating film.
  • the HG value does not mean that it is within the above range when the thickness of the glittering coating film is 0.1 to 4 ⁇ m in all cases, but defines the HG value when the film thickness is within any of the above ranges. It shall be.
  • ⁇ Particle feeling is represented by Hi-light Graininess value (hereinafter abbreviated as “HG value”).
  • the HG value is one of the measures of micro-brightness, which is a texture when observed microscopically, and is a parameter representing the particle feeling on the highlight (observation of the coating film from near specular reflection with respect to incident light). It is.
  • the coating film is imaged with a CCD camera at an incident angle of 15 degrees / a light receiving angle of 0 degrees, and the obtained digital image data, that is, two-dimensional luminance distribution data, is subjected to two-dimensional Fourier transform processing.
  • the present invention may employ the following configurations.
  • a luminescent pigment dispersion having a carboxyl group content of 0.4 to 1.0 mmol / g with respect to the absolute dry mass of the cellulose acylate and a transparency of 80% or more in a 1.0% by mass aqueous dispersion of cellulose nanofibers;
  • the solids content is 0.1 to 10 parts by mass with respect to 100 parts by mass of all the components, and the viscosity measured with a B-type viscometer is 100 to 10000 mPa ⁇ sec under the condition of a rotation speed of 6 rotations / minute.
  • the brilliant pigment dispersion which is within the range of.
  • Viscosity change rate (%) at a shear rate of 0.1 (s ⁇ 1 ) (
  • the wetting agent (A) includes a silicone-based wetting agent, an acrylic-based wetting agent, a vinyl-based wetting agent, a fluorine-based wetting agent, an acetylenic diol-based wetting agent, or a combination thereof [1] to [5].
  • the brilliant pigment dispersion according to any one of the above.
  • the blending amount of the wetting agent (A) in the glittering pigment dispersion is preferably 0.01 to 20 parts by mass in solid content based on 100 parts by mass of the solid content of the glittering pigment dispersion.
  • the brilliant pigment dispersion according to any one of items [6] to [6].
  • the content of the scaly glittering pigment (B) is in the range of 2 to 97% by mass as a solid content based on 100 parts by mass of the total solid content in the glittering pigment dispersion.
  • the colored pigment according to any one of [1] to [10] wherein a colored paint is applied on an object to be coated to form a colored coating, and the formed colored coating is formed on the coating.
  • a method for forming a multilayer coating film comprising: applying a dispersion to form a glitter coating film; and applying a clear paint on the glitter coating film to form a clear coating film.
  • the method for forming a multilayer coating film according to the above item. [15] The multilayer according to any one of [11] to [13], wherein the scaly glitter pigment (B) contains a light interference pigment, and the multilayer coating film has a graininess HG of 65 or less. Coating method.
  • hydroxyl-containing acrylic resin (R-1) 35 parts of propylene glycol monopropyl ether was charged into a reaction vessel equipped with a thermometer, a thermostat, a stirrer, a reflux condenser, a nitrogen inlet tube, and a dropping device, and heated to 85 ° C., and then 32 parts of methyl methacrylate, n-butyl acrylate 27 0.7 parts, 2-ethylhexyl acrylate 20 parts, 4-hydroxybutyl acrylate 10 parts, hydroxypropyl acrylate 3 parts, acrylic acid 6.3 parts, 2-acryloyloxyethyl acid phosphate 1 part, propylene glycol monopropyl ether 15 parts A mixture of 2.3 parts of 2,2′-azobis (2,4-dimethylvaleronitrile) and 2.3 parts of 2,2′-azobis (2,4-dimethylvaleronitrile) was added dropwise over 4 hours, and the mixture was aged for 1 hour after completion of the addition.
  • red pigment dispersion liquid (P-1) 60 parts of a hydroxyl group-containing acrylic resin (R-1) (solid content: 33 parts), 35 parts of PARIOGEN MARON L3920 (trade name, perylene-based red pigment manufactured by BASF) and 177 parts of deionized water are placed in a stirring and mixing vessel, and then uniformly charged. , And further adjusted to pH 7.5 by adding 2- (dimethylamino) ethanol. The obtained mixture was placed in a 300 ml resin bottle, 130 parts of zirconia beads having a diameter of 1.5 mm were charged, the mixture was sealed, and dispersed for 120 minutes using a shaking paint conditioner. After the dispersion, zirconia beads were removed by 100-mesh wire mesh filtration to obtain a red pigment dispersion liquid (P-1) having a solid content of 25%.
  • R-1 solid content: 33 parts
  • PARIOGEN MARON L3920 trade name, perylene-based red pigment manufactured by BASF
  • aqueous acrylic resin dispersion R-22 having an average particle diameter of 100 nm and a solid content of 30%.
  • the resulting acrylic resin aqueous dispersion had an acid value of 33 mgKOH / g and a hydroxyl value of 25 mgKOH / g.
  • Monomer emulsion for core 40 parts of deionized water, 2.8 parts of "ADEKA REALSORP SR-1025", 2.1 parts of methylenebisacrylamide, 2.8 parts of styrene, 16.1 parts of methyl methacrylate, 28 parts of ethyl acrylate Parts and 21 parts of n-butyl acrylate were mixed and stirred to obtain a core-part monomer emulsion.
  • Monomer emulsion for shell part 17 parts of deionized water, 1.2 parts of "Adecaria Soap SR-1025", 0.03 part of ammonium persulfate, 3 parts of styrene, 5.1 parts of 2-hydroxyethyl acrylate, 5 parts of methacrylic acid .1 part, methyl methacrylate 6 parts, ethyl acrylate 1.8 parts and n-butyl acrylate 9 parts were mixed and stirred to obtain a shell part monomer emulsion.
  • Production example 6 of aqueous dispersion of polyester resin (R-3) In a reactor equipped with a stirrer, a thermometer, a reaction product water removing device, and a nitrogen gas inlet tube, 664 parts of isophthalic acid, 496 parts of adipic acid, 237 parts of phthalic anhydride, 788 parts of neopentyl glycol, and 341 parts of trimethylolpropane And heated to 160 ° C. while stirring under a nitrogen gas atmosphere. After maintaining at 160 ° C. for 1 hour, the temperature was raised to 230 ° C. over 5 hours while removing generated condensed water, and maintained at the same temperature.
  • the obtained hydroxyl group-containing polyester resin had a lactone modification amount of 18% by mass, a number average molecular weight of 2074, a hydroxyl value of 89 mg KOH / g and an acid value of 23 mg KOH / g.
  • Production example 7 of polyester resin solution (R-4) In a reaction vessel equipped with a thermometer, a thermostat, a stirrer, a reflux condenser and a water separator, 109 parts of trimethylolpropane, 141 parts of 1,6-hexanediol, 126 parts of 1,2-cyclohexanedicarboxylic anhydride and 126 parts of adipine After 120 parts of acid was charged and the temperature was raised from 160 ° C to 230 ° C over 3 hours, a condensation reaction was performed at 230 ° C for 4 hours. Next, 38.3 parts of trimellitic anhydride are added to the obtained condensation reaction product to introduce a carboxyl group, the mixture is reacted at 170 ° C.
  • polyester resin solution (R-4) having a solid content of 70% was obtained.
  • the obtained hydroxyl group-containing polyester resin had an acid value of 46 mg KOH / g, a hydroxyl value of 150 mg KOH / g, and a number average molecular weight of 1,400.
  • the pH in the system decreased, but the pH was adjusted to 10 by sequentially adding a 3M aqueous sodium hydroxide solution.
  • the reaction was terminated when sodium hypochlorite was consumed and the pH in the system stopped changing.
  • the mixture after the reaction was filtered through a glass filter to separate the pulp, and the pulp was sufficiently washed with water to obtain oxidized pulp (carboxylated cellulose).
  • the pulp yield at this time was 93%, the time required for the oxidation reaction was 60 minutes, and the amount of carboxyl groups was 0.72 mmol / g.
  • the pH in the system decreased, but the pH was adjusted to 10 by sequentially adding a 3M aqueous sodium hydroxide solution.
  • the reaction was terminated when sodium hypochlorite was consumed and the pH in the system stopped changing.
  • the mixture after the reaction was filtered through a glass filter to separate the pulp, and the pulp was sufficiently washed with water to obtain oxidized pulp (carboxylated cellulose).
  • the pulp yield at this time was 93.9%, the time required for the oxidation reaction was 60 minutes, and the amount of carboxyl groups was 0.9 mmol / g.
  • the pH in the system decreased, but the pH was adjusted to 10 by sequentially adding a 3M aqueous sodium hydroxide solution.
  • the reaction was terminated when sodium hypochlorite was consumed and the pH in the system stopped changing.
  • the mixture after the reaction was filtered through a glass filter to separate the pulp, and the pulp was sufficiently washed with water to obtain oxidized pulp (carboxylated cellulose).
  • the pulp yield at this time was 93%, the time required for the oxidation reaction was 60 minutes, and the amount of carboxyl groups was 0.68 mmol / g.
  • the pH in the system decreased, but the pH was adjusted to 10 by sequentially adding a 3M aqueous sodium hydroxide solution.
  • the reaction was terminated when sodium hypochlorite was consumed and the pH in the system stopped changing.
  • the mixture after the reaction was filtered through a glass filter to separate the pulp, and the pulp was sufficiently washed with water to obtain oxidized pulp (carboxylated cellulose).
  • the pulp yield at this time was 90%, the time required for the oxidation reaction was 90 minutes, and the amount of carboxyl groups was 1.53 mmol / g.
  • Production Example 15 5.00 g (absolutely dry) of bleached unbeaten kraft pulp (whiteness 85%) derived from conifers 39 mg of TEMPO (Sigma Aldrich) (0.05 mmol per 1 g of absolute dry cellulose) and 514 mg of sodium bromide (absolute dry) (1.0 mmol per 1 g of cellulose) was added to 500 mL of an aqueous solution, and the mixture was stirred until the pulp was uniformly dispersed. An aqueous solution of sodium hypochlorite was added to the reaction system so that sodium hypochlorite became 3.0 mmol / g, and an oxidation reaction was started.
  • TEMPO Sigma Aldrich
  • sodium bromide absolute bromide
  • the pH in the system decreased, but the pH was adjusted to 10 by sequentially adding a 3M aqueous sodium hydroxide solution.
  • the reaction was terminated when sodium hypochlorite was consumed and the pH in the system stopped changing.
  • the mixture after the reaction was filtered through a glass filter to separate the pulp, and the pulp was sufficiently washed with water to obtain oxidized pulp (carboxylated cellulose).
  • the pulp yield was 90%, the time required for the oxidation reaction was 90 minutes, and the amount of carboxyl groups was 1.08 mmol / g.
  • the pH in the system decreased, but the pH was adjusted to 10 by sequentially adding a 3M aqueous sodium hydroxide solution.
  • the reaction was terminated when sodium hypochlorite was consumed and the pH in the system stopped changing.
  • the mixture after the reaction was filtered through a glass filter to separate the pulp, and the pulp was sufficiently washed with water to obtain oxidized pulp (carboxylated cellulose).
  • the pulp yield was 90%, the time required for the oxidation reaction was 60 minutes, and the amount of carboxyl groups was 0.58 mmol / g.
  • each component in Table 1 is as follows. "TEGO TWIN4100” trade name, silicone wetting agent, manufactured by Evonik Degussa, with ethylene oxide chains, solid content 100%, "BYK348” trade name, manufactured by BYK, silicone wetting agent, manufactured by BYK, with ethylene oxide chain, solid content: 100%, "Surfinol 420" trade name, manufactured by Evonik Industries, acetylene diol wetting agent, with ethylene oxide chain, solid content 100%, "Surfinol 440” trade name, manufactured by Evonik Industries, acetylene diol wetting agent, with ethylene oxide chain, solid content 100%, "Surfinol 460” trade name, manufactured by Evonik Industries, acetylene diol wetting agent, with ethylene oxide chain, solid content 100%, "Surfinol 104A” trade name, manufactured by Evonik Industries, acetylene diol-based wetting agent, no ethylene oxide chain, solid
  • Viscosity stability of glitter pigment dispersion 320 g of the glitter pigment dispersion obtained was prepared, 20 g of which was allowed to stand at a temperature of 23 ° C. for 6 hours, and then heated at a temperature of 23 ° C. with a rheometer (RS150 manufactured by HAAKE). The viscosity at a shear rate of 0.1 (s -1 ) was measured (viscosity before stirring). The remaining 300 g of the brilliant pigment dispersion was transferred to a 500 mL beaker, and the inside of the beaker was stirred up and down to be uniform, and then stirred at 1,000 rpm for 24 hours at a temperature of 23 ° C. using a magnetic stirrer.
  • the mouth of the beaker was sealed with parafilm to prevent evaporation of water during stirring.
  • the glitter pigment dispersion stirred for 24 hours was allowed to stand at a temperature of 23 ° C. for 6 hours, the viscosity at a temperature of 23 ° C. and a shear rate of 0.1 (s ⁇ 1 ) was measured with a rheometer (RS150 manufactured by HAAKE). It was measured (viscosity after stirring).
  • Viscosity change rate (%) at a shear rate of 0.1 (s -1 ) (
  • the viscosity change rate is less than 30%
  • Colored Paint (W-1) "TP-65 Dark Gray” (trade name, manufactured by Kansai Paint Co., Ltd., polyester resin-based solvent-borne paint, L * value of obtained coating film: 20) was used as the colored paint (W-1).
  • Colored paint (W-2) "TP-65” (trade name, manufactured by Kansai Paint Co., Ltd., polyester resin-based solvent-borne paint, L * value of the obtained coating film: 85) was used as a colored paint (W-2).
  • Colored paint (W-3) "WP-505T” (trade name, manufactured by Kansai Paint Co., Ltd., polyester resin-based water-based intermediate coating, L * value of obtained coating film: 60) was used as a coloring coating (W-3).
  • Colored paint (W-4) "Ascarex 2870CD-1 Dark Gray” (trade name, manufactured by Kansai Paint Co., Ltd., acrylic resin-based water-based conductive primer paint for PP material) was used as a coloring paint (W-4).
  • Clear paint (Z-2) A clear paint (Z-2) obtained by adding 1.21 parts by mass of "PARIOGEN MARON L3920” (trade name, manufactured by BASF, an organic perylene pigment) to 100 parts by mass of the resin solid content contained in "KINO 6510" Used as
  • substrate 1 Cationic electrodeposition paint “ELECRON GT-10” (trade name: manufactured by Kansai Paint Co., Ltd., epoxy resin polyamine-based cationic resin on degreased and zinc phosphate treated steel sheet (JIS G3141, size 400 mm ⁇ 300 mm ⁇ 0.8 mm))
  • a block polyisocyanate compound is electrodeposited on the basis of the cured coating so as to have a thickness of 20 ⁇ m, and heated at 170 ° C. for 20 minutes to be crosslinked and cured to form an electrodeposition coating, The object to be coated 1 was obtained.
  • Coating object 2 As a plastic material, “TSOP-1 (TC-6)” (trade name, manufactured by Nippon Polychem, 350 mm ⁇ 10 mm ⁇ 2 mm) was prepared. Then, the surface of the plastic material was wiped with a gauze impregnated with isopropyl alcohol to perform a degreasing treatment, thereby obtaining an article to be coated 2.
  • the coating was applied under a condition of humidity of 68% such that the thickness of the dried coating film was 1.0 ⁇ m to form a glittering coating film. After leaving for 3 minutes, it was left at 80 ° C. for 3 minutes.
  • the thickness of the dried coating film of the glittering coating film shown in Table 2 was calculated from the following equation (3).
  • x (sc * 10000) / (S * sg) (3)
  • x film thickness [ ⁇ m]
  • sc Coating solid content [g]
  • sg Specific gravity of coating film [g / cm3] Examples 30 to 57 and 59, and Comparative Examples 11 to 20
  • a test plate was obtained in the same manner as in Example 29 except that the coloring paint (W), the transparent base paint (X), the bright pigment dispersion (Y) and the clear paint (Z) shown in Table 2 were used.
  • Example 58 Step (1): The colored paint (W-3) is electrostatically coated on the object 1 to be cured to a thickness of 25 ⁇ m using a rotary atomization type bell-type coating machine, and left for 3 minutes. At 80 ° C. for 3 minutes to form a colored coating film.
  • Step (3) Further, the clear paint (Z-1) was coated on the glittering coating film with a robot bell manufactured by ABB Co. as a dry coating film at a booth temperature of 23 ° C. and a humidity of 68% to form a dry coating film having a thickness of 35 ⁇ m. To form a clear coating film.
  • Example 60 Step (1): The colored paint (W-4) is electrostatically coated on the object 2 to be cured to a thickness of 10 ⁇ m using a rotary atomization type bell-type coating machine, and left for 3 minutes. At 80 ° C. for 3 minutes to form a colored coating film.
  • the coating was performed under the condition of a humidity of 68% so that the thickness of the dried coating film was 1.0 ⁇ m. It was left for 3 minutes and then preheated at 80 ° C. for 3 minutes to form a glittering coating film.
  • Example 61 Step (1): The colored paint (W-4) is electrostatically coated on the object 2 to be cured to a thickness of 10 ⁇ m using a rotary atomization type bell-type coating machine, and left for 3 minutes. Thus, a colored coating film was formed. Step (2): Next, a transparent base coating material (X-1) is electrostatically coated on the colored coating film to a cured film thickness of 10 ⁇ m by using a rotary atomization type bell coating machine. Left for 2 minutes. Step (3): Further, the glitter pigment dispersion (Y-1) was adjusted on the coating film to the paint viscosity shown in Table 1, and the booth temperature was 23 ° C. using an ABB robot bell.
  • the coating was performed under the condition of a humidity of 68% so that the thickness of the dried coating film was 1.0 ⁇ m. It was left for 3 minutes and then preheated at 80 ° C. for 3 minutes to form a glittering coating film.
  • Example 62 Step (1): The colored paint (W-3) is electrostatically coated on the object 1 to be cured to a thickness of 25 ⁇ m using a rotary atomization type bell-type coating machine, and left for 3 minutes. At 80 ° C. for 3 minutes to form a colored coating film.
  • Step (4) The clear paint (Z-1) was further coated on the glittering paint film with a robot bell manufactured by ABB Company at a booth temperature of 23 ° C. and a humidity of 68% to form a dry paint film having a thickness of 35 ⁇ m. To form a clear coating film.
  • 60 degree specular gloss 60 degree gloss
  • the 60 ° gloss value of the test plate obtained above was measured using a gloss meter (micro-TRI-gloss, manufactured by BYK-Gardner). The higher the value, the better.
  • the grain feeling was evaluated by a Hi-light Graininess value (hereinafter abbreviated as “HG value”).
  • the HG value is one of the measures of the micro glitter when the coating film surface is observed microscopically, and is an index indicating the graininess in highlight.
  • the HG value is calculated as follows. First, the coating film surface is photographed with a CCD camera at an incident angle of light of 15 degrees / a light receiving angle of 0 degrees, and the obtained digital image data (two-dimensional luminance distribution data) is subjected to two-dimensional Fourier transform processing to obtain a power. Obtain a spectral image.
  • the measurement parameters obtained by extracting only the spatial frequency region corresponding to the graininess are further taken as values from 0 to 100, and a linear relationship with the graininess is obtained.
  • the value converted to be kept is the HG value.
  • the HG value was set to 0 when the glittering pigment had no graininess at all, and was set to 100 when the glittering pigment had the largest graininess.
  • the HG value is 55 or less, and the light interference pigment is used as the scaly glitter pigment (B). In this case, the HG value was 65 or less and the test passed.
  • test plate was immersed in warm water at 40 ° C for 240 hours, pulled up, wiped with a cloth to remove water drops and dirt, and cut at a room temperature of 23 ° C within 10 minutes with a cutter so that the multilayer coating film of the test plate reached the substrate. It cuts in a lattice form and makes 100 goban eyes of size 2 mm x 2 mm. Subsequently, an adhesive cellophane tape was adhered to the surface, and the remaining state of the painted film after the tape was abruptly peeled was examined, and the water resistance was evaluated based on the following criteria. A and B are accepted and C is rejected.
  • the multi-layer coating film of Example 1-62 had a good 60-degree specular gloss, passed the grain feeling, and passed both the water adhesion resistance and the water adhesion resistance after the long-term acceleration test. Met.
  • the multi-layer coating films of Comparative Examples 13 and 15 dripped at the time of coating, did not form a normal coating film, and could not be used for evaluation tests of coating film performance.
  • the multilayer coating film of Comparative Example 19 failed the water adhesion after the long-term acceleration test, and the multilayer coating film of Comparative Example 18 failed both the water adhesion and the water adhesion after the long-term acceleration test.
  • the multilayer coating films of Comparative Examples 11, 12, 14, 16, 17, and 20 were unacceptable in graininess.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

水、湿潤剤(A)、鱗片状光輝性顔料(B)及び特定のセルロースナノファイバー(C)を含有する光輝性顔料分散体であって、光輝性顔料分散体の全成分合計100質量部に対して、固形分を0.1~10質量部含み、B型粘度計を用いて測定した粘度が、回転数が6回転/分の条件では100~10000mPa・secの範囲内である光輝性顔料分散体。

Description

光輝性顔料分散体及び複層塗膜形成方法
 本発明は光輝性顔料分散体及び複層塗膜形成方法に関するものである。
 塗料を塗装する目的は、主に素材の保護及び美観の付与である。工業製品においては、その商品力を高める点から、美観、なかでも特に「質感」が重要である。消費者が求める工業製品の質感は多様なものであるが、近年、自動車外板、自動車部品、家電製品等の分野において、金属や真珠のような光沢感が求められている(以下、金属のような光沢感と真珠のような光沢感とを併せて「金属又は真珠調光沢」と表記する)。
 金属又は真珠調光沢とは、鏡面のように表面に粒子感がなく、かつ、塗板に対して垂直に近い状態で見たとき(ハイライト)は光り輝き、塗板に対して斜め上から見たとき(シェード)は暗くみえる、すなわちハイライト領域とシェード領域の輝度差が大きいことを特徴とする質感である。
 かかる金属又は真珠調光沢を工業製品の表面に付与する技術には、金属めっき処理や金属蒸着処理等(例えば、特許文献1)があるが、塗料によって金属又は真珠調光沢が付与できれば、簡便さ及びコスト等の観点から有利であり、さらにその塗料が水性であれば環境負荷の点からなお有利である。
 特許文献2には、蒸着金属膜を粉砕して金属片とした光輝性顔料と、20~150mgKOH/g(固形分)の酸価を有する水性セルロース誘導体とを含み、前記水性セルロース誘導体を主たるバインダー樹脂とし、前記光輝性顔料の含有量が顔料重量濃度(PWC)で20~70質量%であることを特徴とする水性ベース塗料組成物が開示されている。
 しかし、特許文献2に記載の塗料によって形成される塗膜では、金属又は真珠調光沢が不十分である。
 特許文献3には、鱗片状光輝性顔料を含んでなる水性ベースコート塗料の塗装方法であって、塗料中の固形分が20~40重量%になるように調整された水性ベースコート塗料(A1)を乾燥膜厚で1~15μmとなるように被塗物に塗装した後、未硬化の塗膜の上に、塗料中の固形分が2~15重量%になるように調整された水性ベースコート塗料(A2)を乾燥膜厚で0.1~5μmとなるように塗装することを特徴とする水性ベースコート塗料の塗装方法が開示されている。
 しかし、特許文献3に記載の塗装方法によって形成される塗膜では、金属又は真珠調光沢が不十分である。
 一方、特許文献4には、水、鱗片状アルミニウム顔料及びセルロース系粘性調整剤を含有する光輝性顔料分散体であって、光輝性顔料分散体の全成分合計100質量部に対して、固形分を0.1~10質量部含み、B型粘度計を用いて測定した粘度が、回転数が6回転/分の条件では400~10000mPa・secの範囲内であり、全固形分中の、鱗片状アルミニウム顔料以外の成分の合計量100質量部に対し、鱗片状アルミニウム顔料を固形分として30~200質量部含む光輝性顔料分散体が開示されている。
 特許文献4に記載の光輝性顔料分散体は金属調光沢に優れるものの、近年はさらに、一定期間該光輝性顔料分散体を保存した後に塗装し塗膜を形成してもなお優れた金属調光沢が得られること(以降、「安定性」と表現する)が求められている。また、耐水性のさらなる向上も求められている。
日本国特開昭63-272544号公報 日本国特開2009-155537号公報 日本国特開2006-95522号公報 国際公開第2017/175468号
 本発明の目的は、耐水性に優れ、金属又は真珠調光沢を形成することができ、かつ安定性に優れた光輝性顔料分散体及び複層塗膜形成方法を提供することにある。
 本発明の第一の態様によれば、水、湿潤剤(A)、鱗片状光輝性顔料(B)及びセルロースナノファイバー(C)を含有する光輝性顔料分散体であって、前記セルロースナノファイバー(C)が、セルロースナノファイバーの絶乾質量に対してカルボキシル基量が0.4~1.0mmol/gであり、かつセルロースナノファイバーの1.0質量%水分散液における透明度が80%以上であり、光輝性顔料分散体の全成分合計100質量部に対して、固形分を0.1~10質量部含み、
B型粘度計を用いて測定した粘度が、回転数が6回転/分の条件では100~10000mPa・secの範囲内である光輝性顔料分散体が提供される。
 一つの実施形態では、上記光輝性顔料分散体において、湿潤剤(A)が、鱗片状光輝性顔料(B)の固形分100質量部を基準として固形分で4~400質量部である。
 別の実施形態では、上記光輝性顔料分散体において、光輝性顔料分散体固形分100質量部を基準として、鱗片状光輝性顔料(B)を固形分として2~97質量部含む。
 別の実施形態では、上記光輝性顔料分散体は、さらに、樹脂水分散体を含有する。
 本発明の第二の態様によれば、被塗物上に、着色塗料を塗装して着色塗膜を形成すること、形成される着色塗膜上に、上記いずれかに記載の光輝性顔料分散体を塗装して光輝性塗膜を形成すること、及び形成される光輝性塗膜上に、クリヤー塗料を塗装してクリヤー塗膜を形成することを含む複層塗膜形成方法が提供される。
 一つの実施形態では、上記複層塗膜形成方法において、乾燥膜厚として光輝性塗膜の厚みが0.1~4μmである。
 別の実施形態では、上記複層塗膜形成方法において、上記複層塗膜の60度鏡面光沢度が90~240の範囲内である。
 本発明の第三の態様によれば、着色塗料から形成された着色塗膜と、前記着色塗膜上に形成された、上記いずれかに記載の光輝性顔料分散体から形成された光輝性塗膜と、前記光輝性塗膜上に形成された、クリヤー塗料から形成されたクリヤー塗膜とを備えた複層塗膜が提供される。
 一つの実施形態では、上記複層塗膜において、乾燥膜厚として光輝性塗膜の厚みが0.1~4μmである。
 別の実施形態では、上記複層塗膜の60度鏡面光沢度が90~240の範囲内である。
 本発明によれば、耐水性に優れ、金属又は真珠調光沢を形成することができ、かつ安定性が高い光輝性顔料分散体及び複層塗膜形成方法が得られる。
 本発明は、水、湿潤剤(A)、鱗片状光輝性顔料(B)及びセルロースナノファイバー(C)を含み、セルロースナノファイバー(C)が、セルロースナノファイバーの絶乾質量に対してカルボキシル基量が0.4~1.0mmol/gであり、かつセルロースナノファイバーの1.0質量%水分散液における透明度が80%以上であり、特定範囲の固形分であり特定範囲の粘度である光輝性顔料分散体に関する。本発明はまた、着色塗料により形成された着色塗膜上に該光輝性顔料分散体を塗装して光輝性塗膜を形成すること、及び該光輝性塗膜上にクリヤー塗料を塗装することを含む複層塗膜形成方法に関する。本発明はさらに、該光輝性塗膜を備えた複層塗膜に関する。まず、光輝性顔料分散体について詳細に説明する。
光輝性顔料分散体
 本発明の一実施形態の光輝性顔料分散体は、水、湿潤剤(A)、鱗片状光輝性顔料(B)及びセルロースナノファイバー(C)を含有し、セルロースナノファイバー(C)が、セルロースナノファイバーの絶乾質量に対してカルボキシル基量が0.4~1.0mmol/gであり、かつセルロースナノファイバーの1.0質量%水分散液における透明度が80%以上であり、光輝性顔料分散体の全成分合計100質量部に対して、固形分を0.1~10質量部含み、好ましくは0.5~8質量部、さらに好ましくは2~6質量部含み、B型粘度計を用いて測定した粘度が、回転数が6回転/分の条件では100~10000mPa・sec、好ましくは200~8000mPa・sec、さらに好ましくは400~6000mPa・secの範囲内である光輝性顔料分散体である。
 湿潤剤(A)
 光輝性顔料分散体における湿潤剤(A)は、被塗物への光輝性顔料分散体の塗装時に、該光輝性顔料分散体を被塗物上に一様に配向するのを支援する作用を有する材料であれば特に制限なく使用することができる。
 このような作用を有する材料は、湿潤剤以外に、分散剤、ヌレ剤、レベリング剤、表面調整剤、消泡剤、界面活性剤、スーパーウェッターなどと称されることがあり、光輝性顔料分散体における湿潤剤(A)としては、分散剤、ヌレ剤、レベリング剤、表面調整剤、消泡剤、界面活性剤、スーパーウェッターも含まれる。
 湿潤剤(A)としては、例えばシリコーン系湿潤剤、アクリル系湿潤剤、ビニル系湿潤剤、フッ素系湿潤剤、アセチレンジオール系湿潤剤などの湿潤剤が挙げられる。上記湿潤剤はそれぞれ単独で又は2種以上を適宜組み合わせて使用することができる。
 湿潤剤(A)としては、耐水性に優れ、金属又は真珠調光沢を形成することができ、かつ安定性の高い光輝性顔料分散体及び複層塗膜形成方法を得る観点からアセチレンジオール系の湿潤剤及び/又はエチレンオキサイド鎖をもつ湿潤剤を使用することが好ましい。
 特に、湿潤剤(A)は、アセチレンジオールのエチレンオキサイド付加物であることが好ましい。
 湿潤剤(A)の市販品は例えば、ビックケミー社製のBYKシリーズ、エヴォニック社製のTegoシリーズ、共栄社化学社製のグラノールシリーズ、ポリフローシリーズ、楠本化成社製のディスパロンシリーズ、エボニックインダストリーズ社製のサーフィノールシリーズなどが挙げられる。
 シリコーン系の湿潤剤としては、ポリジメチルシロキサン及びこれを変性した変性シリコーンが使用される。変性シリコーンとしては、ポリエーテル変性シリコーン、アクリル変性シリコーン、ポリエステル変性シリコーンなどが挙げられる。
 光輝性顔料分散体における湿潤剤(A)の配合量は、得られる複層塗膜の金属又は真珠調光沢の点から、鱗片状光輝性顔料(B)の固形分100質量部を基準として固形分で好ましくは4~400質量部、より好ましくは5~100質量部、さらに好ましくは8~60質量部である。
 光輝性顔料分散体における湿潤剤(A)の含有量は、得られる複層塗膜が金属又は真珠光沢感に優れる観点から、光輝性顔料分散体の固形分100質量部を基準として固形分で好ましくは0.01~20質量部、より好ましくは0.02~15質量部、さらに好ましくは0.05~10質量部である。
 鱗片状光輝性顔料(B)
 光輝性顔料分散体における鱗片状光輝性顔料(B)としては、例えば、蒸着金属フレーク顔料、アルミニウムフレーク顔料、光干渉性顔料等を挙げることができる。これらの顔料は得られる塗膜に求められる質感によって1種又は2種以上を適宜選択して用いることができる。金属調光沢に優れた塗膜を得る観点では、蒸着金属フレーク顔料、アルミニウムフレーク顔料が好適である。一方、真珠調光沢に優れた塗膜を得る観点では、光干渉性顔料が好適である。
 蒸着金属フレーク顔料は、ベース基材上に金属膜を蒸着させ、ベース基材を剥離した後、蒸着金属膜を粉砕することにより得られる。上記基材としては、例えばフィルム等を挙げることができる。
 上記金属の材質としては、特に限定されないが、例えば、アルミニウム、金、銀、銅、真鍮、チタン、クロム、ニッケル、ニッケルクロム、ステンレス等が挙げられる。なかでも特に入手しやすさ及び取扱いやすさ等の観点から、アルミニウム又はクロムが好適である。本明細書では、アルミニウムを蒸着して得られた蒸着金属フレーク顔料を「蒸着アルミニウムフレーク顔料」と呼び、クロムを蒸着して得られた蒸着金属フレーク顔料を「蒸着クロムフレーク顔料」と呼ぶ。
 蒸着金属フレーク顔料としては、蒸着金属皮膜1層から形成されたものを使用することができるが、蒸着金属皮膜にさらに他の金属や金属酸化物が形成された複層のタイプのものを使用してもよい。
 蒸着アルミニウムフレーク顔料は、表面がシリカ処理されていることが、貯蔵安定性、及び金属調光沢に優れた塗膜を得る等の観点から好ましい。
 上記蒸着アルミニウムフレーク顔料として使用できる市販品としては例えば、「METALURE」シリーズ(商品名、エカルト社製)、「Hydroshine WS」シリーズ(商品名、エカルト社製)、「Decomet」シリーズ(商品名、シュレンク社製)、「Metasheen」シリーズ(商品名、BASF社製)等を挙げることができる。
 上記蒸着クロムフレーク顔料として使用できる市販品としては例えば、「Metalure Liquid Black」シリーズ(商品名、エカルト社製)等を挙げることができる。
 上記蒸着金属フレーク顔料の平均厚みは、好ましくは0.01~1.0μm、より好ましくは、0.015~0.1μmである。
 上記蒸着金属フレーク顔料の平均粒子径(D50)は好ましくは1~50μm、より好ましくは5~20μmである。
 ここでいう平均粒子径は、マイクロトラック粒度分布測定装置 MT3300(商品名、日機装社製)を用いてレーザー回折散乱法によって測定した体積基準粒度分布のメジアン径を意味する。厚さは、該鱗片状光輝性顔料を含む塗膜断面を顕微鏡にて観察して厚さを画像処理ソフトを使用して測定し、100個以上の測定値の平均値として定義するものとする。
 平均粒子径が、前記上限値を越えると、複層塗膜において、粒子感が生じてしまう場合があり、下限値未満では、ハイライトからシェードへの明度変化が小さくなりすぎ、いずれの場合も金属調光沢に欠ける。
 アルミニウムフレーク顔料は、一般にアルミニウムをボールミル又はアトライターミル中で粉砕媒液の存在下、粉砕助剤を用いて粉砕、摩砕して製造される。該アルミニウムフレーク顔料の製造工程における粉砕助剤としては、オレイン酸、ステアリン酸、イソステアリン酸、ラウリン酸、パルミチン酸、ミリスチン酸等の高級脂肪酸のほか、脂肪族アミン、脂肪族アミド、脂肪族アルコールが使用される。上記粉砕媒液としてはミネラルスピリットなどの脂肪族系炭化水素が使用される。
 上記アルミニウムフレーク顔料は、粉砕助剤の種類によって、リーフィングタイプとノンリーフィングタイプに大別することができる。光輝性顔料分散体においては、耐水性に優れ、かつハイライトで高い光沢度を有し、粒子感が小さく緻密な金属調塗膜を形成する観点からノンリーフィングタイプの鱗片状アルミニウム顔料を使用することが好ましい。ノンリーフィングタイプの鱗片状アルミニウム顔料としては、表面を特に処理していないものも使用できるが、表面を樹脂で被覆せしめたもの、シリカ処理を施したもの及びリン酸やモリブデン酸、シランカップリング剤で表面を処理したものも使用することができる。以上の各種表面処理の中から一種の処理をせしめたものを使用することができるが、複数種類の処理をせしめたものを使用してもよい。
 また上記アルミニウムフレーク顔料は、アルミニウムフレーク顔料表面に着色顔料を被覆してさらに樹脂被覆せしめたものや、アルミニウムフレーク顔料表面に酸化鉄等の金属酸化物を被覆したものなどの着色アルミニウム顔料を使用してもよい。
 上記アルミニウムフレーク顔料は、平均粒子径が1~100μmの範囲内のものを使用することが、ハイライトで高い光沢度を有し、粒子感が小さく緻密な金属調塗膜を形成する観点から好ましく、より好ましくは平均粒子径が5~50μmの範囲内、特に好ましくは7~30μmの範囲内のものである。厚さは0.01~1.0μmの範囲内のものを使用することが好ましく、特に好ましくは0.02~0.5μmの範囲内のものである。
 光輝性顔料分散体における鱗片状光輝性顔料(B)は前記蒸着金属フレーク顔料と上記アルミニウムフレーク顔料を併用することが、耐水性及び安定性の観点から好ましい。かかる場合、蒸着金属フレーク顔料とアルミニウムフレーク顔料の配合比(蒸着金属フレーク顔料/アルミニウムフレーク顔料)は、質量比で9/1~1/9、好ましくは2/8~8/2であることが好適である。
 光干渉性顔料とは、マイカ、人工マイカ、ガラス、酸化鉄、酸化アルミニウム、及び各種金属酸化物などの透明乃至半透明な鱗片状基材の表面に、該基材とは屈折率が異なる金属酸化物が被覆された光輝性顔料である。上記金属酸化物としては、酸化チタン及び酸化鉄などを挙げることができ、該金属酸化物の厚さの違いによって、光干渉性顔料は種々の異なる干渉色を発現することができる。
 前記光干渉性顔料は、透明乃至半透明な基材を酸化チタン及び/又は酸化鉄で被覆した光干渉性顔料が好ましく、透明乃至半透明な基材を酸化チタンで被覆した光干渉性顔料がより好ましい。
 本明細書では、透明な基材とは、可視光線を少なくとも90%透過する基材を指す。半透明な基材とは、可視光線を少なくとも10%~90%未満透過する基材を指す。
 該光干渉性顔料としては具体的には、下記に示す金属酸化物被覆マイカ顔料、金属酸化物被覆アルミナフレーク顔料、金属酸化物被覆ガラスフレーク顔料、金属酸化物被覆シリカフレーク顔料などを挙げることができる。
 金属酸化物被覆マイカ顔料は、天然マイカ又は人工マイカを基材とし、該基材表面を金属酸化物が被覆した顔料である。天然マイカとは、鉱石のマイカ(雲母)を粉砕した鱗片状基材である。人工マイカとは、SiO2、MgO、Al23、K2SiF6、Na2SiF6などの工業原料を加熱し、約1500℃の高温で熔融し、冷却して結晶化させて合成したものであり、天然のマイカと比較した場合において、不純物が少なく、大きさ及び厚さが均一なものである。人工マイカの基材としては具体的には、フッ素金雲母(KMg3AlSi3102)、カリウム四ケイ素雲母(KMg2.5AlSi4102)、ナトリウム四ケイ素雲母(NaMg2.5AlSi4102)、Naテニオライト(NaMg2LiSi4102)、LiNaテニオライト(LiMg2LiSi4102)などが知られている。
 金属酸化物被覆アルミナフレーク顔料は、アルミナフレークを基材とし、基材表面を金属酸化物が被覆した顔料である。アルミナフレークとは、鱗片状(薄片状)酸化アルミニウムを意味し、無色透明なものである。該アルミナフレークは酸化アルミニウム単一成分である必要はなく、他の金属の酸化物を含有するものであってもよい。
 金属酸化物被覆ガラスフレーク顔料とは、鱗片状のガラスを基材とし、基材表面を金属酸化物が被覆した顔料である。該金属酸化物被覆ガラスフレーク顔料は、基材表面が平滑なため、強い光の反射が生じる。
 金属酸化物被覆シリカフレーク顔料は、表面が平滑で且つ厚さが均一な基材である鱗片状シリカを金属酸化物が被覆した顔料である。
 上記光干渉性顔料は、分散性、耐水性、耐薬品性、耐候性などを向上させるための表面処理が施されたものであってもよい。
 上記光干渉性顔料は、真珠調光沢に優れた塗膜を得る観点から、平均粒子径が5~30μm、特に7~20μmの範囲内のものを使用することが好ましい。
 ここでいう粒子径は、マイクロトラック粒度分布測定装置MT3300(商品名、日機装社製)を用いてレーザー回折散乱法によって測定した体積基準粒度分布のメジアン径を意味する。
 また、上記光干渉性顔料は、真珠調光沢に優れた塗膜を得る観点から、厚さが0.05~1μm、特に0.1~0.8μmの範囲内のものを使用することが好ましい。
 光輝性顔料分散体における鱗片状光輝性顔料(B)は、平均粒子径が1~100μmの範囲内のものを使用することが、ハイライトで高い光沢度を有し、粒子感が小さく緻密な金属調又は真珠調光沢を有する塗膜を形成する観点から好ましく、より好ましくは平均粒子径が5~50μmの範囲内、特に好ましくは7~30μmの範囲内のものである。厚さは0.01~1.0μmの範囲内のものを使用することが好ましく、特に好ましくは0.02~0.5μmの範囲内のものである。
 光輝性顔料分散体における鱗片状光輝性顔料(B)の含有量は金属調又は真珠調光沢に優れた塗膜を得る観点から、光輝性顔料分散体中の合計固形分100質量部に対し、固形分として2~97質量部の範囲内であることが好ましく、5~65質量部の範囲内であることが特に好ましく、10~60質量部の範囲内であることがさらに好ましい。
 セルロースナノファイバー(C)
 光輝性顔料分散体におけるセルロースナノファイバー(C)は、セルロースナノファイバーの絶乾質量に対してカルボキシル基量が0.4~1.0mmol/gであり、かつセルロースナノファイバーの1.0質量%水分散液における透明度が80%以上である。
 光輝性顔料分散体におけるセルロースナノファイバーとしては、耐水性と、金属又は真珠調光沢とに優れた塗膜を形成することができ、さらに粘度安定性の高い光輝性顔料分散体を得る観点から、セルロースナノファイバーのカルボキシル基量が低く、かつ高透明なセルロースナノファイバーを使用する。
 上記セルロースナノファイバーは、セルロースナノフィブリル、フィブリレーティドセルロース、又はナノセルロースクリスタルと称されることもある。
 上記セルロースナノファイバーは、セルロース原料にカルボキシル基を導入して得られる酸化セルロースを解繊することによって得ることができる酸化セルロースナノファイバー(以降、「酸化CNF」ということがある)であることが好ましい。また、上記セルロースナノファイバーは、セルロースナノファイバーの絶乾質量に対してカルボキシル基量が0.4~1.0mmol/gであり、より好ましくは0.4~0.8mmol/g、さらに好ましくは0.4~0.6mmol/gであり、かつセルロースナノファイバーの1.0質量%水分散液における透明度が80%以上であり、より好ましくは85%以上であり、さらに好ましくは90%以上である。
(原料)
 セルロース原料としては、例えば、植物性材料(例えば、木材、竹、麻、ジュート、ケナフ、農地残廃物、布、パルプ(針葉樹未漂白クラフトパルプ(NUKP)、針葉樹漂白クラフトパルプ(NBKP)、広葉樹未漂白クラフトパルプ(LUKP)、広葉樹漂白クラフトパルプ(LBKP)、針葉樹未漂白サルファイトパルプ(NUSP)、針葉樹漂白サルファイトパルプ(NBSP)、サーモメカニカルパルプ(TMP)、再生パルプ、古紙等)、動物性材料(例えば、ホヤ類)、藻類、微生物(例えば、酢酸菌(アセトバクター))、微生物産生物を起源とするものを挙げることができ、いずれも使用することができる。好ましくは、植物又は微生物由来のセルロース原料であり、より好ましくは、植物由来のセルロース原料である。
(カルボキシル基の導入)
 上記のセルロース原料を公知の方法で酸化(カルボキシル化)することにより、セルロース原料にカルボキシル基を導入することができる。
 酸化の一例として、セルロース原料を、N-オキシル化合物と、臭化物、ヨウ化物、又はこれらの混合物との存在下で酸化剤を用いて水中で酸化する方法がある。この酸化反応により、セルロース表面のピラノース環のC6位の一級水酸基が選択的に酸化される。その結果、表面にアルデヒド基と、カルボキシル基(-COOH)又はカルボキシレート基(-COO)を有する酸化セルロースを得ることができる。反応時のセルロースの濃度は特に限定されないが、5質量%以下であることが好ましい。
 N-オキシル化合物とは、ニトロキシラジカルを発生し得る化合物をいう。N-オキシル化合物としては、目的の酸化反応を促進する化合物であれば、いずれの化合物も使用できる。例えば、2,2,6,6-テトラメチルピペリジン-1-オキシラジカル(TEMPO)及びその誘導体(例えば、4-ヒドロキシTEMPO)が挙げられる。
 N-オキシル化合物の使用量は、原料となるセルロースを酸化できる触媒量であればよく、特に制限されない。絶乾1gのセルロースに対して、0.01mmol~10mmolが好ましく、0.01mmol~1mmolがより好ましく、0.05mmol~0.5mmolがさらに好ましい。また、その濃度は、反応系に対し、0.1mmol/L~4mmol/L程度が好ましい。
 臭化物とは臭素を含む化合物であり、水中で解離してイオン化可能な臭化アルカリ金属が含まれる。また、ヨウ化物とはヨウ素を含む化合物であり、ヨウ化アルカリ金属が含まれる。
 臭化物又はヨウ化物の使用量は、酸化反応を促進できる範囲で選択できる。臭化物及びヨウ化物の合計量は、絶乾1gのセルロースに対して、0.1mmol~100mmolが好ましく、0.1mmol~10mmolがより好ましく、0.5mmol~5mmolがさらに好ましい。
 酸化剤としては、公知のものを使用でき、例えば、ハロゲン、次亜ハロゲン酸、亜ハロゲン酸、過ハロゲン酸又はそれらの塩、ハロゲン酸化物、過酸化物等がある。中でも、安価で環境負荷の少ない次亜塩素酸ナトリウムが好ましい。
 酸化剤の使用量は、絶乾1gのセルロースに対して、0.5mmol~500mmolが好ましく、0.5mmol~50mmolがより好ましく、1mmol~25mmolがさらに好ましい。また、例えば、N-オキシル化合物1molに対して1mol~40molが好ましい。
 セルロースの酸化工程は、比較的温和な条件であっても反応を効率よく進行させられる。そのため、反応温度は4℃~40℃が好ましく、15℃~30℃程度の室温であってもよい。反応の進行に伴ってセルロース中にカルボキシル基が生成するため、反応液のpHは低下する。酸化反応を効率よく進行させるために、反応途中で水酸化ナトリウム水溶液等のアルカリ性溶液を添加して、反応液のpHを8~12、好ましくは10~11程度に維持することが好ましい。反応媒体は、取扱い性の容易さや、副反応が生じ難い等の理由で、水が好ましい。
 酸化反応における反応時間は、酸化の進行の程度に従って適宜設定することができ、通常、0.5時間~6時間であり、0.5時間~4時間であることが好ましい。
 また、酸化反応は、2段階に分けて実施してもよい。例えば、1段階目の反応終了後に濾別して得られたカルボキシル化セルロースを、再度、同一又は異なる反応条件で酸化することにより、1段階目の反応で副生する食塩による反応阻害を受けることなく、効率よく酸化することができる。
 他の例として、オゾンを含む気体とセルロース原料とを接触させることにより酸化する方法がある。この酸化反応により、ピラノース環の少なくとも2位及び6位の水酸基が酸化されると共に、セルロース鎖の分解が起こる。
 オゾンを含む気体中のオゾン濃度は、50g/m3~250g/m3であることが好ましく、50g/m3~220g/m3であることがより好ましい。セルロース原料に対するオゾン添加量は、セルロース原料の固形分を100質量部とした際に、0.1質量部~30質量部であることが好ましく、5質量部~30質量部であることがより好ましい。
 オゾン処理温度は、0℃~50℃であることが好ましく、20℃~50℃であることがより好ましい。オゾン処理時間は、特に限定されないが、1分~360分程度であり、30分~360分程度が好ましい。オゾン処理の条件がこれらの範囲内であると、セルロースが過度に酸化及び分解されることを防ぐことができ、酸化セルロースの収率が良好となる。
 オゾン処理を施した後に、酸化剤を用いて、追酸化処理を行ってもよい。追酸化処理に用いる酸化剤は、特に限定されないが、二酸化塩素、亜塩素酸ナトリウム等の塩素系化合物や、酸素、過酸化水素、過硫酸、過酢酸等が挙げられる。例えば、これらの酸化剤を水又はアルコール等の極性有機溶媒中に溶解して酸化剤溶液を調製し、溶液中にセルロース原料を浸漬させることにより追酸化処理を行うことができる。
 酸化セルロースの変性度を示すカルボキシル基の量は、上記した酸化剤の添加量、反応時間等の反応条件をコントロールすることで調整することができる。なお、カルボキシル基の量は、酸化セルロースの絶乾質量に対して、0.4~1.0mmol/gである。0.4mmol/g未満であると、酸化CNFへと解繊するためには多大なエネルギーが必要となる。また、1.0mmolを超えた酸化セルロースを原料に用いた場合、光輝性顔料分散体の粘度安定性が不十分になる。なかでも、該カルボキシル基の量は、形成される塗膜の外観及び光輝性顔料分散体の粘度安定性の観点から、酸化セルロースの絶乾質量に対して、0.4~0.8mmol/gであることが好ましく、0.4~0.6mmol/gであることがさらに好ましい。なお、本明細書中、変性度を示す場合においては、カルボキシル基の量は、カルボキシル基(-COOH)の量、及びカルボキシレート基(-COO)の量の合計量を示す。
(解繊)
 解繊に用いる装置は特に限定されないが例えば、高速回転式、コロイドミル式、高圧式、ロールミル式、超音波式などのタイプの装置が挙げられ、高圧又は超高圧ホモジナイザーが好ましく、湿式の高圧又は超高圧ホモジナイザーがより好ましい。装置は、セルロース原料又は酸化セルロース(通常は分散液)に強力なせん断力を印加できることが好ましい。装置が印加できる圧力は、50MPa以上が好ましく、より好ましくは100MPa以上であり、さらに好ましくは140MPa以上である。装置は、セルロース原料又は酸化セルロース(通常は分散液)に上記圧力を印加でき、かつ強力なせん断力を印加できる、湿式の高圧又は超高圧ホモジナイザーが好ましい。これにより、解繊を効率的に行うことができる。解繊装置での処理(パス)回数は、1回でもよいし2回以上でもよく、2回以上が好ましい。
 分散処理においては通常、溶媒に酸化セルロースを分散する。溶媒は、酸化セルロースを分散できるものであれば特に限定されないが、例えば、水、有機溶媒(例えば、メタノール等の親水性の有機溶媒)、それらの混合溶媒が挙げられる。セルロース原料が親水性であることから、溶媒は水であることが好ましい。
 光輝性顔料分散体中の酸化セルロースの固形分濃度は、通常は0.1質量%以上、好ましくは0.2質量%以上、より好ましくは0.3質量%以上である。これにより、セルロース繊維原料の量に対する液量が適量となり効率的である。上限は、通常10質量%以下、好ましくは6質量%以下である。これにより流動性を保持することができる。
 解繊処理と分散処理の順序は特に限定されず、どちらを先に行ってもよいし同時に行ってもよいが、分散処理後に解繊処理を行うことが好ましい。各処理の組み合わせを少なくとも1回行えばよく、2回以上繰り返してもよい。
 解繊処理又は分散処理に先立ち、必要に応じて予備処理を行ってもよい。予備処理は、高速せん断ミキサーなどの混合、撹拌、乳化、分散装置を用いて行えばよい。
(透明度)
 本明細書において、透明度は、酸化CNFを固形分1%(w/v)の水分散体とした際の、波長660nmの光の透過率をいうものとする。酸化CNFの透明度の測定方法は、以下の通りである:
  CNF分散体(固形分1%(w/v)、分散媒:水)を調製し、UV-VIS分光光度計 UV-1800(島津製作所製)を用い、光路長10mmの角型セルを用いて、660nm 光の透過率を測定する。
 セルロースナノファイバーの1.0質量%水分散液における透明度が80%以上であると、粒子感が小さく、金属又は真珠調光沢に優れる光輝性塗膜が形成される点で好ましく、透明度が80%未満であると、粒子感が比較的大きく、金属又は真珠調光沢が劣る点で望ましくない。
 酸化CNFの透明度は、セルロース原料から酸化CNFを製造するときの反応条件(例えば酸化剤の量の調整)を適宜設定することにより、当業者には調整可能である。
(酸化CNFの平均繊維径とアスペクト比)
 酸化CNFの平均繊維径は、3nm以上又は500nm以下であることが好ましく、3nm以上又は50nm以下であることがより好ましく、3nm以上又は20nm以下であることがさらに好ましい。セルロースナノファイバーの平均繊維径及び平均繊維長の測定は、例えば、酸化CNFの0.001質量%水分散液を調製し、この希釈分散液をマイカ製試料台に薄く延ばし、50℃で加熱乾燥させて観察用試料を作成し、原子間力顕微鏡(AFM)にて観察した形状像の断面高さを計測することにより、数平均繊維径あるいは繊維長として算出することができる。
 また、酸化CNFの平均アスペクト比は、通常は50以上である。上限は特に限定されないが、通常は1000以下であり、より好ましくは700以下であり、さらに好ましくは500以下である。平均アスペクト比は下記の式(1)により算出することができる:
     アスペクト比=平均繊維長/平均繊維径   ・・・(1)
(粘度安定性)
 本発明で用いるセルロースナノファイバー(C)は、長時間シェアをかけても粘度が変化しにくいものであることが望ましい。具体的には、固形分濃度0.5%のセルロースナノファイバー水分散液300ml(500mlビーカーに入れ、ビーカー内を上下攪拌して均一の状態にしてから、マグネットスターラーを用いて、液温23℃で液面中心部が若干(2~3mm)凹む状態を維持して24時間攪拌した場合に、攪拌前の水分散液の粘度(vpre)に対する攪拌後の水分散液の粘度(vpost)の保持率(vpost/vpre×100(%))が50%以上、好ましくは70%以上であるもの)を用いることが、光輝性顔料分散体の粘度安定性や得られる塗膜の外観等の点から好適である。
 また、粘度安定性の点で、該セルロースナノファイバー(C)を含有する本発明の光輝性顔料分散体は、該光輝性顔料分散体を準備してその一部を6時間静置してせん断速度0.1(s-1)における粘度(v1)を測定すると共に、その残りの光輝性顔料分散体300gを500mLビーカーに移し、ビーカー内を上下撹拌して均一の状態にしてから、マグネットスターラーを用いて、温度23℃、1,000rpmで24時間撹拌した後、6時間静置して測定したせん断速度0.1(s-1)における粘度(v2)を測定し、撹拌前の粘度(v1)に対する撹拌後の粘度(v2)の変化率(|v1-v2|/v1×100(%))が好ましくは60%未満であり、より好ましくは40%未満、さらに好ましくは30%未満である。
 その他の粘性調整剤
 光輝性顔料分散体においては、耐水性、金属調又は真珠調光沢に優れ、かつ高い粘度安定性の塗膜を得る点から、前記セルロースナノファイバー(C)に加えて、その他の粘性調整剤を併用することができる。その他の粘性調整剤としては、セルロースナノファイバー(C)以外のセルロースナノファイバー、ポリアミド系粘性調整剤、鉱物系粘性調整剤、ポリアクリル酸系粘性調整剤等を使用することができる。
 セルロースナノファイバー(C)以外のセルロースナノファイバーとしては、カルボキシルメチル化セルロースナノファイバー、リン酸基含有セルロースナノファイバー、セルロースナノファイバーの絶乾質量に対してカルボキシル基量が0.4~1.0mmol/gの範囲外であり、又はセルロースナノファイバーの1.0質量%水分散液における透明度が80%未満のカルボキシル化セルロースナノファイバー等が挙げられる。
 ポリアミド系粘性調整剤としては、ポリアミドアミン塩、脂肪酸ポリアミド等が挙げられる。
 鉱物系粘性調整剤としては、その結晶構造が2:1型構造を有する膨潤性層状ケイ酸塩が挙げられる。具体的には、天然又は合成のモンモリロナイト、サポナイト、ヘクトライト、スチブンサイト、バイデライト、ノントロナイト、ベントナイト、ラポナイト等のスメクタイト族粘土鉱物や、Na型テトラシリシックフッ素雲母、Li型テトラシリシックフッ素雲母、Na塩型フッ素テニオライト、Li型フッ素テニオライト等の膨潤性雲母族粘土鉱物及びバーミキュライト、又はこれらの置換体や誘導体、或いはこれらの混合物が挙げられる。
 ポリアクリル酸系粘性調整剤としては、ポリアクリル酸ソーダ、ポリアクリル酸-(メタ)アクリル酸エステル共重合体等を挙げることができる。
 該ポリアクリル酸系粘性調整剤の市販品として、例えば、ダウケミカル社製の「プライマルASE-60」、「プライマルTT615」、「プライマルRM5」(以上、商品名)、サンノプコ社製の「SNシックナー613」、「SNシックナー618」、「SNシックナー630」、「SNシックナー634」、「SNシックナー636」(以上、商品名)等が挙げられる。ポリアクリル酸系粘性調整剤の固形分酸価は、好ましくは30~300mgKOH/g、より好ましくは80~280mgKOH/gの範囲である。
 その他の粘性調整剤を使用する場合、その含有量は、前記セルロースナノファイバー(C)の固形分含有量100質量部に基づいて、固形分で1~200質量部の範囲内であることが好ましく、より好ましくは50~150質量部の範囲内である。
 樹脂水分散体
 光輝性顔料分散体は、得られる塗膜の耐水性の観点から、樹脂水分散体をさらに含んでいてもよい。
 樹脂水分散体は、樹脂が水性溶媒に分散されている分散体であり、樹脂としては、ウレタン樹脂、アクリル樹脂、ポリエステル樹脂、オレフィン樹脂、アルキド樹脂、エポキシ樹脂、ポリカルボン酸樹脂などが挙げられる。
 樹脂水分散体は、例えば、ウレタン樹脂水分散体、アクリル樹脂水分散体、ポリエステル樹脂水分散体、オレフィン樹脂水分散体及びこれらの樹脂の複合体からなる群から選択される少なくとも一種を含有することができる。該水分散体は変性されていてもよい。
 これらのうち、得られる塗膜の耐水性の観点から、ウレタン樹脂水分散体、アクリル樹脂水分散体が好ましく、さらに水酸基含有ウレタン樹脂水分散体及び水酸基含有アクリル樹脂水分散体が好ましい。
 水酸基含有アクリル樹脂水分散体は特に、コアシェル型であることが好ましい。
 樹脂水分散体を使用する場合、その含有量は光輝性顔料分散体中の合計固形分100質量部に基づいて、1~60質量部の範囲内であることが好ましく、より好ましくは10~40質量部の範囲内である。
 架橋性成分
 光輝性顔料分散体は、得られる塗膜の耐水付着性の観点から、架橋性成分をさらに含んでいてもよい。
 前記架橋性成分は、光輝性顔料分散体が上記樹脂水分散体を含む場合には、これを加熱により架橋硬化させるための成分であり、含まない場合には、自己架橋するものであってもよく、又は、後述する着色塗膜を形成する着色塗料の一部やクリヤー塗膜を形成するクリヤー塗料の一部と架橋硬化させるための成分であってもよい。架橋性成分としては、例えばアミノ樹脂、尿素樹脂、ポリイソシアネート化合物、ブロック化ポリイソシアネート化合物、活性メチレン化合物でブロックされたポリイソシアネート化合物、エポキシ基含有化合物、カルボキシル基含有化合物、カルボジイミド基含有化合物、ヒドラジド基含有化合物、セミカルバジド基含有化合物、シランカップリング剤などが挙げられる。これらのうち、水酸基と反応し得るアミノ樹脂、ポリイソシアネート化合物及びブロック化ポリイソシアネート化合物、カルボキシル基と反応し得るカルボジイミド基含有化合物が好ましい。ポリイソシアネート化合物及びブロック化ポリイソシアネート化合物については、後述のクリヤー塗料の項で述べるものを使用することができる。上記架橋性成分は、単独でもしくは2種以上組み合わせて使用することができる。
 光輝性顔料分散体が架橋性成分を含む場合、その含有量は、塗膜の耐水付着性の点から、光輝性顔料分散体中の鱗片状光輝性顔料固形分100質量部に基づいて、固形分として1~100質量部の範囲内であることが好ましく、より好ましくは5~95質量部の範囲内、さらに好ましくは10~90質量部の範囲内である。
 光輝性顔料分散体が、後述の基体樹脂や分散樹脂等のバインダー樹脂を含有し、さらに架橋性成分を含む場合、バインダー樹脂と架橋性成分の合計量は、金属調光沢を有する塗膜を形成する点から、光輝性顔料分散体中の鱗片状光輝性顔料固形分100質量部に基づいて、塗膜の耐水付着性の点から、固形分として0.1~500質量部の範囲内であることが好ましく、より好ましくは1~300質量部の範囲内、さらに好ましくは10~100質量部の範囲内である。
 その他の成分
 光輝性顔料分散体には、さらに必要に応じて、有機溶剤、前記鱗片状光輝性顔料(B)以外の顔料、顔料分散剤、沈降防止剤、紫外線吸収剤及び光安定剤等を適宜配合しても良い。
 鱗片状光輝性顔料(B)以外の顔料としては、着色顔料、体質顔料等を挙げることができる。該顔料は単独で又は2種以上組み合わせて使用することができる。前記着色顔料としては、例えば、酸化チタン、酸化亜鉛、カーボンブラック、モリブデンレッド、プルシアンブルー、コバルトブルー、アゾ系顔料、フタロシアニン系顔料、キナクリドン系顔料、イソインドリン系顔料、スレン系顔料、ペリレン系顔料、ジオキサジン系顔料、ジケトピロロピロール系顔料などが挙げられる。前記体質顔料としては、例えば、クレー、カオリン、硫酸バリウム、炭酸バリウム、炭酸カルシウム、タルク、シリカ、アルミナホワイト等が挙げられる。
 光輝性顔料分散体は、得られる塗膜の付着性や貯蔵安定性の観点から基体樹脂や分散樹脂等のバインダー樹脂を含むことができるが、これらを実質的に含まなくても本発明の効果を発揮することができる。
 上記基体樹脂としては、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、ウレタン樹脂などが挙げられる。
 上記分散樹脂としては、アクリル樹脂、エポキシ樹脂、ポリカルボン酸樹脂、ポリエステル樹脂などの、既存の分散樹脂の使用が可能である。
 また、該バインダー樹脂としては、前記樹脂水分散体の態様で使用することができる。   
 光輝性顔料分散体が上記バインダー樹脂を含む場合、その配合量は、鱗片状アルミニウム顔料の配合量100質量部を基準として、0.01~500質量部、好ましくは5~300質量部、さらに10~200質量部とすることが好ましい。
 光輝性顔料分散体が上記バインダー樹脂を含む場合、その合計配合量は、光輝性顔料分散体の質量を基準として、0.1~8質量%、好ましくは0.2~5質量%、さらに好ましくは0.3~4質量%とすることが好ましい。
 粘度
 本明細書における光輝性顔料分散体は、回転数が6回転/分(6rpm)の条件における粘度が、100~10000mPa・secであり、好ましくは200~8000mPa・sec、さらに好ましくは400~6000mPa・secの範囲内となるように上記成分の量及び組成を決定する。
 粘度は、一定条件での測定開始1分後の粘度として定義する。具体的には、調製した光輝性顔料分散体を所定の容器に入れて、回転式攪拌機を使用して、回転数を1000回転/分の条件に設定して、均一になるまで攪拌混合する。その後、温度20℃においてB型粘度計で6rpmの条件で測定を開始し、開始1分後の粘度として定義するものとする(本明細書では「B6値」とも称する)。このとき、使用する粘度計は、LVDV-I(商品名、BROOKFIELD社製、B型粘度計)である。6rpmという回転数は、擬塑性を持つ液体の粘度を管理する際の一般的な条件である。6rpmの条件における光輝性顔料分散体の粘度が100mPa・sec未満であると、塗装したときに液がたれて鱗片状アルミニウム顔料の配向が乱れ、粒子感が小さく緻密な金属調塗膜を得ることができない。6rpmの条件における光輝性顔料分散体の粘度が10000mPa・secを超えると、粘度が高すぎて均一に塗布され難く、やはり粒子感が小さく緻密な金属調塗膜を得ることができない。
 さらに、金属調光沢に優れる塗膜を得る観点から、光輝性顔料分散体は、固形分含有率0.5質量%に調整した場合、温度20℃においてB型粘度計で測定する60回転/分(60rpm)で回転開始1分後の粘度(本明細書では「B60値」とも称する)が30~2000mPa・sの範囲内であることが好ましく、40~1800mPa・sの範囲内であることがより好ましく、50~1500mPa・sの範囲内であることがさらに好ましい。このとき、使用する粘度計は、LVDV-I(商品名、BROOKFIELD社製、B型粘度計)である。
 Ti値
 本明細書において、「Ti値(チクソトロピックインデックス)」とは、JIS K 5101-6-2(2004)、顔料試験方法 第2節 回転粘度計法に記載されるもので、B型粘度計を用い、20℃、回転数6rpm及び60rpmでの粘度(mPa・s)を測定して、「6rpmでの粘度測定値/60rpmでの粘度測定値」での粘度測定値の値を算出して求めることができる。Ti値は、その測定値が1.5~350の範囲に入っていれば、光輝性顔料分散体からなる顔料分散ペーストの要件を満足し、2~200であることが好ましく、2.5~120であることがさらに好ましい。Ti値が1.5以上であることが顔料の沈降し難さの点で好ましく、Tiが10以下であることが顔料の凝集を抑制する点で好ましい。
 複層塗膜形成方法
 本発明の一実施形態の複層塗膜形成方法は、被塗物上に、着色塗料を塗装して着色塗膜を形成すること、形成される硬化又は未硬化の着色塗膜上に、前記光輝性顔料分散体を塗装して光輝性塗膜を形成すること、及び形成される硬化又は未硬化の光輝性塗膜上に、クリヤー塗料を塗装してクリヤー塗膜を形成することを含む。
 着色塗膜と光輝性塗膜の間に、ベース塗料によるベース塗膜が形成されてもよい。ベース塗料は好ましくは透明塗料である。
 本発明の一実施形態の複層塗膜形成方法は、例えば、具体的に次のような順で塗膜が積層される工程を挙げることができる。
複層塗膜形成方法(1):被塗物/着色塗膜/光輝性塗膜/クリヤー塗膜
複層塗膜形成方法(2):被塗物/着色塗膜/ベース塗膜/光輝性塗膜/クリヤー塗膜
 複層塗膜形成方法(1)において、着色塗膜、光輝性塗膜及びクリヤー塗膜はそれぞれウェットオンウェットで積層され、3層同時に硬化されることが好ましい。
 複層塗膜形成方法(2)において、着色塗膜の形成後は硬化され、その後にベース層、光輝性塗膜、及びクリヤー塗膜がそれぞれウェットオンウェットで積層され、3層同時に硬化されることが好ましい。
 被塗物
 本発明の一実施形態の複層塗膜は、以下に示す被塗物上に形成される。被塗物としては、鉄、亜鉛、アルミニウム等の金属やこれらを含む合金などの金属材、及びこれらの金属による成型物、ならびに、ガラス、プラスチックや発泡体などによる成型物、フィルム等を挙げることができる。これら素材に応じて適宜、脱脂処理や表面処理して被塗物とすることができる。該表面処理としては例えばリン酸塩処理、クロメート処理、複合酸化物処理等が挙げられる。さらに、上記被塗物の素材が金属であれば、表面処理された金属素材の上にカチオン電着塗料等によって下塗り塗膜が形成されていることが好ましい。
 また、被塗物の素材がプラスチックである場合には、脱脂処理されたプラスチック素材の上にプライマー塗料によってプライマー塗膜が形成されていることが好ましい。
 着色塗料
 着色塗料としては、具体的には、基体樹脂、架橋剤、顔料ならびに有機溶剤及び/又は水等の溶媒を主成分とするそれ自体既知の熱硬化性塗料を使用することができる。上記熱硬化性塗料としては、例えば中塗り塗料及びベース塗料等が挙げられる。
 着色塗料に使用される基体樹脂としては、熱硬化性樹脂、常温硬化性樹脂等が挙げられるが、耐水性、耐薬品性、耐候性等の観点から、熱硬化性樹脂であることが望ましい。
 基体樹脂としては、耐候性及び透明性等が良好である樹脂が好適であり、具体的には、アクリル樹脂、ポリエステル樹脂、エポキシ樹脂、ウレタン樹脂等が挙げられる。
 上記アクリル樹脂としては、例えば、α,β-エチレン性不飽和カルボン酸、水酸基、アミド基、メチロール基、エポキシ基等の官能基を有する(メタ)アクリル酸エステル、及びその他の(メタ)アクリル酸エステル、スチレン等を共重合して得られる樹脂を挙げることができる。
 ポリエステル樹脂としては、例えば、エチレングリコール、プロピレングリコール、ブチレングリコール、1,6-ヘキサンジオール、トリメチロールプロパン、ペンタエリスリトールなどの多価アルコールと、アジピン酸、イソフタル酸、テレフタル酸、無水フタル酸、ヘキサヒドロ無水フタル酸、無水トリメリット酸などの多価カルボン酸成分との縮合反応によって得られるポリエステル樹脂等を使用することができる。
 エポキシ樹脂としては、例えばビスフェノールAとエピクロルヒドリンとの縮合反応により製造される、いわゆるビスフェノールA型エポキシ樹脂を挙げることができる。
 ウレタン樹脂としては、例えば、ジイソシアネート化合物と多価アルコールとの付加反応により得られる化合物、上記アクリル樹脂、ポリエステル樹脂又はエポキシ樹脂にジイソシアネート化合物を反応させて高分子量化したものを挙げることができる。
 着色塗料としては、水性塗料、溶剤系塗料のいずれであってもよいが、塗料の低VOC化の観点から、水性塗料であることが望ましい。着色塗料が水性塗料である場合、上記基体樹脂は、樹脂を水溶性化もしくは水分散するのに十分な量の親水性基、例えばカルボキシル基、水酸基、メチロール基、アミノ基、スルホン酸基、ポリオキシエチレン結合等、最も一般的にはカルボキシル基を含有する樹脂を使用し、該親水性基を中和してアルカリ塩とすることにより基体樹脂を水溶性化もしくは水分散化することができる。その際の親水性基、例えばカルボキシル基の量は特に制限されず、水溶性化もしくは水分散化の程度に応じて任意に選択することができるが、一般には、酸価に基づいて約10mgKOH/g以上、好ましくは30~200mgKOH/gの範囲内とすることができる。また中和に用いるアルカリ性物質としては、例えば、水酸化ナトリウム、アミン化合物等を挙げることができる。
 また、上記樹脂の水分散化は、重合性成分を界面活性剤や水溶性樹脂の存在下で乳化重合せしめることによっても行うことができる。さらに、上記樹脂を例えば乳化剤などの存在下で水中に分散することによっても得られる。この水分散化においては、基体樹脂中には前記親水性基を全く含んでいなくてもよく、あるいは上記水溶性樹脂よりも少なく含有することができる。
 前記架橋剤は、上記基体樹脂を加熱により架橋硬化させるためのものであり、光輝性顔料分散体における架橋性成分として例示したものを使用することができる。
 着色塗料における上記各成分の比率は、必要に応じて任意に選択することができるが、耐水性、仕上がり性等の観点から、基体樹脂及び架橋剤は、一般には、該両成分の合計質量に基づいて、前者が60~90質量%、特に70~85質量%、後者が10~40質量%、特に15~30質量%の範囲内とすることが好ましい。
 前記顔料は、着色塗料により形成される着色塗膜に色彩、下地隠蔽性を与えるものである。該顔料の種類や配合量は、複層塗膜に求める色相又は明度に応じて適宜調整することができる。例えば、該顔料の種類や配合量を調整することによって、着色塗料によって得られる塗膜の明度L*値を0.1~80、好ましくは0.1~70、さらに好ましくは0.1~60の範囲内となるように調整することができる。該顔料としては例えば、メタリック顔料、防錆顔料、着色顔料、体質顔料等を挙げることができ、なかでも着色顔料を使用することが好ましく、下地隠蔽性、金属調光沢に優れる塗膜を得る等の観点から、黒色顔料を使用することがさらに好ましい。着色塗料における顔料の種類や配合量は、着色塗膜のL*を上記範囲内となるように調整することが好ましい。
 着色塗料により得られる着色塗膜の硬化膜厚は、下地の隠蔽性及び複層塗膜の金属調光沢感等の観点から、好ましくは3μm~50μmであり、より好ましくは5~45μm、さらに好ましくは8~40μmである。例えば、硬化膜厚は15μm~50μmであることができ、好ましくは18~45μm、より好ましくは20~40μmである。
 着色塗料の塗装は、通常の方法に従って行なうことができ、着色塗料が水性塗料である場合には例えば、着色塗料に脱イオン水、必要に応じ増粘剤、消泡剤などの添加剤を加えて、固形分を30~70質量%程度、粘度を500~6000cps/6rpm(B型粘度計)に調整した後、前記被塗物面に、スプレー塗装、回転霧化塗装等により行うことができる。塗装の際、必要に応じて静電印加を行うこともできる。
 着色塗料(X)は、色安定性等の観点から、白黒隠蔽膜厚が好ましくは80μm以下、より好ましくは10~60μm、さらに好ましくは15~50μmである。本明細書において、「白黒隠蔽膜厚」とは、JIS K5600-4-1の4.1.2に規定される白黒の市松模様の隠蔽率試験紙を、鋼板に貼り付けた後、膜厚が連続的に変わるように塗料を傾斜塗りし、乾燥又は硬化させた後、拡散昼光の下で塗面を目視で観察し、隠蔽率試験紙の市松模様の白黒の境界が見えなくなる最小の膜厚を電磁式膜厚計で測定した値である。
 前記複層塗膜形成方法(1)のように、着色塗料による未硬化の塗膜上に光輝性顔料分散体を塗装する場合には、上記着色塗料を塗装後に、常温で15~30分間放置したり、50~100℃の温度で30秒~10分間加熱せしめた後に光輝性顔料分散体を塗装することができる。
 また前記複層塗膜形成方法(2)において、着色塗料による未硬化の塗膜上にベース塗料を塗装する場合には、上記着色塗料を塗装後に、常温で15~30分間放置したり、50~100℃の温度で30秒~10分間加熱せしめた後にベース塗料を塗装することができる。
 また前記複層塗膜形成方法(2)において、着色塗膜を硬化させる場合は、加熱温度は好ましくは110~180℃、特に好ましくは120~160℃の範囲内である。また、加熱処理の時間は好ましくは10~60分間、特に好ましくは15~40分間の範囲内である。
 ベース塗料
 ベース塗料としては、それ自体既知の塗料組成物を使用することができる。特に、ベース塗料として、自動車車体などを塗装する場合に通常用いられる塗料組成物を使用することが好適である。
 ベース塗料は、基体樹脂及び硬化剤と、水及び/又は有機溶剤からなる媒体とを含有する塗料であることが好ましい。
 該基体樹脂及び硬化剤としては、当該分野で慣用されている公知の化合物を使用することができる。
 基体樹脂は、耐候性及び透明性などが良好である樹脂が好適であり、具体的には、アクリル樹脂、ポリエステル樹脂、エポキシ樹脂、ウレタン樹脂などが挙げられる。
 アクリル樹脂としては、例えば、α,β-エチレン性不飽和カルボン酸、水酸基、アミド基、メチロール基などの官能基を有する(メタ)アクリル酸エステル;その他の(メタ)アクリル酸エステル;スチレンなどのモノマー成分を共重合して得られる樹脂を挙げることができる。
 ポリエステル樹脂としては、多塩基酸、多価アルコール、変性油を常法により縮合反応させて得られるものを使用することができる。
 エポキシ樹脂としては、例えばエポキシ基と不飽和脂肪酸との反応によって、エポキシエステルを合成し、この不飽和基にα,β-不飽和酸を付加する方法によって得られるエポキシ樹脂、エポキシエステルの水酸基と、フタル酸及びトリメリット酸のような多塩基酸とをエステル化する方法などによって得られるエポキシ樹脂などが挙げられる。
 ウレタン樹脂としては、例えば脂肪族ジイソシアネート化合物、脂環族ジイソシアネート化合物及び芳香族ジイソシアネート化合物から成る群から選ばれる少なくとも1種のジイソシアネート化合物と、ポリエーテルポリオール、ポリエステルポリオール及びポリカーボネートポリオールから成る群から選ばれる少なくとも1種のポリオール化合物とを反応させてなるウレタン樹脂;上記アクリル樹脂、ポリエステル樹脂又はエポキシ樹脂にジポリイソシアネート化合物を反応させて高分子量化したウレタン樹脂;などを挙げることができる。
 ベース塗料は、水性塗料及び溶剤系塗料のいずれであってもよいが、塗料の低VOC化の観点から、水性塗料であることが望ましい。ベース塗料が水性塗料である場合、上記基体樹脂として、樹脂を水溶性化もしくは水分散するのに十分な量の親水性基、例えばカルボキシル基、水酸基、メチロール基、アミノ基、スルホン酸基、ポリオキシエチレン基など、最も好ましくはカルボキシル基を含有する樹脂を使用し、該親水性基を中和してアルカリ塩とすることにより、基体樹脂を水溶性化もしくは水分散化することができる。その際の親水性基、例えばカルボキシル基の量は特に制限されず、水溶性化もしくは水分散化の程度に応じて任意に選択することができるが、一般には、酸価に基づいて約10mgKOH/g以上、好ましくは30~200mgKOH/gの範囲内とすることができる。また中和に用いるアルカリ性物質としては、例えば、水酸化ナトリウム、アミン化合物などを挙げることができる。
 また、上記樹脂の水分散化は、モノマー成分を界面活性剤、及び任意選択で水溶性樹脂の存在下で乳化重合せしめることによっても行うことができる。さらに、上記樹脂を例えば乳化剤などの存在下で水中に分散することによっても得られる。この水分散化においては、基体樹脂中には前記親水性基を全く含んでいなくてもよく、あるいは親水性基を上記水溶性樹脂よりも少なく含有することができる。
 前記硬化剤は、上記基体樹脂を加熱により架橋硬化させるためのものであり、例えばアミノ樹脂、ポリイソシアネート化合物(ブロック化していないポリイソシアネート化合物及びブロック化ポリイソシアネート化合物を含む)、エポキシ基含有化合物、カルボキシル基含有化合物、カルボジイミド基含有化合物、ヒドラジド基含有化合物、セミカルバジド基含有化合物などが挙げられる。これらのうち、水酸基と反応し得るアミノ樹脂、ポリイソシアネート化合物、及びカルボキシル基と反応し得るカルボジイミド基含有化合物が好ましい。上記硬化剤は、単独でもしくは2種以上組み合わせて使用することができる。
 具体的には、メラミン、ベンゾグアナミン、尿素などとホルムアルデヒドとの縮合もしくは共縮合又は、さらに低級1価アルコールでエーテル化するなどによって得られるアミノ樹脂が好適に用いられる。また、ポリイソシアネート化合物も好適に使用できる。
 ベース塗料における上記各成分の比率は、必要に応じて任意に選択することができるが、耐水性、仕上がり性などの観点から、基体樹脂及び硬化剤は、一般には、該両成分の合計質量に基づいて、前者が50~90質量%、特に60~85質量%、後者が10~50質量%、特に15~40質量%の範囲内とすることが好ましい。
 ベース塗料には、必要に応じて有機溶剤を使用することもできる。具体的には、通常塗料に用いられているものを使用することができる。有機溶剤としては、例えば、トルエン、キシレン、ヘキサン、ヘプタンなどの炭化水素;酢酸エチル、酢酸ブチル、エチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルアセテートなどのエステル;エチレングリコールモノメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールジブチルエーテルなどのエーテル;ブタノール、プロパノール、オクタノール、シクロヘキサノール、ジエチレングリコールなどのアルコール;メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、イソホロンなどのケトンの有機溶剤が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。
 また、ベース塗料は、上記の成分に加えて、所望により、着色顔料、体質顔料、紫外線吸収剤、消泡剤、粘性調整剤、防錆剤、表面調整剤などを適宜含有してもよい。
 ベース塗料は、透明塗料もしくは着色塗料であってもよいが、金属調又は真珠調光沢に優れた塗膜を得る観点から透明塗料であることが好ましい。
 ベース塗料が透明塗料であるとは、ベース塗料を塗装して得られる膜厚35μmの乾燥膜のヘイズ値が25%以下であることを指す。なお、本発明において、ヘイズ値は、平滑なPTFE板にベース塗料を塗装し、硬化、剥離した塗膜を濁度計COH-300A(商品名、日本電色工業社製)にて測定した拡散光線透過率(DF)及び平行光線透過率(PT)から、次式(2)によって計算された数値として定義するものとする。
    ヘイズ値=100*DF/(DF+PT)  ・・・(2)
 ベース塗料が透明塗料である場合には、着色顔料を含まず、必要に応じて体質顔料を含有することができる。体質顔料としては、例えば、硫酸バリウム、炭酸バリウム、炭酸カルシウム、ケイ酸アルミニウム、シリカ、炭酸マグネシウム、タルク、アルミナホワイトなどを挙げることができる。
 上記体質顔料を配合する場合、その配合量は、ベース塗料中の樹脂固形分100質量部に対し0.1~30質量部の範囲内であることが好ましく、より好ましくは0.1~20質量部の範囲内である。
 ベース塗料が着色塗料である場合には、着色顔料を含有する。ベース塗料は、光線透過制御の観点からは酸化チタン及びカーボンブラック等の着色顔料を含有することができ、さらに必要に応じて酸化チタン及びカーボンブラック以外の従来公知の着色顔料を含有することができる。かかる着色顔料としては、特に制限されるものではないが、具体的には、酸化鉄顔料、チタンイエローなどの複合酸化金属顔料、アゾ系顔料、キナクリドン系顔料、ジケトピロロピロール系顔料、ペリレン系顔料、ペリノン系顔料、ベンズイミダゾロン系顔料、イソインドリン系顔料、イソインドリノン系顔料、金属キレートアゾ系顔料、フタロシアニン系顔料、インダンスロン系顔料、ジオキサン系顔料、スレン系顔料、インジゴ系顔料、光輝性顔料などの中から任意のものを1種もしくはそれ以上を組み合わせて使用することができる。光輝性顔料としては、前記着色塗料の欄で例示したものを挙げることができる。
 上記着色顔料を配合する場合、その配合量は、ベース塗料中の樹脂固形分100質量部に対し0.1~50質量部の範囲内であることが好ましく、より好ましくは0.2~40質量部の範囲内である。
 ベース塗料により得られるベース塗膜の硬化膜厚は、平滑性及び金属調光沢感などの観点から、好ましくは3μm以上であり、より好ましくは3~20μm、さらにより好ましくは5~15μmである。
 ベース塗料の塗装は、通常の方法に従って行なうことができ、例えば、エアスプレー塗装、エアレススプレー塗装、回転霧化塗装などの方法が挙げられる。ベース塗料の塗装の際は、必要に応じて、静電印加されていてもよく、中でも、回転霧化方式の静電塗装及びエアスプレー方式の静電塗装が好ましく、回転霧化方式の静電塗装が特に好ましい。
 また、エアスプレー塗装、エアレススプレー塗装又は回転霧化塗装する場合には、ベース塗料は、適宜、水及び/又は有機溶剤ならびに必要に応じて粘性調整剤、消泡剤などの添加剤を含有して塗装に適した固形分含有率及び粘度に調整されることが好ましい。
 ベース塗料の固形分含有率は10~60質量%、好ましくは15~55質量%、さらに好ましくは20~50質量%の範囲であることが好ましい。ベース塗料の20℃、6rpmにおけるB型粘度計による粘度が好ましくは200~7000cps、より好ましくは300~6000cps、さらに好ましくは500~5000cpsの範囲である。
 光輝性顔料分散体の塗装
 本発明の一実施形態の複層塗膜形成方法において、光輝性顔料分散体は、金属調又は真珠調光沢に優れる塗膜を得る観点から、塗装時の固形分含有率を、光輝性顔料分散体の全成分合計100質量部に対して、0.1~10質量部、好ましくは0.5~8質量部、さらに好ましくは2~6質量部に調整し、かつB型粘度計を用いて測定した粘度が、回転数が6回転/分の条件では、100~10000mPa・sec、好ましくは200~8000mPa・sec、さらに好ましくは400~6000mPa・secの範囲内に調整する。
 光輝性顔料分散体は、静電塗装、エアスプレー、エアレススプレーなどの方法で塗装することができる。本発明の一実施形態の複層塗膜形成方法においては、特に回転霧化式の静電塗装が好ましい。
 光輝性顔料分散体が被塗物に付着してから30秒後の膜厚は、金属調光沢に優れる塗膜を得る観点から、好ましくは3~55μm、より好ましくは4~50μm、さらに好ましくは5~45μmであることが好適である。光輝性顔料分散体が0.01~0.2μmの蒸着金属フレーク顔料及び/又はアルミニウムフレーク顔料を含む場合、光輝性顔料分散体が被塗物に付着してから30秒後の膜厚は好ましくは3~45μm、より好ましくは4~24μm、さらに好ましくは5~23μmである。
 光輝性顔料分散体を塗装後に、常温で15~30分間放置せしめたり、50~100℃の温度で30秒~10分間加熱した後にクリヤー塗料を塗装することができる。
 光輝性塗膜の厚さは、乾燥膜厚として、好ましくは光輝性塗膜の厚みが0.1~4μm、より好ましくは0.15~3μmであることが好適である。光輝性顔料分散体が0.01~0.2μmの蒸着金属フレーク顔料及び/又はアルミニウムフレーク顔料を含む場合、光輝性塗膜の厚さは、乾燥膜厚として、好ましくは0.05~2.0μm、より好ましくは0.08~1.6μmである。
 本発明の一実施形態の複層塗膜形成方法においては、光輝性顔料分散体を塗装して得られた光輝性塗膜上に、クリヤー塗料を塗装してクリヤー塗膜を形成する。
 クリヤー塗料
 クリヤー塗料は、公知の熱硬化性クリヤーコート塗料組成物をいずれも使用できる。該熱硬化性クリヤーコート塗料組成物としては、例えば、架橋性官能基を有する基体樹脂及び硬化剤を含有する有機溶剤型熱硬化性塗料組成物、水性熱硬化性塗料組成物、粉体熱硬化性塗料組成物等を挙げることができる。
 上記基体樹脂が有する架橋性官能基としては、例えば、カルボキシル基、水酸基、エポキシ基、シラノール基等を挙げることができる。基体樹脂の種類としては、例えば、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、ウレタン樹脂、エポキシ樹脂、フッ素樹脂等を挙げることができる。硬化剤としては、例えば、ポリイソシアネート化合物、ブロック化ポリイソシアネート化合物、メラミン樹脂、尿素樹脂、カルボキシル基含有化合物、カルボキシル基含有樹脂、エポキシ基含有樹脂、エポキシ基含有化合物等を挙げることができる。
 クリヤー塗料の基体樹脂/硬化剤の組み合わせとしては、カルボキシル基含有樹脂/エポキシ基含有樹脂、水酸基含有樹脂/ポリイソシアネート化合物、水酸基含有樹脂/ブロック化ポリイソシアネート化合物、水酸基含有樹脂/メラミン樹脂等が好ましい。
 また、上記クリヤー塗料は、一液型塗料であってもよいし、二液型塗料等の多液型塗料であってもよい。
 なかでもクリヤー塗料として好ましくは、得られる塗膜の付着性の観点から下記の水酸基含有樹脂及びポリイソシアネート化合物を含有する2液型クリヤー塗料である。
水酸基含有樹脂
 水酸基含有樹脂としては、水酸基を含有するものであれば従来公知の樹脂が制限なく使用できる。該水酸基含有樹脂としては例えば、水酸基含有アクリル樹脂、水酸基含有ポリエステル樹脂、水酸基含有ポリエーテル樹脂、水酸基含有ポリウレタン樹脂などを挙げることができ、好ましいものとして、水酸基含有アクリル樹脂、水酸基含有ポリエステル樹脂を挙げることができ、特に好ましいものとして水酸基含有アクリル樹脂を挙げることができる。
 水酸基含有アクリル樹脂の水酸基価は、塗膜の耐擦り傷性や耐水性の観点から、80~200mgKOH/gの範囲内であるのが好ましく、100~180mgKOH/gの範囲内であるのがさらに好ましい。
 水酸基含有アクリル樹脂の重量平均分子量は、塗膜の耐酸性や平滑性の観点から、2500~40000の範囲内であるのが好ましく、5000~30000の範囲内であるのがさらに好ましい。
 なお、本明細書において、重量平均分子量は、ゲルパーミエーションクロマトグラフで測定したクロマトグラムから標準ポリスチレンの分子量を基準にして算出した値である。ゲルパーミエーションクロマトグラフは、「HLC8120GPC」(東ソー社製)を使用した。カラムとしては、「TSKgel G-4000HXL」、「TSKgel G-3000HXL」、「TSKgel G-2500HXL」、「TSKgel G-2000HXL」(いずれも東ソー(株)社製、商品名)の4本を用い、移動相;テトラヒドロフラン、測定温度;40℃、流速;1cc/分、検出器;RIの条件で行った。
 水酸基含有アクリル樹脂のガラス転移温度は-40℃~20℃であることが好ましく、-30℃~10℃の範囲内であることが特に好ましい。ガラス転移温度が-40℃以上であると塗膜硬度が十分であり、また、20℃以下であると塗膜の塗面平滑性を維持することができる。
ポリイソシアネート化合物
 ポリイソシアネート化合物は、1分子中に少なくとも2個のイソシアネート基を有する化合物であって、例えば、脂肪族ポリイソシアネート、脂環族ポリイソシアネート、芳香脂肪族ポリイソシアネート、芳香族ポリイソシアネート、該ポリイソシアネートの誘導体などを挙げることができる。
 上記脂肪族ポリイソシアネートとしては、例えば、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ペンタメチレンジイソシアネート、1,2-プロピレンジイソシアネート、1,2-ブチレンジイソシアネート、2,3-ブチレンジイソシアネート、1,3-ブチレンジイソシアネート、2,4,4-又は2,2,4-トリメチルヘキサメチレンジイソシアネート、ダイマー酸ジイソシアネート、2,6-ジイソシアナトヘキサン酸メチル(慣用名:リジンジイソシアネート)などの脂肪族ジイソシアネート;2,6-ジイソシアナトヘキサン酸2-イソシアナトエチル、1,6-ジイソシアナト-3-イソシアナトメチルヘキサン、1,4,8-トリイソシアナトオクタン、1,6,11-トリイソシアナトウンデカン、1,8-ジイソシアナト-4-イソシアナトメチルオクタン、1,3,6-トリイソシアナトヘキサン、2,5,7-トリメチル-1,8-ジイソシアナト-5-イソシアナトメチルオクタンなどの脂肪族トリイソシアネートなどを挙げることができる。
 前記脂環族ポリイソシアネートとしては、例えば、1,3-シクロペンテンジイソシアネート、1,4-シクロヘキサンジイソシアネート、1,3-シクロヘキサンジイソシアネート、3-イソシアナトメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(慣用名:イソホロンジイソシアネート)、4-メチル-1,3-シクロヘキシレンジイソシアネート(慣用名:水添TDI)、2-メチル-1,3-シクロヘキシレンジイソシアネート、1,3-もしくは1,4-ビス(イソシアナトメチル)シクロヘキサン(慣用名:水添キシリレンジイソシアネート)もしくはその混合物、メチレンビス(4,1-シクロヘキサンジイル)ジイソシアネート(慣用名:水添MDI)、ノルボルナンジイソシアネートなどの脂環族ジイソシアネート;1,3,5-トリイソシアナトシクロヘキサン、1,3,5-トリメチルイソシアナトシクロヘキサン、2-(3-イソシアナトプロピル)-2,5-ジ(イソシアナトメチル)-ビシクロ(2.2.1)ヘプタン、2-(3-イソシアナトプロピル)-2,6-ジ(イソシアナトメチル)-ビシクロ(2.2.1)ヘプタン、3-(3-イソシアナトプロピル)-2,5-ジ(イソシアナトメチル)-ビシクロ(2.2.1)ヘプタン、5-(2-イソシアナトエチル)-2-イソシアナトメチル-3-(3-イソシアナトプロピル)-ビシクロ(2.2.1)ヘプタン、6-(2-イソシアナトエチル)-2-イソシアナトメチル-3-(3-イソシアナトプロピル)-ビシクロ(2.2.1)ヘプタン、5-(2-イソシアナトエチル)-2-イソシアナトメチル-2-(3-イソシアナトプロピル)-ビシクロ(2.2.1)-ヘプタン、6-(2-イソシアナトエチル)-2-イソシアナトメチル-2-(3-イソシアナトプロピル)-ビシクロ(2.2.1)ヘプタンなどの脂環族トリイソシアネートなどを挙げることができる。
 前記芳香脂肪族ポリイソシアネートとしては、例えば、メチレンビス(4,1-フェニレン)ジイソシアネート(慣用名:MDI)、1,3-もしくは1,4-キシリレンジイソシアネート又はその混合物、ω,ω'-ジイソシアナト-1,4-ジエチルベンゼン、1,3-又は1,4-ビス(1-イソシアナト-1-メチルエチル)ベンゼン(慣用名:テトラメチルキシリレンジイソシアネート)もしくはその混合物などの芳香脂肪族ジイソシアネート;1,3,5-トリイソシアナトメチルベンゼンなどの芳香脂肪族トリイソシアネートなどを挙げることができる。
 前記芳香族ポリイソシアネートとしては、例えば、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、4,4'-ジフェニルジイソシアネート、1,5-ナフタレンジイソシアネート、2,4-トリレンジイソシアネート(慣用名:2,4-TDI)もしくは2,6-トリレンジイソシアネート(慣用名:2,6-TDI)もしくはその混合物、4,4'-トルイジンジイソシアネート、4,4'-ジフェニルエーテルジイソシアネートなどの芳香族ジイソシアネート;トリフェニルメタン-4,4',4''-トリイソシアネート、1,3,5-トリイソシアナトベンゼン、2,4,6-トリイソシアナトトルエンなどの芳香族トリイソシアネート;4,4'-ジフェニルメタン-2,2',5,5'-テトライソシアネートなどの芳香族テトライソシアネートなどを挙げることができる。
 また、前記ポリイソシアネートの誘導体としては、例えば、上記したポリイソシアネートのダイマー、トリマー、ビウレット、アロファネート、ウレトジオン、ウレトイミン、イソシアヌレート、オキサジアジントリオン、ポリメチレンポリフェニルポリイソシアネート(クルードMDI、ポリメリックMDI)、クルードTDIなどを挙げることができる。該ポリイソシアネートの誘導体は、単独で用いてもよく又は2種以上併用してもよい。
 上記ポリイソシアネート及びその誘導体は、それぞれ単独で用いてもよく又は2種以上併用してもよい。
 脂肪族ジイソシアネートのなかでもヘキサメチレンジイソシアネート系化合物、脂環族ジイソシアネートのなかでも4,4’-メチレンビス(シクロヘキシルイソシアネート)を好適に使用することができる。その中でも特に、付着性、相溶性等の観点から、ヘキサメチレンジイソシアネートの誘導体が最適である。
 また、前記ポリイソシアネート化合物としては、上記ポリイソシアネート及びその誘導体と、該ポリイソシアネートと反応し得る、例えば、水酸基、アミノ基などの活性水素基を有する化合物とを、イソシアネート基過剰の条件で反応させてなるプレポリマーを使用してもよい。該ポリイソシアネートと反応し得る化合物としては、例えば、多価アルコール、低分子量ポリエステル樹脂、アミン、水等が挙げられる。
 また、ポリイソシアネート化合物として、上記ポリイソシアネート及びその誘導体中のイソシアネート基をブロック剤でブロックした化合物であるブロック化ポリイソシアネート化合物を使用することもできる。
 上記ブロック剤としては、例えば、フェノール、クレゾール、キシレノール、ニトロフェノール、エチルフェノール、ヒドロキシジフェニル、ブチルフェノール、イソプロピルフェノール、ノニルフェノール、オクチルフェノール、ヒドロキシ安息香酸メチル等のフェノール系;ε-カプロラクタム、δ-バレロラクタム、γ-ブチロラクタム、β-プロピオラクタム等のラクタム系;メタノール、エタノール、プロピルアルコール、ブチルアルコール、アミルアルコール、ラウリルアルコール等の脂肪族アルコール系;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、メトキシメタノール等のエーテル系;ベンジルアルコール、グリコール酸、グリコール酸メチル、グリコール酸エチル、グリコール酸ブチル、乳酸、乳酸メチル、乳酸エチル、乳酸ブチル、メチロール尿素、メチロールメラミン、ジアセトンアルコール、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート等のアルコール系;ホルムアミドオキシム、アセトアミドオキシム、アセトオキシム、メチルエチルケトオキシム、ジアセチルモノオキシム、ベンゾフェノンオキシム、シクロヘキサンオキシムなどのオキシム系;マロン酸ジメチル、マロン酸ジエチル、アセト酢酸エチル、アセト酢酸メチル、アセチルアセトン等の活性メチレン系;ブチルメルカプタン、t-ブチルメルカプタン、ヘキシルメルカプタン、t-ドデシルメルカプタン、2-メルカプトベンゾチアゾール、チオフェノール、メチルチオフェノール、エチルチオフェノール等のメルカプタン系;アセトアニリド、アセトアニシジド、アセトトルイド、アクリルアミド、メタクリルアミド、酢酸アミド、ステアリン酸アミド、ベンズアミド等の酸アミド系;コハク酸イミド、フタル酸イミド、マレイン酸イミド等のイミド系;ジフェニルアミン、フェニルナフチルアミン、キシリジン、N-フェニルキシリジン、カルバゾール、アニリン、ナフチルアミン、ブチルアミン、ジブチルアミン、ブチルフェニルアミン等のアミン系;イミダゾール、2-エチルイミダゾール等のイミダゾール系;尿素、チオ尿素、エチレン尿素、エチレンチオ尿素、ジフェニル尿素等の尿素系;N-フェニルカルバミン酸フェニル等のカルバミン酸エステル系;エチレンイミン、プロピレンイミン等のイミン系;重亜硫酸ソーダ、重亜硫酸カリ等の亜硫酸塩系;アゾール系の化合物等が挙げられる。上記アゾール系の化合物としては、ピラゾール、3,5-ジメチルピラゾール、3-メチルピラゾール、4-ベンジル-3,5-ジメチルピラゾール、4-ニトロ-3,5-ジメチルピラゾール、4-ブロモ-3,5-ジメチルピラゾール、3-メチル-5-フェニルピラゾール等のピラゾール又はピラゾール誘導体;イミダゾール、ベンズイミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-フェニルイミダゾール等のイミダゾール又はイミダゾール誘導体;2-メチルイミダゾリン、2-フェニルイミダゾリン等のイミダゾリン誘導体等が挙げられる。
 ブロック化を行なう(ブロック剤を反応させる)にあたっては、必要に応じて溶剤を添加して行なうことができる。ブロック化反応に用いる溶剤としてはイソシアネート基に対して反応性でないものが良く、例えば、アセトン、メチルエチルケトンのようなケトン類、酢酸エチルのようなエステル類、N-メチル-2-ピロリドン(NMP)のような溶剤を挙げることができる。
 ポリイソシアネート化合物は、それぞれ単独で又は2種以上を組み合わせて使用することができる。
 ポリイソシアネート化合物は、単独で又は2種以上を組合せて使用することができる。本発明において、塗膜の硬化性及び耐擦り傷性等の観点から、水酸基含有樹脂の水酸基のポリイソシアネート化合物のイソシアネート基に対する当量比(OH/NCO)は好ましくは0.5~2.0、さらに好ましくは0.8~1.5の範囲内である。
 クリヤー塗料として水酸基含有樹脂及びポリイソシアネート化合物を含有する2液型クリヤー塗料を使用する場合は、貯蔵安定性から、水酸基含有樹脂とポリイソシアネート化合物とが分離した形態であることが好ましく、使用直前に両者を混合して調整される。
 クリヤー塗料としては、1液型塗料を使用してもよい。1液型塗料における基体樹脂/硬化剤の組み合わせとしては、カルボキシル基含有樹脂/エポキシ基含有樹脂、水酸基含有樹脂/ブロック化ポリイソシアネート化合物、水酸基含有樹脂/メラミン樹脂等がある。
 クリヤー塗料には、さらに必要に応じて、水や有機溶剤等の溶媒、硬化触媒、消泡剤、紫外線吸収剤等の添加剤を適宜含有することができる。
 上記クリヤー塗料には、透明性を損なわない範囲内において、着色顔料を適宜配合することができる。着色顔料としては、インク用、塗料用として従来公知の顔料を1種あるいは2種以上を組み合わせて配合することができる。その添加量は、適宜決定されて良いが、該クリヤー塗料(Z)中のビヒクル形成樹脂組成物100質量部に対して、30質量部以下、好ましくは0.01~10質量部である。
 クリヤー塗料の形態は特に制限されるものではないが、通常、有機溶剤型の塗料組成物として使用される。この場合に使用する有機溶剤としては、各種の塗料用有機溶剤、例えば、芳香族又は脂肪族炭化水素系溶剤;エステル系溶剤;ケトン系溶剤;エーテル系溶剤等が使用できる。使用する有機溶剤は、水酸基含有樹脂等の調製時に用いたものをそのまま用いても良いし、更に適宜加えても良い。
 クリヤー塗料の固形分濃度は、30~70質量%程度であるのが好ましく、40~60質量%程度の範囲内であるのがより好ましい。
 前記光輝性塗膜上に、前述のクリヤー塗料の塗装が行なわれる。クリヤー塗料の塗装は、特に限定されず前記着色塗料と同様の方法で行うことができ、例えば、エアスプレー、エアレススプレー、回転霧化塗装、カーテンコート塗装などの塗装方法により行なうことができる。これらの塗装方法は、必要に応じて、静電印加してもよい。これらのうち静電印加による回転霧化塗装が好ましい。クリヤー塗料の塗布量は、通常、硬化膜厚として、10~50μm程度となる量とするのが好ましい。
 また、クリヤー塗料の塗装にあたっては、クリヤー塗料の粘度を、塗装方法に適した粘度範囲、例えば、静電印加による回転霧化塗装においては、20℃でフォードカップNo.4粘度計による測定で、15~60秒程度の粘度範囲となるように、有機溶剤等の溶媒を用いて、適宜、調整しておくことが好ましい。
 本発明の一実施形態の複層塗膜形成方法においては、未硬化の着色塗膜、未硬化の光輝性塗膜及び未硬化のクリヤー塗膜を加熱することによって、これら3つの塗膜を同時に硬化させることができる。加熱は公知の手段により行うことができ、例えば、熱風炉、電気炉、赤外線誘導加熱炉等の乾燥炉を適用できる。加熱温度は70~150℃、好ましくは80~140℃の範囲内にあることが適している。加熱時間は、特に制限されるものではないが、好ましくは10~40分間、より好ましくは20~30分間の範囲内である。
 本発明は、着色塗料から形成された着色塗膜と、着色塗膜上に形成された、光輝性顔料分散体から形成された光輝性塗膜と、光輝性塗膜上に形成された、クリヤー塗料から形成されたクリヤー塗膜とを備えた複層塗膜を包含する。着色塗料、光輝性顔料分散体、クリヤー塗料、及び複層塗膜形成方法については上述した通りである。着色塗膜と光輝性塗膜とクリヤー塗膜とからなる3つの未硬化の塗膜を加熱することによって、同時に硬化させることもできるし、着色塗膜を形成後、硬化させ、硬化した着色塗膜の上に、ベース塗膜、光輝性塗膜、クリヤー塗膜を形成し、該3つの未硬化の塗膜を同時に加熱硬化させることもできる。
 60度鏡面光沢度(60°グロス)
 本発明における光輝性顔料分散体は、着色塗膜上もしくは着色塗膜の上に積層されたベース塗膜上に、乾燥膜厚として、0.1~4μmとなるように塗装して光輝性塗膜を形成せしめた後に、さらに該光輝性塗膜の上にクリヤー塗膜を形成して得られた複層塗膜の60度鏡面光沢度が90~240の範囲内であることが好ましく、より好ましくは90~220の範囲内、さらに好ましくは90~200の範囲内である。
 本発明において、乾燥塗膜として0.1~4μmとなるように塗装して得られた光輝性塗膜上にさらにクリヤー塗膜を積層した複層塗膜における60度鏡面光沢度を規定しているが、60度鏡面光沢度は、光輝性塗膜の膜厚が、0.1~4μmすべての場合に上記範囲内であることを意味するものではなく、上記範囲内のいずれかの数値にあるときの60度鏡面光沢度について規定するものとする。
 鏡面光沢度とは、物体表面からの鏡面反射と基準面(屈折率1.567のガラス)からの鏡面反射光との比を意味し、JIS-Z8741に定義された数値である。具体的には、測定試料面に規定された入射角で規定の開き角の光束を入射し、鏡面反射方向に反射する規定の開き角の光束を受光器で測るもので、いわゆる光沢計を使用して測定される数値である。本明細書においては、光沢計(micro-TRI-gloss、BYK-Gardner社製)を用いて測定した60度鏡面光沢度(60°グロス)として定義するものとする。60度鏡面光沢度の数値が大きいほど、塗膜の光沢度が高い。
 一実施形態において、鱗片状光輝性顔料分散体(B)として蒸着金属フレーク顔料を含有する本発明の光輝性顔料分散体を、着色塗膜上に、乾燥膜厚として、0.1~4μmとなるように塗装して前記光輝性顔料分散体により光輝性塗膜を形成せしめた後に、さらに透明なクリヤー塗膜を形成して得られた複層塗膜の60度鏡面光沢度は、130~240、好ましくは135~235、さらに好ましくは140~230の範囲内であることが、金属調塗膜の緻密性の点で好ましい。
 粒子感
 本発明において、乾燥塗膜として0.1~4μmとなるように塗装して得られた光輝性塗膜上にさらにクリヤー塗膜を積層した複層塗膜におけるHG値を規定する。
 一実施形態において、鱗片状光輝性顔料分散体(B)として蒸着金属フレーク顔料及び/又はアルミニウムフレーク顔料を含有する本発明の光輝性顔料分散体を、着色塗膜上に、乾燥膜厚として、0.1~4μmとなるように塗装して前記光輝性顔料分散体により光輝性塗膜を形成せしめた後に、さらに透明なクリヤー塗膜を形成して得られた複層塗膜のHG値は、10~55、好ましくは10~50、さらに好ましくは10~48の範囲内であることが、金属調塗膜の緻密性の点で好ましい。
 別の実施形態において、鱗片状光輝性顔料分散体(B)として光干渉性顔料を含有する本発明の光輝性顔料分散体を、着色塗膜上に、乾燥膜厚として、0.1~4μmとなるように塗装して前記光輝性顔料分散体により光輝性塗膜を形成せしめた後に、さらに透明なクリヤー塗膜を形成して得られた複層塗膜のHG値は、10~65、好ましくは10~63、さらに好ましくは10~60の範囲内であることが、金属調塗膜の緻密性の点で好ましい。
 HG値は、光輝性塗膜の膜厚が0.1~4μmすべての場合に上記範囲内であることを意味するものではなく、上記範囲内のいずれかの数値にあるときのHG値について規定するものとする。
 粒子感は、Hi-light Graininess値(以下、「HG値」と略記する)によって表される。HG値とは、微視的に観察した場合における質感であるミクロ光輝感の尺度の一つで、ハイライト(塗膜を入射光に対して正反射近傍から観察)側の粒子感を表わすパラメータである。塗膜を入射角15度/受光角0度にてCCDカメラで撮像し、得られたデジタル画像データ、すなわち2次元の輝度分布データを2次元フーリエ変換処理し、得られたパワースペクトル画像から、粒子感に対応する空間周波数領域のみを抽出し、算出した計測パラメータを、さらに0から100の数値を取り且つ粒子感との間に直線的な関係が保たれるように変換して得られるものである。具体的には、ミクロ光輝感測定装置を使用して測定することができる。測定方法の詳細については、“塗料の研究”(関西ペイント技報)、No.138、2002年8月:p.8-p.24“及び“塗料の研究”(関西ペイント技報)、No.132、2002年8月:p.8-p.24“に記載している。粒子感のHG値が低いほど、塗膜の表面に粒子感が少なくなる。
 本発明は以下の構成を採用することもできる。
[1] 水、湿潤剤(A)、鱗片状光輝性顔料(B)及びセルロースナノファイバー(C)を含有する光輝性顔料分散体であって、前記セルロースナノファイバー(C)が、セルロースナノファイバーの絶乾質量に対してカルボキシル基量が0.4~1.0mmol/gであり、かつセルロースナノファイバーの1.0質量%水分散液における透明度が80%以上であり、光輝性顔料分散体の全成分合計100質量部に対して、固形分を0.1~10質量部含み、B型粘度計を用いて測定した粘度が、回転数が6回転/分の条件では100~10000mPa・secの範囲内である光輝性顔料分散体。
[2] 湿潤剤(A)が、鱗片状光輝性顔料(B)の固形分100質量部を基準として固形分で4~400質量部である[1]に記載の光輝性顔料分散体。
[3] 光輝性顔料分散体固形分100質量部を基準として、鱗片状光輝性顔料(B)を固形分として2~97質量部含む[1]又は[2]に記載の光輝性顔料分散体。
[4] さらに、樹脂水分散体を含有する[1]~[3]のいずれか1項に記載の光輝性顔料分散体。
[5] 下記式より表される、せん断速度が0.1(s-1)における光輝性顔料分散体の粘度変化率(%)が60%未満である[1]~[4]のいずれか1項に記載の光輝性顔料分散体。 せん断速度が0.1(s-1)における粘度変化率(%)=(|撹拌前の粘度-撹拌後の粘度|/撹拌前の粘度)×100
[6] 前記湿潤剤(A)が、シリコーン系湿潤剤、アクリル系湿潤剤、ビニル系湿潤剤、フッ素系湿潤剤、アセチレンジオール系湿潤剤、又はそれらの組み合わせを含む [1]~[5]のいずれか1項に記載の光輝性顔料分散体。
[7]  光輝性顔料分散体における湿潤剤(A)の配合量が、光輝性顔料分散体の固形分100質量部を基準として固形分で好ましくは0.01~20質量部である[1]~[6]のいずれか1項に記載の光輝性顔料分散体。
[8] 前記鱗片状光輝性顔料(B)が、蒸着金属フレーク顔料、アルミニウムフレーク顔料、光干渉性顔料、またはそれらの組み合わせを含む[1]~[7]のいずれか1項に記載の光輝性顔料分散体。
[9] 鱗片状光輝性顔料(B)の含有量が、光輝性顔料分散体中の合計固形分100質量部に対し、固形分として2~97質量%の範囲内である[1]~[8]のいずれか1項に記載の光輝性顔料分散体。
[10] 光輝性顔料分散体中の酸化セルロースの固形分濃度は、0.1質量%以上、10質量%以下である[1]~[9]のいずれか1項に記載の光輝性顔料分散体。
[11] 被塗物上に、着色塗料を塗装して着色塗膜を形成すること、形成される着色塗膜上に、[1]~[10]のいずれか一項に記載の光輝性顔料分散体を塗装して光輝性塗膜を形成すること、及び形成される光輝性塗膜上に、クリヤー塗料を塗装してクリヤー塗膜を形成することを含む複層塗膜形成方法。
[12] 乾燥膜厚として光輝性塗膜の厚みが0.1~4μmである[11]に記載の複層塗膜形成方法。
[13] 複層塗膜の60度鏡面光沢度が90~240の範囲内である[11]又は[12]に記載の複層塗膜形成方法。
[14] 鱗片状光輝性顔料(B)が蒸着金属フレーム顔料及び/又はアルミニウムフレーク顔料を含み、複層塗膜の粒子感HGが、55以下である[11]~[13]のいずれか一項に記載の複層塗膜形成方法。
[15] 鱗片状光輝性顔料(B)が光干渉性顔料を含み、複層塗膜の粒子感HGが、65以下である[11]~[13]のいずれか一項に記載の複層塗膜形成方法。
[16] 着色塗料から形成された着色塗膜と、
 前記着色塗膜上に形成された、[1]~[10]のいずれか一項に記載の光輝性顔料分散体から形成された光輝性塗膜と、
 前記光輝性塗膜上に形成された、クリヤー塗料から形成されたクリヤー塗膜とを備えた複層塗膜。
[17] 乾燥膜厚として光輝性塗膜の厚みが0.1~4μmである[16]に記載の複層塗膜。
[18] 複層塗膜の60度鏡面光沢度が90~240の範囲内である[16]又は[17]記載の複層塗膜。
[19] 鱗片状光輝性顔料(B)が蒸着金属フレーム顔料及び/又はアルミニウムフレーク顔料を含み、複層塗膜の粒子感HGが、55以下である[16]~[18]のいずれか一項に記載の複層塗膜。
[20] 鱗片状光輝性顔料(B)が光干渉性顔料を含み、複層塗膜の粒子感HGが、65以下である[16]~[18]のいずれか一項に記載の複層塗膜形成方法。
 以下、実施例及び比較例を挙げて、本発明をより具体的に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。なお、「部」及び「%」はいずれも質量基準によるものである。
 水酸基含有アクリル樹脂(R-1)の製造
 製造例1
 温度計、サーモスタット、撹拌装置、還流冷却器、窒素導入管及び滴下装置を備えた反応容器にプロピレングリコールモノプロピルエーテル35部を仕込み85℃に昇温後、メチルメタクリレート32部、n-ブチルアクリレート27.7部、2-エチルヘキシルアクリレート20部、4-ヒドロキシブチルアクリレート10部、ヒドロキシプロピルアクリレート3部、アクリル酸6.3部、2-アクリロイルオキシエチルアシッドフォスフェート1部、プロピレングリコールモノプロピルエーテル15部及び2,2’-アゾビス(2,4-ジメチルバレロニトリル)2.3部の混合物を4時間かけて滴下し、滴下終了後1時間熟成した。その後さらにプロピレングリコールモノプロピルエーテル10部及び2,2’-アゾビス(2,4-ジメチルバレロニトリル)1部の混合物を1時間かけて滴下し、滴下終了後1時間熟成した。さらにジエタノールアミン7.4部を加え、固形分55%の水酸基含有アクリル樹脂(R-1)溶液を得た。得られた水酸基含有アクリル樹脂(R-1)は酸価が51mgKOH/g、水酸基価が52mgKOH/gであった。
 赤色顔料分散液(P-1)の製造
 製造例2
 撹拌混合容器に、水酸基含有アクリル樹脂(R-1)60部(固形分33部)、PARIOGEN MAROON L3920(商品名、ペリレン系赤色顔料 BASF社製)35部及び脱イオン水177部を入れ、均一に混合し、更に、2-(ジメチルアミノ)エタノールを添加して、pH7.5に調整した。得られた混合物を300ml容の樹脂性のビンに入れ、1.5mm径のジルコニアビーズ130部を投入して密栓し、振とう型ペイントコンディショナーを使用して120分間分散した。分散後100メッシュの金網濾過を行なってジルコニアビーズを除去して、固形分25%の赤色顔料分散液(P-1)を得た。
 橙色顔料分散液(P-2)の製造
 製造例3
 撹拌混合容器に、水酸基含有アクリル樹脂(R-1)70.9部(固形分39部)、コスモレイオレンジ L2950(商品名、ジケトピロロピロール系橙色顔料 BASF社製)39部及び脱イオン水241.45部を入れ、均一に混合し、更に、2-(ジメチルアミノ)エタノールを添加して、pH7.5に調整した。得られた混合物を300ml容の樹脂性のビンに入れ、1.5mm径のジルコニアビーズ130部を投入して密栓し、振とう型ペイントコンディショナーを使用して120分間分散した。分散後100メッシュの金網濾過を行なってジルコニアビーズを除去して、固形分22.2%の橙色顔料分散液(P-2)を得た。
 体質顔料分散液(P-3)の製造
 製造例4
 アクリル樹脂溶液(R-1)を327部(固形分で180部)、脱イオン水360部、サーフィノール104A(商品名、エボニックインダストリーズ社製消泡剤、固形分50%)6部、及びバリファインBF-20(商品名、堺化学工業社製、硫酸バリウム粉末、平均粒子径0.03μm)250部を、ペイントコンディショナー中に入れ、ガラスビーズ媒体を加えて、室温で1時間混合分散し、固形分44%の体質顔料分散液(P-3)を得た。
 アクリル樹脂水分散体(R-2)の製造
 製造例5
 温度計、サーモスタット、撹拌装置、還流冷却器、窒素導入管及び滴下装置を備えた反応容器に脱イオン水128部、及び「アデカリアソープSR-1025」(商品名、ADEKA製、乳化剤、有効成分25%)2部を仕込み、窒素気流中で撹拌混合し、80℃に昇温させた。
 次いで下記コア部用モノマー乳化物の全量のうちの1%量及び6%過硫酸アンモニウム水溶液5.3部を反応容器内に導入し80℃で15分間保持した。その後、コア部用モノマー乳化物の残部を3時間かけて、同温度に保持した反応容器内に滴下し、滴下終了後1時間熟成を行なった。次に、下記シェル部用モノマー乳化物を1時間かけて滴下し、1時間熟成した後、5%2-(ジメチルアミノ)エタノール水溶液40部を反応容器に徐々に加えながら30℃まで冷却し、100メッシュのナイロンクロスで濾過しながら排出し、平均粒子径100nm、固形分30%のアクリル樹脂水分散体(R-2)を得た。得られたアクリル樹脂水分散体は、酸価33mgKOH/g、水酸基価25mgKOH/gであった。
 コア部用モノマー乳化物:脱イオン水40部、「アデカリアソープSR-1025」2.8部、メチレンビスアクリルアミド2.1部、スチレン2.8部、メチルメタクリレート16.1部、エチルアクリレート28部及びn-ブチルアクリレート21部を混合攪拌することにより、コア部用モノマー乳化物を得た。
 シェル部用モノマー乳化物:脱イオン水17部、「アデカリアソープSR-1025」1.2部、過硫酸アンモニウム0.03部、スチレン3部、2-ヒドロキシエチルアクリレート5.1部、メタクリル酸5.1部、メチルメタクリレート6部、エチルアクリレート1.8部及びn-ブチルアクリレート9部を混合攪拌することにより、シェル部用モノマー乳化物を得た。
 ポリエステル樹脂水分散体(R-3)の製造
 製造例6
 撹拌装置、温度計、反応生成水除去装置、窒素ガス導入管を備えた反応器に、イソフタル酸664部、アジピン酸496部、無水フタル酸237部、ネオペンチルグリコール788部、トリメチロールプロパン341部を入れ、窒素ガス雰囲気下において撹拌しながら160℃まで加熱した。160℃にて1時間保持した後、生成する縮合水を除去しながら5時間かけて230℃まで昇温し、同温度で保持した。酸価が7mgKOH/gになった時点で170℃まで冷却し、ε-カプロラクトン490部を入れ、同温度で1時間保持してから、この反応生成物に、無水トリメリット酸77部を添加し、170℃で30分間付加反応を行った。その後、50℃以下に冷却し、2-(ジメチルアミノ)エタノールを酸基に対して0.88当量添加し中和してから、脱イオン水を徐々に添加することにより、固形分濃度40%、pH7.5の水酸基含有ポリエステル樹脂(R-3)水分散体を得た。得られた水酸基含有ポリエステル樹脂のラクトン変性量は18質量%、数平均分子量は2074、水酸基価は89mgKOH/g、酸価は23mgKOH/gであった。
 ポリエステル樹脂溶液(R-4)の製造
 製造例7
 温度計、サーモスタット、攪拌装置、還流冷却器及び水分離器を備えた反応容器に、トリメチロールプロパン109部、1,6-ヘキサンジオール141部、1,2-シクロヘキサンジカルボン酸無水物126部及びアジピン酸120部を仕込み、160℃から230℃迄3時間かけて昇温させた後、230℃で4時間縮合反応させた。次いで、得られた縮合反応生成物に、カルボキシル基を導入するために、無水トリメリット酸38.3部を加えて、170℃で30分間反応させた後、2-エチル-1-ヘキサノールで希釈し、固形分70%のポリエステル樹脂溶液(R-4)を得た。得られた水酸基含有ポリエステル樹脂は、酸価が46mgKOH/g、水酸基価が150mgKOH/g、数平均分子量が1400であった。
 透明ベース塗料(X-1)の製造
 製造例8
 攪拌混合容器に、体質顔料分散液(P-3)を固形分で14部、アクリル樹脂水分散体(R-2)を固形分で40部、ポリエステル樹脂溶液(R-4)を固形分で23部、「ユーコートUX-310」(商品名、三洋化成社製、ウレタン樹脂水分散体、固形分含有率40%)を固形分で10部、及び「サイメル251」(商品名、日本サイテックインダストリーズ社製、メラミン樹脂、固形分含有率80%)を固形分で27部となるように添加して攪拌混合し、透明ベース塗料(X-1)を調製した。
 透明ベース塗料(X-2)の製造
 製造例9
 透明ベース塗料(X-1)中の樹脂固形分100質量部に対して、「Xirallic T60-10 Crystal Silver」を15質量部配合し、透明ベース塗料(X-2)とした。
 セルロースナノファイバー(C)の調製
 製造例10
 針葉樹由来の漂白済み未叩解クラフトパルプ(白色度85%)5.00g(絶乾)をTEMPO(Sigma Aldrich社)20mg(絶乾1gのセルロースに対し0.025mmol)と臭化ナトリウム514mg(絶乾1gのセルロースに対し1.0mmol)を溶解した水溶液500mLに加え、パルプが均一に分散するまで撹拌した。反応系に次亜塩素酸ナトリウム水溶液を、次亜塩素酸ナトリウムが2.2mmol/gになるように添加し、酸化反応を開始した。反応中は系内のpHが低下するが、3M水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。次亜塩素酸ナトリウムを消費し、系内のpHが変化しなくなった時点で反応を終了した。反応後の混合物をガラスフィルターで濾過してパルプ分離し、パルプを十分に水で洗浄することで酸化されたパルプ(カルボキシル化セルロース)を得た。この時のパルプ収率は93%であり、酸化反応に要した時間は60分、カルボキシル基量は0.72mmol/gであった。これを水で1.4%(w/v)に調整し、高圧ホモジナイザーを用いて、透明度が十分に高くなるまで解繊処理を実施することで1%(w/v)における透明度が93.7%である酸化セルロースナノファイバー(C-1)水分散液を得た。このセルロースナノファイバーの水分散液の60rpmにおけるB型粘度は1000mPa・sであった。
 製造例11
 針葉樹由来の漂白済み未叩解クラフトパルプ(白色度85%)5.00g(絶乾)をTEMPO(Sigma Aldrich社)20mg(絶乾1gのセルロースに対し0.025mmol)と臭化ナトリウム514mg(絶乾1gのセルロースに対し1.0mmol)を溶解した水溶液500mLに加え、パルプが均一に分散するまで撹拌した。反応系に次亜塩素酸ナトリウム水溶液を、次亜塩素酸ナトリウムが1.8mmol/gになるように添加し、酸化反応を開始した。反応中は系内のpHが低下するが、3M水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。次亜塩素酸ナトリウムを消費し、系内のpHが変化しなくなった時点で反応を終了した。反応後の混合物をガラスフィルターで濾過してパルプ分離し、パルプを十分に水で洗浄することで酸化されたパルプ(カルボキシル化セルロース)を得た。この時のパルプ収率は93%であり、酸化反応に要した時間は60分、カルボキシル基量は0.58mmol/gであった。これを水で1.1%(w/v)に調整し、高圧ホモジナイザーを用いて、透明度が十分に高くなるまで解繊処理を実施することで1%(w/v)における透明度が90.2%である酸化セルロースナノファイバー(C-2)水分散液を得た。このセルロースナノファイバーの水分散液の60rpmにおけるB型粘度は1000mPa・sであった。
 製造例12
 針葉樹由来の漂白済み未叩解クラフトパルプ(白色度85%)5.00g(絶乾)をTEMPO(Sigma Aldrich社)20mg(絶乾1gのセルロースに対し0.025mmol)と臭化ナトリウム514mg(絶乾1gのセルロースに対し1.0mmol)を溶解した水溶液500mLに加え、パルプが均一に分散するまで撹拌した。反応系に次亜塩素酸ナトリウム水溶液を、次亜塩素酸ナトリウムが2.2mmol/gになるように添加し、酸化反応を開始した。反応中は系内のpHが低下するが、3M水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。次亜塩素酸ナトリウムを消費し、系内のpHが変化しなくなった時点で反応を終了した。反応後の混合物をガラスフィルターで濾過してパルプ分離し、パルプを十分に水で洗浄することで酸化されたパルプ(カルボキシル化セルロース)を得た。この時のパルプ収率は93.9%であり、酸化反応に要した時間は60分、カルボキシル基量は0.9mmol/gであった。これを水で1.0%(w/v)に調整し、高圧ホモジナイザーを用いて、透明度が十分に高くなるまで解繊処理を実施することで1%(w/v)における透明度が93.7%である酸化セルロースナノファイバー(C-3)水分散液を得た。このセルロースナノファイバーの水分散液の60rpmにおけるB型粘度は1500mPa・sであった。
 製造例13
 針葉樹由来の漂白済み未叩解クラフトパルプ(白色度85%)5.00g(絶乾)をTEMPO(Sigma Aldrich社)20mg(絶乾1gのセルロースに対し0.025mmol)と臭化ナトリウム514mg(絶乾1gのセルロースに対し1.0mmol)を溶解した水溶液500mLに加え、パルプが均一に分散するまで撹拌した。反応系に次亜塩素酸ナトリウム水溶液を、次亜塩素酸ナトリウムが2.2mmol/gになるように添加し、酸化反応を開始した。反応中は系内のpHが低下するが、3M水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。次亜塩素酸ナトリウムを消費し、系内のpHが変化しなくなった時点で反応を終了した。反応後の混合物をガラスフィルターで濾過してパルプ分離し、パルプを十分に水で洗浄することで酸化されたパルプ(カルボキシル化セルロース)を得た。この時のパルプ収率は93%であり、酸化反応に要した時間は60分、カルボキシル基量は0.68mmol/gであった。これを水で1.4%(w/v)に調整し、高圧ホモジナイザーを用いて、透明度が十分に高くなるまで解繊処理を実施することで1%(w/v)における透明度が89.8%である酸化セルロースナノファイバー(C-4)水分散液を得た。このセルロースナノファイバーの水分散液の60rpmにおけるB型粘度は2300mPa・sであった。
 製造例14
 針葉樹由来の漂白済み未叩解クラフトパルプ(白色度85%)5.00g(絶乾)をTEMPO(Sigma Aldrich社)39mg(絶乾1gのセルロースに対し0.05mmol)と臭化ナトリウム514mg(絶乾1gのセルロースに対し1.0mmol)を溶解した水溶液500mLに加え、パルプが均一に分散するまで撹拌した。反応系に次亜塩素酸ナトリウム水溶液を、次亜塩素酸ナトリウムが6.0mmol/gになるように添加し、酸化反応を開始した。反応中は系内のpHが低下するが、3M水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。次亜塩素酸ナトリウムを消費し、系内のpHが変化しなくなった時点で反応を終了した。反応後の混合物をガラスフィルターで濾過してパルプ分離し、パルプを十分に水で洗浄することで酸化されたパルプ(カルボキシル化セルロース)を得た。この時のパルプ収率は90%であり、酸化反応に要した時間は90分、カルボキシル基量は1.53mmol/gであった。これを水で1.0%(w/v)に調整し、高圧ホモジナイザーを用いて、透明度が十分に高くなるまで解繊処理を実施することで、1%(w/v)における透明度が95.1%である酸化セルロースナノファイバー(C-5)水分散液を得た。このセルロースナノファイバーの水分散液の60rpmにおけるB型粘度は2000mPa・sであった。
 製造例15
 針葉樹由来の漂白済み未叩解クラフトパルプ(白色度85%)5.00g(絶乾)をTEMPO(Sigma Aldrich社)39mg(絶乾1gのセルロースに対し0.05mmol)と臭化ナトリウム514mg(絶乾1gのセルロースに対し1.0mmol)を溶解した水溶液500mLに加え、パルプが均一に分散するまで撹拌した。反応系に次亜塩素酸ナトリウム水溶液を、次亜塩素酸ナトリウムが3.0mmol/gになるように添加し、酸化反応を開始した。反応中は系内のpHが低下するが、3M水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。次亜塩素酸ナトリウムを消費し、系内のpHが変化しなくなった時点で反応を終了した。反応後の混合物をガラスフィルターで濾過してパルプ分離し、パルプを十分に水で洗浄することで酸化されたパルプ(カルボキシル化セルロース)を得た。この時のパルプ収率は90%であり、酸化反応に要した時間は90分、カルボキシル基量は1.08mmol/gであった。これを水で1.0%(w/v)に調整し、高圧ホモジナイザーを用いて、透明度が十分に高くなるまで解繊処理を実施することで、1%(w/v)における透明度が95.1%である酸化セルロースナノファイバー(C-6)水分散液を得た。このセルロースナノファイバーの水分散液の60rpmにおけるB型粘度は1100mPa・sであった。
 製造例16
 針葉樹由来の漂白済み未叩解クラフトパルプ(白色度85%)5.00g(絶乾)をTEMPO(Sigma Aldrich社)39mg(絶乾1gのセルロースに対し0.05mmol)と臭化ナトリウム514mg(絶乾1gのセルロースに対し1.0mmol)を溶解した水溶液500mLに加え、パルプが均一に分散するまで撹拌した。反応系に次亜塩素酸ナトリウム水溶液を、次亜塩素酸ナトリウムが1.8mmol/gになるように添加し、酸化反応を開始した。反応中は系内のpHが低下するが、3M水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。次亜塩素酸ナトリウムを消費し、系内のpHが変化しなくなった時点で反応を終了した。反応後の混合物をガラスフィルターで濾過してパルプ分離し、パルプを十分に水で洗浄することで酸化されたパルプ(カルボキシル化セルロース)を得た。この時のパルプ収率は90%であり、酸化反応に要した時間は60分、カルボキシル基量は0.58mmol/gであった。これを水で1.1%(w/v)に調整し、高圧ホモジナイザーを用いて、透明度が十分に高くなるまで解繊処理を実施することで、1%(w/v)における透明度が77.4%である酸化セルロースナノファイバー(C-7)水分散液を得た。このセルロースナノファイバーの水分散液の60rpmにおけるB型粘度は2400mPa・sであった。
 光輝性顔料分散体の調製
 実施例1
 攪拌混合容器に、蒸留水を76.7部、「Dynol604」(商品名、アセチレンジオール系湿潤剤、エボニックインダストリーズ社製、エチレンオキサイド鎖あり、固形分100%)を固形分で0.25部、「Hydroshine WS-3001」(商品名、水性用蒸着アルミニウムフレーク顔料、Eckart社製、固形分:10%、内部溶剤:イソプロパノール、平均粒子径D50:13μm、厚さ:0.05μm、表面がシリカ処理されている)を固形分で1.2部、「アルペースト EMR-B6360」(商品名、東洋アルミ社製、ノンリーフィングアルミニウムフレーク、平均粒子径D50:10.3μm、厚さ:0.19μm、表面がシリカ処理されている)を固形分で0.37部、セルロースナノファイバー(C-1)水分散液を固形分で0.5部、「TINUVIN 479-DW」(商品名、紫外線吸収剤、BASF社製、ヒドロキシフェニルトリアジン系紫外線吸収剤、HPT系紫外線吸収剤TINUVIN479をアクリルポリマー中に包含、固形分40%)を固形分で0.14部、「TINUVIN 123-DW」(商品名、光安定剤、BASF社製、デカン二酸ビス(2,2,6,6-テトラメチル-1-(オクチルオキシ)-4-ピペリジニル)エステル、アミノエーテル基を持つHALS TINUVIN 123をアクリルポリマー中に包含  固形分50%)を固形分で0.11部、アクリル樹脂水分散体(R-2)を固形分で0.67部、イソプロパノールを19.5部、オクタノールを0.51部となるように添加して攪拌混合し、光輝性顔料分散体(Y-1)を調整した。
 実施例2~28、比較例1~10
 表1に記載の配合とする以外は全て実施例1と同様にして光輝性顔料分散体(Y-2)~(Y-38)を得た。
 表1中の数値は、蒸留水、溶剤については液体の量、その他については固形分量を記載している。
 なお、表1における各成分は以下の通りである。
「TEGO TWIN4100」商品名、シリコーン系湿潤剤、エボニック・デグサ社製、エチレンオキサイド鎖あり、固形分100%、
「BYK348」商品名、BYK社製、シリコーン系湿潤剤、BYK社製、エチレンオキサイド鎖あり、固形分:100%、
「サーフィノール420」商品名、エボニックインダストリーズ社製、アセチレンジオール系湿潤剤、エチレンオキサイド鎖あり、固形分100%、
「サーフィノール440」商品名、エボニックインダストリーズ社製、アセチレンジオール系湿潤剤、エチレンオキサイド鎖あり、固形分100%、
「サーフィノール460」商品名、エボニックインダストリーズ社製、アセチレンジオール系湿潤剤、エチレンオキサイド鎖あり、固形分100%、
「サーフィノール104A」商品名、エボニックインダストリーズ社製、アセチレンジオール系湿潤剤、エチレンオキサイド鎖なし、固形分50%、
「Metalure Liquid Black」商品名:水性用蒸着クロムフレーク顔料、Eckart社製、固形分:10%、内部溶剤:プロピレングリコールモノメチルエーテル、平均粒子径D50:14μm、厚さ:0.02μm、
「Xirallic T61-10 Micro Silver」(商品名、酸化チタン被覆アルミナフレーク顔料、メルク社製、一次平均粒子径:約12μm、平均厚さ:約0.3μm)
「Xirallic T60-10 Crystal Silver」(商品名、酸化チタン被覆アルミナフレーク顔料、メルク社製、一次平均粒子径:約19μm、平均厚さ:約0.4μm)
「Pyrisma M40-58 SW AmbercupOrange」(商品名、酸化鉄被覆マイカ顔料、メルク社製、一次平均粒子径:約17.1μm、平均厚さ:約0.65μm)
「Acrysol ASE-60」商品名、ダウケミカル社製、ポリアクリル酸系粘性調整剤、固形分:28%、
「ユーコートUX-300」商品名、三洋化成社製、ウレタン樹脂水分散体。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 光輝性顔料分散体の評価
 上記のようにして得られた各光輝性顔料分散体について、下記の方法により粘度安定性を評価し、表1にその結果を示した。
 光輝性顔料分散体の粘度安定性
 得られた光輝性顔料分散体を320g用意し、このうち20gは温度23℃で6時間静置した後、レオメーター(HAAKE社製 RS150)により、温度23℃、せん断速度が0.1(s-1)における粘度を測定した(撹拌前の粘度)。残りの光輝性顔料分散体300gを500mLビーカーに移し、ビーカー内を上下撹拌して均一の状態にしてから、マグネットスターラーを用いて、温度23℃、1,000rpmで24時間撹拌した。なお、撹拌時に水の蒸発を防止するためビーカーの口をパラフィルムで密閉した。上記24時間撹拌した光輝性顔料分散体を温度23℃で6時間静置した後、レオメーター(HAAKE社製 RS150)により、温度23℃、せん断速度が0.1(s-1)における粘度を測定した(撹拌後の粘度)。
 次いで、下記式よりせん断速度が0.1(s-1)における粘度変化率(%)を算出し、下記基準で粘度安定性を評価した。C以上が合格である。
せん断速度が0.1(s-1)における粘度変化率(%)=(|撹拌前の粘度-撹拌後の粘度|/撹拌前の粘度)×100
A:粘度変化率が30%未満
B:粘度変化率が30%以上40%未満
C:粘度変化率が40%以上60%未満
D:粘度変化率が60%以上70%未満
E:粘度変化率が70%以上。
 着色塗料(W)の調製
 着色塗料(W-1)
 「TP-65 ダークグレー」(商品名、関西ペイント社製、ポリエステル樹脂系溶剤中塗り塗料、得られる塗膜のL*値:20)を、着色塗料(W-1)として用いた。
 着色塗料(W-2)
 「TP-65」(商品名、関西ペイント社製、ポリエステル樹脂系溶剤中塗り塗料、得られる塗膜のL*値:85)を、着色塗料(W-2)として用いた。
 着色塗料(W-3)
 「WP-505T」(商品名、関西ペイント社製、ポリエステル樹脂系水性中塗り塗料、得られる塗膜のL*値:60)を、着色塗料(W-3)として用いた。
 着色塗料(W-4)
 「アスカレックス2870CD-1ダークグレー」(商品名、関西ペイント社製、PP素材向けアクリル樹脂系水性導電性プライマー塗料)を、着色塗料(W-4)として用いた。
 クリヤー塗料(Z)の調製
 クリヤー塗料(Z-1)
 「KINO6510」(商品名:関西ペイント株式会社、水酸基/イソシアネート基硬化型アクリル樹脂・ウレタン樹脂系2液型有機溶剤型塗料)を、クリヤー塗料(Z-1)として用いた。
 クリヤー塗料(Z-2)
 「KINO6510」に含まれる樹脂固形分100質量部に対して「PARIOGEN MAROON L3920」(商品名、BASF社製、有機ペリレン顔料)を1.21質量部添加したものを、クリヤー塗料(Z-2)として用いた。
 クリヤー塗料(Z-3)
 「ソフレックス7175クリヤー」(商品名、関西ペイント社製、PP素材向け、水酸基/イソシアネート基硬化型アクリル樹脂・ウレタン樹脂系2液型有機溶剤型塗料)を、クリヤー塗料(Z-3)として用いた。
 被塗物の調製
 被塗物1
 脱脂及びリン酸亜鉛処理した鋼板(JISG3141、大きさ400mm×300mm×0.8mm)にカチオン電着塗料「エレクロンGT-10」(商品名:関西ペイント社製、エポキシ樹脂ポリアミン系カチオン樹脂に架橋剤としてブロックポリイソシアネート化合物を使用したもの)を硬化塗膜に基づいて膜厚が20μmになるように電着塗装し、170℃で20分加熱して架橋硬化させ、電着塗膜を形成せしめ、被塗物1とした。
 被塗物2
 プラスチック材料として、「TSOP-1(TC-6)」(商品名、日本ポリケム社製、350mm×10mm×2mm)を用意した。そして、プラスチック材料の表面を、イソプロピルアルコールを含ませたガーゼで拭いて脱脂処理し、被塗物2とした。
 試験板の作成
 実施例29
工程(1):被塗物1上に、着色塗料(W-1)を回転霧化型のベル型塗装機を用いて、硬化膜厚25μmになるように静電塗装し、140℃で30分加熱して架橋硬化させ着色塗膜を形成した。
工程(2):次いで、該着色塗膜の上に、透明ベース塗料(X-1)を回転霧化型のベル型塗装機を用いて、硬化膜厚10μmになるように静電塗装し、2分間放置した。
工程(3):さらに、塗膜の上に、光輝性顔料分散体(Y-1)を、表1に記載の塗料粘度に調整し、ABB社製ロボットベルを用いて、ブース温度23℃、湿度68%の条件で、乾燥塗膜の膜厚が1.0μmとなるように塗装し光輝性塗膜を形成した。3分間放置後、80℃にて3分間放置した。
工程(4):次いで、乾燥塗膜の塗面に、クリヤー塗料(Z-1)を、ABB社製ロボットベルを用いて、ブース温度23℃、湿度68%の条件で、乾燥塗膜の膜厚が35μmとなるように塗装しクリヤー塗膜を形成した。
工程(5):塗装後、室温にて7分間放置した後に、熱風循環式乾燥炉内を使用して、140℃で30分間加熱し、複層塗膜を同時に乾燥せしめて試験板とした。
 ここで、表2に記載した光輝性塗膜の乾燥塗膜の膜厚は、下記式(3)から算出した。以下の実施例についても同様である。
x=(sc*10000)/(S*sg)  ・・・(3)
x:膜厚[μm]
sc:塗着固形分[g]
S:塗着固形分の評価面積[cm2]
sg:塗膜比重[g/cm3]
 実施例30~57、59、及び比較例11~20
 表2に記載の着色塗料(W)、透明ベース塗料(X)、光輝性顔料分散体(Y)及びクリヤー塗料(Z)とする以外は全て実施例29と同様にして試験板を得た。
 実施例58
工程(1):被塗物1上に、着色塗料(W-3)を回転霧化型のベル型塗装機を用いて、硬化膜厚25μmになるように静電塗装し、3分間放置し、80℃にて3分間プレヒートして着色塗膜を形成した。
工程(2):次いで、該着色塗膜上に、前述のように作成した光輝性顔料分散体(Y-1)を、表1に記載の塗料粘度に調整し、ABB社製ロボットベルを用いて、ブース温度23℃、湿度68%の条件で、乾燥塗膜として、1.0μmとなるように塗装した。3分間放置し、その後、80℃にて3分間プレヒートし、光輝性塗膜を形成した。
工程(3):さらに、この光輝性塗膜上にクリヤー塗料(Z-1)を、ABB社製ロボットベルを用いて、ブース温度23℃、湿度68%の条件で乾燥塗膜として、35μmとなるように塗装しクリヤー塗膜を形成した。
工程(4):塗装後、室温にて7分間放置した後に、熱風循環式乾燥炉内を使用して、140℃で30分間加熱し、複層塗膜を同時に乾燥せしめて試験板とした。
 実施例60
工程(1):被塗物2上に、着色塗料(W-4)を回転霧化型のベル型塗装機を用いて、硬化膜厚10μmになるように静電塗装し、3分間放置し、80℃にて3分間プレヒートして着色塗膜を形成した。
工程(2):次いで、該着色塗膜の上に、透明ベース塗料(X-1)を回転霧化型のベル型塗装機を用いて、硬化膜厚10μmになるように静電塗装し、2分間放置した。
工程(3):さらに、塗膜の上に、光輝性顔料分散体(Y-1)を、表1に記載の塗料粘度に調整し、ABB社製ロボットベルを用いて、ブース温度23℃、湿度68%の条件で、乾燥塗膜の膜厚が1.0μmとなるように塗装した。3分間放置し、その後、80℃にて3分間プレヒートし、光輝性塗膜を形成した。
工程(4):さらに、この光輝性塗膜上にクリヤー塗料(Z-3)を、ABB社製ロボットベルを用いて、ブース温度23℃、湿度68%の条件で乾燥塗膜として、35μmとなるように塗装しクリヤー塗膜を形成した。
工程(5):塗装後、室温にて7分間放置した後に、熱風循環式乾燥炉内を使用して、120℃で30分間加熱し、複層塗膜を同時に乾燥せしめて試験板とした。
 実施例61
工程(1):被塗物2上に、着色塗料(W-4)を回転霧化型のベル型塗装機を用いて、硬化膜厚10μmになるように静電塗装し、3分間放置して着色塗膜を形成した。
工程(2):次いで、該着色塗膜の上に、透明ベース塗料(X-1)を回転霧化型のベル型塗装機を用いて、硬化膜厚10μmになるように静電塗装し、2分間放置した。
工程(3):さらに、塗膜の上に、光輝性顔料分散体(Y-1)を、表1に記載の塗料粘度に調整し、ABB社製ロボットベルを用いて、ブース温度23℃、湿度68%の条件で、乾燥塗膜の膜厚が1.0μmとなるように塗装した。3分間放置し、その後、80℃にて3分間プレヒートし、光輝性塗膜を形成した。
工程(4):さらに、この光輝性塗膜上にクリヤー塗料(Z-3)を、ABB社製ロボットベルを用いて、ブース温度23℃、湿度68%の条件で乾燥塗膜として、35μmとなるように塗装しクリヤー塗膜を形成した。
工程(5):塗装後、室温にて7分間放置した後に、熱風循環式乾燥炉内を使用して、120℃で30分間加熱し、複層塗膜を同時に乾燥せしめて試験板とした。
 実施例62
工程(1):被塗物1上に、着色塗料(W-3)を回転霧化型のベル型塗装機を用いて、硬化膜厚25μmになるように静電塗装し、3分間放置し、80℃にて3分間プレヒートして着色塗膜を形成した。
工程(2):次いで、該着色塗膜の上に、透明ベース塗料(X-1)を回転霧化型のベル型塗装機を用いて、硬化膜厚10μmになるように静電塗装し、2分間放置した。
工程(3):さらに、塗膜の上に、光輝性顔料分散体(Y-1)を、表1に記載の塗料粘度に調整し、ABB社製ロボットベルを用いて、ブース温度23℃、湿度68%の条件で、乾燥塗膜の膜厚が1.0μmとなるように塗装した。3分間放置し、その後、80℃にて3分間プレヒートし、光輝性塗膜を形成した。
工程(4):さらに、この光輝性塗膜上にクリヤー塗料(Z-1)を、ABB社製ロボットベルを用いて、ブース温度23℃、湿度68%の条件で乾燥塗膜として、35μmとなるように塗装しクリヤー塗膜を形成した。
工程(5):塗装後、室温にて7分間放置した後に、熱風循環式乾燥炉内を使用して、140℃で30分間加熱し、複層塗膜を同時に乾燥せしめて試験板とした。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
塗膜評価
 上記のようにして得られた各試験板について塗膜の外観及び性能を評価し、表2にその結果を示した。塗膜外観は、鏡面光沢度及び粒子感により評価し、塗膜性能は、耐水付着性及び長期促進試験後の耐水付着性によって評価した。
 60度鏡面光沢度(60°グロス)
 上記で得られた試験板について、光沢計(micro-TRI-gloss、BYK-Gardner社製)を用いて60°グロス値を測定した。値が高い方が良好である。
 粒子感
 粒子感は、Hi-light Graininess値(以下、「HG値」と略記する)で評価した。HG値は、塗膜面を微視的に観察した場合におけるミクロ光輝感の尺度の一つであり、ハイライトにおける粒子感を表す指標である。HG値は、次のようにして、算出される。先ず、塗膜面を、光の入射角15度/受光角0度にてCCDカメラで撮影し、得られたデジタル画像データ(2次元の輝度分布データ)を2次元フーリエ変換処理して、パワースペクトル画像を得る。次に、このパワースペクトル画像から、粒子感に対応する空間周波数領域のみを抽出して得られた計測パラメータを、更に0~100の数値を取り、且つ粒子感との間に直線的な関係が保たれるように変換した値が、HG値である。HG値は、光輝性顔料の粒子感が全くないものを0とし、光輝性顔料の粒子感が最も大きいものを100とした。
 鱗片状光輝性顔料(B)として蒸着金属フレーク及び/又はアルミニウムフレーク顔料を使用する場合は、HG値が55以下で合格であり、鱗片状光輝性顔料(B)として光干渉性顔料を使用する場合は、HG値が65以下で合格である。
 耐水付着性
 試験板を40℃の温水に240時間浸漬し、引き上げ、布で水滴・汚れをふきとり、室温23℃で10分以内に、試験板の複層塗膜を素地に達するようにカッターで格子状に切り込み、大きさ2mm×2mmのゴバン目を100個作る。続いて、その表面に粘着セロハンテープを貼着し、そのテープを急激に剥離した後のゴバン目塗膜の残存状態を調べ、下記基準で耐水性を評価した。A,Bを合格、Cを不合格とする。
A:ゴバン目塗膜が100個残存し、カッターの切り込みの縁において塗膜の小さなフチカケが生じていない
B:ゴバン目塗膜が100個残存するが、カッターの切り込みの縁において塗膜の小さなフチカケが生じている
C:ゴバン目塗膜の残存数が99個以下である。
 長期促進試験後の耐水付着性
長期促進耐候性試験には、JIS B 7754に規定されたスーパーキセノンウェザオメーター(商品名、スガ試験機社製)を使用し、1時間42分間のキセノンアークランプの照射と18分間の降雨条件における同ランプの照射による2時間を1サイクルとして、4000時間経過後に、上記耐水付着性試験と同様の操作を行った。A,Bを合格、Cを不合格とする。
 上記耐水付着性試験結果と長期促進試験後の耐水付着性試験結果の差が小さいほど光輝性顔料分散体の安定性が高いと判断できる。
 表2を参照すると、実施例1-62の複層塗膜は、60度鏡面光沢度が良好で、粒子感が合格であり、耐水付着性及び長期促進試験後の耐水付着性がいずれも合格であった。
 これに対し、比較例13及び15の複層塗膜は、塗装時に塗料が垂れて、正常な塗膜を形成せず、塗膜性能の評価試験に供することができなかった。比較例19の複層塗膜は長期促進試験後の耐水付着性が不合格であり、比較例18の複層塗膜は耐水付着性及び長期促進試験後の耐水付着性がいずれも不合格であり、比較例11,12,14,16,17,20の複層塗膜は粒子感が不合格であった。
 以上、本発明の実施形態及び実施例について具体的に説明したが、本発明は、上述の実施形態に限定されるものではなく、本発明の技術的思想に基づく各種の変形が可能である。

Claims (10)

  1.  水、湿潤剤(A)、鱗片状光輝性顔料(B)及びセルロースナノファイバー(C)を含有する光輝性顔料分散体であって、
     前記セルロースナノファイバー(C)が、セルロースナノファイバーの絶乾質量に対してカルボキシル基量が0.4~1.0mmol/gであり、かつセルロースナノファイバーの1.0質量%水分散液における透明度が80%以上であり、
     光輝性顔料分散体の全成分合計100質量部に対して、固形分を0.1~10質量部含み、
    B型粘度計を用いて測定した粘度が、回転数が6回転/分の条件では100~10000mPa・secの範囲内である光輝性顔料分散体。
  2.  湿潤剤(A)が、鱗片状光輝性顔料(B)の固形分100質量部を基準として固形分で4~400質量部である請求項1に記載の光輝性顔料分散体。
  3.  光輝性顔料分散体固形分100質量部を基準として、鱗片状光輝性顔料(B)を固形分として2~97質量部含む請求項1又は2に記載の光輝性顔料分散体。
  4.  さらに、樹脂水分散体を含有する請求項1~3のいずれか1項に記載の光輝性顔料分散体。
  5.  被塗物上に、着色塗料を塗装して着色塗膜を形成すること、
     形成される着色塗膜上に、請求項1~4のいずれか一項に記載の光輝性顔料分散体を塗装して光輝性塗膜を形成すること、及び
     形成される光輝性塗膜上に、クリヤー塗料を塗装してクリヤー塗膜を形成すること
    を含む複層塗膜形成方法。
  6.  乾燥膜厚として光輝性塗膜の厚みが0.1~4μmである請求項5に記載の複層塗膜形成方法。
  7.  複層塗膜の60度鏡面光沢度が90~240の範囲内である請求項5又は6に記載の複層塗膜形成方法。
  8.  着色塗料から形成された着色塗膜と、
     前記着色塗膜上に形成された、請求項1~4のいずれか一項に記載の光輝性顔料分散体から形成された光輝性塗膜と、
     前記光輝性塗膜上に形成された、クリヤー塗料から形成されたクリヤー塗膜とを備えた複層塗膜。
  9.  乾燥膜厚として光輝性塗膜の厚みが0.1~4μmである請求項8に記載の複層塗膜。
  10.  複層塗膜の60度鏡面光沢度が90~240の範囲内である請求項8又は9記載の複層塗膜。
PCT/JP2019/037193 2018-09-25 2019-09-24 光輝性顔料分散体及び複層塗膜形成方法 WO2020066980A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980062292.2A CN112739784B (zh) 2018-09-25 2019-09-24 效应颜料分散体和形成多层涂膜的方法
EP19866128.2A EP3858928A4 (en) 2018-09-25 2019-09-24 BRIGHT PIGMENT DISPERSION AND PROCESS FOR MAKING A MULTI-LAYER COATING FILM
CA3113957A CA3113957C (en) 2018-09-25 2019-09-24 Effect pigment dispersion and method for forming multilayer coating film
JP2020549198A JP7378415B2 (ja) 2018-09-25 2019-09-24 光輝性顔料分散体及び複層塗膜形成方法
US17/278,428 US11932781B2 (en) 2018-09-25 2019-09-24 Effect pigment dispersion and method for forming multilayer coating film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-178675 2018-09-25
JP2018178675 2018-09-25
JP2018205759 2018-10-31
JP2018-205759 2018-10-31

Publications (1)

Publication Number Publication Date
WO2020066980A1 true WO2020066980A1 (ja) 2020-04-02

Family

ID=69950819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037193 WO2020066980A1 (ja) 2018-09-25 2019-09-24 光輝性顔料分散体及び複層塗膜形成方法

Country Status (6)

Country Link
US (1) US11932781B2 (ja)
EP (1) EP3858928A4 (ja)
JP (1) JP7378415B2 (ja)
CN (1) CN112739784B (ja)
CA (1) CA3113957C (ja)
WO (1) WO2020066980A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022014137A1 (ja) * 2020-07-15 2022-01-20 関西ペイント株式会社 光輝性顔料分散体及び複層塗膜形成方法
JP7459411B1 (ja) 2022-09-27 2024-04-01 日本製紙株式会社 セルロースナノファイバー、およびそれを含む水系分散組成物
WO2024071075A1 (ja) * 2022-09-27 2024-04-04 日本製紙株式会社 セルロースナノファイバー、およびそれを含む水系分散組成物
WO2024070687A1 (ja) * 2022-09-27 2024-04-04 関西ペイント株式会社 水性塗料組成物及び複層塗膜形成方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12043763B2 (en) * 2019-07-03 2024-07-23 Kansai Paint Co., Ltd. Effect paint for automobile
US11512265B1 (en) * 2021-07-23 2022-11-29 Turtle Wax, Inc. Water-based graphene dispersion made by shear stabilization
CN114874664B (zh) * 2022-05-14 2023-07-21 阳原县仁恒精细粘土有限责任公司 绿色环保且耐擦洗性能好的高固含量乳胶漆及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63272544A (ja) 1987-04-30 1988-11-10 Toyoda Gosei Co Ltd ホイールカバー
JP2006095522A (ja) 2004-09-06 2006-04-13 Kansai Paint Co Ltd 水性ベースコート塗料の塗装方法
JP2009155537A (ja) 2007-12-27 2009-07-16 Nippon Paint Co Ltd 水性ベース塗料組成物並びに金属調積層塗膜及びその形成方法
JP2011195660A (ja) * 2010-03-18 2011-10-06 Toppan Printing Co Ltd セルロース膜およびそれを用いた積層材料
JP2011202010A (ja) * 2010-03-25 2011-10-13 Toppan Printing Co Ltd 膜形成用材料およびその製造方法ならびにシート
WO2017175468A1 (ja) 2016-04-04 2017-10-12 関西ペイント株式会社 光輝性顔料分散体及び複層塗膜形成方法
WO2018092874A1 (ja) * 2016-11-18 2018-05-24 関西ペイント株式会社 複層塗膜形成方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63272544A (ja) 1987-04-30 1988-11-10 Toyoda Gosei Co Ltd ホイールカバー
JP2006095522A (ja) 2004-09-06 2006-04-13 Kansai Paint Co Ltd 水性ベースコート塗料の塗装方法
JP2009155537A (ja) 2007-12-27 2009-07-16 Nippon Paint Co Ltd 水性ベース塗料組成物並びに金属調積層塗膜及びその形成方法
JP2011195660A (ja) * 2010-03-18 2011-10-06 Toppan Printing Co Ltd セルロース膜およびそれを用いた積層材料
JP2011202010A (ja) * 2010-03-25 2011-10-13 Toppan Printing Co Ltd 膜形成用材料およびその製造方法ならびにシート
WO2017175468A1 (ja) 2016-04-04 2017-10-12 関西ペイント株式会社 光輝性顔料分散体及び複層塗膜形成方法
WO2018092874A1 (ja) * 2016-11-18 2018-05-24 関西ペイント株式会社 複層塗膜形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Kansai Paint Technical Report", RESEARCH ON COATINGS, no. 132, August 2002 (2002-08-01), pages 8 - 24

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022014137A1 (ja) * 2020-07-15 2022-01-20 関西ペイント株式会社 光輝性顔料分散体及び複層塗膜形成方法
JP7066926B1 (ja) * 2020-07-15 2022-05-13 関西ペイント株式会社 光輝性顔料分散体及び複層塗膜形成方法
CN115702220A (zh) * 2020-07-15 2023-02-14 关西涂料株式会社 光亮性颜料分散体以及多层涂膜形成方法
CN115702220B (zh) * 2020-07-15 2023-10-20 关西涂料株式会社 光亮性颜料分散体以及多层涂膜形成方法
EP4183489A4 (en) * 2020-07-15 2024-07-17 Kansai Paint Co Ltd BRIGHT PIGMENT DISPERSION AND METHOD FOR PRODUCING A MULTILAYER COATING FILM
JP7459411B1 (ja) 2022-09-27 2024-04-01 日本製紙株式会社 セルロースナノファイバー、およびそれを含む水系分散組成物
WO2024071075A1 (ja) * 2022-09-27 2024-04-04 日本製紙株式会社 セルロースナノファイバー、およびそれを含む水系分散組成物
WO2024070687A1 (ja) * 2022-09-27 2024-04-04 関西ペイント株式会社 水性塗料組成物及び複層塗膜形成方法
JP7497543B1 (ja) 2022-09-27 2024-06-10 関西ペイント株式会社 水性塗料組成物及び複層塗膜形成方法

Also Published As

Publication number Publication date
CA3113957C (en) 2023-03-14
CN112739784B (zh) 2022-10-25
US11932781B2 (en) 2024-03-19
JPWO2020066980A1 (ja) 2021-09-24
JP7378415B2 (ja) 2023-11-13
CA3113957A1 (en) 2020-04-02
EP3858928A4 (en) 2022-08-03
US20210348004A1 (en) 2021-11-11
CN112739784A (zh) 2021-04-30
EP3858928A1 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
JP6938466B2 (ja) 光輝性顔料分散体及び複層塗膜形成方法
JP6921822B2 (ja) 光輝性顔料分散体
JP7378415B2 (ja) 光輝性顔料分散体及び複層塗膜形成方法
JP7164785B2 (ja) 複層塗膜形成方法
JP7481341B2 (ja) 自動車用光輝性塗料
JP7019593B2 (ja) 複層塗膜形成方法
JP7286632B2 (ja) 光輝性顔料分散体及び複層塗膜形成方法
CN111615431B (zh) 多层涂膜形成方法
WO2020044672A1 (ja) 複層塗膜形成方法
JPWO2019142639A1 (ja) 複層塗膜形成方法
JP7305545B2 (ja) 複層塗膜形成方法
JPWO2019054499A1 (ja) 複層塗膜形成方法
JP7066926B1 (ja) 光輝性顔料分散体及び複層塗膜形成方法
JP7571346B1 (ja) 光輝性顔料分散体及び複層塗膜形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866128

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020549198

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3113957

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2101001669

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019866128

Country of ref document: EP

Effective date: 20210426