WO2020065730A1 - 空気調和装置 - Google Patents
空気調和装置 Download PDFInfo
- Publication number
- WO2020065730A1 WO2020065730A1 PCT/JP2018/035477 JP2018035477W WO2020065730A1 WO 2020065730 A1 WO2020065730 A1 WO 2020065730A1 JP 2018035477 W JP2018035477 W JP 2018035477W WO 2020065730 A1 WO2020065730 A1 WO 2020065730A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electric expansion
- expansion valve
- refrigerant
- indoor units
- indoor
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0003—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station characterised by a split arrangement, wherein parts of the air-conditioning system, e.g. evaporator and condenser, are in separately located units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/80—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
- F24F11/86—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
- F25B41/24—Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/10—Temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/10—Temperature
- F24F2110/12—Temperature of the outside air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2140/00—Control inputs relating to system states
- F24F2140/10—Pressure
- F24F2140/12—Heat-exchange fluid pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2140/00—Control inputs relating to system states
- F24F2140/20—Heat-exchange fluid temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/031—Sensor arrangements
- F25B2313/0314—Temperature sensors near the indoor heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/24—Low amount of refrigerant in the system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/02—Compressor control
- F25B2600/021—Inverters therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2513—Expansion valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
- F25B2700/193—Pressures of the compressor
- F25B2700/1931—Discharge pressures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
- F25B2700/193—Pressures of the compressor
- F25B2700/1933—Suction pressures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2104—Temperatures of an indoor room or compartment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2115—Temperatures of a compressor or the drive means therefor
- F25B2700/21151—Temperatures of a compressor or the drive means therefor at the suction side of the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2115—Temperatures of a compressor or the drive means therefor
- F25B2700/21152—Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
Definitions
- the embodiment of the present invention relates to a multi-type air conditioner having at least one outdoor unit and a plurality of indoor units.
- a multi-type air conditioner having at least one outdoor unit and a plurality of indoor units is characterized in that a refrigerant discharged from a compressor is passed through a four-way valve, an outdoor heat exchanger, a decompressor, and each indoor heat exchanger. Equipped with a heat pump refrigeration cycle.
- a part of the refrigerant may accumulate in the indoor heat exchanger of the stopped indoor unit, and the refrigerant circulation amount during the refrigeration cycle may be insufficient.
- the refrigerant discharged from the compressor flows into each of the indoor heat exchangers, and the refrigerant flowing out of each of the indoor heat exchangers flows through each of the second electric expansion valve and the first electric expansion valve to the outdoor heat exchanger.
- the controller opens the second electrically-operated expansion valve in one or more indoor units in an operation state among the indoor units, and opens the second electrically-operated expansion valve in one or more indoor units in an operation stop state. Fully close. Further, the controller gradually increases the opening degree of the second electric expansion valve in one or more indoor units in the operation stopped state when the refrigerant circulation amount in the refrigeration cycle is insufficient.
- FIG. 1 is a diagram showing a configuration of an embodiment.
- 5 is a flowchart illustrating control according to an embodiment.
- FIG. 4 is a Mollier chart showing a change in refrigerant temperature TL in one embodiment.
- a four-way valve 3 is connected to a discharge port of the compressor 1 via a high-pressure pipe 2, and one end of an outdoor heat exchanger 5 is connected to the four-way valve 3 via a gas pipe 4.
- a decompressor for example, an electric expansion valve (first electric expansion valve) 7 is connected to the other end of the outdoor heat exchanger 5 via a liquid side pipe 6, and the other end of the electric expansion valve 7 is connected to a liquid side pipe 8.
- the packed valve 9 is connected via the.
- the electric expansion valve 7 is a pulse motor valve (PMV) whose opening degree Qo changes according to the number of input drive pulse signals.
- the opening Qo is continuous from the minimum opening Qomin (fully closed) corresponding to “0” drive pulse signals pls to the maximum opening Qmax (full open) corresponding to “3000” drive pulse signals pls. Can be changed to
- Each electric expansion valve 41 is a pulse motor valve (PMV) whose opening degree Qi changes according to the number of input drive pulse signals.
- the opening Qi is continuously from the minimum opening Qimin (fully closed) corresponding to “0” drive pulse signals pls to the maximum opening Qimax (full open) corresponding to “1500” drive pulse signals pls. Can be changed to
- the four-way valve 3 is connected to the packed valve 10 via a gas side pipe 11, and the inflow port of the accumulator 13 is connected to the four-way valve 3 via a low pressure side pipe 12.
- the suction cup 15 of the compressor 1 is connected to the outlet of the accumulator via a low-pressure pipe 14.
- a heat pump refrigeration cycle is configured by these pipe connections.
- the compressor 1 is a hermetic compressor in which a motor 1M operated by the output of the inverter 18 is housed in a hermetically sealed case.
- the compressor 1 sucks the refrigerant flowing out of the accumulator 13 and compresses and discharges the sucked refrigerant.
- the inverter 18 converts the voltage of the AC power supply 19 into a DC voltage, and converts the DC voltage into a frequency F (referred to as an output frequency F) according to a command from the outdoor controller 20 and an AC voltage having a level corresponding to the output frequency F. Convert and output.
- the speed of the motor 1M that is, the capacity of the compressor 1 changes according to the value of the output frequency F.
- the refrigerant discharged from the compressor 1 passes through the four-way valve 3, the outdoor heat exchanger 5, the electric expansion valve 7, and the electric expansion valves 41 to the indoor heat exchangers 42 as indicated by solid arrows. Inflow.
- the refrigerant flowing out of each indoor heat exchanger 42 is sucked into the compressor 1 through the four-way valve 3 and the accumulator 13.
- the outdoor heat exchanger 5 functions as a condenser, and each indoor heat exchanger 42 functions as an evaporator.
- each indoor heat exchanger 42 functions as a condenser
- the outdoor heat exchanger 5 functions as an evaporator.
- An outdoor fan 16 that draws in outside air and supplies the outdoor air to the outdoor heat exchanger 5 is disposed near the outdoor heat exchanger 5.
- An outside air temperature sensor 17 for detecting an outside air temperature To is arranged in a flow path of outside air sucked by the outdoor fan 16.
- a temperature sensor 21 for detecting a refrigerant temperature TD on the high pressure side and a pressure sensor 22 for detecting a refrigerant pressure PD on the high pressure side are attached to the high pressure side pipe 2 between the discharge port of the compressor 1 and the four-way valve 3. .
- a temperature sensor 23 for detecting the refrigerant temperature TL is attached to the liquid side pipe 8 between the electric expansion valve 7 and the packed valve 9.
- a temperature sensor 24 for detecting the low-pressure side refrigerant temperature TS and a pressure sensor 25 for detecting the low-pressure side refrigerant pressure PS are attached to the low-pressure side pipe 12 between the four-way valve 3 and the accumulator 13.
- An indoor fan 43 that sucks indoor air and supplies the indoor air to each indoor heat exchanger 42 is disposed near each of the indoor heat exchangers 42.
- An indoor temperature sensor 44 for detecting the indoor temperature Ta is arranged in a flow path of the indoor air sucked by the indoor fan 43.
- a temperature sensor 47 for detecting the temperature TC2 of the refrigerant flowing out of each indoor heat exchanger 42 during heating is attached to the other end side of each indoor heat exchanger 42.
- a temperature sensor 48 that detects the temperature TC1 of the refrigerant flowing into each indoor heat exchanger 42 during heating is attached.
- the detection signals of these temperature sensors 47 and 48 are sent to each indoor controller 45.
- Each indoor controller 45 has a remote control type operation device (so-called remote control) for allowing a user to set various operating conditions such as a cooling operation, a dehumidifying operation, a heating operation, a blowing operation, a target indoor temperature Tas, an operation start, and an operation stop. ) 46 are respectively connected.
- the compressor 1, the four-way valve 3, the outdoor heat exchanger 5, the electric expansion valve 7, the packed valves 9, 10, the accumulator 13, the outdoor fan 16, the inverter 18, the outdoor controller 20, each pipe, and each sensor are an outdoor unit.
- the indoor heat exchangers 42, the outdoor fans 43, the indoor controllers 45, the operating devices 46, the pipes, and the sensors are housed in N indoor units B1, B2,..., Bn.
- the outdoor unit A and the indoor units B1, B2,... Bn constitute a multi-type air conditioner.
- the outdoor controller 20 and each indoor controller 45 are connected to each other by a signal line 50 for data transmission.
- the outdoor controller 20 controls the operation of the outdoor unit A and the indoor units B1 to Bn in cooperation with each of the indoor controllers 45, and has a first control section 20a, a second control section 20b, a detection section 20c as main functions.
- a third control section 20d is included.
- the first control section 20a controls the opening degree Qo of the electric expansion valve 7 so that the superheat degree (superheat) SH of the refrigerant in the outdoor heat exchanger (evaporator) 5 becomes the target value SHs during the heating operation. Execute superheat control.
- the superheat degree SH of the refrigerant corresponds to the difference between the detected temperature TL of the temperature sensor 23 and the detected temperature TS of the temperature sensor 24.
- the second control section 20b performs the heating operation such that the subcooling degree SC of the refrigerant in the indoor heat exchanger (condenser) 42 of one or more indoor units in the operating state becomes the target value SCs.
- the supercooling degree control for operating the opening Qi of the electric expansion valve 41 of the indoor unit is executed, and the electric expansion valves 41 of one or more indoor units in the operation stopped state are fully closed.
- the difference between the condensation temperature TG of the refrigerant in each indoor heat exchanger 42 and the detection temperature TC2 of each temperature sensor 47 can be obtained as the degree of supercooling SC of the refrigerant in each indoor heat exchanger 42.
- the condensation temperature TG can be obtained by conversion from the refrigerant pressure PD detected by the pressure sensor 22 of the high-pressure side pipe 2.
- the second control section 20b increases the difference between the target indoor temperature Tas of the operating device 46 and the detected temperature Ta of the indoor temperature sensor 44 in the indoor unit in the operating state due to the execution of the subcooling degree control, thereby increasing the heating load. Is increased, the opening value Qo of the electric expansion valve 7 is changed in the increasing direction by lowering the target value SCs with respect to the degree of supercooling SC, thereby increasing the flow rate of the refrigerant to the indoor heat exchanger 42 for heating. Increase ability.
- the second control section 20b reduces the difference between the target indoor temperature Tas of the operating device 46 and the detected temperature Ta of the indoor temperature sensor 44 in the indoor unit in the operating state and reduces the heating load in accordance with the execution of the subcooling degree control. Is decreased, the opening value Qo of the electric expansion valve 7 is changed in a decreasing direction by increasing the target value SCs with respect to the degree of supercooling SC, whereby the flow rate of the refrigerant to the indoor heat exchanger 42 is reduced and heating is performed. Decrease ability.
- the detection section 20c detects the refrigerant circulation amount in the heat pump refrigeration cycle during the heating operation, and specifically detects the shortage rate X (%) of the refrigerant circulation amount.
- the third control section 20d specifically sets the shortage rate X detected by the detection section 20c to a threshold Xs (for example, 30%) or more and cannot be ignored.
- a threshold Xs for example, 30%
- the opening degree Qi of the electric expansion valve 41 in one or more indoor units in the operation stop state is gradually increased from the fully closed state. More specifically, the third control section 20d determines that the shortage rate X detected by the detection section 20c is equal to or greater than the threshold value Xs, and that the opening Qo of the electric expansion valve 7 operated by the superheat control of the first control section 20a.
- the electric expansion valve in one or more indoor units in the operation stop state When it is equal to or greater than the set value Qos (that is, when it is difficult to suppress the increase in the superheat degree SH due to the shortage of the refrigerant circulation amount by the superheat degree control), the electric expansion valve in one or more indoor units in the operation stop state.
- the opening Qi 41 is gradually increased from the fully closed state by a constant opening ⁇ Q with a predetermined opening Qis (eg, 10% of the maximum opening Qimax) as an upper limit.
- the set value Qos corresponds to, for example, an opening of 2/3 of the maximum opening Qmax.
- the predetermined opening Qis set as the upper limit is for preventing unnecessary refrigerant inflow due to excessive opening of the electric expansion valve 41.
- the shortage rate X of the refrigerant circulation amount is the condensation temperature TG of the refrigerant in the condenser, the evaporation temperature TU of the refrigerant in the evaporator (the indoor heat exchanger 42), and the temperature of the refrigerant flowing out of the evaporator (the temperature detected by the temperature sensor 47). It can be detected using any one or more of TC2 and the temperature TL of the refrigerant flowing into the condenser (the temperature detected by the temperature sensor 23).
- the evaporation temperature TU can be obtained by conversion from the detection pressure PS of the pressure sensor 25 in the low-pressure side pipe 12.
- the liquid-side crossing pipe 31 and the liquid-side pipes 8 and 7 become liquid.
- the liquid refrigerant flows into the outdoor heat exchanger (evaporator) 5.
- the refrigerant accumulates in one of the indoor units B1 to Bn and the circulation amount of the refrigerant in the heat pump refrigeration cycle becomes insufficient, the liquid refrigerant and the gaseous The refrigerant coexists and flows, so-called gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 5.
- the superheat degree SH of the refrigerant in the outdoor heat exchanger 5 increases, and the superheat degree control works to suppress the increase in the superheat degree SH. 7, the opening Qo changes in the increasing direction. However, if the opening Qo of the electric expansion valve 7 continues to increase and reaches the maximum opening Qmax of the electric expansion valve 7, the increase in the superheat SH cannot be suppressed, and the suction into the compressor 1 is stopped. The temperature TS of the supplied refrigerant rises.
- the output frequency F of the inverter 18 decreases due to the high-pressure protection control of the indoor controller 20 against the increase in the refrigerant temperature TD. I do.
- the output frequency F decreases, the capacity of the compressor 1 decreases, and accordingly, the heating capacity of the indoor unit in the operating state decreases.
- the state of the heat pump refrigeration cycle in the case where the liquid refrigerant flows into the outdoor heat exchanger 5 is shown by a solid line in the Mollier diagram in FIG. 3, and the state in which the refrigerant in the gas-liquid two-phase state flows into the outdoor heat exchanger 5
- the state of the heat pump refrigeration cycle is shown by a broken line in the Mollier diagram.
- the refrigerant temperature TL is closer to the condensation temperature TG when a liquid refrigerant flows in, but is a value TL deviating from the condensation temperature TG and closer to the evaporation temperature TU when a gas-liquid two-phase refrigerant flows in. '.
- the detection section 20c determines which position between the refrigerant temperature TL and the refrigerant temperature TL ′ in the Mollier diagram is present by the refrigerant circulation TL detected by the temperature sensor 23. It is detected as a quantity shortage rate X (%). That is, if the actual refrigerant temperature TL is at the same position as the refrigerant temperature TL on the Mollier diagram, the shortage ratio X is 0%, and the actual refrigerant temperature TL is the difference between the refrigerant temperature TL and the refrigerant temperature TL ′ on the Mollier diagram.
- the shortage ratio X is 50% when the refrigerant temperature is at an intermediate position between them, and 100% when the actual refrigerant temperature TL is at the same position as the refrigerant temperature TL 'on the Mollier diagram.
- the outdoor controller 20 controls the opening of the electric expansion valve 7 so that the superheat degree SH of the refrigerant in the outdoor heat exchanger (evaporator) 5 becomes the target value SHs (S1).
- the outdoor controller 20 controls the indoor units B1, B2 so that the degree of supercooling SC of the refrigerant in the indoor heat exchanger 42 of one or more indoor units, for example, the indoor units B1, B2, in the operating state becomes the target value SCs, respectively.
- the opening degree of each of the electric expansion valves 41 of B2 is controlled, and the electric expansion valves 41 of one or more indoor units in the operation stopped state, for example, the indoor units B3 to Bn are fully closed (S2).
- the outdoor controller 20 detects the shortage rate X of the refrigerant circulation amount in the heat pump refrigeration cycle (S3), and determines whether the detected shortage rate X is equal to or larger than the threshold Xs (S4). If the detected shortage rate X is not equal to or larger than the threshold value Xs (NO in S4), the outdoor controller 20 repeats the processing from S1.
- the outdoor controller 20 determines whether the opening Qo of the electric expansion valve 7 adjusted by the superheat control is equal to or greater than the set value Qos. (S5). If the opening degree Qo is not equal to or greater than the set value Qos (NO in S5), the outdoor controller 20 repeats the processing from S1.
- the outdoor controller 20 When the opening degree Qo is equal to or greater than the set value QoS (YES in S5), the outdoor controller 20 requires that the opening degree Qi of the electric expansion valves 41 of the indoor units B3 to Bn in the operation stopped state be less than the predetermined opening degree Qis. (YES in S6), the opening Qi of the electric expansion valve 41 of each of the indoor units B3 to Bn is increased by a predetermined opening ⁇ Q (S7). By opening the fully closed electric expansion valves 41, the stagnant refrigerant that has accumulated in the indoor heat exchangers 42 of the indoor units B3 to Bn and liquefied flows out to the liquid-side crossing pipe 31 and the liquid-side pipe 8. I do.
- the outdoor controller 20 starts a time count t (S8), and determines whether or not the time count t has reached a certain time ts (for example, 300 seconds) (S9). If the time count t is less than the fixed time ts (NO in S9), the outdoor controller 20 holds the increased opening Qi of the electric expansion valve 41 (S10) and continues the time count t (S8). Then, when the time count t has reached the fixed time ts (YES in S9), the outdoor controller 20 detects the shortage rate X of the refrigerant circulation amount again through the processing in S1 and S2 (S3).
- a time count t for example, 300 seconds
- the outdoor controller 20 Is based on the condition that the opening Qi of the electric expansion valves 41 of the indoor units B3 to Bn in the operation stopped state is less than the predetermined opening Qis (YES in S6), The openings Qi are again increased by the predetermined opening ⁇ Q (S7).
- the outdoor controller 20 starts the time count t from the beginning (S8), and determines whether or not the time count t has reached the predetermined time ts (S9). If the time count t is less than the fixed time ts (NO in S9), the outdoor controller 20 holds the increased opening Qi of the electric expansion valve 41 (S10) and continues the time count t (S8). When the time count t has reached the predetermined time ts (YES in S9), the outdoor controller 20 repeats the detection of the shortage rate X of the refrigerant circulation amount through the processing of S1 and S2 (S3).
- the outdoor controller 20 executes a process of increasing the opening degree in S7. Instead, the time count t is started from the beginning (S8).
- the electric expansion valves 41 of the indoor units B3 to Bn in the operation stopped state are opened from the fully closed state, and the opening degree Qi is gradually increased at regular time intervals ts. This gradually promotes the outflow of the stagnant refrigerant accumulated in the indoor heat exchangers 42 of the indoor units B3 to Bn. Due to this outflow, the gas-liquid two-phase state of the refrigerant in the liquid-side transfer pipe 31 and the liquid-side pipes 8, 7 is gradually eliminated.
- the superheat degree SH of the refrigerant in the outdoor heat exchanger 5 can be prevented from being unnecessarily increased, so that the electric expansion valve 7 can be controlled by the superheat degree control. Unnecessary increase in the opening Qo can be prevented. With this, it is possible to avoid an unnecessary increase in the temperature TS of the refrigerant sucked into the compressor 1, and to thereby avoid an unnecessary increase in the temperature TD (and the pressure PD) of the refrigerant discharged from the compressor 1. Accordingly, it is possible to avoid an unnecessary decrease in the output frequency F of the inverter 18 due to the high-voltage protection control. As a result, it is possible to prevent unnecessary decrease in the heating capacity of the indoor unit in the operating state.
- the opening Qi of the electric expansion valve 41 is greatly increased at a stretch, a large amount of refrigerant will flow into the indoor units B3 to Bn in the operation stopped state at once, but the opening Qi of the electric expansion valve 41 is gradually increased at regular time intervals ts. Therefore, a large amount of refrigerant does not flow into the indoor units B3 to Bn in the operation stopped state at a stretch, so that a stable and efficient energy-saving operation of the heat pump refrigeration cycle becomes possible.
- the ratio of the value of the refrigerant temperature TL to the value of the condensing temperature TG is detected as the shortage ratio X (%) of the refrigerant circulation amount. What is necessary is just to detect using any one or several elements among the temperature TC2 and the refrigerant temperature TL.
- the sufficiency rate Y (%) of the opposite concept to the deficiency rate X (%) may be detected.
- the control for gradually increasing the opening Qi of the electric expansion valve 41 is performed. Although started, the condition that the opening Qo of the electric expansion valve 7 is equal to or more than the set value Qos is omitted. If the shortage rate X of the refrigerant circulation amount is equal to or more than the threshold value Xs, the opening Qi of the electric expansion valve 41 is immediately changed. Control to gradually increase may be started.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Air Conditioning Control Device (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
各室内ユニットのうち、運転状態の1つまたは複数の室内ユニットにおける第2電動膨張弁を開き、運転停止状態の1つまたは複数の室内ユニットにおける前記第2電動膨張弁を全閉する。冷凍サイクル中の冷媒循環量が不足の場合に、前記運転停止状態の1つまたは複数の室内ユニットにおける前記第2電動膨張弁の開度を徐々に増す。
Description
本発明の実施形態は、少なくとも1つの室外ユニットおよび複数の室内ユニットを有するマルチタイプの空気調和装置に関する。
少なくとも1つの室外ユニットおよび複数の室内ユニットを有するマルチタイプの空気調和装置は、圧縮機から吐出される冷媒を四方弁、室外熱交換器、減圧器、各室内熱交換器に通して上記圧縮機に戻すヒートポンプ式冷凍サイクルを備える。
上記空気調和装置では、暖房運転時、冷媒の一部が停止中の室内ユニットの室内熱交換器に溜まり込んで、冷凍サイクル中の冷媒循環量が不足することがある。
本発明の実施形態の目的は、冷凍サイクル中の冷媒循環量の不足を解消できる空気調和装置を提供することである。
請求項1の空気調和装置は、圧縮機、室外熱交換器、第1電動膨張弁を含む室外ユニットと;それぞれ第2電動膨張弁および室内熱交換器を含む複数の室内ユニットと;暖房運転時、前記圧縮機から吐出される冷媒を前記各室内熱交換器に流し、その各室内熱交換器から流出する冷媒を前記各第2電動膨張弁および前記第1電動膨張弁を通して前記室外熱交換器に流し、その前記室外熱交換器から流出する冷媒を前記圧縮機に戻す冷凍サイクルと;前記室外ユニットおよび前記各室内ユニットの運転を制御するコントローラと;を備える。このコントローラは、前記各室内ユニットのうち、運転状態の1つまたは複数の室内ユニットにおける前記第2電動膨張弁を開き、運転停止状態の1つまたは複数の室内ユニットにおける前記第2電動膨張弁を全閉する。さらに、上記コントローラは、前記冷凍サイクル中の冷媒循環量が不足の場合に、前記運転停止状態の1つまたは複数の室内ユニットにおける前記第2電動膨張弁の開度を徐々に増す。
以下、この発明の一実施形態について図面を参照して説明する。
図1に示すように、圧縮機1の吐出口に高圧側配管2を介して四方弁3が接続され、その四方弁3にガス側配管4を介して室外熱交換器5の一端が接続されている。この室外熱交換器5の他端に液側配管6を介して減圧器たとえば電動膨張弁(第1電動膨張弁)7の一端が接続され、その電動膨張弁7の他端に液側配管8を介してパックドバルブ9が接続されている。電動膨張弁7は、入力される駆動パルス信号の数に応じて開度Qoが変化するパルスモータバルブ(PMV)である。開度Qoは、“0”個の駆動パルス信号plsに対応する最小開度Qomin(全閉)から、“3000”個の駆動パルス信号plsに対応する最大開度Qomax(全開)まで、連続的に変化させることができる。
図1に示すように、圧縮機1の吐出口に高圧側配管2を介して四方弁3が接続され、その四方弁3にガス側配管4を介して室外熱交換器5の一端が接続されている。この室外熱交換器5の他端に液側配管6を介して減圧器たとえば電動膨張弁(第1電動膨張弁)7の一端が接続され、その電動膨張弁7の他端に液側配管8を介してパックドバルブ9が接続されている。電動膨張弁7は、入力される駆動パルス信号の数に応じて開度Qoが変化するパルスモータバルブ(PMV)である。開度Qoは、“0”個の駆動パルス信号plsに対応する最小開度Qomin(全閉)から、“3000”個の駆動パルス信号plsに対応する最大開度Qomax(全開)まで、連続的に変化させることができる。
上記パックドバルブ9に液側渡り配管31および複数の電動膨張弁(第2電動膨張弁)41を介して複数の室内熱交換器42の一端が接続され、その室内熱交換器42の他端がガス側渡り配管32を介してパックドバルブ10に接続されている。各電動膨張弁41は、入力される駆動パルス信号の数に応じて開度Qiが変化するパルスモータバルブ(PMV)である。開度Qiは、“0”個の駆動パルス信号plsに対応する最小開度Qimin(全閉)から、“1500”個の駆動パルス信号plsに対応する最大開度Qimax(全開)まで、連続的に変化させることができる。
パックドバルブ10にガス側配管11を介して上記四方弁3が接続され、その四方弁3に低圧側配管12を介してアキュームレータ13の流入口が接続されている。このアキュームレータの流出口に低圧側配管14を介して上記圧縮機1のサクションカップ15が接続されている。
これら配管接続により、ヒートポンプ式冷凍サイクルが構成される。
上記圧縮機1は、インバータ18の出力により動作するモータ1Mを密閉ケースに収めた密閉型圧縮機であって、アキュームレータ13から流出する冷媒を吸込み、その吸込み冷媒を圧縮して吐出する。インバータ18は、交流電源19の電圧を直流電圧に変換し、その直流電圧を室外コントローラ20からの指令に応じた周波数F(出力周波数Fという)およびその出力周波数Fに対応するレベルの交流電圧に変換し出力する。出力周波数Fの値に応じて、モータ1Mの速度つまり圧縮機1の能力が変化する。
冷房運転時、実線矢印で示すように、圧縮機1から吐出された冷媒が四方弁3、室外熱交換器5、電動膨張弁7、各電動膨張弁41を通って各室内熱交換器42に流入する。各室内熱交換器42から流出する冷媒は、四方弁3およびアキュームレータ13を通って圧縮機1に吸込まれる。室外熱交換器5が凝縮器として機能し、各室内熱交換器42が蒸発器として機能する。
暖房運転時は、四方弁2の流路が切換わることにより、破線矢印で示すように、圧縮機1から吐出された冷媒が四方弁3を通って各室内熱交換器42に流入する。各室内熱交換器42から流出する冷媒は、電動膨張弁7、室外熱交換器5、四方弁3、アキュームレータ13を通って圧縮機1に吸込まれる。各室内熱交換器42が凝縮器として機能し、室外熱交換器5が蒸発器として機能する。
室外熱交換器5の近傍に、外気を吸込んで室外熱交換器5に供給する室外ファン16が配置されている。この室外ファン16によって吸込まれる外気の流路に、外気温度Toを検知する外気温度センサ17が配置されている。圧縮機1の吐出口と四方弁3との間の高圧側配管2に、高圧側の冷媒温度TDを検知する温度センサ21および高圧側の冷媒圧力PDを検知する圧力センサ22が取付けられている。電動膨張弁7とパックドバルブ9との間の液側配管8に、冷媒温度TLを検知する温度センサ23が取付けられている。四方弁3とアキュームレータ13との間の低圧側配管12に、低圧側の冷媒温度TSを検知する温度センサ24および低圧側の冷媒圧力PSを検知する圧力センサ25が取付けられている。
上記各室内熱交換器42の近傍に、室内空気を吸込んで各室内熱交換器42に供給する室内ファン43が配置されている。この室内ファン43によって吸込まれる室内空気の流路に、室内温度Taを検知する室内温度センサ44が配置されている。
各室内熱交換器42の他端側に、暖房時に各室内熱交換器42から流出する冷媒の温度TC2を検知する温度センサ47が取付けられている。各室内熱交換器42の一端側に、暖房時に各室内熱交換器42に流入する冷媒の温度TC1を検知する温度センサ48が取付けられている。これら温度センサ47,48の検知信号が各室内コントローラ45に送られる。各室内コントローラ45には、冷房運転、除湿運転、暖房運転、送風運転、目標室内温度Tas、運転開始、運転停止などの各種運転条件をユーザに設定させるためのリモートコントロール式の操作器(いわゆるリモコン)46がそれぞれ接続されている。
上記圧縮機1、四方弁3、室外熱交換器5、電動膨張弁7、パックドバルブ9,10、アキュームレータ13、室外ファン16、インバータ18、室外コントローラ20、各配管、および各センサは、室外ユニットAに収容されている。上記各室内熱交換器42、各室外ファン43、各室内コントローラ45、各操作器46、各配管、および各センサは、N台の室内ユニットB1,B2,…Bnにそれぞれ収容されている。これら室外ユニットAおよび室内ユニットB1,B2,…Bnにより、マルチタイプの空気調和機が構成されている。そして、室外コントローラ20と各室内コントローラ45がデータ伝送用の信号線50によって相互に接続されている。
室外コントローラ20は、各室内コントローラ45との連係により室外ユニットAおよび室内ユニットB1~Bnの運転を制御するもので、主要な機能として第1制御セクション20a、第2制御セクション20b、検出セクション20c、第3制御セクション20dを含む。
第1制御セクション20aは、暖房運転時、室外熱交換器(蒸発器)5における冷媒の過熱度(スーパーヒート)SHが目標値SHsとなるように、電動膨張弁7の開度Qoを制御する過熱度制御を実行する。冷媒の過熱度SHは、温度センサ23の検知温度TLと温度センサ24の検知温度TSとの差に相当する。
第2制御セクション20bは、暖房運転時、運転状態の1つまたは複数の室内ユニットの室内熱交換器(凝縮器)42における冷媒の過冷却度(サブクール)SCが目標値SCsとなるように同室内ユニットの電動膨張弁41の開度Qiを操作する過冷却度制御を実行するとともに、運転停止状態の1つまたは複数の室内ユニットの電動膨張弁41を全閉する。各室内熱交換器42における冷媒の凝縮温度TGと各温度センサ47の検知温度TC2との差を、各室内熱交換器42における冷媒の過冷却度SCとして求めることができる。凝縮温度TGは、高圧側配管2の圧力センサ22が検知する冷媒圧力PDから換算して求めることができる。また、第2制御セクション20bは、過冷却度制御の実行に伴い、運転状態の室内ユニットにおける操作器46の目標室内温度Tasと室内温度センサ44の検知温度Taとの差が大きくなって暖房負荷が増加した場合に、過冷却度SCに対する目標値SCsを低下させることで、電動膨張弁7の開度Qoを増加方向に変化させ、これにより室内熱交換器42への冷媒流量を増して暖房能力を増加させる。さらに、第2制御セクション20bは、過冷却度制御の実行に伴い、運転状態の室内ユニットにおける操作器46の目標室内温度Tasと室内温度センサ44の検知温度Taとの差が小さくなって暖房負荷が減少した場合に、過冷却度SCに対する目標値SCsを上昇させることで、電動膨張弁7の開度Qoを減少方向に変化させ、これにより室内熱交換器42への冷媒流量を減らして暖房能力を減少させる。
検出セクション20cは、暖房運転時のヒートポンプ式冷凍サイクルにおける冷媒循環量を検出するもので、具体的には冷媒循環量の不足率X(%)を検出する。
第3制御セクション20dは、検出セクション20cで検出される冷媒循環量が不足の場合、具体的には検出セクション20cで検出される不足率Xが閾値Xs(例えば30%)以上の無視できない状況にある場合に、運転停止状態の1つまたは複数の室内ユニットにおける電動膨張弁41の開度Qiを全閉状態から徐々に増す。詳細には、第3制御セクション20dは、検出セクション20cで検出された不足率Xが閾値Xs以上で、かつ第1制御セクション20aの過熱度制御によって操作される電動膨張弁7の開度Qoが設定値Qos以上の場合に(つまり冷媒循環量の不足に伴う過熱度SHの上昇を過熱度制御によって抑えることが困難な場合に)、運転停止状態の1つまたは複数の室内ユニットにおける電動膨張弁41の開度Qiを全閉状態から所定開度Qis(例えば最大開度Qimaxの10%)を上限として一定開度ΔQずつ徐々に増す。設定値Qosは、最大開度Qomaxの例えば2/3の開度に相当する。上限として定めた所定開度Qisは、電動膨張弁41の開き過ぎによる余計な冷媒の流入を防ぐためのものである。
冷媒循環量の不足率Xは、凝縮器における冷媒の凝縮温度TG、蒸発器(室内熱交換器42)における冷媒の蒸発温度TU、蒸発器から流出する冷媒の温度(温度センサ47の検知温度)TC2、凝縮器に流入する冷媒の温度(温度センサ23の検知温度)TLのうち、いずれか1つまたは複数の要素を用いて検出することができる。蒸発温度TUは、低圧側配管12における圧力センサ25の検知圧力PSから換算して求めることができる。
例えば、ヒートポンプ式冷凍サイクル中の冷媒が全ての室内ユニットB1~Bnに溜まり込むことなく適切に循環し、冷媒循環量に不足がない場合、液側渡り配管31および液側配管8,7が液状の冷媒で満たされた状態となり、その液状の冷媒が室外熱交換器(蒸発器)5に流入する。冷媒が室内ユニットB1~Bnのいずれかに溜まり込んで、ヒートポンプ式冷凍サイクル中の冷媒循環量が不足気味になると、液側渡り配管31および液側配管8,7に液状の冷媒とガス状の冷媒が共存して流れ、いわゆる気液二相状態の冷媒が室外熱交換器5に流入するようになる。
気液二相状態の冷媒が室外熱交換器5に流入すると、室外熱交換器5における冷媒の過熱度SHが上昇し、この過熱度SHの上昇を抑えるべく過熱度制御が働いて電動膨張弁7の開度Qoが増加方向に変化する。ただし、電動膨張弁7の開度Qoの増加が続いてその開度Qoが電動膨張弁7の最大開度Qomaxに達すると、過熱度SHの上昇を抑えることができなくなり、圧縮機1に吸込まれる冷媒の温度TSが上昇する。冷媒温度TSが上昇すると、圧縮機1から吐出される冷媒の温度TD(および圧力PD)が上昇し、その冷媒温度TDの上昇に対する室内コントローラ20の高圧保護制御によってインバータ18の出力周波数Fが低下する。出力周波数Fが低下すると、圧縮機1の能力が低下し、これに伴い運転状態の室内ユニットにおける暖房能力が低下してしまう。
液状の冷媒が室外熱交換器5に流入する場合のヒートポンプ式冷凍サイクルの状態を図3のモリエル線図に実線で示し、気液二相状態の冷媒が室外熱交換器5に流入する場合のヒートポンプ式冷凍サイクルの状態を同モリエル線図に破線で示す。冷媒温度TLは、液状の冷媒が流入する場合は凝縮温度TGに近い側に存するが、気液二相状態の冷媒が流入する場合は凝縮温度TGから離れて蒸発温度TU側に寄った値TL´となる。
そこで、検出セクション20cは、温度センサ23により検知される実際の冷媒温度TLが、上記モリエル線図上の冷媒温度TLと冷媒温度TL´との間のどの位置に存しているかを、冷媒循環量の不足率X(%)として検出する。すなわち、実際の冷媒温度TLがモリエル線図上の冷媒温度TLと同じ位置にあれば不足率Xは0%、実際の冷媒温度TLがモリエル線図上の冷媒温度TLと冷媒温度TL´との間の中間位置にあれば不足率Xは50%、実際の冷媒温度TLがモリエル線図上の冷媒温度TL´と同じ位置にあれば不足率Xは100(%)である。
つぎに、室外コントローラ20が実行する制御を図3のフローチャートを参照しながら説明する。フローチャート中のステップS1,S2…については、単にS1,S2…と略称する。
暖房運転時、室外コントローラ20は、室外熱交換器(蒸発器)5における冷媒の過熱度SHが目標値SHsとなるように、電動膨張弁7の開度を制御する(S1)。同時に、室外コントローラ20は、運転状態の1つまたは複数の室内ユニットたとえば室内ユニットB1,B2の室内熱交換器42における冷媒の過冷却度SCがそれぞれ目標値SCsとなるように同室内ユニットB1,B2の各電動膨張弁41の開度を制御し、運転停止状態の1つまたは複数の室内ユニットたとえば室内ユニットB3~Bnの電動膨張弁41を全閉する(S2)。
続いて、室外コントローラ20は、ヒートポンプ式冷凍サイクル中の冷媒循環量の不足率Xを検出し(S3)、検出した不足率Xが閾値Xs以上であるか否かを判定する(S4)。検出した不足率Xが閾値Xs以上でない場合(S4のNO)、室外コントローラ20は、上記S1からの処理を繰り返す。
検出した不足率Xが閾値Xs以上の場合(S4のYES)、室外コントローラ20は、過熱度制御によって調整されている電動膨張弁7の開度Qoが設定値Qos以上であるか否かを判定する(S5)。開度Qoが設定値Qos以上でない場合(S5のNO)、室外コントローラ20は、上記S1からの処理を繰り返す。
開度Qoが設定値Qos以上の場合(S5のYES)、室外コントローラ20は、運転停止状態の室内ユニットB3~Bnの電動膨張弁41の開度Qiが所定開度Qis未満であることを条件に(S6のYES)、その室内ユニットB3~Bnの電動膨張弁41の開度Qiをそれぞれ所定開度ΔQだけ増大する(S7)。全閉していた各電動膨張弁41が開くことにより、室内ユニットB3~Bnの室内熱交換器42に溜まり込んで液化していた寝込み冷媒が液側渡り配管31および液側配管8へと流出する。
この開度増に伴い、室外コントローラ20は、タイムカウントtを開始し(S8)、そのタイムカウントtが一定時間ts(例えば300秒)に達しているか否かを判定する(S9)。タイムカウントtが一定時間ts未満であれば(S9のNO)、室外コントローラ20は、上記増大した電動膨張弁41の開度Qiを保持し(S10)、タイムカウントtを継続する(S8)。そして、タイムカウントtが一定時間tsに達したとき(S9のYES)、室外コントローラ20は、上記S1,S2の処理を経て、冷媒循環量の不足率Xを再び検出する(S3)。
開度増にもかかわらず、検出した不足率Xが閾値Xs以上の場合(S4のYES)、かつ電動膨張弁7の開度Qoが設定値Qos以上の場合(S5のYES)、室外コントローラ20は、運転停止状態の室内ユニットB3~Bnの電動膨張弁41の開度Qiが所定開度Qis未満であることを条件に(S6のYES)、その室内ユニットB1~Bnの電動膨張弁41の開度Qiをそれぞれ所定開度ΔQだけ再び増大する(S7)。全閉していた各電動膨張弁41の開度Qiがさらに増すことにより、室内ユニットB3~Bnの室内熱交換器42に溜まり込んで液化していた寝込み冷媒が液側渡り配管31および液側配管8へとさらに流出する。
この開度増に伴い、室外コントローラ20は、タイムカウントtを初めから開始し(S8)、そのタイムカウントtが一定時間tsに達しているか否かを判定する(S9)。タイムカウントtが一定時間ts未満であれば(S9のNO)、室外コントローラ20は、増大した電動膨張弁41の開度Qiを保持し(S10)、タイムカウントtを継続する(S8)。タイムカウントtが一定時間tsに達したとき(S9のYES)、室外コントローラ20は、上記S1,S2の処理を経て、冷媒循環量の不足率Xの検出を繰り返す(S3)。
上記S6において運転停止状態の室内ユニットB3~Bnにおける電動膨張弁41の開度Qiが設定値Qisに達した場合(S6のYES)、室外コントローラ20は、S7の開度増の処理を実行することなく、タイムカウントtを初めから開始する(S8)。
以上のように、冷媒循環量が不足した場合、運転停止状態の室内ユニットB3~Bnの電動膨張弁41を全閉状態から開き、しかもその開度Qiを一定時間tsごとに徐々に増していくことにより、室内ユニットB3~Bnの室内熱交換器42に溜まり込んでいた寝込み冷媒の流出が徐々に促進される。この流出により、液側渡り配管31および液側配管8,7における冷媒の気液二相状態が徐々に解消される。
気液二相状態の冷媒が室外熱交換器5に流入しなくなれば、室外熱交換器5における冷媒の過熱度SHの不要な上昇を防ぐことができ、よって過熱度制御による電動膨張弁7の開度Qoの不要な増加を防ぐことができる。これに伴い、圧縮機1に吸込まれる冷媒の温度TSの不要な上昇を回避することができ、ひいては圧縮機1から吐出される冷媒の温度TD(および圧力PD)の不要な上昇を回避することができ、よって高圧保護制御によるインバータ18の出力周波数Fの不要な低下を回避することができる。結果として、運転状態の室内ユニットにおける暖房能力の不要な低下を防ぐことができる。
電動膨張弁41の開度Qiを一気に大きく増大すると、運転停止状態の室内ユニットB3~Bnに多量の冷媒が一気に流入してしまうが、電動膨張弁41の開度Qiを一定時間tsごとに徐々に増すので、運転停止状態の室内ユニットB3~Bnに多量の冷媒が一気に流入しなくなり、よってヒートポンプ式冷凍サイクルの安定した効率のよい省エネルギー運転が可能となる。
[変形例]
上記実施形態では、凝縮温度TGの値に対する冷媒温度TLの値の割合を冷媒循環量の不足率X(%)として検出したが、それに限らず、要は、凝縮温度TG、蒸発温度TU、冷媒温度TC2、冷媒温度TLのうち、いずれか1つまたは複数の要素を用いて検出すればよい。
上記実施形態では、凝縮温度TGの値に対する冷媒温度TLの値の割合を冷媒循環量の不足率X(%)として検出したが、それに限らず、要は、凝縮温度TG、蒸発温度TU、冷媒温度TC2、冷媒温度TLのうち、いずれか1つまたは複数の要素を用いて検出すればよい。
不足率X(%)は反対の概念の充足率Y(%)として見ることもできるので、不足率X(%)とは反対の概念の充足率Y(%)を検出してもよい。充足率Y(%)は、冷媒循環量の不足分が多いほど0%に近づく値となり、冷媒循環量の不足分が少ないほど100%に近づく値となる。すなわち、不足率X=0%は充足率Y=100%、不足率X=50%は充足率Y=50%、不足率X=100%は充足率Y=0%である。
上記実施形態では、冷媒循環量の不足率Xが閾値Xs以上で、かつ電動膨張弁7の開度Qoが設定値Qos以上の場合に、電動膨張弁41の開度Qiを徐々に増す制御を開始したが、電動膨張弁7の開度Qoが設定値Qos以上という条件については省略し、冷媒循環量の不足率Xが閾値Xs以上であれば、直ちに、電動膨張弁41の開度Qiを徐々に増す制御を開始してもよい。
その他、上記各実施形態および変形例は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態および変形例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、書き換え、変更を行うことができる。これら実施形態や変形は、発明の範囲は要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
A…室外ユニット、B1~Bn…室内ユニット、1…圧縮機、3…四方弁、5…室外熱交換器、7…電動膨張弁、16…室外ファン、18…インバータ、20…室外コントローラ、41…電動膨張弁、42…室内熱交換器、43…室内ファン、45…室内コントローラ、46…操作器
Claims (6)
- 圧縮機、室外熱交換器、第1電動膨張弁を含む室外ユニットと、
それぞれ第2電動膨張弁および室内熱交換器を含む複数の室内ユニットと、
暖房運転時、前記圧縮機から吐出される冷媒を前記各室内熱交換器に流し、その各室内熱交換器から流出する冷媒を前記各第2電動膨張弁および前記第1電動膨張弁を通して前記室外熱交換器に流し、その前記室外熱交換器から流出する冷媒を前記圧縮機に戻す冷凍サイクルと、
前記室外ユニットおよび前記各室内ユニットの運転を制御するコントローラと、
を備え、
前記コントローラは、
前記各室内ユニットのうち、運転状態の1つまたは複数の室内ユニットにおける前記第2電動膨張弁を開き、運転停止状態の1つまたは複数の室内ユニットにおける前記第2電動膨張弁を全閉し、
前記冷凍サイクル中の冷媒循環量が不足の場合に、前記運転停止状態の1つまたは複数の室内ユニットにおける前記第2電動膨張弁の開度を徐々に増す、
ことを特徴とする空気調和装置。 - 前記コントローラは、
前記冷凍サイクル中の冷媒循環量の不足率を検出し、検出した不足率が閾値以上の場合に、前記運転停止状態の1つまたは複数の室内ユニットにおける前記第2電動膨張弁の開度を徐々に増す、
ことを特徴とする請求項1に記載の空気調和装置。 - 前記コントローラは、
前記冷凍サイクル中の冷媒循環量の不足率を検出し、検出した不足率が閾値以上の場合に、前記運転停止状態の1つまたは複数の室内ユニットにおける前記第2電動膨張弁の開度を所定開度を上限として徐々に増す、
ことを特徴とする請求項1に記載の空気調和装置。 - 前記コントローラは、
前記室外熱交換器における冷媒の過熱度が目標値となるように前記第1電動膨張弁の開度を制御し、
前記各室内ユニットのうち、運転状態の1つまたは複数の室内ユニットの前記室内熱交換器における冷媒の過冷却度が目標値となるように同室内ユニットの前記第2電動膨張弁の開度を制御する、
ことを特徴とする請求項1に記載の空気調和装置。 - 前記コントローラは、
前記冷凍サイクル中の冷媒循環量の不足率を検出し、検出した不足率が閾値以上で、かつ前記第1電動膨張弁の開度が設定値以上の場合に、前記運転停止状態の1つまたは複数の室内ユニットにおける前記第2電動膨張弁の開度を徐々に増す、
ことを特徴とする請求項4に記載の空気調和装置。 - 前記コントローラは、
前記冷凍サイクル中の冷媒循環量の不足率を検出し、検出した不足率が閾値以上で、かつ前記第1電動膨張弁の開度が設定値以上の場合に、前記運転停止状態の1つまたは複数の室内ユニットにおける前記第2電動膨張弁の開度を所定開度を上限として徐々に増す、
ことを特徴とする請求項4に記載の空気調和装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18935928.4A EP3859231B1 (en) | 2018-09-25 | 2018-09-25 | Air conditioning device |
CN201880098056.1A CN112771320B (zh) | 2018-09-25 | 2018-09-25 | 空调装置 |
JP2020547640A JP7047120B2 (ja) | 2018-09-25 | 2018-09-25 | 空気調和装置 |
PCT/JP2018/035477 WO2020065730A1 (ja) | 2018-09-25 | 2018-09-25 | 空気調和装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/035477 WO2020065730A1 (ja) | 2018-09-25 | 2018-09-25 | 空気調和装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020065730A1 true WO2020065730A1 (ja) | 2020-04-02 |
Family
ID=69952974
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/035477 WO2020065730A1 (ja) | 2018-09-25 | 2018-09-25 | 空気調和装置 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3859231B1 (ja) |
JP (1) | JP7047120B2 (ja) |
CN (1) | CN112771320B (ja) |
WO (1) | WO2020065730A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05312428A (ja) * | 1992-05-11 | 1993-11-22 | Daikin Ind Ltd | 空気調和装置の運転制御装置 |
JP2005114184A (ja) * | 2003-10-03 | 2005-04-28 | Hitachi Ltd | 冷媒充填装置及び冷媒充填方法 |
JP2007315750A (ja) * | 2007-08-27 | 2007-12-06 | Sanyo Electric Co Ltd | 空気調和装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0835710A (ja) * | 1994-07-22 | 1996-02-06 | Mitsubishi Heavy Ind Ltd | マルチタイプ空気調和機の制御装置 |
JP4100853B2 (ja) * | 2000-02-14 | 2008-06-11 | 三洋電機株式会社 | 空気調和装置 |
KR100546616B1 (ko) * | 2004-01-19 | 2006-01-26 | 엘지전자 주식회사 | 멀티공기조화기의 제어방법 |
KR100550566B1 (ko) * | 2004-02-25 | 2006-02-10 | 엘지전자 주식회사 | 멀티형 히트 펌프의 제어 방법 |
CN101498535B (zh) * | 2005-04-07 | 2011-01-05 | 大金工业株式会社 | 空调装置的制冷剂量判定系统 |
JP4730738B2 (ja) * | 2005-12-26 | 2011-07-20 | 日立アプライアンス株式会社 | 空気調和機 |
JP5138292B2 (ja) * | 2007-07-04 | 2013-02-06 | 三菱重工業株式会社 | 空気調和装置 |
JP2009250554A (ja) * | 2008-04-09 | 2009-10-29 | Daikin Ind Ltd | 冷凍装置 |
CN103245148B (zh) * | 2013-05-24 | 2015-08-05 | 四川长虹空调有限公司 | 用于空调的油和冷媒控制装置及方法、空调系统和空调 |
WO2017026025A1 (ja) * | 2015-08-10 | 2017-02-16 | 三菱電機株式会社 | マルチ型空気調和装置 |
JP6652424B2 (ja) * | 2016-03-28 | 2020-02-26 | 東芝キヤリア株式会社 | 空気調和装置 |
-
2018
- 2018-09-25 CN CN201880098056.1A patent/CN112771320B/zh active Active
- 2018-09-25 WO PCT/JP2018/035477 patent/WO2020065730A1/ja unknown
- 2018-09-25 JP JP2020547640A patent/JP7047120B2/ja active Active
- 2018-09-25 EP EP18935928.4A patent/EP3859231B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05312428A (ja) * | 1992-05-11 | 1993-11-22 | Daikin Ind Ltd | 空気調和装置の運転制御装置 |
JP2005114184A (ja) * | 2003-10-03 | 2005-04-28 | Hitachi Ltd | 冷媒充填装置及び冷媒充填方法 |
JP2007315750A (ja) * | 2007-08-27 | 2007-12-06 | Sanyo Electric Co Ltd | 空気調和装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3859231A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3859231B1 (en) | 2024-10-30 |
CN112771320A (zh) | 2021-05-07 |
EP3859231A1 (en) | 2021-08-04 |
CN112771320B (zh) | 2022-08-02 |
JP7047120B2 (ja) | 2022-04-04 |
EP3859231A4 (en) | 2022-05-18 |
JPWO2020065730A1 (ja) | 2021-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10168066B2 (en) | Air conditioner with outdoor fan control in accordance with suction pressure and suction superheating degree of a compressor | |
KR101462745B1 (ko) | 공기 조화 장치의 운전 제어 장치 및 이를 구비한 공기 조화 장치 | |
JP5333365B2 (ja) | 空気調和機 | |
JP4497234B2 (ja) | 空気調和装置 | |
US7841196B2 (en) | Variable-capacity air conditioner | |
JPH0828985A (ja) | 空気調和機 | |
EP3199880A1 (en) | Air conditioner | |
JP2007218532A (ja) | 空気調和装置 | |
CN112840164B (zh) | 空调装置和管理装置 | |
JP5535504B2 (ja) | マルチ形空気調和機 | |
JP2019020112A (ja) | 空調システム | |
JP2016003848A (ja) | 空気調和システムおよびその制御方法 | |
US10480837B2 (en) | Refrigeration apparatus | |
JP5506433B2 (ja) | マルチ型空気調和機 | |
KR101702178B1 (ko) | 칠러 시스템 | |
WO2016136979A1 (ja) | 冷凍サイクル装置 | |
JP4302874B2 (ja) | 空気調和機 | |
WO2020065731A1 (ja) | 空気調和装置 | |
WO2020065730A1 (ja) | 空気調和装置 | |
WO2022059075A1 (ja) | 空気調和装置 | |
JP6115594B2 (ja) | 空調室内機 | |
WO2017094172A1 (ja) | 空気調和装置 | |
JP6507598B2 (ja) | 空調システム | |
US11835273B2 (en) | Refrigerant cycle apparatus | |
EP4212798A1 (en) | Air conditioning apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18935928 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020547640 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018935928 Country of ref document: EP Effective date: 20210426 |