WO2020063304A1 - 洗衣机控制方法 - Google Patents
洗衣机控制方法 Download PDFInfo
- Publication number
- WO2020063304A1 WO2020063304A1 PCT/CN2019/104850 CN2019104850W WO2020063304A1 WO 2020063304 A1 WO2020063304 A1 WO 2020063304A1 CN 2019104850 W CN2019104850 W CN 2019104850W WO 2020063304 A1 WO2020063304 A1 WO 2020063304A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- washing
- coefficient
- interval
- pollution
- cumulative
- Prior art date
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F33/00—Control of operations performed in washing machines or washer-dryers
- D06F33/30—Control of washing machines characterised by the purpose or target of the control
- D06F33/43—Control of cleaning or disinfection of washing machine parts, e.g. of tubs
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F2103/00—Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
- D06F2103/16—Washing liquid temperature
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F2103/00—Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
- D06F2103/20—Washing liquid condition, e.g. turbidity
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F2103/00—Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
- D06F2103/38—Time, e.g. duration
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F2105/00—Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
- D06F2105/58—Indications or alarms to the control system or to the user
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F35/00—Washing machines, apparatus, or methods not otherwise provided for
- D06F35/005—Methods for washing, rinsing or spin-drying
- D06F35/008—Methods for washing, rinsing or spin-drying for disinfecting the tub or the drum
Definitions
- the invention belongs to the technical field of laundry treatment, and particularly relates to a method for controlling a washing machine.
- the dirt in the washing tub of the washing machine mainly comes from the microorganisms (such as Pseudomonas aeruginosa, Escherichia coli, mold, etc.) between the gaps between the fiber of the clothes and the surface of the clothes, and the humid environment in the washing tub of the washing machine is caused by air circulation Peculiar smell.
- microorganisms such as Pseudomonas aeruginosa, Escherichia coli, mold, etc.
- washing machines often use the cumulative turbidity of the water body or the running period to measure the pollution degree of the washing bucket.
- Some products introduce parameters such as washing time and temperature based on this.
- this type of method focuses too much on the washing process.
- the impact of the barrel pollution level while ignoring other factors, causes problems that cannot accurately reflect the pollution level of the barrel, such as the inconsistency of water hardness and water temperature, which can cause the scale pollution to the washing barrel.
- this method requires additional The detection device virtually raises the cost of the washing machine.
- the technical problem to be solved by the present invention is to provide a control method that can calculate the pollution degree of the washing tub and prompt the user to run a self-cleaning program according to the operating parameters and data of the washing machine.
- the invention provides a method for controlling a washing machine.
- the washing machine calculates a pollution index of a washing tub in a single washing at least by using a selected washing program as an influencing factor, and reminds a user to run the automatic washing machine when the cumulative pollution index of multiple washings reaches or exceeds a critical value. Cleaning procedure.
- the washing machine also calculates a pollution index by using operating information as an influencing factor, the running information includes one or more of washing temperature, washing time, washing times, and washing interval, and the washing machine calculates according to coefficients corresponding to the running information Pollution index; preferably, the running information includes a washing interval and a washing temperature; more preferably, the running information is a washing interval.
- the washing machine sets a corresponding coefficient according to the contribution of the washing program and / or operation information to the degree of pollution of the washing tub to calculate the pollution index; the washing machine cumulatively calculates the pollution index of each single washing in the statistical cycle to obtain a cumulative pollution index.
- the washing interval includes a time interval between washings, and the washing machine sets a corresponding interval coefficient according to the contribution of the length of the time interval to the pollution degree of the washing tub to calculate the pollution index of a single washing; preferably When there are multiple washing intervals, the calculation of the pollution index for non-first washing needs to include all the spacing coefficients before the washing; more preferably, the size of the spacing coefficient is positively related to the washing interval time.
- the washing program includes a program selected at each stage in a single wash, and the washing machine sets a corresponding program coefficient according to the contribution of the program selected at each stage to the degree of pollution of the washing tub to calculate the pollution index of a single wash;
- the program coefficient is obtained by accumulating coefficients corresponding to programs in each stage in a single wash.
- the washing temperature includes a washing temperature selected in a single washing, and the washing machine sets a corresponding temperature coefficient according to the contribution of the washing temperature to the degree of pollution of the washing tub to calculate the pollution index of the single washing; preferably, all The temperature coefficient decreases as the temperature gradually increases from low to high.
- a program coefficient P is set, and different programs are classified and set with different numerical coefficients to indicate their degree of pollution.
- the cumulative interval coefficient K is set. The length of the interval is set with different coefficients and cumulatively calculated to characterize the effect of the interval on the degree of pollution.
- the cumulative pollution index of the washing tub in each washing is set to S, Among them, i indicates that the single wash is the i-th wash in the statistical cycle, P i is the program coefficient of the washing program selected by the i-th wash that affects the degree of contamination of the washing tub, and K i is the each before the i-th wash The cumulative interval coefficient that affects the degree of contamination of the washing tub.
- the method calculates the pollution degree of each complete washing cycle of the washing machine to obtain a pollution index, and adds up the pollution indexes of each washing cycle as the cumulative pollution index of the washing machine.
- the washing machine separately records the time interval during each washing cycle in the statistical cycle.
- the cumulative interval coefficient of a certain washing cycle it is necessary to multiply the interval coefficient of each washing cycle counted before the washing.
- the interval coefficient is set to 1;
- the cumulative interval coefficient 1 ⁇ the interval coefficient of the second washing
- the cumulative interval coefficient can be obtained by multiplying the interval coefficient product of a single wash.
- the cumulative interval coefficient Among them, k i represents the interval coefficient of each washing time interval before the i-th washing that affects the degree of pollution of the washing bucket during the i-th washing.
- the washing machine separately records the time interval during each washing cycle in the statistical cycle.
- the cumulative interval coefficient of a certain washing cycle it is also necessary to accumulate the interval coefficient of each washing cycle counted before the washing.
- the cumulative interval coefficient the interval coefficient of the first wash + the interval coefficient of the second wash, and because there is no Interval, so the interval coefficient of the first wash is set to 0 if the cumulative interval coefficient is not zero;
- the cumulative interval factor the interval factor for the first wash + the interval factor for the second wash + the third wash
- the interval coefficient of the first wash is set to 0 because there is no interval before the first wash, and the cumulative interval coefficient is not zero.
- the cumulative interval coefficient can be obtained by accumulating the interval coefficients of a single wash.
- the cumulative interval coefficient K i has a preset minimum value, and when the measured K i is less than the preset minimum value, the calculation is performed according to the preset minimum value.
- the interval coefficient value is in the range of 0 to 1
- multiplying the interval coefficient with a smaller value will cause the cumulative interval coefficient to tend to a smaller value, which affects pollution. Characterization of the degree, therefore, the minimum value of the interval coefficient K i is set to ensure the accuracy of the characterization in the above-mentioned situation.
- the temperature of the washing will affect the molecular activity and the degree of breeding bacteria. Therefore, the temperature coefficient T is set based on the program coefficient P and the cumulative interval coefficient K, and based on theoretical analysis and experimental verification, it is set according to different washing temperatures. Different coefficients characterize their impact on pollution.
- the program coefficient P is cumulatively obtained from the coefficients corresponding to each program in the washing process
- the size of the interval coefficient k is positively related to the duration of the washing time interval
- the temperature coefficient T gradually increases from low to high Increase and decrease.
- the washing program includes processes such as washing, dehydration, rinsing, and drying. Since each process has different contributions to the degree of pollution, different coefficients are set respectively, and the coefficient P of a single washing process is obtained by accumulation or multiplication.
- the time interval between washing cycles is short, it is difficult for dirt to dry and deposit in the washing tub, and a longer interval helps the deposition of dirt. Therefore, the value of the interval coefficient k increases with the increase of the time interval. ;
- Temperature is also an important factor affecting the survival rate of bacteria. When the temperature is low, bacteria are not easy to breed and the temperature coefficient T is low. However, as the temperature increases, the temperature enters the range suitable for bacterial growth, and the corresponding temperature coefficient T gradually increases to the highest. Point, and as the temperature further increases, the high temperature environment plays a role in inactivating bacteria, and the corresponding temperature coefficient T decreases to a minimum.
- the present invention also provides another method for controlling a washing machine.
- the washing machine calculates the pollution index of the washing tub in a single washing at least by using the influent water quality as an influencing factor, and reminds the user to run the automatic washing machine when the cumulative pollution index of the multiple washings reaches or exceeds a threshold Cleaning procedure.
- the washing machine further calculates the pollution index by using the selected washing program and / or running information as an influencing factor, the running information includes one or more of washing temperature, washing time, washing frequency, and washing interval.
- the coefficient corresponding to each piece of running information measures the pollution index; preferably, the running information includes a washing interval and a washing temperature; more preferably, the running information is a washing interval.
- the washing machine sets a corresponding coefficient according to the contribution of the incoming water quality and / or the washing program and / or the operation information to the pollution degree of the washing bucket to calculate the pollution index; the washing machine accumulates the pollution index of each single washing in the statistical period. The cumulative pollution index is calculated.
- the pollution index includes a water quality coefficient, which is obtained by measuring the contribution of the incoming water quality to the degree of pollution of the washing bucket in a single wash; the cumulative pollution index also includes a cumulative water quality coefficient, the cumulative water quality The coefficient is obtained by measuring the contribution of the incoming water quality to the degree of pollution of the washing tub during multiple washings.
- the incoming water quality includes water hardness, temperature of the water body in the washing tub, and retention time of the water body in the washing barrel.
- the washing machine converts the contribution of various incoming water qualities to the pollution degree of the washing barrel into a water quality coefficient; preferably, all
- the water quality coefficient includes integrating the temperature of the water body in the washing tub; more preferably, the water quality coefficient includes integrating the temperature of the water body in the washing tub and / or the retention time of the water body in the washing barrel.
- the washing interval includes a time interval between washings, and the washing machine sets a corresponding interval coefficient according to the contribution of the length of the time interval to the pollution degree of the washing tub to calculate the pollution index of a single washing; preferably When there are multiple washing intervals, the calculation of the pollution index for non-first washing needs to include all the spacing coefficients before the washing; more preferably, the size of the spacing coefficient is positively related to the washing interval time.
- the washing program includes a program selected at each stage in a single wash, and the washing machine sets a corresponding program coefficient according to the contribution of the program selected at each stage to the degree of pollution of the washing tub to calculate the pollution index of a single wash;
- the program coefficient is obtained by accumulating coefficients corresponding to programs in each stage in a single wash.
- the washing temperature includes a washing temperature selected in a single washing, and the washing machine sets a corresponding temperature coefficient according to the contribution of the washing temperature to the degree of pollution of the washing tub to calculate the pollution index of the single washing; preferably, all The temperature coefficient decreases as the temperature gradually increases from low to high.
- the method provided by the present invention comprehensively considers the contribution of water quality factors to the pollution degree, and the influence of the program selection and time interval of each individual washing cycle on the pollution degree of the washing tub. Prompt the user to run a self-cleaning program when the cumulative pollution level reaches a threshold .
- the cumulative pollution index of the washing tub in each washing is set to S, Among them, i indicates that the single wash is the i-th wash in the statistical cycle, P i is the program coefficient of the washing program selected by the i-th wash that affects the degree of pollution of the washing tub, and K i is The cumulative interval coefficient that cumulatively affects the degree of pollution of the washing tub during the washing time interval, A i represents the water quality coefficient that affects the degree of pollution by the quality of the incoming water during the i-th washing.
- a program coefficient P is set, and different programs are classified and set with different numerical coefficients to indicate their degree of pollution.
- the cumulative interval coefficient K is set.
- the length of the interval time is set with different coefficients and cumulatively calculated to characterize the impact of the time interval on the degree of pollution; in addition, a water quality coefficient A is set to characterize the impact of water quality on the degree of pollution of the washing tub.
- the water quality coefficient A i D i ⁇ f (T i ) dT i (i ⁇ 1), where D i represents the hardness coefficient of the water quality coefficient A i during the i-th washing, ⁇ f (T i ) dT i means integrating the temperature T i of the water body in the washing tub during the i-th washing, and the integration result affects the water quality coefficient A i .
- the pollution caused by water quality is also related to the water temperature, so the value of A is related to the water temperature.
- the magnitude of A is directly proportional to the water hardness D. The higher the hardness D is, the larger the value of A is; and proportional to the water temperature T, the higher the water temperature T is, the larger the value of A is. If the temperature change control is performed in the washing program, the water temperature T is a variable, so the water temperature T is calculated integrally, and the integrated result is multiplied by the hardness D to obtain the water quality coefficient A.
- the temperature of the water body in the washing tub during the i-th washing time T i ⁇ g (t i ) dt i (i ⁇ 1), and the time t i of the remaining water body in the washing tub during the i-th washing time is integrated.
- the integration result reflects a change in the temperature T i of the water body within a time t i .
- the pollution caused by water quality is not only related to the water temperature, but also to the retention time of the water body in the washing tub, so the value of A is related to the water temperature and the retention time of the water body.
- the magnitude of A is directly proportional to the hardness D of the water quality. The higher the hardness D, the larger the value of A; the proportional to the water temperature T, the higher the temperature T, the larger the value of A; the proportional to the time t, the longer the time t. The larger the value.
- the water temperature T will become a variable that changes with time t, so time t is integrated here to characterize the change in water temperature T within time t, thereby further explaining the temperature T and time t
- the correlation of temperature is obtained, and a more accurate water quality coefficient A is obtained after being substituted into the above formula for integrating temperature T.
- the factors affecting the water quality coefficient A come from the water hardness D, the water temperature T and the retention time t of the water body in the washing tub, without considering the functional relationship between the water temperature T and the retention time t.
- the water temperature T and the retention time t of the water body in the washing tub are double-integrated and multiplied by the water quality hardness D, thereby reducing the complexity of calculating the water quality coefficient A.
- the water quality coefficient A is determined by the nature of the incoming water body, so in the program without water inlet, the water quality coefficient A is 0; in addition, in order to match the formula of the cumulative pollution index, and to characterize the water quality coefficient more reasonably
- control method further includes statistics on the water quality coefficient separately, and setting the cumulative water quality coefficient to W, When W reaches a certain level, the user is prompted to add a detergent for scaling.
- control method further includes counting a proportion of the cumulative water quality coefficient in the cumulative pollution index, the proportion is W / S, and prompting the user to add a detergent for scaling when a certain proportion is reached.
- the washing machine presets the first reference value and the second reference value of the cumulative water quality coefficient W or the proportion W / S.
- W or W / S exceeds the first reference value
- the user is prompted to add a target when running the self-cleaning program.
- W or W / S exceeds the second reference value
- the user is prompted to add the detergent for the scale to soak the washing tub before running the self-cleaning program; preferably, when W or W / S exceeds the second reference value Prompt the user to remove the bucket for cleaning and clean the heating tube at the same time.
- the washing machine separately records the time interval during each washing cycle in the statistical cycle.
- the cumulative interval coefficient of a certain washing cycle it is necessary to multiply the interval coefficient of each washing cycle counted before the washing.
- the interval coefficient is set to 1;
- the cumulative interval coefficient 1 ⁇ the interval coefficient of the second washing
- the cumulative interval coefficient can be obtained by multiplying the interval coefficient product of a single wash.
- the cumulative interval coefficient Among them, k i represents the interval coefficient of each washing time interval before the i-th washing that affects the degree of pollution of the washing bucket during the i-th washing.
- the washing machine separately records the time interval during each washing cycle in the statistical cycle.
- the cumulative interval coefficient of a certain washing cycle it is also necessary to accumulate the interval coefficient of each washing cycle counted before the washing.
- the cumulative interval coefficient the interval coefficient of the first wash + the interval coefficient of the second wash, and because there is no Interval, so the interval coefficient of the first wash is set to 0 if the cumulative interval coefficient is not zero;
- the cumulative interval factor the interval factor for the first wash + the interval factor for the second wash + the third wash
- the interval coefficient of the first wash is set to 0 because there is no interval before the first wash, and the cumulative interval coefficient is not zero.
- the cumulative interval coefficient can be obtained by accumulating the interval coefficients of a single wash.
- the cumulative interval coefficient K i has a preset minimum value, and when the measured K i is less than the preset minimum value, the calculation is performed according to the preset minimum value.
- the interval coefficient value is in the range of 0 to 1
- multiplying the interval coefficient with a smaller value will cause the cumulative interval coefficient to tend to a smaller value, which affects pollution. Characterization of the degree, therefore, the minimum value of the interval coefficient K i is set to ensure the accuracy of the characterization in the above-mentioned situation.
- the washing temperature of the washing machine can be adjusted, and the cumulative pollution index of the washing bucket in each washing T i ′ represents a temperature coefficient at which the selected washing temperature of the i-th washing affects the degree of pollution of the washing tub.
- the temperature of the washing will affect the molecular activity and the degree of breeding bacteria. Therefore, the temperature coefficient T ′ is set on the basis of the program coefficient P and the cumulative interval coefficient K, and based on theoretical analysis and experimental verification, it is set according to different washing temperatures. Different coefficients were given to characterize their influence on pollution degree.
- the program coefficient P is cumulatively obtained from the coefficients corresponding to each program in the washing process
- the size of the interval coefficient k is positively related to the duration of the washing time interval
- the temperature coefficient T ′ varies from low to high with temperature Gradually increase and decrease.
- the washing program includes processes such as washing, dehydration, rinsing, and drying. Since each process has different contributions to the degree of pollution, different coefficients are set respectively, and the coefficient P of a single washing process is obtained by accumulation or multiplication.
- the time interval between washing cycles is short, it is difficult for dirt to dry and deposit in the washing tub, and a longer interval helps the deposition of dirt. Therefore, the value of the interval coefficient k increases with the increase of the time interval. ;
- Temperature is also an important factor affecting the survival rate of bacteria. When the temperature is low, bacteria are not easy to breed, and the temperature coefficient T ′ is low. However, as the temperature increases, the temperature enters a range suitable for bacterial growth, and the corresponding temperature coefficient T ′ gradually increases. At the highest point, as the temperature is further increased, the high temperature environment plays a role in inactivating bacteria, and the corresponding temperature coefficient T ′ decreases to a minimum.
- the washing machine reminds the user to run a self-cleaning program; preferably, when the cumulative pollution index exceeds the critical value and continuously increases, the frequency of the washing machine reminds the user increases accordingly.
- the prompt frequency can be set according to the increase of the cumulative pollution index to ensure that the user runs the self-cleaning process in a timely manner.
- the cumulative pollution index is automatically cleared and re-accumulated; preferably, the user can manually clear the cumulative pollution index according to the use situation.
- the present invention has the following beneficial effects compared with the prior art:
- the control method provided by the present invention comprehensively considers the influence of the time interval of the washing cycle and the program selection on the degree of pollution, and takes into account the environmental factors during and after washing, which is more accurately reflected than the methods focusing on the washing process in the prior art.
- Degree of pollution
- the control method provided by the present invention converts the operating parameters and data of the washing machine itself into a coefficient that affects the degree of soiling of the washing tub, so that the degree of pollution of the washing machine can be measured and the user is reminded that no additional sensors and devices are needed;
- the control method provided by the present invention converts the operating parameters and data of the washing machine into a coefficient that affects the degree of soiling of the washing tub, and simultaneously incorporates the influence of water quality changes caused by hardness, temperature and storage time on the degree of pollution, which can more accurately reflect Pollution degree of washing bucket;
- the control method provided by the present invention adjusts the reminder frequency after the cumulative pollution index exceeds a critical value to ensure that the user runs a self-cleaning program.
- FIG. 1 is a schematic flowchart of a control method of the present invention.
- a method for controlling a washing machine calculates the pollution index of the washing tub in a single washing by using the time interval between adjacent washings and the washing program selected by each washing as the influencing factors. Users are reminded to run a self-cleaning program when the cumulative pollution index cumulatively reaches or exceeds a critical value.
- the washing machine when the washing machine is used, different degrees of the dirtyness of the washing bucket are caused by different programs in separate washing cycles. For example, the high temperature generated during the drying process will reduce the probability of survival of microorganisms in the washing drum, and the degree of pollution will be reduced. Relatively, rinsing When the dirt and bacteria in the laundry enter the washing water containing nitrogen and phosphine elements, the degree of pollution of the washing bucket is increased; in addition, the washing bucket has a drying process after the washing cycle. According to the length of the time interval during the washing week, Different levels of dirt deposits also cause different levels of pollution in the washing tub.
- the control method provided by the present invention comprehensively considers the influence of the program selection of each individual washing cycle and the time interval on the pollution degree of the washing tub, and prompts the user to run the self-cleaning program when the cumulative pollution degree reaches a threshold.
- a program coefficient P is set, and different programs are classified and set with different numerical coefficients to characterize their pollution effects.
- the length of the washing interval is set with different coefficients and cumulatively calculated to characterize the effect of the interval on the degree of pollution.
- the cumulative pollution index of the washing tub in each washing is set to S, Among them, i indicates that the single wash is the i-th wash in the statistical cycle, P i is the program coefficient of the washing program selected by the i-th wash that affects the degree of contamination of the washing tub, and K i is the each before the i-th wash The cumulative interval coefficient that affects the degree of contamination of the washing tub.
- the method measures the degree of pollution added to each complete washing cycle of the washing machine to obtain a pollution index, and adds up the pollution indexes of each washing cycle as the cumulative pollution index of the washing machine.
- the washing machine separately records the time interval during each washing cycle in the statistical cycle.
- the cumulative interval coefficient of a certain washing cycle it is also necessary to multiply the interval coefficient of each washing cycle counted before the washing.
- the interval coefficient is set to 1;
- the cumulative interval coefficient 1 ⁇ the interval coefficient of the second washing
- the cumulative interval coefficient can be obtained by multiplying the interval coefficient product of a single wash.
- the cumulative interval coefficient K i has a preset minimum value, and when the measured K i is less than the preset minimum value, the calculation is performed according to the preset minimum value.
- the interval coefficient value is in the range of 0 to 1
- multiplying the interval coefficient with a smaller value will cause the cumulative interval coefficient to tend to a smaller value, affecting Characterization of the degree of pollution, so the minimum value of the interval coefficient K i is set to ensure the accuracy of the characterization in the above-mentioned situations.
- the program coefficient P is obtained by accumulating coefficients corresponding to the programs in the washing process, and the size of the interval coefficient k is positively related to the duration of the washing time interval.
- the washing program includes processes such as washing, dehydration, rinsing, and drying. Since each process has different contributions to the degree of pollution, different coefficients are set respectively, and the coefficient of a single washing process is obtained by accumulation or multiplication. ; When the time interval between washing cycles is short, the dirt is not easy to dry and deposit in the washing bucket, and the longer interval is helpful for the deposition process of the dirt, so the value of the interval coefficient k increases with the increase of the time interval. Big.
- the washing machine when the cumulative pollution index reaches or exceeds a critical value, the washing machine reminds the user to run a self-cleaning program; preferably, when the cumulative pollution index exceeds the critical value and continuously increases, the frequency of the washing machine reminds the user increases accordingly.
- a prompt frequency may be set according to the increase of the cumulative pollution index to ensure that the user runs the self-cleaning process in a timely manner.
- the cumulative pollution index is automatically cleared and re-accumulated; preferably, the user can manually clear the cumulative pollution index according to the use situation.
- the user since the user has other methods for cleaning the washing tub, in addition to the self-cleaning program that can automatically clear the cumulative pollution index, the user can also manually clear it.
- the cumulative interval coefficient Among them, k i represents the interval coefficient of each washing time interval before the i-th washing that affects the degree of pollution of the washing bucket during the i-th washing.
- the washing machine separately records the time interval during each washing cycle in the statistical cycle.
- the interval coefficient of each washing cycle counted before the washing is also accumulated.
- the cumulative interval coefficient the interval coefficient of the first wash + the interval coefficient of the second wash, and because there is no Interval, so the interval coefficient of the first wash is set to 0 if the cumulative interval coefficient is not zero;
- the cumulative interval factor the interval factor for the first wash + the interval factor for the second wash + the third wash
- the interval coefficient of the first wash is set to 0 because there is no interval before the first wash, and the cumulative interval coefficient is not zero.
- the cumulative interval coefficient can be obtained by accumulating the interval coefficients of a single wash.
- the cumulative interval coefficient in this embodiment is calculated using an accumulation method, there is no problem that the product result is too small when the product multiplication method is used, so the preset minimum value of the cumulative interval coefficient K i is not set.
- T indicates that the washing temperature selected in the single washing affects the degree of pollution of the washing tub.
- the washing temperature will affect the molecular activity and the degree of breeding bacteria. Therefore, the temperature coefficient T is set based on the program coefficient P and the cumulative interval coefficient K, and based on theoretical analysis and experimental verification, it is set according to different washing temperatures. Different coefficients were given to characterize their influence on pollution degree.
- the program coefficient P is cumulatively obtained from the coefficients corresponding to the programs in the washing process
- the size of the interval coefficient k is positively related to the duration of the washing time interval
- the temperature coefficient T varies from low to high with temperature Gradually increase and decrease.
- the washing program includes processes such as washing, dehydration, rinsing, and drying. Since each process has different contributions to the degree of pollution, different coefficients are set respectively, and the coefficient of a single washing process is obtained by accumulation or multiplication. ; When the time interval between washing cycles is short, the dirt is not easy to dry and deposit in the washing bucket, and the longer interval is helpful for the deposition process of the dirt, so the value of the interval coefficient k increases with the increase of the time interval.
- the temperature is also an important factor affecting the survival rate of bacteria. When the temperature is low, bacteria are not easy to breed and the temperature coefficient T is low.
- the temperature enters a range suitable for bacterial growth, and the corresponding temperature coefficient T gradually increases to The highest point, and as the temperature further increases, the high temperature environment plays a role in inactivating bacteria, and the corresponding temperature coefficient T decreases to the lowest.
- a method for controlling a washing machine calculates the pollution index of the washing tub in a single washing at the interval of adjacent washings, the washing program selected for each washing, and the quality of the incoming water as influencing factors. The user is reminded to run a self-cleaning program when the cumulative pollution index of multiple washes reaches or exceeds a critical value.
- the washing machine when used, different degrees of the dirtyness of the washing bucket are caused by different programs in separate washing cycles. For example, the high temperature generated during the drying process will reduce the survival probability of microorganisms in the washing drum, so that the degree of pollution will be reduced. In contrast, rinsing When the dirt and bacteria in the laundry enter the washing water containing nitrogen and phosphine elements, the degree of pollution of the washing bucket is increased; in addition, the washing bucket has a drying process after the washing cycle. According to the length of the time interval during the washing week, Different levels of dirt deposits will also cause different levels of pollution in the washing buckets.
- the method provided by the present invention comprehensively considers the contribution of water quality factors to the pollution degree, and the influence of the program selection and time interval of each individual washing cycle on the pollution degree of the washing bucket. Prompt the user to run a self-cleaning program when the cumulative pollution level reaches a threshold
- the cumulative pollution index of the washing tub in each washing is set to S, Among them, i indicates that the single wash is the i-th wash in the statistical cycle, P i is the program coefficient of the washing program selected by the i-th wash that affects the degree of contamination of the washing tub, and K i is the each before the i-th wash.
- the cumulative interval coefficient that cumulatively affects the degree of pollution of the washing tub during the washing time interval, A i represents the water quality coefficient that affects the degree of pollution by the quality of the incoming water during the i-th washing.
- a program coefficient P is set, and different programs are classified and set with different numerical coefficients to characterize their pollution effects.
- the length of the washing interval is set with different coefficients and cumulatively calculated to characterize the effect of the time interval on the degree of pollution; in addition, a water quality coefficient A is set to characterize the effect of water quality on the degree of pollution of the washing tub.
- This method measures the degree of pollution added to each complete washing cycle of the washing machine to obtain a pollution index, and adds up the pollution indexes of each washing cycle as the cumulative pollution index of the washing machine.
- the water quality coefficient A i D i ⁇ ⁇ f (T i ) dT i (i ⁇ 1), where D i represents the hardness coefficient of water influencing the water quality coefficient A i during the i-th washing , ⁇ f (T i ) dT i means integrating the temperature T i of the water body in the washing tub during the i-th washing, and the integration result affects the water quality coefficient A i .
- the pollution caused by water quality is also related to the water temperature, so the value of A is related to the water temperature.
- the magnitude of A is directly proportional to the water hardness D. The higher the hardness D is, the larger the value of A is; and proportional to the water temperature T, the higher the water temperature T is, the larger the value of A is. If the temperature change control is performed in the washing program, the water temperature T is a variable, so the water temperature T is calculated integrally, and the integrated result is multiplied by the hardness D to obtain the water quality coefficient A.
- the temperature T i of the water body in the washing tub during the i-th washing is equal to g (t i ) dt i (i ⁇ 1), and the time t i of the water body remaining in the washing tub during the i-th washing is performed. Integrate, the result of the integration reflects the change in the temperature T i of the water body over time t i .
- the pollution caused by water quality is also related to the retention time of the water body in the washing tub, so the value of A is related to the water temperature and the retention time of the water body.
- the magnitude of A is directly proportional to the water hardness D, the higher the hardness D, the greater the value of A; the proportional to the water temperature T, the higher the water temperature T, the greater the value of A; the proportional to the time t, the longer the time t The larger the value.
- the water temperature T will become a variable that changes with time t, so time t is integrated here to characterize the change in water temperature T within time t, thereby further explaining the temperature T and time t
- the correlation of temperature is obtained, and a more accurate water quality coefficient A is obtained after being substituted into the above formula for integrating temperature T.
- the water quality coefficient A is determined by the nature of the incoming water body, so in the program without water inlet, the water quality coefficient A is 0; in addition, in order to match the formula of the cumulative pollution index, and to characterize the water quality more reasonably
- control method further includes statistics on the water quality coefficient separately, and setting the cumulative water quality coefficient to W, When W reaches a certain level, the user is prompted to add a detergent for scaling.
- the washing machine presets the first reference value and the second reference value of the cumulative water quality coefficient W.
- W exceeds the first reference value
- the user is prompted to add a detergent for scaling when running the self-cleaning program.
- / S exceeds the second reference value
- the user is prompted to add a detergent for immersing the scale to soak the washing bucket before running the self-cleaning program; preferably, when W exceeds the second reference value, the user is prompted to remove the bucket and clean the heating pipe at the same time.
- the washing machine separately records the time interval during each washing cycle in the statistical cycle.
- the cumulative interval coefficient of a certain washing cycle it is also necessary to multiply the interval coefficient of each washing cycle counted before the washing.
- the interval coefficient is set to 1;
- the cumulative interval coefficient 1 ⁇ the interval coefficient of the second washing
- the cumulative interval coefficient can be obtained by multiplying the interval coefficient product of a single wash.
- the cumulative interval coefficient K i has a preset minimum value, and when the measured K i is less than the preset minimum value, the calculation is performed according to the preset minimum value.
- the interval coefficient value is in the range of 0 to 1
- multiplying the interval coefficient with a smaller value will cause the cumulative interval coefficient to tend to a smaller value, which affects the Characterization of the degree of pollution, so the minimum value of the interval coefficient K i is set to ensure the accuracy of the characterization in the above-mentioned situations.
- the program coefficient P is obtained by accumulating coefficients corresponding to the programs in the washing process, and the size of the interval coefficient k is positively related to the duration of the washing time interval.
- the washing program includes processes such as washing, dehydration, rinsing, and drying. Since each process has different contributions to the degree of pollution, different coefficients are set respectively, and the coefficient of a single washing process is obtained by accumulation or multiplication. ; When the time interval between washing cycles is short, the dirt is not easy to dry and deposit in the washing bucket, and the longer interval is helpful for the deposition process of the dirt, so the value of the interval coefficient k increases with the increase of the time interval. Big.
- the washing machine when the cumulative pollution index reaches or exceeds a critical value, the washing machine reminds the user to run a self-cleaning program; preferably, when the cumulative pollution index exceeds the critical value and continuously increases, the frequency of the washing machine reminds the user increases accordingly.
- a prompt frequency may be set according to the increase of the cumulative pollution index to ensure that the user runs the self-cleaning process in a timely manner.
- the cumulative pollution index is automatically cleared and re-accumulated; preferably, the user can manually clear the cumulative pollution index according to the use situation.
- the user since the user has other methods for cleaning the washing tub, in addition to the self-cleaning program that can automatically clear the cumulative pollution index, the user can also manually clear it.
- the factors affecting the water quality coefficient A are derived from the water hardness D, the water temperature T and the retention time t of the water body in the washing tub, without considering the function between the water temperature T and the retention time t.
- the relationship is that the water temperature T and the retention time t of the water body in the washing tub are double-integrated and then multiplied by the water quality hardness D, which reduces the complexity of calculating the water quality coefficient A.
- the water quality coefficient A is determined by the nature of the incoming water body, so in the program without water inlet, the water quality coefficient A is 0; in addition, in order to match the formula of the cumulative pollution index, and to characterize the water quality more reasonably
- control method further includes statistics on the water quality coefficient separately, and setting the cumulative water quality coefficient to W, When W reaches a certain level, the user is prompted to add a detergent for scaling.
- control method further includes counting the proportion of the cumulative water quality coefficient in the cumulative pollution index, the proportion is W / S, and prompting the user to add a detergent for scale when a certain proportion is reached.
- a separate cumulative calculation is performed on the water quality coefficient A, and the ratio of the cumulative water quality coefficient W to the cumulative pollution index S is further calculated to help users understand the washing tub.
- the degree of internal scale accumulation so that when the self-cleaning program is run, a detergent for the scale is added.
- the washing machine presets the first reference value and the second reference value of W / S.
- W / S exceeds the first reference value
- the user is prompted to add a detergent for scaling when running the self-cleaning program.
- S exceeds the second reference value
- the user is prompted to add a detergent for immersing the scale to soak the washing bucket before running the self-cleaning program; preferably, when W / S exceeds the second reference value, the user is prompted to perform bucket removal and cleaning, and simultaneously perform heating on Cleaning.
- the cumulative interval coefficient Among them, k i represents the interval coefficient of each washing time interval before the i-th washing that affects the degree of pollution of the washing bucket during the i-th washing.
- the washing machine separately records the time interval during each washing cycle in the statistical cycle.
- the interval coefficient of each washing cycle counted before the washing is also accumulated.
- the cumulative interval coefficient the interval coefficient of the first wash + the interval coefficient of the second wash, and because there is no Interval, so the interval coefficient of the first wash is set to 0 if the cumulative interval coefficient is not zero;
- the cumulative interval factor the interval factor for the first wash + the interval factor for the second wash + the third wash
- the interval coefficient of the first wash is set to 0 because there is no interval before the first wash, and the cumulative interval coefficient is not zero.
- the cumulative interval coefficient can be obtained by accumulating the interval coefficients of a single wash.
- the cumulative interval coefficient in this embodiment is calculated using an accumulation method, there is no problem that the product result is too small when the product multiplication method is used, so the preset minimum value of the cumulative interval coefficient K i is not set.
- the washing temperature of the washing machine can be adjusted, and the cumulative pollution index of the washing tub in each washing T i ′ represents a temperature coefficient at which the selected washing temperature of the i-th washing affects the degree of pollution of the washing tub.
- the temperature of the washing will affect the molecular activity and the degree of breeding bacteria. Therefore, the temperature coefficient T ′ is set on the basis of the program coefficient P and the cumulative interval coefficient K, and based on theoretical analysis and experimental verification, according to different washing temperature settings Different coefficients were set to characterize their influence on pollution degree.
- the program coefficient P is cumulatively obtained from the coefficients corresponding to the programs in the washing process
- the size of the interval coefficient k is positively related to the duration of the washing time interval
- the temperature coefficient T ′ varies from low to high with temperature. The height gradually increases and then decreases.
- the washing program includes processes such as washing, dehydration, rinsing, and drying. Since each process has different contributions to the degree of pollution, different coefficients are set respectively, and the coefficient of a single washing process is obtained by accumulation or multiplication. ; When the time interval between washing cycles is short, the dirt is not easy to dry and deposit in the washing bucket, and the longer interval is helpful for the deposition process of the dirt, so the value of the interval coefficient k increases with the increase of the time interval.
- the temperature is also an important factor affecting the survival rate of bacteria. When the temperature is low, bacteria are not easy to breed and the temperature coefficient T ′ is low. However, as the temperature increases, the temperature enters a range suitable for bacterial growth, and the corresponding temperature coefficient T ′ gradually increases. Raise to the highest point, and with the further increase of temperature, the high temperature environment plays a role of inactivating bacteria, and the corresponding temperature coefficient T ′ decreases to the lowest.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Control Of Washing Machine And Dryer (AREA)
- Washing And Drying Of Tableware (AREA)
Abstract
本发明公开了洗衣机控制方法,洗衣机至少以所选择的洗涤程序为影响因素测算单次洗涤中洗涤桶的污染指数,并且在多次洗涤的累积污染指数达到或超过临界值时提醒用户运行自清洁程序;洗衣机还至少以进水水质为影响因素测算单次洗涤中洗涤桶的污染指数,并且在多次洗涤的累积污染指数达到或超过临界值时提醒用户运行自清洁程序。本申请提供的控制方法,将洗衣机自身的运行参数和数据转换成影响洗涤桶脏污程度的系数,即可测算出洗衣机的污染程度并提示用户,不需要额外的传感器和装置;还可将洗衣机自身的运行参数和数据转换成影响洗涤桶脏污程度的系数,同时引入了影响洗涤桶污染程度的进水水质系数,并纳入了水质硬度、水体温度和水存留时间对水质系数的影响,方法逻辑合理,可准确体现水质对洗涤桶污染的贡献,适合推广使用。
Description
本发明属于衣物处理技术领域,具体地说,涉及洗衣机控制方法。
根据研究统计,洗衣机洗涤桶的污垢主要来源于衣物纤维缝隙间及衣物表面的微生物(如绿脓杆菌、大肠杆菌、霉菌等),以及洗衣机洗涤桶内的潮湿环境在空气不流通情况下产生的异味。这些问题在后续洗涤衣物时带来了二次污染,对用户的健康造成危害。
现有的大部分洗衣机本身具有洗涤桶自清洁的功能,该功能够高温杀菌消毒,定期使用和清洗能够有效的降低二次污染。然而,根据大数据统计用户使用洗涤桶自清洁的频次很低,说明大部分用户对洗涤桶二次污染没有足够的重视,以及对自清洁功能的不了解。
目前洗衣机常采用根据每次洗涤的水体浊度累计或是运行周期累计测算洗涤桶污染程度,有些产品则在此基础上引入洗涤时间和温度等参数,但是该类方法过度注重于洗涤过程对洗涤桶污染程度的影响,而忽视了其他因素,造成不能准确体现桶污染程度的问题,例如不能准确反映进水硬度及水温等造成水垢对洗涤桶污染程度的问题;同时该类方法还需要额外的检测装置,无形中提高了洗衣机的成本。
有鉴于此,特提出本发明。
发明内容
本发明要解决的技术问题是,提供一种可根据洗衣机运行参数和数据测算洗涤筒污染程度并提示用户运行自清洁程序的控制方法。
为解决上述技术问题,本发明采用技术方案的基本构思是:
本发明提供一种洗衣机控制方法,洗衣机至少以所选择的洗涤程序为影响因素测算单次洗涤中洗涤桶的污染指数,并且在多次洗涤的累积污染指数达到或超过临界值时提醒用户运 行自清洁程序。
根据上述方法,洗衣机还以运行信息为影响因素测算污染指数,所述运行信息包括洗涤温度、洗涤时间、洗涤次数、洗涤间隔中的一种或几种,洗衣机根据各项运行信息对应的系数测算污染指数;优选的,所述运行信息包括洗涤间隔和洗涤温度;更优选的,所述运行信息为洗涤间隔。
根据上述方法,洗衣机根据洗涤程序和/或运行信息对洗涤桶污染程度的贡献设置相应的系数,用以测算污染指数;洗衣机将统计周期内各单次洗涤的污染指数累加计算得到累积污染指数。
根据上述方法,所述洗涤间隔包括各次洗涤之间的时间间隔,洗衣机根据时间间隔的长短对洗涤桶污染程度的贡献的不同设置相应的间隔系数,用以计算单次洗涤的污染指数;优选的,存在多次洗涤间隔时,计算非首次洗涤的污染指数需将该次洗涤前所有的间隔系数纳入计算;更优选的,所述间隔系数的大小与洗涤时间间隔时长呈正相关。
根据上述方法,所述洗涤程序包括单次洗涤中各阶段所选择的程序,洗衣机根据各阶段所选择程序对洗涤桶污染程度的贡献设置相应的程序系数,用以计算单次洗涤的污染指数;优选的,所述程序系数是由单次洗涤中各阶段程序对应的系数累积得到的。
根据上述方法,所述洗涤温度包括单次洗涤中所选择的洗涤温度,洗衣机根据洗涤温度对洗涤桶污染程度的贡献设置相应的温度系数,用以计算单次洗涤的污染指数;优选的,所述温度系数随温度从低到高逐渐增大后减小。
上述方法中,在洗衣机使用时,单独洗涤周期中不同的程序造成洗涤桶脏的程度不同,例如,烘干过程产生高温会降低洗涤筒中微生物的存活概率,使得污染程度下降,相对的,漂洗时衣物中的脏物和细菌进入含氮、膦元素的洗涤水中,则提高了洗涤桶的污染程度;此外,洗涤周期结束后,洗涤桶有干燥的过程,根据洗涤周期间时间间隔的长短,脏物的沉积程度不同,也会造成洗涤桶的污染程度不同。本发明提供的控制方法综合考虑了各单独洗涤周期的程序选择以及不同洗涤信息对洗涤桶污染程度的影响,当累积污染程度达到临界时提示用户运行自清洁程序。
根据上述方法,将单次洗涤中洗涤桶的污染指数设为s,s=P×K,其中,P表述所述单次洗涤中所选择的洗涤程序影响洗涤桶污染程度的程序系数,K表述所述单次洗涤前各次洗涤间的时间间隔累积影响洗涤桶污染程度的累积间隔系数。
上述方法中,不同的衣物护理程序对应着不同的处理过程,所以对洗涤桶的污染影响程度也不同,因此设置程序系数P,对不同程序归类并设置数值不同的系数,表征其对污染程 度的影响;用户使用洗衣机进行连续洗涤时,由于洗涤桶没有干燥沉积的过程,或者该过程较短未完全沉积,桶污染程度的累积会较慢,因此设置累积间隔系数K,根据各相邻洗涤间隔时间的长短设定不同系数并累积测算,以表征时间间隔对污染程度的影响。
根据上述方法,将各次洗涤中洗涤桶的累积污染指数设为S,
其中,i表示所述单次洗涤为统计周期内的第i次洗涤,P
i表示所述第i次洗涤所选择洗涤程序影响洗涤桶污染程度的程序系数,K
i表示第i次洗涤前各洗涤时间间隔累积影响洗涤桶污染程度的累积间隔系数。
上述方法中,本方法对洗衣机的每一个完整洗涤周期所增加的污染程度进行测算得到污染指数,把各个洗涤周期的污染指数进行累加,作为该洗衣机的累计污染指数。
上述方法中,洗衣机在统计周期内分别记录各洗涤周期间的时间间隔,在确定某一次洗涤周期的累积间隔系数时,同时要积乘该次洗涤之前统计的各次洗涤周期的间隔系数,为了更好的说明本发明,举例如下:
第一次洗涤时,由于该次洗涤无间隔,因此设置间隔系数为1;
第二次洗涤时,由于第二次洗涤与第一次洗涤之间存在间隔,因此累积间隔系数=1×第二次洗涤的间隔系数;
第三次洗涤,由于第三次、第二次与第一次洗涤之间均存在间隔,因此累积间隔系数=1×第二次洗涤的间隔系数×第三次洗涤的间隔系数;
第四次洗涤,由于第四次、第三次、第二次与第一次洗涤之间均存在间隔,因此累积间隔系数=1×第二次洗涤的间隔系数×第三次洗涤的间隔系数×第四次洗涤的间隔系数。
以此类推可得到由单次洗涤的间隔系数积乘得到累积间隔系数。
根据上述方法,所述累积间隔系数
其中,k
i表示第i次洗涤前各洗涤时间间隔在第i次洗涤时影响洗涤桶污染程度的间隔系数,统计周期中i=1时第一次洗涤的间隔系数k
1=1,i>1时第一次洗涤的间隔系数k
1=0。
上述方法中,洗衣机在统计周期内分别记录各洗涤周期间的时间间隔,在确定某一次洗涤周期的累积间隔系数时,同时要累加该次洗涤之前统计的各次洗涤周期的间隔系数,为了更好的说明本发明,举例如下:
第一次洗涤时,由于该次洗涤无间隔,但考虑程序系数P不为0,因此设置间隔系数为 1;
第二次洗涤时,由于第二次洗涤与第一次洗涤之间存在间隔,因此累积间隔系数=第一次洗涤的间隔系数+第二次洗涤的间隔系数,而由于第一次洗涤前无间隔,因此第一次洗涤的间隔系数在累积间隔系数不为零的情况下设置为0;
第三次洗涤时,由于第三次、第二次与第一次洗涤之间均存在间隔,因此累积间隔系数=第一次洗涤的间隔系数+第二次洗涤的间隔系数+第三次洗涤的间隔系数,而由于第一次洗涤前无间隔,因此第一次洗涤的间隔系数在累积间隔系数不为零的情况下设置为0。
以此类推可得到由单次洗涤的间隔系数累加得到累积间隔系数。
根据上述方法,所述累积间隔系数K
i具有预设最小值,当测算得到的K
i小于预设最小值时,按照预设最小值进行测算。
上述方法中,由于采用间隔系数的数值包括0~1的范围,在间隔时间较短的情况下,数值较小的间隔系数相乘会造成累积间隔系数趋向于更小的数值,影响了对污染程度的表征,因此设定间隔系数K
i的最小值,在出现上述情况时保证表征的准确性。
根据上述方法,洗衣机的洗涤温度可调节,则单次洗涤中洗涤桶的污染指数s=P×K×T,其中T表述所述单次洗涤中所选择的洗涤温度影响洗涤桶污染程度的温度系数;各次洗涤中洗涤桶的累积污染指数
其中,T
i表示所述第i次洗涤所选择洗涤温度影响洗涤桶污染程度的温度系数。
上述方法中,洗涤的温度会影响分子活性以及滋生细菌的程度,因此在程序系数P和累积间隔系数K的基础上设置温度系数T,并基于理论分析和实验验证,根据不同洗涤温度设定了不同的系数,表征其对污染度的影响。
根据上述方法,所述程序系数P是由洗涤过程中各程序对应的系数累积得到的,所述间隔系数k的大小与洗涤时间间隔时长呈正相关,所述温度系数T随温度从低到高逐渐增大后减小。
上述方法中,洗涤程序包括洗涤、脱水、漂洗、烘干等过程,由于各个过程对污染程度的贡献不同,因此分别设定不同的系数,并且累加或积乘得到单次洗涤的程序系数P;洗涤周期之间的时间间隔较短时,脏物不易干燥沉积在洗涤桶中,而间隔时间较长则有助于脏物的沉积过程,因此间隔系数k的数值随时间间隔的增加而增大;温度也是影响细菌存活率的一个重要因素,在温度较低时细菌不易滋生,温度系数T较低,但随着温度的提高温度进入适合细菌生长的范围,相应的温度系数T逐渐提高到最高点,而随着温度的进一步提高,高温环境起到了细菌的灭活作用,相应的温度系数T随之下降至最低。
本发明还提供另外一种洗衣机控制方法,洗衣机至少以进水水质为影响因素测算单次洗涤中洗涤桶的污染指数,并且在多次洗涤的累积污染指数达到或超过临界值时提醒用户运行自清洁程序。
根据上述方法,洗衣机还以所选择的洗涤程序和/或运行信息为影响因素测算污染指数,所述运行信息包括洗涤温度、洗涤时间、洗涤次数、洗涤间隔中的一种或几种,洗衣机根据各项运行信息对应的系数测算污染指数;优选的,所述运行信息包括洗涤间隔和洗涤温度;更优选的,所述运行信息为洗涤间隔。
根据上述方法,洗衣机根据进水水质和/或洗涤程序和/或运行信息对洗涤桶污染程度的贡献设置相应的系数,用以测算污染指数;洗衣机将统计周期内各单次洗涤的污染指数累加计算得到累积污染指数。
根据上述方法,所述污染指数包括水质系数,所述水质系数是通过测算单次洗涤中进水水质对洗涤桶污染程度的贡献得到的;累积污染指数中还包括累积水质系数,所述累积水质系数是通过测算多次洗涤中进水水质对洗涤桶污染程度的贡献得到的。
根据上述方法,所述进水水质包括水质硬度、洗涤桶内的水体温度和洗涤桶内水体存留时间,洗衣机将各项进水水质对洗涤桶污染程度的贡献转化为水质系数;优选的,所述水质系数包括对洗涤桶内的水体温度进行积分;更优选的,所述水质系数包括对洗涤桶内的水体温度和/或洗涤桶内水体存留时间进行积分。
根据上述方法,所述洗涤间隔包括各次洗涤之间的时间间隔,洗衣机根据时间间隔的长短对洗涤桶污染程度的贡献的不同设置相应的间隔系数,用以计算单次洗涤的污染指数;优选的,存在多次洗涤间隔时,计算非首次洗涤的污染指数需将该次洗涤前所有的间隔系数纳入计算;更优选的,所述间隔系数的大小与洗涤时间间隔时长呈正相关。
根据上述方法,所述洗涤程序包括单次洗涤中各阶段所选择的程序,洗衣机根据各阶段所选择程序对洗涤桶污染程度的贡献设置相应的程序系数,用以计算单次洗涤的污染指数;优选的,所述程序系数是由单次洗涤中各阶段程序对应的系数累积得到的。
根据上述方法,所述洗涤温度包括单次洗涤中所选择的洗涤温度,洗衣机根据洗涤温度对洗涤桶污染程度的贡献设置相应的温度系数,用以计算单次洗涤的污染指数;优选的,所述温度系数随温度从低到高逐渐增大后减小。
上述方法中,在洗衣机使用时,单独洗涤周期中不同的程序造成洗涤桶脏的程度不同,例如,烘干过程产生高温会降低洗涤筒中微生物的存活概率,使得污染程度下降,相对的,漂洗时衣物中的脏物和细菌进入含氮、膦元素的洗涤水中,则提高了洗涤桶的污染程度;此 外,洗涤周期结束后,洗涤桶有干燥的过程,根据洗涤周期间时间间隔的长短,脏物的沉积程度不同,也会造成洗涤桶的污染程度不同;另外,通常家庭洗衣用水常使用市政供应的自来水,存在水硬度较高易产生水垢的问题,而干燥结成的水垢长期积累也会加剧洗涤桶的污染程度并增加了清洁的难度,因此本发明提供的方法综合考虑了水质因素对污染程度的贡献,以及各单独洗涤周期的程序选择和时间间隔对洗涤桶污染程度的影响,当累积污染程度达到临界时提示用户运行自清洁程序。
根据上述方法,将各次洗涤中洗涤桶的累积污染指数设为S,
其中,i表示所述单次洗涤为统计周期内的第i次洗涤,P
i表示所述第i次洗涤所选择洗涤程序影响洗涤桶污染程度的程序系数,K
i表示第i次洗涤前各洗涤时间间隔累积影响洗涤桶污染程度的累积间隔系数,A
i表示第i次洗涤时进水水质影响污染程度的水质系数。
上述方法中,不同的衣物护理程序对应着不同的处理过程,所以对洗涤桶的污染影响程度也不同,因此设置程序系数P,对不同程序归类并设置数值不同的系数,表征其对污染程度的影响;用户使用洗衣机进行连续洗涤时,由于洗涤桶没有干燥沉积的过程,或者该过程较短未完全沉积,桶污染程度的累积会较慢,因此设置累积间隔系数K,根据各相邻洗涤间隔时间的长短设定不同系数并累积测算,以表征时间间隔对污染程度的影响;另外设置水质系数A表征水质对洗涤桶污染程度的影响。本方法对洗衣机的每一个完整洗涤周期所增加的污染程度进行测算得到污染指数,把各个洗涤周期的污染指数进行累加,作为该洗衣机的累计污染指数。
根据上述方法,所述水质系数A
i=D
i×∫f(T
i)dT
i(i≥1),其中,D
i表示第i次洗涤时进水硬度影响水质系数A
i的硬度系数,∫f(T
i)dT
i表示对第i次洗涤中洗涤桶内水体温度T
i进行积分,所述积分结果影响水质系数A
i。
上述方法中,由水质带来的污染还与水温有关,所以A的值与水温关联。具体来说A的大小与水质硬度D成正比,硬度D越高A的值越大;与水温T成正比,水温T越高A的值越大。若在洗涤程序中进行了变温控制,所述水温T为变量,因此对水温T进行积分计算,得到积分结果乘以硬度D得到水质系数A。
根据上述方法,所述第i次洗涤中洗涤桶内水体温度T
i=∫g(t
i)dt
i(i≥1),对第i次洗涤中洗涤桶内水体留存的时间t
i进行积分,所述积分结果体现时间t
i内水体温度T
i的变化。
上述方法中,水质带来的污染除了与水温有关外,还与水体在洗涤桶内的留存时间有关,所以A的值与水温和水体留存时间相关联。具体来说A的大小与水质硬度D成正比,硬度D越高A的值越大;与水温T成正比,水温T越高A的值越大;与时间t成正比,时间t 越长A的值越大。若在洗涤程序中进行了变温控制,则水温T会成为一个随时间t变化的变量,所以这里对时间t进行积分以表征时间t内水体温度T的变化,从而进一步说明了温度T和时间t的相互关系,并且在代入上述对温度T积分的公式后得到更为准确的水质系数A。
所述水质系数还可表示为A
i=D
i×∫∫h(T
i,t
i)dT
idt
i(i≥1),其中,∫∫h(T
i,t
i)dT
idt
i表示对第i次洗涤中洗涤桶内水体温度T
i和洗涤桶内水体留存时间t
i进行二重积分,所述积分结果影响水质系数A
i。
上述方法中,经过不同的建模结果,影响水质系数A的因素分别来自于水质硬度D,水温T和水体在洗涤桶内的存留时间t,不考虑水温T和存留时间t之间的函数关系,对水温T和水体在洗涤桶内的存留时间t进行二重积分后乘以水质硬度D,降低了计算水质系数A的复杂度。
根据上述方法,水质系数A是由进水水体的性质决定的,所以在没有进水的程序中,水质系数A为0;此外,为了与累积污染指数的公式匹配,并且更合理地表征水质系数A对洗涤桶污染程度的贡献,通过理论分析和实验验证,得出常数系数R,使得A
i=R×D
i×∫f(T
i)dT
i,或者A
i=R×D
i×∫∫h(T
i,t
i)dT
idt
i。
根据上述方法,所述控制方法还包括统计累积水质系数在累积污染指数中的占比,所述占比为W/S,在达到一定比例时提示用户加入针对水垢的清洁剂。
上述方法中,除了将水质系数A纳入累积污染指数S外,还对水质系数A进行单独的累积计算,以帮助用户了解洗涤桶内水垢的积累程度,以在运行自清洁程序的时候加入针对水垢的清洁剂;此过程也可通过累积水质系数W占累积污染指数S的占比实现。
根据上述方法,洗衣机预设累积水质系数W或占比W/S的第一参考值和第二参考值,当W或W/S超过第一参考值时提示用户在运行自清洁程序时加入针对水垢的清洁剂,在W或W/S超过第二参考值时提示用户加入针对水垢的清洁剂浸泡洗涤桶后再运行自清洁程序;优选的,在W或W/S超过第二参考值时提示用户进行拆桶清洗,同时对加热管进行清洗。
上述方法中,洗衣机在统计周期内分别记录各洗涤周期间的时间间隔,在确定某一次洗 涤周期的累积间隔系数时,同时要积乘该次洗涤之前统计的各次洗涤周期的间隔系数,为了更好的说明本发明,举例如下:
第一次洗涤时,由于该次洗涤无间隔,因此设置间隔系数为1;
第二次洗涤时,由于第二次洗涤与第一次洗涤之间存在间隔,因此累积间隔系数=1×第二次洗涤的间隔系数;
第三次洗涤,由于第三次、第二次与第一次洗涤之间均存在间隔,因此累积间隔系数=1×第二次洗涤的间隔系数×第三次洗涤的间隔系数;
第四次洗涤,由于第四次、第三次、第二次与第一次洗涤之间均存在间隔,因此累积间隔系数=1×第二次洗涤的间隔系数×第三次洗涤的间隔系数×第四次洗涤的间隔系数。
以此类推可得到由单次洗涤的间隔系数积乘得到累积间隔系数。
根据上述方法,所述累积间隔系数
其中,k
i表示第i次洗涤前各洗涤时间间隔在第i次洗涤时影响洗涤桶污染程度的间隔系数,统计周期中i=1时第一次洗涤的间隔系数k
1=1,i>1时第一次洗涤的间隔系数k
1=0。
上述方法中,洗衣机在统计周期内分别记录各洗涤周期间的时间间隔,在确定某一次洗涤周期的累积间隔系数时,同时要累加该次洗涤之前统计的各次洗涤周期的间隔系数,为了更好的说明本发明,举例如下:
第一次洗涤时,由于该次洗涤无间隔,但考虑程序系数P不为0,因此设置间隔系数为1;
第二次洗涤时,由于第二次洗涤与第一次洗涤之间存在间隔,因此累积间隔系数=第一次洗涤的间隔系数+第二次洗涤的间隔系数,而由于第一次洗涤前无间隔,因此第一次洗涤的间隔系数在累积间隔系数不为零的情况下设置为0;
第三次洗涤时,由于第三次、第二次与第一次洗涤之间均存在间隔,因此累积间隔系数=第一次洗涤的间隔系数+第二次洗涤的间隔系数+第三次洗涤的间隔系数,而由于第一次洗涤前无间隔,因此第一次洗涤的间隔系数在累积间隔系数不为零的情况下设置为0。
以此类推可得到由单次洗涤的间隔系数累加得到累积间隔系数。
根据上述方法,所述累积间隔系数K
i具有预设最小值,当测算得到的K
i小于预设最小值时,按照预设最小值进行测算。
上述方法中,由于采用间隔系数的数值包括0~1的范围,在间隔时间较短的情况下,数值较小的间隔系数相乘会造成累积间隔系数趋向于更小的数值,影响了对污染程度的表征,因此设定间隔系数K
i的最小值,在出现上述情况时保证表征的准确性。
上述方法中,洗涤的温度会影响分子活性以及滋生细菌的程度,因此在程序系数P和累积间隔系数K的基础上设置温度系数T′,并基于理论分析和实验验证,根据不同洗涤温度设定了不同的系数,表征其对污染度的影响。
根据上述方法,所述程序系数P是由洗涤过程中各程序对应的系数累积得到的,所述间隔系数k的大小与洗涤时间间隔时长呈正相关,所述温度系数T′随温度从低到高逐渐增大后减小。
上述方法中,洗涤程序包括洗涤、脱水、漂洗、烘干等过程,由于各个过程对污染程度的贡献不同,因此分别设定不同的系数,并且累加或积乘得到单次洗涤的程序系数P;洗涤周期之间的时间间隔较短时,脏物不易干燥沉积在洗涤桶中,而间隔时间较长则有助于脏物的沉积过程,因此间隔系数k的数值随时间间隔的增加而增大;温度也是影响细菌存活率的一个重要因素,在温度较低时细菌不易滋生,温度系数T′较低,但随着温度的提高温度进入适合细菌生长的范围,相应的温度系数T′逐渐提高到最高点,而随着温度的进一步提高,高温环境起到了细菌的灭活作用,相应的温度系数T′随之下降至最低。
根据上述两种控制方法,累积污染指数达到或超过临界值时,洗衣机提醒用户运行自清洁程序;优选的,累积污染指数在超过临界值并不断升高时,洗衣机提醒用户的频率随之提高。
上述两种控制方法中,当累积污染指数超过临界值时,若未进行自清洁程序,该指数会持续增加,因此可根据累积污染指数的增长设定提示频率,确保用户及时运行自清洁程序。
根据上述两种控制方法,用户运行自清洁程序后,累积污染指数自动清零并重新累积;优选的,用户可根据使用情况对累积污染指数手动清零。
上述两种控制方法中,由于用户会有其他的清洁洗涤桶的方法,因此除了自清洁程序可自动清零累积污染指数外,用户也可进行手动清零。
采用上述技术方案后,本发明与现有技术相比具有以下有益效果:
1.本发明提供的控制方法综合考虑洗涤周期的时间间隔与程序选择对污染程度的影响,兼顾洗涤中和洗涤后的环境因素,相比现有技术仅关注洗涤过程的方法更为准确地体现污染程度;
2.本发明提供的控制方法将洗衣机自身的运行参数和数据转换成影响洗涤桶脏污程度的系数,即可测算出洗衣机的污染程度并提示用户,不需要额外的传感器和装置;
3.本发明提供的控制方法将洗衣机自身的运行参数和数据转换成影响洗涤桶脏污程度的系数,同时纳入硬度、温度和存留时间导致的水质变化对污染程度的影响,可以更准确地反应洗涤桶的污染程度;
4.本发明提供的控制方法在累积污染指数超过临界值后调整提醒频率,确保用户运行自清洁程序。
下面结合附图对本发明的具体实施方式作进一步详细的描述。
附图作为本发明的一部分,用来提供对本发明的进一步的理解,本发明的示意性实施例及其说明用于解释本发明,但不构成对本发明的不当限定。显然,下面描述中的附图仅仅是一些实施例,对于本领域普通技术人员来说,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。在附图中:
图1是本发明控制方法流程示意图。
需要说明的是,这些附图和文字描述并不旨在以任何方式限制本发明的构思范围,而是通过参考特定实施例为本领域技术人员说明本发明的概念。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对实施例中的技术方案进行清楚、完整地描述,以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1
本实施例中,提供一种洗衣机控制方法,洗衣机以相邻各次洗涤的时间间隔和各次洗涤所选择的洗涤程序为影响因素测算单次洗涤中洗涤桶的污染指数,当多次洗涤的累积污染指数累加达到或超过临界值时提醒用户运行自清洁程序。
本实施例中,在洗衣机使用时,单独洗涤周期中不同的程序造成洗涤桶脏的程度不同,例如,烘干过程产生高温会降低洗涤筒中微生物的存活概率,使得污染程度下降,相对的, 漂洗时衣物中的脏物和细菌进入含氮、膦元素的洗涤水中,则提高了洗涤桶的污染程度;此外,洗涤周期结束后,洗涤桶有干燥的过程,根据洗涤周期间时间间隔的长短,脏物的沉积程度不同,也会造成洗涤桶的污染程度不同。本发明提供的控制方法综合考虑了各单独洗涤周期的程序选择以及时间间隔对洗涤桶污染程度的影响,当累积污染程度达到临界时提示用户运行自清洁程序。
本实施例中,将单次洗涤中洗涤桶的污染指数设为s,s=P×K,其中,P表述所述单次洗涤中所选择的洗涤程序影响洗涤桶污染程度的程序系数,K表述所述单次洗涤前各次洗涤间的时间间隔累积影响洗涤桶污染程度的累积间隔系数。
本实施例中,不同的衣物护理程序对应着不同的处理过程,所以对洗涤桶的污染影响程度也不同,因此设置程序系数P,对不同程序归类并设置数值不同的系数,表征其对污染程度的影响;用户使用洗衣机进行连续洗涤时,由于洗涤桶没有干燥沉积的过程,或者该过程较短未完全沉积,桶污染程度的累积会较慢,因此设置累积间隔系数K,根据各相邻洗涤间隔时间的长短设定不同系数并累积测算,以表征时间间隔对污染程度的影响。
本实施例中,将各次洗涤中洗涤桶的累积污染指数设为S,
其中,i表示所述单次洗涤为统计周期内的第i次洗涤,P
i表示所述第i次洗涤所选择洗涤程序影响洗涤桶污染程度的程序系数,K
i表示第i次洗涤前各洗涤时间间隔累积影响洗涤桶污染程度的累积间隔系数。
本实施例中,本方法对洗衣机的每一个完整洗涤周期所增加的污染程度进行测算得到污染指数,把各个洗涤周期的污染指数进行累加,作为该洗衣机的累计污染指数。
本实施例中,洗衣机在统计周期内分别记录各洗涤周期间的时间间隔,在确定某一次洗涤周期的累积间隔系数时,同时要积乘该次洗涤之前统计的各次洗涤周期的间隔系数,为了更好的说明本发明,举例如下:
第一次洗涤时,由于该次洗涤无间隔,因此设置间隔系数为1;
第二次洗涤时,由于第二次洗涤与第一次洗涤之间存在间隔,因此累积间隔系数=1×第二次洗涤的间隔系数;
第三次洗涤,由于第三次、第二次与第一次洗涤之间均存在间隔,因此累积间隔系数=1×第二次洗涤的间隔系数×第三次洗涤的间隔系数;
第四次洗涤,由于第四次、第三次、第二次与第一次洗涤之间均存在间隔,因此累积间隔系数=1×第二次洗涤的间隔系数×第三次洗涤的间隔系数×第四次洗涤的间隔系数。
以此类推可得到由单次洗涤的间隔系数积乘得到累积间隔系数。
本实施例中,所述累积间隔系数K
i具有预设最小值,当测算得到的K
i小于预设最小值时,按照预设最小值进行测算。
本实施例中,由于采用间隔系数的数值包括0~1的范围,在间隔时间较短的情况下,数值较小的间隔系数相乘会造成累积间隔系数趋向于更小的数值,影响了对污染程度的表征,因此设定间隔系数K
i的最小值,在出现上述情况时保证表征的准确性。
本实施例中,所述程序系数P是由洗涤过程中各程序对应的系数累积得到的,所述间隔系数k的大小与洗涤时间间隔时长呈正相关。
本实施例中,洗涤程序包括洗涤、脱水、漂洗、烘干等过程,由于各个过程对污染程度的贡献不同,因此分别设定不同的系数,并且累加或积乘得到单次洗涤的程序系数P;洗涤周期之间的时间间隔较短时,脏物不易干燥沉积在洗涤桶中,而间隔时间较长则有助于脏物的沉积过程,因此间隔系数k的数值随时间间隔的增加而增大。
本实施例中,累积污染指数达到或超过临界值时,洗衣机提醒用户运行自清洁程序;优选的,累积污染指数在超过临界值并不断升高时,洗衣机提醒用户的频率随之提高。
本实施例中,当累积污染指数超过临界值时,若未进行自清洁程序,该指数会持续增加,因此可根据累积污染指数的增长设定提示频率,确保用户及时运行自清洁程序。
本实施例中,用户运行自清洁程序后,累积污染指数自动清零并重新累积;优选的,用户可根据使用情况对累积污染指数手动清零。
本实施例中,由于用户会有其他的清洁洗涤桶的方法,因此除了自清洁程序可自动清零累积污染指数外,用户也可进行手动清零。
实施例2
本实施例与实施例1的区别在于:
本实施例中,所述累积间隔系数
其中,k
i表示第i次洗涤前各洗涤时间间隔在第i次洗涤时影响洗涤桶污染程度的间隔系数,统计周期中i=1时第一次洗涤的间隔系数k
1=1,i>1时第一次洗涤的间隔系数k
1=0。
本实施例中,洗衣机在统计周期内分别记录各洗涤周期间的时间间隔,在确定某一次洗涤周期的累积间隔系数时,同时要累加该次洗涤之前统计的各次洗涤周期的间隔系数,为了 更好的说明本发明,举例如下:
第一次洗涤时,由于该次洗涤无间隔,但考虑程序系数P不为0,因此设置间隔系数为1;
第二次洗涤时,由于第二次洗涤与第一次洗涤之间存在间隔,因此累积间隔系数=第一次洗涤的间隔系数+第二次洗涤的间隔系数,而由于第一次洗涤前无间隔,因此第一次洗涤的间隔系数在累积间隔系数不为零的情况下设置为0;
第三次洗涤时,由于第三次、第二次与第一次洗涤之间均存在间隔,因此累积间隔系数=第一次洗涤的间隔系数+第二次洗涤的间隔系数+第三次洗涤的间隔系数,而由于第一次洗涤前无间隔,因此第一次洗涤的间隔系数在累积间隔系数不为零的情况下设置为0。
以此类推可得到由单次洗涤的间隔系数累加得到累积间隔系数。
同时由于本实施例中的累积间隔系数采用累加方式计算,不存在采用积乘方法时积乘结果过小的问题,因此不设定累积间隔系数K
i的预设最小值。
本实施例的其他实施方式同实施例1。
实施例3
本实施例与实施例1或2的区别在于:
本实施例中,洗衣机的洗涤温度可调节,则单次洗涤中洗涤桶的污染指数s=P×K×T,其中T表述所述单次洗涤中所选择的洗涤温度影响洗涤桶污染程度的温度系数;各次洗涤中洗涤桶的累积污染指数
其中,T
i表示所述第i次洗涤所选择洗涤温度影响洗涤桶污染程度的温度系数。
本实施例中,洗涤的温度会影响分子活性以及滋生细菌的程度,因此在程序系数P和累积间隔系数K的基础上设置温度系数T,并基于理论分析和实验验证,根据不同洗涤温度设定了不同的系数,表征其对污染度的影响。
本实施例中,所述程序系数P是由洗涤过程中各程序对应的系数累积得到的,所述间隔系数k的大小与洗涤时间间隔时长呈正相关,所述温度系数T随温度从低到高逐渐增大后减小。
本实施例中,洗涤程序包括洗涤、脱水、漂洗、烘干等过程,由于各个过程对污染程度的贡献不同,因此分别设定不同的系数,并且累加或积乘得到单次洗涤的程序系数P;洗涤周期之间的时间间隔较短时,脏物不易干燥沉积在洗涤桶中,而间隔时间较长则有助于脏物的沉积过程,因此间隔系数k的数值随时间间隔的增加而增大;温度也是影响细菌存活率的 一个重要因素,在温度较低时细菌不易滋生,温度系数T较低,但随着温度的提高温度进入适合细菌生长的范围,相应的温度系数T逐渐提高到最高点,而随着温度的进一步提高,高温环境起到了细菌的灭活作用,相应的温度系数T随之下降至最低。
本实施例的其他实施方式同实施例1或2。
实施例4
本实施例中,提供了一种洗衣机控制方法,洗衣机以相邻各次洗涤的时间间隔,各次洗涤所选择的洗涤程序和进水水质为影响因素测算单次洗涤中洗涤桶的污染指数,当多次洗涤的累积污染指数累加达到或超过临界值时提醒用户运行自清洁程序。
本实施例中,在洗衣机使用时,单独洗涤周期中不同的程序造成洗涤桶脏的程度不同,例如,烘干过程产生高温会降低洗涤筒中微生物的存活概率,使得污染程度下降,相对的,漂洗时衣物中的脏物和细菌进入含氮、膦元素的洗涤水中,则提高了洗涤桶的污染程度;此外,洗涤周期结束后,洗涤桶有干燥的过程,根据洗涤周期间时间间隔的长短,脏物的沉积程度不同,也会造成洗涤桶的污染程度不同;另外,通常家庭洗衣用水常使用市政供应的自来水,存在水硬度较高易产生水垢的问题,而干燥结成的水垢长期积累也会加剧洗涤桶的污染程度并增加了清洁的难度,因此本发明提供的方法综合考虑了水质因素对污染程度的贡献,以及各单独洗涤周期的程序选择和时间间隔对洗涤桶污染程度的影响,当累积污染程度达到临界时提示用户运行自清洁程序。
本实施例中,将各次洗涤中洗涤桶的累积污染指数设为S,
其中,i表示所述单次洗涤为统计周期内的第i次洗涤,P
i表示所述第i次洗涤所选择洗涤程序影响洗涤桶污染程度的程序系数,K
i表示第i次洗涤前各洗涤时间间隔累积影响洗涤桶污染程度的累积间隔系数,A
i表示第i次洗涤时进水水质影响污染程度的水质系数。
本实施例中,不同的衣物护理程序对应着不同的处理过程,所以对洗涤桶的污染影响程度也不同,因此设置程序系数P,对不同程序归类并设置数值不同的系数,表征其对污染程度的影响;用户使用洗衣机进行连续洗涤时,由于洗涤桶没有干燥沉积的过程,或者该过程较短未完全沉积,桶污染程度的累积会较慢,因此设置累积间隔系数K,根据各相邻洗涤间隔时间的长短设定不同系数并累积测算,以表征时间间隔对污染程度的影响;另外设置水质系数A表征水质对洗涤桶污染程度的影响。本方法对洗衣机的每一个完整洗涤周期所增加的污染程度进行测算得到污染指数,把各个洗涤周期的污染指数进行累加,作为该洗衣机的累计污染指数。
本实施例中,所述水质系数A
i=D
i×∫f(T
i)dT
i(i≥1),其中,D
i表示第i次洗涤时进水硬度影响水质系数A
i的硬度系数,∫f(T
i)dT
i表示对第i次洗涤中洗涤桶内水体温度T
i进行积分,所述积分结果影响水质系数A
i。
本实施例中,由水质带来的污染还与水温有关,所以A的值与水温关联。具体来说A的大小与水质硬度D成正比,硬度D越高A的值越大;与水温T成正比,水温T越高A的值越大。若在洗涤程序中进行了变温控制,所述水温T为变量,因此对水温T进行积分计算,得到积分结果乘以硬度D得到水质系数A。
本实施例中,所述第i次洗涤中洗涤桶内水体温度T
i=∫g(t
i)dt
i(i≥1),对第i次洗涤中洗涤桶内水体留存的时间t
i进行积分,所述积分结果体现时间t
i内水体温度T
i的变化。
本实施例中,水质带来的污染除了与水温有关外,还与水体在洗涤桶内的留存时间有关,所以A的值与水温和水体留存时间相关联。具体来说A的大小与水质硬度D成正比,硬度D越高A的值越大;与水温T成正比,水温T越高A的值越大;与时间t成正比,时间t越长A的值越大。若在洗涤程序中进行了变温控制,则水温T会成为一个随时间t变化的变量,所以这里对时间t进行积分以表征时间t内水体温度T的变化,从而进一步说明了温度T和时间t的相互关系,并且在代入上述对温度T积分的公式后得到更为准确的水质系数A。
本实施例中,水质系数A是由进水水体的性质决定的,所以在没有进水的程序中,水质系数A为0;此外,为了与累积污染指数的公式匹配,并且更合理地表征水质系数A对洗涤桶污染程度的贡献,通过理论分析和实验验证,得出常数系数R,使得A
i=R×D
i×∫f(T
i)dT
i,或者A
i=R×D
i×∫∫h(T
i,t
i)dT
idt
i。
本实施例中,除了将水质系数A纳入累积污染指数S外,还对水质系数A进行单独的累积计算,以帮助用户了解洗涤桶内水垢的积累程度,以在运行自清洁程序的时候加入针对水垢的清洁剂。
本实施例中,洗衣机预设累积水质系数W的第一参考值和第二参考值,当W超过第一参考值时提示用户在运行自清洁程序时加入针对水垢的清洁剂,在W或W/S超过第二参考值时提示用户加入针对水垢的清洁剂浸泡洗涤桶后再运行自清洁程序;优选的,在W超过第二参考值时提示用户进行拆桶清洗,同时对加热管进行清洗。
本实施例中,洗衣机在统计周期内分别记录各洗涤周期间的时间间隔,在确定某一次洗涤周期的累积间隔系数时,同时要积乘该次洗涤之前统计的各次洗涤周期的间隔系数,为了更好的说明本发明,举例如下:
第一次洗涤时,由于该次洗涤无间隔,因此设置间隔系数为1;
第二次洗涤时,由于第二次洗涤与第一次洗涤之间存在间隔,因此累积间隔系数=1×第二次洗涤的间隔系数;
第三次洗涤,由于第三次、第二次与第一次洗涤之间均存在间隔,因此累积间隔系数=1×第二次洗涤的间隔系数×第三次洗涤的间隔系数;
第四次洗涤,由于第四次、第三次、第二次与第一次洗涤之间均存在间隔,因此累积间隔系数=1×第二次洗涤的间隔系数×第三次洗涤的间隔系数×第四次洗涤的间隔系数。
以此类推可得到由单次洗涤的间隔系数积乘得到累积间隔系数。
本实施例中,所述累积间隔系数K
i具有预设最小值,当测算得到的K
i小于预设最小值时,按照预设最小值进行测算。
本实施例中,由于采用间隔系数的数值包括0~1的范围,在间隔时间较短的情况下,数值较小的间隔系数相乘会造成累积间隔系数趋向于更小的数值,影响了对污染程度的表征,因此设定间隔系数K
i的最小值,在出现上述情况时保证表征的准确性。
本实施例中,所述程序系数P是由洗涤过程中各程序对应的系数累积得到的,所述间隔系数k的大小与洗涤时间间隔时长呈正相关。
本实施例中,洗涤程序包括洗涤、脱水、漂洗、烘干等过程,由于各个过程对污染程度的贡献不同,因此分别设定不同的系数,并且累加或积乘得到单次洗涤的程序系数P;洗涤周期之间的时间间隔较短时,脏物不易干燥沉积在洗涤桶中,而间隔时间较长则有助于脏物的沉积过程,因此间隔系数k的数值随时间间隔的增加而增大。
本实施例中,累积污染指数达到或超过临界值时,洗衣机提醒用户运行自清洁程序;优选的,累积污染指数在超过临界值并不断升高时,洗衣机提醒用户的频率随之提高。
本实施例中,当累积污染指数超过临界值时,若未进行自清洁程序,该指数会持续增加,因此可根据累积污染指数的增长设定提示频率,确保用户及时运行自清洁程序。
本实施例中,用户运行自清洁程序后,累积污染指数自动清零并重新累积;优选的,用户可根据使用情况对累积污染指数手动清零。
本实施例中,由于用户会有其他的清洁洗涤桶的方法,因此除了自清洁程序可自动清零累积污染指数外,用户也可进行手动清零。
实施例5
本实施例与实施例4的区别在于:
本实施例中,所述水质系数表示为A
i=D
i×∫∫h(T
i,t
i)dT
idt
i(i≥1),其中,∫∫h(T
i,t
i)dT
idt
i表示对第i次洗涤中洗涤桶内水体温度T
i和洗涤桶内水体留存时间t
i进行二重积分,所述积分结果影响水质系数A
i。
本实施例中,经过不同的建模结果,影响水质系数A的因素分别来自于水质硬度D,水温T和水体在洗涤桶内的存留时间t,不考虑水温T和存留时间t之间的函数关系,对水温T和水体在洗涤桶内的存留时间t进行二重积分后乘以水质硬度D,降低了计算水质系数A的复杂度。
本实施例中,水质系数A是由进水水体的性质决定的,所以在没有进水的程序中,水质系数A为0;此外,为了与累积污染指数的公式匹配,并且更合理地表征水质系数A对洗涤桶污染程度的贡献,通过理论分析和实验验证,得出常数系数R,使得A
i=R×D
i×∫∫h(T
i,t
i)dT
idt
i。
本实施例中,所述控制方法还包括统计累积水质系数在累积污染指数中的占比,所述占比为W/S,在达到一定比例时提示用户加入针对水垢的清洁剂。
本实施例中,除了将水质系数A纳入累积污染指数S外,还对水质系数A进行单独的累积计算,并进一步计算累积水质系数W占累积污染指数S的占比,以帮助用户了解洗涤桶内水垢的积累程度,以在运行自清洁程序的时候加入针对水垢的清洁剂。
本实施例中,洗衣机预设W/S的第一参考值和第二参考值,当W/S超过第一参考值时提示用户在运行自清洁程序时加入针对水垢的清洁剂,在W/S超过第二参考值时提示用户加入针对水垢的清洁剂浸泡洗涤桶后再运行自清洁程序;优选的,在W/S超过第二参考值时提示用户进行拆桶清洗,同时对加热管进行清洗。
本实施例中,所述累积间隔系数
其中,k
i表示第i次洗涤前各洗涤时间间隔在第i次洗涤时影响洗涤桶污染程度的间隔系数,统计周期中i=1时第一次洗涤的间隔系数k
1=1,i>1时第一次洗涤的间隔系数k
1=0。
本实施例中,洗衣机在统计周期内分别记录各洗涤周期间的时间间隔,在确定某一次洗 涤周期的累积间隔系数时,同时要累加该次洗涤之前统计的各次洗涤周期的间隔系数,为了更好的说明本发明,举例如下:
第一次洗涤时,由于该次洗涤无间隔,但考虑程序系数P不为0,因此设置间隔系数为1;
第二次洗涤时,由于第二次洗涤与第一次洗涤之间存在间隔,因此累积间隔系数=第一次洗涤的间隔系数+第二次洗涤的间隔系数,而由于第一次洗涤前无间隔,因此第一次洗涤的间隔系数在累积间隔系数不为零的情况下设置为0;
第三次洗涤时,由于第三次、第二次与第一次洗涤之间均存在间隔,因此累积间隔系数=第一次洗涤的间隔系数+第二次洗涤的间隔系数+第三次洗涤的间隔系数,而由于第一次洗涤前无间隔,因此第一次洗涤的间隔系数在累积间隔系数不为零的情况下设置为0。
以此类推可得到由单次洗涤的间隔系数累加得到累积间隔系数。
同时由于本实施例中的累积间隔系数采用累加方式计算,不存在采用积乘方法时积乘结果过小的问题,因此不设定累积间隔系数K
i的预设最小值。
本实施例的其他实施方式同实施例4。
实施例6
本实施例与实施例4或5的区别在于:
本实施例中,洗涤的温度会影响分子活性以及滋生细菌的程度,因此在程序系数P和累积间隔系数K的基础上设置温度系数T′,并基于理论分析和实验验证,根据不同洗涤温度设定了不同的系数,表征其对污染度的影响。
本实施例中,所述程序系数P是由洗涤过程中各程序对应的系数累积得到的,所述间隔系数k的大小与洗涤时间间隔时长呈正相关,所述温度系数T′随温度从低到高逐渐增大后减小。
本实施例中,洗涤程序包括洗涤、脱水、漂洗、烘干等过程,由于各个过程对污染程度的贡献不同,因此分别设定不同的系数,并且累加或积乘得到单次洗涤的程序系数P;洗涤周期之间的时间间隔较短时,脏物不易干燥沉积在洗涤桶中,而间隔时间较长则有助于脏物的沉积过程,因此间隔系数k的数值随时间间隔的增加而增大;温度也是影响细菌存活率的 一个重要因素,在温度较低时细菌不易滋生,温度系数T′较低,但随着温度的提高温度进入适合细菌生长的范围,相应的温度系数T′逐渐提高到最高点,而随着温度的进一步提高,高温环境起到了细菌的灭活作用,相应的温度系数T′随之下降至最低。
本实施例的其他实施方式同实施例4或5。
以上所述仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专利的技术人员在不脱离本发明技术方案范围内,当可利用上述提示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明方案的范围内。
Claims (20)
- 一种洗衣机控制方法,其特征在于,洗衣机至少以所选择的洗涤程序为影响因素测算单次洗涤中洗涤桶的污染指数,并且在多次洗涤的累积污染指数达到或超过临界值时提醒用户运行自清洁程序。
- 根据权利要求1所述的控制方法,其特征在于,洗衣机还以运行信息为影响因素测算污染指数,所述运行信息包括洗涤温度、洗涤时间、洗涤次数、洗涤间隔中的一种或几种,洗衣机根据各项运行信息对应的系数测算污染指数;优选的,所述运行信息包括洗涤间隔和洗涤温度;更优选的,所述运行信息为洗涤间隔。
- 根据权利要求1或2所述的控制方法,其特征在于,洗衣机根据洗涤程序和/或运行信息对洗涤桶污染程度的贡献设置相应的系数,用以测算污染指数;洗衣机将统计周期内各单次洗涤的污染指数累加计算得到累积污染指数。
- 根据权利要求2或3所述的控制方法,其特征在于,所述洗涤间隔包括各次洗涤之间的时间间隔,洗衣机根据时间间隔的长短对洗涤桶污染程度的贡献的不同设置相应的间隔系数,用以计算单次洗涤的污染指数;优选的,存在多次洗涤间隔时,计算非首次洗涤的污染指数需将该次洗涤前所有的间隔系数纳入计算;更优选的,所述间隔系数的大小与洗涤时间间隔时长呈正相关。
- 根据权利要求1或3所述的控制方法,其特征在于,所述洗涤程序包括单次洗涤中各阶段所选择的程序,洗衣机根据各阶段所选择程序对洗涤桶污染程度的贡献设置相应的程序系数,用以计算单次洗涤的污染指数;优选的,所述程序系数是由单次洗涤中各阶段程序对应的系数累积得到的。
- 根据权利要求2所述的控制方法,其特征在于,所述洗涤温度包括单次洗涤中所选择的洗涤温度,洗衣机根据洗涤温度对洗涤桶污染程度的贡献设置相应的温度系数,用以计算单次洗涤的污染指数;优选的,所述温度系数随温度从低到高逐渐增大后减小。
- 根据权利要求1~6任意一项所述的控制方法,其特征在于,累积污染指数达到或超过临界值时,洗衣机提醒用户运行自清洁程序;优选的,累积污染指数在超过临界值并不断升高时,洗衣机提醒用户的频率随之提高。
- 一种洗衣机控制方法,其特征在于,洗衣机至少以进水水质为影响因素测算单次洗涤中洗涤桶的污染指数,并且在多次洗涤的累积污染指数达到或超过临界值时提醒用户运行自清洁程序。
- 根据权利要求11所述的控制方法,其特征在于,洗衣机还以所选择的洗涤程序和/或运行信息为影响因素测算污染指数,所述运行信息包括洗涤温度、洗涤时间、洗涤次数、洗涤间隔中的一种或几种,洗衣机根据各项运行信息对应的系数测算污染指数;优选的,所述运行信息包括洗涤间隔和洗涤温度;更优选的,所述运行信息为洗涤间隔。
- 根据权利要求11或12所述的控制方法,其特征在于,洗衣机根据进水水质和/或洗涤程序和/或运行信息对洗涤桶污染程度的贡献设置相应的系数,用以测算污染指数;洗衣机将统计周期内各单次洗涤的污染指数累加计算得到累积污染指数。
- 根据权利要求11~13任意一项所述的控制方法,其特征在于,所述污染指数包括水质系数,所述水质系数是通过测算单次洗涤中进水水质对洗涤桶污染程度的贡献得到的;累积污染指数中还包括累积水质系数,所述累积水质系数是通过测算多次洗涤中进水水质对洗涤桶污染程度的贡献得到的。
- 根据权利要求11~14任意一项所述的控制方法,其特征在于,所述进水水质包括水质 硬度、洗涤桶内的水体温度和洗涤桶内水体存留时间,洗衣机将各项进水水质对洗涤桶污染程度的贡献转化为水质系数;优选的,所述水质系数包括对洗涤桶内的水体温度进行积分;更优选的,所述水质系数包括对洗涤桶内的水体温度和/或洗涤桶内水体存留时间进行积分。
- 根据权利要求11~15任意一项所述的控制方法,其特征在于,所述控制方法还包括统计累积水质系数在累积污染指数中的占比,所述占比在达到一定比例时提示用户加入针对水垢的清洁剂。
- 根据权利要求16所述的控制方法,洗衣机预设累积水质系数或所述占比的第一参考值和第二参考值,当累积水质系数或占比超过第一参考值时提示用户在运行自清洁程序时加入针对水垢的清洁剂,在累积水质系数或占比超过第二参考值时提示用户加入针对水垢的清洁剂浸泡洗涤桶后再运行自清洁程序;优选的,在累积水质系数或占比超过第二参考值时提示用户进行拆桶清洗,同时对加热管进行清洗。
- 根据权利要求11~17任意一项所述的控制方法,其特征在于,累积污染指数达到或超过临界值时,洗衣机提醒用户运行自清洁程序;优选的,累积污染指数在超过临界值并不断升高时,洗衣机提醒用户的频率随之提高。
- 根据权利要求19所述的控制方法,其特征在于,所述水质系数A i=D i×∫f(T i)dT i(i≥1),其中,D i表示第i次洗涤时进水硬度影响水质系数A i的硬度系数,∫f(T i)dT i表示对第i次洗涤中洗涤桶内水体温度T i进行积分,所述积分结果影响水质系数A i;所述第i次洗涤中洗涤桶内水体温度T i=∫g(t i)dt i(i≥1),对第i次洗涤中洗涤桶内水体留存的时间t i进行积分,所述积分结果体现时间t i内水体温度T i的变化。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021517671A JP7457697B2 (ja) | 2018-09-29 | 2019-09-09 | 洗濯機の制御方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811152186.7 | 2018-09-29 | ||
CN201811152192.2 | 2018-09-29 | ||
CN201811152192.2A CN110965263B (zh) | 2018-09-29 | 2018-09-29 | 一种洗衣机控制方法 |
CN201811152186.7A CN110965262B (zh) | 2018-09-29 | 2018-09-29 | 一种洗衣机控制方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020063304A1 true WO2020063304A1 (zh) | 2020-04-02 |
Family
ID=69951169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/104850 WO2020063304A1 (zh) | 2018-09-29 | 2019-09-09 | 洗衣机控制方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7457697B2 (zh) |
WO (1) | WO2020063304A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113985755A (zh) * | 2021-09-24 | 2022-01-28 | 青岛海尔科技有限公司 | 控制指令的发送方法及装置、存储介质及电子装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7557775B2 (ja) | 2020-12-25 | 2024-09-30 | 青島海爾洗衣机有限公司 | 洗濯機 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1365057A1 (en) * | 2002-05-21 | 2003-11-26 | Samsung Electronics Co., Ltd. | Washing and drying machine with impurity removal process |
CN1548608A (zh) * | 2003-05-12 | 2004-11-24 | 乐金电子(天津)电器有限公司 | 可视型洗涤桶洗净洗衣机及其洗涤桶的洗净方法 |
CN104775270A (zh) * | 2015-03-26 | 2015-07-15 | 无锡小天鹅股份有限公司 | 洗衣机及其桶壁脏污检测和提醒方法 |
CN108018674A (zh) * | 2016-11-03 | 2018-05-11 | 青岛海尔洗衣机有限公司 | 洗衣机控制方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04240486A (ja) * | 1991-01-22 | 1992-08-27 | Toshiba Corp | 洗濯機 |
JP2003079988A (ja) | 2001-09-10 | 2003-03-18 | Toshiba Corp | 洗濯機 |
JP4801161B2 (ja) | 2005-12-22 | 2011-10-26 | エルジー エレクトロニクス インコーポレイティド | 洗濯機の槽洗浄方法及び洗濯槽洗浄コースが備わった洗濯機 |
US10351986B2 (en) | 2014-12-05 | 2019-07-16 | Panasonic Intellectual Property Management Co., Ltd. | Laundry washing machine and method for detecting attached substance |
-
2019
- 2019-09-09 WO PCT/CN2019/104850 patent/WO2020063304A1/zh active Application Filing
- 2019-09-09 JP JP2021517671A patent/JP7457697B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1365057A1 (en) * | 2002-05-21 | 2003-11-26 | Samsung Electronics Co., Ltd. | Washing and drying machine with impurity removal process |
CN1548608A (zh) * | 2003-05-12 | 2004-11-24 | 乐金电子(天津)电器有限公司 | 可视型洗涤桶洗净洗衣机及其洗涤桶的洗净方法 |
CN104775270A (zh) * | 2015-03-26 | 2015-07-15 | 无锡小天鹅股份有限公司 | 洗衣机及其桶壁脏污检测和提醒方法 |
CN108018674A (zh) * | 2016-11-03 | 2018-05-11 | 青岛海尔洗衣机有限公司 | 洗衣机控制方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113985755A (zh) * | 2021-09-24 | 2022-01-28 | 青岛海尔科技有限公司 | 控制指令的发送方法及装置、存储介质及电子装置 |
CN113985755B (zh) * | 2021-09-24 | 2023-10-24 | 青岛海尔科技有限公司 | 控制指令的发送方法及装置、存储介质及电子装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2022519964A (ja) | 2022-03-28 |
JP7457697B2 (ja) | 2024-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110965262B (zh) | 一种洗衣机控制方法 | |
CN110965263B (zh) | 一种洗衣机控制方法 | |
CN111227742B (zh) | 一种洗涤设备的控制方法及洗涤设备 | |
CN104233700B (zh) | 一种洗衣机控制方法及洗衣机 | |
CN108018674B (zh) | 洗衣机控制方法 | |
RU2560267C2 (ru) | Способ определения и отображения степени гигиенической чистоты белья и/или прибора для обработки белья в приборе для обработки белья и прибор для обработки белья для осуществления данного способа | |
WO2020063304A1 (zh) | 洗衣机控制方法 | |
CN109539504A (zh) | 净化器的监测方法及装置和空气净化器 | |
CN108175359B (zh) | 控制洗碗机进水量的方法及装置 | |
EP2644079B1 (en) | Method of and device for detecting detergent in the process water of a household appliance by analysing the turbidity of the process water | |
KR20160096638A (ko) | 정화, 순환 및/또는 분리를 포함하는 물 하이브리드 장치를 위한 조절 방법 | |
CN110499612A (zh) | 自动调整洗涤参数的洗衣机控制方法及洗衣机 | |
CN112746438A (zh) | 一种洗衣机的控制方法及洗衣机 | |
TW202010897A (zh) | 洗衣機、以及連接到其的電子設備 | |
CN110331553B (zh) | 衣物处理装置的清洁提示方法和装置 | |
KR101290568B1 (ko) | 식기 세척기용 제어 장치 및 그 방법 | |
CN113057549B (zh) | 一种洗碗机控制方法、装置、电子设备及存储介质 | |
US20230180992A1 (en) | System with a dishwasher, method, and computer program product | |
WO2018113757A1 (zh) | 进水管过滤网堵塞自诊断方法及洗衣机 | |
CN110004648A (zh) | 一种衣物处理方法及衣物处理设备 | |
JP3171531B2 (ja) | 食器洗浄機 | |
WO2021223763A1 (zh) | 用于洗涤设备的杀菌控制方法 | |
CN111110070A (zh) | 一种食品加工机的控制方法 | |
CN110906394A (zh) | 一种吸油烟机的油杯状态检测方法 | |
CN117144633A (zh) | 洗涤装置自清洁的控制方法、洗涤装置、存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021517671 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19864733 Country of ref document: EP Kind code of ref document: A1 |