[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019239641A1 - 電気化学セル - Google Patents

電気化学セル Download PDF

Info

Publication number
WO2019239641A1
WO2019239641A1 PCT/JP2019/006791 JP2019006791W WO2019239641A1 WO 2019239641 A1 WO2019239641 A1 WO 2019239641A1 JP 2019006791 W JP2019006791 W JP 2019006791W WO 2019239641 A1 WO2019239641 A1 WO 2019239641A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
oxide film
chromium oxide
embedded
electrode layer
Prior art date
Application number
PCT/JP2019/006791
Other languages
English (en)
French (fr)
Inventor
裕己 田中
中村 俊之
誠 大森
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018111683A external-priority patent/JP6484371B1/ja
Priority claimed from JP2018189229A external-priority patent/JP6476341B1/ja
Priority claimed from JP2018197004A external-priority patent/JP6559315B1/ja
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Publication of WO2019239641A1 publication Critical patent/WO2019239641A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • H01M8/0217Complex oxides, optionally doped, of the type AMO3, A being an alkaline earth metal or rare earth metal and M being a metal, e.g. perovskites
    • H01M8/0219Chromium complex oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2428Grouping by arranging unit cells on a surface of any form, e.g. planar or tubular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an electrochemical cell.
  • an alloy member used in an electrochemical cell such as a fuel cell
  • an alloy member including a base material composed of an alloy material containing Cr and a chromium oxide film formed by oxidizing the surface of the base material Is known (see, for example, Patent Document 1).
  • the chromium oxide film suppresses the evaporation of Cr from the base material to the outside.
  • This invention is made
  • the electrochemical cell according to the present invention includes an alloy member, a first electrode layer supported by the alloy member, a second electrode layer, and an electrolyte layer disposed between the first electrode layer and the second electrode layer.
  • the alloy member includes a base material composed of an alloy material containing chromium, a chromium oxide film that covers at least a part of the surface of the base material, and a peeling suppression unit that suppresses peeling of the chromium oxide film from the base material.
  • an electrochemical cell capable of suppressing peeling of the chromium oxide film of the alloy member from the base material.
  • Sectional drawing which shows the structure of the fuel battery cell which concerns on embodiment Sectional drawing which shows the structure of the alloy member which concerns on embodiment Sectional drawing which shows the structure of the burying part which is an example of the peeling suppression part which concerns on embodiment
  • the expanded sectional view of the embedding part which is an example of the peeling suppression part which concerns on embodiment
  • the expanded sectional view of the embedding part which is an example of the peeling suppression part which concerns on embodiment
  • Sectional drawing which shows the structure of the pore which is an example of the peeling suppression part which concerns on embodiment Sectional drawing which shows the structure of the anchor part which is an example of the peeling suppression part which concerns on embodiment
  • the fuel cell 1 is an example of the “electrochemical cell” according to the present invention.
  • the “electrochemical cell” is a concept including not only a fuel battery cell but also an electrolytic cell for generating hydrogen and oxygen from water vapor.
  • the fuel cell is abbreviated as “cell”.
  • FIG. 1 is a cross-sectional view showing a configuration of a cell 1 according to the embodiment.
  • the cell 1 includes a flow path member 3, an alloy member 4, a first electrode layer 5, an intermediate layer 6, an electrolyte layer 7, a reaction preventing layer 8, and a second electrode layer 9.
  • the flow path member 3 is formed in a U shape.
  • the flow path member 3 is joined to the alloy member 4.
  • a flow path 3S is formed between the flow path member 3 and the alloy member 4.
  • the flow path 3S is connected to a manifold (not shown).
  • fuel gas for example, hydrogen gas
  • the flow path member 3 can be made of, for example, an alloy material.
  • the flow path member 3 may have the same configuration as the alloy member 4.
  • the alloy member 4 is a support that supports the first electrode layer 5, the intermediate layer 6, the electrolyte layer 7, the reaction preventing layer 8, and the second electrode layer 9.
  • the alloy member 4 is formed in plate shape, it is not restricted to this.
  • the alloy member 4 may have other shapes such as a cylindrical shape or a box shape, for example.
  • each through-hole 4a can be formed by machining (for example, punching), laser processing, or chemical processing (for example, etching). Or the alloy member 4 may be comprised with the porous metal which has gas permeability. In this case, since the hole formed in the porous metal functions as the through hole 4a, it is not necessary to perform processing for forming the through hole 4a.
  • Alloy member 4 is formed in a plate shape.
  • the alloy member 4 may have a flat plate shape or a curved plate shape.
  • the alloy member 4 only needs to maintain the strength of the cell 1, and the thickness thereof is not particularly limited, but may be, for example, 0.1 mm to 2.0 mm.
  • FIG. 2 is a cross-sectional view showing a configuration in the vicinity of the surface of the alloy member 4.
  • a cross section perpendicular to the surface of the alloy member 4 is shown.
  • the alloy member 4 has a base material 41 and a chromium oxide film 42.
  • the base material 41 is made of an alloy material containing Cr (chromium).
  • a metal material Fe—Cr alloy steel (stainless steel, etc.), Ni—Cr alloy steel, or the like can be used.
  • the Cr content in the substrate 41 is not particularly limited, but can be 4 to 30% by mass.
  • the base material 41 may contain Ti (titanium) or Al (aluminum).
  • the Ti content in the substrate 41 is not particularly limited, but is 0.01 to 1.0 at. %.
  • the Al content in the substrate 41 is not particularly limited, but is 0.01 to 0.4 at. %.
  • the base material 41 may contain Ti as TiO 2 (titania) or may contain Al as Al 2 O 3 (alumina).
  • the chromium oxide film 42 is formed on the surface 41 a of the base material 41.
  • the chromium oxide film 42 covers at least a part of the surface 41 a of the base material 41.
  • the chromium oxide film 42 may cover at least a part of the surface 41a of the base material 41, but may cover substantially the entire surface 41a. Further, the chromium oxide film 42 may cover the inner peripheral surface of the through hole 4a.
  • the chromium oxide film 42 contains chromium oxide as a main component.
  • the phrase “the composition X contains the substance Y as a main component” means that the substance Y occupies 70% by weight or more in the entire composition X.
  • the thickness of the chromium oxide film 42 is not particularly limited, but can be, for example, 0.1 to 20 ⁇ m.
  • the base material 41, the chromium oxide film 42, and the like each time the cell 1 repeats the operation and the non-operation. Thermal stress is generated during this period. Therefore, the chromium oxide film 42 may be peeled off from the base material 41.
  • the alloy member 4 according to the present embodiment is provided with a “peeling suppression portion” for suppressing the chromium oxide film 42 from peeling from the base material 41.
  • a peeling suppression portion for suppressing the chromium oxide film 42 from peeling from the base material 41.
  • the first electrode layer 5 is supported by the alloy member 4.
  • the first electrode layer 5 is provided on the surface side of the alloy member 4.
  • the 1st electrode layer 5 is provided so that the area
  • the first electrode layer 5 is arranged on the surface of the alloy member 4 and does not enter each through hole 4a, but at least a part of the first electrode layer 5 enters each through hole 4a. You may go out. Since the connection between the alloy member 4 and the first electrode layer 5 is improved by the first electrode layer 5 entering each through-hole 4a, the thermal stress generated between the alloy member 4 and the first electrode layer 5 is improved. Therefore, it is possible to suppress the first electrode layer 5 from peeling from the alloy member 4.
  • the first electrode layer 5 is preferably porous.
  • the porosity of the first electrode layer 5 is not particularly limited, but may be 20% to 70%, for example.
  • the thickness of the first electrode layer 5 is not particularly limited, but may be 1 ⁇ m to 100 ⁇ m, for example.
  • fuel gas for example, hydrogen gas
  • the first electrode layer 5 is composed of a composite material such as NiO-GDC (gadolinium doped ceria), Ni-GDC, NiO-YSZ (yttria stabilized zirconia), Ni-YSZ, CuO-CeO 2 , Cu-CeO 2. can do.
  • the formation method in particular of the 1st electrode layer 5 is not restrict
  • the intermediate layer 6 is disposed on the first electrode layer 5.
  • the intermediate layer 6 is interposed between the first electrode layer 5 and the electrolyte layer 7.
  • the thickness of the intermediate layer 6 is not particularly limited, but may be 1 ⁇ m to 100 ⁇ m, for example.
  • the intermediate layer 6 preferably has oxide ion (oxygen ion) conductivity.
  • the intermediate layer 6 is more preferably electronically conductive.
  • the intermediate layer 6 can be composed of YSZ, GDC, SSZ (scandium stabilized zirconia), SDC (samarium-doped ceria), or the like.
  • the method for forming the intermediate layer 6 is not particularly limited, and can be formed by a firing method, a spray coating method, a PVD method, a CVD method, or the like.
  • the electrolyte layer 7 is disposed between the first electrode layer 5 and the second electrode layer 9. In the present embodiment, since the cell 1 has the intermediate layer 6 and the reaction preventing layer 8, the electrolyte layer 7 is interposed between the intermediate layer 6 and the reaction preventing layer 8.
  • the electrolyte layer 7 is formed so as to cover the entire first electrode layer 5, and the outer edge of the electrolyte layer 7 is joined to the alloy member 4.
  • the electrolyte layer 7 has oxide ion conductivity.
  • the electrolyte layer 7 has a gas barrier property that can suppress mixing of the oxidant gas and the fuel gas.
  • the electrolyte layer 7 may have a multilayer structure, but at least one layer is preferably a dense layer.
  • the porosity of the dense layer is preferably 10% or less, more preferably 5% or less, and still more preferably 2% or less.
  • the thickness of the electrolyte layer 7 is not particularly limited, but can be, for example, 1 ⁇ m to 10 ⁇ m.
  • the electrolyte layer 7 can be made of YSZ, GDC, SSZ, SDC, LSGM, or the like.
  • the method for forming the electrolyte layer 7 is not particularly limited, and can be formed by a firing method, a spray coating method, a PVD method, a CVD method, or the like.
  • reaction prevention layer 8 The reaction preventing layer 8 is disposed on the electrolyte layer 7.
  • the reaction preventing layer 8 is interposed between the electrolyte layer 7 and the second electrode layer 9.
  • the thickness of the reaction preventing layer 8 is not particularly limited, but can be, for example, 1 ⁇ m to 100 ⁇ m.
  • the reaction preventing layer 8 suppresses the formation of the high resistance layer by the reaction between the constituent material of the second electrode layer 9 and the constituent material of the electrolyte layer 7.
  • the reaction preventing layer 8 can be made of a ceria-based material such as GDC or SDC.
  • the method for forming the reaction preventing layer 8 is not particularly limited, and can be formed by a firing method, a spray coating method, a PVD method, a CVD method, or the like.
  • the second electrode layer 9 is disposed on the opposite side of the first electrode layer 5 with respect to the electrolyte layer 7. In the present embodiment, since the cell 1 has the reaction preventing layer 8, the second electrode layer 9 is disposed on the reaction preventing layer 8.
  • the second electrode layer 9 is preferably porous.
  • the porosity of the second electrode layer 9 is not particularly limited, but may be 20% to 70%, for example.
  • the thickness of the second electrode layer 9 is not particularly limited, but can be, for example, 1 ⁇ m to 100 ⁇ m.
  • an oxidant gas for example, air
  • the second electrode layer 9 functions as a cathode (air electrode).
  • the second electrode layer 9 can be composed of LSCF, LSF, LSC, LNF, LSM, or the like.
  • the second electrode layer 9 preferably contains a perovskite oxide containing two or more elements selected from the group consisting of La, Sr, Sm, Mn, Co, and Fe.
  • the formation method of the second electrode layer 9 is not particularly limited, and can be formed by a firing method, a spray coating method, a PVD method, a CVD method, or the like.
  • the alloy member 4 is provided with the peeling suppressing unit for suppressing the chromium oxide film 42 from peeling from the base material 41.
  • the configuration of the peeling suppression unit is not particularly limited as long as it has a function of suppressing the chromium oxide film 42 from peeling from the base material 41.
  • the peeling suppression unit may be, for example, one that increases the adhesion (or bonding force) of the chromium oxide film 42 to the base material 41, or thermal stress generated between the base material 41 and the chromium oxide film 42. It may be one that relaxes.
  • FIGS. 3 to 7 are cross-sectional views schematically showing the configuration in the vicinity of the surface of the alloy member 4. 3 to 7, a cross section perpendicular to the surface of the alloy member 4 (that is, the surface 42a of the chromium oxide film 42) is shown.
  • FIG. 3 a “buried portion 42 b” as an example of the peeling suppressing portion is illustrated.
  • the embedded part 42 b has a function of increasing the adhesion of the chromium oxide film 42 to the base material 41.
  • the base material 41 has a surface 41a and a plurality of recesses 41b.
  • the surface 41 a is an outer surface of the base material 41.
  • the substrate 41 is bonded to the chromium oxide film 42 on the surface 41a.
  • the surface 41a may be formed flat, but may be entirely or partially curved or bent, or may have minute irregularities.
  • the recess 41b is formed on the surface 41a.
  • the recess 41b extends from the opening 41c formed in the surface 41a toward the inside of the base material 41.
  • An embedded portion 42b is embedded in the recess 41b.
  • the concave portion 41b is narrowed toward the opening 41c. That is, the width of the recess 41b is narrow in the vicinity of the opening 41c.
  • the width W1 of the opening 41c is the length of a straight line CL that connects the edges of the opening 41c with the shortest distance in the cross section.
  • the width W1 of the opening 41c is not particularly limited, but can be, for example, 0.3 to 30 ⁇ m. Considering that the embedded portion 42b has sufficient strength, the width W1 is preferably 0.5 ⁇ m or more. As long as the width of the recess 41b is narrow in the vicinity of the opening 41c, the shape of the recess 41b is not particularly limited.
  • the chromium oxide film 42 has a buried portion 42b.
  • the embedded part 42 b is embedded in the recessed part 41 b of the base material 41.
  • the embedded portion 42b may be filled in the entire recess 41b or may be disposed in a part of the recess 41b.
  • the embedded portion 42b is constricted at the opening 41c of the recess 41b. That is, the embedded portion 42b is locally thin in the vicinity of the opening 41c. By such a bottleneck structure, the embedded portion 42b is locked to the concave portion 41b and an anchor effect is produced. As a result, the adhesion of the chromium oxide film 42 to the base material 41 is improved, and the chromium oxide film 42 can be prevented from peeling from the base material 41. Therefore, since it can suppress that Cr evaporates outside from the base material 41, it can suppress that the 2nd electrode layer 9 will deteriorate by Cr poisoning.
  • the embedded portion 42b is constricted in the opening 41c means that the width W2 of the embedded portion 42b is larger than the width W1 of the opening 41c in a cross section perpendicular to the surface 42a of the chromium oxide film 42. .
  • the width W2 of the embedded portion 42b is the maximum dimension of the embedded portion 42b in the direction parallel to the straight line CL that defines the width W1 of the opening 41c.
  • the chromium oxide film 42 has a plurality of embedded portions 42b.
  • the average depth of the plurality of embedded portions 42b is not particularly limited, but is preferably 0.7 ⁇ m or more. Thereby, since the sufficient anchor effect can be exhibited as the whole of the plurality of embedded portions 42b, the adhesion of the chromium oxide film 42 to the base material 41 can be particularly improved. As a result, the chromium oxide film 42 can be further prevented from peeling from the base material 41.
  • the average depth of the plurality of embedded portions 42b is preferably 1.0 ⁇ m or more, and more preferably 1.5 ⁇ m or more. In addition, the average depth of the plurality of embedded portions 42b is preferably 30 ⁇ m or less.
  • the average depth of the plurality of buried portions 42b is defined as that of each of the ten buried portions 42b randomly selected from at least one image magnified 1000 to 20000 times by an FE-SEM (field emission scanning electron microscope). It is a value obtained by arithmetically averaging the depth D1.
  • the depth D1 of the embedded portion 42b is the maximum dimension of the embedded portion 42b in the direction perpendicular to the straight line CL that defines the width W1 of the opening 41c.
  • the embedded portion 42b having a depth D1 of less than 0.1 ⁇ m has a slight anchor effect, it is excluded when calculating the average depth of the plurality of embedded portions 42b.
  • the depth D1 of each embedded portion 42b is not particularly limited, but can be set to 0.5 to 30 ⁇ m, for example.
  • the standard deviation of the depth D1 of each of the ten embedded portions 42b used for calculating the average depth is preferably 0.2 or more. Thereby, the anchor effect as the whole some embedding part 42b can be improved more.
  • the ratio of the standard deviation of the depth D1 to the average depth is not particularly limited, but may be, for example, 0.1 to 0.95, and is preferably 0.2 or more and 0.9 or less.
  • the difference between the maximum value and the minimum value of the depth D1 is not particularly limited, but may be 0.5 to 29 ⁇ m, for example, and 1 to 25 ⁇ m. preferable.
  • the average width of the plurality of embedded portions 42b is not particularly limited, but may be, for example, 0.5 to 35 ⁇ m.
  • the average width of the plurality of embedded portions 42b is a value obtained by arithmetically averaging the widths W2 of the 10 embedded portions 42b used for calculating the average depth.
  • the average width of the plurality of embedded portions 42b is preferably 0.5 ⁇ m or more, and more preferably 0.7 ⁇ m or more.
  • the width W2 of each embedded part 42b is not particularly limited, but may be 0.5 to 35 ⁇ m, for example.
  • the width W2 of the embedded portion 42b is preferably 101% or more, more preferably 105% or more, and particularly preferably 110% or more of the width W1 of the opening 41c.
  • the standard deviation of the width W2 of each of the ten embedded portions 42b used for calculating the average width is preferably 0.2 or more.
  • the ratio of the standard deviation of the width W2 to the average width is not particularly limited, but can be, for example, 0.1 to 0.95, and is preferably 0.2 or more and 0.9 or less.
  • the difference between the maximum value and the minimum value of the width W2 is not particularly limited, but may be, for example, 0.5 to 34 ⁇ m, and preferably 1 to 30 ⁇ m.
  • the number of the embedded portions 42b in the plane direction is not particularly limited, but is preferably 3/10 mm or more.
  • the number of the embedded portions 42b in the surface direction is more preferably 100 pieces / mm or less.
  • the number of the embedded portions 42 b in the plane direction is the number of embedded portions 42 b provided per unit length of the surface 41 a of the base material 41 in a cross section perpendicular to the surface 42 a of the chromium oxide film 42.
  • the number of the embedded portions 42b is a value obtained by dividing the total number of the embedded portions 42b by the total length (total length) of the surface 41a on the above-described FE-SEM image.
  • the embedded portion 42b that is only partially shown in the FE-SEM image is also counted as one.
  • the buried portion 42b having a depth D1 of less than 0.1 ⁇ m has a small contribution to the stress dispersion effect, it is excluded when calculating the number of buried portions 42b.
  • the average equivalent circle diameter of the plurality of embedded portions 42b is not particularly limited, but can be 0.5 to 35 ⁇ m.
  • the average equivalent circle diameter of the plurality of embedded portions 42b is a value obtained by arithmetically averaging the equivalent circle diameters of the ten embedded portions 42b used for calculating the average depth.
  • the equivalent circle diameter is a diameter of a circle having the same area as the embedded portion 42b on the above-described FE-SEM image.
  • the base end portion of the embedded portion 42b is defined by a straight line CL that defines the width W1 of the opening 41c.
  • FIG. 4 is an enlarged cross-sectional view showing an example of the buried part 42b.
  • the angle ⁇ formed by the depth direction TD1 of the embedded portion 42b with respect to the surface 41a is preferably an acute angle. That is, it is preferable that the embedded portion 42b is inclined with respect to the surface 41a. As a result, a larger anchor effect can be exerted compared to the case where the embedded portion 42b is provided perpendicular to the surface 41a, and thus the adhesion of the chromium oxide film 42 to the base material 41 can be improved. . As a result, the chromium oxide film 42 can be further prevented from peeling from the base material 41.
  • the angle ⁇ formed by the depth direction TD1 of the embedded portion 42b is preferably 89 degrees or less, more preferably 85 degrees or less, and still more preferably 80 degrees or less.
  • the angle ⁇ formed by the depth direction TD1 of the embedded portion 42b is defined as follows. First, as shown in FIG. 4, the region of the embedded portion 42b is defined by a straight line CL1 that defines the width W1 of the opening 41c on the image magnified 1000 to 20000 times by FE-SEM. Next, when the two parallel tangents PL sandwiching the embedded portion 42b are rotated 180 degrees, the two parallel tangents PL are perpendicular to the two parallel tangents PL fixed at a position where the distance between the two parallel tangents PL is maximized. The direction is set to the depth direction TD1. The distance between the two parallel tangents PL at this time is the so-called maximum ferret diameter of the embedded portion 42b.
  • a virtual approximate straight line CL2 by the least square method is used by using a range of 100 ⁇ m starting from one reference point P1 and a range of 100 ⁇ m starting from the other reference point P2. Pull.
  • the approximate line CL2 is used for calculating the angle ⁇ and virtually shows the surface 41a. That is, in calculating the angle ⁇ , the approximate straight line CL2 is used as the surface 41a instead of the actual surface 41a.
  • An angle formed by the depth direction TD1 with respect to the approximate straight line CL2 is an angle ⁇ formed by the depth direction TD1 of the embedded portion 42b with respect to the surface 41a.
  • the angle ⁇ formed by the depth direction TD1 of the embedded portion 42b may be different for each embedded portion 42b or the same. Further, the depth direction TD1 of the embedded portion 42b may be different for each embedded portion 42b, or may be the same. When at least one of the angle ⁇ and the depth direction TD1 is different for each buried portion 42b, it is preferable because the anchor effect as a whole of the plurality of buried portions 42b can be remarkably improved.
  • FIG. 5 is an enlarged cross-sectional view showing an example of the recess 41b.
  • the outer edge 41E of the recess 41b is curved.
  • the stress is dispersed in the curved region of the outer edge 41E of the concave portion 41b, so that it is possible to suppress the local concentration of the stress.
  • the embedded portion 42b embedded in the concave portion 41b can be prevented from being damaged, so that the anchor effect by the embedded portion 42b can be maintained for a long period of time.
  • the outer edge 41E of the recess 41b includes first and second reference points P1 and P2 that define the opening width W1 of the opening 41c, and third and fourth reference points P3 and P4 that define the maximum width W3 of the recess 41b. .
  • the maximum width W3 of the recess 41b is the maximum dimension of the recess 41b in the direction parallel to the straight line CL that defines the opening width W1.
  • the maximum width W3 of the recessed portion 41b is the same as the width W2 of the embedded portion 42b described above, but may not be the same as the width W2 of the embedded portion 42b.
  • the maximum width W3 of the recess 41b is not particularly limited, but can be, for example, 0.5 to 35 ⁇ m.
  • the outer edge 41E of the recess 41b includes a first outer edge E1 from the first reference point P1 to the third reference point P3, a second outer edge E2 from the third reference point P3 to the fourth reference point P4, and a fourth reference. And a third outer edge E3 from the point P4 to the second reference point P2.
  • the outer edge 41E of the recess 41b is configured by the first to third outer edge portions E1 to E3 being successively connected.
  • the first outer edge E1 indicates a side wall on one side of the recess 41b.
  • the third outer edge E3 indicates the other side wall of the recess 41b.
  • the second outer edge portion E2 indicates the bottom surface of the recess 41b.
  • each of the first to third outer edge portions E1 to E3 is curved as a whole. Accordingly, stress concentration can be effectively suppressed in each of the first to third outer edge portions E1 to E3, so that the embedded portion 42b of the chromium oxide film 42 can be protected as a whole.
  • first to third outer edge portions E1 to E3 do not have to be curved, and at least one of them may be curved. Further, each of the first to third outer edge portions E1 to E3 may partially include a linear region.
  • the first outer edge E1 and the second outer edge E2 are smoothly connected at the third reference point P3. Specifically, the first outer edge portion E1 and the second outer edge portion E2 are connected to each other while being curved. Therefore, the stress concentration at the boundary between the side wall and the bottom surface of the concave portion 41b where stress tends to concentrate can be effectively suppressed, so that damage to the embedded portion 42b can be further suppressed.
  • the second outer edge portion E2 and the third outer edge portion E3 are smoothly connected at the fourth reference point P4. Specifically, the second outer edge portion E2 and the third outer edge portion E3 are connected to each other while being curved. Therefore, the stress concentration at the boundary between the side wall and the bottom surface of the concave portion 41b where stress tends to concentrate can be effectively suppressed, so that damage to the embedded portion 42b can be further suppressed.
  • first outer edge E1 and the surface 41a of the base material 41 are smoothly connected at the first reference point P1. Specifically, the first outer edge E1 and the surface 41a are connected to each other while being curved. Therefore, stress concentration at the boundary between the side wall of the recess 41b and the surface 41a of the base material where stress is likely to concentrate can be effectively suppressed, and damage to the embedded portion 42b can be further suppressed.
  • the third outer edge E3 and the surface 41a of the base material 41 are smoothly connected at the second reference point P2. Specifically, the third outer edge E3 and the surface 41a are connected to each other while being curved. Therefore, stress concentration at the boundary between the side wall of the recess 41b and the surface 41a of the base material where stress is likely to concentrate can be effectively suppressed, and damage to the embedded portion 42b can be further suppressed.
  • the second outer edge portion E2 projects to the base material 41 side. That is, the bottom surface of the recess 41 b is formed in a convex shape toward the inside of the base material 41. Therefore, stress concentration in the vicinity of the bottom surface of the concave portion 41b can be effectively suppressed, so that the deepest portion that is particularly easily damaged among the embedded portions 42b can be effectively protected.
  • a plurality of recesses 41 b are formed on the surface 41 a of the base material 41.
  • the concave portion 41b having a predetermined shape can be efficiently formed.
  • the average depth and angle ⁇ of the embedded portion 42b formed in a later process can be controlled.
  • the number of the embedded portions 42b in the surface direction can be controlled by adjusting the number of the recessed portions 41b in the surface direction.
  • the periphery of the opening 41c of the recess 41b is flattened and the opening 41c is narrowed.
  • the width W1 of the opening 41c can be adjusted by adjusting the pressing force by the roller.
  • the substrate 41 is heat-treated in the atmosphere (800 to 900 ° C., 5 to 20 hours). As a result, the chromium oxide film 42 is formed on the surface 41a of the substrate 41, and the embedded portion 42b is formed in the recess 41b.
  • pores 41 d as an example of the peeling suppressing portion is illustrated.
  • the pores 41d have a function of relieving thermal stress generated between the base material 41 and the chromium oxide film 42.
  • the base material 41 includes a surface region 41X within 30 ⁇ m from the surface 41a and an internal region 41Y exceeding 30 ⁇ m from the surface 41a.
  • the base material 41 has pores 41d formed in the surface region 41X.
  • the base material 41 preferably has a plurality of pores 41d. Thereby, since the thermal stress generated between the base material 41 and the chromium oxide film 42 can be relaxed in a wide range, peeling of the chromium oxide film 42 can be further suppressed.
  • the interval between the pores 41d is not particularly limited, and may be equal or may not be equal.
  • the pores 41 d are arranged one by one in the thickness direction of the base material 41 (direction perpendicular to the surface 41 a), but two or more pores 41 d may be arranged in the thickness direction.
  • the pores 41d may be exposed on the surface 41a or may be separated from the surface 41a.
  • the average equivalent circle diameter of the pores 41d is not particularly limited, but is preferably 0.5 ⁇ m or more and 20 ⁇ m or less.
  • the average equivalent circle diameter of the pores 41d is sufficiently improved, and the thermal stress generated between the base material 41 and the chromium oxide film 42 is sufficiently relieved.
  • the average equivalent circle diameter of the pores 41d is set to 20 ⁇ m or less, it is possible to suppress the local deformation around the pores 41d, and therefore, the peeling of the chromium oxide film 42 can be further suppressed.
  • the average equivalent circle diameter of the pores 41d means that ten cross-sectional images obtained by enlarging the cross section of the surface region 41X by 1000 to 20000 times with FE-SEM are obtained at 10 locations, and randomly selected from the 10 locations. This is an arithmetic average value of the equivalent circle diameter of 41d (limited to the equivalent circle diameter of more than 0.1 ⁇ m).
  • the equivalent circle diameter of the pore 41d is the diameter of a circle having the same area as the cross-sectional area of the pore 41d.
  • the average aspect ratio of the pores 41d is preferably 3 or less. As a result, the pores 41d are more easily deformed, so that the flexibility of the surface region 41X can be further improved.
  • the average aspect ratio of the pores 41d is a value obtained by arithmetically averaging the aspect ratios of the ten pores 41d as the measurement target of the average equivalent circle diameter.
  • the aspect ratio is a value obtained by dividing the maximum ferret diameter of the pore 41d by the minimum ferret diameter.
  • the maximum ferret diameter is a distance between the two straight lines when the pore 41d is sandwiched so that the distance between the two parallel straight lines is maximized on the FE-SEM image.
  • the minimum ferret diameter is the distance between the two straight lines when the pore 41d is sandwiched so that the distance between the two parallel straight lines is minimized on the FE-SEM image.
  • the number of pores 41d in the plane direction is preferably 5 / mm or more. As a result, the flexibility of the surface region 41X can be further improved, so that the occurrence of minor defects in the chromium oxide film 42 can be suppressed.
  • the number of pores 41d in the surface direction is more preferably 100 / mm or less. Accordingly, the pores 41d can be prevented from being connected to each other, so that the shape of the pores 41d can be controlled more easily.
  • the number of pores 41d is the number of pores 41d arranged per unit length.
  • the number of pores 41d is a value obtained by dividing the total number of pores 41d by the total length of the surface 42a on the FE-SEM image. When counting the total number of the pores 41d, the number of the pores 41d in which only a part is shown in the FE-SEM image is counted as one.
  • the pores 41d are not formed in the internal region 41Y, but the pores 41d may also be formed in the internal region 41Y.
  • the alloy member base material 41 preferably has a metal oxide 43 disposed on the inner surface of the pores 41d.
  • the metal oxide 43 covers at least a part of the inner surface of the pore 41d.
  • abnormal oxidation phenomenon a phenomenon in which a part of the chromium oxide film 42 grows so as to extend toward the inside of the base material 41.
  • the abnormal oxidation phenomenon is a phenomenon caused by local acceleration of the base material 41 when a minute defect exists in the chromium oxide film 42, for example.
  • the abnormal oxidation phenomenon occurs, if the pores 41d are not protected by the metal oxide 43, the material of the base material 41 around the pores 41d is oxidized and volume-expanded, so that the pores 41d are reduced or eliminated.
  • the metal oxide 43 is, for example, a single metal element oxide (FeO, Fe 2 O 3 , Fe 3 O 4 , Cr 2 O 3 , CaO, Al 2 O 3 , MnO, Mn 3 O 4 , SiO 2). , Al 2 O 3 , TiO 2 ), and multiple oxides ((Fe, Cr) 3 O 4 , (Mn, Cr) 3 O 4 ) composed of a plurality of metal elements, etc. Not limited.
  • the metal oxide 43 is preferably an oxide of an element having an equilibrium oxygen pressure lower than that of the main component element of the substrate 41 (hereinafter referred to as “low equilibrium oxygen pressure element”). Since the low equilibrium oxygen pressure element has a higher affinity with oxygen than the main component element of the base material 41, it is possible to maintain a more stable oxide form inside the base material 41.
  • Examples of the low equilibrium oxygen pressure element include, but are not limited to, Ti, Al, Ca, Si, Mn, and Cr.
  • Examples of the oxide of the low equilibrium oxygen pressure element include TiO 2 , Al 2 O 3 , CaO, SiO 2 , manganese oxide (for example, MnO, Mn 3 O 4 ), (Mn, Cr) 3 O 4 , and chromium oxide ( For example, at least one selected from CrO, Cr 2 O 3 ) and the like can be mentioned, but the present invention is not limited thereto.
  • the content ratio of the low equilibrium oxygen pressure element in the metal oxide 43 is preferably 0.3 or more in terms of cation ratio when the molar ratio of each element to the total sum of elements excluding oxygen is defined as the cation ratio. Thereby, the reduction or disappearance of the pores 41d due to the abnormal oxidation phenomenon can be suppressed.
  • the content of the low equilibrium oxygen pressure element in the metal oxide 43 is more preferably 0.4 or more, and particularly preferably 0.5 or more, in terms of cation ratio.
  • the content of the low equilibrium oxygen pressure element in the metal oxide 43 is determined by STEM (Scanning Transmission Microscope: Scanning Transmission Electron) at 10 locations randomly selected from the metal oxide 43 disposed on the inner surface of the pore 41d. It is obtained by measuring the metal content by the cation ratio using EDX of a microscope) and arithmetically averaging the measured values at 10 locations.
  • the metal oxide 43 may contain only one kind of metal oxide, or may contain two or more kinds. When the metal oxide 43 contains two or more kinds of metal oxides, a mixture in which the metal oxides are mixed may be formed.
  • the metal oxide 43 may exist in the form of particles dispersed and arranged on the inner surface of the pores 41d, or may substantially form a film. Therefore, the metal oxide 43 may cover the entire inner surface of the pore 41d, or may cover only a part of the inner surface of the pore 41d. Even when the metal oxide 43 covers only a part of the inner surface of the pore 41d, the effect of maintaining the shape of the pore 41d can be obtained as compared with the case where the metal oxide 43 does not exist.
  • the thickness of the metal oxide 43 is not particularly limited, but can be 0.1 to 5 ⁇ m, for example.
  • Extending portion 44 extending from pore 41d As shown in FIG. 6, it is preferable that the base material 41 has the extending
  • the extending portion 44 contains an oxide of a low equilibrium oxygen pressure element whose equilibrium oxygen pressure is lower than that of the main component element of the base material 41. Since the low equilibrium oxygen pressure element has a higher affinity for oxygen than the main component element of the base material 41, oxygen that permeates the base material 41 and accumulates in the pores 41 d can be preferentially taken into the extending portion 44. Therefore, since it can suppress that the material of the base material 41 around the pore 41d is oxidized, the shape of the pore 41d can be maintained over a long period of time. As a result, the stress relaxation effect by the pores 41d can be maintained over a long period.
  • Examples of the low equilibrium oxygen pressure element include, but are not limited to, Ti, Al, Ca, Si, Mn, and Cr.
  • the oxide of the low equilibrium oxygen pressure element includes TiO 2 such as manganese oxide (eg, MnO, Mn 3 O 4 ), (Mn, Cr) 3 O 4 , and chromium oxide (eg, CrO, Cr 2 O 3 ), Selected from Al 2 O 3 , CaO, SiO 2 , manganese oxide (eg, MnO, Mn 3 O 4 ), (Mn, Cr) 3 O 4 , chromium oxide (eg, CrO, Cr 2 O 3 ), etc. Although at least 1 sort is mentioned, it is not restricted to this.
  • the content ratio of the low equilibrium oxygen pressure element in the stretched portion 44 is preferably 0.3 or more in terms of cation ratio when the molar ratio of each element to the total sum of elements excluding oxygen is defined as the cation ratio. Thereby, oxygen in the pores 41 d can be preferentially taken into the extending portion 44.
  • the content of the low equilibrium oxygen pressure element in the stretched portion 44 is more preferably 0.4 or more, and particularly preferably 0.5 or more, in terms of cation ratio.
  • the content of the low equilibrium oxygen pressure element in the extending portion 44 is determined by the cation ratio of the content of the low equilibrium oxygen pressure element at 10 points that divide the entire length of the extending portion 44 extending from the pore 41d into 11 parts using EDX of STEM. It is obtained by measuring and arithmetically averaging the measured values at 10 points.
  • the extending part 44 may contain only one kind of oxide of a low equilibrium oxygen pressure element, or may contain two or more kinds. When the extending portion 44 contains two or more oxides of low equilibrium oxygen pressure elements, the two or more oxides may be mixed together to form a mixture.
  • the extending portion 44 preferably extends from the pore 41 d toward the inside of the base material 41. That is, the extending portion 44 preferably extends in the direction opposite to the chromium oxide film 42 from the pore 41d. Thereby, even if oxygen is taken into the extending portion 44 and the extending portion 44 grows, it is possible to prevent the extending portion 44 from protruding from the surface 41 a of the base material 41, so that the base material 41 and the chromium oxide film 42 Adhesion can be maintained.
  • the extending portion 44 is formed linearly along the thickness direction of the base material 41, but the shape of the extending portion 44 is not particularly limited.
  • the extending portion 44 may be curved or bent entirely or partially.
  • the length L0 of the stretched portion 44 is not particularly limited, but may be 0.5 to 30 ⁇ m, for example.
  • the length L0 of the extending portion 44 is the maximum dimension of the extending portion 44 in the thickness direction of the base material 41.
  • the length L0 of the stretched portion 44 is preferably 1.5 ⁇ m to 20 ⁇ m.
  • the extending part 44 may be entirely disposed in the surface region 41X, or may be partially disposed in the internal region 41Y.
  • the width W4 of the extending portion 44 is not particularly limited, but can be set to 0.2 to 4.0 ⁇ m, for example.
  • the width W4 of the extending portion 44 is the maximum dimension of the extending portion 44 in the plane direction parallel to the interface S2.
  • the width W4 of the extending portion 44 is preferably smaller than the length L0.
  • the width W4 of the extending portion 44 is preferably 0.5 ⁇ m to 3.0 ⁇ m.
  • pores are formed on the surface of the base material 41.
  • pores having a desired diameter can be efficiently formed by laser irradiation using a YAG laser, a carbon dioxide laser, or the like.
  • the size of the pores can be adjusted by appropriately controlling the laser output, the irradiation time, and the lens to be used.
  • the pores are filled with a paste obtained by adding ethyl cellulose and terpineol to the oxide powder of the low equilibrium oxygen pressure element.
  • a large-diameter hole that is shallower than the pore and has a large diameter is formed so as to overlap the pore.
  • a large hole having a desired diameter can be efficiently formed by laser irradiation using a YAG laser, a carbon dioxide laser, or the like.
  • the size of the large hole can be adjusted by appropriately controlling the laser output, the irradiation time, and the lens to be used.
  • a degreasing heat treatment is performed at 350 ° C. for 1 hour. Under this heat treatment condition, the oxidation of the surface 41a of the substrate 41 does not proceed, so the ductility of the substrate 41 is maintained.
  • a metal oxide 43 is formed on the inner surface of each large hole by sputtering using a metal oxide as a target.
  • a metal oxide for sputtering, VS-R400G manufactured by SCREEN Finetech Solutions Co., Ltd. can be used.
  • the opening of the large hole is closed and the pore 41d is formed.
  • the opening of the thick hole may be completely closed, but the opening may be left open.
  • the base material 41 is heat-treated in the air atmosphere (800 to 900 ° C., 5 to 20 hours), whereby the paste is solidified to form the stretched portion 44, and the chromium oxide film is formed on the surface of the base material 41. 42 is formed.
  • anchor portion 45 As an example of the peeling suppressing portion is illustrated.
  • the anchor portion 45 has a function of increasing the adhesion of the chromium oxide film 42 to the base material 41.
  • the base material 41 has a surface 41a and a plurality of recesses 41f. Each recess 41f is formed on the surface 41a. Each concave portion 41 f extends from the surface 41 a toward the inside of the base material 41.
  • the number of recesses 41f is not particularly limited, but is preferably widely distributed on the surface 41a. Moreover, although the space
  • the cross-sectional shape of the recess 41f is a shape that is curved or bent entirely or partially.
  • the cross-sectional shape of the recess 41f is not a linear shape but a shape in which at least a part is bent.
  • the deepest portion of the recess 41f may have an acute angle, an obtuse angle, or may be rounded.
  • FIG. 7 illustrates a wedge-shaped recess 41f (right side in FIG. 7) that is curved as a whole and a wedge-shaped recess 41f (left side in FIG. 7) whose lower half is curved.
  • Each anchor portion 45 is disposed in each recess 41f. Each anchor portion 45 is connected to the chromium oxide film 42 in the vicinity of the opening of the recess 41f.
  • the average actual length of the plurality of anchor portions 45 is longer than the average straight length of the plurality of anchor portions 45. This means that at least a part of the anchor part 45 is bent by bending or bending at least a part of the anchor part 45 entirely or partially. Thereby, since the anchor effect of the anchor part 45 with respect to the base material 41 can be enlarged, it can suppress that the chromium oxide film
  • the average actual length of the plurality of anchor portions 45 is an average value of the actual length L1 of each anchor portion 45.
  • the actual length L ⁇ b> 1 is the length of a line segment connecting the midpoints of portions of the anchor portion 45 embedded in the recess 41 f in the surface direction of the base material 41.
  • the actual length L ⁇ b> 1 indicates the total length along the extending direction of the anchor portion 45.
  • the average actual length of the anchor portions 45 is 20 anchor portions 45 randomly selected from images obtained by enlarging the cross-section of the base material 41 1000 times to 20000 times with a FE-SEM (field emission scanning electron microscope). It is obtained by arithmetically averaging each actual length L1.
  • 20 anchor portions 45 cannot be observed in one cross section, 20 anchor portions 45 may be selected from a plurality of cross sections.
  • the anchor portion 45 having an actual length L1 of less than 0.1 ⁇ m has a slight anchor effect and a small contribution to the effect of suppressing the peeling of the chromium oxide film 42, the average actual length of the anchor portion 45 is calculated. Shall be excluded.
  • the average straight line length of the plurality of anchor portions 45 is an average value of the straight line length L2 of each anchor portion 45.
  • the straight line length L2 is the length of a straight line connecting the start point and the end point of the line segment that defines the actual length L1.
  • the straight line length L2 indicates the shortest distance between both ends of the anchor portion 45.
  • the average straight line length of the plurality of anchor portions 45 is obtained by arithmetically averaging the straight line lengths L2 of the 20 anchor portions 45 selected to obtain the above average actual length.
  • the actual length L1 is substantially the same as the straight length L2, but at least one of the anchor portions 45 as in the present embodiment. If the portion is bent, the actual length L1 is longer than the straight line length L2.
  • the actual length L1 and the straight line length L2 may be different for each anchor portion 45 as shown in FIG. 7, or the anchor portions 45 may be the same.
  • the average actual length is not particularly limited, but can be, for example, 0.5 ⁇ m or more and 600 ⁇ m or less.
  • the average straight line length is not particularly limited, but can be, for example, 0.4 ⁇ m or more and 550 ⁇ m or less.
  • the average vertical length of the anchor portion 45 is not particularly limited, but may be, for example, 0.4 ⁇ m or more and 500 ⁇ m or less.
  • the average vertical length is an average value of the vertical length L3 of each anchor portion 45.
  • the vertical length L3 is the total length of the anchor portion 45 in the thickness direction of the base material 41 as shown in FIG.
  • the vertical length L3 may be different for each anchor portion 45 as shown in FIG. 7, or the anchor portions 45 may be the same.
  • the average bonding width between the plurality of anchor portions 45 and the chromium oxide film 42 is preferably 0.1 ⁇ m or more.
  • the average joint width of the plurality of anchor portions 45 is an average value of the joint width W5 of each anchor portion 45.
  • the joining width W5 is the total length of the tangent line between the anchor portion 45 and the chromium oxide film 42 in the cross section in the thickness direction of the base material 41.
  • the tangent line between the anchor portion 45 and the chromium oxide film 42 may be curved, wavy, or the like in addition to a straight line.
  • the average joint width of the plurality of anchor portions 45 is obtained by arithmetically averaging the joint widths W5 of the 20 anchor portions 45 selected to obtain the above-described average vertical length.
  • the upper limit value of the bonding width W5 is not particularly limited, and can be, for example, 100 ⁇ m or less.
  • the ratio of the average bonding width to the average actual length is not particularly limited, but is preferably 0.5 or less.
  • the anchor portion 45 is made of a ceramic material.
  • the ceramic material constituting the anchor portion 45 include Cr 2 O 3 (chromia), Al 2 O 3 (alumina), TiO 2 (titania), CaO (calcium oxide), SiO 2 (silica), and MnO (oxidation).
  • an oxide of an element having an equilibrium oxygen pressure lower than that of Cr is suitable as the ceramic material constituting the anchor portion 45.
  • An element having an equilibrium oxygen pressure lower than that of Cr is an element that has a higher affinity with oxygen than Cr and is easily oxidized. Therefore, by preferentially taking in oxygen passing through the chromium oxide film 42 into the anchor portion 45, Oxidation of the base material 41 around the anchor portion 45 can be suppressed. Thereby, since the form of the anchor part 45 can be maintained, the anchor effect by the anchor part 45 can be obtained over a long period of time. As a result, peeling of the chromium oxide film 42 from the base material 41 can be suppressed over a long period of time.
  • the lower element of the equilibrium oxygen pressure than cr Al (aluminum), Ti (titanium), Ca (calcium), Si (silicon), etc. Mn (manganese) can be mentioned.
  • Al 2 O 3 , TiO 2 , CaO, SiO 2 , MnO, MnCr 2 O 4 and the like but are not limited thereto.
  • the anchor portion 45 may contain only one type of element oxide having a lower equilibrium oxygen pressure than Cr, or may contain two or more types.
  • the anchor portion 45 may be constituted by Al 2 O 3, it may be constituted by a mixture of Al 2 O 3 and TiO 2, of TiO 2 and MnO and MnCr 2 O 4 You may be comprised with the mixture.
  • the average content of elements having an equilibrium oxygen pressure lower than that of Cr is the cation ratio when the molar ratio of each element to the total sum of elements excluding oxygen is defined as the cation ratio. It is preferable that it is 0.05 or more. Thereby, since the oxidation of the base material 41 surrounding the anchor portion 45 can be further suppressed, the anchor effect by the anchor portion 45 can be obtained for a longer period of time.
  • the upper limit value of the average content of elements having an equilibrium oxygen pressure lower than that of Cr is not particularly limited, and it is preferably as large as possible.
  • the average content of elements having an equilibrium oxygen pressure lower than that of Cr is obtained by the following method. First, in each of the 20 anchor portions 45 selected for obtaining the above average vertical length, the content ratio of elements having a lower equilibrium oxygen pressure than Cr at 10 points that divide the actual length L1 into 11 equal parts is determined. Measure with Next, the maximum value is selected from the content rates measured at 10 points for each anchor portion 45. Then, the average content of elements having an equilibrium oxygen pressure lower than that of Cr is obtained by arithmetically averaging the 20 maximum values selected for each of the 20 anchor portions 45.
  • the anchor portion 45 is preferably in contact with at least a part of the inner surface of the recess 41f.
  • the anchor portion 45 is preferably filled in the entire recess 41f.
  • the anchor portion 45 is preferably in contact with substantially the entire inner surface of the recess 41f.
  • the number of the anchor portions 45 is not particularly limited, but in the cross-sectional observation of the base material 41, it is preferable that 10 or more are observed per 10 mm length of the surface 41a, and 20 or more are observed per 10 mm length. More preferred. Thereby, since the anchor effect by the anchor part 45 can be exhibited in a wide range, it is possible to particularly suppress the chromium oxide film 42 from being peeled off from the base material 41.
  • a plurality of concave portions 41 f are formed on the surface 41 a of the base material 41.
  • the recess 41f can be efficiently formed by using shot peening, sand blasting or wet blasting.
  • the depth and width of the recess 41f are adjusted by adjusting the particle size of the abrasive.
  • the average actual length, the average straight line length, the average vertical length, and the average joint width of the plurality of anchor portions 45 to be formed later can be adjusted.
  • the surface 41a is leveled with a roller to bend or bend the concave portion 41f entirely or partially. Thereby, at least one part of each anchor part 45 formed later can be bent.
  • the anchor part paste is removed with a squeegee.
  • the anchor portion paste is filled into the recess 41f.
  • the base material 41 is heat-treated (800 to 900 ° C. for 1 to 20 hours) in the air atmosphere, whereby the anchor portion paste filled in the recess 41f is solidified to form the anchor portion 45, and the anchor A chromium oxide film 42 covering the portion 45 is formed.
  • the alloy member 4 has the base material 41 and the chromium oxide film 42, but may have a coating film 44 formed on the chromium oxide film 42.
  • a conductive ceramic material can be used as a material constituting the covering film 44.
  • the conductive ceramic material for example, a perovskite complex oxide containing La and Sr, a spinel complex oxide composed of transition metals such as Mn, Co, Ni, Fe, and Cu can be used. .
  • the cell 1 includes the intermediate layer 6 and the reaction preventing layer 8, but it does not need to include at least one of the intermediate layer 6 and the reaction preventing layer 8.
  • the first electrode layer 5 functions as an anode and the second electrode layer 9 functions as a cathode.
  • the first electrode layer 5 functions as a cathode and the second electrode layer 9 functions as an anode. May function.
  • the constituent materials of the first electrode layer 5 and the second electrode layer 9 are exchanged, the fuel gas is allowed to flow on the outer surface of the first electrode layer 5, and the oxidant gas is allowed to flow in the flow path 3S.
  • the base material 41 has the recess 41b and the chromium oxide film 42 has the embedded portion 42b.
  • the chromium oxide film 42 has the recess 41b.
  • the base material 41 may have an embedded portion 42b. Even in this case, peeling of the chromium oxide film 42 can be effectively suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

セル(1)は、合金部材(4)と、合金部材(4)によって支持される第1電極層(5)と、第2電極層(9)と、第1電極層(5)と第2電極層(9)との間に配置される電解質層(7)とを備える。合金部材(4)は、クロムを含有する合金材料によって構成される基材(41)と、基材(41)の表面(41a)の少なくとも一部を覆う酸化クロム膜(42)と、酸化クロム膜(42)が基材(41)から剥離することを抑制する剥離抑制部とを有する。

Description

電気化学セル
 本発明は、電気化学セルに関する。
 従来、燃料電池などの電気化学セルに用いられる合金部材として、Crを含有する合金材料によって構成される基材と、基材の表面が酸化することで形成された酸化クロム膜とを備える合金部材が知られている(例えば、特許文献1参照)。酸化クロム膜は、Crが基材から外部に蒸発することを抑制する。
特許第6383003号公報
 しかしながら、酸化クロム膜が基材から剥離すると、Crが外部に蒸発しやすくなるため、電気化学セルの電極がクロム被毒によって劣化してしまうおそれがある。そのため、酸化クロム膜が基材から剥離することを抑制したいという要請がある。
 本発明は、上述の状況に鑑みてなされたものであり、合金部材の酸化クロム膜が基材から剥離することを抑制可能な電気化学セルを提供することを目的とする。
 本発明に係る電気化学セルは、合金部材と、合金部材によって支持される第1電極層と、第2電極層と、第1電極層と第2電極層との間に配置される電解質層とを備える。合金部材は、クロムを含有する合金材料によって構成される基材と、基材の表面の少なくとも一部を覆う酸化クロム膜と、酸化クロム膜が基材から剥離することを抑制する剥離抑制部とを有する。
 本発明によれば、合金部材の酸化クロム膜が基材から剥離することを抑制可能な電気化学セルを提供することができる。
実施形態に係る燃料電池セルの構成を示す断面図 実施形態に係る合金部材の構成を示す断面図 実施形態に係る剥離抑制部の一例である埋設部の構成を示す断面図 実施形態に係る剥離抑制部の一例である埋設部の拡大断面図 実施形態に係る剥離抑制部の一例である埋設部の拡大断面図 実施形態に係る剥離抑制部の一例である気孔の構成を示す断面図 実施形態に係る剥離抑制部の一例であるアンカー部の構成を示す断面図
 (燃料電池セル1の構成)
 燃料電池セル1は、本発明に係る「電気化学セル」の一例である。「電気化学セル」とは、燃料電池セルのほか、水蒸気から水素と酸素を生成するための電解セルをも含む概念である。以下の説明では、燃料電池セルを「セル」と略称する。
 図1は、実施形態に係るセル1の構成を示す断面図である。セル1は、流路部材3、合金部材4、第1電極層5、中間層6、電解質層7、反応防止層8、及び第2電極層9を有する。
  [流路部材3]
 流路部材3は、U字状に形成される。流路部材3は、合金部材4に接合される。流路部材3と合金部材4との間には、流路3Sが形成される。流路3Sは、図示しないマニホールドに繋がる。本実施形態では、マニホールドから流路3Sに燃料ガス(例えば、水素ガス)が供給される。
 流路部材3は、例えば、合金材料によって構成することができる。流路部材3は、合金部材4と同様の構成を有していてもよい。
  [合金部材4]
 合金部材4は、第1電極層5、中間層6、電解質層7、反応防止層8、及び第2電極層9を支持する支持体である。本実施形態において、合金部材4は、板状に形成されているが、これに限られない。合金部材4は、例えば、筒状、或いは、箱状などの他の形状であってもよい。
 合金部材4のうち第1電極層5に接合される領域には、複数の貫通孔4aが形成されている。流路3Sを流れる燃料ガスは、各貫通孔4aを介して、第1電極層5に供給される。各貫通孔4aは、機械加工(例えば、パンチング加工)、レーザ加工、或いは、化学加工(例えば、エッチング加工)などによって形成することができる。或いは、合金部材4は、ガス透過性を有する多孔質金属によって構成されていてもよい。この場合、多孔質金属に形成された孔が貫通孔4aとして機能するため、貫通孔4aを形成するための加工を施す必要がない。
 合金部材4は、板状に形成される。合金部材4は、平板状であってもよいし、曲板状であってもよい。合金部材4は、セル1の強度を保つことができればよく、その厚みは特に制限されないが、例えば0.1mm~2.0mmとすることができる。
 ここで、図2は、合金部材4の表面付近における構成を示す断面図である。図2では、合金部材4の表面に垂直な断面が図示されている。
 図2に示すように、合金部材4は、基材41及び酸化クロム膜42を有する。
 基材41は、Cr(クロム)を含有する合金材料によって構成される。このような金属材料としては、Fe-Cr系合金鋼(ステンレス鋼など)やNi-Cr系合金鋼などを用いることができる。基材41におけるCrの含有率は特に制限されないが、4~30質量%とすることができる。
 基材41は、Ti(チタン)やAl(アルミニウム)を含有していてもよい。基材41におけるTiの含有率は特に制限されないが、0.01~1.0at.%とすることができる。基材41におけるAlの含有率は特に制限されないが、0.01~0.4at.%とすることができる。基材41は、TiをTiO(チタニア)として含有していてもよいし、AlをAl(アルミナ)として含有していてもよい。
 酸化クロム膜42は、基材41の表面41a上に形成される。酸化クロム膜42は、基材41の表面41aのうち少なくとも一部を覆う。酸化クロム膜42は、基材41の表面41aのうち少なくとも一部を覆っていればよいが、表面41aの略全面を覆っていてもよい。また、酸化クロム膜42は、貫通孔4aの内周面を覆っていてもよい。
 酸化クロム膜42は、酸化クロムを主成分として含有する。本実施形態において、組成物Xが物質Yを「主成分として含む」とは、組成物X全体のうち、物質Yが70重量%以上を占めることを意味する。酸化クロム膜42の厚みは特に制限されないが、例えば0.1~20μmとすることができる。
 このような合金部材4では、基材41の熱膨張係数と酸化クロム膜42の熱膨張係数とが異なるため、セル1が作動と非作動を繰り返すたびに、基材41と酸化クロム膜42との間に熱応力が発生する。そのため、酸化クロム膜42が基材41から剥離するおそれがある。
 そこで、本実施形態に係る合金部材4には、酸化クロム膜42が基材41から剥離することを抑制するための「剥離抑制部」が設けられている。剥離抑制部の具体例については後述する。
  [第1電極層5]
 第1電極層5は、合金部材4によって支持される。第1電極層5は、合金部材4の表面側に設けられる。第1電極層5は、合金部材4のうち複数の貫通孔4aが設けられた領域を覆うように設けられる。図2において、第1電極層5は、合金部材4の表面上に配置されており、各貫通孔4aに入り込んでいないが、第1電極層5の少なくとも一部は、各貫通孔4aに入り込んでいてもよい。第1電極層5が各貫通孔4aに入り込むことによって、合金部材4と第1電極層5との接続性が向上するため、合金部材4と第1電極層5との間に発生する熱応力によって第1電極層5が合金部材4から剥離することを抑制できる。
 第1電極層5は、多孔質であることが好ましい。第1電極層5の気孔率は特に制限されないが、例えば20%~70%とすることができる。第1電極層5の厚さは特に制限されないが、例えば1μm~100μmとすることができる。
 本実施形態において、第1電極層5には燃料ガス(例えば、水素ガス)が供給され、第1電極層5は、アノード(燃料極)として機能する。第1電極層5は、NiO-GDC(ガドリニウムドープセリア)、Ni-GDC、NiO-YSZ(イットリア安定化ジルコニア))、Ni-YSZ、CuO-CeO、Cu-CeOなどの複合材料によって構成することができる。
 第1電極層5の形成方法は特に制限されず、焼成法、スプレーコーティング法(溶射法、エアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法など)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などにより形成することができる。
  [中間層6]
 中間層6は、第1電極層5上に配置される。中間層6は、第1電極層5と電解質層7との間に介挿される。中間層6の厚さは特に制限されないが、例えば1μm~100μmとすることができる。
 中間層6は、酸化物イオン(酸素イオン)伝導性を有することが好ましい。中間層6は、電子伝導性を有することがより好ましい。中間層6は、YSZ、GDC、SSZ(スカンジウム安定化ジルコニア)、SDC(サマリウム・ドープ・セリア)などによって構成することができる。中間層6の形成方法は特に制限されず、焼成法、スプレーコーティング法、PVD法、CVD法などにより形成することができる。
  [電解質層7]
 電解質層7は、第1電極層5と第2電極層9との間に配置される。本実施形態では、セル1が中間層6及び反応防止層8を有しているため、電解質層7は、中間層6と反応防止層8との間に介挿されている。
 本実施形態において、電解質層7は、第1電極層5全体を覆うように形成されており、電解質層7の外縁は、合金部材4に接合されている。これにより、第1電極層5に供給される燃料ガスと第2電極層9に供給される酸化剤ガスとの混合を抑制できるため、合金部材4と電解質層7との間を別途封止する必要がない。
 電解質層7は、酸化物イオン伝導性を有する。電解質層7は、酸化剤ガスと燃料ガスとの混合を抑制できる程度のガスバリア性を有する。電解質層7は、複層構造であってもよいが、少なくとも1つの層が緻密層であることが好ましい。緻密層の気孔率は、10%以下が好ましく、5%以下がより好ましく、2%以下が更に好ましい。電解質層7の厚さは特に制限されないが、例えば1μm~10μmとすることができる。
 電解質層7は、YSZ、GDC、SSZ、SDC、LSGMなどによって構成することができる。電解質層7の形成方法は特に制限されず、焼成法、スプレーコーティング法、PVD法、CVD法などにより形成することができる。
  [反応防止層8]
 反応防止層8は、電解質層7上に配置される。反応防止層8は、電解質層7と第2電極層9との間に介挿される。反応防止層8の厚さは特に制限されないが、例えば1μm~100μmとすることができる。反応防止層8は、第2電極層9の構成材料と電解質層7の構成材料とが反応して高抵抗層が形成されることを抑制する。
 反応防止層8は、GDC、SDCなどのセリア系材料によって構成することができる。反応防止層8の形成方法は特に制限されず、焼成法、スプレーコーティング法、PVD法、CVD法などにより形成することができる。
  [第2電極層9]
 第2電極層9は、電解質層7を基準として、第1電極層5の反対側に配置される。本実施形態では、セル1が反応防止層8を有しているため、第2電極層9は、反応防止層8上に配置される。
 第2電極層9は、多孔質であることが好ましい。第2電極層9の気孔率は特に制限されないが、例えば20%~70%とすることができる。第2電極層9の厚さは特に制限されないが、例えば1μm~100μmとすることができる。
 本実施形態において、第2電極層9には酸化剤ガス(例えば、空気)が供給され、第2電極層9は、カソード(空気極)として機能する。第2電極層9は、LSCF、LSF、LSC、LNF、LSMなどによって構成することができる。特に、第2電極層9は、La、Sr、Sm、Mn、CoおよびFeからなる群から選ばれる2種類以上の元素を含有するペロブスカイト型酸化物を含んでいることが好ましい。
 第2電極層9の形成方法は特に制限されず、焼成法、スプレーコーティング法、PVD法、CVD法などにより形成することができる。
  [セル1の動作]
 まず、流路3Sから各貫通孔4aを介して第1電極層5に燃料ガスを供給し、かつ、第2電極層9に酸化剤ガスを供給しながら、セル1を作動温度(例えば、600℃~850℃)まで加熱する。すると、第2電極層9においてO(酸素)がe(電子)と反応してO2-(酸素イオン)が生成される。生成されたO2-は、電解質層7を通って第1電極層5に移動する。第1電極層5に移動したO2-は、燃料ガスに含まれるH(水素)と反応して、HO(水)とeとが生成される。このような反応によって、第1電極層5と第2電極層9との間に起電力が発生する。
 (合金部材4に設けられた剥離抑制部)
 上述のとおり、本実施形態に係る合金部材4には、酸化クロム膜42が基材41から剥離することを抑制するための剥離抑制部が設けられている。
 剥離抑制部は、酸化クロム膜42が基材41から剥離することを抑制する機能を有している限り、その構成は特に制限されない。剥離抑制部は、例えば、基材41に対する酸化クロム膜42の密着力(又は、接合力)を高めるものであってもよいし、基材41と酸化クロム膜42との間に発生する熱応力を緩和させるものであってもよい。
 以下、剥離抑制部の具体例について、図3~図7を参照しながら説明する。図3~図7は、合金部材4の表面付近における構成を模式的に示す断面である。図3~図7では、合金部材4の表面(すなわち、酸化クロム膜42の表面42a)に垂直な断面が図示されている。
  [剥離抑制部の具体例1]
 図3では、剥離抑制部の一例としての「埋設部42b」が図示されている。埋設部42bは、基材41に対する酸化クロム膜42の密着力を高める機能を有する。
  1.埋設部42bの構成
 図3に示すように、基材41は、表面41aと、複数の凹部41bとを有する。表面41aは、基材41の外側の表面である。基材41は、表面41aにおいて酸化クロム膜42に接合される。表面41aは、平坦に形成されていてもよいが、全体的又は部分的に湾曲或いは屈曲していてもよいし、微小な凹凸が形成されていてもよい。
 凹部41bは、表面41aに形成される。凹部41bは、表面41aに形成された開口41cから基材41の内部に向かって延びる。凹部41b内には、埋設部42bが埋設される。
 凹部41bは、開口41cに近づくほど窄まっている。すなわち、凹部41bの幅は、開口41c付近で狭くなっている。開口41cの幅W1は、当該断面において、開口41cの縁を最短距離で結ぶ直線CLの長さである。開口41cの幅W1は特に制限されないが、例えば0.3~30μmとすることができる。埋設部42bに十分な強度を持たせることを考慮すると、幅W1は、0.5μm以上が好ましい。なお、凹部41bの幅が開口41c付近で狭くなっている限り、凹部41bの形状は特に制限されない。
 酸化クロム膜42は、埋設部42bを有する。埋設部42bは、基材41の凹部41b内に埋設される。埋設部42bは、凹部41bの全体に充填されていてもよいし、凹部41bの一部分に配置されていてもよい。
 埋設部42bは、凹部41bの開口41cにおいてくびれている。すなわち、埋設部42bは、開口41c付近で局所的に細くなっている。このようなボトルネック構造によって、埋設部42bが凹部41bに係止されアンカー効果が生じる。その結果、基材41に対する酸化クロム膜42の密着力が向上して、酸化クロム膜42が基材41から剥離することを抑制できる。よって、Crが基材41から外部に蒸発することを抑制できるため、第2電極層9がCr被毒によって劣化してしまうことを抑制できる。
 本実施形態において、埋設部42bが開口41cにおいてくびれているとは、酸化クロム膜42の表面42aに垂直な断面において、埋設部42bの幅W2が開口41cの幅W1よりも大きいことを意味する。埋設部42bの幅W2とは、開口41cの幅W1を規定する直線CLに平行な方向における埋設部42bの最大寸法である。
  2.埋設部42bのサイズなど
 本実施形態において、酸化クロム膜42は、埋設部42bを複数有している。複数の埋設部42bの平均深さは特に制限されないが、0.7μm以上が好ましい。これにより、複数の埋設部42b全体として十分なアンカー効果を発揮させることができるため、酸化クロム膜42の基材41に対する密着力を特に向上させることができる。その結果、酸化クロム膜42が基材41から剥離することをより抑制できる。複数の埋設部42bの平均深さは、1.0μm以上が好ましく、1.5μm以上がより好ましい。また、複数の埋設部42bの平均深さは、30μm以下が好ましい。
 複数の埋設部42bの平均深さとは、FE-SEM(電界放射型走査型電子顕微鏡)によって1000-20000倍に拡大した少なくとも1枚の画像から無作為に選出した10個の埋設部42bそれぞれの深さD1を算術平均した値である。埋設部42bの深さD1とは、開口41cの幅W1を規定する直線CLに垂直な方向における埋設部42bの最大寸法である。ただし、深さD1が0.1μm未満の埋設部42bは、アンカー効果が軽微であるため、複数の埋設部42bの平均深さを算出する際には除外するものとする。
 各埋設部42bの深さD1は特に制限されないが、例えば0.5~30μmとすることができる。平均深さの算出に用いた10個の埋設部42bそれぞれの深さD1の標準偏差は、0.2以上であることが好ましい。これにより、複数の埋設部42b全体としてのアンカー効果をより向上させることができる。平均深さに対する深さD1の標準偏差の比率(いわゆる、変動係数)は特に制限されないが、例えば0.1~0.95とすることができ、0.2以上0.9以下が好ましい。平均深さの算出に用いた10個の埋設部42bにおいて、深さD1の最大値と最小値との差は特に制限されないが、例えば0.5~29μmとすることができ、1~25μmが好ましい。
 また、複数の埋設部42bの平均幅は、特に制限されないが、例えば0.5~35μmとすることができる。複数の埋設部42bの平均幅とは、平均深さの算出に用いた10個の埋設部42bそれぞれの幅W2を算術平均した値である。複数の埋設部42b全体としてのアンカー効果をより向上させることを考慮すると、複数の埋設部42bの平均幅は、0.5μm以上が好ましく、0.7μm以上がより好ましい。
 各埋設部42bの幅W2は特に制限されないが、例えば0.5~35μmとすることができる。各埋設部42bのアンカー効果をより向上させることを考慮すると、埋設部42bの幅W2は、開口41cの幅W1の101%以上が好ましく、105%以上がより好ましく、110%以上が特に好ましい。平均幅の算出に用いた10個の埋設部42bそれぞれの幅W2の標準偏差は、0.2以上であることが好ましい。これにより、複数の埋設部42b全体としてのアンカー効果をより向上させることができる。平均幅に対する幅W2の標準偏差の比率(いわゆる、変動係数)は特に制限されないが、例えば0.1~0.95とすることができ、0.2以上0.9以下が好ましい。平均幅の算出に用いた10個の埋設部42bにおいて、幅W2の最大値と最小値との差は特に制限されないが、例えば0.5~34μmとすることができ、1~30μmが好ましい。
 また、基材41の表面41aに垂直な断面において、面方向(表面41aに平行な方向)における埋設部42bの存在個数は特に制限されないが、3個/10mm以上であることが好ましい。これによって、酸化クロム膜42にかかる応力を分散させることができるため、酸化クロム膜42に軽微な欠陥が生じることを抑制できる。面方向における埋設部42bの存在個数は、100個/mm以下であることがより好ましい。これによって、凹部41b同士が連結してしまうことを抑制できるため、各凹部41bの形状を長期間にわたって維持することができる。
 面方向における埋設部42bの存在個数とは、酸化クロム膜42の表面42aに垂直な断面において、基材41の表面41aの単位長さ当たりに設けられた埋設部42bの個数である。埋設部42bの存在個数は、上述したFE-SEM画像上において、埋設部42bの全個数を表面41aの全長(延べ長さ)で除した値である。埋設部42bの個数を数える場合、FE-SEM画像に一部分だけ写っている埋設部42bも1個として数える。ただし、深さD1が0.1μm未満の埋設部42bは、応力分散効果への寄与が小さいため、埋設部42bの存在個数を算出する際には除外するものとする。
 また、複数の埋設部42bの平均円相当径は特に制限されないが、0.5~35μmとすることができる。複数の埋設部42bの平均円相当径とは、平均深さの算出に用いた10個の埋設部42bそれぞれの円相当径を算術平均した値である。円相当径とは、上述したFE-SEM画像上において、埋設部42bと同じ面積を有する円の直径である。埋設部42bの面積を求める際、埋設部42bの基端部は、開口41cの幅W1を規定する直線CLによって規定されるものとする。
  3.埋設部42bの角度
 図4は、埋設部42bの一例を拡大して示す断面図である。
 図4に示すように、表面41aに対して埋設部42bの深さ方向TD1が成す角度θは、鋭角であることが好ましい。すなわち、埋設部42bは、表面41aに対して傾斜していることが好ましい。これにより、埋設部42bが表面41aに対して垂直に設けられている場合に比べて大きなアンカー効果を発揮させることができるため、酸化クロム膜42の基材41に対する密着力を向上させることができる。その結果、酸化クロム膜42が基材41から剥離することをより抑制できる。
 埋設部42bのアンカー効果をより向上させることを考慮すると、埋設部42bの深さ方向TD1が成す角度θは、89度以下が好ましく、85度以下がより好ましく、80度以下が更に好ましい。
 埋設部42bの深さ方向TD1が成す角度θは、以下のように規定される。まず、図4に示すように、FE-SEMによって1000-20000倍に拡大した画像上で、開口41cの幅W1を規定する直線CL1によって埋設部42bの領域を画定する。次に、埋設部42bを挟む2本の平行接線PLを180度回転させたときに、2本の平行接線PL間の距離が最大になる位置に固定された2本の平行接線PLに垂直な方向を深さ方向TD1に設定する。このときの2本の平行接線PL間の距離が、埋設部42bのいわゆる最大フェレー径である。次に、直線CL1が表面41aと交差する2点を基準点P1,P2に設定する。次に、表面41aのうち、一方の基準点P1を起点とする100μmの範囲と、他方の基準点P2を起点とする100μmの範囲とを用いて、最小二乗法による仮想的な近似直線CL2を引く。この近似直線CL2は、角度θの算出に用いられるものであり、表面41aを仮想的に示している。すなわち、角度θの算出に際しては、実際の表面41aに代えて、近似直線CL2が表面41aとして用いられる。この近似直線CL2に対して深さ方向TD1の成す角度が、表面41aに対して埋設部42bの深さ方向TD1が成す角度θである。
 なお、酸化クロム膜42が埋設部42bを複数有する場合、埋設部42bの深さ方向TD1が成す角度θは、埋設部42bごとに異なっていてもよいし、同じであってもよい。また、埋設部42bの深さ方向TD1は、埋設部42bごとに異なっていてもよいし、同じであってもよい。角度θ及び深さ方向TD1の少なくとも一方が埋設部42bごとに異なる場合、複数の埋設部42b全体としてのアンカー効果を顕著に向上させることができるため好ましい。
  4.凹部41bの外縁形状
 図5は、凹部41bの一例を拡大して示す断面図である。
 図5に示すように、凹部41bの外縁41Eの少なくとも一部は湾曲していることが好ましい。これにより、合金部材200の膨張時または収縮時に、凹部41bの外縁41Eのうち湾曲した領域に応力が分散されることで、局所的に応力が集中することを抑制できる。その結果、凹部41b内に埋設された埋設部42bが破損することを抑制できるため、埋設部42bによるアンカー効果を長期間にわたって維持することができる。
 凹部41bの外縁41Eは、開口41cの開口幅W1を規定する第1及び第2基準点P1,P2と、凹部41bの最大幅W3を規定する第3及び第4基準点P3,P4とを含む。
 凹部41bの最大幅W3は、開口幅W1を規定する直線CLに平行な方向における凹部41bの最大寸法である。本実施形態において、凹部41bの最大幅W3は、上述した埋設部42bの幅W2と同じであるが、埋設部42bの幅W2と同じでなくてもよい。凹部41bの最大幅W3は特に制限されないが、例えば0.5~35μmとすることができる。
 凹部41bの外縁41Eは、第1基準点P1から第3基準点P3までの第1外縁部E1と、第3基準点P3から第4基準点P4までの第2外縁部E2と、第4基準点P4から第2基準点P2までの第3外縁部E3とを含む。
 凹部41bの外縁41Eは、第1乃至第3外縁部E1~E3が順次連なることによって構成される。第1外縁部E1は、凹部41bの一方側の側壁を示す。第3外縁部E3は、凹部41bの他方側の側壁を示す。第2外縁部E2は、凹部41bの底面を示す。
 本実施形態では、第1乃至第3外縁部E1~E3のそれぞれが、全体的に湾曲している。従って、第1乃至第3外縁部E1~E3それぞれにおいて効果的に応力集中を抑制できるため、酸化クロム膜42の埋設部42bを全体的に保護することができる。
 ただし、第1乃至第3外縁部E1~E3の全てが湾曲している必要はなく、これらのうち少なくとも1つが湾曲していればよい。また、第1乃至第3外縁部E1~E3のそれぞれは、直線状の領域を部分的に含んでいてもよい。
 本実施形態において、第1外縁部E1と第2外縁部E2とは、第3基準点P3において滑らかに連なる。具体的には、第1外縁部E1と第2外縁部E2とが互いに湾曲しながら繋がっている。従って、応力が集中しやすい凹部41bの側壁と底面との境界における応力集中を効果的に抑制できるため、埋設部42bの破損をより抑制できる。
 また、第2外縁部E2と第3外縁部E3とは、第4基準点P4において滑らかに連なる。具体的には、第2外縁部E2と第3外縁部E3とが互いに湾曲しながら繋がっている。従って、応力が集中しやすい凹部41bの側壁と底面との境界における応力集中を効果的に抑制できるため、埋設部42bの破損をより抑制できる。
 また、第1外縁部E1と基材41の表面41aとは、第1基準点P1において滑らかに連なる。具体的には、第1外縁部E1と表面41aとが互いに湾曲しながら繋がっている。従って、応力が集中しやすい凹部41bの側壁と基材の表面41aとの境界における応力集中を効果的に抑制できるため、埋設部42bの破損をより抑制できる。
 また、第3外縁部E3と基材41の表面41aとは、第2基準点P2において滑らかに連なる。具体的には、第3外縁部E3と表面41aとが互いに湾曲しながら繋がっている。従って、応力が集中しやすい凹部41bの側壁と基材の表面41aとの境界における応力集中を効果的に抑制できるため、埋設部42bの破損をより抑制できる。
 本実施形態では、第2外縁部E2は、基材41側に張り出している。すなわち、凹部41bの底面は、基材41の内側に向かって凸状に形成されている。従って、凹部41bの底面付近における応力集中を効果的に抑制できるため、埋設部42bのうち特に破損しやすい最深部を効果的に保護することができる。
  5.埋設部42bの作製方法
 まず、基材41の表面41aに複数の凹部41bを形成する。例えばショットピーニング、サンドブラスト又はウェットブラストを用いることによって、所定形状の凹部41bを効率的に形成することができる。この際、凹部41bの深さ及び角度を調整することによって、後工程で形成される埋設部42bの平均深さや角度θなどを制御できる。また、面方向における凹部41bの個数を調整することによって、面方向における埋設部42bの存在個数を制御できる。
 次に、基材41の表面41a上でローラーを転がすことで、凹部41bの開口41c周辺を平坦にして、開口41cを狭くする。この際、ローラーによる押圧力を調整することによって、開口41cの幅W1を調整することができる。
 次に、基材41の表面41a上に酸化クロムペーストを塗布して凹部41b内に酸化クロムペーストを充填した後、基材41を大気雰囲気で熱処理(800~900℃、5~20時間)することによって、基材41の表面41aに酸化クロム膜42が形成されるとともに、凹部41b内に埋設部42bが形成される。
  [剥離抑制部の具体例2]
 図6では、剥離抑制部の一例としての「気孔41d」が図示されている。気孔41dは、基材41と酸化クロム膜42との間に発生する熱応力を緩和させる機能を有する。
  1.気孔41dの構成
 基材41は、表面41aから30μm以内の表面領域41Xと、表面41aから30μm超の内部領域41Yとを含む。基材41は、表面領域41Xに形成された気孔41dを有する。これによって、基材41の表面領域41Xの柔軟性を向上させることができるため、基材41と酸化クロム膜42との間に発生する熱応力を表面領域41Xによって緩和することができる。その結果、酸化クロム膜42が基材41から剥離することを抑制することができる。
 図6に示すように、基材41は、気孔41dを複数有することが好ましい。これによって、基材41と酸化クロム膜42との間に発生する熱応力を広い範囲で緩和させることができるため、酸化クロム膜42の剥離をより抑制できる。
 基材41が複数の気孔41dを有する場合、各気孔41dの間隔は特に制限されず、等間隔であってもよいし、等間隔でなくてもよい。図6では、基材41の厚み方向(表面41aに垂直な方向)において気孔41dが1個ずつ配置されているが、厚み方向に2個以上の気孔41dが配置されていてもよい。また、気孔41dは、表面41aに露出していてもよいし、表面41aから離れていてもよい。
  2.気孔41dのサイズなど
 基材41が複数の気孔41dを有する場合、気孔41dの平均円相当径は特に制限されないが、0.5μm以上20μm以下であることが好ましい。気孔41dの平均円相当径を0.5μm以上とすることによって、表面領域41Xの柔軟性を十分に向上させて、基材41と酸化クロム膜42との間に発生する熱応力を十分に緩和させることができる。また、気孔41dの平均円相当径を20μm以下とすることによって、各気孔41dの周辺に局所的な変形が生じることを抑制できるため、酸化クロム膜42の剥離をより抑制できる。
 気孔41dの平均円相当径とは、表面領域41Xの断面をFE-SEMで1000-20000倍に拡大した画像を10箇所で取得し、当該10箇所の画像から無作為に選出した10個の気孔41d(ただし、円相当径0.1μm超のものに限る)の円相当径を算術平均した値である。気孔41dの円相当径とは、気孔41dの断面積と同じ面積を有する円の直径である。
 気孔41dの平均アスペクト比は、3以下であることが好ましい。これによって、気孔41dがより変形しやすくなるため、表面領域41Xの柔軟性をより向上させることができる。
 気孔41dの平均アスペクト比とは、平均円相当径の測定対象とした10個の気孔41dのアスペクト比を算術平均した値である。アスペクト比とは、気孔41dの最大フェレー径を最小フェレー径で除した値である。最大フェレー径は、上述したFE-SEM画像上において、平行な2本の直線間の距離が最大になるように気孔41dを挟んだときの当該2本の直線間の距離である。最小フェレー径は、上述したFE-SEM画像上において、平行な2本の直線間の距離が最小になるように気孔41dを挟んだときの当該2本の直線間の距離である。
 面方向における気孔41dの存在個数は、5個/mm以上であることが好ましい。これによって、表面領域41Xの柔軟性をより向上させることができるため、酸化クロム膜42に軽微な欠陥が生じることを抑制できる。また、面方向における気孔41dの存在個数は、100個/mm以下であることがより好ましい。これによって、気孔41dどうしが連結してしまうことを抑制できるため、気孔41dの形状をより制御し易くなる。
 気孔41dの存在個数とは、単位長さ当たりに配置された気孔41dの個数である。気孔41dの存在個数は、上述したFE-SEM画像上において、気孔41dの全数を表面42aの全長で除した値である。気孔41dの全数を数える場合、FE-SEM画像に一部分だけが写っている気孔41dも1個として数える。
 なお、図6では、内部領域41Yには気孔41dが形成されていないが、内部領域41Yにも気孔41dが形成されていてもよい。
  3.気孔41d内の金属酸化物43
 図6に示すように、合金部材基材41は、気孔41dの内表面上に配置される金属酸化物43を有することが好ましい。
 金属酸化物43は、気孔41dの内表面のうち少なくとも一部を覆っている。これによって、酸化クロム膜42の一部が基材41の内部に向かって延びるように成長する現象(以下、「異常酸化現象」という。)が発生したとしても、金属酸化物43の形態を維持できるため、その結果として気孔41dの形状を維持することができる。従って、気孔41dによる応力緩和効果を長期間に亘って維持することができる。
 異常酸化現象とは、例えば、酸化クロム膜42に微小な欠陥が存在する場合に、基材41の酸化が局所的に促進されることによって生じる現象である。異常酸化現象が発生した場合、気孔41dが金属酸化物43で保護されていなければ、気孔41d周辺の基材41の材料が酸化され体積膨張することによって、気孔41dが縮小或いは消滅してしまう。
 金属酸化物43は、例えば、単一の金属元素の酸化物(FeO、Fe、Fe、Cr、CaO、Al、MnO、Mn、SiO、Al、TiO)、および複数の金属元素からなる複酸化物((Fe,Cr),(Mn,Cr))などによって構成することができるが、これに制限されない。
 金属酸化物43は、基材41の主成分元素より平衡酸素圧の低い元素(以下、「低平衡酸素圧元素」という。)の酸化物であることが好ましい。低平衡酸素圧元素は、基材41の主成分元素よりも酸素との親和性が高いため、基材41内部でより安定した酸化物形態を維持することができる。
 低平衡酸素圧元素としては、例えば、Ti、Al、Ca、Si、Mn、Crなどが挙げられるが、これに限られない。低平衡酸素圧元素の酸化物としては、TiO、Al、CaO、SiO、酸化マンガン(例えば、MnO、Mn)、(Mn,Cr)、及び酸化クロム(例えば、CrO、Cr)などから選択される少なくとも1種が挙げられるが、これに限られない。
 金属酸化物43における低平衡酸素圧元素の含有率は、全構成元素のうち酸素を除く元素の総和に対する各元素のモル比をカチオン比と定義した場合、カチオン比で0.3以上が好ましい。これによって、異常酸化現象による気孔41dの縮小又は消滅を抑制することができる。金属酸化物43における低平衡酸素圧元素の含有率は、カチオン比で0.4以上がより好ましく、0.5以上が特に好ましい。
 金属酸化物43における低平衡酸素圧元素の含有率は、気孔41dの内表面上に配置された金属酸化物43から無作為に選出した10箇所において、STEM(Scanning Transmission Electron Microscope:走査型透過電子顕微鏡)のEDXを用いて金属の含有率をカチオン比で測定し、10箇所における測定値を算術平均することによって得られる。
 金属酸化物43は、金属酸化物を1種だけ含有していてもよいし、2種以上含有していてもよい。金属酸化物43が金属酸化物を2種以上含有している場合、各金属酸化物どうしが混ざり合った混合体を構成していてもよい。
 金属酸化物43は、気孔41dの内表面上に分散して配置された粒子の形態で存在してもよいし、実質的に膜を形成していてもよい。従って、金属酸化物43は、気孔41dの内表面の全面を覆っていてもよいし、気孔41dの内表面の一部のみを覆っていてもよい。金属酸化物43が気孔41dの内表面の一部のみを覆っている場合であっても、金属酸化物43が存在しない場合に比べて、気孔41dの形状を維持する効果が得られる。金属酸化物43が膜を形成している場合、金属酸化物43の厚みは特に制限されないが、例えば、0.1~5μmとすることができる。
  4.気孔41dから延びる延伸部44
 図6に示すように、基材41は、気孔41dから延びる延伸部44を有することが好ましい。延伸部44の略全体が基材41に埋設されており、その一端部は気孔41d内に露出している。
 延伸部44は、基材41の主成分元素より平衡酸素圧の低い低平衡酸素圧元素の酸化物を含有する。低平衡酸素圧元素は、基材41の主成分元素よりも酸素との親和力が高いため、基材41を透過して気孔41dに溜まる酸素を延伸部44に優先的に取り込むことができる。従って、気孔41d周辺の基材41の材料が酸化することを抑制できるため、気孔41dの形状を長期間に亘って維持することができる。その結果、気孔41dによる応力緩和効果を長期間に亘って維持することができる。
 低平衡酸素圧元素としては、例えば、Ti、Al、Ca、Si、Mn、Crなどが挙げられるが、これに限られない。低平衡酸素圧元素の酸化物としては、酸化マンガン(例えば、MnO、Mn)、(Mn,Cr)、及び酸化クロム(例えば、CrO、Cr)などTiO、Al、CaO、SiO、酸化マンガン(例えば、MnO、Mn)、(Mn,Cr)、及び酸化クロム(例えば、CrO、Cr)などから選択される少なくとも1種が挙げられるが、これに限られない。
 延伸部44における低平衡酸素圧元素の含有率は、全構成元素のうち酸素を除く元素の総和に対する各元素のモル比をカチオン比と定義した場合、カチオン比で0.3以上が好ましい。これによって、気孔41d内の酸素を優先的に延伸部44に取り込むことができる。延伸部44における低平衡酸素圧元素の含有率は、カチオン比で0.4以上がより好ましく、0.5以上が特に好ましい。
 延伸部44における低平衡酸素圧元素の含有率は、STEMのEDXを用いて、気孔41dから延びる延伸部44の全長を11等分する10点において低平衡酸素圧元素の含有率をカチオン比で測定し、10点における測定値を算術平均することによって得られる。
 延伸部44は、低平衡酸素圧元素の酸化物を1種だけ含有していてもよいし、2種以上含有していてもよい。延伸部44が低平衡酸素圧元素の酸化物を2種以上含有している場合、2種以上の酸化物は互いに混ざり合って混合体を構成していてもよい。
 図6に示すように、延伸部44は、気孔41dから基材41の内部に向かって延びることが好ましい。すなわち、延伸部44は、気孔41dから酸化クロム膜42と反対向きに延びるのが好ましい。これにより、延伸部44に酸素が取り込まれて延伸部44が成長したとしても、基材41の表面41aから延伸部44が突出することを抑制できるため、基材41と酸化クロム膜42との密着性を維持することができる。
 本実施形態において延伸部44は、基材41の厚み方向に沿って直線状に形成されているが、延伸部44の形状は特に制限されない。延伸部44は、全体的又は部分的に湾曲或いは屈曲していてもよい。
 延伸部44の長さL0は特に制限されないが、例えば0.5~30μmとすることができる。延伸部44の長さL0とは、基材41の厚み方向における延伸部44の最大寸法である。延伸部44の長さL0は、1.5μm~20μmが好ましい。なお、延伸部44は、その全体が表面領域41Xに配置されていてもよいし、一部が内部領域41Yに配置されていてもよい。
 延伸部44の幅W4は特に制限されないが、例えば0.2~4.0μmとすることができる。延伸部44の幅W4とは、界面S2に平行な面方向における延伸部44の最大寸法である。延伸部44の幅W4は、長さL0より小さいことが好ましい。延伸部44の幅W4は、0.5μm~3.0μmが好ましい。
  5.気孔41dの作製方法
 以下、気孔41dに加えて金属酸化物43及び延伸部44を設ける場合について説明する。
 まず、基材41の表面に細孔を形成する。例えば、YAGレーザ、炭酸ガスレーザなどを用いたレーザ照射によって、所望径の細孔を効率的に形成することができる。この際、レーザの出力、照射時間の制御及び用いるレンズを適宜選択することによって、細孔のサイズを調整できる。
 次に、低平衡酸素圧元素の酸化物粉末にエチルセルロースとテルピネオールを添加したペーストを細孔に充填する。
 次に、細孔よりも浅くかつ大径の太孔を、細孔と重なるように形成する。例えば、YAGレーザ、炭酸ガスレーザなどを用いたレーザ照射によって、所望径の太孔を効率的に形成することができる。この際、レーザの出力、照射時間の制御及び用いるレンズを適宜選択することによって、太孔のサイズを調整できる。
 次に、細孔に充填したペーストに含まれるエチルセルロースとテルピネオールを除去するために、350℃で1時間の脱脂熱処理を行う。この熱処理条件では、基材41の表面41aにおける酸化が進行しないので、基材41の延性は維持される。
 次に、金属酸化物をターゲットとするスパッタによって、各太孔の内表面に金属酸化物43を形成する。スパッタには、株式会社SCREENファインテックソリューションズ社製のVS-R400Gを用いることができる。
 次に、基材41の表面41a上でローラーを転がすことによって、太孔の開口を塞いで、気孔41dを形成する。この際、太孔の開口を完全に塞いでもよいが、開口が開いたままにしてもよい。
 次に、基材41を大気雰囲気で熱処理(800~900℃、5~20時間)することによって、ペーストが固化して延伸部44が形成されるとともに、基材41の表面上に酸化クロム膜42が形成される。
  [剥離抑制部の具体例3]
 図7では、剥離抑制部の一例としての「アンカー部45」が図示されている。アンカー部45は、基材41に対する酸化クロム膜42の密着力を高める機能を有する。
  1.アンカー部45の構成
 図7に示すように、基材41は、表面41aと、複数の凹部41fとを有する。各凹部41fは、表面41aに形成される。各凹部41fは、表面41aから基材41の内部に向かって延びる。
 凹部41fの個数は特に制限されないが、表面41aに広く分布していることが好ましい。また、凹部41fどうしの間隔は特に制限されないが、均等な間隔で配置されていることが特に好ましい。
 凹部41fの断面形状は、全体的又は部分的に湾曲或いは屈曲した形状である。凹部41fの断面形状は、直線的な形状ではなく、少なくとも一部が撓んだ形状である。凹部41fの最深部は、鋭角状であってもよいし、鈍角状であってもよいし、丸みを帯びていてもよい。図7では、全体的に湾曲した楔形の凹部41f(図7の右側)と、下半分が湾曲した楔形の凹部41f(図7の左側)とが例示されている。
 各凹部41f内には、各アンカー部45が配置される。各アンカー部45は、凹部41fの開口付近において酸化クロム膜42に接続される。
 複数のアンカー部45の平均実長さは、複数のアンカー部45の平均直線長さより長い。このことは、少なくとも一部のアンカー部45が、全体的又は部分的に湾曲或いは屈曲することによって、アンカー部45の少なくとも一部が撓んでいることを意味している。これにより、基材41に対するアンカー部45のアンカー効果を大きくすることができるため、酸化クロム膜42が基材41から剥離することを抑制できる。
 複数のアンカー部45の平均実長さとは、各アンカー部45の実長さL1の平均値である。実長さL1とは、図7に示すように、基材41の面方向において、アンカー部45のうち凹部41fに埋設された部分の中点を連ねた線分の長さである。実長さL1は、アンカー部45の延在方向に沿った全長を示す。
 アンカー部45の平均実長さは、基材41の断面をFE-SEM(電界放射型走査型電子顕微鏡)で1000倍-20000倍に拡大した画像から無作為に選出した20個のアンカー部45それぞれの実長さL1を算術平均することによって求められる。なお、1つの断面において20個のアンカー部45を観察できない場合には、複数の断面から20個のアンカー部45を選択すればよい。ただし、実長さL1が0.1μm未満のアンカー部45は、アンカー効果が軽微であり酸化クロム膜42の剥離抑制効果への寄与が小さいため、アンカー部45の平均実長さを算出する際には除外するものとする。
 複数のアンカー部45の平均直線長さとは、各アンカー部45の直線長さL2の平均値である。直線長さL2とは、図7に示すように、実長さL1を規定する線分の始点と終点とを結ぶ直線の長さである。直線長さL2は、アンカー部45の両端の最短距離を示す。
 複数のアンカー部45の平均直線長さは、上述の平均実長さを求めるために選出した20個のアンカー部45それぞれの直線長さL2を算術平均することによって求められる。
 なお、仮に、アンカー部45が全体的に直線状に形成されているとすれば、実長さL1は直線長さL2と略同じになるが、本実施形態のようにアンカー部45の少なくとも一部が撓んでいれば、実長さL1は直線長さL2より長くなる。実長さL1及び直線長さL2は、図7に示すようにアンカー部45ごとに異なっていてもよいし、アンカー部45どうし同じであってもよい。
 平均実長さは特に制限されないが、例えば0.5μm以上600μm以下とすることができる。平均直線長さは特に制限されないが、例えば0.4μm以上550μm以下とすることができる。
 また、基材41の厚み方向の断面において、アンカー部45の平均垂直長さは特に制限されないが、例えば0.4μm以上500μm以下とすることができる。平均垂直長さとは、各アンカー部45の垂直長さL3の平均値である。垂直長さL3とは、図7に示すように、基材41の厚み方向におけるアンカー部45の全長である。垂直長さL3は、図7に示すようにアンカー部45ごとに異なっていてもよいし、アンカー部45どうし同じであってもよい。
 また、基材41の厚み方向の断面において、複数のアンカー部45と酸化クロム膜42との平均接合幅は、0.1μm以上であることが好ましい。これにより、各アンカー部45と酸化クロム膜42との接合強度が向上するため、酸化クロム膜42からアンカー部45自体が離脱することを抑制できる。その結果、酸化クロム膜42が基材41から剥離することをより抑制できる。
 複数のアンカー部45の平均接合幅とは、各アンカー部45の接合幅W5の平均値である。接合幅W5とは、基材41の厚み方向の断面において、アンカー部45と酸化クロム膜42との接線の全長である。アンカー部45と酸化クロム膜42との接線は、直線状のほか、湾曲状、波線状などであってもよい。
 複数のアンカー部45の平均接合幅は、上述の平均垂直長さを求めるために選出した20個のアンカー部45それぞれの接合幅W5を算術平均することによって求められる。
 なお、接合幅W5の上限値は特に制限されず、例えば100μm以下とすることができる。
 平均実長さに対する平均接合幅の比は特に制限されないが、0.5以下であることが好ましい。これにより、アンカー部45を急峻に突出させることができるため、基材41に対するアンカー部45のアンカー力をより向上させることができる。
 アンカー部45は、セラミックス材料によって構成される。アンカー部45を構成するセラミックス材料としては、例えば、Cr(クロミア)、Al(アルミナ)、TiO(チタニア)、CaO(酸化カルシウム)、SiO(シリカ)、MnO(酸化マンガン)、MnCr(マンガンクロムスピネル)などが挙げられるが、これに限られない。
 アンカー部45を構成するセラミックス材料としては、Crよりも平衡酸素圧の低い元素の酸化物が好適である。Crよりも平衡酸素圧の低い元素は、Crよりも酸素との親和力が大きく酸化しやすい元素であるため、酸化クロム膜42を透過してくる酸素をアンカー部45に優先的に取り込むことによって、アンカー部45周辺の基材41が酸化することを抑制できる。これにより、アンカー部45の形態を維持できるため、アンカー部45によるアンカー効果を長期間にわたって得ることができる。その結果、酸化クロム膜42が基材41から剥離することを長期間にわたって抑制できる。
 Crよりも平衡酸素圧の低い元素としては、Al(アルミニウム)、Ti(チタン)、Ca(カルシウム)、Si(シリコン)、Mn(マンガン)などが挙げられ、その酸化物としては、Al、TiO、CaO、SiO、MnO、MnCrなどが挙げられるが、これに限られるものではない。
 アンカー部45は、Crよりも平衡酸素圧の低い元素の酸化物を1種だけ含有していてもよいし、2種以上含有していてもよい。例えば、アンカー部45は、Alによって構成されていてもよいし、AlとTiOとの混合物によって構成されていてもよいし、TiOとMnOとMnCrとの混合物によって構成されていてもよい。
 複数のアンカー部45において、Crよりも平衡酸素圧の低い元素の平均含有率は、全構成元素のうち酸素を除く元素の総和に対する各元素のモル比をカチオン比と定義した場合、カチオン比で0.05以上であることが好ましい。これにより、アンカー部45を取り囲む基材41の酸化をより抑制できるため、アンカー部45によるアンカー効果をより長期間にわたって得ることができる。複数のアンカー部45において、Crよりも平衡酸素圧の低い元素の平均含有率の上限値は特に制限されず、大きいほど好ましい。
 複数のアンカー部45において、Crよりも平衡酸素圧の低い元素の平均含有率は、以下の手法で求められる。まず、上述の平均垂直長さを求めるために選出した20個のアンカー部45それぞれにおいて、実長さL1を11等分する10点におけるCrよりも平衡酸素圧の低い元素の含有率をカチオン比で測定する。次に、各アンカー部45について10点で測定した含有率の中から最大値を選択する。そして、20個のアンカー部45ごとに選択された20個の最大値を算術平均することによって、Crよりも平衡酸素圧の低い元素の平均含有率が求まる。
 アンカー部45は、凹部41fの内表面の少なくとも一部と接触していることが好ましい。アンカー部45は、凹部41fの全体に充填されていることが好ましい。アンカー部45は、凹部41fの内表面の略全面と接触することが好ましい。
 アンカー部45の個数は特に制限されないが、基材41の断面観察において、表面41aの10mm長さ当たりに10個以上観察されることが好ましく、10mm長さ当たりに20個以上観察されることがより好ましい。これによって、アンカー部45によるアンカー効果を広い範囲に発揮させることができるため、酸化クロム膜42が基材41から剥離することを特に抑制できる。
  2.アンカー部45の作製方法
 まず、基材41の表面41aに複数の凹部41fを形成する。例えばショットピーニング、サンドブラスト又はウェットブラストを用いることによって、凹部41fを効率的に形成することができる。この際、研磨剤の粒径を調整することによって、凹部41fの深さ及び幅を調整する。これにより、後に形成される複数のアンカー部45の平均実長さ、平均直線長さ、平均垂直長さ及び平均接合幅を調整することができる。
 次に、ローラーで表面41aを均すことによって、凹部41fを全体的又は部分的に湾曲或いは屈曲させる。これにより、後に形成される各アンカー部45の少なくとも一部を撓ませることができる。
 次に、Crよりも平衡酸素圧の低い元素の酸化物にエチルセルロースとテルピネオールとを添加したアンカー部用ペーストを基材41の表面41a上に塗布した後、アンカー部用ペーストをスキージで除去することによって、凹部41f内にアンカー部用ペーストを充填する。
 次に、基材41を大気雰囲気で熱処理(800~900℃、1~20時間)することによって、凹部41fに充填されたアンカー部用ペーストが固化してアンカー部45が形成されるとともに、アンカー部45を覆う酸化クロム膜42が形成される。
 (他の実施形態)
 本発明は以上の実施形態に限定されるものではなく、本発明の範囲を逸脱しない範囲で種々の変形又は変更が可能である。
 上記実施形態において、合金部材4は、基材41及び酸化クロム膜42を有することとしたが、酸化クロム膜42上に形成された被覆膜44を有していてもよい。被覆膜44を構成する材料としては、導電性のセラミックス材料を用いることができる。導電性のセラミックス材料としては、例えば、LaおよびSrを含有するペロブスカイト形複合酸化物、Mn,Co,Ni,Fe,Cu等の遷移金属から構成されるスピネル型複合酸化物などを用いることができる。
 上記実施形態において、セル1は、中間層6及び反応防止層8を含むこととしたが、少なくとも中間層6及び反応防止層8の一方を含んでいなくてよい。
 上記実施形態において、第1電極層5はアノードとして機能し、第2電極層9はカソードとして機能することとしたが、第1電極層5がカソードとして機能し、第2電極層9がアノードとして機能してもよい。この場合、第1電極層5と第2電極層9の構成材料を入れ替えるとともに、第1電極層5の外表面に燃料ガスを流すとともに、流路3Sに酸化剤ガスを流せばよい。
 上記実施形態にて説明した剥離抑制部の具体例1では、基材41が凹部41bを有し、かつ、酸化クロム膜42が埋設部42bを有することとしたが、酸化クロム膜42が凹部41bを有し、かつ、基材41が埋設部42bを有していてもよい。この場合であっても、酸化クロム膜42の剥離を効果的に抑制することができる。
1    セル
3     流路部材
4     合金部材
41    基材
41d   気孔(剥離抑制部の一例)
42    酸化クロム膜
42b   埋設部(剥離抑制部の一例)
45    アンカー部(剥離抑制部の一例)
5     第1電極層
6     中間層
7     電解質層
8     反応防止層
9     第2電極層

Claims (10)

  1.  合金部材と、
     前記合金部材によって支持される第1電極層と、
     第2電極層と、
     前記第1電極層と第2電極層との間に配置される電解質層と、
    を備え、
     前記合金部材は、
     クロムを含有する合金材料によって構成される基材と、
     前記基材の表面の少なくとも一部を覆う酸化クロム膜と、
     前記酸化クロム膜が前記基材から剥離することを抑制する剥離抑制部と、
    を有する、
    電気化学セル。
  2.  前記剥離抑制部は、前記酸化クロム膜のうち前記基材の凹部に埋設された埋設部であり、
     前記埋設部は、前記凹部の開口でくびれている、
    請求項1に記載の電気化学セル。
  3.  前記剥離抑制部は、前記基材のうち前記酸化クロム膜の凹部に埋設された埋設部であり、
     前記埋設部は、前記凹部の開口でくびれている、
    請求項1に記載の電気化学セル。
  4.  前記剥離抑制部は、複数の前記埋設部を含み、
     前記酸化クロム膜の表面に垂直な断面において、前記複数の埋設部の平均深さは、0.7μm以上である、
    請求項2又は3に記載の電気化学セル。
  5.  前記酸化クロム膜の表面に垂直な断面において、前記表面に対して前記埋設部の深さ方向が成す角度は、鋭角である、
    請求項2乃至4のいずれかに記載の電気化学セル。
  6.  前記酸化クロム膜の表面に垂直な断面において、前記凹部の外縁の少なくとも一部は湾曲している、
    請求項2乃至5のいずれかに記載の電気化学セル。
  7.  前記剥離抑制部は、前記基材のうち前記酸化クロム膜と対向する表面に形成された複数の凹部に配置され、セラミックス材料によって構成される複数のアンカー部であり、
     前記基材の厚み方向の断面における前記複数のアンカー部において、前記厚み方向に垂直な面方向における前記アンカー部の中点を連ねた線分の実長さの平均値は、前記線分の始点と終点とを結ぶ直線長さの平均値より長い、
    請求項1に記載の電気化学セル。
  8.  前記剥離抑制部は、前記基材のうち前記酸化クロム膜との界面から30μm以内の表面領域に形成された気孔である、
    請求項1に記載の電気化学セル。
  9.  前記合金部材は、前記気孔の内表面上に配置された金属酸化物を有する、
    請求項8に記載の電気化学セル。
  10.  前記合金部材は、前記気孔から延びる延伸部を有し、
     前記延伸部は、前記基材の主成分元素より平衡酸素圧の低い元素の酸化物を含有する、
    請求項8又は9に記載の電気化学セル。
PCT/JP2019/006791 2018-06-12 2019-02-22 電気化学セル WO2019239641A1 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2018-111683 2018-06-12
JP2018-111684 2018-06-12
JP2018111683A JP6484371B1 (ja) 2018-06-12 2018-06-12 セルスタック
JP2018111684 2018-06-12
JP2018-189229 2018-10-04
JP2018189229A JP6476341B1 (ja) 2018-06-12 2018-10-04 セルスタック
JP2018-197004 2018-10-18
JP2018197004A JP6559315B1 (ja) 2018-10-18 2018-10-18 合金部材

Publications (1)

Publication Number Publication Date
WO2019239641A1 true WO2019239641A1 (ja) 2019-12-19

Family

ID=68841752

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/006791 WO2019239641A1 (ja) 2018-06-12 2019-02-22 電気化学セル
PCT/JP2019/006757 WO2019239639A1 (ja) 2018-06-12 2019-02-22 セルスタック及び電気化学セル

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006757 WO2019239639A1 (ja) 2018-06-12 2019-02-22 セルスタック及び電気化学セル

Country Status (4)

Country Link
US (1) US11349127B2 (ja)
CN (1) CN112219301B (ja)
DE (1) DE112019003010T5 (ja)
WO (2) WO2019239641A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020136174A (ja) * 2019-02-22 2020-08-31 日本碍子株式会社 電気化学セル

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115458765B (zh) * 2022-11-09 2023-01-31 武汉氢能与燃料电池产业技术研究院有限公司 一种金属空心支撑型固体氧化物燃料电池电堆及发电模块

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023017A (ja) * 2010-06-15 2012-02-02 Ngk Insulators Ltd 燃料電池セル
JP5315476B1 (ja) * 2012-09-21 2013-10-16 日本碍子株式会社 集電部材及び燃料電池
WO2013172451A1 (ja) * 2012-05-17 2013-11-21 京セラ株式会社 導電部材およびセルスタックならびに電気化学モジュール、電気化学装置
WO2016043315A1 (ja) * 2014-09-19 2016-03-24 大阪瓦斯株式会社 電気化学素子、固体酸化物形燃料電池セル、およびこれらの製造方法
JP2016066616A (ja) * 2014-09-19 2016-04-28 大阪瓦斯株式会社 電気化学素子、固体酸化物形燃料電池セル、およびこれらの製造方法
JP6188181B1 (ja) * 2017-01-20 2017-08-30 日本碍子株式会社 合金部材、セルスタック及びセルスタック装置
JP6343729B1 (ja) * 2017-01-20 2018-06-13 日本碍子株式会社 合金部材、セルスタック及びセルスタック装置
JP6343728B1 (ja) * 2017-01-20 2018-06-13 日本碍子株式会社 合金部材、セルスタック及びセルスタック装置
JP2018186078A (ja) * 2017-04-24 2018-11-22 日本碍子株式会社 合金部材、セルスタック及びセルスタック装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0978258A (ja) * 1995-09-20 1997-03-25 Toshiba Corp 遮熱コーティングを有する高温部材およびその製造方法
EP2360761B1 (en) * 2008-11-28 2014-08-27 Nissan Motor Co., Ltd. Sealing structure and fuel cell comprising the sealing structure
JP5328439B2 (ja) * 2009-03-26 2013-10-30 京セラ株式会社 燃料電池セル、燃料電池セルスタック装置、燃料電池モジュールおよび燃料電池装置
JP2013012397A (ja) * 2011-06-29 2013-01-17 Kyocera Corp 固体酸化物形燃料電池セルおよび燃料電池モジュール
JP5122676B1 (ja) * 2011-10-25 2013-01-16 日本碍子株式会社 燃料電池の構造体
CN103946422B (zh) * 2011-11-25 2016-06-22 京瓷株式会社 复合体、集电构件和燃料电池单元装置以及燃料电池装置
CN106537674B (zh) * 2014-10-29 2019-02-05 京瓷株式会社 电池单元、电池堆装置、模块以及模块收容装置
JP2016181350A (ja) * 2015-03-23 2016-10-13 株式会社日本触媒 燃料極支持型固体酸化物形燃料電池用単セルおよびその製造方法
JP6591877B2 (ja) * 2015-11-26 2019-10-16 京セラ株式会社 セル、セルスタック装置、モジュール、及びモジュール収容装置
JP6540552B2 (ja) * 2016-03-03 2019-07-10 株式会社デンソー 燃料電池単セル
JP6559372B1 (ja) * 2018-09-07 2019-08-14 日本碍子株式会社 合金部材、セルスタック及びセルスタック装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023017A (ja) * 2010-06-15 2012-02-02 Ngk Insulators Ltd 燃料電池セル
WO2013172451A1 (ja) * 2012-05-17 2013-11-21 京セラ株式会社 導電部材およびセルスタックならびに電気化学モジュール、電気化学装置
JP5315476B1 (ja) * 2012-09-21 2013-10-16 日本碍子株式会社 集電部材及び燃料電池
WO2016043315A1 (ja) * 2014-09-19 2016-03-24 大阪瓦斯株式会社 電気化学素子、固体酸化物形燃料電池セル、およびこれらの製造方法
JP2016066616A (ja) * 2014-09-19 2016-04-28 大阪瓦斯株式会社 電気化学素子、固体酸化物形燃料電池セル、およびこれらの製造方法
JP6188181B1 (ja) * 2017-01-20 2017-08-30 日本碍子株式会社 合金部材、セルスタック及びセルスタック装置
JP6343729B1 (ja) * 2017-01-20 2018-06-13 日本碍子株式会社 合金部材、セルスタック及びセルスタック装置
JP6343728B1 (ja) * 2017-01-20 2018-06-13 日本碍子株式会社 合金部材、セルスタック及びセルスタック装置
JP2018186078A (ja) * 2017-04-24 2018-11-22 日本碍子株式会社 合金部材、セルスタック及びセルスタック装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MONTERO ET AL.: "Spinel and Perovskite Protection Layers Between Crofer22APU and La0.8Sr0.2FeO3 Cathode Materials for SOFC Interconnects", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 156, no. 1, 2009, pages B188 - B196, XP055663366, DOI: 10.1149/1.3025914 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020136174A (ja) * 2019-02-22 2020-08-31 日本碍子株式会社 電気化学セル

Also Published As

Publication number Publication date
US20210075022A1 (en) 2021-03-11
US11349127B2 (en) 2022-05-31
CN112219301A (zh) 2021-01-12
DE112019003010T5 (de) 2021-04-01
CN112219301B (zh) 2024-06-11
WO2019239639A1 (ja) 2019-12-19

Similar Documents

Publication Publication Date Title
JP6800297B2 (ja) 電気化学素子、固体酸化物形燃料電池セル、およびこれらの製造方法
JP6343728B1 (ja) 合金部材、セルスタック及びセルスタック装置
JP6476341B1 (ja) セルスタック
WO2019239641A1 (ja) 電気化学セル
JP6764496B2 (ja) 電気化学セル
WO2020050246A1 (ja) 合金部材、セルスタック及びセルスタック装置
JP6559315B1 (ja) 合金部材
WO2020050254A1 (ja) 合金部材
JP6761497B2 (ja) セルスタック及び電気化学セル
JP6752387B1 (ja) 電気化学セル
JP6484380B1 (ja) セルスタック
JP6518823B1 (ja) 合金部材、セルスタック及びセルスタック装置
JP6527990B1 (ja) 合金部材、セルスタック及びセルスタック装置
JP6484381B1 (ja) セルスタック
JP6653406B1 (ja) 合金部材、セルスタック及びセルスタック装置
WO2020050251A1 (ja) 合金部材、セルスタック及びセルスタック装置
WO2023171299A1 (ja) 電気化学セル
JP6527988B1 (ja) 合金部材、セルスタック及びセルスタック装置
WO2023171276A1 (ja) 電気化学セル
JP6482716B1 (ja) 電気化学セル用金属部材、及びこれを用いた電気化学セル組立体
US20240328006A1 (en) Electrochemical cell
WO2023176242A1 (ja) 電気化学セル
JP6671433B2 (ja) 合金部材、セルスタック及びセルスタック装置
JP2019215992A (ja) 合金部材、セルスタック及びセルスタック装置
JP2019215988A (ja) 合金部材、セルスタック及びセルスタック装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19819286

Country of ref document: EP

Kind code of ref document: A1