[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019225312A1 - 監視装置及びプログラム - Google Patents

監視装置及びプログラム Download PDF

Info

Publication number
WO2019225312A1
WO2019225312A1 PCT/JP2019/018398 JP2019018398W WO2019225312A1 WO 2019225312 A1 WO2019225312 A1 WO 2019225312A1 JP 2019018398 W JP2019018398 W JP 2019018398W WO 2019225312 A1 WO2019225312 A1 WO 2019225312A1
Authority
WO
WIPO (PCT)
Prior art keywords
animal
abnormality
monitoring
position information
threshold value
Prior art date
Application number
PCT/JP2019/018398
Other languages
English (en)
French (fr)
Inventor
直季 亀山
後 友恵
陽平 大野
雄一朗 瀬川
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2020521140A priority Critical patent/JP7341991B2/ja
Publication of WO2019225312A1 publication Critical patent/WO2019225312A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K29/00Other apparatus for animal husbandry
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/18Initiating means actuated automatically, e.g. responsive to gust detectors using automatic pilot
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/04Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using a single signalling line, e.g. in a closed loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • B64U2101/31UAVs specially adapted for particular uses or applications for imaging, photography or videography for surveillance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/70Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in livestock or poultry

Definitions

  • the present invention relates to a technique for monitoring an animal using a flying object.
  • Patent Document 1 describes that when an abnormality is detected in a monitoring area, the flying robot moves to the vicinity of the abnormality detection position and starts transmitting live video to the monitoring center.
  • a suspicious vehicle or a suspicious person is monitored, but it is convenient to use a flying object to monitor, for example, a grazing animal.
  • the flying object may start flying and monitor the animal when the degree of abnormality of the animal becomes high, but depending on the circumstances surrounding the animal, In some cases, it is better to start the flight and monitor the animal at an earlier timing than usual.
  • An object of this invention is to monitor the animal which has abnormality in the animal currently grazed using a flying body.
  • the present invention includes an acquisition unit that acquires position information indicating a position of an animal being grazed, a calculation unit that calculates an abnormality degree of the animal, and when the calculated abnormality degree is a threshold value or more, An instruction unit for instructing the flying body to start a flight toward a monitoring position corresponding to the position indicated by the acquired position information and to monitor the animal at the monitoring position; and a situation around the animal
  • a monitoring device is provided that includes a changing unit that changes the threshold value.
  • the present invention provides the computer with the step of obtaining position information indicating the position of the grazing animal, the step of calculating the degree of abnormality of the animal, and the case where the calculated degree of abnormality is greater than or equal to a threshold value. Instructing the flying body to start a flight toward a monitoring position corresponding to the position indicated by the acquired position information and to monitor the animal at the monitoring position; A program for executing the step of changing the threshold value is provided.
  • an animal having an abnormality in a grazing animal can be monitored using a flying object.
  • FIG. 1 is a diagram illustrating an example of the appearance of a flying object 10.
  • FIG. 2 is a diagram illustrating a hardware configuration of the flying object 10.
  • FIG. 2 is a diagram illustrating a hardware configuration of a server device 40.
  • FIG. 3 is a diagram illustrating an example of a functional configuration of a server device 40.
  • FIG. 4 is a diagram illustrating an example of a database 431 stored in a storage 43.
  • FIG. 6 is a diagram illustrating an example of an image 561 displayed on a display device 56.
  • FIG. It is a figure which shows an example of a function structure of the server apparatus 40 which concerns on a modification. It is a figure which shows an example of the division
  • FIG. 1 is a diagram illustrating an example of a configuration of a monitoring system 1 according to the present embodiment.
  • a plurality of animals are grazed at a place such as a ranch. This “grazing” means freezing while being under control.
  • the animals that are grazed may be any animals such as cows, sheep, horses, sheep, and goats. Further, only one type of animal may be grazed, or multiple types of animals may be grazed. These animals are managed by an administrator.
  • the monitoring system 1 is a system that monitors grazed animals.
  • the monitoring system 1 includes a flying object 10, a plurality of sensor devices 20, a positioning device 30, a server device 40, and a terminal device 50.
  • the number of apparatuses shown in FIG. 1 is an illustration, and is not limited to this.
  • the flying object 10, the sensor device 20, the positioning device 30, the server device 40, and the terminal device 50 are connected via a communication line 60.
  • the communication line 60 includes, for example, a wireless network and the Internet, and transmits communication between these devices.
  • FIG. 2 is a diagram showing an example of the appearance of the flying object 10.
  • the flying object 10 is an unmanned aerial vehicle that can fly autonomously without human operation.
  • the flying object 10 may be a drone, for example.
  • the flying object 10 includes a propeller 101, a driving device 102, and a battery 103.
  • the propeller 101 rotates about an axis. As the propeller 101 rotates, the flying object 10 flies.
  • the driving device 102 rotates the propeller 101 with power.
  • the driving device 102 is, for example, a motor.
  • the drive device 102 may be directly connected to the propeller 101, or may be connected to the propeller 101 via a transmission mechanism that transmits the power of the drive device 102 to the propeller 101.
  • the battery 103 supplies power to each part of the aircraft 10 including the driving device 102.
  • FIG. 3 is a diagram showing a hardware configuration of the flying object 10.
  • the flying object 10 may be physically configured as a computer device including a processor 11, a memory 12, a storage 13, a communication device 14, a positioning device 15, an imaging device 16, a bus 17, and the like.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the processor 11 controls the entire computer by operating an operating system, for example.
  • the processor 11 may include a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • the processor 11 reads a program (program code), software module, and data from the storage 13 and / or the communication device 14 to the memory 12, and executes various processes according to these.
  • a program program code
  • software module software module
  • data data from the storage 13 and / or the communication device 14 to the memory 12
  • As the program a program that causes a computer to execute at least a part of the operation of the flying object 10 is used.
  • Various processes executed in the flying object 10 may be executed by one processor 11 or may be executed simultaneously or sequentially by two or more processors 11.
  • the processor 11 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunication line.
  • the memory 12 is a computer-readable recording medium, and includes, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. May be.
  • the memory 12 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 12 can store a program (program code), a software module, and the like that can be executed to implement the monitoring method according to the embodiment of the present invention.
  • the storage 13 is a computer-readable recording medium, for example, an optical disc such as a CD-ROM (Compact Disc) ROM, a hard disk drive, a flexible disc, a magneto-optical disc (eg, a compact disc, a digital versatile disc, a Blu-ray). (Registered trademark) disk, smart card, flash memory (for example, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • the storage 13 may be called an auxiliary storage device.
  • the communication device 14 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • the positioning device 15 measures the position of the flying object 10 at predetermined time intervals.
  • the positioning device 15 is a GPS (Global Positioning System) receiver, for example, and measures the current position of the flying object 10 based on GPS signals received from a plurality of satellites. This location may be indicated using, for example, latitude, longitude, and altitude.
  • GPS Global Positioning System
  • the imaging device 16 is provided toward the ground at a position where the flying object 10 can capture an image of an animal on the ground during flight, for example, a position facing the ground during flight.
  • the imaging device 16 is, for example, a camera, and captures an image by connecting an image of a subject on an imaging device using an optical system. This image may be a still image or a moving image.
  • the imaging device 16 is not limited to a visible light camera that captures a visible light image.
  • the imaging device 16 may include an infrared camera that captures a heat distribution image called thermography.
  • each device such as the processor 11 and the memory 12 is connected by a bus 17 for communicating information.
  • the bus 17 may be composed of a single bus or may be composed of different buses between devices.
  • the sensor device 20 is a small device having a wireless communication function, and is attached to each animal that is grazing. For example, when the animal has a collar, the sensor device 20 may be attached to the collar.
  • the sensor device 20 includes a positioning device 21 and a biological information sensor 22.
  • the positioning device 21 is the same device as the positioning device 15 described above, and measures the position of the animal at a predetermined time interval.
  • the biological information sensor 22 detects biological information of animals.
  • This “biological information” refers to information emitted by a living body. This biological information may include, for example, body temperature, heart rate, pulse rate, or respiratory rate.
  • the positioning device 30 is a small device having a wireless communication function and is carried by an administrator.
  • the positioning device 30 may be included in a mobile terminal such as a smartphone, for example.
  • the positioning device 30 is the same device as the positioning device 15 described above, and measures the position of the manager at predetermined time intervals.
  • FIG. 4 is a diagram illustrating a hardware configuration of the server device 40.
  • the server device 40 may be physically configured as a computer device including a processor 41, a memory 42, a storage 43, a communication device 44, a bus 45, and the like. Since the processor 41, the memory 42, the storage 43, the communication device 44, and the bus 45 are the same as the processor 11, the memory 12, the storage 13, the communication device 14, and the bus 17 described above, description thereof is omitted.
  • FIG. 5 is a diagram illustrating an example of a functional configuration of the server device 40.
  • the server device 40 functions as an acquisition unit 411, a calculation unit 412, a setting unit 413, a change unit 414, and an instruction unit 415. These functions are performed by reading predetermined software (program) on hardware such as the processor 41 and the memory 42, so that the processor 41 performs an operation and performs communication by the communication device 44 and data in the memory 42 or the storage 43. This is realized by controlling reading and / or writing.
  • the acquisition unit 411 acquires position information indicating the position of a grazing animal and state information indicating the state of the animal.
  • This position information is information indicating the position measured by the positioning device 21, for example.
  • the state information is biological information detected by the biological information sensor 22, for example.
  • the position information and the state information may be transmitted from the sensor device 20, for example.
  • the acquisition unit 411 acquires position information indicating the position of the administrator.
  • This position information is information indicating the position measured by the positioning device 30, for example. This position information may be transmitted from the positioning device 30, for example.
  • the acquisition unit 411 acquires position information indicating the position of the flying object 10.
  • This position information is information indicating the position measured by the positioning device 15, for example. This position information may be transmitted from the flying object 10, for example.
  • the calculation unit 412 calculates the degree of abnormality of the animal.
  • This “abnormality” refers to a value indicating the possibility that an animal has an abnormality. The higher the degree of abnormality, the higher the possibility that the animal has an abnormality.
  • the degree of abnormality may be calculated based on the position information or biological information acquired by the acquisition unit 411. For example, the calculation unit 412 determines that the animal has performed a predetermined action based on the position information acquired by the acquisition unit 411, or determines that the state of the predetermined action has continued for a predetermined time. In some cases, the degree of abnormality may be increased.
  • This predetermined action is an abnormal action different from a normal action, such as being out of the group or staying in the same place.
  • the predetermined time is not a temporary action, for example, but a time at which it can be considered that an abnormal action is continuously performed.
  • the calculation unit 412 determines that the animal is in a predetermined state based on the state information acquired by the acquisition unit 411, or determines that the predetermined state has continued for a predetermined time. The degree of abnormality may be increased.
  • This predetermined state is an abnormal state different from the normal state, for example, the body temperature is higher than the normal temperature.
  • the predetermined time is not a temporary state, for example, but a time at which it can be considered that an abnormal state continues continuously.
  • individual differences among animals may be reflected in the determination of whether or not the state is a predetermined state. For example, it may be determined whether the body temperature of each animal is high based on the normal heat of each animal.
  • the setting unit 413 sets a threshold value used for comparison with the degree of abnormality. For example, when a predetermined condition regarding the situation around the animal is not satisfied, a predetermined standard threshold value is set.
  • This predetermined condition is a condition indicating that it is better to start monitoring at a timing earlier than usual due to, for example, the situation around the animal. For example, when the flying object 10 cannot quickly reach the place where the animal to be monitored is located, the administrator cannot quickly reach the place where the animal to be monitored is present, or the place where the animal is likely to cause an abnormality or a place that is likely to lead to danger It is considered better to start monitoring at a timing earlier than usual.
  • the predetermined condition is that the distance between the position of the flying object 10 and the position of the animal indicated by the position information acquired by the acquisition unit 411 is equal to or more than the predetermined distance, and the position of the flying object 10 and the manager It may be at least one of a condition that the distance to the position of the animal is greater than or equal to a predetermined distance, and a condition that the animal is in a predetermined place that is likely to cause an abnormality or easily cause a danger.
  • a threshold value different from the standard threshold value is set.
  • the changing unit 414 changes the threshold value when the predetermined condition is satisfied. For example, the change unit 414 increases the distance between the position of the flying object 10 and the position of the animal indicated by the position information acquired by the acquisition unit 411 or the distance between the position of the flying object 10 and the position of the manager. The threshold may be lowered. Moreover, the change part 414 may reduce a threshold value, when it determines with an animal being in a predetermined place based on the positional information which the acquisition part 411 acquired. When the threshold value is changed in this way, the changed threshold value is set.
  • the instruction unit 415 starts flying toward the monitoring position corresponding to the position indicated by the position information acquired by the acquisition unit 411.
  • the aircraft 10 is instructed to perform the process of monitoring the animal.
  • This monitoring position is a position where the animal to be monitored can be photographed.
  • the monitoring position may be a position above the position indicated by the position information acquired by the acquisition unit 411.
  • the process of monitoring the animal is a process of taking an image of the animal, for example.
  • the instruction to the flying object 10 may be performed by transmitting instruction information to the flying object 10, for example.
  • FIG. 6 is a diagram illustrating a hardware configuration of the terminal device 50.
  • the terminal device 50 may be physically configured as a computer device including a processor 51, a memory 52, a storage 53, a communication device 54, an input device 55, a display device 56, a bus 57, and the like. Since the processor 51, the memory 52, the storage 53, the communication device 54, and the bus 57 are the same as the processor 11, the memory 12, the storage 13, the communication device 14, and the bus 17, respectively, the description thereof is omitted.
  • the input device 55 is used for inputting various types of information.
  • the input device 55 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, or the like) that accepts an external input.
  • the display device 56 is an output device (for example, a display) that performs output to the outside.
  • the display device 56 may include a liquid crystal display.
  • the input device 55 and the display device 56 may have an integrated configuration (for example, a touch panel).
  • the sensor device 20 is a server device that includes position information indicating the current position of the animal measured by the positioning device 21 and biological information of the animal detected by the biological information sensor 22 together with the identification information of the animal at predetermined time intervals.
  • the positioning device 30 transmits position information indicating the current position of the manager to the server apparatus 40 together with the identification information of the manager at predetermined time intervals.
  • the flying object 10 transmits position information indicating the current position of the flying object 10 measured by the positioning device 15 to the server device 40 together with the identification information of the flying object 10 at predetermined time intervals. Note that the time interval at which these devices transmit information may be the same or different.
  • the server device 40 receives the information transmitted from these devices by the acquisition unit 411 and stores the information in the storage 43.
  • FIG. 7 is a diagram illustrating an example of the database 431 stored in the storage 43.
  • the database 431 includes identification information, position information, and biological information received from the sensor device 20. Further, the database 431 includes identification information and position information received from the positioning device 30 or the flying object 10. These pieces of information are stored in association with each other. For example, when the identification information, the position information “P1”, and the biological information “M1” of the animal A are received from the sensor device 20, these pieces of information are associated and stored as shown in FIG. Further, when the administrator identification information and the position information “P10” are received from the positioning device 30, these pieces of information are stored in association with each other as shown in FIG.
  • the identification information of the flying object 10 and the position information “P20” are received from the flying object 10, these pieces of information are stored in association with each other as shown in FIG.
  • the biological information is not included in the information received from the positioning device 30 or the flying body 10, the biological information is not stored.
  • the information transmitted from each sensor device 20, the positioning device 30, or the flying object 10 is accumulated in the database 431.
  • FIG. 8 is a flowchart illustrating an example of the monitoring process performed by the server device 40. This process may be started at a predetermined time interval, or may be started when new information is stored in the database 431, for example.
  • the calculation unit 412 calculates the degree of abnormality of each animal based on the database 431 (step S21).
  • the degree of abnormality is indicated using a number from 1 to 10. The larger this number, the higher the degree of abnormality.
  • FIG. 9 is a diagram showing an example of the degree of abnormality of each animal.
  • the calculation unit 412 determines whether each animal has performed a predetermined action or is in a predetermined state based on the contents stored in the database 431. For example, based on the position information “P1” to “P4” of the animals A to D stored in the database 431, it is determined that the animals A to C form a group and that the animal D is further away from the group. Assuming that For example, when the state where the animal D is away from the herd continues for a predetermined time, the degree of abnormality of the animal D may be increased from the current degree of abnormality to “6”.
  • the degree of abnormality of the animal A may be increased from the current degree of abnormality to “6”.
  • the setting unit 413 sets a threshold value for each animal (step S22). Specifically, when a predetermined condition is not satisfied, a standard threshold is set. For example, based on the position information “P1” of the animal A and the position information “P20” of the flying object 10 stored in the database 431, the distance between the position of the animal A and the position of the flying object 10 is less than a predetermined distance. Assume that it is determined that there is. In this case, since the predetermined condition is not satisfied, the standard threshold value “7” may be set for the animal A.
  • the distance between the position of the animal A and the position of the manager is less than a predetermined distance.
  • the predetermined condition since the predetermined condition is not satisfied, the standard threshold value “7” may be set for the animal A.
  • the animal A is determined not to be at a predetermined location within a predetermined range from the cliff based on the position information “P1” of the animal A stored in the database 431. In this case, since the predetermined condition is not satisfied, the standard threshold value “7” may be set for the animal A.
  • the changing unit 414 changes the threshold value of the corresponding animal. For example, based on the position information “P4” of the animal D and the position information “P20” of the flying object 10 stored in the database 431, the distance between the position of the animal D and the position of the flying object 10 is a predetermined distance or more. Assume that it is determined that there is. In this case, since the predetermined condition is satisfied, the threshold value of the animal D is changed from the standard threshold value. At this time, the threshold value of the animal D may be lowered as the distance increases.
  • the distance between the position of the animal D and the position of the administrator is equal to or greater than a predetermined distance.
  • the threshold value of the animal D is changed from the standard threshold value.
  • the threshold value of the animal D may be lowered as the distance increases.
  • the animal D is determined to be at a predetermined location within a predetermined range from the cliff based on the position information “P4” of the animal D stored in the database 431.
  • the threshold value of the animal D is changed from the standard threshold value.
  • the threshold value of the animal D may be lowered by a predetermined value from the standard threshold value.
  • the instruction unit 415 determines, for each animal, whether the degree of abnormality calculated in step S21 is equal to or greater than the threshold set in step S22 (step S23). For example, when all the abnormalities are smaller than the corresponding threshold values (NO in step S23), this process ends. On the other hand, as shown in FIG. 9, when the degree of abnormality of the animal D is “6” and the threshold value of the animal D is “5”, it is determined that the degree of abnormality is equal to or greater than the threshold value (in step S23). The determination is YES). In this case, the instruction unit 415 sets an animal whose degree of abnormality is a threshold or more as a monitoring target, starts flight toward the position of the monitoring target animal, and instructs to perform processing for monitoring the animal.
  • This instruction information includes at least position information indicating the position of the animal to be monitored.
  • the instruction information may include route information indicating a route from the current position of the flying object 10 to the monitoring position. For example, when the animal D is the monitoring target, the flight is started toward the monitoring position corresponding to the position of the animal D based on the position information “P4” of the animal D included in the database 431. Instruction information for instructing to perform processing for capturing an image of the animal D is transmitted.
  • the abnormality degree of the animal A is “6”, which is the same as the abnormality degree of the animal D. However, since the threshold value of the animal A is “7”, the abnormality degree is less than the threshold value. Animal A is not set as a monitoring target.
  • FIG. 10 is a sequence chart showing an example of the monitoring process performed by the flying object 10 and the terminal device 50. This process is started in response to the flying object 10 receiving instruction information from the server device 40.
  • the flying object 10 starts flying toward the monitoring position according to the instruction information received from the server device 40 (step S31). At this time, the flying object 10 automatically navigates without being operated by the manager.
  • the flying object 10 captures an image of the animal to be monitored using the imaging device 16 (step S32). For example, when the animal D is a monitoring target, an image of the animal D is taken from the monitoring position.
  • the flying object 10 transmits image information indicating the captured image to the terminal device 50 (step S33).
  • the transmission of the image information may be performed in real time, for example. Note that “real time” does not necessarily have to be simultaneous, and there may be some delay.
  • the terminal device 50 causes the display device 56 to display the image 561 indicated by the received image information (step S34).
  • FIG. 11 is a diagram illustrating an example of an image 561 displayed on the display device 56.
  • This image 561 includes an image of the animal D to be monitored.
  • the administrator can grasp the state of the animal D to be monitored by viewing the image 561 using the terminal device 50. For example, when it is determined that there is an abnormality in the animal D, the manager moves to the place of the animal D and takes measures.
  • server device 40 “imaging device 16”, “position information” indicating the position of the animal, “position information” indicating the position of the flying object 10, and “position” indicating the position of the administrator.
  • Information is used as “monitoring device”, “imaging unit”, “first position information”, “second position information”, and “third position information” according to the present invention, respectively.
  • an animal having an abnormality in the grazing animal for example, an animal that performs abnormal behavior or an animal in an abnormal state can be monitored using the flying object 10.
  • the degree of abnormality of the animal gradually increases with time.
  • the smaller the threshold value the shorter the time required for the degree of abnormality to reach the threshold value.
  • the threshold value is lowered. Therefore, when the flying object 10 cannot quickly reach the place where the target animal is present, the flight is performed. The timing at which the body 10 starts to fly can be advanced.
  • the threshold value is lowered. Therefore, when the administrator cannot quickly reach the place where the target animal is present, the flying object 10 starts flying. The timing to do can be advanced. Furthermore, since the threshold value is lowered when the animal is in a predetermined place where it is likely to cause an abnormality or to be dangerous, the timing at which the flying object 10 starts flying can be advanced. Furthermore, in the above-described embodiment, an image of an animal having an abnormality among grazed animals is displayed on the terminal device 50, so that the administrator can view such an animal image.
  • the threshold value may be changed depending on the weather.
  • the acquisition unit 411 acquires weather information indicating the weather of the place where the animal is grazed from an external server device that provides weather information.
  • the change unit 414 may lower the threshold when the weather information indicates a predetermined weather.
  • This predetermined weather is such as rain, strong wind, etc. that is considered to take longer than usual for the flying object 10 to fly to the monitoring position.
  • the degree of abnormality of the animal gradually increases with time.
  • the smaller the threshold value the shorter the time required for the degree of abnormality to reach the threshold value.
  • the threshold value is lowered, so that the timing at which the flying object 10 starts flying can be advanced.
  • the threshold value may be changed according to the change in the degree of abnormality.
  • the changing unit 414 may lower the threshold when the increase rate of the degree of abnormality is equal to or higher than a predetermined increase rate.
  • the predetermined increase rate is, for example, a value indicating a state that requires immediate action.
  • the degree of abnormality of the animal gradually increases with time.
  • the smaller the threshold value the shorter the time required for the degree of abnormality to reach the threshold value.
  • the threshold value is lowered, so that the timing at which the flying object 10 starts flying can be advanced.
  • the process of monitoring other animals around the animal may be performed.
  • this animal when there is another animal whose degree of abnormality is less than a threshold value but greater than or equal to a predetermined value within a predetermined range from the monitored animal, this animal is set as a preliminary monitoring target and the process of monitoring this animal is also combined. You may go.
  • This predetermined value is a value that is considered to be abnormal.
  • the predetermined value may be a value higher than 0 and lower than a threshold value.
  • the predetermined value may be 3.
  • the instruction unit 415 starts to fly toward the monitoring position corresponding to the position of the animal to be monitored, and sends instruction information for instructing to pass through the preliminary monitoring position corresponding to the position of the animal to be monitored.
  • the instruction information may include, for example, position information indicating the position of the monitoring target animal and position information indicating the position of the preliminary monitoring target animal.
  • the instruction information includes route information indicating a route from the current position of the flying object 10 to the monitoring position through the preliminary monitoring position, or a route returning from the monitoring position through the preliminary monitoring position. May be.
  • the flying object 10 flies according to this instruction information.
  • the flying object 10 passes through the preliminary monitoring position on the way to the monitoring position corresponding to the position of the monitoring target animal or on the way back from the monitoring position, and displays the image of the preliminary monitoring target animal at the preliminary monitoring position. Take a picture.
  • the method for capturing an image of the animal to be monitored may be different from the method for capturing an image of the animal to be preliminarily monitored.
  • the time for capturing an image of the animal to be monitored in advance may be shorter than the time for capturing the image of the animal to be monitored.
  • “monitoring position” and “preliminary monitoring position” corresponding to the position of the animal to be monitored are used as “first monitoring position” and “second monitoring position” according to the present invention, respectively. ing.
  • the server device 40 includes a dividing unit 416 in addition to the functional configuration illustrated in FIG. 5.
  • the dividing unit 416 divides the place where the animal is grazed into a plurality of regions R1 to R4 as shown in FIG.
  • the calculation unit 412 calculates, for each divided area, the total abnormality level of at least one animal in the area. For example, as shown in FIG. 13, when the animals A to C exist in the region R1, the abnormality degree “6” of the animal A, the abnormality degree “4” of the animal B, and the abnormality degree “4” of the animal C shown in FIG.
  • “14”, which is the sum of the above, is calculated as the degree of abnormality in the region R1.
  • a threshold is set for each of the regions R1 to R4.
  • a standard threshold value “10” may be set in the region R1.
  • This standard threshold value may be larger than the standard threshold value described in the above embodiment.
  • this threshold value may be changed similarly to the above-described embodiment.
  • the instruction unit 415 instructs the flight to start toward the monitoring position corresponding to the area. For example, when the abnormality level of the region R1 is “14” and the threshold value of the region R1 is “10”, the region R1 is set as a monitoring target.
  • the instruction information for instructing to start flying toward the monitoring position corresponding to the region R1 and to capture the image of the region R1 may be transmitted to the flying object 10.
  • This instruction information may include position information indicating the position of the region R1.
  • the flying object 10 may perform a process of taking an image while circling the region R1.
  • the administrator can see images of the animals A to C in the region R1.
  • the abnormalities of the animals A to C are all less than the threshold, the animals A to C are not monitored.
  • an area where there are many animals that are likely to be abnormal can be monitored using the flying object 10.
  • the degree of abnormality is increased. Also good. Also in this case, when the animal is in a predetermined place where it is likely to cause an abnormality or to be dangerous, the timing at which the flying object 10 starts to fly can be advanced.
  • the threshold value may be changed according to the importance of the animal. For example, if an animal is a child, is in estrus, or is pregnant, the importance of the animal may increase.
  • the changing unit 414 may lower the threshold for animals with high importance. According to this modified example, the timing at which the flying object 10 starts to fly can be advanced for highly important animals.
  • the imaging method may be varied depending on the type of abnormality of the animal. For example, when the animal is out of the group, the image may be taken from a position higher than usual so that both the group and the animal are photographed. Further, when the animal stays in a certain place, there is a possibility that there is an abnormality in the foot. According to this modification, the administrator can determine the abnormality of the animal more accurately by looking at the image of the animal.
  • the sensor device 20 is not limited to the positioning device 21 and the biological information sensor 22.
  • the sensor device 20 may include any sensor as long as it detects a physical quantity from an animal.
  • the sensor device 20 may include a microphone.
  • the degree of abnormality of the animal may be calculated based on voice information indicating the voice of the animal acquired by the microphone.
  • the process for monitoring an animal is not limited to the process for capturing an image of the animal.
  • the process of monitoring the animal may be a process of acquiring information such as voice from the animal, a process of supplying an object that deals with the abnormality to the animal, or a process of tracking the animal.
  • the method of measuring the position of the flying object 10, the animal, or the manager is not limited to the method using GPS.
  • the position of the flying object 10, the animal, or the manager may be measured by a method that does not use GPS.
  • At least a part of the functions of the server device 40 may be implemented in another device.
  • at least one of the acquisition unit 411, the calculation unit 412, the setting unit 413, the change unit 414, the instruction unit 415, and the division unit 416 may be implemented in the terminal device 50.
  • the present invention may be provided as a method including steps of processing performed in the monitoring system 1, the flying object 10, the sensor device 20, the positioning device 30, the server device 40, or the terminal device 50. Further, the present invention may be provided as a program executed in the flying object 10, the server device 40, or the terminal device 50.
  • each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wireless) and may be realized by these plural devices.
  • the hardware configuration of the flying object 10, the server device 40, or the terminal device 50 may be configured to include one or a plurality of devices illustrated in FIG. 3, FIG. 4, or FIG. You may comprise without an apparatus.
  • the flying object 10, the server device 40, or the terminal device 50 includes a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA). ) Or the like, and a part or all of the functional blocks of the flying object 10, the server device 40, or the terminal device 50 may be realized by the hardware.
  • the processor 11, 41, or 51 may be implemented with at least one of these hardware.
  • Each aspect / embodiment described in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 5G
  • FRA Full Radio Access
  • W-CDMA Wideband
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB User Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 UWB (Ultra-WideBand
  • the present invention may be applied to a Bluetooth (registered trademark), a system using another appropriate system, and / or a next generation system extended based on the system.
  • the input / output information or the like may be stored in a specific place (for example, a memory) or may be managed by a management table. Input / output information and the like can be overwritten, updated, or additionally written. The output information or the like may be deleted. The input information or the like may be transmitted to another device.
  • the determination may be performed by a value represented by 1 bit (0 or 1), may be performed by a true / false value (Boolean: true or false), or may be performed by comparing numerical values (for example, a predetermined value) Comparison with the value).
  • notification of predetermined information is not limited to explicitly performed, but is performed implicitly (for example, notification of the predetermined information is not performed). Also good.
  • software, instructions, etc. may be transmitted / received via a transmission medium.
  • software may use websites, servers, or other devices using wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • DSL digital subscriber line
  • wireless technology such as infrared, wireless and microwave.
  • system and “network” used in this specification are used interchangeably.
  • information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information.
  • the radio resource may be indicated by an index.
  • determining may encompass a wide variety of actions. “Judgment” and “determination” are, for example, judgment, calculation, calculation, processing, derivation, investigating, searching (looking up) (for example, table , Searching in a database or another data structure), considering ascertaining what is “certain”, “determining”, and the like. In addition, “determination” and “determination” are reception (for example, receiving information), transmission (for example, transmitting information), input (input), output (output), and access. (Accessing) (for example, accessing data in a memory) may be considered as “determining” or “determining”.
  • determination and “determination” means that “resolving”, “selecting”, “choosing”, “establishing”, and “comparing” are regarded as “determining” and “determining”. May be included. In other words, “determination” and “determination” may include considering some operation as “determination” and “determination”.
  • any reference to elements using designations such as “first”, “second”, etc. as used herein does not generally limit the amount or order of those elements. These designations can be used herein as a convenient way to distinguish between two or more elements. Thus, a reference to the first and second elements does not mean that only two elements can be employed there, or that in some way the first element must precede the second element.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Zoology (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Alarm Systems (AREA)

Abstract

放牧されている動物において異常がある動物を、飛行体を利用して監視する。 取得部は、放牧されている動物の位置を示す位置情報を取得する。算出部は、動物の異常度を算出する。指示部は、算出された異常度が閾値以上である場合には、取得された位置情報が示す位置に対応する監視位置に向けて飛行を開始し、監視位置において動物を監視する処理を行うよう飛行体(10)に指示する。変更部は、動物の周囲の状況に関する所定の条件を満たす場合には、閾値を変更する。

Description

監視装置及びプログラム
 本発明は、飛行体を用いて動物を監視する技術に関する。
 ドローン等の飛行体を用いて監視を行う技術が知られている。例えば特許文献1には、監視領域内で異常を検知すると、飛行ロボットが異常検知位置付近に移動し、監視センタへライブ映像の送信開始を行うことが記載されている。
特開2016-189114号公報
 特許文献1に記載の技術では、不審車両又は不審者の監視を行っているが、飛行体を用いて例えば放牧されている動物を監視できると便利である。また、飛行体を用いて動物を監視する場合、通常は動物の異常度が高くなったときに、飛行体が飛行を開始して動物を監視してもよいが、動物の周囲の状況によっては、通常よりも早いタイミングで飛行体が飛行を開始して動物の監視を行った方がよい場合がある。
 本発明は、放牧されている動物において異常がある動物を、飛行体を利用して監視することを目的とする。
 本発明は、放牧されている動物の位置を示す位置情報を取得する取得部と、前記動物の異常度を算出する算出部と、前記算出された異常度が閾値以上である場合には、前記取得された位置情報が示す前記位置に対応する監視位置に向けて飛行を開始し、前記監視位置において前記動物を監視する処理を行うよう飛行体に指示する指示部と、前記動物の周囲の状況に関する所定の条件を満たす場合には、前記閾値を変更する変更部とを備える監視装置を提供する。
 また、本発明は、コンピュータに、放牧されている動物の位置を示す位置情報を取得するステップと、前記動物の異常度を算出するステップと、前記算出された異常度が閾値以上である場合には、前記取得された位置情報が示す前記位置に対応する監視位置に向けて飛行を開始し、前記監視位置において前記動物を監視する処理を行うよう飛行体に指示するステップと、前記動物の周囲の状況に関する所定の条件を満たす場合には、前記閾値を変更するステップとを実行させるためのプログラムを提供する。
 本発明によれば、放牧されている動物において異常がある動物を、飛行体を利用して監視することができる。
実施形態に係る監視システム1の構成の一例を示す図である。 飛行体10の外観の一例を示す図である。 飛行体10のハードウェア構成を示す図である。 サーバ装置40のハードウェア構成を示す図である。 サーバ装置40の機能構成の一例を示す図である。 端末装置50のハードウェア構成を示す図である。 ストレージ43に記憶されたデータベース431の一例を示す図である。 サーバ装置40が行う監視処理の一例を示すフローチャートである。 各動物の異常度の一例を示す図である。 飛行体10及び端末装置50が行う監視処理の一例を示すシーケンスチャートである。 表示装置56に表示された画像561の一例を示す図である。 変形例に係るサーバ装置40の機能構成の一例を示す図である。 変形例に係る動物が放牧された場所の分割の一例を示す図である。 変形例に係る各領域の異常度の合計の一例を示す図である。
1.構成
 図1は、本実施形態に係る監視システム1の構成の一例を示す図である。この例では、牧場等の場所において複数の動物が放牧されている。この「放牧」とは、管理下に置きつつ放し飼いにすることをいう。放牧されている動物は、例えば牛、羊、馬、羊、山羊等、どのような動物であってもよい。また、1種類の動物だけが放牧されていてもよいし、複数種類の動物が放牧されていてもよい。これらの動物は、管理者が管理している。監視システム1は、放牧された動物を監視するシステムである。監視システム1は、飛行体10と、複数のセンサ装置20と、測位装置30と、サーバ装置40と、端末装置50とを備える。なお、図1に示す装置の数は例示であり、これに限定されない。
 飛行体10、センサ装置20、測位装置30、サーバ装置40、及び端末装置50は、通信回線60を介して接続されている。通信回線60は、例えば無線ネットワーク及びインターネットを含み、これらの装置の間の通信を伝送する。
 図2は、飛行体10の外観の一例を示す図である。飛行体10は、人が操作を行わなくても自律的に飛行可能な無人航空機である。飛行体10は、例えばドローンであってもよい。飛行体10は、プロペラ101と、駆動装置102と、バッテリー103とを備える。プロペラ101は、軸を中心に回転する。プロペラ101が回転することで、飛行体10が飛行する。駆動装置102は、プロペラ101に動力を与えて回転させる。駆動装置102は、例えばモーターである。駆動装置102は、プロペラ101に直接接続されてもよいし、駆動装置102の動力をプロペラ101に伝達する伝達機構を介してプロペラ101に接続されてもよい。バッテリー103は、駆動装置102を含む飛行体10の各部に電力を供給する。
 図3は、飛行体10のハードウェア構成を示す図である。飛行体10は、物理的には、プロセッサ11、メモリ12、ストレージ13、通信装置14、測位装置15、撮像装置16、バス17などを含むコンピュータ装置として構成されてもよい。なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。
 プロセッサ11は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ11は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central  Processing  Unit)で構成されてもよい。また、プロセッサ11は、プログラム(プログラムコード)、ソフトウェアモジュールやデータを、ストレージ13及び/又は通信装置14からメモリ12に読み出し、これらに従って各種の処理を実行する。プログラムとしては、飛行体10の動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。飛行体10において実行される各種処理は、1つのプロセッサ11により実行されてもよいし、2以上のプロセッサ11により同時又は逐次に実行されてもよい。プロセッサ11は、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 メモリ12は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ12は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ12は、本発明の一実施の形態に係る監視方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ13は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact  Disc  ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。ストレージ13は、補助記憶装置と呼ばれてもよい。
 通信装置14は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。
 測位装置15は、所定の時間間隔で飛行体10の位置を測定する。測位装置15は、例えばGPS(Global Positioning  System)受信機であり、複数の衛星から受信したGPS信号に基づいて飛行体10の現在位置を測定する。この位置は、例えば緯度、経度、及び高度を用いて示されてもよい。
 撮像装置16は、飛行体10において飛行中に地上に居る動物の画像を撮影し得る位置、例えば飛行中に地上と対向する位置に、地上に向けて設けられる。撮像装置16は、例えばカメラであり、光学系を用いて被写体の像を撮像素子上に結ばせることで、画像を撮影する。この画像は、静止画であってもよいし、動画であってもよい。なお、撮像装置16は、可視光画像を撮影する可視光カメラに限定されない。例えば撮像装置16には、サーモグラフィと呼ばれる熱分布画像を撮影する赤外線カメラが含まれてもよい。
 また、プロセッサ11やメモリ12などの各装置は、情報を通信するためのバス17で接続される。バス17は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
 図1に戻り、センサ装置20は、無線通信機能を有する小型の装置であり、放牧されている各動物に取り付けられる。例えば動物が首輪をしている場合、センサ装置20は首輪に取り付けられてもよい。センサ装置20は、測位装置21と生体情報センサ22とを備える。測位装置21は、上述した測位装置15と同様の装置であり、所定の時間間隔で動物の位置を測定する。生体情報センサ22は、動物の生体情報を検出する。この「生体情報」とは、生体が発する情報をいう。この生体情報には、例えば体温、心拍数、脈拍数、又は呼吸数が含まれてもよい。
 測位装置30は、無線通信機能を有する小型の装置であり、管理者に持ち運ばれる。測位装置30は、例えばスマートフォン等のモバイル端末に含まれてもよい。測位装置30は、上述した測位装置15と同様の装置であり、所定の時間間隔で管理者の位置を測定する。
 図4は、サーバ装置40のハードウェア構成を示す図である。サーバ装置40は、物理的には、プロセッサ41、メモリ42、ストレージ43、通信装置44、バス45などを含むコンピュータ装置として構成されてもよい。プロセッサ41、メモリ42、ストレージ43、通信装置44、バス45は、それぞれ、上述したプロセッサ11、メモリ12、ストレージ13、通信装置14、バス17と同様であるため、その説明を省略する。
 図5は、サーバ装置40の機能構成の一例を示す図である。サーバ装置40は、取得部411と、算出部412と、設定部413と、変更部414と、指示部415として機能する。これらの機能は、プロセッサ41、メモリ42などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ41が演算を行い、通信装置44による通信や、メモリ42又はストレージ43におけるデータの読み出し及び/又は書き込みを制御することにより実現される。
 取得部411は、放牧されている動物の位置を示す位置情報及びこの動物の状態を示す状態情報を取得する。この位置情報は、例えば測位装置21が測定した位置を示す情報である。状態情報は、例えば生体情報センサ22が検出した生体情報である。位置情報及び状態情報は、例えばセンサ装置20から送信されてもよい。また、取得部411は、管理者の位置を示す位置情報を取得する。この位置情報は、例えば測位装置30が測定した位置を示す情報である。この位置情報は、例えば測位装置30から送信されてもよい。さらに、取得部411は、飛行体10の位置を示す位置情報を取得する。この位置情報は、例えば測位装置15が測定した位置を示す情報である。この位置情報は、例えば飛行体10から送信されてもよい。
 算出部412は、動物の異常度を算出する。この「異常度」とは、動物に異常がある可能性を示す値をいう。異常度が高い程、動物に異常がある可能性が高いことを示す。この異常度は、取得部411が取得した位置情報又は生体情報に基づいて算出されてもよい。例えば算出部412は、取得部411が取得した位置情報に基づいて、動物が所定の行動をしたと判定され、又はこの所定の行動をしている状態が所定時間継続していると判定された場合には、異常度を上げてもよい。この所定の行動は、例えば群れから外れる、同一の場所に留まる等、正常な行動とは異なる異常な行動である。所定時間は、例えば一時的な行動ではなく、継続的に異常な行動が行われていると見なせるような時間である。また、算出部412は、取得部411が取得した状態情報に基づいて、動物が所定の状態であると判定され、又はこの所定の状態が所定時間継続していると判定された場合には、異常度を上げてもよい。この所定の状態は、例えば体温が平熱より高い等、正常な状態とは異なる異常な状態である。所定時間は、例えば一時的な状態ではなく、継続的に異常な状態が続いていると見なせるような時間である。また、所定の状態であるか否かの判定には、動物の個体差が反映されてもよい。例えば各動物の平熱を基準にその動物の体温が高いか否かが判定されてもよい。
 設定部413は、異常度との比較に用いられる閾値を設定する。例えば動物の周囲の状況に関する所定の条件を満たさない場合には、予め定められた標準の閾値が設定される。この所定の条件は、例えば動物の周囲の状況に起因して、通常よりも早いタイミングで監視を開始した方がよいことを示す条件である。例えば飛行体10が監視対象の動物が居る所に迅速に到達できない場合、管理者が監視対象の動物が居る所に迅速に到達できない場合、又は動物が異常を起こしやすい場所若しくは危険につながり易い場所にいる場合には、通常よりも早いタイミングで監視を開始した方がよいと考えられる。したがって、例えば所定の条件は、取得部411が取得した位置情報が示す飛行体10の位置と動物の位置との間の距離が所定の距離以上であるという条件、飛行体10の位置と管理者の位置との間の距離が所定の距離以上であるという条件、及び動物が異常を起こしやすい又は危険につながり易い所定の場所に居るという条件のうち少なくともいずれかであってもよい。一方、動物の周囲の状況に関する所定の条件を満たす場合には、標準の閾値とは異なる閾値が設定される。
 変更部414は、この所定の条件を満たす場合には、閾値を変更する。例えば変更部414は、取得部411が取得した位置情報が示す飛行体10の位置と動物の位置との間の距離又は飛行体10の位置と管理者の位置との間の距離が大きい程、閾値を下げてもよい。また、変更部414は、取得部411が取得した位置情報に基づいて、動物が所定の場所に居ると判定された場合には、閾値を下げてもよい。このように閾値が変更された場合には、変更後の閾値が設定される。
 指示部415は、算出部412が算出した異常度が閾値以上である場合には、取得部411が取得した位置情報が示す位置に対応する監視位置に向けて飛行を開始し、この監視位置において動物を監視する処理を行うよう飛行体10に指示する。この監視位置は、監視対象の動物を撮影し得る位置である。例えば監視位置は、取得部411が取得した位置情報が示す位置の上空の位置であってもよい。動物を監視する処理は、例えば動物の画像を撮影する処理である。飛行体10への指示は、例えば飛行体10に指示情報を送信することによって行われてもよい。
 図6は、端末装置50のハードウェア構成を示す図である。端末装置50は、物理的には、プロセッサ51、メモリ52、ストレージ53、通信装置54、入力装置55、表示装置56、バス57などを含むコンピュータ装置として構成されてもよい。プロセッサ51、メモリ52、ストレージ53、通信装置54、バス57は、それぞれ、上述したプロセッサ11、メモリ12、ストレージ13、通信装置14、バス17と同様であるため、その説明を省略する。入力装置55は、各種の情報の入力に用いられる。例えば入力装置55は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。表示装置56は、外部への出力を実施する出力デバイス(例えば、ディスプレイ)である。例えば表示装置56は、液晶ディスプレイを含んで構成されてもよい。なお、入力装置55及び表示装置56は、一体となった構成(例えば、タッチパネル)であってもよい。
2.動作
2‐1.データ収集処理
 ここでは、図1に示すように、複数の動物には動物A~Dが含まれる場合を想定する。センサ装置20は、所定の時間間隔で、測位装置21が測定した動物の現在位置を示す位置情報と、生体情報センサ22が検出したこの動物の生体情報とを、この動物の識別情報とともにサーバ装置40に送信する。また、測位装置30は、所定の時間間隔で、管理者の現在位置を示す位置情報を、管理者の識別情報とともにサーバ装置40に送信する。さらに、飛行体10は、所定の時間間隔で、測位装置15が測定した飛行体10の現在位置を示す位置情報を、飛行体10の識別情報とともにサーバ装置40に送信する。なお、これらの装置が情報を送信する時間間隔は、同じであってもよいし、異なっていてもよい。サーバ装置40は、これらの装置から送信された情報を取得部411にて受信し、ストレージ43に記憶させる。
 図7は、ストレージ43に記憶されたデータベース431の一例を示す図である。データベース431には、センサ装置20から受信した識別情報、位置情報、及び生体情報が含まれる。また、データベース431には、測位装置30又は飛行体10から受信した識別情報及び位置情報が含まれる。これらの情報は、互いに関連付けて記憶される。例えばセンサ装置20から動物Aの識別情報と位置情報「P1」と生体情報「M1」とが受信された場合、図7に示すように、これらの情報が関連付けて記憶される。また、測位装置30から管理者の識別情報と位置情報「P10」とが受信された場合、図7に示すように、これらの情報が関連付けて記憶される。さらに、飛行体10から飛行体10の識別情報と位置情報「P20」とが受信された場合、図7に示すように、これらの情報が関連付けて記憶される。なお、測位装置30又は飛行体10から受信した情報には生体情報は含まれないため、生体情報は記憶されない。このようにして、データベース431には、各センサ装置20、測位装置30、又は飛行体10から送信された情報が蓄積される。
2‐2.監視処理
 図8は、サーバ装置40が行う監視処理の一例を示すフローチャートである。この処理は、所定の時間間隔で開始されてもよいし、例えばデータベース431に新たな情報が記憶されたときに開始されてもよい。
 算出部412は、データベース431に基づいて、各動物の異常度を算出する(ステップS21)。この例では、異常度は、1~10の数字を用いて示される。この数字が大きい程、異常度が高いことを示す。
 図9は、各動物の異常度の一例を示す図である。まず、算出部412は、データベース431に記憶された内容に基づいて、各動物が所定の行動をしたか又は所定の状態であるかを判定する。例えばデータベース431に記憶された動物A~Dの位置情報「P1」~「P4」に基づいて、動物A~Cが群れを成しており、さらに動物Dがこの群れから離れていると判定された場合を想定する。例えば動物Dが群れから離れている状態が所定時間継続している場合には、動物Dの異常度が現状の異常度から「6」に上げられてもよい。また、例えばデータベース431に記憶された動物Aの生体情報「M1」に基づいて、動物Aの体温が平熱よりも高いと判定された場合を想定する。例えばこの場合には、動物Aの異常度が現状の異常度から「6」に上げられてもよい。
 設定部413は、動物毎に、閾値を設定する(ステップS22)。具体的には、所定の条件を満たさない場合には、標準の閾値が設定される。例えばデータベース431に記憶された動物Aの位置情報「P1」及び飛行体10の位置情報「P20」に基づいて、動物Aの位置と飛行体10の位置との間の距離が所定の距離未満であると判定された場合を想定する。この場合には、所定の条件を満たさないため、動物Aには標準の閾値である「7」が設定されてもよい。また、データベース431に記憶された動物Aの位置情報「P1」及び管理者の位置情報「P10」に基づいて、動物Aの位置と管理者の位置との間の距離が所定の距離未満であると判定された場合を想定する。この場合には、所定の条件を満たさないため、動物Aには標準の閾値である「7」が設定されてもよい。さらに、データベース431に記憶された動物Aの位置情報「P1」に基づいて、動物Aが崖から所定の範囲内にある所定の場所に居ないと判定された場合を想定する。この場合には、所定の条件を満たさないため、動物Aには標準の閾値である「7」が設定されてもよい。
 一方、所定の条件を満たす場合、変更部414は、対応する動物の閾値を変更する。例えばデータベース431に記憶された動物Dの位置情報「P4」及び飛行体10の位置情報「P20」に基づいて、動物Dの位置と飛行体10の位置との間の距離が所定の距離以上であると判定された場合を想定する。この場合には、所定の条件を満たすため、動物Dの閾値が標準の閾値から変更される。このとき、動物Dの閾値は、この距離が大きいほど下げられてもよい。また、データベース431に記憶された動物Dの位置情報「P4」及び管理者の位置情報「P10」に基づいて、動物Dの位置と管理者の位置との間の距離が所定の距離以上であると判定された場合を想定する。この場合には、所定の条件を満たすため、動物Dの閾値が標準の閾値から変更される。このとき、動物Dの閾値は、この距離が大きいほど下げられてもよい。さらに、データベース431に記憶された動物Dの位置情報「P4」に基づいて、動物Dが崖から所定の範囲内にある所定の場所に居ると判定された場合を想定する。この場合には、所定の条件を満たすため、動物Dの閾値が標準の閾値から変更される。このとき、動物Dの閾値は、標準の閾値から所定値だけ下げられてもよい。このように閾値が変更された場合には、変更後の閾値が設定される。
 指示部415は、動物毎に、ステップS21において算出された異常度がステップS22において設定された閾値以上であるか否かを判定する(ステップS23)。例えば全ての異常度が対応する閾値より小さい場合(ステップS23の判定がNO)、この処理は終了する。一方、図9に示すように、動物Dの異常度が「6」であり、動物Dの閾値が「5」である場合には、異常度が閾値以上であると判定される(ステップS23の判定がYES)。この場合、指示部415は、異常度が閾値以上である動物を監視対象に設定し、監視対象の動物の位置に向けて飛行を開始し、その動物を監視する処理を行うよう指示する指示情報を飛行体10に送信する(ステップS24)。この指示情報には、少なくとも監視対象の動物の位置を示す位置情報が含まれる。また、この指示情報には、飛行体10の現在位置から監視位置へと向かう経路を示す経路情報が含まれてもよい。例えば動物Dが監視対象である場合には、データベース431に含まれる動物Dの位置情報「P4」に基づいて、動物Dの位置に対応する監視位置に向けて飛行を開始し、この監視位置において動物Dの画像を撮影する処理を行うよう指示する指示情報が送信される。
 なお、図9に示す例では、動物Aの異常度も動物Dの異常度と同じ「6」であるが、動物Aの閾値は「7」であることから、異常度が閾値未満になるため、動物Aは監視対象に設定されない。
 図10は、飛行体10及び端末装置50が行う監視処理の一例を示すシーケンスチャートである。この処理は、飛行体10がサーバ装置40から指示情報を受信したことに応じて開始される。
 飛行体10は、サーバ装置40から受信した指示情報に従って、監視位置に向けて飛行を開始する(ステップS31)。このとき、飛行体10は、管理者の操作によらずに自動航行する。監視位置に到着すると、飛行体10は、撮像装置16を用いて監視対象の動物の画像を撮影する(ステップS32)。例えば動物Dが監視対象である場合、監視位置から動物Dの画像が撮影される。飛行体10は、撮影した画像を示す画像情報を端末装置50に送信する(ステップS33)。この画像情報の送信は、例えばリアルタイムで行われてもよい。なお、「リアルタイム」とは、必ずしも同時である必要はなく、多少の遅延があってもよい。飛行体10から画像情報を受信すると、端末装置50は、受信した画像情報が示す画像561を表示装置56に表示させる(ステップS34)。
 図11は、表示装置56に表示された画像561の一例を示す図である。この画像561には、監視対象の動物Dの画像が含まれる。管理者は、端末装置50を用いてこの画像561を見ることで、監視対象の動物Dの様子を把握することができる。そして、例えば動物Dに異常があると判断した場合には、管理者が動物Dの所に移動して対処を行う。
 なお、上述した実施形態では、「サーバ装置40」、「撮像装置16」、動物の位置を示す「位置情報」、飛行体10の位置を示す「位置情報」、管理者の位置を示す「位置情報」が、それぞれ、本発明に係る「監視装置」、「撮像部」、「第1位置情報」、「第2位置情報」、「第3位置情報」として用いられている。
 以上説明した実施形態によれば、放牧されている動物において異常がある動物、例えば異常な行動をする動物又は異常な状態の動物を、飛行体10を利用して監視することができる。また、一般的に、動物に異常がある場合、その動物の異常度は時間の経過とともに徐々に上がっていく。この場合、閾値が小さい程、異常度が閾値に達するまでに要する時間が短くなる。上述した実施形態では、動物と飛行体10との間の距離が所定の距離以上である場合には閾値が下がるため、飛行体10が対象の動物が居る所に迅速に到達できないときは、飛行体10が飛行を開始するタイミングを早めることができる。また、動物と管理者との間の距離が所定の距離以上である場合には閾値が下がるため、管理者が対象の動物が居る所に迅速に到達できないときは、飛行体10が飛行を開始するタイミングを早めることができる。さらに、動物が異常を起こしやすい又は危険につながり易い所定の場所にいる場合には閾値が下がるため、飛行体10が飛行を開始するタイミングを早めることができる。さらに、上述した実施形態では、放牧されている動物において異常がある動物の画像が端末装置50に表示されるため、管理者はこのような動物の画像を見ることができる。
3.変形例
 本発明は、上述した実施形態に限定されない。上述した実施形態を以下のように変形してもよい。また、以下の2つ以上の変形例を組み合わせて実施してもよい。
 上述した実施形態において、天候によって閾値が変更されてもよい。この場合、取得部411は、気象情報を提供する外部のサーバ装置から、動物が放牧されている場所の気象を示す気象情報を取得する。変更部414は、この気象情報が所定の気象を示す場合には、閾値を下げてもよい。この所定の気象は、例えば雨、強風等、飛行体10が監視位置まで飛行するのに通常よりも時間がかかると考えられるような気象である。上述した実施形態において説明したように、一般的に、動物に異常がある場合、その動物の異常度は時間の経過とともに徐々に上がっていく。この場合、閾値が小さい程、異常度が閾値に達するまでに要する時間が短くなる。この変形例によれば、例えば悪天候で飛行体10が対象の動物が居る所に迅速に到達できない場合には閾値が下がるため、飛行体10が飛行を開始するタイミングを早めることができる。
 上述した実施形態において、異常度の変化に応じて閾値が変更されてもよい。この場合、変更部414は、異常度の増加率が所定の増加率以上である場合には、閾値を下げてもよい。この所定の増加率は、例えば早急に対応が必要な状態を示すような値である。上述した実施形態において説明したように、一般的に、動物に異常がある場合、その動物の異常度は時間の経過とともに徐々に上がっていく。この場合、閾値が小さい程、異常度が閾値に達するまでに要する時間が短くなる。この変形例によれば、例えば異常度の増加率が高い場合には閾値が下がるため、飛行体10が飛行を開始するタイミングを早めることができる。
 上述した実施形態において、監視対象の動物を監視する処理とともに、その動物の周辺に居る他の動物を監視する処理を行ってもよい。例えば監視対象の動物から所定の範囲内に、異常度が閾値未満であるが所定値以上である他の動物が居る場合、この動物を予備監視対象に設定し、この動物を監視する処理を併せて行ってもよい。この所定値は、異常がありそうだと考えられるような値である。所定値は、例えば0より高く閾値より低い値であってもよい。例えば閾値が7である場合、所定値は3であってもよい。この場合、指示部415は、監視対象の動物の位置に対応する監視位置に向けて飛行を開始するとともに、予備監視対象の動物の位置に対応する予備監視位置を通るよう指示する指示情報を飛行体10に送信する。この指示情報には、例えば監視対象の動物の位置を示す位置情報と、予備監視対象の動物の位置を示す位置情報が含まれてもよい。また、この指示情報には、飛行体10の現在位置から予備監視位置を通って監視位置へと向かう経路、又は、監視位置から予備監視位置を通って戻ってくる経路を示す経路情報が含まれてもよい。飛行体10は、この指示情報に従って飛行を行う。この場合、飛行体10は、監視対象の動物の位置に対応する監視位置に行く途中又はこの監視位置から帰る途中に、予備監視位置を通り、この予備監視位置において予備監視対象の動物の画像を撮影する。このとき、監視対象の動物の画像を撮影する方法と、予備監視対象の動物の画像を撮影する方法とを異ならせてもよい。例えば、予備監視対象の動物の画像を撮影する時間は、監視対象の動物の画像を撮影する時間よりも短くてもよい。この変形例によれば、放牧されている動物において異常がある動物を飛行体10を利用して監視するときに、異常がありそうな動物も併せて監視することができる。なお、この変形例では、監視対象の動物の位置に対応する「監視位置」、「予備監視位置」が、それぞれ、本発明に係る「第1監視位置」、「第2監視位置」として用いられている。
 上述した実施形態において、動物が居る領域毎に、監視処理が行われてもよい。この場合、図12に示すように、サーバ装置40は、図5に示す機能構成に加えて、分割部416を有する。分割部416は、図13に示すように動物が放牧された場所を複数の領域R1~R4に分割する。算出部412は、図14に示すように、分割された領域毎に、その領域内に居る少なくとも1の動物の異常度の合計を算出する。例えば図13に示すように、領域R1に動物A~Cが居る場合、図9に示す動物Aの異常度「6」、動物Bの異常度「4」、及び動物Cの異常度「4」の合計である「14」が領域R1の異常度として算出される。また、領域R1~R4の各々について閾値が設定される。例えば、領域R1には、標準の閾値である「10」が設定されてもよい。この標準の閾値は、上述した実施形態で説明した標準の閾値より大きくてもよい。また、この閾値は、上述した実施形態と同様に変更されてもよい。指示部415は、異常度の合計が閾値以上である場合には、その領域に対応する監視位置に向けて飛行を開始するよう指示する。例えば領域R1の異常度が「14」であり、領域R1の閾値が「10」である場合には、領域R1が監視対象として設定される。この場合、領域R1に対応する監視位置に向けて飛行を開始し、領域R1の画像を撮影するよう指示する指示情報が飛行体10に送信されてもよい。この指示情報には、領域R1の位置を示す位置情報が含まれてもよい。この場合、飛行体10は、領域R1を周回しながら画像を撮影する処理を行ってもよい。この構成により、管理者は、領域R1に居る動物A~Cの画像を見ることができる。上述した実施形態では、動物A~Cの異常度はいずれも閾値未満であるため、動物A~Cは監視対象にならない。しかし、異常がありそうな動物が多い領域は、監視する処理を行った方がよい場合がある。この変形例によれば、異常がありそうな動物が多い領域を、飛行体10を利用して監視することができる。
 上述した実施形態において、取得部411が取得した位置情報に基づいて動物が所定の場所に居ると判定された場合には、閾値を下げるのに代えて又は閾値を下げるとともに、異常度を上げてもよい。この場合にも、動物が異常を起こしやすい又は危険につながり易い所定の場所に居る場合には、飛行体10が飛行を開始するタイミングを早めることができる。
 上述した実施形態において、動物の重要度に応じて、閾値を変更してもよい。例えば動物が子供である場合、発情期である場合、又は妊娠中である場合には、動物の重要度が高くなってもよい。変更部414は、重要度が高い動物については、閾値を下げてもよい。この変形例によれば、重要度の高い動物については、飛行体10が飛行を開始するタイミングを早めることができる。
 上述した実施形態において、動物の異常の種別に応じて、撮影方法を異ならせてもよい。例えば動物が群れから外れている場合には、群れと動物とが両方とも撮影されるように、通常よりも高い位置から撮影してもよい。また、動物が一定の場所に留まっている場合には、足に異常がある可能性があるため、動物の足を中心に撮影してもよい。この変形例によれば、管理者が動物の画像を見て、動物の異常をより正確に判断することができる。
 上述した実施形態において、センサ装置20は、測位装置21と生体情報センサ22とに限定されない。センサ装置20は、動物から物理量を検出するセンサであれば、どのようなセンサが含まれてもよい。例えばセンサ装置20には、マイクロフォンが含まれていてもよい。この場合、マイクロフォンが取得した動物の声を示す音声情報に基づいて、動物の異常度が算出されてもよい。
 上述した実施形態において、動物を監視する処理は、動物の画像を撮影する処理に限定されない。例えば動物を監視する処理は、動物から音声等の情報を取得する処理、異常に対処する物を動物に供給する処理、又は動物を追尾する処理であってもよい。
 上述した実施形態において、飛行体10、動物、又は管理者の位置を測定する方法は、GPSを用いた方法に限定されない。GPSを用いない方法で、飛行体10、動物、又は管理者の位置が測定されてもよい。
 上述した実施形態又は変形例において、サーバ装置40の機能の少なくとも一部が他の装置に実装されてもよい。例えば取得部411、算出部412、設定部413、変更部414、指示部415、及び分割部416のうち少なくともいずれかが、端末装置50に実装されてもよい。
 本発明は、監視システム1、飛行体10、センサ装置20、測位装置30、サーバ装置40、又は端末装置50において行われる処理のステップを備える方法として提供されてもよい。また、本発明は、飛行体10、サーバ装置40、又は端末装置50において実行されるプログラムとして提供されてもよい。
 図5又は図12のブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
 飛行体10、サーバ装置40、又は端末装置50のハードウェア構成は、図3、図4、又は図6に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。また飛行体10、サーバ装置40、又は端末装置50は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital  Signal  Processor)、ASIC(Application  Specific  Integrated  Circuit)、PLD(Programmable Logic  Device)、FPGA(Field  Programmable  Gate  Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、飛行体10、サーバ装置40、又は端末装置50の機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ11、41、又は51は、これらのハードウェアの少なくとも1つで実装されてもよい。
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio  Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra  Mobile  Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、または追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)などの有線技術及び/又は赤外線、無線及びマイクロ波などの無線技術を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 本明細書で使用する「システム」および「ネットワーク」という用語は、互換的に使用される。
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースはインデックスで指示されるものであってもよい。
 本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本明細書で使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1および第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 「含む(including)」、「含んでいる(comprising)」、およびそれらの変形が、本明細書あるいは特許請求の範囲で使用されている限り、これら用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
 本開示の全体において、例えば、英語でのa、an、及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含むものとする。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
1:監視システム、10:飛行体、11:プロセッサ、12:メモリ、13:ストレージ、14:通信装置、15:測位装置、16:撮像装置、20:センサ装置、21:測位装置、22:生体情報センサ、30:測位装置、40:サーバ装置、50:端末装置、411:取得部、412:算出部、413:設定部、414:変更部、415:指示部、416:分割部

Claims (10)

  1.  放牧されている動物の位置を示す位置情報を取得する取得部と、
     前記動物の異常度を算出する算出部と、
     前記算出された異常度が閾値以上である場合には、前記取得された位置情報が示す前記位置に対応する監視位置に向けて飛行を開始し、前記監視位置において前記動物を監視する処理を行うよう飛行体に指示する指示部と、
     前記動物の周囲の状況に関する所定の条件を満たす場合には、前記閾値を変更する変更部と
     を備える監視装置。
  2.  前記算出部は、前記取得された位置情報に基づいて、前記動物が所定の行動をしたと判定され、又は前記所定の行動をしている状態が所定時間継続していると判定された場合には、前記異常度を上げる
     請求項1に記載の監視装置。
  3.  前記取得部は、前記動物の状態を示す状態情報を取得し、
     前記算出部は、前記取得された状態情報に基づいて、前記動物が所定の状態であると判定され、又は前記所定の状態が所定時間継続していると判定された場合には、前記異常度を上げる
     請求項1又は2に記載の監視装置。
  4.  前記位置情報は、第1位置情報であり、
     前記取得部は、前記飛行体の位置を示す第2位置情報、又は前記動物の前記位置に対応する気象を示す気象情報を取得し、
     前記変更部は、前記第1位置情報が示す前記動物の前記位置と前記第2位置情報が示す前記飛行体の前記位置との間の距離が大きい程、前記閾値を下げ、又は前記取得された気象情報が所定の気象を示す場合には、前記閾値を下げる
     請求項1から3のいずれか1項に記載の監視装置。
  5.  前記位置情報は、第1位置情報であり、
     前記取得部は、さらに前記動物の管理者の位置を示す第3位置情報を取得し、
     前記変更部は、前記第1位置情報が示す前記動物の前記位置と前記第3位置情報が示す前記管理者の前記位置との間の距離が大きい程、前記閾値を下げる
     請求項1から4のいずれか1項に記載の監視装置。
  6.  前記取得された位置情報に基づいて前記動物が所定の場所に居ると判定された場合には、前記算出部は前記異常度を上げ、又は前記変更部は前記閾値を下げる
     請求項1から5のいずれか1項に記載の監視装置。
  7.  複数の動物が放牧されており、
     前記指示部は、前記取得された位置情報に基づいて、前記複数の動物のうち前記異常度が前記閾値以上の監視対象の動物から所定の範囲内に、前記異常度が前記閾値未満且つ前記閾値より低い所定値以上の他の動物が居ると判定された場合には、前記監視対象の動物の前記位置に対応する第1監視位置に向けて飛行を開始し、前記他の動物の位置に対応する第2監視位置を通るよう指示する
     請求項1から6のいずれか1項に記載の監視装置。
  8.  複数の動物が放牧されており、
     前記複数の動物が放牧された場所を複数の領域に分割する分割部をさらに備え、
     前記算出部は、前記複数の領域に含まれる領域毎に、前記複数の動物のうち当該領域内に居る少なくとも1の動物の前記異常度の合計を算出し、
     前記指示部は、前記算出された合計が前記閾値以上である場合には、前記複数の領域のうち当該合計が算出された領域に対応する監視位置に向けて飛行を開始するよう指示する
     請求項1から7のいずれか1項に記載の監視装置。
  9.  前記飛行体は、画像を撮影する撮像部を有し、
     前記処理は、前記撮像部が前記動物の画像を撮影する処理である
     請求項1から8のいずれか1項に記載の監視装置。
  10.  コンピュータに、
     放牧されている動物の位置を示す位置情報を取得するステップと、
     前記動物の異常度を算出するステップと、
     前記算出された異常度が閾値以上である場合には、前記取得された位置情報が示す前記位置に対応する監視位置に向けて飛行を開始し、前記監視位置において前記動物を監視する処理を行うよう飛行体に指示するステップと、
     前記動物の周囲の状況に関する所定の条件を満たす場合には、前記閾値を変更するステップと
     を実行させるためのプログラム。
PCT/JP2019/018398 2018-05-23 2019-05-08 監視装置及びプログラム WO2019225312A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020521140A JP7341991B2 (ja) 2018-05-23 2019-05-08 監視装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018098943 2018-05-23
JP2018-098943 2018-05-23

Publications (1)

Publication Number Publication Date
WO2019225312A1 true WO2019225312A1 (ja) 2019-11-28

Family

ID=68616048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018398 WO2019225312A1 (ja) 2018-05-23 2019-05-08 監視装置及びプログラム

Country Status (2)

Country Link
JP (1) JP7341991B2 (ja)
WO (1) WO2019225312A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111144276A (zh) * 2019-12-24 2020-05-12 北京深测科技有限公司 一种用于牧场的监测预警方法
CN111158394A (zh) * 2020-01-11 2020-05-15 湘潭大学 一种基于子母无人机的牧羊监测方法及系统
CN112215105A (zh) * 2020-09-28 2021-01-12 北京海益同展信息科技有限公司 目标动物的身体异常监测方法和装置、设备及存储介质
CN112562292A (zh) * 2020-11-26 2021-03-26 杭州冬元科技有限公司 一种使用无线网络的智能放牧装置
CN116567423A (zh) * 2023-07-11 2023-08-08 天津海河标测技术检测有限公司 基于图像的动物监护仪及其方法
WO2023190024A1 (ja) * 2022-03-31 2023-10-05 日本電気通信システム株式会社 放し飼い家畜の管理サーバ装置、システム、方法、及びプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061221A (ja) * 2007-09-10 2009-03-26 Nec Corp 健康監視システム、健康監視方法および健康監視プログラム
WO2016181605A1 (ja) * 2015-05-12 2016-11-17 ソニー株式会社 管理装置、個体管理システムおよび個体探索システム
US20170202185A1 (en) * 2016-01-18 2017-07-20 Dinklage Feed Yards, Inc. Unmanned livestock monitoring system and methods of use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061221A (ja) * 2007-09-10 2009-03-26 Nec Corp 健康監視システム、健康監視方法および健康監視プログラム
WO2016181605A1 (ja) * 2015-05-12 2016-11-17 ソニー株式会社 管理装置、個体管理システムおよび個体探索システム
US20170202185A1 (en) * 2016-01-18 2017-07-20 Dinklage Feed Yards, Inc. Unmanned livestock monitoring system and methods of use

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111144276A (zh) * 2019-12-24 2020-05-12 北京深测科技有限公司 一种用于牧场的监测预警方法
CN111158394A (zh) * 2020-01-11 2020-05-15 湘潭大学 一种基于子母无人机的牧羊监测方法及系统
CN111158394B (zh) * 2020-01-11 2023-09-29 湘潭大学 一种基于子母无人机的牧羊监测方法及系统
CN112215105A (zh) * 2020-09-28 2021-01-12 北京海益同展信息科技有限公司 目标动物的身体异常监测方法和装置、设备及存储介质
CN112562292A (zh) * 2020-11-26 2021-03-26 杭州冬元科技有限公司 一种使用无线网络的智能放牧装置
WO2023190024A1 (ja) * 2022-03-31 2023-10-05 日本電気通信システム株式会社 放し飼い家畜の管理サーバ装置、システム、方法、及びプログラム
CN116567423A (zh) * 2023-07-11 2023-08-08 天津海河标测技术检测有限公司 基于图像的动物监护仪及其方法
CN116567423B (zh) * 2023-07-11 2023-09-08 天津海河标测技术检测有限公司 基于图像的动物监护仪及其方法

Also Published As

Publication number Publication date
JPWO2019225312A1 (ja) 2021-06-17
JP7341991B2 (ja) 2023-09-11

Similar Documents

Publication Publication Date Title
WO2019225312A1 (ja) 監視装置及びプログラム
WO2019225313A1 (ja) 監視装置及びプログラム
JPWO2019093198A1 (ja) 飛行制御装置及び飛行制御システム
JPWO2020230371A1 (ja) 制御装置、プログラム及び制御方法
JP6857250B2 (ja) 飛行制御装置及び飛行制御システム
JP6945005B2 (ja) 飛行制御システム
JP7079345B2 (ja) 情報処理装置
JP2017011417A (ja) 表示制御装置、表示制御方法、プログラム
JP6945004B2 (ja) 情報処理装置
JPWO2019054027A1 (ja) 飛行制御システム及び飛行制御装置
JP7050809B2 (ja) 情報処理装置
US20210191429A1 (en) Flying object control apparatus
JP7208402B2 (ja) 情報処理装置
JP7181401B2 (ja) 情報処理装置及び情報処理方法
JP7060616B2 (ja) 情報処理装置
WO2020115945A1 (ja) 測位システム
KR102675342B1 (ko) 목표물 추적용 드론 및 그에 대한 제어 방법
WO2023008277A1 (ja) コンテンツ共有システム
US11978349B2 (en) Control device, program, and control method
JP7577042B2 (ja) 周囲画像推定装置
US11891176B2 (en) Determination of position sending interval for flying vehicle dependent upon ground surface below vehicle
US11794900B2 (en) Information processing apparatus
JP7058290B2 (ja) 情報処理装置及び情報処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19808408

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020521140

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19808408

Country of ref document: EP

Kind code of ref document: A1