WO2019225313A1 - 監視装置及びプログラム - Google Patents
監視装置及びプログラム Download PDFInfo
- Publication number
- WO2019225313A1 WO2019225313A1 PCT/JP2019/018399 JP2019018399W WO2019225313A1 WO 2019225313 A1 WO2019225313 A1 WO 2019225313A1 JP 2019018399 W JP2019018399 W JP 2019018399W WO 2019225313 A1 WO2019225313 A1 WO 2019225313A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- animal
- monitoring
- flying object
- reactivity
- distance
- Prior art date
Links
- 238000012806 monitoring device Methods 0.000 title claims description 10
- 241001465754 Metazoa Species 0.000 claims abstract description 251
- 238000012544 monitoring process Methods 0.000 claims abstract description 113
- 238000013459 approach Methods 0.000 claims abstract description 18
- 238000012545 processing Methods 0.000 claims abstract description 12
- 230000009257 reactivity Effects 0.000 claims description 47
- 238000003384 imaging method Methods 0.000 claims description 22
- 230000004044 response Effects 0.000 claims description 14
- 230000005856 abnormality Effects 0.000 description 43
- 238000000034 method Methods 0.000 description 31
- 238000010586 diagram Methods 0.000 description 22
- 230000008569 process Effects 0.000 description 20
- 238000004891 communication Methods 0.000 description 18
- 238000004364 calculation method Methods 0.000 description 12
- 230000002159 abnormal effect Effects 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000009304 pastoral farming Methods 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000036760 body temperature Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000004043 responsiveness Effects 0.000 description 4
- 241001494479 Pecora Species 0.000 description 3
- 241000283690 Bos taurus Species 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 241000283707 Capra Species 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000012173 estrus Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 244000144980 herd Species 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000036387 respiratory rate Effects 0.000 description 1
- 238000001931 thermography Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K29/00—Other apparatus for animal husbandry
- A01K29/005—Monitoring or measuring activity, e.g. detecting heat or mating
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K29/00—Other apparatus for animal husbandry
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C13/00—Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
- B64C13/02—Initiating means
- B64C13/16—Initiating means actuated automatically, e.g. responsive to gust detectors
- B64C13/18—Initiating means actuated automatically, e.g. responsive to gust detectors using automatic pilot
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U10/00—Type of UAV
- B64U10/10—Rotorcrafts
- B64U10/13—Flying platforms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2101/00—UAVs specially adapted for particular uses or applications
- B64U2101/30—UAVs specially adapted for particular uses or applications for imaging, photography or videography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2201/00—UAVs characterised by their flight controls
- B64U2201/10—UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
Definitions
- the present invention relates to a technique for monitoring an animal using a flying object.
- Patent Document 1 describes that an unmanned air vehicle determines a descending route based on an object in a descending target area and descends.
- An object of the present invention is to reduce the stress of an animal to be monitored when monitoring an animal that has been grazed using a flying object.
- the present invention includes an acquisition unit that acquires position information indicating a position of a grazing animal, a determination unit that determines the degree of response of the animal to the approach of a flying object, and a distance according to the determined degree of response.
- the setting unit to be set, and the flight is started toward the monitoring position corresponding to the position indicated by the acquired position information and the set distance, and the process of monitoring the animal on the basis of the monitoring position is performed.
- a monitoring device including an instruction unit for instructing the flying object.
- a step of acquiring position information indicating a position of a grazing animal in a computer a step of determining a degree of response of the animal to approach of a flying object, and a response to the determined degree of response. And a process of starting flight toward the monitoring position corresponding to the position indicated by the acquired position information and the set distance, and monitoring the animal based on the monitoring position. And a program for instructing the aircraft to perform.
- the present invention when monitoring an animal that is grazing using a flying object, it is possible to reduce the stress of the animal to be monitored.
- FIG. 1 is a diagram illustrating an example of the appearance of a flying object 10.
- FIG. 2 is a diagram illustrating a hardware configuration of the flying object 10.
- FIG. 2 is a diagram illustrating a hardware configuration of a server device 30.
- FIG. 3 is a diagram illustrating an example of a functional configuration of a server device 30.
- FIG. 4 is a diagram illustrating an example of a database 331 stored in a storage 33.
- FIG. 4 is a flowchart illustrating an example of a monitoring process performed by a server device 30. It is a figure which shows an example of the abnormal degree of each animal.
- FIG. 2 is a diagram illustrating an example of a flight altitude of the flying object 10.
- FIG. It is a figure which shows another example of the flight altitude of the flying body.
- 6 is a diagram showing an example of an image 461 displayed on the display device 46.
- FIG. 1 is a diagram illustrating an example of a configuration of a monitoring system 1 according to the present embodiment.
- a plurality of animals are grazed at a place such as a ranch. This “grazing” means freezing while being under control.
- the animals that are grazed may be any animals such as cows, sheep, horses, sheep, and goats. Further, only one type of animal may be grazed, or multiple types of animals may be grazed. These animals are managed by an administrator.
- the monitoring system 1 is a system that monitors grazed animals.
- the monitoring system 1 includes an air vehicle 10, a plurality of sensor devices 20, a server device 30, and a terminal device 40.
- the number of apparatuses shown in FIG. 1 is an illustration, and is not limited to this.
- the flying object 10, the plurality of sensor devices 20, the server device 30, and the terminal device 40 are connected via a communication line 50.
- the communication line 50 includes, for example, a wireless network and the Internet, and transmits communication between these devices.
- FIG. 2 is a diagram showing an example of the appearance of the flying object 10.
- the flying object 10 is an unmanned aerial vehicle that can fly autonomously without human operation.
- the flying object 10 may be a drone, for example.
- the flying object 10 includes a propeller 101, a driving device 102, and a battery 103.
- the propeller 101 rotates about an axis. As the propeller 101 rotates, the flying object 10 flies.
- the driving device 102 rotates the propeller 101 with power.
- the driving device 102 is, for example, a motor.
- the drive device 102 may be directly connected to the propeller 101, or may be connected to the propeller 101 via a transmission mechanism that transmits the power of the drive device 102 to the propeller 101.
- the battery 103 supplies power to each part of the aircraft 10 including the driving device 102.
- FIG. 3 is a diagram showing a hardware configuration of the flying object 10.
- the flying object 10 may be physically configured as a computer device including a processor 11, a memory 12, a storage 13, a communication device 14, a positioning device 15, an imaging device 16, a bus 17, and the like.
- the term “apparatus” can be read as a circuit, a device, a unit, or the like.
- the processor 11 controls the entire computer by operating an operating system, for example.
- the processor 11 may include a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
- the processor 11 reads a program (program code), software module, and data from the storage 13 and / or the communication device 14 to the memory 12, and executes various processes according to these.
- a program program code
- software module software module
- data data from the storage 13 and / or the communication device 14 to the memory 12
- As the program a program that causes a computer to execute at least a part of the operation of the flying object 10 is used.
- Various processes executed in the flying object 10 may be executed by one processor 11 or may be executed simultaneously or sequentially by two or more processors 11.
- the processor 11 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunication line.
- the memory 12 is a computer-readable recording medium, and includes, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. May be.
- the memory 12 may be called a register, a cache, a main memory (main storage device), or the like.
- the memory 12 can store a program (program code), a software module, and the like that can be executed to implement the monitoring method according to the embodiment of the present invention.
- the storage 13 is a computer-readable recording medium, for example, an optical disc such as a CD-ROM (Compact Disc) ROM, a hard disk drive, a flexible disc, a magneto-optical disc (eg, a compact disc, a digital versatile disc, a Blu-ray). (Registered trademark) disk, smart card, flash memory (for example, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
- the storage 13 may be called an auxiliary storage device.
- the communication device 14 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
- the positioning device 15 measures the position of the flying object 10 at predetermined time intervals.
- the positioning device 15 is a GPS (Global Positioning System) receiver, for example, and measures the current position of the flying object 10 based on GPS signals received from a plurality of satellites. This location may be indicated using, for example, latitude, longitude, and altitude.
- GPS Global Positioning System
- the imaging device 16 is provided toward the ground at a position where the flying object 10 can capture an image of an animal on the ground during flight, for example, a position facing the ground during flight.
- the imaging device 16 is, for example, a camera, and captures an image by connecting an image of a subject on an imaging device using an optical system. This image may be a still image or a moving image.
- the imaging device 16 is not limited to a visible light camera that captures a visible light image.
- the imaging device 16 may include an infrared camera that captures a heat distribution image called thermography.
- each device such as the processor 11 and the memory 12 is connected by a bus 17 for communicating information.
- the bus 17 may be composed of a single bus or may be composed of different buses between devices.
- the sensor device 20 is a small device having a wireless communication function, and is attached to each animal that is grazing. For example, when the animal has a collar, the sensor device 20 may be attached to the collar.
- the sensor device 20 includes a positioning device 21 and a biological information sensor 22.
- the positioning device 21 is the same device as the positioning device 15 described above, and measures the position of the animal at a predetermined time interval.
- the biological information sensor 22 detects biological information of animals.
- This “biological information” refers to information emitted by a living body. This biological information may include, for example, body temperature, heart rate, pulse rate, or respiratory rate.
- FIG. 4 is a diagram illustrating a hardware configuration of the server device 30.
- the server device 30 may be physically configured as a computer device including a processor 31, a memory 32, a storage 33, a communication device 34, a bus 35, and the like. Since the processor 31, the memory 32, the storage 33, the communication device 34, and the bus 35 are the same as the processor 11, the memory 12, the storage 13, the communication device 14, and the bus 17, respectively, the description thereof is omitted.
- FIG. 5 is a diagram illustrating an example of a functional configuration of the server device 30.
- the server device 30 functions as an acquisition unit 311, a calculation unit 312, a target setting unit 313, a determination unit 314, a route setting unit 315, a distance setting unit 316, and an instruction unit 317. These functions are performed by reading predetermined software (program) on hardware such as the processor 31 and the memory 32, so that the processor 31 performs an operation to perform communication by the communication device 34 and data in the memory 32 or the storage 33. This is realized by controlling reading and / or writing.
- predetermined software program
- the acquisition unit 311 acquires position information indicating the position of the animal being grazed and state information indicating the state of the animal.
- This position information is information indicating the position measured by the positioning device 21, for example.
- the state information is biological information detected by the biological information sensor 22, for example.
- the position information and the state information may be transmitted from the sensor device 20, for example.
- the calculation unit 312 calculates the degree of abnormality of the animal.
- This “abnormality” refers to a value indicating the possibility that an animal has an abnormality. The higher the degree of abnormality, the higher the possibility that the animal has an abnormality.
- This degree of abnormality may be calculated based on position information or biological information acquired by the acquisition unit 311. For example, the calculation unit 312 determines that the animal has performed a predetermined behavior based on the position information acquired by the acquisition unit 311 or determines that the state of performing the predetermined behavior continues for a predetermined time. In some cases, the degree of abnormality may be increased.
- This predetermined action is an abnormal action different from a normal action, such as being out of the group or staying in the same place.
- the predetermined time is not a temporary action, for example, but a time at which it can be considered that an abnormal action is continuously performed.
- the calculation unit 312 determines that the animal is in a predetermined state based on the state information acquired by the acquisition unit 311 or determines that the predetermined state continues for a predetermined time. The degree of abnormality may be increased.
- This predetermined state is an abnormal state different from the normal state, for example, the body temperature is higher than the normal temperature.
- the predetermined time is not a temporary state, for example, but a time at which it can be considered that an abnormal state continues continuously.
- individual differences among animals may be reflected in the determination of whether or not the state is a predetermined state.
- calculation means obtaining the degree of abnormality and does not necessarily need to be calculated. Further, the degree of abnormality is not necessarily a numerical value.
- the target setting unit 313 sets an animal whose degree of abnormality calculated by the calculation unit 312 is equal to or greater than a threshold as a monitoring target.
- This threshold is a value that is considered to be highly likely to be abnormal, for example, and is set in advance.
- the determination unit 314 determines the degree of response of the animal to the approach of the flying object 10.
- the “reactivity” refers to a value that indicates how easily the aircraft 10 can react to the approach of the flying object 10. It shows that it is easy to react with the approach of the flying body 10, so that the reactivity is high.
- This “approach” means approaching an animal. For example, when the flying object 10 is within a predetermined range from the position of the animal, it can be said that the flying object 10 is approaching the animal. This predetermined range may be, for example, a range that an animal can recognize.
- This degree of response may be determined according to the type of animal or the degree of familiarity of the animal with the flying object 10.
- the degree of this familiarity may increase, for example, as the number of times the flying object 10 has approached the animal in the past or the time that has elapsed since coming to the place where the animal is grazing increases.
- the route setting unit 315 sets a flight route toward the monitoring position corresponding to the position of the monitoring target animal set by the target setting unit 313 based on the position information acquired by the acquisition unit 311.
- a different flight path may be set depending on whether or not there is an animal to be monitored within a predetermined range from the predetermined location. For example, when it is determined that there is an animal to be monitored within a predetermined range from a predetermined location, a flight path from the direction of the animal toward the monitoring position is set from a direction different from the direction toward the predetermined location. Also good. For example, a dangerous place or a place where an animal such as another person's land does not want to invade is determined in advance.
- This predetermined range is, for example, a range that is close to a predetermined location and can be moved immediately to the predetermined location.
- the flight path may be represented by a plurality of continuous cells, for example, when the airspace in which the flying object 10 flies is divided into a plurality of cells.
- the distance setting unit 316 sets a distance according to the reactivity calculated by the determination unit 314. For example, the higher the reactivity, the greater the distance.
- the distance setting unit 316 may further set a distance according to the reactivity of the other animal.
- This predetermined range may be a range in which an animal can recognize the flying object 10, for example.
- These distances may be, for example, a distance away from the ground, that is, a height from the ground.
- the instruction unit 317 starts flying along the flight path set by the path setting unit 315 toward the monitoring position corresponding to the position indicated by the position information acquired by the acquisition unit 311 and the distance set by the distance setting unit 316. Then, the flying object 10 is instructed to perform the process of monitoring the animal based on the monitoring position.
- This monitoring position is, for example, a position that serves as a reference when capturing an image of an animal to be monitored, and may be a position that is separated from the position indicated by the position information acquired by the acquisition unit 311 by a distance set above. Good.
- the monitoring position and the image capturing position may be different.
- the flying object 10 moves from the monitoring position to the shooting position of the image, and returns to the monitoring position again when the shooting of the image is completed.
- the process of monitoring the animal is a process of taking an image of the animal, for example.
- the instruction to the flying object 10 may be performed by transmitting instruction information to the flying object 10, for example.
- FIG. 6 is a diagram illustrating a hardware configuration of the terminal device 40.
- the terminal device 40 may be physically configured as a computer device including a processor 41, a memory 42, a storage 43, a communication device 44, an input device 45, a display device 46, a bus 47, and the like. Since the processor 41, the memory 42, the storage 43, the communication device 44, and the bus 47 are the same as the processor 11, the memory 12, the storage 13, the communication device 14, and the bus 17 described above, description thereof is omitted.
- the input device 45 is used for inputting various types of information.
- the input device 45 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
- the display device 46 is an output device (for example, a display) that performs output to the outside.
- the display device 46 may include a liquid crystal display.
- the input device 45 and the display device 46 may have an integrated configuration (for example
- the sensor device 20 is a server device that includes position information indicating the current position of the animal measured by the positioning device 21 and biological information of the animal detected by the biological information sensor 22 together with the identification information of the animal at predetermined time intervals.
- the server device 30 receives the information transmitted from the sensor device 20 at the acquisition unit 311 and stores the information in the storage 33.
- FIG. 7 is a diagram illustrating an example of the database 331 stored in the storage 33.
- the database 331 includes identification information, position information, and biological information received from the sensor device 20. These pieces of information are stored in association with each other. For example, when the identification information, the position information “P1”, and the biological information “M1” of the animal A are received from the sensor device 20, these pieces of information are associated and stored as shown in FIG. In this way, information transmitted from each sensor device 20 is accumulated in the database 331.
- FIG. 8 is a flowchart illustrating an example of the monitoring process performed by the server device 30. This process may be started at a predetermined time interval, or may be started when new information is stored in the database 331, for example.
- the calculation unit 312 calculates the degree of abnormality of each animal based on the database 331 (step S11).
- the degree of abnormality is indicated using a number from 1 to 10. The larger this number, the higher the degree of abnormality.
- FIG. 9 is a diagram showing an example of the degree of abnormality of each animal.
- the calculation unit 312 determines whether each animal has performed a predetermined action or is in a predetermined state based on the contents stored in the database 331. For example, based on the position information “P1” to “P4” of the animals A to D stored in the database 331, it is determined that the animals A to C form a group and that the animal D is further away from the group. Assuming that For example, when the state where the animal D is away from the herd continues for a predetermined time, the degree of abnormality of the animal D may be increased from the current degree of abnormality to “6”.
- the degree of abnormality of the animal A may be increased from the current degree of abnormality to “6”.
- the target setting unit 313 determines, for each animal, whether or not the degree of abnormality calculated in step S11 is greater than or equal to a threshold value (step S12). For example, when all the abnormalities are less than the threshold value (NO in step S12), this process ends. On the other hand, as shown in FIG. 9, when the degree of abnormality of the animal D is “6” and the threshold is “5”, it is determined that the degree of abnormality is equal to or greater than the threshold (the determination in step S12 is YES). ). In this case, the target setting unit 313 sets an animal having an abnormality degree equal to or higher than a threshold value as a monitoring target (step S13). For example, when the degree of abnormality of the animal D is greater than or equal to the threshold value, the animal D is set as a monitoring target.
- the determination unit 314 determines the degree of response to the approach of the flying object 10 for each animal (step S14). For example, when the type of animal is “horse” or “sheep”, the reactivity “high” may be determined. On the other hand, when the type of animal is “cow”, the reactivity “low” may be determined. Further, when the flying object 10 approaches the animal for the first time, the degree of familiarity of the animal with the flying object 10 is equal to or less than a predetermined level, and thus the reactivity “high” may be determined. On the other hand, when the flying object 10 has approached the animal several times in the past and the degree of familiarity of the animal with the flying object 10 is higher than a predetermined level, the reactivity “low” may be determined.
- the route setting unit 315 sets a flight route toward the monitoring position corresponding to the position of the monitoring target animal set in step S13 based on the position information stored in the database 331 (step S15). At this time, the distance setting unit 316 determines whether or not there is an animal to be monitored within a predetermined range from a predetermined location such as a cliff. When it is determined that there is no monitoring target animal within a predetermined range from the predetermined location, for example, the shortest flight path from the current position of the flying object 10 to the monitoring position is set.
- FIG. 10 is a diagram showing an example of a flight path.
- the animal D is a monitoring target.
- the flight path F1 in the figure is the shortest path to the monitoring position of the animal D.
- the flight path F1 may be set.
- the flight path F1 is not set because it is a path from the position of the animal D to the monitoring position of the animal D along the direction toward the cliff.
- a flight path F2 from the direction of the animal D to the monitoring position of the animal D from a direction opposite to the direction toward the cliff may be set.
- the distance setting unit 316 sets the monitoring position altitude of the animal based on the correspondence degree of the monitoring target animal determined in step S14 based on the correspondence table 332 stored in advance in the storage 33 (step S16). ). In addition, when the flight path set in step S15 passes over the other animals, the distance setting unit 316 determines whether or not a predetermined amount is obtained from the other animals according to the reactivity of the other animals determined in step S14. Set the altitude when passing through the range.
- FIG. 11 is a diagram illustrating an example of the correspondence table 332.
- the correspondence table 332 shows the correspondence between the degree of reaction of animals and the altitude. For example, when the reactivity of the animal D to be monitored is “high”, the altitude “70 m” associated with the reactivity “high” is set as the altitude at the monitoring position. On the other hand, when the reactivity of the animal D to be monitored is “low”, the altitude “30 m” associated with the reactivity “low” is set as the altitude at the monitoring position. Further, the altitude of the flight path is basically set to “30 m” which is a standard altitude. The standard altitude is low because it is more convenient for the process of monitoring animals. However, for example, as shown in FIG. 10, when the flight path passes over the other animal B and the reactivity of the animal B is “high”, within the predetermined range from the animal B, 11 is set to the altitude “70 m” associated with the reactivity “high”.
- the instruction unit 317 starts the flight toward the monitoring position according to the flight path and altitude set in Steps S15 and S16, and indicates the instruction information for instructing to perform the process of monitoring the animals based on the monitoring position.
- This instruction information includes, for example, route information indicating the flight route set in step S15 and the altitude set in step S16.
- This monitoring position is, for example, the altitude position set in step S16 above the position “P4” of the animal D stored in the database 331 shown in FIG.
- the instruction information includes information instructing to fly at a height within the predetermined range from the animal B at the altitude set in step S16. included.
- FIG. 12 is a sequence chart showing an example of a monitoring process performed by the flying object 10 and the terminal device 40. This process is started in response to the flying object 10 receiving instruction information from the server device 30.
- the flying object 10 starts flying toward the monitoring position in accordance with the instruction information received from the server device 30 (step S21). At this time, the flying object 10 automatically navigates without being operated by the manager. When arriving at the monitoring position, the flying object 10 takes an image of the animal to be monitored using the imaging device 16 (step S22).
- FIG. 13 is a diagram showing an example of the flight altitude of the flying object 10.
- the flying object 10 rises to an altitude of 30 m and flies along the flight path from the position P4 of the animal D to the monitoring position P41 30 m above the position of the animal D.
- the flying object 10 descends from the monitoring position P41 to a predetermined shooting altitude and takes an image of the animal D.
- the flying object 10 rises again to the altitude of 30 m and follows the same flight path and altitude as the outbound flight to fly to the original position.
- FIG. 14 is a diagram showing another example of the flight altitude of the flying object 10.
- the flying object 10 rises to an altitude of 30 m and flies along the flight path from the position P4 of the animal D to the monitoring position P42 that is 70 m above.
- it flies at an altitude of 30 m from the position P4 of the animal D, enters the predetermined range R4, rises to an altitude of 70 m, and flies within the predetermined range R4 at an altitude of 70 m.
- the flying object 10 descends from the monitoring position P42 to a predetermined imaging altitude and takes an image of the animal D.
- the flying object 10 rises again to an altitude of 70 m, and then follows the same flight path and altitude as that of the flight and flies back to the original position.
- FIG. 15 is a diagram showing another example of the flight altitude of the flying object 10.
- the reactivity of the animal D to be monitored is “low” and there is an animal B whose reactivity is “high” under the flight path.
- the flying object 10 rises to an altitude of 30 m and flies along the flight path from the position P4 of the animal D to the monitoring position P41 30 m above.
- it flies at an altitude of 30 m from the position P2 of the animal B, enters the predetermined range R2, rises to an altitude of 70 m, and flies within the predetermined range R2 at an altitude of 70 m.
- the aircraft When leaving the predetermined range R2, the aircraft descends to an altitude of 30 m and then flies again at an altitude of 30 m.
- an image of the animal D is taken as in the example shown in FIG.
- the flying object 10 rises again to the altitude of 30 m and follows the same flight path and altitude as the outbound flight to fly to the original position.
- the flying object 10 transmits image information indicating the captured image to the terminal device 40 (step S23).
- the transmission of the image information may be performed in real time, for example. Note that “real time” does not necessarily have to be simultaneous, and there may be some delay.
- the terminal device 40 causes the display device 46 to display the image 461 indicated by the received image information (step S24).
- FIG. 16 is a diagram illustrating an example of an image 461 displayed on the display device 46.
- the image 461 includes an image of the animal D to be monitored.
- the administrator can grasp the state of the animal D to be monitored by viewing the image 461 using the terminal device 40. For example, when it is determined that there is an abnormality in the animal D, the manager moves to the place of the animal D and takes measures.
- the “server device 30”, the “imaging device 16”, the “altitude” of the monitoring position, and the “altitude” when passing through a predetermined range from an animal under the flight path, respectively. are used as “monitoring device”, “imaging unit”, “first distance”, and “second distance”. Further, both the “route setting unit 315” and the “distance setting unit 316” are used as the “setting unit” according to the present invention.
- the flying object 10 When performing the process of monitoring animals using the flying object 10 as in the embodiment described above, the flying object 10 should fly as low as possible. However, when monitoring an animal with high reactivity, when flying in a low sky, the animal may be stressed due to the presence of the flying object 10, the sound emitted by the flying object 10, and the like. According to the above-described embodiment, when an animal having high reactivity is monitored using the flying object 10, since monitoring is performed from a place away from the animal, stress of the animal to be monitored can be reduced. it can. Moreover, since the reaction degree of an animal is determined based on the kind of animal or the degree of familiarity with the flying object 10, the reaction degree reflecting these can be determined.
- the reactivity may be determined when the flying object 10 approaches the animal during the flight.
- the flying object 10 captures a ground image using the imaging device 16 during the flight.
- the captured image includes an image of the animal.
- the determination unit 314 determines the reactivity of the animal by analyzing the animal image captured by the imaging device 16. This analysis may include image processing such as edge processing. For example, when it is recognized as a result of analyzing the image that the animal has somehow reacted to the flying object 10, for example, the reactivity “high” may be determined. On the other hand, for example, if such a reaction is not recognized as a result of analyzing the image, the reactivity “low” may be determined.
- the process for determining the reactivity may be performed while the flying object 10 reciprocates to the monitoring position, or may be performed in advance before the monitoring process is performed.
- the flying object 10 includes a voice acquisition device such as a microphone
- the voice of the animal acquired by the voice acquisition device is used instead of or together with the analysis of the image of the animal captured by the imaging device 16.
- the reactivity of the animal may be calculated. For example, when the voice of an animal that threatens or excites the flying object 10 is recognized as a result of analyzing the voice of the animal, the reactivity “high” may be determined. On the other hand, for example, when such a voice is not recognized as a result of analyzing the voice of an animal, the reactivity “low” may be determined. According to this modification, it is possible to determine the degree of reactivity reflecting the state of the animal when the flying object 10 actually approaches.
- an altitude corresponding to the reactivity “high” may be set regardless of the reactivity of the animal to be monitored.
- the distance setting unit 316 sets the altitude corresponding to the reactivity of the other animal as the altitude at the monitoring position. For example, even if the reactivity of an animal to be monitored is “low”, if there is another animal having a reactivity “high” within a predetermined range from this animal, the reactivity “ An altitude “70 m” associated with “high” may be set.
- this modification when there is another animal having a high degree of responsiveness to the approach of the flying object 10 around the animal to be monitored, the stress of the other animal can be reduced.
- the altitude may be lowered when the emergency level of monitoring is high.
- the degree of abnormality of an animal is very high, the urgency of monitoring is considered high.
- the reference altitude of the monitoring position may be 50 m lower than the normal 70 m. According to this modification, when the urgency level of monitoring is high, the monitoring position can be reached quickly.
- the altitude of the monitoring position or the altitude of the flight path may be determined based on the degree of response and abnormality of the animal. For example, a value obtained by multiplying the degree of abnormality of the animal by the degree of abnormality may be calculated, and the altitude may increase as this value increases.
- the distance from the animal position may be set at a high altitude.
- the monitoring position is a position separated from the position of the animal by a set distance.
- the monitoring position may be a position that is separated from the animal position in a diagonally upward direction by a set distance, or may be a position that is separated in a horizontal direction by a set distance from the animal position.
- the photographing altitude may be constant or may vary depending on the degree of animal reaction. For example, the higher the responsiveness of the animal, the greater the imaging altitude.
- the degree of abnormality may be increased when it is determined that the animal is in a predetermined location based on the position information acquired by the acquisition unit 311.
- the degree of abnormality of the animal gradually increases with time. In this case, a certain amount of time is required until the degree of abnormality reaches the threshold value.
- the time required for the degree of abnormality to reach a threshold value is shortened compared to a case where the animal is not in a predetermined place. The timing at which the flying object 10 starts to fly can be advanced.
- the degree of abnormality may be increased according to the importance of the animal. For example, if an animal is a child, is in estrus, or is pregnant, the importance of the animal may increase.
- the changing unit 414 may increase the degree of abnormality for an animal having a high degree of importance. According to this modified example, the timing at which the flying object 10 starts to fly can be advanced for highly important animals.
- the imaging method may be varied depending on the type of abnormality of the animal. For example, when the animal is out of the group, the image may be taken from a position higher than usual so that both the group and the animal are photographed. Further, when the animal stays in a certain place, there is a possibility that there is an abnormality in the foot. According to this modification, the administrator can determine the abnormality of the animal more accurately by looking at the image of the animal.
- the sensor device 20 is not limited to the positioning device 21 and the biological information sensor 22.
- the sensor device 20 may include any sensor as long as it detects a physical quantity from an animal.
- the sensor device 20 may include a sound acquisition device such as a microphone.
- the degree of abnormality of the animal may be calculated based on voice information indicating the voice of the animal acquired by the voice acquisition device.
- the process for monitoring an animal is not limited to the process for capturing an image of the animal.
- the process of monitoring the animal may be a process of acquiring information such as voice from the animal, a process of supplying an object that deals with the abnormality to the animal, or a process of tracking the animal.
- the method for measuring the position of the animal is not limited to the method using GPS.
- the position of the animal may be measured by a method that does not use GPS.
- At least a part of the function of the server device 30 may be implemented in another device.
- at least one of the acquisition unit 311, the calculation unit 312, the target setting unit 313, the determination unit 314, the route setting unit 315, the distance setting unit 316, and the instruction unit 317 may be implemented in the terminal device 40.
- the present invention may be provided as a method including steps of processing performed in the monitoring system 1, the flying object 10, the sensor device 20, the server device 30, or the terminal device 40. Further, the present invention may be provided as a program executed in the flying object 10, the server device 30, or the terminal device 40.
- each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wireless) and may be realized by these plural devices.
- the hardware configuration of the flying object 10, the server device 30, or the terminal device 40 may be configured to include one or a plurality of the devices illustrated in FIG. 3, FIG. 4, or FIG. You may comprise without an apparatus.
- the flying object 10, the server device 30 or the terminal device 40 includes a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA).
- DSP digital signal processor
- ASIC application specific integrated circuit
- PLD programmable logic device
- FPGA field programmable gate array
- the processor 11, 31, or 41 may be implemented with at least one of these hardware.
- Each aspect / embodiment described in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA.
- LTE Long Term Evolution
- LTE-A Long Term Evolution-Advanced
- SUPER 3G IMT-Advanced
- 4G 5G
- FRA Full Radio Access
- W-CDMA Wideband
- GSM registered trademark
- CDMA2000 Code Division Multiple Access 2000
- UMB User Mobile Broadband
- IEEE 802.11 Wi-Fi
- IEEE 802.16 WiMAX
- IEEE 802.20 UWB (Ultra-WideBand
- the present invention may be applied to a Bluetooth (registered trademark), a system using another appropriate system, and / or a next generation system extended based on the system.
- the input / output information or the like may be stored in a specific place (for example, a memory) or may be managed by a management table. Input / output information and the like can be overwritten, updated, or additionally written. The output information or the like may be deleted. The input information or the like may be transmitted to another device.
- the determination may be performed by a value represented by 1 bit (0 or 1), may be performed by a true / false value (Boolean: true or false), or may be performed by comparing numerical values (for example, a predetermined value) Comparison with the value).
- notification of predetermined information is not limited to explicitly performed, but is performed implicitly (for example, notification of the predetermined information is not performed). Also good.
- software, instructions, etc. may be transmitted / received via a transmission medium.
- software may use websites, servers, or other devices using wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
- wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
- DSL digital subscriber line
- wireless technology such as infrared, wireless and microwave.
- system and “network” used in this specification are used interchangeably.
- information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information.
- the radio resource may be indicated by an index.
- determining may encompass a wide variety of actions. “Judgment” and “determination” are, for example, judgment, calculation, calculation, processing, derivation, investigating, searching (looking up) (for example, table , Searching in a database or another data structure), considering ascertaining what is “certain”, “determining”, and the like. In addition, “determination” and “determination” are reception (for example, receiving information), transmission (for example, transmitting information), input (input), output (output), and access. (Accessing) (for example, accessing data in a memory) may be considered as “determining” or “determining”.
- determination and “determination” means that “resolving”, “selecting”, “choosing”, “establishing”, and “comparing” are regarded as “determining” and “determining”. May be included. In other words, “determination” and “determination” may include considering some operation as “determination” and “determination”.
- any reference to elements using designations such as “first”, “second”, etc. as used herein does not generally limit the amount or order of those elements. These designations can be used herein as a convenient way to distinguish between two or more elements. Thus, a reference to the first and second elements does not mean that only two elements can be employed there, or that in some way the first element must precede the second element.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Environmental Sciences (AREA)
- Engineering & Computer Science (AREA)
- Animal Husbandry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Biophysics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Automation & Control Theory (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Animal Behavior & Ethology (AREA)
- Zoology (AREA)
- Catching Or Destruction (AREA)
Abstract
飛行体を利用して放牧されている動物を監視する際に、監視対象の動物のストレスを軽減する。 取得部は、放牧されている動物の位置を示す位置情報を取得する。決定部は、飛行体(10)の接近に対する動物の反応度を決定する。設定部は、決定された反応度に応じた距離を設定する。指示部は、取得された位置情報が示す位置及び設定された距離に対応する監視位置に向けて飛行を開始し、監視位置を基準として動物を監視する処理を行うよう飛行体(10)に指示する。
Description
本発明は、飛行体を用いて動物を監視する技術に関する。
ドローン等の飛行体を用いて監視を行う技術が知られている。この監視においては、飛行体が地上に近づく場合がある。例えば特許文献1には、無人飛行体が降下目標領域にある物体に基づいて、降下航路を決定し降下することが記載されている。
飛行体を用いて動物を監視する場合、動物が飛行体に驚いて想定外の動作をしてしまう恐れがある。このような飛行体の接近に対する反応度が高い動物に対しては、通常よりも離れた位置から監視を行わないと、動物にストレスを与えてしまう。しかし、特許文献1に記載の技術では、飛行体の接近に対する動物の反応度に関係なく飛行体の降下が行われるため、動物にストレスを与える可能性がある。
本発明は、飛行体を利用して放牧されている動物を監視する際に、監視対象の動物のストレスを軽減することを目的とする。
本発明は、飛行体を利用して放牧されている動物を監視する際に、監視対象の動物のストレスを軽減することを目的とする。
本発明は、放牧されている動物の位置を示す位置情報を取得する取得部と、飛行体の接近に対する前記動物の反応度を決定する決定部と、前記決定された反応度に応じた距離を設定する設定部と、前記取得された位置情報が示す前記位置及び前記設定された距離に対応する監視位置に向けて飛行を開始し、前記監視位置を基準として前記動物を監視する処理を行うよう前記飛行体に指示する指示部とを備える監視装置を提供する。
また、本発明は、コンピュータに、放牧されている動物の位置を示す位置情報を取得するステップと、飛行体の接近に対する前記動物の反応度を決定するステップと、前記決定された反応度に応じた距離を設定するステップと、前記取得された位置情報が示す前記位置及び前記設定された距離に対応する監視位置に向けて飛行を開始し、前記監視位置を基準として前記動物を監視する処理を行うよう前記飛行体に指示するステップとを実行させるためのプログラムを提供する。
本発明によれば、飛行体を利用して放牧されている動物を監視する際に、監視対象の動物のストレスを軽減することができる。
1.構成
図1は、本実施形態に係る監視システム1の構成の一例を示す図である。この例では、牧場等の場所において複数の動物が放牧されている。この「放牧」とは、管理下に置きつつ放し飼いにすることをいう。放牧されている動物は、例えば牛、羊、馬、羊、山羊等、どのような動物であってもよい。また、1種類の動物だけが放牧されていてもよいし、複数種類の動物が放牧されていてもよい。これらの動物は、管理者が管理している。監視システム1は、放牧された動物を監視するシステムである。監視システム1は、飛行体10と、複数のセンサ装置20と、サーバ装置30と、端末装置40とを備える。なお、図1に示す装置の数は例示であり、これに限定されない。
図1は、本実施形態に係る監視システム1の構成の一例を示す図である。この例では、牧場等の場所において複数の動物が放牧されている。この「放牧」とは、管理下に置きつつ放し飼いにすることをいう。放牧されている動物は、例えば牛、羊、馬、羊、山羊等、どのような動物であってもよい。また、1種類の動物だけが放牧されていてもよいし、複数種類の動物が放牧されていてもよい。これらの動物は、管理者が管理している。監視システム1は、放牧された動物を監視するシステムである。監視システム1は、飛行体10と、複数のセンサ装置20と、サーバ装置30と、端末装置40とを備える。なお、図1に示す装置の数は例示であり、これに限定されない。
飛行体10、複数のセンサ装置20、サーバ装置30、及び端末装置40は、通信回線50を介して接続されている。通信回線50は、例えば無線ネットワーク及びインターネットを含み、これらの装置の間の通信を伝送する。
図2は、飛行体10の外観の一例を示す図である。飛行体10は、人が操作を行わなくても自律的に飛行可能な無人航空機である。飛行体10は、例えばドローンであってもよい。飛行体10は、プロペラ101と、駆動装置102と、バッテリー103とを備える。プロペラ101は、軸を中心に回転する。プロペラ101が回転することで、飛行体10が飛行する。駆動装置102は、プロペラ101に動力を与えて回転させる。駆動装置102は、例えばモーターである。駆動装置102は、プロペラ101に直接接続されてもよいし、駆動装置102の動力をプロペラ101に伝達する伝達機構を介してプロペラ101に接続されてもよい。バッテリー103は、駆動装置102を含む飛行体10の各部に電力を供給する。
図3は、飛行体10のハードウェア構成を示す図である。飛行体10は、物理的には、プロセッサ11、メモリ12、ストレージ13、通信装置14、測位装置15、撮像装置16、バス17などを含むコンピュータ装置として構成されてもよい。なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。
プロセッサ11は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ11は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。また、プロセッサ11は、プログラム(プログラムコード)、ソフトウェアモジュールやデータを、ストレージ13及び/又は通信装置14からメモリ12に読み出し、これらに従って各種の処理を実行する。プログラムとしては、飛行体10の動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。飛行体10において実行される各種処理は、1つのプロセッサ11により実行されてもよいし、2以上のプロセッサ11により同時又は逐次に実行されてもよい。プロセッサ11は、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
メモリ12は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ12は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ12は、本発明の一実施の形態に係る監視方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
ストレージ13は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。ストレージ13は、補助記憶装置と呼ばれてもよい。
通信装置14は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。
測位装置15は、所定の時間間隔で飛行体10の位置を測定する。測位装置15は、例えばGPS(Global Positioning System)受信機であり、複数の衛星から受信したGPS信号に基づいて飛行体10の現在位置を測定する。この位置は、例えば緯度、経度、及び高度を用いて示されてもよい。
撮像装置16は、飛行体10において飛行中に地上に居る動物の画像を撮影し得る位置、例えば飛行中に地上と対向する位置に、地上に向けて設けられる。撮像装置16は、例えばカメラであり、光学系を用いて被写体の像を撮像素子上に結ばせることで、画像を撮影する。この画像は、静止画であってもよいし、動画であってもよい。なお、撮像装置16は、可視光画像を撮影する可視光カメラに限定されない。例えば撮像装置16には、サーモグラフィと呼ばれる熱分布画像を撮影する赤外線カメラが含まれてもよい。
また、プロセッサ11やメモリ12などの各装置は、情報を通信するためのバス17で接続される。バス17は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
図1に戻り、センサ装置20は、無線通信機能を有する小型の装置であり、放牧されている各動物に取り付けられる。例えば動物が首輪をしている場合、センサ装置20は首輪に取り付けられてもよい。センサ装置20は、測位装置21と生体情報センサ22とを備える。測位装置21は、上述した測位装置15と同様の装置であり、所定の時間間隔で動物の位置を測定する。生体情報センサ22は、動物の生体情報を検出する。この「生体情報」とは、生体が発する情報をいう。この生体情報には、例えば体温、心拍数、脈拍数、又は呼吸数が含まれてもよい。
図4は、サーバ装置30のハードウェア構成を示す図である。サーバ装置30は、物理的には、プロセッサ31、メモリ32、ストレージ33、通信装置34、バス35などを含むコンピュータ装置として構成されてもよい。プロセッサ31、メモリ32、ストレージ33、通信装置34、バス35は、それぞれ、上述したプロセッサ11、メモリ12、ストレージ13、通信装置14、バス17と同様であるため、その説明を省略する。
図5は、サーバ装置30の機能構成の一例を示す図である。サーバ装置30は、取得部311と、算出部312と、対象設定部313と、決定部314と、経路設定部315と、距離設定部316と、指示部317として機能する。これらの機能は、プロセッサ31、メモリ32などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ31が演算を行い、通信装置34による通信や、メモリ32又はストレージ33におけるデータの読み出し及び/又は書き込みを制御することにより実現される。
取得部311は、放牧されている動物の位置を示す位置情報及びこの動物の状態を示す状態情報を取得する。この位置情報は、例えば測位装置21が測定した位置を示す情報である。状態情報は、例えば生体情報センサ22が検出した生体情報である。位置情報及び状態情報は、例えばセンサ装置20から送信されてもよい。
算出部312は、動物の異常度を算出する。この「異常度」とは、動物に異常がある可能性を示す値をいう。異常度が高い程、動物に異常がある可能性が高いことを示す。この異常度は、取得部311が取得した位置情報又は生体情報に基づいて算出されてもよい。例えば算出部312は、取得部311が取得した位置情報に基づいて、動物が所定の行動をしたと判定され、又はこの所定の行動をしている状態が所定時間継続していると判定された場合には、異常度を上げてもよい。この所定の行動は、例えば群れから外れる、同一の場所に留まる等、正常な行動とは異なる異常な行動である。所定時間は、例えば一時的な行動ではなく、継続的に異常な行動が行われているとみなせるような時間である。また、算出部312は、取得部311が取得した状態情報に基づいて、動物が所定の状態であると判定され、又はこの所定の状態が所定時間継続していると判定された場合には、異常度を上げてもよい。この所定の状態は、例えば体温が平熱より高い等、正常な状態とは異なる異常な状態である。所定時間は、例えば一時的な状態ではなく、継続的に異常な状態が続いているとみなせるような時間である。また、所定の状態であるか否かの判定には、動物の個体差が反映されてもよい。例えば各動物の平熱を基準にその動物の体温が高いか否かが判定されてもよい。なお、「算出」とは、異常度を求めることをいい、必ずしも計算する必要はない。また、異常度は、必ずしも数値でなくてもよい。
対象設定部313は、算出部312が算出した異常度が、閾値以上である動物を監視対象に設定する。この閾値は、例えば異常がある可能性が高いと考えられるような値であり、予め設定される。
決定部314は、飛行体10の接近に対する動物の反応度を決定する。この「反応度」とは、飛行体10の接近に対して驚く等の反応のし易さを示す値をいう。反応度が高い程、飛行体10の接近に対して反応しやすいことを示す。この「接近」とは、動物に近づくことをいう。例えば飛行体10が動物の位置から所定の範囲内に居るときは、飛行体10が動物に接近していると言える。この所定の範囲は、例えば動物が認識し得る範囲であってもよい。この反応度は、動物の種別又は飛行体10に対する動物の慣れの度合いに応じて、決定されてもよい。この慣れの度合いは、例えば過去に飛行体10が動物に接近した回数又は動物が放牧されている場所に来てから経過した時間が増える程、増えてもよい。慣れの度合いが高い程、反応度が低くなってもよい。
経路設定部315は、取得部311が取得した位置情報に基づいて、対象設定部313が設定した監視対象の動物の位置に対応する監視位置に向かう飛行経路を設定する。このとき、所定の場所から所定の範囲内に監視対象の動物が居るか否かに応じて異なる飛行経路が設定されてもよい。例えば所定の場所から所定の範囲内に監視対象の動物が居ると判定された場合には、その動物の位置から所定の場所に向かう方向とは異なる方向から監視位置に向かう飛行経路が設定されてもよい。この所定の場所には、例えば危険な場所、他人の土地等の動物が侵入して欲しくないような場所が予め定められる。この所定の範囲は、例えば所定の場所の近くであり、所定の場所にすぐに移動できるような範囲である。なお、飛行経路は、例えば飛行体10が飛行する空域が複数のセルに分割される場合には、複数の連続するセルによって表されてもよい。
距離設定部316は、決定部314が算出した反応度に応じた距離を設定する。例えば反応度が高い程、距離が増えてもよい。また、監視位置に向かう経路が他の動物から所定の範囲を通る場合、距離設定部316は、さらに他の動物の反応度に応じた距離を設定してもよい。この所定の範囲は、例えば動物が飛行体10を認識し得るような範囲であってもよい。これらの距離は、例えば地上から離隔した距離、すなわち地上からの高さであってもよい。
指示部317は、経路設定部315が設定した飛行経路に沿って、取得部311が取得した位置情報が示す位置及び距離設定部316が設定した距離に対応する監視位置に向けて飛行を開始し、監視位置を基準として動物を監視する処理を行うよう飛行体10に指示する。この監視位置は、例えば監視対象の動物の画像を撮影する際の基準となる位置であり、取得部311が取得した位置情報が示す位置から設定された距離だけ上空に離隔した位置であってもよい。監視位置と画像の撮影位置とは、異なっていてもよい。この場合、飛行体10は、画像を撮影する際は、監視位置から画像の撮影位置へと移動し、画像を撮影し終わると、再び監視位置へと戻る。動物を監視する処理は、例えば動物の画像を撮影する処理である。飛行体10への指示は、例えば飛行体10に指示情報を送信することによって行われてもよい。
図6は、端末装置40のハードウェア構成を示す図である。端末装置40は、物理的には、プロセッサ41、メモリ42、ストレージ43、通信装置44、入力装置45、表示装置46、バス47などを含むコンピュータ装置として構成されてもよい。プロセッサ41、メモリ42、ストレージ43、通信装置44、バス47は、それぞれ、上述したプロセッサ11、メモリ12、ストレージ13、通信装置14、バス17と同様であるため、その説明を省略する。入力装置45は、各種の情報の入力に用いられる。例えば入力装置45は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。表示装置46は、外部への出力を実施する出力デバイス(例えば、ディスプレイ)である。例えば表示装置46は、液晶ディスプレイを含んで構成されてもよい。なお、入力装置45及び表示装置46は、一体となった構成(例えば、タッチパネル)であってもよい。
2.動作
2‐1.データ収集処理
ここでは、図1に示すように、複数の動物には動物A~Dが含まれる場合を想定する。センサ装置20は、所定の時間間隔で、測位装置21が測定した動物の現在位置を示す位置情報と、生体情報センサ22が検出したこの動物の生体情報とを、この動物の識別情報とともにサーバ装置30に送信する。サーバ装置30は、センサ装置20から送信された情報を取得部311にて受信し、ストレージ33に記憶させる。
2‐1.データ収集処理
ここでは、図1に示すように、複数の動物には動物A~Dが含まれる場合を想定する。センサ装置20は、所定の時間間隔で、測位装置21が測定した動物の現在位置を示す位置情報と、生体情報センサ22が検出したこの動物の生体情報とを、この動物の識別情報とともにサーバ装置30に送信する。サーバ装置30は、センサ装置20から送信された情報を取得部311にて受信し、ストレージ33に記憶させる。
図7は、ストレージ33に記憶されたデータベース331の一例を示す図である。データベース331には、センサ装置20から受信した識別情報、位置情報、及び生体情報が含まれる。これらの情報は、互いに関連付けて記憶される。例えばセンサ装置20から動物Aの識別情報と位置情報「P1」と生体情報「M1」とが受信された場合、図7に示すように、これらの情報が関連付けて記憶される。このようにして、データベース331には、各センサ装置20から送信された情報が蓄積される。
2‐2.監視処理
図8は、サーバ装置30が行う監視処理の一例を示すフローチャートである。この処理は、所定の時間間隔で開始されてもよいし、例えばデータベース331に新たな情報が記憶されたときに開始されてもよい。
図8は、サーバ装置30が行う監視処理の一例を示すフローチャートである。この処理は、所定の時間間隔で開始されてもよいし、例えばデータベース331に新たな情報が記憶されたときに開始されてもよい。
算出部312は、データベース331に基づいて、各動物の異常度を算出する(ステップS11)。この例では、異常度は、1~10の数字を用いて示される。この数字が大きい程、異常度が高いことを示す。
図9は、各動物の異常度の一例を示す図である。まず、算出部312は、データベース331に記憶された内容に基づいて、各動物が所定の行動をしたか又は所定の状態であるかを判定する。例えばデータベース331に記憶された動物A~Dの位置情報「P1」~「P4」に基づいて、動物A~Cが群れを成しており、さらに動物Dがこの群れから離れていると判定された場合を想定する。例えば動物Dが群れから離れている状態が所定時間継続している場合には、動物Dの異常度が現状の異常度から「6」に上げられてもよい。また、例えばデータベース331に記憶された動物Aの生体情報「M1」に基づいて、動物Aの体温が平熱よりも高いと判定された場合を想定する。例えばこの場合には、動物Aの異常度が現状の異常度から「6」に上げられてもよい。
対象設定部313は、動物毎に、ステップS11において算出された異常度が閾値以上であるか否かを判定する(ステップS12)。例えば全ての異常度が閾値未満である場合(ステップS12の判定がNO)、この処理は終了する。一方、図9に示すように、動物Dの異常度が「6」であり、閾値が「5」である場合には、異常度が閾値以上であると判定される(ステップS12の判定がYES)。この場合、対象設定部313は、異常度が閾値以上である動物を監視対象に設定する(ステップS13)。例えば動物Dの異常度が閾値以上である場合には、動物Dが監視対象に設定される。
決定部314は、動物毎に、飛行体10の接近に対する反応度を決定する(ステップS14)。例えば動物の種別が「馬」又は「羊」である場合には、反応度「高」が決定されてもよい。一方、動物の種別が「牛」である場合には、反応度「低」が決定されてもよい。また、飛行体10が動物に初めて接近する場合には、飛行体10に対する動物の慣れの度合いが所定度以下になるため、反応度「高」が決定されてもよい。一方、飛行体10が過去に動物に何回か接近しており、飛行体10に対する動物の慣れの度合いが所定度より高い場合には、反応度「低」が決定されてもよい。
経路設定部315は、データベース331に記憶されている位置情報に基づいて、ステップS13において設定された監視対象の動物の位置に対応する監視位置へと向かう飛行経路を設定する(ステップS15)。このとき、距離設定部316は、崖等の所定の場所から所定の範囲内に監視対象の動物が居るか否かを判定する。所定の場所から所定の範囲内に監視対象の動物が居ないと判定された場合には、例えば飛行体10の現在位置から監視位置へと向かう最短の飛行経路が設定される。一方、所定の場所から所定の範囲内に監視対象の動物が居ると判定された場合には、監視対象の動物の位置から所定の場所に向かう方向とは異なる方向から監視位置に向かう飛行経路が設定される。
図10は、飛行経路の一例を示す図である。この例では、動物Dが監視対象である場合を想定する。この場合、動物Dの監視位置へと向かう飛行経路には、複数の候補がある。複数の候補のうち図中の飛行経路F1は、動物Dの監視位置へと向かう最短経路である。崖から所定の範囲R0内に動物Dが居ない場合には、飛行経路F1が設定されてもよい。一方、崖から所定の範囲R0内に動物Dが居る場合には、飛行経路F1は、動物Dの位置から崖に向かう方向に沿って動物Dの監視位置に向かう経路であるため、設定されない。この場合には、動物Dの位置から崖に向かう方向とは逆の方向から動物Dの監視位置に向かう飛行経路F2が設定されてもよい。
距離設定部316は、ストレージ33に予め記憶された対応テーブル332に基づいて、ステップS14において決定された監視対象の動物の反応度に応じて、その動物の監視位置の高度を設定する(ステップS16)。また、距離設定部316は、ステップS15において設定された飛行経路が他の動物の上空を通る場合には、ステップS14において決定された他の動物の反応度に応じて、他の動物から所定の範囲を通るときの高度を設定する。
図11は、対応テーブル332の一例を示す図である。対応テーブル332は、動物の反応度と高度との対応関係を示す。例えば監視対象の動物Dの反応度が「高」である場合には、反応度「高」と対応付けられた高度「70m」が監視位置の高度として設定される。一方、監視対象の動物Dの反応度が「低」である場合には、反応度「低」と対応付けられた高度「30m」が監視位置の高度として設定される。また、飛行経路の高度は、基本的には標準の高度である「30m」に設定される。標準の高度が低空であるのは、その方が動物を監視する処理を行うのに都合がよいためである。ただし、例えば図10に示すように、飛行経路が他の動物Bの上空を通る場合において、その動物Bの反応度が「高」であるときは、動物Bから所定の範囲内については、図11に示す対応テーブル332に基づいて、反応度「高」と対応付けられた高度「70m」が設定される。
指示部317は、ステップS15及び16において設定された飛行経路及び高度に従って、監視位置に向けて飛行を開始し、監視位置を基準として動物を監視する処理を行うよう指示する指示情報を飛行体10に送信する(ステップS17)。この指示情報には、例えばステップS15において設定された飛行経路を示す経路情報と、ステップS16において設定された高度とが含まれる。例えば動物Dが監視対象である場合、ステップS15において設定された飛行経路に沿って、ステップS16において設定された高度で、動物Dの監視位置へと飛行するよう指示する指示情報が送信される。この監視位置は、例えば図7に示すデータベース331に記憶された動物Dの位置「P4」の上空においてステップS16において設定された高度の位置となる。また、図10に示すように、飛行経路が動物Bの上空を通過する場合、この指示情報には、動物Bから所定の範囲は、ステップS16において設定された高度で飛行するよう指示する情報が含まれる。
図12は、飛行体10及び端末装置40が行う監視処理の一例を示すシーケンスチャートである。この処理は、飛行体10がサーバ装置30から指示情報を受信したことに応じて開始される。
飛行体10は、サーバ装置30から受信した指示情報に従って、監視位置に向けて飛行を開始する(ステップS21)。このとき、飛行体10は、管理者の操作によらずに自動航行する。監視位置に到着すると、飛行体10は、撮像装置16を用いて監視対象の動物の画像を撮影する(ステップS22)。
図13は、飛行体10の飛行高度の一例を示す図である。この例では、監視対象である動物Dの反応度が「低」であり、飛行経路下に他の動物が居ない場合を想定する。この場合、飛行体10は、飛行開始後、高度30mまで上昇し、飛行経路に沿って高度30mで動物Dの位置P4から30m上空にある監視位置P41へと飛行する。監視位置P41へと到達すると、飛行体10は、監視位置P41から所定の撮影高度まで降下して動物Dの画像を撮影する。画像の撮影が完了すると、飛行体10は、再び高度30mまで上昇し、行きと同じ飛行経路及び高度を辿って元の位置へと飛行する。
図14は、飛行体10の飛行高度の別の例を示す図である。この例では、監視対象である動物Dの反応度が「高」であり、飛行経路下に他の動物が居ない場合を想定する。この場合、飛行体10は、飛行開始後、高度30mまで上昇し、飛行経路に沿って動物Dの位置P4から70m上空にある監視位置P42へと飛行する。このとき、動物Dの位置P4から所定の範囲R4外は高度30mで飛行し、所定の範囲R4に入ると、高度70mまで上昇し、所定の範囲R4内は高度70mで飛行する。監視位置P42に到達すると、飛行体10は、監視位置P42から所定の撮影高度まで降下して、動物Dの画像を撮影する。画像の撮影が完了すると、飛行体10は、再び高度70mまで上昇した後、行きと同じ飛行経路及び高度を辿って元の位置へと飛行する。
図15は、飛行体10の飛行高度の別の例を示す図である。この例では、監視対象である動物Dの反応度が「低」であり、飛行経路下に反応度が「高」の動物Bが居る場合を想定する。この場合、飛行体10は、飛行開始後、高度30mまで上昇し、飛行経路に沿って動物Dの位置P4から30m上空にある監視位置P41へと飛行する。このとき、動物Bの位置P2から所定の範囲R2外は高度30mで飛行し、所定の範囲R2に入ると、高度70mまで上昇し、所定の範囲R2内は高度70mで飛行する。所定の範囲R2を出ると、高度30mまで下降し、再び高度30mで飛行する。監視位置P41に到達すると、図13に示す例と同様に動物Dの画像を撮影する。画像の撮影が完了すると、飛行体10は、再び高度30mまで上昇し、行きと同じ飛行経路及び高度を辿って元の位置へと飛行する。
図12に戻り、飛行体10は、撮影した画像を示す画像情報を端末装置40に送信する(ステップS23)。この画像情報の送信は、例えばリアルタイムで行われてもよい。なお、「リアルタイム」とは、必ずしも同時である必要はなく、多少の遅延があってもよい。飛行体10から画像情報を受信すると、端末装置40は、受信した画像情報が示す画像461を表示装置46に表示させる(ステップS24)。
図16は、表示装置46に表示された画像461の一例を示す図である。この画像461には、監視対象の動物Dの画像が含まれる。管理者は、端末装置40を用いてこの画像461を見ることで、監視対象の動物Dの様子を把握することができる。そして、例えば動物Dに異常があると判断した場合には、管理者が動物Dの所に移動して対処を行う。
なお、上述した実施形態では、「サーバ装置30」、「撮像装置16」、監視位置の「高度」、飛行経路下に居る動物から所定の範囲を通るときの「高度」が、それぞれ、本発明に係る「監視装置」、「撮像部」、「第1距離」、「第2距離」として用いられている。また、「経路設定部315」及び「距離設定部316」は、いずれも、本発明に係る「設定部」として用いられている。
以上説明した実施形態のように飛行体10を利用して動物を監視する処理を行う場合、飛行体10は、できるだけ低空を飛行した方がよい。しかし、反応度が高い動物を監視する場合には、低空を飛行すると、飛行体10の存在、飛行体10が発する音等が原因で、動物にストレスを与えてしまう場合がある。上述した実施形態によれば、飛行体10を利用して反応度が高い動物を監視する際には、その動物から離れた場所から監視を行うため、監視対象の動物のストレスを軽減することができる。また、動物の反応度は、動物の種別又は飛行体10に対する慣れの度合いに基づいて決定されるため、これらを反映した反応度を決定することができる。さらに、監視対象の動物を監視する監視位置へと向かう飛行経路下に飛行体10の接近に対する反応度が高い他の動物が居る場合には、その動物から離れた所を飛行するため、他の動物のストレスも軽減することができる。さらに、崖等の所定の場所から所定の範囲内に監視対象の動物が居る場合には、この動物の位置から所定の場所に向かう方向とは異なる方向から監視位置に向かう飛行経路が設定されるため、飛行体10が監視位置へと向かう際に、監視対象の動物が所定の場所に向けて移動するのを防ぐことができる。さらに、監視対象の動物が撮影された画像が端末装置40に表示されるため、管理者は監視対象の動物の画像を見ることができる。
3.変形例
本発明は、上述した実施形態に限定されない。上述した実施形態を以下のように変形してもよい。また、以下の2つ以上の変形例を組み合わせて実施してもよい。
本発明は、上述した実施形態に限定されない。上述した実施形態を以下のように変形してもよい。また、以下の2つ以上の変形例を組み合わせて実施してもよい。
上述した実施形態において、飛行体10が飛行中に動物に接近した時点で反応度が決定されてもよい。この場合、飛行体10は、飛行中に撮像装置16を用いて地上の画像を撮影する。飛行体10が動物の上空を飛行する場合、撮影された画像には、この動物の画像が含まれる。決定部314は、撮像装置16が撮影した動物の画像を解析することにより、動物の反応度を決定する。この解析には、エッジ処理等の画像処理が含まれてもよい。例えば画像を解析した結果、動物が飛行体10に驚く等、何らかの反応をしたことが認識された場合には、反応度「高」が決定されてもよい。一方、例えば画像を解析した結果、そのような反応が認識されなかった場合には、反応度「低」が決定されてもよい。この反応度を決定する処理は、飛行体10が監視位置まで往復する間に行われてもよいし、監視処理を行う前に予め行われてもよい。また、飛行体10がマイクロフォン等の音声取得装置を備える場合には、撮像装置16が撮影した動物の画像の解析に代えて又はこの画像の解析とともに、音声取得装置により取得された動物の声を解析することにより、動物の反応度が算出されてもよい。例えば動物の声を解析した結果、飛行体10を威嚇したり興奮したりするような動物の声が認識された場合には、反応度「高」が決定されてもよい。一方、例えば動物の声を解析した結果、そのような声が認識されなかった場合には、反応度「低」が決定されてもよい。この変形例によれば、飛行体10が実際に接近したときの動物の状況を反映した反応度を決定することができる。
上述した実施形態において、監視対象の動物の近くに反応度の高い他の動物が居る場合、監視対象の動物の反応度に関わらず、反応度「高」に対応する高度が設定されてもよい。この場合、距離設定部316は、監視対象の動物から所定の範囲内に他の動物が居る場合には、他の動物の反応度に応じた高度を監視位置の高度に設定する。例えば監視対象の動物の反応度が「低」であっても、この動物から所定の範囲内に反応度が「高」の他の動物が居る場合、監視位置の基準の高度として、反応度「高」に対応付けられた高度「70m」が設定されてもよい。この変形例によれば、監視対象の動物の周辺に飛行体10の接近に対する反応度が高い他の動物が居る場合に、他の動物のストレスを軽減することができる。
上述した実施形態において、監視の緊急度が高い場合には、高度を下げてもよい。例えば、動物の異常度が非常に高い場合には、監視の緊急度が高いと考えられる。この場合、監視対象の動物の反応度が「高」である場合、監視位置の基準の高度は通常の70mよりも低い50mであってもよい。この変形例によれば、監視の緊急度が高い場合には、迅速に監視位置に到達することができる。
上述した実施形態において、監視位置の高度又は飛行経路の高度は、動物の反応度及び異常度に基づいて決定されてもよい。例えば、動物の反応度に異常度を乗じた値を算出し、この値が大きい程、高度が増えてもよい。
上述した実施形態において、高度に変えて動物の位置からの距離が設定されてもよい。この場合、監視位置は、動物の位置から設定された距離だけ離隔した位置になる。例えば監視位置は、動物の位置から設定された距離だけ斜め上空の方向に離隔した位置であってもよいし、動物の位置から設定された距離だけ水平方向に離隔した位置であってもよい。
上述した実施形態において、撮影高度は一定であってもよいし、動物の反応度に応じて変化してもよい。例えば、動物の反応度が高い程、撮影高度が増えてもよい。
上述した実施形態において、取得部311が取得した位置情報に基づいて動物が所定の場所に居ると判定された場合には、異常度を上げてもよい。一般的に、動物に異常がある場合、その動物の異常度は時間の経過とともに徐々に上がっていく。この場合、異常度が閾値に達するまでにある程度の時間を要する。この変形例によれば、動物が異常を起こしやすい又は危険につながりやすい所定の場所に居る場合には、所定の場所にいない場合に比べて異常度が閾値に達するまでに要する時間が短くなるため、飛行体10が飛行を開始するタイミングを早めることができる。
上述した実施形態において、動物の重要度に応じて、異常度を上げてもよい。例えば動物が子供である場合、発情期である場合、又は妊娠中である場合には、動物の重要度が高くなってもよい。変更部414は、重要度が高い動物については、異常度を上げてもよい。この変形例によれば、重要度の高い動物については、飛行体10が飛行を開始するタイミングを早めることができる。
上述した実施形態において、動物の異常の種別に応じて、撮影方法を異ならせてもよい。例えば動物が群れから外れている場合には、群れと動物とが両方とも撮影されるように、通常よりも高い位置から撮影してもよい。また、動物が一定の場所に留まっている場合には、足に異常がある可能性があるため、動物の足を中心に撮影してもよい。この変形例によれば、管理者が動物の画像を見て、動物の異常をより正確に判断することができる。
上述した実施形態において、センサ装置20は、測位装置21と生体情報センサ22とに限定されない。センサ装置20は、動物から物理量を検出するセンサであれば、どのようなセンサが含まれてもよい。例えばセンサ装置20には、マイクロフォン等の音声取得装置が含まれていてもよい。この場合、音声取得装置が取得した動物の声を示す音声情報に基づいて、動物の異常度が算出されてもよい。
上述した実施形態において、動物を監視する処理は、動物の画像を撮影する処理に限定されない。例えば動物を監視する処理は、動物から音声等の情報を取得する処理、異常に対処する物を動物に供給する処理、又は動物を追尾する処理であってもよい。
上述した実施形態において、動物の位置を測定する方法は、GPSを用いた方法に限定されない。GPSを用いない方法で、動物の位置が測定されてもよい。
上述した実施形態又は変形例において、サーバ装置30の機能の少なくとも一部が他の装置に実装されてもよい。例えば取得部311、算出部312、対象設定部313、決定部314、経路設定部315、距離設定部316、及び指示部317のうち少なくともいずれかが、端末装置40に実装されてもよい。
本発明は、監視システム1、飛行体10、センサ装置20、サーバ装置30、又は端末装置40において行われる処理のステップを備える方法として提供されてもよい。また、本発明は、飛行体10、サーバ装置30、又は端末装置40において実行されるプログラムとして提供されてもよい。
図5のブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
飛行体10、サーバ装置30、又は端末装置40のハードウェア構成は、図3、図4、又は図6に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。また飛行体10、サーバ装置30、又は端末装置40は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、飛行体10、サーバ装置30、又は端末装置40の機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ11、31、又は41は、これらのハードウェアの少なくとも1つで実装されてもよい。
本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、または追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
また、ソフトウェア、命令などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)などの有線技術及び/又は赤外線、無線及びマイクロ波などの無線技術を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
本明細書で使用する「システム」および「ネットワーク」という用語は、互換的に使用される。
また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースはインデックスで指示されるものであってもよい。
本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。
本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
本明細書で使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1および第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
「含む(including)」、「含んでいる(comprising)」、およびそれらの変形が、本明細書あるいは特許請求の範囲で使用されている限り、これら用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
本開示の全体において、例えば、英語でのa、an、及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含むものとする。
以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
1:監視システム、10:飛行体、11:プロセッサ、12:メモリ、13:ストレージ、14:通信装置、15:測位装置、16:撮像装置、20:センサ装置、21:測位装置、22:生体情報センサ、30:サーバ装置、40:端末装置、311:取得部、312:算出部、313:対象設定部、314:決定部、315:経路設定部、316:距離設定部、317:指示部
Claims (9)
- 放牧されている動物の位置を示す位置情報を取得する取得部と、
飛行体の接近に対する前記動物の反応度を決定する決定部と、
前記決定された反応度に応じた距離を設定する設定部と、
前記取得された位置情報が示す前記位置及び前記設定された距離に対応する監視位置に向けて飛行を開始し、前記監視位置を基準として前記動物を監視する処理を行うよう前記飛行体に指示する指示部と
を備える監視装置。 - 前記設定部は、前記反応度が高い程、前記距離を増やし、
前記監視位置は、前記取得された位置情報が示す前記位置から前記設定された距離だけ離隔した位置である
請求項1に記載の監視装置。 - 前記決定部は、前記動物の種別又は前記飛行体に対する前記動物の慣れの度合いに応じて、前記反応度を決定する
請求項1又は2に記載の監視装置。 - 前記飛行体は、画像を撮影する撮像部を有し、
前記決定部は、前記撮像部が撮影した前記動物の画像を解析することにより、前記反応度を決定する
請求項1から3のいずれか1項に記載の監視装置。 - 複数の動物が放牧されており、
前記設定部は、前記複数の動物のうち監視対象の動物の前記反応度に応じて第1距離を設定し、前記取得された位置情報に基づいて、前記監視位置に向かう経路が前記複数の動物のうち他の動物の位置から所定の範囲を通ると判定された場合には、さらに前記他の動物の前記反応度に応じた第2距離を設定し、
前記監視位置は、前記取得された位置情報が示す前記位置から前記設定された第1距離だけ離隔した位置であり、
前記指示部は、前記第2距離が設定された場合には、地上から前記第2距離だけ離隔した高さで前記所定の範囲を飛行するよう指示する
請求項1から4のいずれか1項に記載の監視装置。 - 複数の動物が放牧されており、
前記設定部は、前記複数の動物のうち監視対象の動物から所定の範囲内に他の動物が居る場合には、前記監視対象の動物及び前記他の動物の前記反応度に応じた距離を設定する
請求項1から5のいずれか1項に記載の監視装置。 - 前記設定部は、前記取得された位置情報に基づいて、所定の場所から所定の範囲内に前記動物が居ると判定された場合には、前記動物の前記位置から前記所定の場所に向かう方向とは異なる方向から前記監視位置に向かう経路を設定し、
前記指示部は、前記設定された経路に沿って飛行するよう指示する
請求項1から6のいずれか1項に記載の監視装置。 - 前記飛行体は、画像を撮影する撮像部を有し、
前記処理は、前記撮像部が前記動物の画像を撮影する処理である
請求項1から7のいずれか1項に記載の監視装置。 - コンピュータに、
放牧されている動物の位置を示す位置情報を取得するステップと、
飛行体の接近に対する前記動物の反応度を決定するステップと、
前記決定された反応度に応じた距離を設定するステップと、
前記取得された位置情報が示す前記位置及び前記設定された距離に対応する監視位置に向けて飛行を開始し、前記監視位置を基準として前記動物を監視する処理を行うよう前記飛行体に指示するステップと
を実行させるためのプログラム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020521141A JP7336437B2 (ja) | 2018-05-23 | 2019-05-08 | 監視装置 |
US17/056,833 US11432534B2 (en) | 2018-05-23 | 2019-05-08 | Monitoring apparatus and program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018098944 | 2018-05-23 | ||
JP2018-098944 | 2018-05-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019225313A1 true WO2019225313A1 (ja) | 2019-11-28 |
Family
ID=68615971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/018399 WO2019225313A1 (ja) | 2018-05-23 | 2019-05-08 | 監視装置及びプログラム |
Country Status (3)
Country | Link |
---|---|
US (1) | US11432534B2 (ja) |
JP (1) | JP7336437B2 (ja) |
WO (1) | WO2019225313A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111158394A (zh) * | 2020-01-11 | 2020-05-15 | 湘潭大学 | 一种基于子母无人机的牧羊监测方法及系统 |
US20220107657A1 (en) * | 2020-10-02 | 2022-04-07 | Toyota Jidosha Kabushiki Kaisha | Controller, system, flying object, and transport method |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7340771B2 (ja) * | 2018-05-28 | 2023-09-08 | パナソニックIpマネジメント株式会社 | 生体検知装置、生体検知方法、記録媒体、およびプログラム |
US20220367059A1 (en) * | 2019-06-26 | 2022-11-17 | Mars, Incorporated | System and method for wellness assessment of a pet |
KR102372505B1 (ko) * | 2021-08-19 | 2022-03-08 | 최진호 | 야생동물 추적 관찰용 항공 드론장치 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016181605A1 (ja) * | 2015-05-12 | 2016-11-17 | ソニー株式会社 | 管理装置、個体管理システムおよび個体探索システム |
US20170202185A1 (en) * | 2016-01-18 | 2017-07-20 | Dinklage Feed Yards, Inc. | Unmanned livestock monitoring system and methods of use |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017206072A (ja) | 2016-05-17 | 2017-11-24 | 株式会社エンルートM’s | 飛行制御装置及び飛行制御方法 |
US10820574B2 (en) * | 2016-07-29 | 2020-11-03 | International Business Machines Corporation | Specialized contextual drones for virtual fences |
US10772295B2 (en) * | 2016-08-22 | 2020-09-15 | International Business Machines Corporation | Unmanned aerial vehicle for determining geolocation foraging zones |
US10398130B2 (en) * | 2017-04-28 | 2019-09-03 | Intel Corporation | Animal control around restricted zones |
US11109576B2 (en) * | 2018-11-16 | 2021-09-07 | International Business Machines Corporation | Livestock management |
-
2019
- 2019-05-08 JP JP2020521141A patent/JP7336437B2/ja active Active
- 2019-05-08 US US17/056,833 patent/US11432534B2/en active Active
- 2019-05-08 WO PCT/JP2019/018399 patent/WO2019225313A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016181605A1 (ja) * | 2015-05-12 | 2016-11-17 | ソニー株式会社 | 管理装置、個体管理システムおよび個体探索システム |
US20170202185A1 (en) * | 2016-01-18 | 2017-07-20 | Dinklage Feed Yards, Inc. | Unmanned livestock monitoring system and methods of use |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111158394A (zh) * | 2020-01-11 | 2020-05-15 | 湘潭大学 | 一种基于子母无人机的牧羊监测方法及系统 |
CN111158394B (zh) * | 2020-01-11 | 2023-09-29 | 湘潭大学 | 一种基于子母无人机的牧羊监测方法及系统 |
US20220107657A1 (en) * | 2020-10-02 | 2022-04-07 | Toyota Jidosha Kabushiki Kaisha | Controller, system, flying object, and transport method |
US11983021B2 (en) * | 2020-10-02 | 2024-05-14 | Toyota Jidosha Kabushiki Kaisha | Controller, system, flying object, and transport method |
Also Published As
Publication number | Publication date |
---|---|
JP7336437B2 (ja) | 2023-08-31 |
US20210204522A1 (en) | 2021-07-08 |
US11432534B2 (en) | 2022-09-06 |
JPWO2019225313A1 (ja) | 2021-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019225313A1 (ja) | 監視装置及びプログラム | |
JP7341991B2 (ja) | 監視装置 | |
KR101712633B1 (ko) | 센서와 무인비행체를 이용한 방목 가축 질병 예측 관리시스템 및 관리방법 | |
JP6983903B2 (ja) | 飛行制御装置及び飛行制御システム | |
JPWO2020230371A1 (ja) | 制御装置、プログラム及び制御方法 | |
JPWO2019054029A1 (ja) | 飛行制御装置及び飛行制御システム | |
JP6945005B2 (ja) | 飛行制御システム | |
JPWO2020189493A1 (ja) | 情報処理装置及び情報処理方法 | |
US10986818B2 (en) | Information processing apparatus, information processing method, information processing program, display control device, display control method, and display control program | |
JP7246388B2 (ja) | 飛行体制御装置 | |
JP7050809B2 (ja) | 情報処理装置 | |
JP6945004B2 (ja) | 情報処理装置 | |
US12118761B2 (en) | Information processing apparatus and information processing method | |
JP2019101451A (ja) | 情報処理装置 | |
US11891176B2 (en) | Determination of position sending interval for flying vehicle dependent upon ground surface below vehicle | |
JP7060616B2 (ja) | 情報処理装置 | |
JPWO2019146516A1 (ja) | 飛行制御装置及び飛行制御システム | |
JP6112346B2 (ja) | 情報収集システム、プログラムおよび情報収集方法 | |
US11794900B2 (en) | Information processing apparatus | |
WO2019146552A1 (ja) | 情報処理装置 | |
WO2019146551A1 (ja) | 情報処理装置 | |
JP2022143047A (ja) | 行動予測モデル生成装置、行動予測装置、行動予測モデル生成システム、行動予測モデル生成方法及びプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19807711 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020521141 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19807711 Country of ref document: EP Kind code of ref document: A1 |