[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019220763A1 - 電力変換装置および電力変換システム - Google Patents

電力変換装置および電力変換システム Download PDF

Info

Publication number
WO2019220763A1
WO2019220763A1 PCT/JP2019/011072 JP2019011072W WO2019220763A1 WO 2019220763 A1 WO2019220763 A1 WO 2019220763A1 JP 2019011072 W JP2019011072 W JP 2019011072W WO 2019220763 A1 WO2019220763 A1 WO 2019220763A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
value
charging state
gain
frequency
Prior art date
Application number
PCT/JP2019/011072
Other languages
English (en)
French (fr)
Inventor
賢司 藤原
奥田 達也
貴洋 嘉藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201980027224.2A priority Critical patent/CN112106288B/zh
Priority to JP2020519485A priority patent/JP6877640B2/ja
Priority to US16/979,870 priority patent/US11349409B2/en
Priority to DE112019002444.2T priority patent/DE112019002444T5/de
Publication of WO2019220763A1 publication Critical patent/WO2019220763A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0025Sequential battery discharge in systems with a plurality of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1423Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with multiple batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • This application relates to a power converter and a power system.
  • the AC terminals of two or more power converters each having an independent storage battery are connected in parallel to supply power to the load, but the AC terminals of two or more voltage output type power converters are connected. If the output power from each power converter is always leveled and output evenly when connected in parallel, the storage battery with a low SOC (State of Charge) at the start of use becomes over-discharged, and this storage battery is The power converter apparatus which it has may stop. Therefore, the following power converters that adjust the output power of each power converter according to the SOC of each storage battery are disclosed.
  • each storage battery system that is a power conversion device includes a storage battery and a power conditioner.
  • Each inverter is connected to the bus at once.
  • the bus is connected to the power system and load equipment.
  • AC power is supplied to the load facility via the bus by discharging each storage battery via each power conditioner.
  • Each inverter is operated according to the droop characteristic.
  • the control device weights the frequency correction command to be transmitted to each power conditioner according to the SOC of each storage battery.
  • the control device transmits a frequency correction command weighted to the positive polarity side to the power conditioner corresponding to the storage battery having a high SOC, thereby giving a positive offset to the droop characteristic.
  • control device gives a negative polarity offset to the droop characteristic by transmitting a frequency correction command weighted to the negative polarity side to the power conditioner corresponding to the storage battery having a low SOC (for example, Patent Documents). 1).
  • the distributed power supply system includes a power source that is a plurality of power conversion devices each having a power storage device and an inverter.
  • the inverter has a characteristic that the frequency of AC power is smaller as the output amount of AC power (active power) is larger.
  • the inverter changes the ratio of the frequency change with respect to the output amount change according to the state of charge. That is, the inverter changes the characteristics so that the rate of decrease in frequency with respect to the increase in output amount increases when the state of charge of the power storage device is low.
  • the inverter changes characteristics so that the rate of decrease in frequency with respect to an increase in output amount is reduced (see, for example, Patent Document 2).
  • each power conversion device adjusts the output power according to the state of charge of the storage battery included in the power conversion device.
  • the frequency of the output voltage of each power converter may fluctuate greatly. For this reason, there is a problem that a failure may occur in the connected load device, and the operation of the power conversion device may be stopped.
  • An object is to provide a power conversion device that can be suppressed and stabilized, and a power conversion system configured by connecting a plurality of power conversion devices.
  • the power conversion device disclosed in the present application is A power converter that converts DC power from a DC power supply unit having a power storage device into AC power and outputs the AC power to a load; and a control unit that controls the power converter, wherein the control unit is a set reference In the power conversion device that controls the power converter so as to droop the frequency of the output voltage according to the increase in the output power of the power converter using the gain,
  • the controller is According to the detected value of the charging state information of the power storage device, the correction value set in association with the charging state information of the power storage device is multiplied by the reference gain to be corrected, and the corrected reference gain is Adjusting the slope of the drooping characteristic of the frequency of the power converter using the first gain to control the power converter;
  • the correction value is N1 is a value that gradually decreases as the charging state information of the power storage device increases, and the minimum value of the correction value is a real number greater than 0 in the first charging state in which the power storage device is stopped charging.
  • the power system disclosed in this application is: Provided with a plurality of power converters configured as described above, AC terminals of each of the power converters are connected in parallel and connected to the load. Is.
  • FIG. 2 is a block diagram showing a schematic configuration of a control circuit of the power conversion device according to Embodiment 1.
  • FIG. 2 is a block diagram showing a schematic configuration of an output voltage control circuit of the control circuit according to the first embodiment.
  • FIG. It is a figure which shows the characteristic of the output voltage of the power converter device by Embodiment 1.
  • FIG. It is the figure which showed the function which the control circuit of the power converter device by Embodiment 1 uses on a coordinate plane. It is a figure which shows the change of the frequency power characteristic by the power converter device by Embodiment 1.
  • FIG. 1 shows the circuit structure of a power conversion system provided with two or more power converter devices by Embodiment 1.
  • FIG. 2 is a block diagram showing a schematic configuration of a control circuit of the power conversion device according to Embodiment 1.
  • FIG. 2 is a block diagram showing a schematic configuration of an output voltage control circuit of the control circuit according to the first embodiment.
  • FIG. It is a figure which shows the characteristic of
  • FIG. 6 is a block diagram illustrating a schematic configuration of a control circuit of a power conversion device according to a second embodiment. It is a figure which shows sharing of the output electric power by the power converter device by Embodiment 2.
  • FIG. 6 is a block diagram illustrating a schematic configuration of a control circuit of a power conversion device according to a second embodiment. It is a figure which shows sharing of the output electric power by the power converter device by Embodiment 2.
  • FIG. 1 is a diagram showing a circuit configuration of a power system 100 configured by connecting a plurality of power conversion devices 10 (10a, 10b) according to the first embodiment.
  • FIG. 2 is a block diagram illustrating a schematic configuration of the control circuit 50 included in the power conversion device 10 according to the first embodiment.
  • FIG. 3 is a block diagram showing a schematic configuration of the output voltage control circuit of the control circuit 50 according to the first embodiment.
  • FIG. 4 is a diagram illustrating the output voltage characteristics of the DC / AC inverter 20 of the power conversion apparatus 10 according to the first embodiment.
  • FIG. 5 is a diagram showing a function f (x) on the coordinate plane for the control circuit 50 according to the first embodiment to derive a correction value.
  • the power system 100 includes two power converters 10 (10a, 10b) each having the same configuration, and the AC terminal 19 of each power converter 10 is connected to a bus 41. They are connected in parallel.
  • a load 40 is connected to the bus 41, and AC power can be supplied from each power converter 10 to the load 40 via the bus 41 by operating each power converter 10.
  • power system 100 is configured with two power conversion devices 10, but may be configured with three or more power conversion devices 10.
  • the power conversion apparatus 10 includes a DC power supply unit 5, a DC / AC inverter 20 as a power converter, a smoothing filter 23, a noise filter 30, a switch 31, and a control circuit 50 as a control unit.
  • the DC power supply unit 5 outputs DC power.
  • the DC / AC inverter 20 converts the DC power from the DC power supply unit 5 into AC power and outputs it.
  • the smoothing filter 23 smoothes the alternating current from the DC / AC inverter 20.
  • the noise filter 30 is provided between the smoothing filter 23 and the load 40 to remove noise.
  • the switch 31 is provided between the noise filter 30 and the load 40 so that the DC / AC inverter 20 can be disconnected from the load 40.
  • the control circuit 50 controls the DC / AC inverter 20.
  • Each power converter 10 (10a, 10b) has the same circuit configuration, and each has the same control circuit 50.
  • the DC power supply unit 5 includes a storage battery 1 as a power storage device, a DC / DC converter 2 that uses the storage battery 1 as an energy source, and outputs the output voltage of the storage battery 1 directly or after converting it to a desired voltage value. And a capacitor 3 connected between the output terminals of the DC / DC converter 2.
  • the DC / AC inverter 20 is connected between the positive and negative terminals of the capacitor 3 and is a full bridge circuit including four semiconductor switching elements Q1, Q2, Q3, and Q4. A connection point between the semiconductor switching element Q1 and the semiconductor switching element Q2 and a connection point between the semiconductor switching element Q3 and the semiconductor switching element Q4 are output terminals on the AC side of the DC / AC inverter 20, respectively.
  • the DC / AC inverter 20 turns on / off the semiconductor switching elements Q1, Q2, Q3, and Q4 by the gate drive signal G from the control circuit 50, thereby converting the DC power from the capacitor 3 into AC power. Convert.
  • the semiconductor switching elements Q1, Q2, Q3, and Q4 are self-extinguishing semiconductor switching elements such as IGBTs (Insulated Gate Bipolar Transistors), MOSFETs (Metal Oxide Semiconductors, Field Effective Transistor Transistors), and the like. Free wheel diodes are connected in antiparallel to the semiconductor switching elements. When a MOSFET is used as the semiconductor switching element, a parasitic diode may be used.
  • a smoothing filter 23 is connected to the output of the DC / AC inverter 20.
  • the smoothing filter 23 includes filter reactors 21a and 21b each having one end connected to each output terminal of the DC / AC inverter 20, and a filter capacitor 22 connected between the other ends of the filter reactors 21a and 21b. .
  • the AC current smoothed by the smoothing filter 23 is output from the AC terminal 19 of the power converter 10 to the bus bar 41 via the noise filter 30 and the switch 31.
  • the noise filter 30 and the switch 31 may be omitted.
  • the power conversion device 10 includes a first current sensor 11 that detects the current Iac1 flowing through the filter reactor 21a that is the output of the DC / AC inverter 20, and a second current that detects the AC load current Iac2 that has been smoothed by the smoothing filter 23.
  • Sensor 12 each power converter 10 includes a first DC voltage sensor 15 that detects the voltage Vdc of the capacitor 3 that is a DC bus voltage input to the DC / AC inverter 20, and an output of the smoothing filter 23 that is connected to the filter capacitor 22.
  • a first AC voltage sensor 16 that detects a filter output voltage value Vac1 that is an AC voltage to be applied, and a second AC voltage that is an output of the power converter 10 and detects an AC load voltage Vac2 output to the load 40.
  • a sensor 17 Furthermore, the power conversion device 10 includes an SOC sensor 18 for detecting charging state information (SOC information) such as a charging rate of the storage battery 1 that changes due to charging or discharging. Values detected by these sensors 11, 12, 15 to 18 are input to the control circuit 50.
  • SOC information charging state information
  • the frequency of the output voltage of the DC / AC inverter 20 has a frequency drooping characteristic such that the frequency becomes the reference frequency f0 when the active power is 0 W, and the frequency decreases as the active power increases. That is, the control circuit 50 performs control so that the frequency of the output voltage is drooped according to the increase in the output power of the DC / AC inverter 20 using the set negative frequency power characteristic gain. Therefore, the frequency power characteristic gain is determined by a function having a negative slope.
  • the control circuit 50 includes a power calculation unit 51, a frequency adjustment amount calculation unit 53, an SOC output characteristic calculation unit 52, a frequency command calculation unit 54, and an output voltage command calculation unit 55.
  • the power calculation unit 51 calculates the active power P from the detected value of the AC load voltage Vac2 obtained by the second AC voltage sensor 17 and the detected value of the AC load current Iac2 obtained by the second current sensor 12.
  • the frequency adjustment amount calculation unit 53 performs proportional control with the obtained active power P as an input and the output as the frequency adjustment amount fadj.
  • the SOC output characteristic calculator 52 determines the frequency power characteristic gain used in the frequency adjustment amount calculator 53.
  • the frequency command calculation unit 54 generates a frequency command value finv1 based on the frequency adjustment amount fadj output from the frequency adjustment amount calculation unit 53.
  • the output voltage command calculation unit 55 generates the output voltage command value V * of the DC / AC inverter 20 based on the generated frequency command value finv1.
  • the correction value is a value f (x) uniquely determined by the function f with the SOC information of the storage battery 1 detected by the SOC sensor 18, for example, SOC (%) as a variable x.
  • SOCs [%] is set as the SOC (second charge state) in which the storage battery 1 stops discharging. For example, when the deterioration of the storage battery 1 proceeds when the charging rate falls below 30%, or when it is necessary to secure a charging rate of 30% for other purposes, the SOCs that stop discharging the storage battery 1 are set to 30 % Is set.
  • SOCc [%] is set as the SOC (first charging state) in which the storage battery 1 is stopped from being charged.
  • a function f (x) which is a correction value where SOC is x, is set in the SOC output characteristic calculation unit 52.
  • the function f (x) set in the SOC output characteristic calculation unit 52 indicates that x, which is the SOC of the storage battery 1 detected by the SOC sensor 18, is greater than or equal to the set SOCc [%]. If it exists, it will be determined to the value of the real number N1, and if the detected x of the storage battery 1 is less than or equal to the set SOCs [%], it will be determined to be a value of the real number N2 greater than the N1.
  • the function f (x) is a value that gradually decreases from N2 to N1 as x, which is the detected SOC of the storage battery 1, increases from SOCs to SOCc. That is, the function f (x) is expressed by the following formula (2), formula (3), and formula (4).
  • the control circuit 50 derives the detected SOC information of the storage battery 1, in this case, the correction value associated with the SOC [%] using the function f (x).
  • the correction value derived by the function f (x) is a value that gradually decreases as the SOC information of the storage battery 1 increases.
  • the minimum value of the correction value is a real number N1 greater than 0 in the first charge state (charge rate is SOCc [%]) in which the storage battery 1 is stopped from being charged.
  • the maximum value of the correction value is N2, which is a real number larger than N1 in the second charging state (charging rate is SOCs [%]) in which the storage battery 1 is stopped from discharging.
  • the SOC output characteristic calculation unit 52 sets the correction value set in association with the SOC information of the storage battery 1 according to the detected SOC information of the storage battery 1 based on the above equation (1) to the frequency power characteristic gain (The reference gain K) is multiplied and corrected, and the corrected reference gain K is output to the subsequent frequency adjustment amount calculation unit 53 as a frequency power characteristic gain (first gain Ksoc1) for controlling the DC / AC inverter 20.
  • the unit of the first gain Ksoc1 (frequency power characteristic gain) is frequency / active power.
  • the frequency command calculation unit 54 calculates a value obtained by adding the frequency adjustment amount fadj to the reference frequency f0 as the frequency command value finv1 of the AC voltage output from the DC / AC inverter 20 based on the following equation (6).
  • the output voltage command calculation unit 55 calculates the output AC voltage command value Vac * of the DC / AC inverter 20, which is composed of a specified AC voltage amplitude value and a sine wave determined by the frequency command value finv1. To do. Then, the output voltage command calculation unit 55 performs the calculation shown in FIG. 3 using the calculated output AC voltage command value Vac * and the value of the AC load voltage Vac2 detected by the second AC voltage sensor 17. The output voltage of the DC / AC inverter 20 is controlled. As shown in FIG. 3, the first controller 60 that receives the deviation between the detected value of the AC load voltage Vac2 and the calculated output AC voltage command value Vac * is, for example, PI control (proportional control). Thus, the inverter output current command value 60a is output as a control amount for reducing the input deviation.
  • PI control proportional control
  • a control amount output from the first controller 60 there is a method of directly outputting an output voltage correction value or a method of outputting an inverter output current command value.
  • an inverter output current command value is used as a control amount.
  • the method of taking out 60a is adopted.
  • the current flowing through the filter capacitor 22 is calculated from the capacitance value of the filter capacitor 22 and the inverter output voltage command value, and is added to the inverter output current command value 60a as a filter capacitor current estimated value.
  • the 2nd controller 61 which input the deviation of the inverter output current detection value Iac1 which flows into the filter reactor 21a, and the inverter output current command value 60a outputs the output voltage correction value 61a by PI control, for example.
  • the second controller 61 constitutes current minor control for outputting the output voltage correction value 61a.
  • the filter output voltage detection value obtained from the first AC voltage sensor 16 may be added to the output voltage correction value 61a.
  • the voltage drop generated in the filter reactor 21 is calculated from the inverter output current command value Iac1, the inductance value of the filter reactor 21, and the frequency command value finv1, and the output voltage correction value 61a is calculated as the filter reactor voltage drop estimated value.
  • the inverter output voltage command value V * may be added.
  • the output voltage command value may be added to the output voltage correction value 61a.
  • the inverter output voltage command value V * of the DC / AC inverter 20 is determined by such inverter output voltage control. Then, the control circuit 50 gates the semiconductor switching elements Q1, Q2, Q3, and Q4 so that the determined inverter output voltage command value V * is realized according to the drive control of the DC / AC inverter represented by PWM control. A drive signal G is generated and output.
  • FIG. 6 is a diagram showing a state in which the control circuit 50 changes the frequency power characteristics as the SOC of the storage battery 1 decreases in the power conversion device 10 according to the first embodiment.
  • the power conversion device 10 corrects its own frequency power characteristic gain by multiplying the negative frequency power characteristic gain by a correction value that gradually increases as the SOC of its own storage battery 1 decreases due to discharge. . Therefore, as shown in FIG. 6, the slope of the drooping characteristic of the frequency of the output voltage is adjusted.
  • FIG. 7 is a diagram illustrating that in power conversion devices 10a and 10b according to Embodiment 1, the power sharing of each power conversion device 10a and 10b differs depending on the SOC of storage battery 1.
  • the SOC of the storage battery 1 included in one of the power conversion apparatuses 10a of the two power conversion apparatuses 10a and 10b included in the power system 100 is large and the SOC of the storage battery 1 included in the other power conversion apparatus 10b is low.
  • each power conversion device 10 (10a, 10b) independently corrects its own frequency power characteristic by the control circuit 50, and other power conversion devices 10 ( 10a, 10b) to adjust their own power sharing without communicating with them.
  • the correction value for correcting the frequency power characteristic of the DC / AC inverter 20 is N1 in the SOCc in which the storage battery 1 stops charging, and the maximum value discharges the storage battery 1.
  • the upper limit value N2 and the lower limit value N1 of the correction value are corrected so that the fluctuation range of the frequency when the power conversion device 10 is controlled and converged is within a desired fluctuation range such as within 2% from the reference frequency f0. It may be determined according to the value of the previous frequency characteristic gain (reference gain K). Thus, by keeping the fluctuation range of the output voltage at the time of control convergence within a desired reference range, it is possible to perform an operation according to the specifications of the connected load device and the like.
  • FIG. 8 is a diagram showing another function g (x) on the coordinate plane for the control circuit 50 according to the first embodiment to derive the correction value.
  • x is the same as in the case of the function f (x)
  • the value of g (x) is the correction value.
  • the control circuit 50 divides between SOCs [%] and SOCc [%] into two sections.
  • control circuit 50 between the SOCs [%] and the SOCc [%], the function g1 (x) in the section between the SOCs [%] and the SOCt and the section between the SOCt and the SOCc [%].
  • Two functions g1 (x) and g2 (x) having different slopes with which the correction value in each section gradually decreases as the SOC increases are used.
  • the correction value is set so as to have at least two sections that gradually decrease with different slopes as the SOC increases between the SOCs [%] and the SOCc [%].
  • the output power of the power conversion device 10 can be adjusted according to the characteristics of the storage battery 1.
  • the storage battery 1 is set by setting the correction value so that the absolute value of the slope of the correction value in the SOCc [%] side section is smaller than the absolute value of the slope of the correction value in the SOCs [%] side section.
  • the power converter 10 can be maintained in a high output enabled state, so that convenience is improved.
  • the SOCc and SOCs set in the SOC output characteristic calculation unit 52 of the control circuit 50 are not limited to those set in advance, and may be configured by the user from the outside.
  • the control circuit 50 is set with a discharge prohibition range for designating a range of charge state information for prohibiting the discharge of the storage battery 1.
  • the discharge prohibited range is within ⁇ X% of the median value. If the input SOCs are within the discharge prohibition range, the offset voltage is applied to the input SOCs so that the input SOCs is outside the discharge prohibition range so that the discharge does not stop within the discharge prohibition range. A value corrected by adding or subtracting is set as new discharge stop SOCs. By this setting, deterioration due to long-term storage of the storage battery 1 is suppressed, so that the life of the storage battery 1 can be extended.
  • the correction value for correcting the frequency power characteristic of the DC / AC inverter 20 has been derived by the control circuit 50 based on the functions f (x) and g (x).
  • the present invention is not limited to this, and the correction value may be a data map or the like that is preset and recorded in the control circuit 50.
  • This data map includes a configuration in which a correction value set in association with the SOC information of the storage battery 1 is selected.
  • the power conversion device uses the correction value set in association with the SOC information of the storage battery as a reference gain according to the detection value of the storage battery. Is used to adjust the slope of the drooping characteristic of the frequency of the power converter using the corrected reference gain as the first gain for controlling the power converter. Thereby, adjustment of the output electric power according to SOC for every storage battery of a power converter device can be performed. Therefore, when the SOC of the own storage battery of the power conversion device is low, it is necessary to entrust the power burden to another power conversion device having a large SOC storage battery to suppress excessive discharge of the own storage battery and necessary after the end of load supply Energy can be maintained.
  • the correction value is a real number N1 whose minimum value is larger than 0 in the first charging state in which the storage battery is stopped from charging, and the maximum value is a real number N2 larger than N1 in the second charging state in which the storage battery is stopped from discharging. It is.
  • the correction value may be set so that the frequency fluctuation range of the output voltage of the power converter falls within a predetermined reference range such as a range within 2% from the fundamental frequency. In this way, operation according to the specifications of the connected load device can be performed.
  • the correction value is set so as to have at least two or more sections that have different slopes and gradually decrease as the SOC increases between the SOCs that stop discharging the storage battery and the SOCc that stops charging. You can also. Thereby, adjustment of the output power of the power converter according to the characteristic of a storage battery can be performed.
  • the correction value is such that the absolute value of the slope of the correction value in the SOCc side section is smaller than the absolute value of the slope of the correction value in the SOCs side section in each section between SOCs and SOCc. It may be set. Thereby, in the period when a storage battery has high SOC, the high output possible state of a power converter device can be maintained, and the convenience improves.
  • the correction value may use data preset in the control circuit, or the control circuit may derive it using the functions f (x) and g (x).
  • the control circuit is configured to derive the correction value using the functions f (x) and g (x)
  • the storage area in the control circuit can be made small, and space saving and cost reduction can be achieved.
  • the correction value is set and recorded in advance in the control circuit as in the data map configuration, the calculation load on the control circuit during operation of the power converter can be reduced.
  • the power conversion device 10 includes the DC power supply unit 5. However, the power conversion device 10 does not include the DC power supply unit 5 and the DC power supply unit 5 is provided outside. Good.
  • FIG. 9 is a block diagram showing a schematic configuration of the control circuit 250 included in each power conversion device 10 (10a, 10b) according to the second embodiment.
  • the control circuit 250 includes a rating maintenance calculation unit 56 that receives the first gain Ksoc1 output from the SOC output characteristic calculation unit and the active power P from the power calculation unit 51 as inputs.
  • the power system 100 is configured to include two power conversion devices 10 (10a, 10b) as in the first embodiment.
  • the power converter 10a and the power converter 10b have the same circuit configuration, and each has the same control circuit 250.
  • the rated value of the output power of the DC / AC inverter 20 is set.
  • This rated value can be set by any one of active power, apparent power, output current effective value, and output current peak value, and is set as active power in this embodiment.
  • the frequency power characteristic gain (first gain Ksoc1) of the power conversion device 10a which is a negative value, is power. It becomes larger than the frequency power characteristic gain (first gain Ksoc1) of the converter 10b.
  • the AC output frequencies of the power conversion device 10a and the power conversion device 10b are converged to the same value, and therefore share different power depending on the difference in frequency power characteristics determined by the frequency power characteristic gain. It will be.
  • the power conversion device 10a having a large SOC has a large output power sharing, but there is a case where the output power of the power conversion device 10a exceeds the rated value set in the rating maintenance calculation unit 56 depending on the size of the load 40.
  • the rating maintenance calculation unit 56 of each control circuit 250 of the power conversion devices 10a and 10b receives a deviation between the set rated value and the active power P that is the output of the power calculation unit 51 of the power conversion devices 10a and 10b. And a controller (not shown) represented by the PI control.
  • the rating maintenance calculation unit 56 of the control circuit 250 of the power conversion device 10a decreases the frequency power characteristic gain (first gain Ksoc1) that is an output from the SOC output characteristic calculation unit 52 of the power conversion device 10a, that is, power conversion.
  • a control amount KR for increasing the absolute value of the slope of the drooping characteristic of the frequency of the output voltage of the device 10a is generated by the controller.
  • the value of the control amount KR is a real number larger than 0, and KR is gradually increased from 0 as the excess amount of the active power P exceeding the rated value increases.
  • the rating maintenance calculation unit 56 of the control circuit 250 of the power conversion device 10a uses a control amount KR for the frequency power characteristic gain (first gain Ksoc1) of the DC / AC inverter based on the following equation (7).
  • the control amount (1 + KR) is multiplied and corrected, and a new frequency power characteristic gain (second gain Ksoc2) is determined and output.
  • Ksoc2 Ksoc1 ⁇ (1 + KR) Equation (7)
  • the frequency power characteristic gain (second gain Ksoc2) of the power converter 10a is lowered, that is, the absolute value of the slope of the drooping characteristic of the frequency of the output voltage is reduced. Enlarge.
  • the power conversion device 10a can reduce its own output sharing ratio.
  • an upper limit value may be provided for the control amount KR.
  • the rating maintenance calculation unit 56 of the control circuit 250 of the power converter 10a corrects the frequency power characteristic gain (first gain Ksoc1) and converges by reducing the frequency power characteristic gain (second gain Ksoc2). The result of changing the frequency and the power operating point is shown.
  • the frequency power characteristic gain (first gain Ksoc1) initially used by the control circuit 250 of the power conversion device 10a converges to the frequency f1 as shown in FIG. 10, and in this case, the effective power Paa output from the power conversion device 10a is The rated value Pba is exceeded. Therefore, the rating maintenance calculation unit 56 of the control circuit 250 of the power conversion device 10a uses the frequency power characteristic gain (first gain Ksoc1) as the frequency power characteristic gain (second gain Ksoc2) using the rated control amount (1 + KR). to correct.
  • the absolute value of the slope of the drooping characteristic of the frequency of the DC / AC inverter 20 in the power period until the output power of the power conversion device 10a reaches the rated value Pba (period of active power 0 to Pba) increases.
  • the convergence frequency is reduced to f2
  • the active power output from the power converter 10a is controlled from Paa to the rated value Pba
  • the active power output from the power converter 10b is overloaded to the power converter 10a.
  • follow-up control is performed from Pab to Pbb so that the power component is autonomously output. In this way, the share ratio of the output power of the power converter 10a and the power converter 10b is changed.
  • the frequency power characteristic gain (first gain Ksoc1) of the power conversion device 10b that is a negative value is It becomes larger than the frequency power characteristic gain (first gain Ksoc1) of the converter 10a.
  • the output power sharing of the power conversion device 10b having a large SOC increases, but there is a case where the output power of the power conversion device 10b exceeds the rated value set in the rating maintenance calculation unit 56 depending on the size of the load 40.
  • the rating maintenance calculation unit 56 of the control circuit 250 of the power converter 10b corrects the frequency power characteristic gain using the rated control amount (1 + KR). In this way, the active power output from the power conversion device 10b is controlled to the rated value, and the overload power is tracked and controlled so that the power conversion device 10a outputs autonomously and the output power sharing ratio is changed.
  • the rated control amount for correcting the frequency power characteristic gain is (1 + KR) as shown in the equation (7), and this rated control amount (1 + KR) is multiplied by the first gain Ksoc1 to obtain the second value.
  • Gain Ksoc2 was obtained.
  • the control circuit 250 of the power converter 10 (10a, 10b) corrects by subtracting the rated control amount (KR) from the frequency power characteristic gain (first gain Ksoc1) of the DC / AC inverter based on the following equation (8). By doing so, a new frequency power characteristic gain (second gain Ksoc2) may be determined.
  • Ksoc2 Ksoc1-KR Formula (8)
  • the value of the rated control amount KR is a real number larger than 0, and gradually increases from 0 as the excess amount of the active power P exceeding the rated value increases.
  • the frequency power characteristic gain which is a negative value
  • the frequency power characteristic gain which is a negative value
  • an upper limit value may be provided for the rated control amount KR.
  • the power conversion device has the same effect as that of the first embodiment and can be stabilized by suppressing fluctuations in the frequency of the output voltage. Stable operation is possible while suppressing the burden of excessive power consumption.
  • the control circuit calculates a control amount that increases the absolute value of the slope of the drooping characteristic of the frequency of the DC / AC inverter, and the first gain is obtained by the control amount. Ksoc1 is corrected, and the corrected first gain Ksoc1 is used as the second gain Ksoc2 for controlling the DC / AC inverter.
  • the absolute value of the slope of the drooping characteristic of the frequency of the DC / AC inverter during the power period until the output power of the DC / AC inverter reaches the rated value can be increased.
  • the frequency of the output voltage is converged in the power period until the output power of the DC / AC inverter reaches the rated value without burdening excessive power, and the output power is rated. It can be suppressed below the value. Therefore, it is not necessary to design a large power capacity of the device in the circuit design of the power conversion device, and space saving and cost reduction can be achieved.
  • the power system 100 is configured by two power conversion devices 10, but may be configured by three or more power conversion devices 10.
  • 1 storage battery power storage device
  • 5 DC power supply unit 10
  • 10a, 10b power conversion device 20
  • DC / AC inverter power converter
  • 40 load 50
  • 50, 250 control circuit control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

制御回路(50)は、蓄電池(1)の充電状態情報に対応付けて設定された補正値を基準ゲインに乗算して補正し、補正された基準ゲインをDC/ACインバータ(20)を制御する第1ゲインとして用いて周波数の垂下特性の傾きを調整し、補正値は、蓄電池(1)の充電状態情報の増加に応じて漸減する値であり、補正値の最小値は蓄電池(1)を充電停止とする第1充電状態における0よりも大きい実数であるN1であり、補正値の最大値は、蓄電池(1)を放電停止とする第2充電状態における前記N1よりも大きい実数であるN2である。

Description

電力変換装置および電力変換システム
 本願は、電力変換装置および電力システムに関するものである。
 従来より、電力系統停電時の対策として、太陽電池、蓄電池システム、等に代表される自立して運転できる分散型電源、無停電電源装置等の電力変換装置の需要が高まっている。そのため、電力系統停電時に電力変換装置が電力供給を行うバックアップ時間の長さ、および電力変換装置の平常運転時の損失低減が求められ、電力変換効率が重要な要素となっている。災害時等において移動可能な電気自動車等に搭載されている蓄電池から負荷に電力供給を行う場合では、特に大きな電力が求められる場合に1台の電気自動車の蓄電池の電力では足りず、複数台の蓄電池が必要になるケースが見られる。このような場合において、それぞれ独立した蓄電池をもつ2台以上の電力変換装置の交流端を並列接続して負荷に電力供給を行うが、2台以上の電圧出力型の電力変換装置の交流端を並列接続した場合に、各電力変換装置からの出力電力を常に平準化し均等に電力を出力させると、使用開始時のSOC(State of Charge:充電状態)の低い蓄電池が過放電となり、この蓄電池を有する電力変換装置が停止することがある。よって、各蓄電池のSOCに応じて、各電力変換装置の出力電力の調整を行う以下のような電力変換装置が開示されている。
 即ち、電力変換装置である各蓄電池システムは蓄電池およびパワーコンディショナからなる。各パワーコンディショナは母線に一括して接続される。母線は電力系統と負荷設備に接続されている。電力系統の停電等により負荷設備が系統から遮断された場合には、各パワーコンディショナを介して各蓄電池を放電させることにより交流電力を母線経由で負荷設備に供給する。
 各パワーコンディショナはドループ特性に従って運転されている。制御装置は、各蓄電池のSOCに応じて、各パワーコンディショナにそれぞれ送信する周波数補正指令に重み付けを行う。制御装置は、SOCの高い蓄電池に対応するパワーコンディショナに対しては、正極性側に重み付けした周波数補正指令を送信することにより、ドループ特性に正極性のオフセットを持たせる。また、制御装置は、SOCの低い蓄電池に対応するパワーコンディショナに対しては、負極性側に重み付けした周波数補正指令を送信することにより、ドループ特性に負極性のオフセットを与える(例えば、特許文献1参照)。
 また以下のように、各蓄電装置のSOCに対応して、各インバータの出力電力の調整を行う電力変換装置が開示されている。
 即ち、分散型電力供給システムは、それぞれ電力貯蔵装置とインバータとを有する複数の電力変換装置である電源を備える。インバータは、交流電力(有効電力)の出力量が多いほど交流電力の周波数が小さいという特性を有する。インバータは、出力量の変化に対する周波数の変化の割合を充電状態に従って変化させる。即ち、インバータは、電力貯蔵装置の充電状態が低い場合、出力量の増加に対する周波数の低下率が大きくなるように特性を変動させる。またインバータは、電力貯蔵装置の充電状態が高い場合、出力量の増加に対する周波数の低下率が小さくなるように特性を変動させる(例えば、特許文献2参照)。
特開2016-119820号公報(段落[0017]~[0036]、図1~図5) 特開2016-123243号公報(段落[0101]~[0108]、図11~図12)
 上記のような従来の電力変換装置では、各電力変換装置は、当該電力変換装置が有する蓄電池の充電状態に応じて出力電力の調整を行っている。しかしながら、上記のような制御では、各電力変換装置の出力電圧の周波数が大きく変動することがあった。そのため、接続される負荷機器において不具合が生じることがあり、また電力変換装置の運転が停止に至ることがあるという課題があった。
 本願は、上記のような課題を解決するための技術を開示するものであり、電力変換装置が電力貯蔵装置の充電状態に応じて出力電力の調整を行う際に、出力電圧の周波数の変動を抑制して安定化できる電力変換装置と、この電力変換装置を複数台接続して構成した電力変換システムの提供とを目的とする。
 本願に開示される電力変換装置は、
電力貯蔵装置を有する直流電源部からの直流電力を交流電力に変換して負荷に出力する電力変換器と、該電力変換器を制御する制御部とを備え、前記制御部は、設定された基準ゲインを用いて、前記電力変換器の出力電力の増加に応じて出力電圧の周波数を垂下させるように前記電力変換器を制御する電力変換装置において、
前記制御部は、
前記電力貯蔵装置の充電状態情報の検出値に応じて、前記電力貯蔵装置の充電状態情報に対応付けて設定された補正値を前記基準ゲインに乗算して補正し、補正された前記基準ゲインを前記電力変換器を制御する第1ゲインとして用いて前記電力変換器の周波数の垂下特性の傾きを調整し、
前記補正値は、
前記電力貯蔵装置の充電状態情報の増加に応じて漸減する値であり、前記補正値の最小値は、前記電力貯蔵装置を充電停止とする第1充電状態における、0よりも大きい実数であるN1であり、前記補正値の最大値は、前記電力貯蔵装置を放電停止とする第2充電状態における、前記N1よりも大きい実数であるN2である、
ものである。
 本願に開示される電力システムは、
上記のように構成された電力変換装置を複数台備え、
各前記電力変換装置の交流端が並列接続されて前記負荷に接続される、
ものである。
 本願に開示される電力変換装置および電力変換システムによれば、出力電圧の周波数の変動を抑制して安定化できるため、電力変換装置が過度な電力負担を負うことを抑制しつつ、安定した運転が可能となる。
実施の形態1による電力変換装置を複数台備える電力変換システムの回路構成を示す図である。 実施の形態1による電力変換装置の制御回路の概略構成を示すブロック図である。 実施の形態1による制御回路の出力電圧制御回路の概略構成を示すブロック図である。 実施の形態1による電力変換装置の出力電圧の特性を示す図である。 実施の形態1による電力変換装置の制御回路が用いる関数を座標平面上で示した図である。 実施の形態1による電力変換装置による周波数電力特性の変化を示す図である。 実施の形態1による電力変換装置による出力電力の分担を示す図である。 実施の形態1による電力変換装置の制御回路が用いる関数を座標平面上で示した図である。 実施の形態2による電力変換装置の制御回路の概略構成を示すブロック図である。 実施の形態2による電力変換装置による出力電力の分担を示す図である。
実施の形態1.
 図1は、実施の形態1による電力変換装置10(10a、10b)を複数台接続して構成された電力システム100の回路構成を示す図である。
 図2は、実施の形態1による電力変換装置10が有する制御回路50の概略構成を示すブロック図である。
 図3は、実施の形態1による制御回路50の出力電圧制御回路の概略構成を示すブロック図である。
 図4は、実施の形態1による電力変換装置10のDC/ACインバータ20の出力電圧の特性を示す図である。
 図5は、実施の形態1による制御回路50が補正値を導出するための関数f(x)を座標平面上で示した図である。
 図1に示すように、本実施の形態1の電力システム100は、それぞれ同じ構成の2台の電力変換装置10(10a、10b)を備え、各電力変換装置10の交流端子19を母線41に並列接続したものである。母線41には負荷40が接続されており、各電力変換装置10を運転することにより各電力変換装置10から母線41を介して負荷40に交流電力を供給可能である。
 なお、本実施の形態では、電力システム100は、2台の電力変換装置10で構成されているが、3台以上の電力変換装置10で構成されてもよい。
 電力変換装置10は、直流電源部5と、電力変換器としてのDC/ACインバータ20と、平滑フィルタ23と、ノイズフィルタ30と、開閉器31と、制御部としての制御回路50とを備える。
 直流電源部5は直流電力を出力する。DC/ACインバータ20は、この直流電源部5からの直流電力を交流電力に変換して出力する。平滑フィルタ23は、このDC/ACインバータ20からの交流電流を平滑する。ノイズフィルタ30は、この平滑フィルタ23と負荷40との間に設けられて、ノイズの除去を行う。開閉器31は、このノイズフィルタ30と負荷40との間に設けられており、DC/ACインバータ20を負荷40から切離可能とする。制御回路50は、DC/ACインバータ20を制御する。
 各電力変換装置10(10a、10b)の回路構成は同じであり、それぞれが同じ制御回路50を有する。
 直流電源部5は、電力貯蔵装置としての蓄電池1と、この蓄電池1をエネルギ源とし、蓄電池1の出力電圧を直接、あるいは所望の電圧値に変換して出力するDC/DCコンバータ2と、このDC/DCコンバータ2の出力端子間に接続されるコンデンサ3とを備える。
 DC/ACインバータ20は、上記コンデンサ3の正負端子間に接続されており、4つの半導体スイッチング素子Q1、Q2、Q3、Q4を備えるフルブリッジ回路である。
 半導体スイッチング素子Q1と半導体スイッチング素子Q2との接続点と、半導体スイッチング素子Q3と半導体スイッチング素子Q4との接続点とは、それぞれDC/ACインバータ20の交流側の出力端子となる。こうして、DC/ACインバータ20は、制御回路50からのゲート駆動信号Gにより各半導体スイッチング素子Q1、Q2、Q3、Q4がオン/オフ制御されることにより、コンデンサ3からの直流電力を交流電力に変換する。
 半導体スイッチング素子Q1、Q2、Q3、Q4には、IGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal Oxide Semiconductor Field Effective Transistor)などに代表される自己消弧形の半導体スイッチング素子が用いられる。半導体スイッチング素子には、それぞれ逆並列にフリーホイールダイオードが接続されている。半導体スイッチング素子にMOSFETを用いる場合は、寄生ダイオードを利用してもよい。
 DC/ACインバータ20の出力には平滑フィルタ23が接続される。平滑フィルタ23は、DC/ACインバータ20の各出力端子にそれぞれ一端が接続されるフィルタリアクトル21a、21bと、これらフィルタリアクトル21a、21bの他端間に接続されるフィルタコンデンサ22とで構成される。平滑フィルタ23により平滑された交流電流は、ノイズフィルタ30と開閉器31とを介して、電力変換装置10の交流端子19から母線41へ出力される。なお、ノイズフィルタ30、開閉器31を設けない構成としてもよい。
 さらに電力変換装置10は、DC/ACインバータ20の出力であるフィルタリアクトル21aに流れる電流Iac1を検出する第1電流センサ11と、平滑フィルタ23による平滑後の交流負荷電流Iac2を検出する第2電流センサ12と、を備える。
 さらに各電力変換装置10は、DC/ACインバータ20に入力される直流母線電圧であるコンデンサ3の電圧Vdcを検出する第1直流電圧センサ15と、平滑フィルタ23の出力であってフィルタコンデンサ22に印加される交流電圧であるフィルタ出力電圧値Vac1を検出する第1交流電圧センサ16と、電力変換装置10の出力であって、負荷40へ出力される交流負荷電圧Vac2を検出する第2交流電圧センサ17と、を備える。
 さらに電力変換装置10は、充電あるいは放電によって変化する蓄電池1の充電率等の充電状態情報(SOC情報)を検出するためのSOCセンサ18を備える。
 これら各センサ11、12、15~18により検出された値は、制御回路50に入力される。
 次に、DC/ACインバータ20の出力特性と、制御回路50の構成および制御について説明する。
 図4に示すように、DC/ACインバータ20の出力電圧の周波数は、有効電力が0Wのときに基準周波数f0とし、有効電力が大きくなるにつれ周波数を下げていくような周波数垂下特性を有する。即ち、制御回路50は、設定された負極性の周波数電力特性ゲインを用い、DC/ACインバータ20の出力電力の増加に応じて、出力電圧の周波数を垂下させるように制御を行う。よって、上記周波数電力特性ゲインは、負の傾きを持つ関数により決定される。
 図2に示すように制御回路50は、電力演算部51と、周波数調整量演算部53と、SOC出力特性演算部52と、周波数指令演算部54と、出力電圧指令演算部55とを備える。
 電力演算部51は、第2交流電圧センサ17により得られた交流負荷電圧Vac2の検出値と、第2電流センサ12により得られた交流負荷電流Iac2の検出値とから有効電力Pを算出する。周波数調整量演算部53は、この求められた有効電力Pを入力とし、出力を周波数調整量fadjとした比例制御を行う。SOC出力特性演算部52は、この周波数調整量演算部53において用いる周波数電力特性ゲインを決定する。周波数指令演算部54は、周波数調整量演算部53から出力された周波数調整量fadjに基づき周波数指令値finv1を生成する。出力電圧指令演算部55は、生成された周波数指令値finv1に基づき、DC/ACインバータ20の出力電圧指令値V*を生成する。
 SOC出力特性演算部52は、上述のように、後段の周波数調整量演算部53における比例制御において用いる周波数電力特性ゲインを決定するものである。この決定においてSOC出力特性演算部52は、下式(1)に基づき、DC/ACインバータ20の周波数電力特性ゲイン(基準ゲインK)に対して、関数fにより決定される補正値f(x)を乗算して補正し、新たな周波数電力特性ゲイン(第1ゲインKsoc1)を決定する。
Ksoc1=K×f(x) 式(1)
 ここで補正値は、SOCセンサ18により検出された蓄電池1のSOC情報、例えばSOC(%)を変数xとした、関数fにより一意に決定される値f(x)である。
 以下、SOC出力特性演算部52による補正値の導出方法について説明する。
 SOC出力特性演算部52には、蓄電池1を放電停止とするSOC(第2充電状態)として、SOCs[%]が設定されている。例えば充電率30%を下回ると蓄電池1の劣化が進む場合、あるいは、他の用途の為に充電率30%を確保する必要がある場合等では、蓄電池1を放電停止とするSOCsにはこの30%が設定される。
 また、SOC出力特性演算部52には、蓄電池1を充電停止とするSOC(第1充電状態)として、SOCc[%]が設定されている。例えば充電率90%を上回ると蓄電池1の劣化が進む場合では、充電停止とするSOCcにはこの90%が設定される。
 また、SOC出力特性演算部52には、SOCをxとした補正値である関数f(x)が設定されている。
 図5に示すように、SOC出力特性演算部52に設定されている関数f(x)は、SOCセンサ18により検出された蓄電池1のSOCであるxが、設定されたSOCc[%]以上であると実数N1の値に定まり、検出された蓄電池1のSOCであるxが、設定されたSOCs[%]以下であると、前記N1より大きい実数N2の値に定まる。また、関数f(x)は、検出された蓄電池1のSOCであるxが、SOCsからSOCcまで増加するに従って、N2からN1まで漸減する値となる。
 即ち、関数f(x)は、以下式(2)、式(3)、式(4)で表される。
 f(x)=N2 式(2)
 0[%]≦x≦SOCs[%]
 f(x)=a×x+b 式(3)
 :傾きa=(N1-N2)/(SOCc-SOCs)
 :切片b=N2-a×SOCs
 SOCs[%]<x<SOCc[%]
 f(x)=N1 式(4)
 SOCc[%]≦x≦100[%]
 このように制御回路50は、検出された蓄電池1のSOC情報、この場合SOC[%]に対応付けられた補正値を、上記関数f(x)を用いて導出する。
 このように関数f(x)により導出される補正値は、蓄電池1のSOC情報の増加に応じて漸減する値となる。そして補正値の最小値は、蓄電池1を充電停止とする第1充電状態(充電率がSOCc[%])における0より大きい実数のN1である。また、補正値の最大値は、蓄電池1を放電停止とする第2充電状態(充電率がSOCs[%])における上記N1より大きい実数であるN2である。
 こうして、SOC出力特性演算部52は、上式(1)に基づき、検出された蓄電池1のSOC情報に応じて、蓄電池1のSOC情報に対応付けて設定された補正値を周波数電力特性ゲイン(基準ゲインK)に乗算して補正し、補正された基準ゲインKをDC/ACインバータ20を制御する周波数電力特性ゲイン(第1ゲインKsoc1)として、後段の周波数調整量演算部53に出力する。なお、上記第1ゲインKsoc1(周波数電力特性ゲイン)の単位は周波数/有効電力である。
 周波数調整量演算部53は、下式(5)に基づき、決定された第1ゲインKsoc1を用い、電力演算部51で求めた有効電力Pを入力とした比例制御における出力交流電圧の周波数調整量fadjを決定する。
周波数調整量fadj=Ksoc1×P 式(5)
 決定された周波数調整量fadjは、後段の周波数指令演算部54に出力される。
 周波数指令演算部54は、下式(6)に基づき、DC/ACインバータ20が出力する交流電圧の周波数指令値finv1として、基準周波数f0に上記周波数調整量fadjを加算した値を算出する。
finv1=f0+fadj
     =f0+Ksoc1×P 式(6)
 出力電圧指令演算部55は、指定された交流電圧の振幅値と、周波数指令値finv1とにより決定される正弦波とで構成される、DC/ACインバータ20の出力交流電圧指令値Vac*を演算する。そして、出力電圧指令演算部55は、演算された出力交流電圧指令値Vac*と、第2交流電圧センサ17により検出された交流負荷電圧Vac2の値とを用いて、図3に示す演算を行ってDC/ACインバータ20の出力電圧制御を行う。
 図3に示すように、検出された交流負荷電圧Vac2の値と、演算された出力交流電圧指令値Vac*との偏差を入力とした第1の制御器60は、例えばPI制御(比例制御)により、入力された偏差を小さくする制御量としてインバータ出力電流指令値60aを出力する。
 この第1の制御器60から出力される制御量として、直接、出力電圧補正値を出す方式、もしくはインバータ出力電流指令値を出す方式があるが、図3においては制御量としてインバータ出力電流指令値60aを出す方式を採用している。
 ここで、フィルタコンデンサ22に流れる電流を、フィルタコンデンサ22の静電容量値とインバータ出力電圧指令値とから演算し、フィルタコンデンサ電流推定値としてインバータ出力電流指令値60aに加算する。
 そして、フィルタリアクトル21aに流れるインバータ出力電流検出値Iac1と、インバータ出力電流指令値60aとの偏差を入力とした第2の制御器61は、例えばPI制御により出力電圧補正値61aを出力する。この第2の制御器61により出力電圧補正値61aを出力する電流マイナー制御が構成される。
 出力電圧補正値61aには、第1交流電圧センサ16から得られたフィルタ出力電圧検出値を足し込んでもよい。同様にフィルタリアクトル21で発生する電圧降下を、前記インバータ出力電流指令値Iac1とフィルタリアクトル21のインダクタンス値と前記周波数指令値finv1とから演算し、フィルタリアクトル電圧降下推定値として出力電圧補正値61aに足しこんで、インバータ出力電圧指令値V*としてもよい。
 また、図示しないが、出力電圧補正値61aには、前記出力電圧指令値を足し込んでもよい。
 このような、インバータ出力電圧制御により、DC/ACインバータ20のインバータ出力電圧指令値V*が決定される。そして、制御回路50は、PWM制御に代表されるDC/ACインバータの駆動制御に従って、決定されたインバータ出力電圧指令値V*が実現するように、半導体スイッチング素子Q1、Q2、Q3、Q4に対するゲート駆動信号Gを生成して出力する。
 図6は、実施の形態1による電力変換装置10において、制御回路50が蓄電池1のSOCの低下に伴い、周波数電力特性を変化させた状態を示す図である。
 前述したように、電力変換装置10は、放電により自己の蓄電池1のSOCが減少するに従って漸増する補正値を、負極性の周波数電力特性ゲインに乗算して自己の周波数電力特性ゲインの補正を行う。よって、図6に示すように、出力電圧の周波数の垂下特性の傾きが調整される。
 図7は、実施の形態1による電力変換装置10a、10bにおいて、蓄電池1のSOCの違いにより各電力変換装置10a、10bの電力分担が異なることを示している図である。
 電力システム100が備える2つの電力変換装置10a、10bのうち、一方の電力変換装置10aが有する蓄電池1のSOCが大きく、他方の電力変換装置10bが有する蓄電池1のSOCが低い場合の制御収束時の周波数fbと、制御収束時の有効電力の動作点Pba、Pbbとを示している。各電力変換装置10a、10bの制御回路50により、それぞれの周波数電力特性ゲインが補正されると、それぞれ有効電力Paを出力していた電力変換装置10a、10bは、自己の周波数電力特性ゲインに従い、電力変換装置10a、10bの出力電力の合計が同じとなる周波数fbにおいて制御が収束する。この収束周波数fbにおいて、電力変換装置10aが出力する有効電力はPbaであり、電力変換装置10bが出力する有効電力はPbbであり、SOCの大小に応じた電力分担が行われていることが判る。
 このように各電力変換装置10(10a、10b)は、それぞれが制御回路50により独立して自己の周波数電力特性を補正し、この補正した周波数電力特性に従うことで、他の電力変換装置10(10a、10b)と通信を行うことなく自己の電力分担を調整する。
 ここで、DC/ACインバータ20の周波数電力特性を補正する補正値は、図5に示したように、最小値が蓄電池1を充電停止とするSOCcにおけるN1であり、最大値が蓄電池1を放電停止とするSOCsにおけるN2である。そのため蓄電池1の充電率が、放電停止とする充電率から充電停止とする充電率まで大きく変動した場合でも、補正値はN2からN1の範囲内で推移する。よって、この補正値を用いて決定される電力変換装置10の周波数電力特性の変動範囲、即ち、周波数の垂下特性の傾きの変動範囲を一定範囲内に留めることができる。これにより、電力変換装置10が制御収束した際の出力電圧の周波数が大きく変動することが抑制できると共に、安定して出力周波数を収束させることができる。
 また、電力変換装置10が制御収束した際の周波数の変動範囲が、基準周波数f0から2%以内等の所望の変動範囲内に収まるように、補正値の上限値N2と下限値N1を、補正前の周波数特性ゲイン(基準ゲインK)の値に応じて決定してもよい。こうして制御収束時の出力電圧の変動範囲を所望の基準範囲内に留めることで、接続される負荷機器などの仕様に応じた運転を行うことができる。
 以下、DC/ACインバータ20の周波数電力特性を補正する補正値の他の構成例について説明する。
 図8は、実施の形態1による制御回路50が補正値を導出するための他の関数g(x)を座標平面上で示した図である。なお、この場合もxは関数f(x)の場合と同じであり、g(x)の値が補正値になる。
 図8に示すように、制御回路50は、SOCs[%]とSOCc[%]との間を2つの区間に区分する。そして制御回路50は、SOCs[%]とSOCc[%]との間において、SOCs[%]とSOCtとの間の区間における関数g1(x)と、SOCtとSOCc[%]との間の区間における関数g2(x)との、各区間における補正値がSOCの増加に従って漸減する傾きがそれぞれ異なる2つの関数g1(x)、g2(x)を用いる。
 このように、補正値が、SOCs[%]とSOCc[%]との間において、SOCの増加に従ってそれぞれ異なる傾きを有して漸減する少なくとも2つ以上の区間を有するように設定されることで、蓄電池1の特性に応じた電力変換装置10の出力電力の調整ができる。特に補正値を、SOCc[%]側の区間における補正値の傾きの絶対値が、SOCs[%]側の区間の補正値の傾きの絶対値よりも小さくなるように設定することで、蓄電池1が高いSOCを有するSOCctからSOCc[%]までの期間は、電力変換装置10の高出力可能状態を維持することができるため利便性が向上する。
 なお、制御回路50のSOC出力特性演算部52に設定されているSOCc、SOCsは、予め設定されるものに限るものではなく、外部からユーザが設定可能な構成としてもよい。
 ここで蓄電池1の長期保存時の劣化に関しては、満充電時の劣化が大きいとされるのが一般的であるが、長期保存に関し、蓄電池の種類によっては満充電時よりも劣化加速の大きいSOC範囲帯を有する蓄電池も存在する。そこで、制御回路50には、蓄電池1を放電禁止とする充電状態情報の範囲を指定する放電禁止範囲が設定される。具体的には、蓄電池1の劣化が加速するSOC範囲にてその中央値の±X%以内を放電禁止範囲とする。そして、入力されたSOCsが、放電禁止範囲内であると、その放電禁止範囲内で放電が停止しないよう、入力されたSOCsが放電禁止範囲外の値となるように入力されたSOCsにオフセット電圧を足した、もしくは引いて補正した値を新たな放電停止SOCsとして設定する。本設定により、蓄電池1の長期保存による劣化が抑制されるため、蓄電池1を長寿命化できる。
 なお、これまでの説明では、DC/ACインバータ20の周波数電力特性を補正する補正値は制御回路50により関数f(x)、g(x)に基づいて導出されたものを示した。しかしながらこれに限定するものではなく、補正値は、制御回路50に予め設定、記録されているデータマップ等でもよい。このデータマップは、蓄電池1のSOC情報に対応付けて設定された補正値を選択する構成のものがあげられる。
 上記のように構成された本実施の形態の電力変換装置、電力システムによると、電力変換装置は、蓄電池の検出値に応じて、蓄電池のSOC情報に対応付けて設定された補正値を基準ゲインに乗算して補正し、補正された基準ゲインを電力変換器を制御する第1ゲインとして用いて、電力変換器の周波数の垂下特性の傾きを調整する。これにより、電力変換装置の蓄電池ごとのSOCに応じた出力電力の調整ができる。そのため、電力変換装置が有する自己の蓄電池のSOCが低い場合に、SOCの大きな蓄電池を有する他の電力変換装置に電力負担を任せて自己の蓄電池の過度な放電を抑制し、負荷供給終了後に必要となるエネルギを保持できる。
 そして補正値は、その最小値が蓄電池を充電停止とする第1充電状態における0より大きい実数N1であり、その最大値は、蓄電池を放電停止とする第2充電状態における前記N1より大きい実数N2である。こうして、電力変換器の周波数の垂下特性の傾きの変動範囲を一定範囲内に留めることで、蓄電池が放電停止とする充電率から充電停止とする充電率まで変動した場合でも、電力変換装置が制御収束した際の出力電圧の周波数の大きな変動を抑制できる。また、電力変換器の出力電圧の周波数を安定化させることができる。
 こうして、蓄電池が過放電になることを抑制しつつ、接続される負荷機器における不具合を防止すると共に、電力変換装置の運転を安定化させることができる。
 また、他の用途(蓄電池が車載バッテリーである場合は車の運転等)のために定めたSOCsを維持するように、電力変換装置単体で自律して出力量を調整した定電圧運転が可能となる。そのため、移動体であり保有者の異なる電気自動車、ハイブリッド自動車等に積載されている蓄電池を利用する場合などにおいて、電力変換装置間における通信線などの通信機能が不要であり、コスト低減、利便性向上のメリットがある。また、電力装置間における通信機能が不要なので、蓄電池の接地場所を固定する必要がなく、また、複数の蓄電池の一括管理を行うCPU等も不要である。
 また、補正値は、電力変換器の出力電圧の周波数の変動範囲が、基本周波数から2%以内の範囲等と、所定の基準範囲内に収まるように設定してもよい。こうして、接続される負荷機器の仕様に応じた運転を行うことができる。
 また、補正値は、蓄電池を放電停止とするSOCsと充電停止とするSOCcとの間において、それぞれ異なる傾きを有してSOCの増加に従って漸減する少なくとも2つ以上の区間を有するように設定することもできる。これにより、蓄電池の特性に応じた電力変換装置の出力電力の調整ができる。
 また、補正値は、SOCsとSOCcとの間の各区間において、SOCc側の区間における補正値の傾きの絶対値が、SOCs側の区間の補正値の傾きの絶対値よりも、小さくなるように設定されてもよい。これにより、蓄電池が高いSOCを有する期間においては、電力変換装置の高出力可能状態を維持することができ、利便性が向上する。
 また、補正値は、制御回路に予め設定されたデータを用いてもよいし、あるいは、制御回路が関数f(x)、g(x)を用いて導出してもよい。制御回路が関数f(x)、g(x)を用いて補正値を導出する構成とすると、制御回路における記憶領域を小さく構成でき、省スペース化、低コスト化が図れる。制御回路に予め補正値をデータマップ構成のようにして設定し記録させておく場合では、電力変換装置の運転中における制御回路の演算負荷を低減できる。
 また、制御回路に、蓄電池を放電禁止とする充電状態情報の範囲を指定する放電禁止範囲値を設定してもよい。この場合、制御回路は、ユーザにより外部からSOCsが設定された場合にその値が放電禁止範囲の範囲内であると、設定されたSOCsが放電禁止範囲外の値となるように補正する。こうして、蓄電池の長期保存による劣化が抑制され、蓄電池を長寿命化できる。
 なお、以上では、電力変換装置10が直流電源部5を備えた構成のものを示したが、電力変換装置10が直流電源部5を備えず、外部に直流電源部5を設けた構成としてもよい。
実施の形態2.
 以下、本願の実施の形態2を、上記実施の形態1と異なる箇所を中心に図を用いて説明する。上記実施の形態1と同様の部分は同一符号を付して説明を省略する。
 図9は、実施の形態2による各電力変換装置10(10a、10b)が有する制御回路250の概略構成を示すブロック図である。
 本実施の形態では、制御回路250内に、SOC出力特性演算部から出力された第1ゲインKsoc1と、電力演算部51からの有効電力Pとを入力とした定格維持演算部56を備える。
 また、電力システム100は、実施の形態1に示したものと同様に電力変換装置10(10a、10b)を2台備える構成である。電力変換装置10aと、電力変換装置10bの回路構成は同じであり、それぞれが同じ制御回路250を有する。
 ここで制御回路250の定格維持演算部56において、DC/ACインバータ20の出力電力の定格値が設定されている。この定格値は有効電力、皮相電力、出力電流実効値、出力電流ピーク値の何れかで設定可能であり、本実施の形態では有効電力で設定する。
 ここで電力変換装置10aの蓄電池1のSOCが高く、電力変換装置10bの蓄電池1のSOCが低い場合、負の値である電力変換装置10aの周波数電力特性ゲイン(第1ゲインKsoc1)は、電力変換装置10bの周波数電力特性ゲイン(第1ゲインKsoc1)よりも大きくなる。前述のように、電力変換装置10aと電力変換装置10bの交流出力周波数は、それぞれ同じ値に収束されるため、周波数電力特性ゲインで決定される周波数電力特性の違いにより、それぞれ異なる電力を分担することとなる。
 ここでSOCの大きい電力変換装置10aが出力電力分担が大きくなるが、負荷40の大きさにより電力変換装置10aの出力電力が定格維持演算部56に設定された定格値を超えるケースが存在する。
 電力変換装置10a、10bの各制御回路250の定格維持演算部56は、設定された定格値と、電力変換装置10a、10bの電力演算部51の出力である有効電力Pとの偏差を入力としたPI制御に代表される図示しない制御器を有する。そして電力変換装置10aの制御回路250の定格維持演算部56は、電力変換装置10aのSOC出力特性演算部52からの出力である周波数電力特性ゲイン(第1ゲインKsoc1)を小さく、即ち、電力変換装置10aの出力電圧の周波数の垂下特性の傾きの絶対値を大きくするための制御量KRを制御器により生成する。
 本実施の形態では制御量KRの値は0より大きい実数とし、有効電力Pが定格値を超える超過量が大きくなるに従い、KRを0から漸増させていく。電力変換装置10aの制御回路250の定格維持演算部56は、下式(7)に基づき、DC/ACインバータの周波数電力特性ゲイン(第1ゲインKsoc1)に対して、制御量KRを用いた定格制御量(1+KR)を乗算して補正し、新たな周波数電力特性ゲイン(第2ゲインKsoc2)を決定して出力する。
Ksoc2=Ksoc1×(1+KR) 式(7)
 こうして、電力変換装置10aの周波数電力特性ゲイン(第2ゲインKsoc2)を設定することにより、負の値である周波数電力特性ゲインを下げる、即ち、出力電圧の周波数の垂下特性の傾きの絶対値を大きくする。こうして、電力変換装置10aは、自己の出力分担比率を下げることができる。もちろん前記制御量KRには上限値を設けてもよい。
 図10は、電力変換装置10aの制御回路250の定格維持演算部56が周波数電力特性ゲイン(第1ゲインKsoc1)を補正し、その値を下げた周波数電力特性ゲイン(第2ゲインKsoc2)によって収束周波数と電力動作点とが変更された結果を示している。
 電力変換装置10aの制御回路250によって当初用いられる周波数電力特性ゲイン(第1ゲインKsoc1)では、図10に示すように周波数f1に収束し、この場合、電力変換装置10aが出力する有効電力Paaは、定格値Pbaを超える。
 そのため、電力変換装置10aの制御回路250の定格維持演算部56は、周波数電力特性ゲイン(第1ゲインKsoc1)を、定格制御量(1+KR)を用いて周波数電力特性ゲイン(第2ゲインKsoc2)に補正する。これにより、電力変換装置10aの出力電力が定格値Pbaに至るまでの電力期間(有効電力0~Pbaの期間)における、DC/ACインバータ20の周波数の垂下特性の傾きの絶対値が大きくなる。こうして、収束する周波数はf2に低下し、電力変換装置10aが出力する有効電力はPaaから定格値Pbaに制御され、また、電力変換装置10bが出力する有効電力は、電力変換装置10aの過負荷電力分を自律して追加で出力するようにPabからPbbまで追従制御される。こうして、電力変換装置10aと電力変換装置10bの出力電力の分担比が変更される。
 一方、電力変換装置10aの蓄電池1のSOCが低く、電力変換装置10bの蓄電池1のSOCが高い場合、負の値である電力変換装置10bの周波数電力特性ゲイン(第1ゲインKsoc1)は、電力変換装置10aの周波数電力特性ゲイン(第1ゲインKsoc1)より大きくなる。この場合SOCの大きい電力変換装置10bの出力電力分担が大きくなるが、負荷40の大きさにより電力変換装置10bの出力電力が定格維持演算部56に設定された定格値を超えるケースが存在する。このような場合でも同様に、電力変換装置10bの制御回路250の定格維持演算部56が定格制御量(1+KR)を用いて周波数電力特性ゲインを補正する。こうして、電力変換装置10bが出力する有効電力は定格値に制御され、過負荷電力分は電力変換装置10aが自律して追加で出力するように追従制御して、出力電力の分担比が変更される。
 以上では、周波数電力特性ゲインを補正するための定格制御量は、式(7)に示したように(1+KR)を用い、この定格制御量(1+KR)を第1ゲインKsoc1に乗算して第2ゲインKsoc2を得た。しかしながら、第1ゲインKsoc1の補正方法はこれに限定するものではない。電力変換装置10(10a、10b)の制御回路250は、下式(8)に基づき、DC/ACインバータの周波数電力特性ゲイン(第1ゲインKsoc1)から定格制御量(KR)を減算して補正することにより、新たな周波数電力特性ゲイン(第2ゲインKsoc2)を決定してもよい。
Ksoc2=Ksoc1-KR 式(8)
 本実施の形態では前記定格制御量KRの値は0より大きい実数とし、有効電力Pが定格値を超える超過量が大きくなるに従い、0から漸増させていく。こうして、周波数電力特性ゲイン(第2ゲインKsoc2)を設定することにより、負の値である周波数電力特性ゲインを下げる、即ち、出力電圧の周波数の垂下特性の傾きの絶対値を大きくできる。もちろん前記定格制御量KRには上限値を設けてもよい。
 上記のように構成された本実施の形態の電力変換装置、電力システムによると、実施の形態1と同様の効果を奏し、出力電圧の周波数の変動を抑制して安定化できるため、電力変換装置が過度な電力負担を負うことを抑制しつつ、安定した運転が可能となる。
 また、制御回路は、DC/ACインバータの出力電力が定格値を越えると、DC/ACインバータの周波数の垂下特性の傾きの絶対値を大きくする制御量を演算し、該制御量により第1ゲインをKsoc1を補正し、補正された第1ゲインKsoc1をDC/ACインバータを制御する第2ゲインKsoc2として用いる。これにより、DC/ACインバータの出力電力が定格値に至るまでの電力期間におけるDC/ACインバータの周波数の垂下特性の傾きの絶対値を大きくできる。
 そのため、蓄電池の残容量が大きい場合でも、過度な電力負担を負うことなく、DC/ACインバータの出力電力が定格値に至るまでの電力期間において出力電圧の周波数を収束させて、出力電力を定格値以下に抑えることができる。よって、電力変換装置の回路設計において機器の電力容量を大きく設計することが不要となり、省スペース化および低コスト化を図ることができる。
 なお、実施の形態1と同様に、電力システム100は、2台の電力変換装置10で構成されたものを示したが、3台以上の電力変換装置10で構成されてもよい。
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
 1 蓄電池(電力貯蔵装置)、5 直流電源部、10,10a,10b 電力変換装置、20 DC/ACインバータ(電力変換器)、40 負荷、50,250 制御回路(制御部)、100 電力システム。

Claims (12)

  1. 電力貯蔵装置を有する直流電源部からの直流電力を交流電力に変換して負荷に出力する電力変換器と、該電力変換器を制御する制御部とを備え、前記制御部は、設定された基準ゲインを用いて、前記電力変換器の出力電力の増加に応じて出力電圧の周波数を垂下させるように前記電力変換器を制御する電力変換装置において、
    前記制御部は、
    前記電力貯蔵装置の充電状態情報の検出値に応じて、前記電力貯蔵装置の充電状態情報に対応付けて設定された補正値を前記基準ゲインに乗算して補正し、補正された前記基準ゲインを前記電力変換器を制御する第1ゲインとして用いて前記電力変換器の周波数の垂下特性の傾きを調整し、
    前記補正値は、
    前記電力貯蔵装置の充電状態情報の増加に応じて漸減する値であり、前記補正値の最小値は、前記電力貯蔵装置を充電停止とする第1充電状態における、0よりも大きい実数であるN1であり、前記補正値の最大値は、前記電力貯蔵装置を放電停止とする第2充電状態における、前記N1よりも大きい実数であるN2である、
    電力変換装置。
  2. 前記補正値は、前記電力変換器の出力電圧の周波数の変動範囲が、所定の基準範囲内に収まるように設定された、
    請求項1に記載の電力変換装置。
  3. 前記補正値は、前記第1充電状態と前記第2充電状態との間において、それぞれ異なる傾きを有して漸減する少なくとも2つ以上の区間を有するように設定された、
    請求項1または請求項2に記載の電力変換装置。
  4. 前記第1充電状態と前記第2充電状態との間の、各前記区間における前記補正値の傾きは、前記第1充電状態側の前記区間における前記補正値の傾きの絶対値が、前記第2充電状態側の前記区間の前記補正値の傾きの絶対値よりも、小さくなるように設定された、
    請求項3に記載の電力変換装置。
  5. 前記制御部は、前記電力変換器の出力電力の定格値が設定され、
    前記電力変換器の出力電力が前記定格値を越えると、前記電力変換器の周波数の垂下特性の傾きの絶対値を大きくする定格制御量を演算し、該定格制御量により前記第1ゲインを補正し、補正された前記第1ゲインを前記電力変換器を制御する第2ゲインとして用いて、前記電力変換器の出力電力が定格値に至るまでの電力期間における前記電力変換器の周波数の垂下特性の傾きの絶対値を大きくするように調整する、
    請求項1から請求項4のいずれか1項に記載の電力変換装置。
  6. 前記制御部は、前記定格制御量として、1+KR、但し、KRは0よりも大きい実数、を用いるものであり、
    前記出力電力が前記定格値を越える超過量が大きくなるに従い、前記KRを0から漸増させ、前記定格制御量である1+KRを、前記第1ゲインに乗算して補正する、
    請求項5に記載の電力変換装置。
  7. 前記制御部は、前記定格制御量として、KR、但し、KRは0よりも大きい実数、を用いるものであり、
    前記出力電力が前記定格値を超える超過量が大きくなるに従い、前記KRを0から漸増させ、前記定格制御量であるKRを、前記第1ゲインから減算して補正する、
    請求項5に記載の電力変換装置。
  8. 前記制御部は、
    前記第1充電状態の値と前記第2充電状態の値とが設定され、
    前記電力貯蔵装置の充電状態情報の検出値が、設定された前記第1充電状態であると前記N1の値が定まり、前記電力貯蔵装置の充電状態情報の検出値が、前記第2充電状態であると前記N2の値が定まり、前記電力貯蔵装置の充電状態情報の検出値が前記第2充電状態から前記第1充電状態まで大きくなるに従って、前記N2から前記N1まで漸減する値を定める対応関係を有する関数を用いることにより、前記補正値を算出して設定する、
    請求項1から請求項7のいずれか1項に記載の電力変換装置。
  9. 前記制御部は、設定された前記第1充電状態と前記第2充電状態との間を複数の区間に区分し、前記関数は、前記区間における値が漸減する傾きが、各前記区間においてそれぞれ異なるように構成された、
    請求項8に記載の電力変換装置。
  10. 前記制御部は、
    前記第1充電状態の値と前記第2充電状態の値とが設定され、
    前記電力貯蔵装置の充電状態情報の検出値が、設定された前記第1充電状態であると前記N1の値が定まり、前記電力貯蔵装置の充電状態情報の検出値が、前記第2充電状態であると前記N2の値が定まり、前記電力貯蔵装置の充電状態情報の検出値が前記第2充電状態から前記第1充電状態まで大きくなるに従って、前記N2から前記N1まで漸減する値を定める対応関係を有するデータマップを用いることにより、前記補正値を算出して設定する、
    請求項1から請求項7のいずれか1項に記載の電力変換装置。
  11. 前記制御部は、
    前記電力貯蔵装置を放電禁止とする充電状態情報の範囲を指定する放電禁止範囲が設定され、
    前記第2充電状態は、外部から設定可能に構成され、
    外部から設定された前記第2充電状態の値が、前記放電禁止範囲の範囲内であると、設定された前記第2充電状態が前記放電禁止範囲外の値となるように補正する、
    請求項8から請求項10のいずれか1項に記載の電力変換装置。
  12. 請求項1から請求項11のいずれか1項に記載の電力変換装置を複数台備え、
    各前記電力変換装置の交流端が並列接続されて前記負荷に接続される、
    電力システム。
PCT/JP2019/011072 2018-05-15 2019-03-18 電力変換装置および電力変換システム WO2019220763A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980027224.2A CN112106288B (zh) 2018-05-15 2019-03-18 电力变换装置以及电力变换系统
JP2020519485A JP6877640B2 (ja) 2018-05-15 2019-03-18 電力変換装置および電力変換システム
US16/979,870 US11349409B2 (en) 2018-05-15 2019-03-18 Power conversion device and power conversion system
DE112019002444.2T DE112019002444T5 (de) 2018-05-15 2019-03-18 Energie-umwandlungseinrichtung und energie-umwandlungssystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-093428 2018-05-15
JP2018093428 2018-05-15

Publications (1)

Publication Number Publication Date
WO2019220763A1 true WO2019220763A1 (ja) 2019-11-21

Family

ID=68540299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011072 WO2019220763A1 (ja) 2018-05-15 2019-03-18 電力変換装置および電力変換システム

Country Status (5)

Country Link
US (1) US11349409B2 (ja)
JP (1) JP6877640B2 (ja)
CN (1) CN112106288B (ja)
DE (1) DE112019002444T5 (ja)
WO (1) WO2019220763A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110912231A (zh) * 2019-12-04 2020-03-24 阳光电源股份有限公司 一种判断蓄电池断开的方法和系统
EP3993215A1 (de) * 2020-10-29 2022-05-04 Wobben Properties GmbH Dynamische frt-bänder für windenergieanlagen
JP7174178B1 (ja) 2022-03-11 2022-11-17 東京瓦斯株式会社 制御装置、及びプログラム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023155188A (ja) * 2022-04-07 2023-10-20 ダーフォン エレクトロニクス コーポレイション 電力変換システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103192A1 (ja) * 2012-12-27 2014-07-03 川崎重工業株式会社 電力変換装置を備えた複合発電システム
US20170235322A1 (en) * 2016-02-16 2017-08-17 Schneider Electric Industries Sas Control method of a virtual generator
WO2017179306A1 (ja) * 2016-04-11 2017-10-19 株式会社日立産機システム 電力変換装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3382012B2 (ja) * 1994-04-25 2003-03-04 松下電工株式会社 自励式インバータ装置
JP2001320881A (ja) * 2000-05-02 2001-11-16 Hitachi Ltd 電力変換器の制御装置
JP5939886B2 (ja) 2012-05-18 2016-06-22 大成建設株式会社 地震動の収束判定システム
JP5929943B2 (ja) * 2014-02-21 2016-06-08 トヨタ自動車株式会社 電力変換装置及び電力変換方法
JP6455661B2 (ja) 2014-12-24 2019-01-23 富士電機株式会社 自立運転システム
JP2016123243A (ja) 2014-12-25 2016-07-07 パナソニックIpマネジメント株式会社 分散型電力供給システムおよび電力供給制御方法
JP6490249B2 (ja) 2016-01-20 2019-03-27 三菱電機株式会社 電力変換装置および電力変換システム
JP6763013B2 (ja) * 2016-03-04 2020-09-30 三菱電機株式会社 車載用の電力変換装置
JP6781637B2 (ja) 2017-01-27 2020-11-04 株式会社日立産機システム 蓄電池と電力変換装置の連携システムの制御方法、およびパワーコンディショニングシステム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103192A1 (ja) * 2012-12-27 2014-07-03 川崎重工業株式会社 電力変換装置を備えた複合発電システム
US20170235322A1 (en) * 2016-02-16 2017-08-17 Schneider Electric Industries Sas Control method of a virtual generator
WO2017179306A1 (ja) * 2016-04-11 2017-10-19 株式会社日立産機システム 電力変換装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110912231A (zh) * 2019-12-04 2020-03-24 阳光电源股份有限公司 一种判断蓄电池断开的方法和系统
EP3993215A1 (de) * 2020-10-29 2022-05-04 Wobben Properties GmbH Dynamische frt-bänder für windenergieanlagen
US11955798B2 (en) 2020-10-29 2024-04-09 Wobben Properties Gmbh Dynamic fault ride through bands for wind power installations
JP7174178B1 (ja) 2022-03-11 2022-11-17 東京瓦斯株式会社 制御装置、及びプログラム
JP2023132697A (ja) * 2022-03-11 2023-09-22 東京瓦斯株式会社 制御装置、及びプログラム

Also Published As

Publication number Publication date
US20210367531A1 (en) 2021-11-25
JP6877640B2 (ja) 2021-05-26
JPWO2019220763A1 (ja) 2020-12-10
US11349409B2 (en) 2022-05-31
CN112106288B (zh) 2023-11-24
DE112019002444T5 (de) 2021-02-04
CN112106288A (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
WO2019220763A1 (ja) 電力変換装置および電力変換システム
CN112840520B (zh) 体系系统、控制装置、体系系统的控制方法及电力变换装置
WO2015178376A1 (ja) 直流送電電力変換装置および直流送電電力変換方法
US10998830B2 (en) Power conversion device and three-phase power conversion device
JP6455661B2 (ja) 自立運転システム
US11309807B2 (en) Power conversion system and power conversion device
JP6929385B2 (ja) ハイブリッドエネルギー貯蔵システム
US9780679B2 (en) Power conversion device and power conversion method
JP7090745B2 (ja) 電力変換装置及び直流配電システム
US11018519B2 (en) Charging apparatus capable of reducing low frequency leakage current
JP6707309B2 (ja) 電力供給システム
US20230327572A1 (en) Device and method for operating a three-level or multi-level converter
WO2022264303A1 (ja) 無停電電源装置
US20210313809A1 (en) Method for controlling an electrical installation having a plurality of electrical devices, control unit, and electrical installation having such a control unit
CN104734486A (zh) 改变功率因数校正器的输出电容器的电容值的方法和电路
WO2018070037A1 (ja) 電力変換システム、電力供給システムおよび電力変換装置
WO2020217721A1 (ja) 電源装置
US20230170703A1 (en) Direct-current power supply and distribution system
US12143001B2 (en) Power supply device
JP7525062B2 (ja) 蓄電池用の電力変換装置の負荷電流配分調整装置、負荷電流配分調整方法、及び負荷電流配分調整プログラム
US20240055973A1 (en) Power Supply Device
JP2023110252A (ja) 電力供給設備
JP2023076178A (ja) 電力貯蔵システム
CN117813738A (zh) 功率调节器及电力变换系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19804093

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020519485

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19804093

Country of ref document: EP

Kind code of ref document: A1