[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020217721A1 - 電源装置 - Google Patents

電源装置 Download PDF

Info

Publication number
WO2020217721A1
WO2020217721A1 PCT/JP2020/009065 JP2020009065W WO2020217721A1 WO 2020217721 A1 WO2020217721 A1 WO 2020217721A1 JP 2020009065 W JP2020009065 W JP 2020009065W WO 2020217721 A1 WO2020217721 A1 WO 2020217721A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
converter
winding
voltage
power converter
Prior art date
Application number
PCT/JP2020/009065
Other languages
English (en)
French (fr)
Inventor
明磊 顧
叶田 玲彦
祐樹 河口
公久 古川
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to EP20795222.7A priority Critical patent/EP3961847A4/en
Publication of WO2020217721A1 publication Critical patent/WO2020217721A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Definitions

  • the present invention relates to a power supply device that is connected to an external system and a power storage device and supplies power to a power receiving device.
  • one output side of a plurality of primary side power converters is connected to each of a plurality of primary windings of a transformer, and a plurality of primary side electric powers are connected.
  • the input side of the converter is connected in series. Further, the input side of the secondary power converter is connected to the secondary winding of the transformer.
  • the transformer can be miniaturized and the power can be controlled on the primary side and the secondary side of the transformer.
  • an external system such as a commercial AC power source
  • a power storage device such as a storage battery.
  • the present invention provides a power supply device that can flexibly control the power flow from various power sources and can be miniaturized.
  • the power supply device includes a multi-winding transformer and a plurality of power converters connected to the multi-winding transformer, and the multi-winding transformer has a plurality of power converters.
  • a plurality of first power converters among a plurality of power converters are connected to the first winding of the above, and the first power converter is connected to a rectifier section and a rectifier section to convert DC power into AC power.
  • a converter unit for conversion is provided, and the AC sides of a plurality of rectifier units are connected in series with each other and connected to an external AC system, and the DC side of the rectifier unit is connected to the DC side of the converter unit.
  • the AC side of the converter unit is connected to the first winding, and the second power converter of the plurality of power converters is connected to the second winding of the multi-winding transformer, and the second power converter is connected.
  • the AC side is connected to the second winding, the DC side of the second power converter is connected to the power storage device, and the third winding of the multi-winding transformer is connected to the third power of the plurality of power converters.
  • a converter is connected, the AC side of the third power converter is connected to the third winding, a power receiving device is connected to the DC side of the third power converter, and a plurality of first powers are connected in normal times of the external AC system.
  • an external AC system is used via the plurality of first power converters, the plurality of first windings, the second winding, and the second power converter. Is transmitted to the power storage device, and in normal times of the external AC system, by controlling a plurality of first power converters and a third power converter, a plurality of first power converters and a plurality of first volumes are used.
  • Power from the external AC system is transmitted to the power receiving device via the wire, the third winding, and the third power converter, and in the event of a power failure in the external AC system, the second power converter and the third power converter
  • the power from the power storage device is transmitted to the power receiving device via the second power converter, the second winding, the third winding, and the third power converter.
  • the power supply device can be miniaturized, and the power flow can be flexibly controlled between the external AC system, the power storage device, and the power receiving device.
  • FIG. It is a circuit block diagram of the power supply device which is Example 1.
  • FIG. It is a circuit diagram which shows the structural example of the main circuit part of a unit converter. It is a figure which shows the state of the electric power transmission in the power source device of Example 1 in the normal state (first mode) of an external AC system. It is a flowchart which shows the flow
  • FIG. 2 It is a figure which shows the state of the electric power transmission in the power source device of Example 2 in the 1st mode. It is a flowchart which shows the flow
  • FIG. 1 is a circuit configuration diagram of a power supply device according to a first embodiment of the present invention.
  • the power supply device of the first embodiment has a multi-winding transformer 20 having a plurality of windings (6 windings in FIG. 1) and a plurality of windings (n 11 ) of the multi-winding transformer 20. It is provided with a plurality of power converters connected to ⁇ n 23 ).
  • n 11 to n 23 six independent windings (n 11 to n 23 ) are wound around one magnetic core.
  • a power converter including a unit converter 1 and a unit converter 11 is connected to the winding n 11 .
  • the DC side of the unit converter 1 and the DC side of the unit converter 11 are connected via a smoothing capacitor. Further, the AC side of the unit converter 11 is connected to the winding n 11 .
  • a power converter including a unit converter 2 and a unit converter 12 is connected to the winding n 12 .
  • the DC side of the unit converter 2 and the DC side of the unit converter 12 are connected via a smoothing capacitor. Further, the AC side of the unit converter 12 is connected to the winding n 12 .
  • a power converter including a unit converter 3 and a unit converter 13 is connected to the winding n 13 .
  • the DC side of the unit converter 3 and the DC side of the unit converter 13 are connected via a smoothing capacitor. Further, the AC side of the unit converter 13 is connected to the winding n 13 .
  • Each AC side of the unit converters 1 to 3 is connected in series to each other and is connected to an external AC system 100 (for example, a commercial AC power supply) via a reactor 10 for suppressing harmonics.
  • an external AC system 100 for example, a commercial AC power supply
  • the AC sides of the plurality of unit converters (1 to 3) are connected in series to each other in this way, the electric power from the external AC system 100 can be received without going through a transformer.
  • the voltage of the external AC system 100 is shared by the plurality of unit converters (1 to 3), the withstand voltage of the semiconductor element constituting the main circuit of each unit converter can be reduced. As a result, the power supply device can be miniaturized.
  • the unit converters 1, 2, and 3 convert the AC power from the external AC system 100 into DC power.
  • the unit converters 11, 12, and 13 convert the DC power output by the unit converters 1, 1, and 3, respectively, into AC power having a predetermined frequency and a predetermined voltage, and wind the windings n 11 , n 12 , and n 13 , respectively. Output to.
  • the AC side of the power converter including the unit converter 21 is connected to the winding n 21 .
  • the DC side of the unit converter 21 is provided with a smoothing capacitor, and is connected to the power generation device 31 via the smoothing capacitor.
  • the power generation device 31 is a distributed power generation device such as a solar power generation device or a wind power generation device.
  • the AC side of the power converter including the unit converter 22 is connected to the winding n 22 .
  • the DC side of the unit converter 22 is provided with a smoothing capacitor, and is connected to the power storage device 32 via the smoothing capacitor.
  • the power storage device 32 includes a power storage device, a charge / discharge control circuit, and the like. As the power storage device, a storage battery, a capacitor, or the like is applied.
  • the AC side of the power converter including the unit converter 23 is connected to the winding n 23 .
  • the DC side of the unit converter 23 includes a smoothing capacitor, and is connected to the load device 33, which is a power receiving device, via the smoothing capacitor.
  • the unit converter 21 converts the DC power from the power generation device 31 into AC power, and outputs this AC power to the winding n 21 .
  • the unit converter 22 converts the AC power output by the winding n 22 into DC power, and outputs this DC power as the received power of the power storage device 32. Further, the unit converter 22 converts the DC power from the power storage device 32 into AC power, and outputs this AC power to the winding n 22 as the power supplied from the power storage device 32. That is, the unit converter 22 operates as a bidirectional converter.
  • the unit converter 23 converts the AC power output by the winding n 23 into DC power, and outputs this DC power as the power received by the load device 33.
  • the power supply side (external AC system 100, power generation device 31, storage storage) is controlled by controlling the power converter. It is possible to control the power transmission between the device 32 (during discharge) and the power receiving side (load device 33, power storage device 32 (during charging)).
  • the voltage V 11 to V 13 , V 21 to V 23 on the AC side of the unit converters 11 to 13 , 21 to 23 that is, the terminal voltage of the windings n 11 to n 23 .
  • the power supply device of the first embodiment can flexibly control the power flow between the power supply side and the power reception side. Further, since the power converter is connected to each of the plurality of windings of the multi-winding transformer 20, the multi-winding transformer 20 is increased in frequency (for example, 1 kHz or more) according to the switching frequency in the power converter. Can be done. Therefore, since the multi-winding transformer 20 can be miniaturized, the power supply device can be miniaturized.
  • the control device 200 has a detection value of the DC side voltage (V 1 to V 6 ) of the unit converter, a detection value of the AC side voltage of the unit converter, that is, a detection value of the winding terminal voltage (V 11 to V 23 ), and a unit. Based on the detected value of the AC side current of the converter, that is, the current flowing through the winding (i 11 to i 23 ), the voltage of the AC side of the unit converter, that is, the voltage between the terminals of the winding (V 11 to V 23 ). Create command values (V 11 * to V 23 * ). These detected values are detected by a voltage sensor and a current sensor (not shown). The command values (V 11 * to V 23 * ) are given to the unit converters (11 to 23).
  • control device 200 inputs the detected values according to the control means operating in the control device 200. Further, the control device 200 may use an estimated value obtained by calculation instead of the detected value of the current / voltage.
  • FIG. 2 is a circuit diagram showing a configuration example of the main circuit section of the unit converters 1 to 3, 11 to 13, 21 to 23.
  • one semiconductor switching element for example, S 1
  • one diode for example, D 1
  • two arms are connected in series to form one leg (half-bridge circuit).
  • two legs are connected in parallel to form a single-phase full bridge circuit which is a main circuit part of a unit converter.
  • the series connection points of the two arms in each leg are located on the AC side of the unit converter, and both ends of the parallel connection of the two legs are located on the DC side of the unit converter.
  • IGBT Insulated Gate Bipolar Transistor
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the unit converters 1 to 3 operate as rectifiers. That is, in the unit converters 1 to 3, the diodes D 1 to D 4 operate as rectifier diodes. Note that by operating the semiconductor switching devices S 1 ⁇ S 4 in the unit converters 1-3, together with higher harmonics is reduced, the power factor is improved.
  • no semiconductor switching devices S 1 ⁇ S 4 are used in FIG. 2, may be applied a diode rectifier circuit of a single phase.
  • One unit of two unit converters that transmit power via a multi-winding transformer that is, unit converters 11 to 13 and 21 on the power feeding side and unit converter 22 (however, when the power storage device 32 is discharged).
  • the converter, the unit converter 22 on the power receiving side (however, when charging the power storage device 32), and one of the unit converters 23 are the so-called DAB (Dual Active Bridge) together with the multi-winding transformer 20.
  • System DC / DC converter has the same circuit configuration. Therefore, by controlling the phase difference of the voltage on the AC side of the two unit converters, the power transmitted between the two unit converters can be controlled.
  • the semiconductor switching element in each unit converter according to the voltage command values V 11 * to V 23 * created by the control device 200 by the drive control device (not shown) provided in each of the unit converters 11 to 23.
  • S 1 to S 4 are on / off controlled.
  • the unit converters 11 to 23 control the voltages V 11 to V 23 on the AC side so as to be the voltage command values V 11 * to V 23 * created by the control device 200.
  • the operation of the power supply device differs between normal times and power failure of the external AC system 100. Therefore, in the following description, the operations during normal times and during a power failure will be referred to as a first mode and a second mode, respectively.
  • each of the unit converters 11 to 13 controls the output voltage (V 11 , V 12 , V 13 ) to a predetermined voltage (for example, the rated voltage), and the unit converter 21 determines the output voltage V 21 .
  • the unit converter 22 controls the voltage V 22 on the AC side in the vicinity of a predetermined voltage (for example, the rated voltage) and controls the phase of the V 22 to output electric power for charging the power storage device 32.
  • the unit converter 23 controls the phase of the voltage V 23 on the AC side and outputs the power used on the load device 33 side.
  • the unit converter 22 controls the voltage V 22 on the AC side to a predetermined voltage (for example, the rated voltage), and the unit converter 21 controls the voltage V 21 on the AC side to the vicinity of the rated voltage. Further, the unit converter 23 controls the phase of the voltage V 23 on the AC side and outputs the electric power used in the load device.
  • a predetermined voltage for example, the rated voltage
  • the unit converter 21 controls the voltage V 21 on the AC side to the vicinity of the rated voltage.
  • the unit converter 23 controls the phase of the voltage V 23 on the AC side and outputs the electric power used in the load device.
  • each of the unit converters 11 to 13 controls the voltage on the AC side (V 11 , V 12 , V 13 ) to the vicinity of a predetermined voltage (for example, the rated voltage).
  • the voltages V 1 , V 2 , and V 3 on the DC side of the unit converters 11 to 13 are controlled to substantially constant values. Therefore, in the event of a power failure of the external AC system 100, the increase of V 1 , V 2 , and V 3 due to the inflow of electric power from the power storage device 32 side is suppressed. Therefore, overvoltage is prevented from being applied to the semiconductor switching elements and diodes constituting the unit converters 11 to 13, and the reliability of the power supply device is improved. Further, since it is not necessary to increase the withstand voltage of the semiconductor switching element or the diode, the power loss of the power supply device and the size of the power supply device can be reduced.
  • FIG. 3 is a diagram showing a state of power transmission in the power supply device of the first embodiment in the first mode, that is, in normal times of the external AC system 100.
  • the electric powers P 11 , P 12 , and P 13 supplied from the external AC system 100 side are input to the windings n 11 , n 12 , and n 13 of the multi-winding transformer 20, respectively.
  • the electric power P 21 supplied from the power generation device 31 side is input to the winding n 21 of the multi-winding transformer 20.
  • Power P 11 ⁇ P 13 and P 21 is transmitted to the winding n 22 and n 23, is output from the winding n 22 and n 23.
  • the electric power P 22 and P 23 output from the windings n 22 and n 23 , respectively, are received by the power storage device 32 and the load device 33, respectively.
  • the electric power P 22 charges the power storage device 32.
  • the efficiency of the multi-winding transformer 20 is almost 100%, the total input power to the multi-winding transformer 20 (P 11 + P 12 + P 13 + P 21 ), and the multi-winding transformer 20.
  • the total output power from (P 22 + P 23 ) is substantially equal.
  • FIG. 4 is a flowchart showing a control flow in the power supply device of the first embodiment in the first mode, that is, in normal times of the external AC system 100.
  • FIG. 5 is an operation waveform diagram showing the current and voltage in the power supply device of the first embodiment in the first mode.
  • step S11 the control device 200 (FIG. 1) is supplied with power from the power generation device 31 side and input to the winding n 21 of the multi-winding transformer 20, and the power P 21 and the winding n of the multi-winding transformer 20.
  • Powers P 11 , P 12 input from the external AC system 100 side to the windings n 11 , n 12 , and n 13 of the multi-winding transformer 20, respectively, according to the power P 23 output from 23 and received by the load device 33.
  • P 22 P 11 + P 12 + P 13 + P 21- P 23 ...
  • step S12 the control device 200 receives the DC output voltage of the unit converters 1 , 2 , and 3 (operating as a rectifier), that is, the DC side voltages V 1 , V 2 , and V of the unit converters 11, 12, and 13.
  • the circuit configurations of the unit converters 1, 2 and 3 are the same (FIG. 2), and each input voltage of the unit converters 1, 2 and 3 is the system voltage of the external AC system 100. It is 1/3. Therefore, each DC output voltage of the unit converters 1, 2, and 3 is a voltage after rectification that is 1/3 of the AC input voltage of the unit converters 1, 2, and 3.
  • the DC power supply system can be constructed by using the power supply device of the first embodiment.
  • step S13 in the control device 200, the unit converters 11, 12, and 13 have a constant voltage (rated voltage) corresponding to V 4 , V 5 , and V 6 , and a square wave AC voltage having a constant frequency.
  • the unit converters 11, 12, and 13 are controlled so as to output a certain voltage V 11 , V 12 , V 13 (FIG. 5).
  • the unit converters 11 , 12 , and 13 are V 11 , V 12 , and V 13 , and the semiconductor switching element is controlled on and off at a flow rate of 50% to achieve a constant voltage (rated voltage) and a constant frequency. Outputs the square wave AC voltage of.
  • V 11 , V 12 , and V 13 have no phase difference from each other and are used as a phase reference voltage as described later.
  • step S14 the control device 200 outputs a voltage V 21 in which the unit converter 21 is near a predetermined voltage (rated voltage) and is in phase with V 11 , V 12 , and V 13 .
  • the unit converter 21 is controlled.
  • V 21 is, V 11, similarly to the V 12, V 13, with a constant voltage (rated voltage) and constant frequency of the square wave alternating voltage, V 11, V 12, V 13 Is in phase with (Fig. 5).
  • electric power P 11 + P 12 + P 13 + P 21
  • V 11 , V 12 , and V 13 are in phase with each other, any one of them may be used as the phase reference (the same applies to the following steps).
  • step S15 in the control device 200, the voltage V 22 on the AC side of the unit converter 22 is near a predetermined voltage (rated voltage), and the phase difference with respect to V 11 , V 12 , and V 13 (FIG.
  • the unit converter 22 is controlled so as to have " ⁇ 2 ") in 5.
  • V 22 is, V 11, similarly to the V 12, V 13, with a constant voltage (rated voltage) and constant frequency of the square wave alternating voltage, V 11, V 12, V 13
  • the phase is behind with respect to (Fig. 5).
  • the P 22 set in step S11 is transmitted from the external AC system 100 side and the power generation device 31 side to the power storage device 32 side.
  • step S16 in the control device 200, the voltage V 23 on the AC side of the unit converter 23 is near a predetermined voltage (rated voltage), and the phase difference with respect to V 11 , V 12 , and V 13 (FIG.
  • the unit converter 23 is controlled so as to have " ⁇ 3 ") in 5.
  • V 23 is, V 11, V 12, similarly to V 13, with a constant voltage (rated voltage) and constant frequency of the square wave alternating voltage, V 11, V 12, V 13
  • the phase is behind with respect to (Fig. 5).
  • the P 23 set in step S11 is transmitted from the external AC system 100 side and the power generation device 31 side to the load device 33 side.
  • phase difference of V 22 ( ⁇ 2 ) and the phase difference of V 23 ( ⁇ 3 ) are set by, for example, the following means (the same applies to the second mode).
  • steps S15 and S16 create a phase difference between the square wave AC voltage on the power feeding side (V 11 , V 12 , V 13 , V 21 ) and the square wave AC voltage on the power receiving side (V 22 , V 23 ).
  • Power transmission by setting is the operating principle of a so-called DAB (Dual Active Bridge) converter.
  • DAB Device Advanced Bridge
  • P 11 , P 12 , P 13 , P 21 , P 22 , P 23 are the phase difference ( ⁇ 2 ) of V 1 to V 6 , V 22 and the position of V 23 . It is expressed by a mathematical formula using the phase difference ( ⁇ 3 ) and the circuit constants (leakage inductance, etc.) of the multi-winding transformer 20. Based on these mathematical formulas and the formula (1), the phase differences ⁇ 2 and ⁇ 3 are calculated in the control device 200 according to each power value set in step S11.
  • FIG. 6 is a diagram showing a state of power transmission in the power supply device of the first embodiment in the second mode, that is, when the external AC system 100 has a power failure.
  • power is not supplied from the external AC system 100 side.
  • the electric power P 21 supplied from the power generation device 31 side is input to the winding n 21 of the multi-winding transformer 20.
  • the electric power P 22 (discharge power of the electric storage device 32) supplied from the electric power storage device 32 side is input to the winding n 22 of the multi-winding transformer 20.
  • Power P 21 and P 22 is transmitted to the winding n 23, is output from the winding n 23.
  • the electric power P 23 output from the winding n 23 is received by the load device 33.
  • the efficiency of the multi-winding transformer 20 is almost 100%, the total input power to the multi-winding transformer 20 (P 21 + P 22 ), and the total output from the multi-winding transformer 20.
  • the power (P 23 ) is substantially equal.
  • FIG. 7 is a flowchart showing a control flow in the power supply device of the first embodiment in the second mode, that is, when the external AC system 100 has a power failure.
  • FIG. 8 is an operation waveform diagram showing the current and voltage in the power supply device of the first embodiment in the second mode.
  • step S23 the control device 200 controls the unit converter 21 so that the unit converter 21 outputs a voltage V 21 having a constant frequency at a constant voltage (near the rated voltage).
  • the unit converter 21 has a constant voltage (rated voltage) and a constant frequency square wave AC voltage (FIG. 8) by controlling the semiconductor switching element on and off at a flow rate of 50% as V 21 . Is output. That is, the unit converter 21 continues the operation in the first mode.
  • V 21 is used as a phase reference voltage.
  • step S24 in the control device 200, the voltage V 22 on the AC side of the unit converter 22 continues from the first mode and has a constant voltage (near the rated voltage) and a constant frequency (the same frequency as V 21 ).
  • the unit converter 22 is controlled so that the voltage becomes a square wave AC voltage and is in phase with V 21 (FIG. 8).
  • electric power P 21 + P 22
  • step S25 in the control device 200, the voltage V 23 on the AC side of the unit converter 23 is near a predetermined voltage (rated voltage), and the phase difference with respect to V 21 (“ ⁇ 3 ” in FIG. 8”. ), The unit converter 23 is controlled.
  • the control unit 200 V 23, like the V 21, a constant voltage such that the (rated voltage) and constant frequency of the square wave alternating voltage, and the phase relative to V 21
  • the unit converter 23 is controlled so that the frequency is delayed (FIG. 8). As a result, the electric power P 23 is transmitted to the load device 33 side.
  • the phase difference ( ⁇ 3 ) of V 23 can be set in consideration of the circuit operation of a known DAB converter, as in the first mode described above. That is, P 23 is expressed by a mathematical formula using the phase difference ( ⁇ 3 ) of V 4 to V 6 , V 23 , and the circuit constant (leakage inductance, etc.) of the multi-winding transformer 20. Based on these mathematical formulas and the formula (2), the phase difference ⁇ 3 is calculated in the control device 200.
  • step S26 the control device 200 controls the unit converters 11, 12, and 13 so that the voltage on the AC side of the unit converters 11, 12, and 13 is close to the rated voltage in the event of a power failure.
  • the control device 200 sets the voltages V 11 , V 12 , and V 13 on the AC side of the unit converters 11 , 12 , and 13 to be constant voltage and constant frequency square wave AC voltage, and V 11 ,.
  • the unit converters 11, 12, and 13 are controlled so that the phases of V 12 and V 13 are matched with V 21 .
  • the unit converters 11, 12, and 13 operate to output electric power, so that the increase of V 1 , V 2 , and V 3 immediately after the power failure is suppressed. Therefore, it is possible to prevent an overvoltage from being applied to the semiconductor switching elements constituting the unit converters 11, 12, and 13. Further, the voltage balance control prevents local overvoltage from being applied to the unit converters 11, 12, and 13. Therefore, when setting the withstand voltage of the semiconductor switching element, it is not necessary to anticipate a voltage increase during a power failure, and the withstand voltage of the semiconductor switching element can be reduced.
  • Example 2 of the present invention will be described with reference to FIGS. 9 to 12. The points different from those of the first embodiment will be mainly described.
  • FIG. 9 is a circuit configuration diagram of the power supply device according to the second embodiment of the present invention.
  • electric vehicles 61, 62, 63 are connected to the DC side of the unit converters 21, 22, and 23, respectively. That is, the power supply device of the second embodiment functions as a power supply for a charging device that charges a plurality of electric vehicles.
  • the power supply device of the second embodiment functions as a power supply for a charging device that charges a plurality of electric vehicles.
  • Each of the electric vehicles 61, 62, and 63 is equipped with a power storage device including a power storage device, and the power storage device of the power storage device is charged by the power supply device of the second embodiment.
  • the power supply is grounded.
  • one of both ends of the windings n 21 , n 22 and n 23 of the multi-winding transformer 20 is grounded.
  • circuit configurations are the same as those in the first embodiment, including the configuration of each unit converter (FIG. 2).
  • the operation of the power supply device differs between normal times and power failure of the external AC system 100. Therefore, in the following description, the operations during normal times and during a power failure will be referred to as a first mode and a second mode, respectively.
  • the electric power supplied from the external AC system 100 side is received by the electric vehicles 61, 62, 63 side (charged state).
  • the charging power can be set for each electric vehicle by setting V 11 , V 12 , and V 13 to be in phase with each other and adjusting the phase difference between these voltages and V 21 , V 22 , and V 23 . Therefore, the charging power can be adjusted according to the capacity of the storage battery of the electric vehicle, the desired charging speed, and the like.
  • electric power can be transmitted between the electric vehicles 61, 62, 63.
  • the external AC system 100 has a power failure, it is possible to charge an electric vehicle having a high charging priority or an electric vehicle urgently charging by the electric power stored in another electric vehicle.
  • the unit converters 11 to 13 are operated in the same manner as in the first embodiment. As a result, when the external AC system 100 has a power failure, the increase of V 1 , V 2 , and V 3 due to the inflow of electric power from the electric vehicles 61 to 62 side is suppressed.
  • FIG. 10 is a diagram showing a state of power transmission in the power supply device of the second embodiment in the first mode, that is, in normal times of the external AC system 100.
  • the electric powers P 11 , P 12 , and P 13 supplied from the external AC system 100 side are input to the windings n 11 , n 12 , and n 13 of the multi-winding transformer 20, respectively.
  • Power P 11 ⁇ P 13 is transmitted to the winding n 21 ⁇ n 23, is output from the coil n 22 ⁇ n 23.
  • the electric power P 21 , P 22 and P 23 output from the windings n 21 , n 22 and n 23 , respectively, are received by the electric vehicles 61, 62 and 63, respectively.
  • the efficiency of the multi-winding transformer 20 is almost 100%, the total input power to the multi-winding transformer 20 (P 11 + P 12 + P 13 ), and the multi-winding transformer 20.
  • the total output power (P 21 + P 22 + P 23 ) is substantially equal.
  • FIG. 11 is a flowchart showing a control flow in the power supply device of the second embodiment in the first mode, that is, in normal times of the external AC system 100.
  • FIG. 12 is an operation waveform diagram showing the current and voltage in the power supply device of the second embodiment in the first mode.
  • step S31 the control device 200 sets the electric power distributions P 21 , P 22 , and P 23 to the electric vehicles 61, 62, and 63.
  • P 21 to P 23 change depending on the state (SOC, etc.) of the power storage device mounted on the electric vehicles 61 to 63, the desired charging speed, and the like, and the control device 200 is, for example, both ends of the winding n 21 .
  • P 21 is calculated based on the detected values of the voltage V 21 and the current i 21 flowing through the winding n 21 .
  • the control device 200 calculates a P 22 based on the detected value of the current i 22 flowing through the voltage across V 22 and winding n 22 of the winding n 22, the voltage across V 23 and the winding of the winding n 23 P 23 is calculated based on the detected value of the current i 23 flowing through n 23 .
  • the unit converters 11, 12, and 13 are controlled.
  • step S33 in the control device 200, the AC side voltages V 11 , V 12 , and V 13 of the unit converters 11 , 12 , and 13 have a constant voltage (rated voltage) and a constant frequency square wave AC voltage (
  • the unit converters 11, 12, and 13 are controlled so as to be shown in FIG. 12).
  • the unit converters 11 , 12 , and 13 are V 11 , V 12 , and V 13 , and the semiconductor switching element is controlled on and off at a flow rate of 50% to obtain a constant voltage (rated voltage) and constant voltage.
  • V 11 , V 12 , and V 13 have no phase difference from each other and are used as a phase reference voltage as described later. Any one of V 11 , V 12 , and V 13 may be used as the phase reference voltage.
  • step S34 in the control device 200, the voltage V 21 on the AC side of the unit converter 21 is near a predetermined voltage (rated voltage), and the phase difference with respect to V 11 , V 12 , and V 13 (FIG.
  • the unit converter 21 is controlled so as to have " ⁇ 1 ") in 12.
  • the control device 200 is arranged so that the V 21 has a constant voltage (rated voltage) and a constant frequency square wave AC voltage, and has a phase with respect to V 11 , V 12 , and V 13 .
  • the unit converter 21 is controlled so that the frequency is delayed (FIG. 12). As a result, the electric power P 21 is transmitted to the electric vehicle 61 side.
  • step S35 in the control device 200, the voltage V 22 on the AC side of the unit converter 22 is near a predetermined voltage (rated voltage), and the phase difference with respect to V 11 , V 12 , and V 13 (FIG.
  • the unit converter 22 is controlled so as to have " ⁇ 2 ") in 12.
  • the control device 200 is arranged so that the V 22 has a constant voltage (rated voltage) and a constant frequency square wave AC voltage, and has a phase with respect to V 11 , V 12 , and V 13 .
  • the unit converter 22 is controlled so that the frequency is delayed (FIG. 12). As a result, the electric power P 22 is transmitted to the electric vehicle 62 side.
  • step S36 in the control device 200, the voltage V 23 on the AC side of the unit converter 23 is near a predetermined voltage (rated voltage), and the phase difference with respect to V 11 , V 12 , and V 13 (FIG.
  • the unit converter 23 is controlled so as to have " ⁇ 3 ") in 12.
  • the control device 200 is arranged so that the V 23 has a constant voltage (rated voltage) and a constant frequency square wave AC voltage, and has a phase with respect to V 11 , V 12 , and V 13 .
  • the unit converter 23 is controlled so that the frequency is delayed (FIG. 12). As a result, the electric power P 23 is transmitted to the electric vehicle 63 side.
  • phase differences ⁇ 1 , ⁇ 2 , and ⁇ 3 can be set in consideration of the operation of a known DAB converter, as in the above-described first embodiment.
  • the power generation device 31, the power storage device 32, and the load device 33 in the first embodiment are operated by the electric vehicle 61, the electric vehicle 62, and the electric vehicle 63, respectively. If it is replaced with, the operation is the same as that of the first embodiment. In this case, when the external AC system 100 fails, the electric power supplied from the electric vehicle 61 and the electric vehicle 62 is received by the electric vehicle 63, and the storage battery mounted on the electric vehicle 63 is charged.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
  • the number of windings provided in a multi-winding transformer is not limited to 6 windings, but the number of unit converters (rectifiers) to which the AC side is connected in series (2 or more) and the number of power generation devices, power storage devices, and load devices. It is set appropriately according to. Similar to the power supply device of the above-described embodiment, when at least one power storage device and at least one power receiving device (load device, power storage device (during charging)) are connected, the number of windings is at least four. (The number of series of unit converters is 2 or more).
  • the electric power from the external AC system 100 is not limited to the single-phase AC electric power, but may be a three-phase AC electric power.
  • a three-phase full bridge circuit is applied as the unit converters 1 to 3 (rectifier).
  • 1,2,3 unit converter 10 reactor, 20 multi-winding transformer, 11,12,13,21,22,23 unit converter, 31 power generator, 32 power storage device, 33 load device, 61, 62, 63 Electric vehicle, 100 external AC system, 200 control device

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

多様な電力源からの電力フローをフレキシブルに制御可能である小型化の電源装置が開示される。この電源装置は、多巻線トランス(20)と、これに接続される複数の電力変換器と、を備え、第1電力変換器は、整流器部(1,2,3)と、直流電力を交流電力に変換する変換器部(11,12,13)とを備え、整流器部の交流側は互いに直列接続されかつ外部交流系統(100)に接続され、整流器部の直流側は変換器部の直流側に接続され、平常時には、第1電力変換器および第2電力変換器(22)を制御して、外部交流系統からの電力が蓄電装置(32)に伝送され、かつ第1電力変換器および第3電力変換器(23)を制御して、外部交流系統からの電力が受電機器(33)に伝送され、停電時には、第2電力変換器および第3電力変換器を制御して、蓄電装置からの電力が受電機器に伝送される。

Description

電源装置
 本発明は、外部系統および蓄電装置に接続され、受電機器に電力を供給する電源装置に関する。
 再生可能エネルギー発電や電気自動車の普及、蓄電装置の利用拡大に伴い、高品質の電力制御が可能でかつ小型の電源装置が要求されている。
 これに対し、非特許文献1(Fig.1(c))および特許文献1(Fig.1)に記載の従来技術が知られている。
 本従来技術では、モーターを駆動する電源装置において、トランスの複数の一次巻線の各々に、複数台の一次側電力変換器の内の一台の出力側が接続されるとともに、複数の一次側電力変換器の入力側が直列接続される。さらに、トランスの二次巻線には二次側電力変換器の入力側が接続される。
C. Gu, Z. Zheng, L. Xu, K. Wang and Y. Li, "Modeling and Control of a Multiport Power Electronic Transformer (PET) for Electric Traction Applications," IEEE Transactions on Power Electronics, vol. 31, no. 2, pp. 915-927, February 2016.
米国特許出願公開第2002/0101747号明細書
 上記従来技術では、一次側電力変換器および二次側電力変換器を備えることにより、トランスを小型化することができるとともに、トランスの一次側および二次側で電力を制御することができる。しかし、上記従来技術では、商用交流電源のような外部系統や、蓄電池のような蓄電装置など、多様な電力源からの電力フローをフレキシブルに制御することについては、なんら考慮されていない。
 そこで、本発明は、多様な電力源からの電力フローをフレキシブルに制御可能であるとともに小型化が可能な電源装置を提供する。
 上記課題を解決するために、本発明による電源装置は、多巻線トランスと、多巻線トランスに接続される複数の電力変換器と、を備えるものであって、多巻線トランスが有する複数の第1巻線には、複数の電力変換器の内、複数の第1電力変換器が接続され、第1電力変換器は、整流器部と、整流器部に接続され、直流電力を交流電力に変換する変換器部と、を備え、複数の整流器部の交流側は、互いに直列接続されるとともに、外部交流系統に接続され、整流器部の直流側は、変換器部の直流側に接続され、変換器部の交流側は、第1巻線に接続され、多巻線トランスの第2巻線には、複数の電力変換器の内、第2電力変換器が接続され、第2電力変換器の交流側が第2巻線に接続され、第2電力変換器の直流側には蓄電装置が接続され、多巻線トランスの第3巻線には、複数の電力変換器の内、第3電力変換器が接続され、第3電力変換器の交流側が第3巻線に接続され、第3電力変換器の直流側には受電機器が接続され、外部交流系統の平常時には、複数の第1電力変換器および第2電力変換器を制御することにより、複数の第1電力変換器と、複数の第1巻線と、第2巻線と、第2電力変換器とを介して、外部交流系統からの電力が蓄電装置に伝送され、外部交流系統の平常時には、複数の第1電力変換器および第3電力変換器を制御することにより、複数の第1電力変換器と、複数の第1巻線と、第3巻線と、第3電力変換器とを介して、外部交流系統からの電力が受電機器に伝送され、外部交流系統の停電時には、第2電力変換器および第3電力変換器を制御することにより、第2電力変換器と、第2巻線と、第3巻線と、第3電力変換器とを介して、蓄電装置からの電力が受電機器に伝送される。
 本発明によれば、電源装置を小型化できるとともに、外部交流系統と蓄電装置と受電機器との間で、電力フローをフレキシブルに制御できる。
 上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
実施例1である電源装置の回路構成図である。 単位変換器の主回路部の構成例を示す回路図である。 外部交流系統の平常時(第1モード)における、実施例1の電源装置における電力伝送の状態を示す図である。 第1モードにおける、実施例1の電源装置における制御の流れを示すフローチャートである。 第1モードにおける実施例1の電源装置における電流および電圧を示す動作波形図である。 外部交流系統の停電時(第2モード)における、本実施例1の電源装置における電力伝送の状態を示す図である。 第2モードにおける、実施例1の電源装置における制御の流れを示すフローチャートである。 第2モードにおける、実施例1の電源装置における電流および電圧を示す動作波形図である。 実施例2である電源装置の回路構成図である。 第1モードにおける、実施例2の電源装置における電力伝送の状態を示す図である。 第1モードにおける、実施例2の電源装置における制御の流れを示すフローチャートである。 第1モードにおける、実施例2の電源装置における電流および電圧を示す動作波形図である。
 以下、本発明の実施形態について、下記の実施例1~2により、図面を用いながら説明する。各図において、参照番号が同一のものは同一の構成要件あるいは類似の機能を備えた構成要件を示している。
 図1は、本発明の実施例1である電源装置の回路構成図である。
 図1に示すように、本実施例1の電源装置は、複数の巻線(図1では6巻線)を備える多巻線トランス20と、多巻線トランス20の複数の巻線(n11~n23)に接続される複数の電力変換器を備えている。
 多巻線トランス20においては、一個の磁性体コアに6個の独立した巻線(n11~n23)が巻装されている。
 巻線n11には、単位変換器1と単位変換器11とからなる電力変換器が接続される。単位変換器1の直流側と単位変換器11の直流側が平滑コンデンサを介して接続される。また、単位変換器11の交流側が巻線n11に接続される。
 巻線n12には、単位変換器2と単位変換器12とからなる電力変換器が接続される。単位変換器2の直流側と単位変換器12の直流側が平滑コンデンサを介して接続される。また、単位変換器12の交流側が巻線n12に接続される。
 巻線n13には、単位変換器3と単位変換器13とからなる電力変換器が接続される。単位変換器3の直流側と単位変換器13の直流側が平滑コンデンサを介して接続される。また、単位変換器13の交流側が巻線n13に接続される。
 単位変換器1~3の各交流側は、互いに直列接続され、高調波抑制用のリアクトル10を介して、外部交流系統100(例えば、商用交流電源)に接続される。本実施例1においては、このように、複数の単位変換器(1~3)の各交流側が互いに直列接続されるので、トランスを介することなく、外部交流系統100からの電力を受電できる。また、複数の単位変換器(1~3)で、外部交流系統100の電圧を分担するので、各単位変換器の主回路を構成する半導体素子の耐圧を低減できる。これらにより、電源装置が小型化できる。
 単位変換器1,2および3は、外部交流系統100からの交流電力を直流電力に変換する。単位変換器11,12,13は、それぞれ単位変換器1,2および3が出力する直流電力を、所定周波数および所定電圧の交流電力に変換して、それぞれ巻線n11,n12,n13に出力する。
 巻線n21には、単位変換器21からなる電力変換器の交流側が接続される。単位変換器21の直流側は、平滑コンデンサを備え、平滑コンデンサを介して、発電装置31に接続される。発電装置31は、太陽光発電装置や風力発電装置などの分散電源装置である。
 巻線n22には、単位変換器22からなる電力変換器の交流側が接続される。単位変換器22の直流側は、平滑コンデンサを備え、平滑コンデンサを介して、蓄電装置32に接続される。蓄電装置32は、蓄電器および充放電制御回路などを備える。蓄電器としては、蓄電池やキャパシタなどが適用される。
 巻線n23には、単位変換器23からなる電力変換器の交流側が接続される。単位変換器23の直流側は、平滑コンデンサを備え、平滑コンデンサを介して、受電機器である負荷装置33に接続される。
 単位変換器21は、発電装置31からの直流電力を交流電力に変換して、この交流電力を巻線n21に出力する。
 単位変換器22は、巻線n22が出力する交流電力を直流電力に変換して、この直流電力を蓄電装置32の受電電力として出力する。また、単位変換器22は、蓄電装置32からの直流電力を交流電力に変換して、この交流電力を蓄電装置32から給電される電力として巻線n22に出力する。すなわち、単位変換器22は、双方向変換器として動作する。
 単位変換器23は、巻線n23が出力する交流電力を直流電力に変換して、この直流電力を負荷装置33が受電する電力として出力する。
 本実施例1では、多巻線トランス20の複数の巻線の各々に電力変換器が接続されるので、電力変換器を制御することにより、給電側(外部交流系統100、発電装置31、蓄電装置32(放電時))と受電側(負荷装置33、蓄電装置32(充電時))の間の電力伝送を制御できる。後述するように、本実施例1では、単位変換器11~13,21~23の交流側の電圧V11~V13,V21~V23、すなわち巻線n11~n23の端子電圧の位相を制御することにより、給電側と受電側の間の電力伝送が制御される。これにより、本実施例1の電源装置は、給電側と受電側の間の電力フローをフレキシブルに制御できる。また、多巻線トランス20の複数の巻線の各々に電力変換器が接続されるので、電力変換器におけるスイッチング周波数に応じて、多巻線トランス20を高周波化(例えば、1kHz以上)することができる。したがって、多巻線トランス20が小型化できるので、電源装置を小型化できる。
 制御装置200は、単位変換器の直流側電圧(V~V)の検出値、単位変換器の交流側の電圧すなわち巻線の端子間電圧(V11~V23)の検出値、単位変換器の交流側の電流すなわち巻線に流れる電流(i11~i23)の検出値に基づいて、単位変換器の交流側の電圧すなわち巻線の端子間電圧(V11~V23)の指令値(V11 ~V23 )を作成する。これらの検出値は、図示されない電圧センサおよび電流センサによって検出される。なお、指令値(V11 ~V23 )は、単位変換器(11~23)に与えられる。
 なお、図1では、制御装置200への入力として、便宜上、これら検出値のすべてが記載されているが、制御装置200は、制御装置200において動作する制御手段に応じた検出値を入力する。また、制御装置200は、電流・電圧の検出値に代えて、演算によって求められる推定値を用いてもよい。
 図2は、単位変換器1~3,11~13,21~23の主回路部の構成例を示す回路図である。
 図2に示す構成例では、一つの半導体スイッチング素子(例えば、S)および一つのダイオード(例えば、D)が逆並列に接続され、一つのアームが構成される。二つのアームが直列に接続されて、一つのレグ(ハーフブリッジ回路)が構成される。さらに、二つのレグが並列に接続されて、単位変換器の主回路部となる単相フルブリッジ回路が構成される。各レグにおける二つのアームの直列接続点が単位変換器の交流側に位置し、二つのレグの並列接続の両端が単位変換器の直流側に位置する。
 半導体スイッチング素子S~Sとして、図2の構成例では、IGBT(Insulated Gate Bipolar Transistor)が適用されているが、これに限らず、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)や接合型バイポーラトランジスタが適用されてもよい。
 複数の単位変換器の内、単位変換器1~3は、整流器として動作する。すなわち、単位変換器1~3において、ダイオードD~Dは整流ダイオードとして動作する。なお、単位変換器1~3における半導体スイッチング素子S~Sを動作することにより、高調波が低減されるとともに、力率が向上される。
 なお、単位変換器1~3として、図2における半導体スイッチング素子S~Sが用いられない、単相のダイオード整流回路を適用してもよい。
 多巻線トランスを介して電力伝送を行う二つの単位変換器、すなわち給電側となる単位変換器11~13および21並びに単位変換器22(ただし蓄電装置32の放電時)の内の一つの単位変換器と、受電側となる単位変換器22(ただし蓄電装置32の充電時)および単位変換器23の内の一つの単位変換器とは、多巻線トランス20とともに、いわゆるDAB(Dual Active Bridge)方式のDC/DCコンバータと同様の回路構成を備えている。このため、このような二つの単位変換器の交流側の電圧の位相差を制御することにより、二つの単位変換器間で伝送される電力を制御することができる。
 なお、単位変換器11~23の各々が備える駆動制御装置(図示せず)によって、制御装置200が作成する電圧指令値V11 ~V23 に応じて、各単位変換器における半導体スイッチング素子S~Sがオン・オフ制御される。これにより、単位変換器11~23は、交流側の電圧V11~V23を、制御装置200が作成する電圧指令値V11 ~V23 になるように制御する。
 次に、本実施例1の電源装置の動作の概略について説明する。
 電源装置の動作は、外部交流系統100の平常時と停電時では異なる。そこで、以下の説明において、平常時および停電時における動作を、それぞれ、第1モードおよび第2モードと記す。
 第1モードでは、外部交流系統100側および発電装置31側から給電される電力が、蓄電装置32側(充電状態)および負荷装置33側で受電される。この場合、単位変換器11~13の各々は、出力電圧(V11,V12,V13)を所定電圧(例えば、定格電圧)に制御し、単位変換器21は、出力電圧V21を所定電圧(例えば、定格電圧)の付近に制御する。また、単位変換器22は、交流側の電圧V22を所定電圧(例えば、定格電圧)の付近に制御するとともにV22の位相を制御して、蓄電装置32に充電する電力を出力する。単位変換器23は、交流側の電圧V23の位相を制御して、負荷装置33側で用いられる電力を出力する。
 第2モードでは、発電装置31側および蓄電装置32側(放電状態)から給電される電力が、負荷装置33側で受電される。この場合、単位変換器22は、交流側の電圧V22を所定電圧(例えば、定格電圧)に制御し、単位変換器21は、交流側の電圧V21を定格電圧の付近に制御する。また、単位変換器23は、交流側の電圧V23の位相を制御して、負荷装置で用いられる電力を出力する。
 ここで、単位変換器11~13の各々は、交流側の電圧(V11,V12,V13)を所定電圧(例えば、定格電圧)の付近に制御する。
 これにより、単位変換器11~13の直流側の電圧V,V,Vが、略一定値に制御される。このため、外部交流系統100の停電時に、蓄電装置32側からの電力の流入によるV,V,Vの増大が抑制される。したがって、単位変換器11~13を構成する半導体スイッチング素子やダイオードに過電圧がかかることが防止されるので、電源装置の信頼性が向上する。また、半導体スイッチング素子やダイオードの耐圧を大きくする必要がないので、電源装置の電力損失や電源装置の大きさを低減できる。
 次に、第1モードおよび第2モードの各々について、本実施例1の電源装置の動作を具体的に説明する。
 図3は、第1モード、すなわち外部交流系統100の平常時における、本実施例1の電源装置における電力伝送の状態を示す図である。
 図3に示すように、外部交流系統100側から給電される電力P11,P12,P13が、それぞれ多巻線トランス20の巻線n11,n12,n13に入力される。また、発電装置31側から給電される電力P21が、多巻線トランス20の巻線n21に入力される。電力P11~P13およびP21は、巻線n22およびn23に伝送され、巻線n22およびn23から出力される。巻線n22およびn23からそれぞれ出力される電力P22およびP23は、それぞれ蓄電装置32および負荷装置33によって受電される。なお、電力P22によって、蓄電装置32が充電される。
 なお、本実施例1においては、多巻線トランス20の効率がほぼ100%であり、多巻線トランス20への総入力電力(P11+P12+P13+P21)と、多巻線トランス20からの総出力電力(P22+P23)は実質等しい。
 図4は、第1モード、すなわち外部交流系統100の平常時における、本実施例1の電源装置における制御の流れを示すフローチャートである。また、図5は、第1モードにおける本実施例1の電源装置における電流および電圧を示す動作波形図である。
 以下、図4に示す制御の流れについて、適宜、図5を参照しながら説明する。
 まず、ステップS11において、制御装置200(図1)は、発電装置31側から給電され多巻線トランス20の巻線n21へ入力される電力P21、および多巻線トランス20の巻線n23から出力され負荷装置33が受電する電力P23に応じて、外部交流系統100側からそれぞれ多巻線トランス20の巻線n11,n12,n13へ入力される電力P11,P12,P13、並びに多巻線トランス20から蓄電装置32側へ出力される電力P22を、式(1)の条件(P11+P12+P13+P21(多巻線トランス20への入力)=P22+P23(多巻線トランス20からの出力)から導出される)のもとで設定する。
 P22=P11+P12+P13+P21-P23 …(1)
 P22は、蓄電装置32の状態(SOCなど)や充電速さなどに応じて変化するが、制御装置200は、例えば、巻線n22の両端電圧および巻線n22の両端に流れる電流i22の検出値に基づいて、P22を算出する。また、制御装置200は、巻線n23の両端電圧(V23)および巻線n23に流れる電流i23の検出値に基づいて、P23を算出する。また、制御装置200は、巻線n21の両端電圧(V21)および巻線n21に流れる電流i21の検出値に基づいて、P21を算出する。さらに、制御装置200は、式(1)に基づいて、P11,P12,P13を設定する。なお、本実施例1では、単位変換器11,12,13は電力容量が同じであり、P11=P12=P13である。
 次に、ステップS12において、制御装置200は、単位変換器1,2,3(整流器として動作)の直流出力電圧、すなわち単位変換器11,12,13の直流側電圧V,V,Vがバランスするように、すなわちV=V=Vとなるように(図5)、単位変換器11,12,13を制御する。なお、本実施例1では、単位変換器1,2,3の回路構成は同じであり(図2)、単位変換器1,2,3の各入力電圧は、外部交流系統100の系統電圧の1/3である。したがって、単位変換器1,2,3の各直流出力電圧は、単位変換器1,2,3の交流入力電圧の1/3の整流後の電圧となる。
 また、本実施例1では、V,V,Vが所定値となり、かつV=V=Vとなるように、単位変換器21,22,23が制御される。これにより、本実施例1の電源装置を用いて、直流給電系統を構築できる。この場合、V=V=V=直流母線電圧となる。なお、外部交流系統の系統電圧や直流母線電圧に応じて、もしくは制御の簡単化のために、V=V=V=V=V=Vとしてもよい。
 次に、ステップS13において、制御装置200は、単位変換器11,12,13が、V,V,Vに応じた一定電圧(定格電圧)で、かつ一定周波数の方形波交流電圧である電圧V11,V12,V13(図5)を出力するように、単位変換器11,12,13を制御する。
 本実施例では、単位変換器11,12,13は、V11,V12,V13として、通流率50%で半導体スイッチング素子をオン・オフ制御して定電圧(定格電圧)・定周波数の方形波交流電圧を出力する。
 なお、V11,V12,V13は、相互に位相差はなく、後述するように位相の基準電圧として用いられる。
 次に、ステップS14において、制御装置200は、単位変換器21が、所定電圧(定格電圧)付近であり、かつV11,V12,V13と同相である電圧V21を出力するように、単位変換器21を制御する。なお、本実施例1では、V21は、V11,V12,V13と同様に、定電圧(定格電圧)・定周波数の方形波交流電圧であるとともに、V11,V12,V13と同相である(図5)。これにより、外部交流系統100側および発電装置31側から、蓄電装置32側および負荷装置33側へ電力(P11+P12+P13+P21)を給電することができる。なお、V11,V12,V13は互いに同相であるから、いずれかを位相の基準とすればよい(以下のステップでも同様)。
 次に、ステップS15において、制御装置200は、単位変換器22の交流側の電圧V22が、所定電圧(定格電圧)付近であり、かつV11,V12,V13に対し位相差(図5における「δ」)を有するように、単位変換器22を制御する。なお、本実施例1では、V22は、V11,V12,V13と同様に、定電圧(定格電圧)・定周波数の方形波交流電圧であるとともに、V11,V12,V13に対して位相が遅れている(図5)。これにより、ステップS11で設定されたP22が、外部交流系統100側および発電装置31側より蓄電装置32側へ伝送される。
 次に、ステップS16において、制御装置200は、単位変換器23の交流側の電圧V23が、所定電圧(定格電圧)付近であり、かつV11,V12,V13に対し位相差(図5における「δ」)を有するように、単位変換器23を制御する。なお、本実施例1では、V23は、V11,V12,V13と同様に、定電圧(定格電圧)・定周波数の方形波交流電圧であるとともに、V11,V12,V13に対して位相が遅れている(図5)。これにより、ステップS11で設定されたP23が、外部交流系統100側および発電装置31側より負荷装置33側へ伝送される。
 ここで、V22の位相差(δ)、V23の位相差(δ)は、例えば、次のような手段で設定される(第2モードにおいても同様)。
 ステップS15,S16のように、給電側の方形波交流電圧(V11,V12,V13,V21)と受電側の方形波交流電圧(V22,V23)との間に位相差を設定することによる電力伝送は、いわゆるDAB(Dual Active Bridge)コンバータの動作原理である。公知のDABコンバータの回路動作を考慮すると、P11,P12,P13,P21,P22,P23は、V~V、V22の位相差(δ)、V23の位相差(δ)、多巻線トランス20の回路定数(漏れインダクタンスなど)を用いて数式で表される。これらの数式および式(1)に基づいて、ステップS11で設定された各電力値に応じて、位相差δ,δが、制御装置200において算出される。
 図6は、第2モード、すなわち外部交流系統100の停電時における、本実施例1の電源装置における電力伝送の状態を示す図である。
 図6に示すように、外部交流系統100側からは電力は給電されない。また、発電装置31側から給電される電力P21が、多巻線トランス20の巻線n21に入力される。また、蓄電装置32側から給電される電力P22(蓄電装置32の放電電力)が、多巻線トランス20の巻線n22に入力される。電力P21およびP22は、巻線n23に伝送され、巻線n23から出力される。巻線n23から出力される電力P23は、負荷装置33によって受電される。
 なお、本実施例1においては、多巻線トランス20の効率がほぼ100%であり、多巻線トランス20への総入力電力(P21+P22)と、多巻線トランス20からの総出力電力(P23)は実質等しい。
 図7は、第2モード、すなわち外部交流系統100の停電時における、本実施例1の電源装置における制御の流れを示すフローチャートである。また、図8は、第2モードにおける本実施例1の電源装置における電流および電圧を示す動作波形図である。
 以下、図7に示す制御の流れについて、適宜、図8を参照しながら説明する。
 まず、ステップS21において、制御装置200(図1)は、発電装置31側から給電され多巻線トランス20の巻線n21へ入力される電力P21、および多巻線トランス20の巻線n23から出力され負荷装置33が受電する電力P23に応じて、蓄電装置32側から多巻線トランス20の巻線n22へ入力される電力P22を、式(2)の条件(P21+P22(多巻線トランス20への入力)=P23(多巻線トランス20からの出力)から導出される)のもとで設定する。
 P22=P23-P21 …(2)
 次に、ステップS22において、制御装置200は、V,V,Vが所定値となり、かつV=V=Vとなるように(図8)、単位変換器21,22,23を制御する。これにより、単位変換器21,22,23に対して、第1モードにおけるステップS12(図5)と同様の制御が継続して実行される。
 ここで、V,V,Vは、蓄電装置32の放電などにより、単位変換器11,12,13側へ電力が流入すると、停電直後から上昇する(図8)。このため、第1モードにおいて、V=V=V=V=V=Vとなるように制御されている場合には、停電時は、V=V=V>V=V=Vとなる(図8)。
 次に、ステップS23において、制御装置200は、単位変換器21が、一定電圧(定格電圧付近)で一定周波数の電圧V21を出力するように、単位変換器21を制御する。本実施例1では、単位変換器21は、V21として、通流率50%で半導体スイッチング素子をオン・オフ制御して定電圧(定格電圧)・定周波数の方形波交流電圧(図8)を出力する。すなわち、単位変換器21は、第1モードにおける動作を継続する。
 なお、停電時において、V21は、位相の基準電圧として用いられる。
 次に、ステップS24において、制御装置200は、単位変換器22の交流側の電圧V22が、第1モードから継続して一定電圧(定格電圧付近)で一定周波数(V21と同じ周波数)の方形波交流電圧になるように、かつV21と同相になるように(図8)、単位変換器22を制御する。これにより、発電装置31側および蓄電装置32側から電力(P21+P22)を給電できる。
 次に、ステップS25において、制御装置200は、単位変換器23の交流側の電圧V23が、所定電圧(定格電圧)付近であり、かつV21に対し位相差(図8における「δ」)を有するように、単位変換器23を制御する。なお、本実施例1では、制御装置200は、V23が、V21と同様に、定電圧(定格電圧)・定周波数の方形波交流電圧になるように、かつ、V21に対して位相が遅れるように(図8)、単位変換器23を制御する。これにより、負荷装置33側へ電力P23が伝送される。
 ここで、V23の位相差(δ)は、前述の第1モードと同様に、公知のDABコンバータの回路動作を考慮して設定できる。すなわち、P23は、V~V、V23の位相差(δ)、多巻線トランス20の回路定数(漏れインダクタンスなど)を用いて数式で表される。これらの数式および式(2)に基づいて、位相差δが、制御装置200において算出される。
 次に、ステップS26において、制御装置200は、停電時に、単位変換器11,12,13の交流側の電圧が定格電圧付近になるように、単位変換器11,12,13を制御する。このとき、制御装置200は、単位変換器11,12,13の交流側の電圧V11,V12,V13が、定電圧・定周波数の方形波交流電圧になるように、かつV11,V12,V13の位相をV21に合わせるように、単位変換器11,12,13を制御する。また、制御装置200は、V11,V12,V13が、定格電圧付近で、V11=V12=V13となるように単位変換器11,12,13を制御するとともに、単位変換器11,12,13の直流側電圧V,V,Vがバランスするように、すなわちV=V=Vとなるように単位変換器11,12,13を制御する。
 これにより、単位変換器11,12,13が動作して電力を出力するので、停電直後からのV,V,Vの増大が抑制される。このため、単位変換器11,12,13を構成する半導体スイッチング素子に過電圧がかかることが防止される。また、電圧バランス制御により、単位変換器11,12,13において、局所的に過電圧がかかることが防止される。したがって、半導体スイッチング素子の耐圧の設定にあたって、停電時における電圧上昇を見込む必要がなくなり、半導体スイッチング素子の耐圧を低減することができる。
 以下、本発明の実施例2について、図9~12を用いて説明する。なお、主に、実施例1と異なる点について説明する。
 図9は、本発明の実施例2である電源装置の回路構成図である。
 図9に示すように、本実施例2においては、単位変換器21,22,23の直流側には、それぞれ電気自動車61,62,63(EV)が接続される。すなわち、本実施例2の電源装置は、複数の電気自動車を充電する充電装置用の電源として機能する。なお、電気自動車61,62,63の各々は、蓄電器を備える蓄電装置を搭載しており、この蓄電装置の蓄電器が、本実施例2の電源装置によって充電される。
 給電対象が電気自動車であるため、電源装置側でアースが取られる。なお、本実施例2では、図9に示すように、多巻線トランス20の巻線n21,n22,n23の両端の内の一方が接地される。
 他の回路構成は、各単位変換器の構成(図2)を含め、前述の実施例1と同様である。
 次に、本実施例2の電源装置の動作の概略について説明する。
 電源装置の動作は、外部交流系統100の平常時と停電時では異なる。そこで、以下の説明において、平常時および停電時における動作を、それぞれ、第1モードおよび第2モードと記す。
 第1モードでは、外部交流系統100側から給電される電力が、電気自動車61,62,63側(充電状態)で受電される。この場合、V11,V12,V13を互いに同相とし、これらの電圧と、V21,V22,V23との各位相差を調整することにより、電気自動車ごとに充電電力を設定できる。したがって、電気自動車の蓄電池の容量や所望の充電スピードなどに応じて、充電電力を調整することができる。
 第2モードでは、電気自動車61,62,63間で電力を伝送することができる。例えば、外部交流系統100が停電した場合、充電の優先度が高い電気自動車や、充電を急ぐ電気自動車に対して、他の電気自動車に蓄電されている電力によって充電が可能である。さらに、実施例1と同様に、単位変換器11~13を動作させる。これにより、外部交流系統100の停電時に、電気自動車61~62側からの電力の流入によるV,V,Vの増大が抑制される。
 次に、第1モードおよび第2モードの各々について、本実施例2の電源装置の動作を具体的に説明する。
 図10は、第1モード、すなわち外部交流系統100の平常時における、本実施例2の電源装置における電力伝送の状態を示す図である。
 図10に示すように、外部交流系統100側から給電される電力P11,P12,P13が、それぞれ多巻線トランス20の巻線n11,n12,n13に入力される。電力P11~P13は、巻線n21~n23に伝送され、巻線n22~n23から出力される。巻線n21,n22,n23からそれぞれ出力される電力P21,P22およびP23は、それぞれ電気自動車61,62および63によって受電される。
 なお、本実施例2においては、多巻線トランス20の効率がほぼ100%であり、多巻線トランス20への総入力電力(P11+P12+P13)と、多巻線トランス20からの総出力電力(P21+P22+P23)は実質等しい。
 図11は、第1モード、すなわち外部交流系統100の平常時における、本実施例2の電源装置における制御の流れを示すフローチャートである。また、図12は、第1モードにおける本実施例2の電源装置における電流および電圧を示す動作波形図である。
 以下、図11に示す制御の流れについて、適宜、図12を参照しながら説明する。
 まず、ステップS31において、制御装置200は、電気自動車61,62,63への電力の配分P21,P22,P23を設定する。P21~P23は、電気自動車61~63に搭載される蓄電装置の状態(SOCなど)や所望の充電スピードなどに応じて変化するが、制御装置200は、例えば、巻線n21の両端電圧V21および巻線n21に流れる電流i21の検出値に基づいて、P21を算出する。また、制御装置200は、巻線n22の両端電圧V22および巻線n22に流れる電流i22の検出値に基づいてP22を算出し、巻線n23の両端電圧V23および巻線n23に流れる電流i23の検出値に基づいてP23を算出する。
 次に、ステップS32において、制御装置200は、単位変換器11,12,13の直流側電圧V,V,Vがバランスするように、すなわちV=V=Vとなるように、単位変換器11,12,13を制御する。また、制御装置200は、単位変換器21,22,23の直流側電圧V,V,Vがバランスするように、すなわちV=V=Vとなるように、単位変換器21,22,23を制御する。
 次に、ステップS33において、制御装置200は、単位変換器11,12,13の交流側の電圧V11,V12,V13が、一定電圧(定格電圧)で一定周波数の方形波交流電圧(図12)となるように、単位変換器11,12,13を制御する。本実施例2では、単位変換器11,12,13は、V11,V12,V13として、通流率50%で半導体スイッチング素子をオン・オフ制御して定電圧(定格電圧)・定周波数の方形波交流電圧を出力する。なお、V11,V12,V13は、相互に位相差はなく、後述するように位相の基準電圧として用いられる。なお、V11,V12,V13のいずれかを位相の基準電圧とすればよい。
 次に、ステップS34において、制御装置200は、単位変換器21の交流側の電圧V21が、所定電圧(定格電圧)付近であり、かつV11,V12,V13に対し位相差(図12における「δ」)を有するように、単位変換器21を制御する。なお、本実施例2では、制御装置200は、V21が、定電圧(定格電圧)・定周波数の方形波交流電圧になるように、かつ、V11,V12,V13に対して位相が遅れるように(図12)、単位変換器21を制御する。これにより、電気自動車61側へ電力P21が伝送される。
 次に、ステップS35において、制御装置200は、単位変換器22の交流側の電圧V22が、所定電圧(定格電圧)付近であり、かつV11,V12,V13に対し位相差(図12における「δ」)を有するように、単位変換器22を制御する。なお、本実施例2では、制御装置200は、V22が、定電圧(定格電圧)・定周波数の方形波交流電圧になるように、かつ、V11,V12,V13に対して位相が遅れるように(図12)、単位変換器22を制御する。これにより、電気自動車62側へ電力P22が伝送される。
 次に、ステップS36において、制御装置200は、単位変換器23の交流側の電圧V23が、所定電圧(定格電圧)付近であり、かつV11,V12,V13に対し位相差(図12における「δ」)を有するように、単位変換器23を制御する。なお、本実施例2では、制御装置200は、V23が、定電圧(定格電圧)・定周波数の方形波交流電圧になるように、かつ、V11,V12,V13に対して位相が遅れるように(図12)、単位変換器23を制御する。これにより、電気自動車63側へ電力P23が伝送される。
 なお、図12においては、P21>P22>P23であり、δ>δ>δとなる。
 位相差δ,δ,δは、前述の実施例1と同様に、公知のDABコンバータの動作を考慮して設定できる。たとえば、P11,P12,P13,P21,P22,P23を、V~V、V21の位相差(δ)、V22の位相差(δ)、V23の位相差(δ)、多巻線トランス20の回路定数(漏れインダクタンスなど)を用いて数式で表し、これらの数式および「多巻線トランスへの入力電力(P11+P12+P13)=多巻線トランスからの出力電力(P21+P22+P23)」という条件に基づいて、制御装置200において算出される。
 なお、本実施例2の電源装置の第2モードの動作は、実施例1(図1)における発電装置31、蓄電装置32、負荷装置33を、それぞれ電気自動車61、電気自動車62、電気自動車63に置き換えれば、実施例1と同様の動作となる。この場合、外部交流系統100の停電時に、電気自動車61および電気自動車62からの給電電力が、電気自動車63によって受電され、電気自動車63に搭載された蓄電池が充電される。
 なお、本発明は前述した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、各実施例の構成の一部について、他の構成の追加・削除・置き換えをすることが可能である。
 例えば、多巻線トランスが備える巻線数は、6巻線に限らず、交流側が直列接続される単位変換器(整流器)の個数(2以上)や、発電装置や蓄電装置および負荷装置の個数に応じて、適宜設定される。なお、上述の実施例の電源装置と同様に、少なくとも蓄電装置および受電機器(負荷装置、蓄電装置(充電時))が少なくとも1台ずつ接続される場合、巻線数は少なくとも4巻線となる(単位変換器の直列数を2以上とする)。
 また、外部交流系統100からの電力は、単相交流電力に限らず、三相交流電力でもよい。この場合、単位変換器1~3(整流器)として、三相フルブリッジ回路が適用される。
1,2,3 単位変換器、10 リアクトル、20 多巻線トランス、11,12,13,21,22,23 単位変換器、31 発電装置、32 蓄電装置、33 負荷装置、61,62,63 電気自動車、100 外部交流系統、200 制御装置

Claims (10)

  1.  多巻線トランスと、
     前記多巻線トランスに接続される複数の電力変換器と、
    を備える電源装置において、
     前記多巻線トランスが有する複数の第1巻線には、前記複数の電力変換器の内、複数の第1電力変換器が接続され、
     前記第1電力変換器は、整流器部と、前記整流器部に接続され、直流電力を交流電力に変換する変換器部と、を備え、
     複数の前記整流器部の交流側は、互いに直列接続されるとともに、外部交流系統に接続され、
     前記整流器部の直流側は、前記変換器部の直流側に接続され、
     前記変換器部の交流側は、前記第1巻線に接続され、
     前多巻線トランスの第2巻線には、前記複数の電力変換器の内、第2電力変換器が接続され、
     前記第2電力変換器の交流側が前記第2巻線に接続され、
     前記第2電力変換器の直流側には蓄電装置が接続され、
     前多巻線トランスの第3巻線には、前記複数の電力変換器の内、第3電力変換器が接続され、
     前記第3電力変換器の交流側が前記第3巻線に接続され、
     前記第3電力変換器の直流側には受電機器が接続され、
     前記外部交流系統の平常時には、複数の前記第1電力変換器および前記第2電力変換器を制御することにより、複数の前記第1電力変換器と、前記複数の第1巻線と、前記第2巻線と、前記第2電力変換器とを介して、前記外部交流系統からの電力が前記蓄電装置に伝送され、
     前記外部交流系統の平常時には、複数の前記第1電力変換器および前記第3電力変換器を制御することにより、複数の前記第1電力変換器と、前記複数の第1巻線と、前記第3巻線と、前記第3電力変換器とを介して、前記外部交流系統からの電力が前記受電機器に伝送され、
     前記外部交流系統の停電時には、前記第2電力変換器および前記第3電力変換器を制御することにより、前記第2電力変換器と、前記第2巻線と、前記第3巻線と、前記第3電力変換器とを介して、前記蓄電装置からの電力が前記受電機器に伝送されることを特徴とする電源装置。
  2.  請求項1に記載の電源装置において、
     前記外部交流系統の停電時には、前記第1電力変換器の前記変換器部を動作させることを特徴とする電源装置。
  3.  請求項2に記載の電源装置において、
     複数の前記第1電力変換器における複数の前記変換器部は、直流側電圧がバランスするように制御されることを特徴とする電源装置。
  4.  請求項2に記載の電源装置において、
     複数の前記第1電力変換器における複数の前記変換器部は、交流側の電圧がバランスするように制御されることを特徴とする電源装置。
  5.  請求項1に記載の電源装置において、
     前記第1電力変換器の前記変換器部と前記第2電力変換器および前記第3電力変換器の各交流側の電圧は方形波交流電圧であり、
     前記外部交流系統の平常時には、前記第2電力変換器が、前記第1電力変換器の前記方形波交流電圧と前記第2電力変換器の前記方形波交流電圧との間に位相差を設定するように制御され、
     前記外部交流系統の平常時には、前記第3電力変換器が、前記第1電力変換器の前記方形波交流電圧と前記第3電力変換器の前記方形波交流電圧との間に位相差を設定するように制御され、
     前記外部交流系統の停電時には、前記第3電力変換器が、前記第2電力変換器の前記方形波交流電圧と前記第3電力変換器の前記方形波交流電圧との間に位相差を設定するように制御されることを特徴とする電源装置。
  6.  請求項1に記載の電源装置において、
     前多巻線トランスの第4巻線には、前記複数の電力変換器の内、第4電力変換器が接続され、
     前記第4電力変換器の交流側が前記第4巻線に接続され、
     前記第4電力変換器の直流側には発電装置が接続され、
     前記外部交流系統の平常時には、前記第4電力変換器および前記第2電力変換器を制御することにより、前記第4電力変換器と、前記第4巻線と、前記第2巻線と、前記第2電力変換器とを介して、前記発電装置からの電力が前記蓄電装置に伝送され、
     前記外部交流系統の平常時には、前記第4電力変換器および前記第3電力変換器を制御することにより、前記第4電力変換器と、前記第4巻線と、前記第3巻線と、前記第3電力変換器とを介して、前記発電装置からの電力が前記受電機器に伝送され、
     前記外部交流系統の停電時には、前記第4電力変換器および前記第3電力変換器を制御することにより、前記第4電力変換器と、前記第4巻線と、前記第3巻線と、前記第3電力変換器とを介して、前記発電装置からの電力が前記受電機器に伝送されることを特徴とする電源装置。
  7.  請求項1に記載の電源装置において、
     前記受電機器が、負荷装置であることを特徴とする電源装置。
  8.  請求項1に記載の電源装置において、
     前記受電機器が、前記蓄電装置とは別の蓄電装置であることを特徴とする電源装置。
  9.  請求項1に記載の電源装置において、
     前記蓄電装置は電気自動車に搭載されることを特徴とする電源装置。
  10.  請求項8に記載の電源装置において、
     前記別の蓄電装置は電気自動車に搭載されることを特徴とする電源装置。
PCT/JP2020/009065 2019-04-23 2020-03-04 電源装置 WO2020217721A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20795222.7A EP3961847A4 (en) 2019-04-23 2020-03-04 POWER SUPPLY DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-081628 2019-04-23
JP2019081628A JP7307583B2 (ja) 2019-04-23 2019-04-23 電源装置

Publications (1)

Publication Number Publication Date
WO2020217721A1 true WO2020217721A1 (ja) 2020-10-29

Family

ID=72942492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009065 WO2020217721A1 (ja) 2019-04-23 2020-03-04 電源装置

Country Status (3)

Country Link
EP (1) EP3961847A4 (ja)
JP (1) JP7307583B2 (ja)
WO (1) WO2020217721A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022185478A (ja) * 2021-06-02 2022-12-14 株式会社日立製作所 電力変換装置、電力変換システム、および、電力変換装置の制御方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04251532A (ja) * 1991-01-09 1992-09-07 Sanyo Electric Works Ltd 無停電直流電源装置
US20020101747A1 (en) 2001-01-27 2002-08-01 Andreas Falk Medium frequency energy supply for rail vehicles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04251532A (ja) * 1991-01-09 1992-09-07 Sanyo Electric Works Ltd 無停電直流電源装置
US20020101747A1 (en) 2001-01-27 2002-08-01 Andreas Falk Medium frequency energy supply for rail vehicles

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
C. GUZ. ZHENGL. XUK. WANGY. LI: "Modeling and Control of a Multiport Power Electronic Transformer (PET) for Electric Traction Applications", IEEE TRANSACTIONS ON POWER ELECTRONICS, vol. 31, no. 2, February 2016 (2016-02-01), pages 915 - 927, XP011670454, DOI: 10.1109/TPEL.2015.2416212
See also references of EP3961847A4

Also Published As

Publication number Publication date
EP3961847A4 (en) 2023-02-22
EP3961847A1 (en) 2022-03-02
JP2020182257A (ja) 2020-11-05
JP7307583B2 (ja) 2023-07-12

Similar Documents

Publication Publication Date Title
CA2965488C (en) Multi-mode energy router
US8824179B2 (en) Soft-switching high voltage power converter
RU2473159C1 (ru) Преобразователь электрической мощности
US10998824B2 (en) Electric power conversion device
Kushwaha et al. A modified luo converter-based electric vehicle battery charger with power quality improvement
JP5279797B2 (ja) 電力変換装置
JP6552739B2 (ja) 並列電源装置
US10044278B2 (en) Power conversion device
JP6736370B2 (ja) 電力変換システム
US10855193B2 (en) Vehicle power supply device
JP5546685B2 (ja) 充電装置
US11664737B2 (en) DC transformation system
US10784704B2 (en) On-board charging system
US20100102762A1 (en) Power converter
JP7209868B2 (ja) Dc/dcコンバータ及び電力変換装置
JP6736369B2 (ja) 電力変換システム
US20120025609A1 (en) Very high efficiency uninterruptible power supply
US11065968B2 (en) Integrated multi-source IPT system
KR101027988B1 (ko) 직렬 보상 정류기 및 이를 포함하는 직렬 보상 무정전 전원장치
US20200313565A1 (en) Multi-segment and nonlinear droop control for parallel operating active front end power converters
JP2010119239A (ja) Smes装置、smes用インターフェース装置及びその駆動方法
WO2020217721A1 (ja) 電源装置
JP5047210B2 (ja) 電力変換装置
WO2019076874A1 (en) DC-DC CONVERTER ASSEMBLY
JP6642014B2 (ja) 電源システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020795222

Country of ref document: EP

Effective date: 20211123