[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019214584A1 - 超声波传感器及其制作方法、超声波传感器阵列和显示装置 - Google Patents

超声波传感器及其制作方法、超声波传感器阵列和显示装置 Download PDF

Info

Publication number
WO2019214584A1
WO2019214584A1 PCT/CN2019/085701 CN2019085701W WO2019214584A1 WO 2019214584 A1 WO2019214584 A1 WO 2019214584A1 CN 2019085701 W CN2019085701 W CN 2019085701W WO 2019214584 A1 WO2019214584 A1 WO 2019214584A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
substrate
insulating layer
ultrasonic sensor
chamber
Prior art date
Application number
PCT/CN2019/085701
Other languages
English (en)
French (fr)
Inventor
赵磊
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/642,146 priority Critical patent/US11602771B2/en
Publication of WO2019214584A1 publication Critical patent/WO2019214584A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • B06B1/0629Square array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/48Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using wave or particle radiation means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing

Definitions

  • Embodiments of the present disclosure provide an ultrasonic sensor and a method of fabricating the same, an ultrasonic sensor array, and a display device.
  • Ultrasonic sensors can transmit ultrasonic waves as well as ultrasonic waves. They have been widely used in industrial, defense, and biomedical applications. Compared with traditional bulk ultrasonic sensors, capacitive micromachined ultrasonic sensors (English full name: Capacitive Micromachined Ultrasonic Transducer, CMUT for short) It has the advantages of easy arraying, high integration, strong anti-interference ability, etc., and has become a hot spot in recent years.
  • At least one embodiment of the present disclosure provides an ultrasonic sensor including: a substrate; a first electrode on the substrate; an insulating layer on a side of the first electrode away from the substrate; and a second electrode located in the insulation a layer away from a side of the first electrode and disposed opposite the first electrode, the ultrasonic sensor further comprising a through hole penetrating the substrate and the first electrode and a chamber located in the insulating layer The chamber is opposite to the first electrode and the second electrode, the chamber is in communication with the through hole, and the second electrode is not in contact with the chamber.
  • an orthographic projection of the first electrode on the substrate and an orthographic projection of the second electrode on the substrate at least partially overlap, the chamber
  • An orthographic projection on the substrate simultaneously at least partially overlaps an orthographic projection of the first electrode on the substrate and an orthographic projection of the second electrode on the substrate.
  • the first electrode is at least partially exposed in the chamber.
  • the insulating layer includes: an organic insulating layer on a side of the first electrode away from the substrate; and an inorganic insulating layer away from the organic insulating layer One side of the organic insulating layer, the chamber is located in the organic insulating layer.
  • the area of the cross section of the chamber cut by the plane parallel to the substrate is gradually decreased in the direction from the first electrode to the second electrode.
  • an ultrasonic sensor further includes: a protective layer located on a side of the second electrode away from the substrate.
  • At least one embodiment of the present disclosure also provides an ultrasonic sensor array including a plurality of the above ultrasonic sensors.
  • a plurality of the ultrasonic sensors are arranged in a matrix.
  • At least one embodiment of the present disclosure further provides a display device including: the above-described ultrasonic sensor array; and a plurality of pixels integrated in the ultrasonic sensor array, the second electrode being away from the first One side of the electrode.
  • the pixel includes a self-luminous structure.
  • the pixel includes an organic electroluminescent structure.
  • At least one embodiment of the present disclosure also provides a method of fabricating an ultrasonic sensor, comprising: forming a first electrode on a substrate; forming a through hole penetrating the substrate and the first electrode; and forming the through hole Forming an insulating layer on a side of the first electrode away from the substrate; forming a second electrode on a side of the insulating layer away from the first electrode, the second electrode being disposed opposite to the first electrode; Forming a chamber in the insulating layer by using the through hole, the chamber is opposite to the first electrode and the second electrode, the chamber is in communication with the through hole, and the second electrode Not in contact with the chamber.
  • forming the chamber in the insulating layer by using the through hole includes: facing the insulating layer from a side where the substrate is located through the through hole A plasma gas etch is performed to form a chamber in the insulating layer.
  • forming the chamber in the insulating layer by using the through hole includes: passing the through hole through O 2 plasma and/or O 3 plasma
  • the insulating layer is etched on a side where the substrate is located to form a chamber in the insulating layer.
  • forming the through hole penetrating the substrate and the first electrode includes: forming a through hole in the substrate and the first electrode by laser cauterization a through hole of the substrate and the first electrode; and a double-side polishing process on a surface of the substrate and the first electrode on which the through hole is formed.
  • forming the insulating layer on a side of the first electrode formed with the through hole away from the substrate includes: forming the through hole An organic insulating layer and an inorganic insulating layer are sequentially formed on a side of the first electrode away from the substrate.
  • an orthographic projection of the first electrode on the substrate and an orthographic projection of the second electrode on the substrate at least partially overlap, the chamber
  • An orthographic projection on the substrate simultaneously at least partially overlaps an orthographic projection of the first electrode on the substrate and an orthographic projection of the second electrode on the substrate.
  • the first electrode is at least partially exposed in the chamber.
  • the area of the cross section of the chamber cut by the plane parallel to the substrate is gradually decreased in the direction from the first electrode to the second electrode.
  • FIG. 1 is a schematic structural diagram of an ultrasonic sensor according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of another ultrasonic sensor according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram of an ultrasonic sensor according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a display device according to an embodiment of the present disclosure.
  • FIG. 5 is a flowchart of a method for fabricating an ultrasonic sensor according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a manufacturing process of an ultrasonic sensor according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of a manufacturing process of an ultrasonic sensor according to an embodiment of the present disclosure.
  • FIG. 8a is a schematic structural diagram of a manufacturing process of an ultrasonic sensor according to an embodiment of the present disclosure
  • FIG. 8b is a schematic structural diagram of a manufacturing process of an ultrasonic sensor according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a manufacturing process of an ultrasonic sensor according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a manufacturing process of an ultrasonic sensor according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a capacitive micromachined ultrasonic sensor (CMUT) according to an embodiment of the present disclosure.
  • the ultrasonic sensor 10 includes a substrate 100, a first electrode 101, an insulating layer 200, and a second electrode 102.
  • the insulating layer 200 is located on a side of the first electrode 101 away from the substrate 200; the second electrode 102 is located on a side of the insulating layer 200 away from the first electrode 101 and is disposed opposite to the first electrode 101, and the ultrasonic sensor 10 further includes a through substrate 100 and a first a through hole H of an electrode 101 and a chamber 20 in the insulating layer 200, the chamber 20 is opposite to the first electrode 101 and the second electrode 102, the chamber 20 is in communication with the through hole H, and the second electrode 102 and the chamber 20 does not touch.
  • the ultrasonic sensor 10 includes a substrate 100 , a first electrode 101 and a second electrode 102 disposed on the substrate 100 and disposed opposite to each other, and between the first electrode 101 and the second electrode 102 .
  • the first electrode 101 is adjacent to the substrate 100 with respect to the second electrode 102.
  • the ultrasonic sensor 10 further includes: a through hole H penetrating the substrate 100 and the first electrode 101 in the thickness direction DD', and a chamber 20 located in the insulating layer 200 corresponding to the position of the first electrode 101 and the second electrode 102; The chamber 20 is in communication with the through hole H; the second electrode 102 is not in contact with the chamber 20.
  • the chamber 20 located in the insulating layer 200 is not in contact with the second electrode 102, that is, a portion of the insulating layer 200 remains between the chamber 20 and the second electrode 102.
  • the portion of the insulating layer constitutes the vibrating film M (refer to FIG. 1) in the ultrasonic sensor 10, so that when the AC voltage of a certain frequency is applied to the first electrode and the second electrode, the vibrating film M is vibrated up and down, resulting in vibration.
  • the ultrasonic sensor is used as the ultrasonic transmitting unit at this time); or, after the DC bias voltage is applied to the first electrode and the second electrode, the vibrating film M vibrates under the action of the external ultrasonic wave, and the capacitance value formed by the two electrode plates It changes with the vibration of the film to produce a detectable electrical signal (when the ultrasonic sensor acts as an ultrasonic receiving unit).
  • the ultrasonic sensor provided by the embodiment of the present disclosure passes through a through hole provided through the substrate and the first electrode in the thickness direction, and a chamber located in the insulating layer between the first electrode and the second electrode, and The through hole is in communication with the chamber; in an actual manufacturing method, the chamber may be formed along the through hole, for example, plasma etching is performed on the insulating layer by using the through hole, thereby forming the ultrasonic sensor in the present disclosure;
  • the insulating layer between the chamber and the second electrode constitutes a vibrating film, thereby enabling ultrasonic sensing including ultrasonic emission and ultrasonic reception.
  • the orthographic projection of the first electrode 101 on the substrate 100 at least partially overlaps the orthographic projection of the second electrode 102 on the substrate 100, and the chamber 20 is positive on the substrate 100.
  • the projection at least partially overlaps the orthographic projection of the first electrode 101 on the substrate 100 and the orthographic projection of the second electrode 102 on the substrate 100.
  • the first electrode 101 is at least partially exposed in the chamber 20.
  • the embodiments of the present disclosure include but are not limited thereto, and the specific shape of the cross section of the present disclosure for the chamber 20 located in the insulating layer 200 being perpendicular to the surface of the substrate 100 may also be other shapes, such as a square shape, a circular shape, Oval shape, etc., depending on the needs and the manufacturing process chosen.
  • the insulating layer 200 includes: an organic insulating layer 201 on a side of the first electrode 101 away from the substrate 100; and an inorganic insulating layer 202 on a side of the organic insulating layer 201 away from the substrate 100, the chamber 20 Located in the organic insulating layer 201.
  • the inorganic insulating layer 202 on the one hand can improve the adhesion between the electrodes (including the first electrode 101 and the second electrode 102) and the organic insulating layer 201.
  • the plasma gas can etch the organic insulating layer 201 without etching the inorganic insulating layer 202, thereby facilitating control of the process.
  • the insulating layer 200 provided with the above-described chamber 20 is generally formed of an organic material, such as a resin or the like; and the electrodes (including the first electrode 101 and the second electrode 102) are generally made of a metal material; Therefore, for the second electrode 102, if it is directly in contact with the insulating layer of the organic material, the adhesion between the two is low, and delamination or the like is likely to occur, and thus, in some examples, as shown in FIG.
  • the insulating layer 200 may include an organic insulating layer 201 and an inorganic insulating layer 202 sequentially disposed in the thickness direction DD'.
  • the inorganic insulating layer 202 is adjacent to the second electrode 102 with respect to the organic insulating layer 201, and the chamber is located at the organic In the insulating layer 201; thus, the second electrode 102 is connected to the organic insulating layer 201 through the inorganic insulating layer 202, and the inorganic insulating layer 202 has good adhesion between the second electrode 102 and the organic insulating layer 201, thereby The overall bonding effect is guaranteed.
  • the inorganic insulating layer 202 can also prevent water oxygen in the organic insulating layer 201 from eroding the second electrode 102.
  • the embodiments of the present disclosure include, but are not limited to, the material of the second electrode 102 can be adjusted according to actual conditions (to ensure that the second electrode 102 and the insulating layer 200 have sufficient adhesion), and only a single layer of insulation needs to be provided.
  • the layer is OK (refer to the setting mode of Figure 1).
  • the chamber 20 in the organic insulating layer 201 does not penetrate the organic insulating layer 201; It is also possible to penetrate the organic insulating layer 201, but not to penetrate the inorganic insulating layer 202; the invention is not limited thereto, as long as a portion of the insulating layer 200 is left between the chamber 20 and the second electrode 102 to form a vibrating film.
  • the ultrasonic sensor further includes a protective layer 300 on a side of the second electrode 102 facing away from the substrate 100 to protect the second electrode 102 from human factors or environmental factors.
  • the second electrode 102 causes damage, thereby adversely affecting the ultrasonic sensing of the entire ultrasonic sensor.
  • An embodiment of the present invention further provides an ultrasonic sensor array including the above-described plurality of ultrasonic sensors, which has the same structure and advantageous effects as the ultrasonic sensor provided in the above embodiments. Since the foregoing embodiment has been described in detail for the structure and advantageous effects of the ultrasonic sensor, it will not be described herein.
  • the plurality of ultrasonic sensors 10 are arranged in a matrix on the substrate 100.
  • the above-mentioned plurality of ultrasonic sensors 10 arranged in a matrix on the substrate are generally manufactured by the same manufacturing process; that is, the first of all the ultrasonic sensors One electrode is made of the same material and is made by the same patterning process. Similarly, the second electrode is made of the same material and processed by the same patterning process; the through holes H of all ultrasonic sensors are also processed by the same process. Processed, the chamber 20 is also processed by the same manufacturing process.
  • the second electrodes 102 in the ultrasonic sensors 10 of the same pair are sequentially connected, and the ultrasonic sensors 10 in the same column are sequentially connected.
  • the first electrodes 101 (located under the second electrode 102, not shown in FIG. 3, may be referred to FIG. 2) are sequentially connected; of course, the first electrodes 101 in the ultrasonic sensors 10 of the same pair may be sequentially connected.
  • the second electrodes 102 of the ultrasonic sensors 10 in the same row are sequentially connected.
  • the ultrasonic sensor array can be applied to the display field to implement at least one of touch and fingerprint recognition.
  • embodiments of the present disclosure include, but are not limited to, the ultrasonic sensor array can be applied to the fields of ranging, object surface detection, flaw detection, and the like.
  • FIG. 4 is a schematic diagram of a display device according to an embodiment of the present disclosure.
  • the display device includes: the ultrasonic sensor array 1 described above; and a plurality of pixels 2 integrated in a side of the ultrasonic sensor array 1 where the second electrode 102 is away from the first electrode 101. That is, the ultrasonic sensor array can be integrated in the display device, and can be used to implement at least one of touch and fingerprint recognition.
  • pixel 2 includes a self-illuminating structure. Therefore, the display device does not need to provide a backlight module, thereby facilitating the integration of the above ultrasonic sensor array and pixels.
  • pixel 2 described above includes an organic electroluminescent structure.
  • the display device includes the above-described ultrasonic sensor array, that is, in this case, the ultrasonic sensor array can be used as an application field of fingerprint recognition, touch operation, and the like, and combined with a display device; the display device has The same structure and advantageous effects as the ultrasonic sensor provided in the foregoing embodiment. Since the foregoing embodiment has been described in detail for the structure and advantageous effects of the ultrasonic sensor, it will not be described herein.
  • the display device may specifically include at least a liquid crystal display panel and a self-illuminating display panel (for example, an OLED (Organic Light Emitting Diode) display panel), and the display panel may be applied to the liquid crystal display.
  • a liquid crystal display panel for example, an OLED (Organic Light Emitting Diode) display panel
  • OLED Organic Light Emitting Diode
  • the display device includes a self-illuminating unit arranged in a matrix (for example, including an organic light emitting diode OLED), and the self-light emitting unit is integrated in a side of the ultrasonic sensor with the second electrode facing away from the first electrode; Integrating a self-illuminating unit in a display device on an ultrasonic sensor (for use as a touch or fingerprint recognition, etc.), that is, using an ultrasonic sensor as a back plate of a display device (for example, as an LTPS-AMOLED backplane), thereby The display devices are integrally connected together, which improves the functional integration of the entire device.
  • a self-illuminating unit arranged in a matrix (for example, including an organic light emitting diode OLED), and the self-light emitting unit is integrated in a side of the ultrasonic sensor with the second electrode facing away from the first electrode; Integrating a self-illuminating unit in a display device on an ultrasonic sensor (for use as a touch or fingerprint recognition, etc
  • the embodiment of the invention further provides a method for manufacturing an ultrasonic sensor. As shown in FIG. 5, the manufacturing method includes the following steps S101-S105.
  • Step S101 As shown in FIG. 6, the first electrode 101 is formed on the substrate 100.
  • the substrate 100 needs to be cleaned before the first electrode 101 is formed, and then a metal film layer can be formed on the substrate 100 by deposition using a metal material (Mo/Al/Ti/Nd/Nb/Ni/Ag, etc.). And forming the first electrode 101 by a patterning process.
  • a metal material Mo/Al/Ti/Nd/Nb/Ni/Ag, etc.
  • the first electrode 101 formed as described above may have a thickness of 100 nm to 1000 nm and an area of 10 ⁇ m ⁇ 10 ⁇ m to 500 ⁇ m ⁇ 500 ⁇ m.
  • the patterning process may include a photolithography process, or may include a photolithography process and an etching process, and may also include printing, inkjet, and the like for forming a predetermined pattern.
  • lithography process refers to a process of forming a pattern by using a photoresist, a mask, an exposure machine, etc., including a film forming, exposure, and developing process.
  • the substrate 100 may be a glass substrate, a silicon substrate (Si Wafer), or a plastic substrate.
  • the present invention is not limited thereto. In practice, a substrate of an appropriate material may be selected as needed.
  • Step S102 As shown in FIG. 7, a through hole H penetrating the substrate 100 and the first electrode 101 is formed on the substrate 100 on which the first electrode 101 is formed.
  • a through hole H penetrating the substrate 100 and the first electrode 101 can be formed on the substrate 100 on which the first electrode 101 is formed by laser cauterization.
  • the diameter ⁇ of the through hole H may be: 10 ⁇ m to 500 ⁇ m.
  • the through hole forming the through substrate and the first electrode includes: a through hole penetrating the substrate and the first electrode in the substrate and the first electrode by laser cauterization; and a substrate on which the through hole is formed
  • the surface of the first electrode is subjected to double-side polishing.
  • the through hole H is formed by laser cauterization, the melt is easily condensed, resulting in unevenness of the substrate, which is disadvantageous for the subsequent manufacturing process. Therefore, in the case where the through hole H is formed by laser cauterization, Preferably, after forming the via hole H, the method further includes: performing double-side polishing on the substrate 100 on which the via hole H is formed to re-level the substrate.
  • the formation of the through hole H by means of laser cauterization is only a preferred mode, and the present invention is not limited thereto; the through hole may be formed by other means, for example, wet etching may be used; In the case where the through hole H is formed by wet etching, it is not necessary to provide a subsequent double-side polishing process, but the substrate 100 on which the first electrode 101 is formed should be double-sided protected before the etching is performed. .
  • Step S103 As shown in FIG. 8a or 8b, an insulating layer 200 is formed on the first electrode 101 on which the through holes H are formed.
  • a resin material is first used, and an organic insulating layer 201 is formed on the first electrode 101 on which the via hole H is formed by coating; then in the organic insulating layer 201
  • the inorganic insulating layer 202 is formed by using an inorganic insulating material (for example, SixOy/SixNy/SixOyNz/AlxOy/TixOy, etc.) (of course, this step may be selected according to actual needs, and may be referred to FIG. 8a).
  • the thickness of the formed organic insulating layer 201 may be 10 ⁇ m to 200 ⁇ m, and the thickness of the inorganic insulating layer 202 may be 100 nm to 1000 nm.
  • Step S104 As shown in FIG. 9, on the substrate 100 on which the insulating layer 200 is formed, the second electrode 102 disposed opposite to the first electrode 101 is formed.
  • a metal material layer (Mo/Al/Ti/Nd/Nb/Ni/Ag, etc.) may be deposited on the substrate 100 on which the insulating layer 200 is formed, and then a second electrode is formed by a patterning process. 102.
  • the formed second electrode 102 may have a thickness of 100 nm to 1000 nm and an area of 10 ⁇ m ⁇ 10 ⁇ m to 500 ⁇ m ⁇ 500 ⁇ m.
  • Step S105 As shown in FIG. 10, a chamber 20 is formed in the insulating layer 200 by using a through hole H.
  • the chamber 20 is opposed to the first electrode 101 and the second electrode 102, and the chamber 20 is in communication with the through hole H, and the second The electrode 102 is not in contact with the chamber 20. That is, at a position along the through hole H of the back surface of the substrate 100 on which the insulating layer 200 is formed, the chamber 20 is formed in the insulating layer 200, and the chamber 20 does not penetrate the insulating layer 200 (to ensure formation of a vibration film).
  • the forming a chamber in the insulating layer by using the via hole includes: performing a plasma gas etch on the insulating layer from a side where the substrate is located through the via hole to form a chamber in the insulating layer.
  • the insulating layer is etched from the side where the substrate is located through the via holes using O 2 plasma and/or O 3 plasma to form a chamber in the insulating layer.
  • the chamber 20 is formed by etching in the insulating layer 200 at a position along the through hole H of the back surface of the substrate 100 on which the insulating layer 200 is formed, using an O 2 plasma and/or O 3 plasma; the organic insulating layer is included in the insulating layer 200
  • the chamber 20 may be formed only in the organic insulating layer 201 while the inorganic insulating layer 202 is left.
  • the diameter ⁇ of the chamber 20 may be from 10 ⁇ m to 500 ⁇ m.
  • the insulating layer 200 shown in FIG. 8b includes In the case of the organic insulating layer 201 and the inorganic insulating layer 202, the chamber 20 formed in step S105 may not penetrate the organic insulating layer 201 as shown in FIG. 10, or may penetrate the organic insulating layer 201 but not penetrate the inorganic insulating layer. 202; The disclosure does not limit this, as long as a portion of the insulating layer 200 is left between the chamber 20 and the second electrode 102 to form a vibrating film.
  • the orthographic projection of the first electrode on the substrate at least partially overlaps the orthographic projection of the second electrode on the substrate, and the orthographic projection of the chamber on the substrate simultaneously with the orthographic projection of the first electrode on the substrate An orthographic projection of the second electrode on the substrate at least partially overlaps.
  • the first electrode is at least partially exposed in the chamber.
  • the area of the cross section of the chamber that is parallel to the plane parallel to the substrate is gradually reduced in the direction from the first electrode to the second electrode.
  • the protective layer 300 may also be formed (refer to FIG. 2);
  • the layer 300 may be a SixOy/SixNy/SixOyNz/AlxOy/TixOy or the like.
  • the serial number of the above-mentioned manufacturing steps does not necessarily represent the successive manufacturing relationship; for example, in the present invention, the steps of forming the protective layer 300 and the step of forming the chamber 20 are not limited, and The protective layer 300 is formed first, and then the chamber 20 is formed; the chamber 20 may be formed first, and then the protective layer 300 may be formed.
  • the second electrode 102 may be formed in step S104, and the chamber 20 may be formed in step S105.
  • Step S105 may be performed first.
  • the chamber 20 is formed, and the second electrode 102 is formed in step S104.
  • a through hole penetrating through the substrate and the first electrode in the thickness direction is formed, and a cavity in the insulating layer between the first electrode and the second electrode is formed along the through hole, thereby forming an ultrasonic wave.
  • the sensor enables ultrasonic sensing including ultrasonic emission and ultrasonic reception.
  • the size of the chamber can be adjusted by the control process, and the size of the ultrasonic sensor can be controlled by the above-described patterning process.
  • the corresponding parts in the embodiments of the ultrasonic sensor and the ultrasonic sensor may be referred to correspondingly, and details are not described herein; other setting structures in the ultrasonic sensor and the ultrasonic sensor embodiment are described. , can refer to the above preparation method corresponding to the preparation, adjust the corresponding production steps, and will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

一种超声波传感器(10),包括基板(100)、位于基板(100)上的第一电极(101)、位于第一电极(101)远离基板(100)的一侧的绝缘层(200)、位于绝缘层(200)远离第一电极(101)的一侧的第二电极(102)。第二电极(102)与第一电极(101)相对设置。超声波传感器(10)还包括贯穿基板(100)和第一电极(101)的通孔(H)和位于绝缘层(200)中的腔室(20),腔室(20)与第一电极(101)和第二电极(102)相对,腔室(20)与通孔(H)相连通,第二电极(102)与腔室(20)不接触。还提供一种超声波传感器的制作方法、超声波传感器阵列及显示装置。

Description

超声波传感器及其制作方法、超声波传感器阵列和显示装置
本申请要求于2018年05月10日递交的第201810445795.5号中国专利申请的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开实施例提供一种超声波传感器及其制作方法、超声波传感器阵列和显示装置。
背景技术
超声波传感器既可以发射超声波,也可以接收超声波,已经广泛应用在工业、国防、生物医学等方面;相比于传统散装超声传感器,电容式微加工超声波传感器(英文全称:Capacitive Micromachined Ultrasonic Transducer,简称:CMUT)具有易阵列化,集成度高,抗干扰能力强等优点,成为近年来人们关注的热点。
发明内容
本公开至少一个实施例提供一种超声波传感器,其包括:基板;第一电极,位于基板上;绝缘层,位于所述第一电极远离所述基板的一侧;第二电极,位于所述绝缘层远离所述第一电极的一侧,且与所述第一电极相对设置,所述超声波传感器还包括贯穿所述基板和所述第一电极的通孔和位于所述绝缘层中的腔室,所述腔室与所述第一电极和所述第二电极相对,所述腔室与所述通孔相连通,所述第二电极与所述腔室不接触。
例如,在本公开一实施例提供的超声波传感器中,所述第一电极在所述基板上的正投影与所述第二电极在所述基板上的正投影至少部分交叠,所述腔室在所述基板上的正投影同时与所述第一电极在所述基板上的正投影和所述第二电极在所述基板上的正投影至少部分交叠。
例如,在本公开一实施例提供的超声波传感器中,所述第一电极至少部分暴露在所述腔室中。
例如,在本公开一实施例提供的超声波传感器中,所述绝缘层包括:有机 绝缘层,在所述第一电极远离所述基板的一侧;以及无机绝缘层,在所述有机绝缘层远离所述有机绝缘层的一侧,所述腔室位于所述有机绝缘层中。
例如,在本公开一实施例提供的超声波传感器中,沿所述第一电极到第二电极的方向上,所述腔室被与所述基板平行的面所截的横截面的面积逐渐减小。
例如,本公开一实施例提供的超声波传感器还包括:位于所述第二电极远离所述基板的一侧的保护层。
本公开至少一个实施例还提供一种超声波传感器阵列,包括多个上述的超声波传感器。
例如,在本公开一实施例提供的超声波传感器阵列中,多个所述超声波传感器呈矩阵排列。
本公开至少一个实施例还提供一种显示装置,其包括:上述的超声波传感器阵列;以及多个像素,所述多个像素集成于所述超声波传感器阵列中所述第二电极远离所述第一电极的一侧。
例如,在本公开一实施例提供的显示装置中,所述像素包括自发光结构。
例如,在本公开一实施例提供的显示装置中,所述像素包括有机电致发光结构。
本公开至少一个实施例还提供一种超声波传感器的制作方法,其包括:在基板上形成第一电极;形成贯穿所述基板和所述第一电极的通孔;在形成有所述通孔的所述第一电极远离所述基板的一侧形成绝缘层;在所述绝缘层远离所述第一电极的一侧形成第二电极,所述第二电极与所述第一电极相对设置;以及利用所述通孔在所述绝缘层中形成腔室,所述腔室与所述第一电极和所述第二电极相对,所述腔室与所述通孔相连通,所述第二电极与所述腔室不接触。
例如,在本公开一实施例提供的显示装置中,利用所述通孔在所述绝缘层中形成所述腔室包括:通过所述通孔从所述基板所在的一侧对所述绝缘层进行等离子气体刻蚀,以在所述绝缘层中形成腔室。
例如,在本公开一实施例提供的显示装置中,利用所述通孔在所述绝缘层中形成所述腔室包括:采用O 2等离子体和/或O 3等离子体通过所述通孔从所述基板所在的一侧对所述绝缘层进行刻蚀,以在所述绝缘层中形成腔室。
例如,在本公开一实施例提供的显示装置中,形成贯穿所述基板和所述第一电极的所述通孔包括:采用激光烧灼的方式在所述基板和所述第一电极中形 成贯穿所述基板和所述第一电极的通孔;以及对形成有所述通孔的所述基板和所述第一电极的表面进行双面抛光研磨。
例如,在本公开一实施例提供的显示装置中,在形成有所述通孔的所述第一电极远离所述基板的一侧形成所述绝缘层包括:在形成有所述通孔的所述第一电极远离所述基板的一侧依次形成有机绝缘层和无机绝缘层。
例如,在本公开一实施例提供的显示装置中,所述第一电极在所述基板上的正投影与所述第二电极在所述基板上的正投影至少部分交叠,所述腔室在所述基板上的正投影同时与所述第一电极在所述基板上的正投影和所述第二电极在所述基板上的正投影至少部分交叠。
例如,在本公开一实施例提供的显示装置中,所述第一电极至少部分暴露在所述腔室中。
例如,在本公开一实施例提供的显示装置中,沿所述第一电极到第二电极的方向上,所述腔室被与所述基板平行的面所截的横截面的面积逐渐减小。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为根据本公开一实施例提供的一种超声波传感器的结构示意图;
图2为根据本公开一实施例提供的另一种超声波传感器的结构示意图;
图3为根据本公开一实施例提供的一种超声波传感器的结构示意图;
图4为根据本公开一实施例提供的一种显示装置的结构示意图;
图5为根据本公开一实施例提供的一种超声波传感器的制作方法流程图;
图6为根据本公开一实施例提供的一种超声波传感器的制作过程的结构示意图之一;
图7为根据本公开一实施例提供的一种超声波传感器的制作过程的结构示意图之一;
图8a为根据本公开一实施例提供的一种超声波传感器的制作过程的结构示意图之一;
图8b为根据本公开一实施例提供的一种超声波传感器的制作过程的结 构示意图之一;
图9为根据本公开一实施例提供的一种超声波传感器的制作过程的结构示意图之一;以及
图10为根据本公开一实施例提供的一种超声波传感器的制作过程的结构示意图之一。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
本公开一实施例提供一种超声波传感器。图1为根据本公开一实施例提供的一种电容式微加工超声波传感器(CMUT)的结构示意图。如图1所示,该超声波传感器10包括基板100、第一电极101、绝缘层200和第二电极102。绝缘层200位于第一电极101远离基板200的一侧;第二电极102位于绝缘层200远离第一电极101的一侧且与第一电极101相对设置,超声波传感器10还包括贯穿基板100和第一电极101的通孔H和位于绝缘层200中的腔室20,腔室20与第一电极101和第二电极102相对,腔室20与通孔H相连通,第二电极102与腔室20不接触。
例如,如图1所示,该超声波传感器10包括:基板100、位于基板100上的且相对设置的第一电极101和第二电极102,以及位于第一电极101和第二电极102之间的绝缘层200,第一电极101相对于第二电极102靠近基板100。该超声波传感器10还包括:沿厚度方向D-D’上贯穿基板100和 第一电极101的通孔H,以及位于绝缘层200中对应第一电极101和第二电极102位置的腔室20;该腔室20与通孔H连通;第二电极102与腔室20不接触。
在本公开实施例提供的超声波传感器10中,位于绝缘层200中的腔室20与第二电极102不接触,也就是说,在腔室20与第二电极102之间仍然保留部分绝缘层200,而该部分绝缘层则构成超声波传感器10中的振动薄膜M(参考图1),从而满足在第一电极和第二电极上施加一定频率的交流电压时,通过振动薄膜M发生上下振动,产生超声波(此时超声波传感器作为超声波发射单元);或者,在第一电极和第二电极上施加直流偏置电压后,振动薄膜M会在外部超声波的作用下产生振动,两电极板形成的电容值就会随薄膜的振动而改变,从而产生可探测的电信号(此时超声波传感器作为超声波接收单元)。
综上所述,本公开实施例提供的超声波传感器通过设置在沿厚度方向上贯穿基板和第一电极的通孔,以及位于第一电极和第二电极之间的绝缘层中的腔室,且通孔与腔室时连通的;在实际的制作方法中,可以沿通孔形成上述的腔室,例如,利用通孔对绝缘层进行等离子气体刻蚀,从而形成本公开中的超声波传感器;腔室与第二电极之间的绝缘层构成振动薄膜,从而能够实现包括超声波发射和超声波接收在内的超声波传感。
例如,在一些示例中,如图1所示,第一电极101在基板100上的正投影与第二电极102在基板100上的正投影至少部分交叠,腔室20在基板100上的正投影同时与第一电极101在基板100上的正投影和第二电极102在基板100上的正投影至少部分交叠。
例如,在一些示例中,如图1所示,第一电极101至少部分暴露在腔室20中。
例如,在一些示例中,如图1所示,沿第一电极101到第二电极102的方向上,腔室20被与基板100平行的面所截的横截面的面积逐渐减小。当然,本公开实施例包括但不限于此,本公开对于位于绝缘层200中的腔室20被垂直于基板100的面所截的截面的具体形状也可为其他形状,例如方形、圆形、椭圆形等,实际中根据需要以及选用的制作工艺而定。
例如,在一些示例中,绝缘层200包括:有机绝缘层201,在第一电极101远离基板100的一侧;以及无机绝缘层202,在有机绝缘层201远离基板 100的一侧,腔室20位于有机绝缘层201中。无机绝缘层202一方面可提高电极(包括第一电极101和第二电极102)和有机绝缘层201之间的粘附力。另一方面,当采用特定的等离子气体对绝缘层200进行刻蚀时,等离子气体可刻蚀有机绝缘层201而不刻蚀无机绝缘层202,从而便于对工艺进行控制。
例如,在一些示例中,设置有上述腔室20的绝缘层200一般多采用有机材料形成,例如树脂等;而电极(包括第一电极101和第二电极102)一般多采用金属材料制成;因此对于第二电极102而言,如果直接与有机材料的绝缘层直接接触,两者之间的粘附力较低,容易发生分层等不良现象,因此,在一些示例中,如图2所示,上述绝缘层200可以包括:沿厚度方向D-D’上依次设置的有机绝缘层201和无机绝缘层202,无机绝缘层202相对于有机绝缘层201靠近第二电极102,腔室位于有机绝缘层201中;从而,第二电极102通过无机绝缘层202与有机绝缘层201连接,由于无机绝缘层202与第二电极102和有机绝缘层201之间均具有较好的粘结力,从而保证了整体的粘结效果。另外,无机绝缘层202还可防止有机绝缘层201中的水氧侵蚀第二电极102。
当然,本公开实施例包括但不限于此,第二电极102的材质可根据实际情况进行调整(保证第二电极102与绝缘层200具有足够的粘结力),而仅需设置单层的绝缘层即可(可参考图1的设置方式)。
另外,还应当理解到,在绝缘层200包括有机绝缘层201和无机绝缘层202的情况下,位于有机绝缘层201中的腔室20,可以如图2所示,不贯穿有机绝缘层201;也可以贯穿有机绝缘层201,但不贯穿无机绝缘层202;本发明对此不作限定,只要保证腔室20与第二电极102之间保留部分绝缘层200构成振动薄膜即可。
例如,在一些示例中,如图2所示,该超声波传感器还包括位于第二电极102背离基板100一侧的保护层300,以对第二电极102进行保护,避免因人为因素或者环境因素对第二电极102造成损坏,从而对整个超声波传感器的超声波传感造成不良影响。
本发明一实施例还提供一种超声波传感器阵列,包括上述的多个超声波传感器,具有与上述实施例提供的超声波传感器相同的结构和有益效果。由于前述实施例已经对超声波传感器的结构和有益效果进行了详细的描述,此处不再赘述。
例如,为了提高超声波传感器阵列中超声波传感器的集成度,如图3(图3沿O-O’位置的剖面图为图2)所示,多个超声波传感器10在基板100上呈矩阵排列。
本领域的技术人员应当理解到,为了简化工艺,降低制作成本,上述在基板上呈矩阵排列多个超声波传感器10一般采用同一次制作工艺制作而成;也就是说,所有的超声波传感器中的第一电极同层同材料,通过同一次构图工艺制作而成;同理,第二电极同层同材料,通过同一次构图工艺制作而成;所有的超声波传感器中通孔H也是通过同一次制作工艺加工而成,腔室20也是通过同一次制作工艺加工而成。
例如,在一些示例中,为了便于对上述呈矩阵排列多个超声波传感器10的控制以及相关信号的读取,参考图3,同行的超声波传感器10中的第二电极102依次连接,同列超声波传感器10中的第一电极101(位于第二电极102的下方,图3中未示出,可参考图2)依次连接;当然,也可以设置为,同行的超声波传感器10中的第一电极101依次连接,同列的超声波传感器10中第二电极102依次连接。对于实际的信号驱动过程、信号读取等相关过程,以及其他相关器件(例如IC)的设置,可以参考通常的超声波传感器阵列,此处不再一一赘述。
例如,在一些示例中,该超声波传感器阵列可应用于显示领域,以实现触控和指纹识别中的至少一种。当然,本公开实施例包括但不限于此,该超声波传感器阵列可以应用于测距、物体表面探测、探伤等领域。
本公开至少一个实施例还提供一种显示装置。图4为根据本公开一实施例提供的一种显示装置的示意图。如图4所示,该显示装置包括:上述的超声波传感器阵列1;以及多个像素2,多个像素2集成于超声波传感器阵列1中第二电极102远离第一电极101的一侧。也就是说,该超声波传感器阵列可集成在显示装置中,从而可用于实现触控和指纹识别中的至少一种。例如,在一些示例中,像素2包括自发光结构。由此,该显示装置不用设置背光模组,从而便于上述的超声波传感器阵列和像素的集成。
例如,在一些示例中,上述的像素2包括有机电致发光结构。
例如,在一些示例中,该显示装置包括上述的超声波传感器阵列,也即,在此情况下,超声波传感器阵列可以作为指纹识别、触控操作等应用领域,并与显示装置结合;该显示装置具有与前述实施例提供的超声波传 感器相同的结构和有益效果。由于前述实施例已经对超声波传感器的结构和有益效果进行了详细的描述,此处不再赘述。
需要说明的是,该在本公开实施例中,显示装置具体至少可以包括液晶显示面板和自发光的显示面板(例如OLED(Organic Light Emitting Diode)显示面板),该显示面板可以应用至液晶显示器、液晶电视、数码相框、手机或平板电脑等任何具有显示功能的产品或者部件中。例如,在一些示例中,上述显示装置包括成矩阵排列的自发光单元(例如包括有机发光二极管OLED),自发光单元集成于超声波传感器中第二电极背离第一电极的一侧;也即可以直接在超声波传感器(作为触控或者指纹识别等用途)上集成显示装置中的自发光单元,也就是说,将超声波传感器作为显示装置的背板(例如,可以作为LTPS-AMOLED背板),从而与显示装置整体衔接在一起,提高了整个设备的功能集成化。
本发明实施例还提供一种超声波传感器的制作方法,如图5所示,该制作方法包括以下步骤S101-S105。
步骤S101:如图6所示,在基板100上形成第一电极101。
例如,在形成第一电极101之前需要对基板100进行清洗,然后可以采用金属材质(Mo/Al/Ti/Nd/Nb/Ni/Ag等)以沉积的方式,在基板100上形成金属膜层,并通过构图工艺形成第一电极101。
示意的,上述形成的第一电极101的厚度可以为100nm~1000nm,面积可以为10μm×10μm~500μm×500μm。
需要说明的是,第一,在本公开中,构图工艺,可指包括光刻工艺,或,包括光刻工艺以及刻蚀步骤,同时还可以包括打印、喷墨等其他用于形成预定图形的工艺;光刻工艺,是指包括成膜、曝光、显影等工艺过程的利用光刻胶、掩模板、曝光机等形成图形的工艺。第二,上述基板100可以为玻璃基板、也可以为硅基板(Si Wafer),还可以为塑料基板,本发明对此不作限定,实际中根据需要选择适当的材质的基板即可。
步骤S102:如图7所示,在形成有第一电极101的基板100上,形成贯穿基板100和第一电极101的通孔H。
例如,在形成有第一电极101的基板100上,可以通过激光烧灼的方式在形成有第一电极101的基板100上,形成贯穿基板100和第一电极101的通孔H。
例如,通孔H的直径Φ可以为:10μm~500μm。
例如,在一些示例中,形成贯穿基板和第一电极的通孔包括:采用激光烧灼的方式在基板和第一电极中形成贯穿基板和第一电极的通孔;以及对形成有通孔的基板和第一电极的表面进行双面抛光研磨。在采用激光烧灼的方式形成通孔H时,容易产生熔融物再凝结,导致基板不平整,从而不利于后续的制作工艺的进行,因此,在采用激光烧灼的方式形成通孔H的情况下,本发明优选,在形成通孔H之后还包括:对形成有通孔H的基板100进行双面抛光研磨,以重新对基板进行平整化。
当然,采用激光烧灼的方式形成通孔H仅为一种优选的方式,本发明并不限制于此;也可以采用其他的方式形成上述通孔,例如,可以采用湿刻蚀的方式;应当理解到,在采用湿刻蚀的方式形成通孔H的情况下,不需要设置后续的双面抛光研磨工艺,但应该在刻蚀进行前,对形成有第一电极101的基板100进行双侧保护。
步骤S103:如图8a或8b,在形成有通孔H的第一电极101上形成绝缘层200。
例如,以图8b中示出的绝缘层200为例,先采用树脂材料,通过涂覆的方式,在形成有通孔H的第一电极101上形成有机绝缘层201;然后在有机绝缘层201上采用无机绝缘材料(例如,SixOy/SixNy/SixOyNz/AlxOy/TixOy等)形成无机绝缘层202(当然该步骤可以根据实际的需要选择不进行,可参考图8a)。
例如,形成的有机绝缘层201的厚度可以为10μm~200μm,无机绝缘层202的厚度可以为100nm~1000nm。
步骤S104:如图9所示,在形成有绝缘层200的基板100上,形成与第一电极101相对设置的第二电极102。
例如,可以采用金属材质(Mo/Al/Ti/Nd/Nb/Ni/Ag等)以沉积的方式,在形成有绝缘层200的基板100上形成金属膜层,然后通过构图工艺形成第二电极102。
例如,形成的第二电极102的厚度可以为100nm~1000nm,面积可以为10μm×10μm~500μm×500μm。
步骤S105:如图10所示,利用通孔H在绝缘层200中形成腔室20,腔室20与第一电极101和第二电极102相对,腔室20与通孔H相连通, 第二电极102与腔室20不接触。也就是说,沿形成有绝缘层200的基板100背面的通孔H位置处,在绝缘层200中形成腔室20,且该腔室20不贯穿绝缘层200(以保证形成振动薄膜)。
例如,在一些示例中,上述的利用通孔在绝缘层中形成腔室包括:通过通孔从基板所在的一侧对绝缘层进行等离子气体刻蚀,以在绝缘层中形成腔室。
例如,采用O 2等离子体和/或O 3等离子体通过通孔从基板所在的一侧对绝缘层进行刻蚀,以在绝缘层中形成腔室。例如,采用O2等离子体和/或O3等离子体,沿形成有绝缘层200的基板100背面的通孔H位置处,在绝缘层200中通过刻蚀形成腔室20;在绝缘层200包括有机绝缘层201和无机绝缘层202的情况下,一般的,可以仅在有机绝缘层201中形成腔室20,而保留无机绝缘层202。
例如,上述腔室20的直径Φ可以为:10μm~500μm。
需要说明的是,对于图8a示出的单层的绝缘层200而言,需要保证通过步骤S105形成的腔室20不贯穿该单层的绝缘层200;对于图8b示出的绝缘层200包括有机绝缘层201和无机绝缘层202的情况下,通过步骤S105形成的腔室20,可以如图10所示,不贯穿有机绝缘层201;也可以贯穿有机绝缘层201,但不贯穿无机绝缘层202;本公开对此不作限定,只要保证腔室20与第二电极102之间保留部分绝缘层200构成振动薄膜即可。
例如,在一些示例中,第一电极在基板上的正投影与第二电极在基板上的正投影至少部分交叠,腔室在基板上的正投影同时与第一电极在基板上的正投影和第二电极在基板上的正投影至少部分交叠。
例如,在一些示例中,第一电极至少部分暴露在所述腔室中。
例如,在一些示例中,沿第一电极到第二电极的方向上,腔室被与基板平行的面所截的横截面的面积逐渐减小。
另外,为了避免因人为因素或者环境因素对第二电极102造成损坏,实际中优选的,在形成步骤S104中形成第二电极102之后,还可以形成保护层300(可参考图2);该保护层300可以采用SixOy/SixNy/SixOyNz/AlxOy/TixOy等。
应当理解到,上述制作步骤的序号,并不必然代表先后的制作关系;例如,本发明中,对于该保护层300形成的步骤,与前述形成腔室20的步 骤105的先后顺序不作限定,可以先形成保护层300,再形成腔室20;也可以先形成腔室20,再形成保护层300。
又例如,对于上述形成第二电极102的步骤S104和形成腔室20的步骤S105而言,可以先进行步骤S104形成第二电极102,再进行步骤S105形成腔室20;也可以先进行步骤S105形成腔室20,再进行步骤S104形成第二电极102。
综上所述,本发明中通过形成沿厚度方向上贯穿基板和第一电极的通孔,再沿通孔形成位于第一电极和第二电极之间的绝缘层中的腔室,进而形成超声波传感器,从而能够实现包括超声波发射和超声波接收在内的超声波传感。
应当理解到,采用本发明中的超声波传感器的制作方法,可以通过控制工艺来调整腔室的大小,并且采用上述构图工艺的方式,对形成超声波传感器的大小同样可以控制。
另外,对于该制作方法中其他的相关内容,可以对应的参考前述超声波传感器、超声波传感器的实施例中的对应部分,此处不再赘述;对于前述超声波传感器、超声波传感器实施例中的其他设置结构,可以参考上述制作方法对应制备,调整相应的制作步骤即可,此处均不再一一赘述。
有以下几点需要说明:
(1)本公开实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开同一实施例及不同实施例中的特征可以相互组合。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (19)

  1. 一种超声波传感器,包括:
    基板;
    第一电极,位于基板上;
    绝缘层,位于所述第一电极远离所述基板的一侧;
    第二电极,位于所述绝缘层远离所述第一电极的一侧,且与所述第一电极相对设置,
    其中,所述超声波传感器还包括贯穿所述基板和所述第一电极的通孔和位于所述绝缘层中的腔室,所述腔室与所述第一电极和所述第二电极相对,所述腔室与所述通孔相连通,所述第二电极与所述腔室不接触。
  2. 根据权利要求1所述的超声波传感器,其中,所述第一电极在所述基板上的正投影与所述第二电极在所述基板上的正投影至少部分交叠,所述腔室在所述基板上的正投影同时与所述第一电极在所述基板上的正投影和所述第二电极在所述基板上的正投影至少部分交叠。
  3. 根据权利要求1所述的超声波传感器,其中,所述第一电极至少部分暴露在所述腔室中。
  4. 根据权利要求1-3中任一项所述的超声波传感器,其中,所述绝缘层包括:
    有机绝缘层,在所述第一电极远离所述基板的一侧;以及
    无机绝缘层,在所述有机绝缘层远离所述有机绝缘层的一侧,
    其中,所述腔室位于所述有机绝缘层中。
  5. 根据权利要求1-3中任一项所述的超声波传感器,其中,沿所述第一电极到所述第二电极的方向上,所述腔室被与所述基板平行的面所截的横截面的面积逐渐减小。
  6. 根据权利要求1-3中任一项所述的超声波传感器,还包括:位于所述第二电极远离所述基板的一侧的保护层。
  7. 一种超声波传感器阵列,包括多个根据权利要求1-6中任一项所述的超声波传感器。
  8. 根据权利要求7所述的超声波传感器阵列,其中,多个所述超声波传感器呈矩阵排列。
  9. 一种显示装置,包括:
    根据权利要求7或8所述超声波传感器阵列;以及
    多个像素,所述多个像素集成于所述超声波传感器阵列中所述第二电极远离所述第一电极的一侧。
  10. 根据权利要求9所述的显示装置,其中,所述像素包括自发光结构。
  11. 根据权利要求10所述的显示装置,其中,所述像素包括有机电致发光结构。
  12. 一种超声波传感器的制作方法,包括:
    在基板上形成第一电极;
    形成贯穿所述基板和所述第一电极的通孔;
    在形成有所述通孔的所述第一电极远离所述基板的一侧形成绝缘层;
    在所述绝缘层远离所述第一电极的一侧形成第二电极,所述第二电极与所述第一电极相对设置;以及
    利用所述通孔在所述绝缘层中形成腔室,所述腔室与所述第一电极和所述第二电极相对,所述腔室与所述通孔相连通,所述第二电极与所述腔室不接触。
  13. 根据权利要求12所述超声波传感器的制作方法,其中,利用所述通孔在所述绝缘层中形成所述腔室包括:
    通过所述通孔从所述基板所在的一侧对所述绝缘层进行等离子气体刻蚀,以在所述绝缘层中形成腔室。
  14. 根据权利要求13所述的超声波传感器的制作方法,其中,利用所述通孔在所述绝缘层中形成所述腔室包括:
    采用O 2等离子体和/或O 3等离子体通过所述通孔从所述基板所在的一侧对所述绝缘层进行刻蚀,以在所述绝缘层中形成腔室。
  15. 根据权利要求12-14中任一项所述的超声波传感器的制作方法,其中,形成贯穿所述基板和所述第一电极的所述通孔包括:
    采用激光烧灼的方式在所述基板和所述第一电极中形成贯穿所述基板和所述第一电极的通孔;以及
    对形成有所述通孔的所述基板和所述第一电极的表面进行双面抛光研磨。
  16. 根据权利要求12-14中任一项所述的超声波传感器的制作方法,其中,在形成有所述通孔的所述第一电极远离所述基板的一侧形成所述绝缘层包括:
    在形成有所述通孔的所述第一电极远离所述基板的一侧依次形成有机绝 缘层和无机绝缘层。
  17. 根据权利要求12-14中任一项所述的超声波传感器的制作方法,其中,所述第一电极在所述基板上的正投影与所述第二电极在所述基板上的正投影至少部分交叠,所述腔室在所述基板上的正投影同时与所述第一电极在所述基板上的正投影和所述第二电极在所述基板上的正投影至少部分交叠。
  18. 根据权利要求12-14中任一项所述的超声波传感器的制作方法,其中,所述第一电极至少部分暴露在所述腔室中。
  19. 根据权利要求12-14中任一项所述的超声波传感器的制作方法,其中,沿所述第一电极到所述第二电极的方向上,所述腔室被与所述基板平行的面所截的横截面的面积逐渐减小。
PCT/CN2019/085701 2018-05-10 2019-05-06 超声波传感器及其制作方法、超声波传感器阵列和显示装置 WO2019214584A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/642,146 US11602771B2 (en) 2018-05-10 2019-05-06 Ultrasonic sensor and manufacturing method therefor, and ultrasonic sensor array and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810445795.5A CN108871389B (zh) 2018-05-10 2018-05-10 超声波传感单元及制作方法、超声波传感器及显示装置
CN201810445795.5 2018-05-10

Publications (1)

Publication Number Publication Date
WO2019214584A1 true WO2019214584A1 (zh) 2019-11-14

Family

ID=64333224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/085701 WO2019214584A1 (zh) 2018-05-10 2019-05-06 超声波传感器及其制作方法、超声波传感器阵列和显示装置

Country Status (3)

Country Link
US (1) US11602771B2 (zh)
CN (1) CN108871389B (zh)
WO (1) WO2019214584A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108871389B (zh) 2018-05-10 2020-03-31 京东方科技集团股份有限公司 超声波传感单元及制作方法、超声波传感器及显示装置
KR20200145905A (ko) * 2019-06-19 2020-12-31 삼성디스플레이 주식회사 표시 장치와 그의 구동 방법
TWI706561B (zh) 2019-11-18 2020-10-01 友達光電股份有限公司 顯示裝置及其製造方法
CN111597989B (zh) * 2020-05-15 2024-06-14 京东方科技集团股份有限公司 超声波纹路识别组件及制备方法、显示装置
DE102021129855A1 (de) * 2021-11-16 2023-05-17 Infineon Technologies Ag Ultraschallberührungssensor
CN115971021B (zh) * 2022-12-19 2024-11-05 京东方科技集团股份有限公司 超声换能基板、换能基板的制作方法以及检测方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2459866A (en) * 2008-05-07 2009-11-11 Wolfson Microelectronics Plc MEMS transducers
US20110026367A1 (en) * 2007-05-07 2011-02-03 Baumer Electric Ag Acoustic Transducer
CN102015127A (zh) * 2008-05-02 2011-04-13 佳能株式会社 电容型机电变换器的制造方法和电容型机电变换器
CN102520032A (zh) * 2011-12-05 2012-06-27 西安交通大学 一种基于cmut的生化传感器及其制备方法
US8455963B1 (en) * 2011-12-02 2013-06-04 Texas Instruments Incorporated Low frequency CMUT with vent holes
US20140145275A1 (en) * 2012-11-28 2014-05-29 Samsung Electronics Co., Ltd. Ultrasonic transducer and method of manufacturing the same
WO2017076843A1 (en) * 2015-11-02 2017-05-11 Koninklijke Philips N.V. Ultrasound transducer array, probe and system
CN108871389A (zh) * 2018-05-10 2018-11-23 京东方科技集团股份有限公司 超声波传感单元及制作方法、超声波传感器及显示装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2995606B2 (ja) * 1993-09-01 1999-12-27 理化学研究所 超音波送信及び又は受信装置
JP2007527285A (ja) * 2004-02-27 2007-09-27 ジョージア テック リサーチ コーポレイション 多要素電極cmut素子及び製作方法
EP1761104A4 (en) * 2004-06-03 2016-12-28 Olympus Corp ULTRASONIC VIBRATOR OF THE ELECTROSTATIC CAPABILITY TYPE, METHOD OF MANUFACTURE, AND ELECTROSTATIC CAPACITY-TYPE ULTRASONIC PROBE
JP4503423B2 (ja) * 2004-11-29 2010-07-14 富士フイルム株式会社 容量性マイクロマシン超音波振動子及びその製造方法、並びに、超音波トランスデューサアレイ
CN1946248A (zh) * 2005-10-05 2007-04-11 精工爱普生株式会社 静电型超声波换能器及超声波扬声器
JP2008042869A (ja) 2005-10-05 2008-02-21 Seiko Epson Corp 静電型超音波トランスデューサ、超音波スピーカ、音声信号再生方法、超指向性音響システム及び表示装置
JP2007124306A (ja) * 2005-10-28 2007-05-17 Sanyo Electric Co Ltd 情報表示装置
JP2012249066A (ja) * 2011-05-27 2012-12-13 Panasonic Corp 超音波センサおよびこれを用いた超音波流量計
US9551783B2 (en) * 2013-06-03 2017-01-24 Qualcomm Incorporated Display with backside ultrasonic sensor array
JP6416232B2 (ja) * 2013-09-24 2018-10-31 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Cmutデバイス製造方法、cmutデバイス、及び装置
CN203643603U (zh) * 2013-12-20 2014-06-11 常州波速传感器有限公司 一种新型超声波传感器
CN104535988A (zh) * 2014-12-05 2015-04-22 常州波速传感器有限公司 一种超声波传感器
CN106250834B (zh) * 2016-07-25 2019-05-10 京东方科技集团股份有限公司 指纹识别显示面板、其制作方法、其驱动方法及显示装置
US10235552B2 (en) * 2016-10-12 2019-03-19 Qualcomm Incorporated Hybrid capacitive and ultrasonic sensing
KR102649729B1 (ko) * 2016-11-02 2024-03-22 삼성디스플레이 주식회사 표시장치
JP2018098591A (ja) * 2016-12-09 2018-06-21 キヤノン株式会社 静電容量型トランスデューサ及びその製造方法
KR102599536B1 (ko) * 2017-01-26 2023-11-08 삼성전자 주식회사 생체 센서를 갖는 전자 장치
US20180373913A1 (en) * 2017-06-26 2018-12-27 Qualcomm Incorporated Ultrasonic fingerprint sensor for under-display applications
KR102486453B1 (ko) * 2017-12-08 2023-01-09 삼성디스플레이 주식회사 표시 장치
KR102615589B1 (ko) * 2017-12-28 2023-12-18 엘지디스플레이 주식회사 지문 인식이 가능한 표시 장치
KR102576093B1 (ko) * 2018-02-14 2023-09-11 삼성디스플레이 주식회사 생체 정보 센서 및 이를 포함하는 표시 장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110026367A1 (en) * 2007-05-07 2011-02-03 Baumer Electric Ag Acoustic Transducer
CN102015127A (zh) * 2008-05-02 2011-04-13 佳能株式会社 电容型机电变换器的制造方法和电容型机电变换器
GB2459866A (en) * 2008-05-07 2009-11-11 Wolfson Microelectronics Plc MEMS transducers
US8455963B1 (en) * 2011-12-02 2013-06-04 Texas Instruments Incorporated Low frequency CMUT with vent holes
CN102520032A (zh) * 2011-12-05 2012-06-27 西安交通大学 一种基于cmut的生化传感器及其制备方法
US20140145275A1 (en) * 2012-11-28 2014-05-29 Samsung Electronics Co., Ltd. Ultrasonic transducer and method of manufacturing the same
WO2017076843A1 (en) * 2015-11-02 2017-05-11 Koninklijke Philips N.V. Ultrasound transducer array, probe and system
CN108871389A (zh) * 2018-05-10 2018-11-23 京东方科技集团股份有限公司 超声波传感单元及制作方法、超声波传感器及显示装置

Also Published As

Publication number Publication date
CN108871389B (zh) 2020-03-31
US20200353507A1 (en) 2020-11-12
US11602771B2 (en) 2023-03-14
CN108871389A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
WO2019214584A1 (zh) 超声波传感器及其制作方法、超声波传感器阵列和显示装置
TWI403943B (zh) 觸控螢幕面板,其之製造方法,以及包含其之顯示器
US9516743B2 (en) Electronic device with reduced-stress flexible display
US10478858B2 (en) Piezoelectric ultrasonic transducer and process
WO2018176796A1 (zh) 阵列基板、显示面板、显示设备及阵列基板制备方法
US11968901B2 (en) Displaying substrate, manufacturing method thereof, and display panel
US10916600B2 (en) Flexible touch control display screen and method for manufacturing same
US11088314B2 (en) Ultrasonic transducer and method for manufacturing the same, display substrate and method for manufacturing the same
US20180212167A1 (en) Flexible display panel, flexible display apparatus having the same, and fabricating method thereof
WO2019210708A1 (zh) 传感器及其制备方法、面板和识别装置
WO2020215928A1 (zh) 超声波指纹识别装置及显示装置
CN111711900B (zh) 显示面板及其制造方法、显示装置
US11329108B2 (en) Display device and manufacturing method thereof
WO2017193710A1 (zh) 阵列基板及其制作方法、显示面板、显示装置
WO2020224333A1 (zh) 柔性显示面板、柔性显示装置及其形变检测方法
CN110008929A (zh) Cmut单元及其制备方法、cmut面板和显示面板
WO2021056713A1 (zh) 显示面板及显示装置
US9634068B2 (en) Organic light emitting display devices and methods of manufacturing organic light emitting display devices
JP2010147658A (ja) 超音波センサー及び超音波センサーの製造方法
US20210336203A1 (en) Display substrate, display apparatus, method of fabricating display substrate
US11249599B2 (en) Ultrasonic sensor and display device
CN108885364B (zh) 与触摸传感器集成的柔性彩色滤光片、柔性液晶显示器及其制造方法
CN111627961B (zh) 显示面板及其制备方法
CN112016458A (zh) 超声波收发结构、指纹识别模组、显示面板及显示模组
KR20200128351A (ko) 의사-압전 d33 진동 장치 및 이를 통합하는 디스플레이

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800221

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19800221

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/05/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19800221

Country of ref document: EP

Kind code of ref document: A1