[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019207409A1 - 有機化合物、発光デバイス、発光装置、電子機器、および照明装置 - Google Patents

有機化合物、発光デバイス、発光装置、電子機器、および照明装置 Download PDF

Info

Publication number
WO2019207409A1
WO2019207409A1 PCT/IB2019/053093 IB2019053093W WO2019207409A1 WO 2019207409 A1 WO2019207409 A1 WO 2019207409A1 IB 2019053093 W IB2019053093 W IB 2019053093W WO 2019207409 A1 WO2019207409 A1 WO 2019207409A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
group
emitting device
carbon atoms
abbreviation
Prior art date
Application number
PCT/IB2019/053093
Other languages
English (en)
French (fr)
Inventor
原朋香
木戸裕允
吉住英子
瀬尾哲史
渡部剛吉
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to JP2020515310A priority Critical patent/JP7287953B2/ja
Priority to CN201980028782.0A priority patent/CN112041326A/zh
Publication of WO2019207409A1 publication Critical patent/WO2019207409A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • One embodiment of the present invention relates to an organic compound, a light-emitting device, a light-emitting device, an electronic device, and a lighting device.
  • one embodiment of the present invention is not limited thereto. That is, one embodiment of the present invention relates to an object, a method, a manufacturing method, or a driving method. Alternatively, one embodiment of the present invention relates to a process, a machine, a manufacture, or a composition (composition of matter).
  • a semiconductor device, a display device, a liquid crystal display device, and the like can be given as examples.
  • a light-emitting device in which an EL layer is sandwiched between a pair of electrodes has characteristics such as being thin and light, high-speed response to input signals, and low power consumption.
  • the applied display is attracting attention as a next-generation flat panel display.
  • a light-emitting device by applying a voltage between a pair of electrodes, electrons and holes injected from each electrode are recombined in the EL layer, and a light-emitting substance (organic compound) contained in the EL layer becomes an excited state. Light is emitted when the excited state returns to the ground state.
  • fluorescent compounds fluorescent materials
  • phosphorescent material phosphorescent material
  • the theoretical limit of the internal quantum efficiency (ratio of photons generated with respect to injected carriers) in the light emitting device using each of the above light emitting substances is limited when a fluorescent material is used. Is 25%, and is 75% when a phosphorescent material is used.
  • a novel organic compound including an organometallic complex
  • a novel organometallic complex having a stable molecular structure is provided.
  • Another embodiment of the present invention provides an organometallic complex having an emission peak in a long wavelength region (a visible region or a near infrared region having a wavelength of 700 nm or more).
  • a novel organometallic complex that can be used for a light-emitting device is provided.
  • a novel organometallic complex that can be used for an EL layer of a light-emitting device is provided.
  • a highly reliable novel light-emitting device using a novel organometallic complex is provided.
  • Another embodiment of the present invention provides a novel light-emitting device, a novel electronic device, or a novel lighting device. Note that the description of these problems does not disturb the existence of other problems.
  • One embodiment of the present invention does not necessarily have to solve all of these problems.
  • problems other than these will be apparent from the description of the specification, drawings, claims, etc., and other problems can be extracted from the description of the specifications, drawings, claims, etc. It is.
  • a ligand having a benzonaphthoquinoxaline (bnq) skeleton is coordinated to a central metal, and the ligand is a central metal (Group 9 or Group 10) of nitrogens in the bnq skeleton: It is an organometallic complex represented by the following general formula (G1), in which a hydrogen bond is formed between nitrogen that does not bond to Ir, Pt) and hydrogen in the condensed ring of the bnq skeleton.
  • M represents a Group 9 element or a Group 10 element
  • R 1 to R 10 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, or substituted or unsubstituted carbon. It represents either an aryl group having 6 to 12 carbon atoms or a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms.
  • R 9 and R 10 may be bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring having 3 to 24 carbon atoms.
  • L represents a monoanionic ligand.
  • Another embodiment of the present invention is an organometallic complex represented by General Formula (G2) below.
  • R 1 to R 10 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 12 carbon atoms, or a substituted or unsubstituted group. It represents any of a heteroaryl group having 3 to 12 carbon atoms. R 9 and R 10 may be bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring having 3 to 24 carbon atoms. L represents a monoanionic ligand.
  • the monoanionic ligand is a monoanionic bidentate chelate ligand having a ⁇ -diketone structure, a monoanionic bidentate chelate ligand having a carboxyl group, or phenolic.
  • One of the bidentate ligands is a monoanionic bidentate chelate ligand having a ⁇ -diketone structure, a monoanionic bidentate chelate ligand having a carboxyl group, or phenolic.
  • the monoanionic ligand is any one of the following general formulas (L1) to (L7).
  • R 51 to R 89 are each independently hydrogen, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a halogeno group, a vinyl group, substituted or unsubstituted. 1 to 6 carbon haloalkyl groups, substituted or unsubstituted alkoxy groups having 1 to 6 carbon atoms, substituted or unsubstituted alkylthio groups having 1 to 6 carbon atoms, substituted or unsubstituted aryl groups having 6 to 13 carbon atoms Represents a group.
  • a 1 to A 13 each independently represent nitrogen, sp 2 hybrid carbon bonded to hydrogen, or sp 2 hybrid carbon having a substituent, and the substituent is an alkyl group having 1 to 6 carbon atoms, halogeno Represents a group, a haloalkyl group having 1 to 6 carbon atoms, or a phenyl group.
  • Another embodiment of the present invention is an organometallic complex represented by General Formula (G3) below.
  • R 1 to R 13 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 12 carbon atoms, or a substituted or unsubstituted group. It represents any of a heteroaryl group having 3 to 12 carbon atoms.
  • R 9 and R 10 may be bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring having 3 to 24 carbon atoms.
  • Another embodiment of the present invention is an organometallic complex represented by Structural Formula (100) or Structural Formula (118).
  • Another embodiment of the present invention is a condensation of a bnq skeleton with a nitrogen that is not bonded to a central metal (Group 9 or 10: Ir, Pt) among nitrogen atoms of a benzonaphthoquinoxaline (bnq) skeleton coordinated to the central metal.
  • a light-emitting device using an organometallic complex that forms a hydrogen bond with hydrogen of a ring is also included in one embodiment of the present invention.
  • Another embodiment of the present invention is a light-emitting device using the organometallic complex which is one embodiment of the present invention described above.
  • a light-emitting device formed using the organometallic complex which is one embodiment of the present invention for an EL layer between a pair of electrodes or a light-emitting layer included in the EL layer is also included in one embodiment of the present invention.
  • a light-emitting device including a transistor, a substrate, and the like is also included in the scope of the invention.
  • an electronic device or lighting device including a microphone, a camera, an operation button, an external connection portion, a housing, a cover, a support base, a speaker, or the like is also included in the scope of the invention.
  • the organometallic complex which is one embodiment of the present invention can be used for a light-emitting layer of a light-emitting device in combination with another organic compound. That is, since light emission from the triplet excited state can be obtained from the light emitting layer, the efficiency of the light emitting device can be increased, which is very effective. Therefore, a light-emitting device in which the organometallic complex which is one embodiment of the present invention and another organic compound are combined in a light-emitting layer is included in one embodiment of the present invention. In addition to the above, a structure in which a third substance is added to the light-emitting layer may be employed.
  • One embodiment of the present invention includes a light-emitting device including a light-emitting device, and further includes a lighting device including the light-emitting device in its category. Therefore, the light-emitting device in this specification refers to an image display device or a light source (including a lighting device).
  • the light emitting device has a connector such as a FPC (Flexible Printed Circuit) or TCP (Tape Carrier Package), a module with a printed wiring board at the end of TCP, or a COG (Chip On Glass) on the light emitting device. It is assumed that the light emitting device also includes all modules on which IC (integrated circuit) is directly mounted by the method.
  • One embodiment of the present invention can provide a novel organic compound (including an organometallic complex).
  • a novel organometallic complex having a stable molecular structure can be provided.
  • Another embodiment of the present invention can provide an organometallic complex having a light emission peak in a long wavelength region (a visible region or a near infrared region having a wavelength of 700 nm or more).
  • a novel organometallic complex that can be used for a light-emitting device can be provided.
  • a novel organometallic complex that can be used for an EL layer of a light-emitting device can be provided.
  • a highly reliable novel light-emitting device using the novel organometallic complex which is one embodiment of the present invention can be provided.
  • a novel light-emitting device, a novel electronic device, or a novel lighting device can be provided. Note that the description of these effects does not disturb the existence of other effects. Note that one embodiment of the present invention does not necessarily have all of these effects. It should be noted that the effects other than these are naturally obvious from the description of the specification, drawings, claims, etc., and it is possible to extract the other effects from the descriptions of the specification, drawings, claims, etc. It is.
  • FIGS. 5B and 5D illustrate a light-emitting device having a stacked structure (tandem structure).
  • FIG. 9 shows current density-luminance characteristics of the light-emitting device 1 and the comparative light-emitting device 2.
  • FIG. 6 shows voltage-luminance characteristics of the light-emitting device 1 and the comparative light-emitting device 2.
  • FIG. 9 shows luminance-current efficiency characteristics of the light-emitting device 1 and the comparative light-emitting device 2;
  • FIG. 6 shows voltage-current characteristics of the light-emitting device 1 and the comparative light-emitting device 2.
  • FIG. 9 shows current density-luminance characteristics of the light-emitting device 1 and the comparative light-emitting device 2.
  • FIG. 6 shows voltage-luminance characteristics of the light-emitting device 1 and the comparative light-emitting device 2.
  • FIG. 9 shows luminance-current efficiency characteristics
  • FIG. 10 shows voltage-current density characteristics of the light-emitting device 3;
  • FIG. 6 shows current density-radiant flux characteristics of the light-emitting device 3.
  • FIG. 6 shows current density-external quantum efficiency characteristics of the light-emitting device 3.
  • FIG. 9 shows an emission spectrum of the light-emitting device 3. The figure which shows the reliability of the light-emitting device 3.
  • a ligand having a benzonaphthoquinoxaline (bnq) skeleton is coordinated to a central metal, and the ligand includes a central metal (9 Group or group 10: having a structure represented by the following general formula (G1) in which a hydrogen bond is formed between nitrogen not bonded to Ir or Pt) and hydrogen of the condensed ring of the bnq skeleton.
  • M represents a Group 9 element or a Group 10 element
  • R 1 to R 10 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted carbon number of 6 It represents either an aryl group having ⁇ 12, or a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms.
  • R 9 and R 10 may be bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring having 3 to 24 carbon atoms, preferably a substituted or unsubstituted 3 to 12 carbon atoms.
  • L represents a monoanionic ligand.
  • the organometallic complex which is another embodiment of the present invention is an organometallic complex represented by General Formula (G2) below.
  • R 1 to R 10 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 12 carbon atoms, or a substituted or unsubstituted carbon number. It represents any of 3 to 12 heteroaryl groups.
  • R 9 and R 10 may be bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring having 3 to 24 carbon atoms, preferably a substituted or unsubstituted 3 to 12 carbon atoms.
  • L represents a monoanionic ligand.
  • the monoanionic ligands in the general formulas (G1) and (G2) are a monoanionic bidentate chelate ligand having a ⁇ -diketone structure and a monoanionic bidentate having a carboxyl group.
  • the monoanionic ligand in the general formulas (G1) and (G2) is specifically any one of the following general formulas (L1) to (L7).
  • R 51 to R 89 are each independently hydrogen or a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a halogeno group, a vinyl group, substituted or unsubstituted.
  • a haloalkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 6 carbon atoms, or a substituted or unsubstituted alkylthio group having 1 to 6 carbon atoms, a substituted or unsubstituted 6 to 13 carbon atoms Represents an aryl group.
  • a 1 ⁇ A 13 represents a nitrogen independently or sp 2 hybridized carbon bonded to hydrogen, or represents a sp 2 hybridized carbon having a substituent, the substituent is an alkyl group having 1 to 6 carbon atoms, halogeno Represents a group, a haloalkyl group having 1 to 6 carbon atoms, or a phenyl group.
  • An organometallic complex which is another embodiment of the present invention is an organometallic complex represented by General Formula (G3) below.
  • R 1 to R 13 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 12 carbon atoms, or a substituted or unsubstituted carbon number. It represents any of 3 to 12 heteroaryl groups.
  • R 9 and R 10 may be bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring having 3 to 24 carbon atoms, preferably a substituted or unsubstituted 3 to 12 carbon atoms.
  • the substitution is preferably a methyl group, an ethyl group, an n-propyl group, An alkyl group having 1 to 6 carbon atoms such as isopropyl group, sec-butyl group, tert-butyl group, n-pentyl group, n-hexyl group, phenyl group, o-tolyl group, m-tolyl group, p- This represents substitution with a substituent such as an aryl group having 6 to 12 carbon atoms such as a tolyl group, 1-naphthyl group, 2-naphthyl group, 2-biphenyl group, 3-biphenyl group, 4-biphenyl group.
  • substituents may be bonded to each other to form a ring.
  • the aryl group is a 2-fluorenyl group having two phenyl groups at the 9-position as a substituent
  • the phenyl groups are bonded to each other to form a spiro-9,9′-bifluoren-2-yl group. May be. More specifically, for example, phenyl group, tolyl group, xylyl group, biphenyl group, indenyl group, naphthyl group, fluorenyl group and the like can be mentioned.
  • an alkyl group having 1 to 6 carbon atoms in R 1 to R 13 in the formula Specific examples of the methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, isobutyl group, tert-butyl group, pentyl group, isopentyl group, sec-pentyl group, tert-pentyl group, Neopentyl group, hexyl group, isohexyl group, sec-hexyl group, tert-hexyl group, neohexyl group, 3-methylpentyl group, 2-methylpentyl group, 2-ethylbutyl group, 1,2-dimethylbutyl group, 2,3 -A dimethylbutyl group etc. are mentioned.
  • the number of carbon atoms forming a ring in R 1 to R 13 in the formula is 6
  • the substituted or unsubstituted aryl group of ⁇ 12 include a phenyl group, a biphenyl group, a naphthyl group, an indenyl group, and the like, and preferably a phenyl group.
  • the number of carbon atoms forming a ring in R 1 to R 13 in the formula is 3
  • the substituted or unsubstituted heteroaryl group of 12 to 12 include triazinyl group, pyrazinyl group, pyrimidinyl group, pyridyl group, quinolyl group, isoquinolyl group, benzothienyl group, benzofuranyl group, indolyl group, dibenzothienyl group, dibenzo A furanyl group, a carbazolyl group, etc. are mentioned.
  • the organometallic complex represented by the structural formulas (100) to (125) is represented by any one of the general formula (G1), the general formula (G2), and the general formula (G3).
  • 1 is an example of an organometallic complex which is one embodiment of the present invention.
  • the organometallic complex which is one embodiment of the present invention is not limited thereto.
  • M represents a Group 9 element or a Group 10 element
  • R 1 to R 10 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, or substituted or unsubstituted carbon. It represents either an aryl group having 6 to 12 carbon atoms or a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms.
  • R 9 and R 10 may be bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring having 3 to 24 carbon atoms.
  • L represents a monoanionic ligand.
  • R 1 to R 10 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 12 carbon atoms, or a substituted or unsubstituted carbon number. It represents any of 3 to 12 heteroaryl groups.
  • R 9 and R 10 may be bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring having 3 to 24 carbon atoms.
  • a benzo [f] naphtho [2,1-h] quinoxaline derivative represented by the general formula (G0) includes a diketone compound (A1) and a diamine compound (as shown in the following synthesis scheme (A-1)). It can be obtained by reacting with A2).
  • the diketone compound (B1) and the diamine compound (B2) may be reacted.
  • R 1 to R 10 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted carbon atom having 6 to 12 carbon atoms. Or a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms.
  • R 9 and R 10 may be bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring having 3 to 24 carbon atoms.
  • a benzo [f] naphtho [2,1-h] quinoxaline derivative or a monoanionic ligand L represented by the general formula (G0) and a halogen are represented.
  • a binuclear complex (C1) which is a kind of organometallic complex having a structure crosslinked with halogen by heating in an inert gas atmosphere using a mixed solvent of (C2) can be obtained.
  • a heating means An oil bath, a sand bath, or an aluminum block etc. can be used.
  • a microwave is also possible to use a microwave as a heating means.
  • M represents a Group 9 element or a Group 10 element
  • R 1 to R 10 each independently represent hydrogen, carbon number 1 It represents any of ⁇ 6 alkyl groups, substituted or unsubstituted aryl groups having 6 to 12 carbon atoms, or substituted or unsubstituted heteroaryl groups having 3 to 12 carbon atoms.
  • R 9 and R 10 may be bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring having 3 to 24 carbon atoms.
  • L represents a monoanionic ligand.
  • the organometallic complex represented by the general formula (G1) includes a Group 9 or Group 10 metal compound containing halogen and the above general formula (G0).
  • the benzo [f] naphtho [2,1-h] quinoxaline derivative or monoanionic ligand L represented by the following formula the monoanionic ligand L or the above general formula It can also be obtained by adding a benzo [f] naphtho [2,1-h] quinoxaline derivative represented by (G0) and heating.
  • M represents a Group 9 element or a Group 10 element
  • R 1 to R 10 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, substituted or unsubstituted Or an aryl group having 6 to 12 carbon atoms, or a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms.
  • R 9 and R 10 may be bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring having 3 to 24 carbon atoms.
  • L represents a monoanionic ligand.
  • M represents a Group 9 element or a Group 10 element
  • R 1 to R 10 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted group It represents either an aryl group having 6 to 12 carbon atoms or a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms.
  • R 9 and R 10 may be bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring having 3 to 24 carbon atoms.
  • L represents a monoanionic ligand.
  • An organic metal complex having a structure represented by the general formula (G1 ′) is obtained by mixing a metal compound or a Group 9 or Group 10 organic compound and then heating in an inert gas atmosphere. be able to.
  • M represents a Group 9 element or a Group 10 element
  • R 1 to R 10 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, It represents either a substituted aryl group having 6 to 12 carbon atoms or a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms.
  • R 9 and R 10 may be bonded to each other to form a substituted or unsubstituted saturated or unsaturated ring having 3 to 24 carbon atoms.
  • L represents a monoanionic ligand.
  • the present invention is not limited to this and may be synthesized by any other synthesis method.
  • the organometallic complex which is one embodiment of the present invention has been described with respect to the method for synthesizing the organometallic complex represented by General Formula (G1) and General Formula (G1 ′), but the present invention is limited to this. It may be synthesized by other synthesis methods.
  • a ligand having a benzonaphthoquinoxaline (bnq) skeleton is coordinated to a central metal, and the ligand is a central metal in nitrogen included in the bnq skeleton.
  • a hydrogen bond is formed between nitrogen not bonded to (Group 9 or Group 10: Ir, Pt) and hydrogen of the condensed ring of the bnq skeleton.
  • an organometallic complex having a light emission peak in a long wavelength region (visible region or near infrared region having a wavelength of 700 nm or more) can be provided. Further, the formation of the hydrogen bond can stabilize the structure of the organometallic complex. Therefore, the reliability of the light-emitting device using this organometallic complex can be improved.
  • organometallic complex which is one embodiment of the present invention, a highly reliable light-emitting device, light-emitting device, electronic device, or lighting device can be realized.
  • organometallic complex which is one embodiment of the present invention is described; however, one embodiment of the present invention is not limited thereto. In other words, the invention can be combined with various aspects of the invention shown in other embodiments.
  • FIG. 1A illustrates a light-emitting device in which an EL layer is sandwiched between a pair of electrodes. Specifically, an EL layer 103 including a light-emitting layer is sandwiched between the first electrode 101 and the second electrode 102.
  • FIG. 1B a plurality of (two layers in FIG. 1B) EL layers (103a and 103b) are provided between a pair of electrodes, and the charge generation layer 104 is sandwiched between the EL layers.
  • 1 illustrates a light-emitting device having a stacked structure (tandem structure). Such a tandem light-emitting device can realize a light-emitting device that can be driven at a low voltage and has low power consumption.
  • the charge generation layer 104 preferably has a property of transmitting visible light from the viewpoint of light extraction efficiency (specifically, the visible light transmittance of the charge generation layer 104 is 40% or more). In addition, the charge generation layer 104 functions even when it has lower conductivity than the first electrode 101 or the second electrode 102.
  • FIG. 1C illustrates a stacked structure of the EL layer 103.
  • the EL layer 103 is formed over the first electrode 101 with a hole injection layer 111, a hole transport layer 112, The light emitting layer 113, the electron transport layer 114, and the electron injection layer 115 are sequentially stacked.
  • each EL layer is sequentially stacked as described above from the anode side. Note that when the first electrode 101 is a cathode and the second electrode 102 is an anode, the stacking order is reversed.
  • Each of the light-emitting layers 113 included in the EL layers (103, 103a, and 103b) includes a light-emitting substance and a plurality of substances as appropriate in combination, so that fluorescent light emission or phosphorescence light emission having a desired light emission color can be obtained. be able to.
  • the light-emitting layer 113 may have a stacked structure with different emission colors. Note that in this case, different materials may be used for the light-emitting substance and other substances used for the stacked light-emitting layers. Alternatively, different light emission colors may be obtained from the plurality of EL layers (103a and 103b) illustrated in FIG. In this case as well, the light-emitting substance and other substances used for each light-emitting layer may be different materials.
  • the light-emitting device which is one embodiment of the present invention may have a structure in which light emission obtained from the EL layers (103, 103a, and 103b) is resonated between both electrodes to increase the light emission obtained.
  • the first electrode 101 is a reflective electrode and the second electrode 102 is a semi-transmissive / semi-reflective electrode to form a micro optical resonator (microcavity) structure, and an EL layer.
  • the light emission obtained from 103 can be increased.
  • the film of the transparent conductive film Optical adjustment can be performed by controlling the thickness. Specifically, the distance between the first electrode 101 and the second electrode 102 is near m ⁇ / 2 (where m is a natural number) with respect to the wavelength ⁇ of light obtained from the light-emitting layer 113. It is preferable to adjust as follows.
  • an optical distance from the first electrode 101 to a region (light emitting region) where the desired light of the light emitting layer 113 can be obtained an optical distance from the first electrode 101 to a region (light emitting region) where the desired light of the light emitting layer 113 can be obtained.
  • the optical distance from the second electrode 102 to the region (light emitting region) where desired light can be obtained from the light emitting layer 113 is adjusted to be close to (2m ′ + 1) ⁇ / 4 (where m ′ is a natural number). It is preferable to do this.
  • the light emitting region herein refers to a recombination region between holes and electrons in the light emitting layer 113.
  • the spectrum of specific monochromatic light obtained from the light emitting layer 113 can be narrowed, and light emission with good color purity can be obtained.
  • the optical distance between the first electrode 101 and the second electrode 102 is strictly the total thickness from the reflective region of the first electrode 101 to the reflective region of the second electrode 102. it can. However, since it is difficult to precisely determine the reflection region in the first electrode 101 or the second electrode 102, it is assumed that any position of the first electrode 101 and the second electrode 102 is the reflection region. The above-mentioned effect can be sufficiently obtained. Strictly speaking, the optical distance between the first electrode 101 and the light emitting layer from which desired light can be obtained is the optical distance between the reflective region in the first electrode 101 and the light emitting region in the light emitting layer from which desired light can be obtained. It can be said that it is a distance.
  • any position of the first electrode 101 can be set as the reflection region, the desired region. It is assumed that the above-described effects can be sufficiently obtained by assuming an arbitrary position of the light emitting layer from which light is obtained as the light emitting region.
  • the light-emitting device illustrated in FIG. 1C has a microcavity structure
  • light with different wavelengths can be extracted even when the EL layer is common. Accordingly, it is not necessary to perform separate coloring (for example, RGB) for obtaining different emission colors, and high definition can be achieved.
  • a combination with a colored layer (color filter) is also possible.
  • it is possible to increase the light emission intensity in the front direction of the specific wavelength it is possible to reduce power consumption.
  • At least one of the first electrode 101 and the second electrode 102 includes a light-transmitting electrode (a transparent electrode, a semi-transmissive / semi-reflective electrode, or the like) To do.
  • the light-transmitting electrode is a transparent electrode
  • the transparent electrode has a visible light transmittance of 40% or more.
  • the visible light reflectance of the semi-transmissive / semi-reflective electrode is 20% to 80%, preferably 40% to 70%.
  • These electrodes preferably have a resistivity of 1 ⁇ 10 ⁇ 2 ⁇ cm or less.
  • the reflective electrode when one of the first electrode 101 and the second electrode 102 is a reflective electrode (reflective electrode), the reflective electrode is visible.
  • the light reflectance is 40% to 100%, preferably 70% to 100%.
  • the electrode preferably has a resistivity of 1 ⁇ 10 ⁇ 2 ⁇ cm or less.
  • First electrode and second electrode> As materials for forming the first electrode 101 and the second electrode 102, the following materials can be used in appropriate combination as long as the functions of both electrodes in the element structure described above can be satisfied.
  • a metal, an alloy, an electrically conductive compound, a mixture thereof, and the like can be used as appropriate.
  • an In—Sn oxide also referred to as ITO
  • an In—Si—Sn oxide also referred to as ITSO
  • ITSO In—Zn oxide
  • In—W—Zn oxide an In—W—Zn oxide
  • elements belonging to Group 1 or Group 2 of the periodic table of elements not exemplified above for example, lithium (Li), cesium (Cs), calcium (Ca), strontium (Sr)), europium (Eu), ytterbium Rare earth metals such as (Yb), alloys containing these in appropriate combinations, other graphene, and the like can be used.
  • the light-emitting device illustrated in FIG. 1 includes the EL layer 103 having a stacked structure as illustrated in FIG. 1C and the first electrode 101 is an anode, A hole injection layer 111 and a hole transport layer 112 are sequentially stacked by a vacuum deposition method. In addition, as illustrated in FIG.
  • the first electrode 101 when a plurality of EL layers (103a and 103b) having a stacked structure are stacked with the charge generation layer 104 interposed therebetween and the first electrode 101 is an anode, the first electrode
  • the first electrode In addition to sequentially stacking the hole injection layer 111a and the hole transport layer 112a of the EL layer 103a on the substrate 101 by the vacuum deposition method, the EL layer 103a and the charge generation layer 104 are sequentially stacked and then generated. Similarly, the hole injection layer 111b and the hole transport layer 112b of the EL layer 103b are sequentially stacked over the layer 104.
  • the hole injection layer (111, 111a, 111b) is a layer for injecting holes from the first electrode 101 serving as an anode or the charge generation layer (104) into the EL layers (103, 103a, 103b). , A layer containing a material having a high hole injection property.
  • Examples of the material having a high hole injection property include transition metal oxides such as molybdenum oxide, vanadium oxide, ruthenium oxide, tungsten oxide, and manganese oxide.
  • transition metal oxides such as molybdenum oxide, vanadium oxide, ruthenium oxide, tungsten oxide, and manganese oxide.
  • phthalocyanine compounds such as phthalocyanine (abbreviation: H 2 Pc) and copper phthalocyanine (abbreviation: CuPc) can be used.
  • poly (N-vinylcarbazole) (abbreviation: PVK), poly (4-vinyltriphenylamine) (abbreviation: PVTPA), poly [N- (4), which are high molecular compounds (oligomers, dendrimers, polymers, and the like).
  • PVK poly
  • PVTPA poly (4-vinyltriphenylamine)
  • N- (4) which are high molecular compounds (oligomers, dendrimers, polymers, and the like.
  • - ⁇ N '-[4- (4-diphenylamino) phenyl] phenyl-N'-phenylamino ⁇ phenyl) methacrylamide] (abbreviation: PTPDMA)
  • poly [N, N'-bis (4-butylphenyl)- N, N′-bis (phenyl) benzidine] (abbreviation: Poly-TPD) or the like can be used.
  • poly (3,4-ethylenedioxythiophene) / poly (styrene sulfonic acid) (abbreviation: PEDOT / PSS)
  • polyaniline / poly (styrene sulfonic acid) (abbreviation: PAni / PSS)
  • PAni / PSS polyaniline / poly (styrene sulfonic acid)
  • a composite material including a hole-transporting material and an acceptor material can also be used.
  • electrons are extracted from the hole transporting material by the acceptor material, and holes are generated in the hole injection layer (111, 111a, 111b), via the hole transporting layer (112, 112a, 112b). Holes are injected into the light emitting layer (113, 113a, 113b).
  • the hole injection layer (111, 111a, 111b) may be formed as a single layer made of a composite material including a hole transporting material and an acceptor material (electron accepting material).
  • the material and the acceptor material (electron-accepting material) may be stacked in separate layers.
  • the hole transport layer (112, 112a, 112b) is configured to transfer holes injected from the first electrode 101 or the charge generation layer 104 by the hole injection layer (111, 111a, 111b) to the light emitting layer (113, 113a, 113b).
  • the hole transport layers (112, 112a, 112b) are layers containing a hole transport material.
  • a material having a HOMO level that is the same as or close to the HOMO level of the hole injection layer (111, 111a, 111b) should be used. Is preferred.
  • an oxide of a metal belonging to Groups 4 to 8 in the periodic table can be used.
  • Specific examples include molybdenum oxide, vanadium oxide, niobium oxide, tantalum oxide, chromium oxide, tungsten oxide, manganese oxide, and rhenium oxide.
  • molybdenum oxide is especially preferable because it is stable in the air, has a low hygroscopic property, and is easy to handle.
  • organic acceptors such as quinodimethane derivatives, chloranil derivatives, and hexaazatriphenylene derivatives can be used.
  • HAT-CN 7,7,8,8-tetracyano-2,3,5,6-tetrafluoroquinodimethane
  • chloranil 2,3,6,7,10,11 -Hexacyano-1,4,5,8,9,12-hexaazatriphenylene
  • HAT-CN 2,3,6,7,10,11 -Hexacyano-1,4,5,8,9,12-hexaazatriphenylene
  • a compound in which an electron withdrawing group is bonded to a condensed aromatic ring having a plurality of heteroatoms such as HAT-CN is preferable because it is thermally stable.
  • Radialene derivatives having an electron-withdrawing group are preferable because of their very high electron-accepting properties.
  • ⁇ , ⁇ ′, ⁇ ′′ ⁇ 1,2,3-cyclopropanetriylidenetris [4-cyano-2,3,5,6-tetrafluorobenzeneacetonitrile], ⁇ , ⁇ ′, ⁇ ′′ -1,2,3-cyclopropanetriylidenetris [2,6-dichloro-3,5-difluoro-4- (trifluoromethyl) benzeneacetonitrile], ⁇ , ⁇ ′, ⁇ ′′ -1,2,3-cyclopropanetriylidentris [2,3,4 , 5,6-pentafluorobenzeneacetonitrile] and the like.
  • the hole transporting material used for the hole injection layer (111, 111a, 111b) and the hole transport layer (112, 112a, 112b) has a hole mobility of 1 ⁇ 10 ⁇ 6 cm 2 / Vs or more. Substances are preferred. Note that other than these substances, any substance that has a property of transporting more holes than electrons can be used.
  • a material having a high hole transporting property such as a ⁇ -electron rich heteroaromatic compound (for example, a compound having a carbazole skeleton or a compound having a furan skeleton) or a compound having an aromatic amine skeleton is preferable.
  • a ⁇ -electron rich heteroaromatic compound for example, a compound having a carbazole skeleton or a compound having a furan skeleton
  • a compound having an aromatic amine skeleton is preferable.
  • hole transporting material examples include 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (abbreviation: NPB or ⁇ -NPD), N, N′-bis (3 -Methylphenyl) -N, N′-diphenyl- [1,1′-biphenyl] -4,4′-diamine (abbreviation: TPD), 4,4′-bis [N- (spiro-9,9′- Bifluoren-2-yl) -N-phenylamino] biphenyl (abbreviation: BSPB), 4-phenyl-4 ′-(9-phenylfluoren-9-yl) triphenylamine (abbreviation: BPAFLP), 4-phenyl-3 '-(9-phenylfluoren-9-yl) triphenylamine (abbreviation: mBPAFLP), N- (9,9-dimethyl-9H-fluor fluor
  • poly (N-vinylcarbazole) (abbreviation: PVK), poly (4-vinyltriphenylamine) (abbreviation: PVTPA), poly [N- (4- ⁇ N ′-[4- (4-diphenylamino)] Phenyl] phenyl-N′-phenylamino ⁇ phenyl) methacrylamide] (abbreviation: PTPDMA), poly [N, N′-bis (4-butylphenyl) -N, N′-bis (phenyl) benzidine] (abbreviation: Polymer compounds such as Poly-TPD can also be used.
  • the hole transporting material is not limited to the above, and a hole injection layer (111, 111a, 111b) and a hole transporting layer may be used as a hole transporting material by combining one or more known various materials. (112, 112a, 112b). Note that each of the hole transport layers (112, 112a, 112b) may be formed of a plurality of layers. That is, for example, a first hole transport layer and a second hole transport layer may be laminated.
  • the light-emitting layer 113a is formed over the hole-transport layer 112a of the EL layer 103a by a vacuum evaporation method.
  • the light emitting layer 113b is formed on the hole transport layer 112b of the EL layer 103b by a vacuum evaporation method.
  • the light emitting layers (113, 113a, 113b) are layers containing a light emitting substance.
  • a substance exhibiting a luminescent color such as blue, purple, blue-violet, green, yellow-green, yellow, orange, or red is appropriately used.
  • a structure that exhibits different light emission colors for example, white light emission obtained by combining light emission colors having complementary colors
  • a stacked structure in which one light emitting layer includes different light emitting substances may be used.
  • the light emitting layer (113, 113a, 113b) may include one or more organic compounds (host material, assist material).
  • the one or more kinds of organic compounds one or both of a hole transporting material and an electron transporting material described in this embodiment can be used.
  • a light-emitting substance that can be used for the light-emitting layers (113, 113a, and 113b), and a light-emitting substance that changes singlet excitation energy into light emission in the visible light region or triplet excitation energy for light emission in the visible light region.
  • a luminescent material can be used. Examples of the light emitting substance include the following.
  • Examples of the light-emitting substance that converts singlet excitation energy into light emission include substances that emit fluorescence (fluorescent materials).
  • fluorescent materials include fluorescence (fluorescent materials).
  • Examples include quinoxaline derivatives, quinoxaline derivatives, pyridine derivatives, pyrimidine derivatives, phenanthrene derivatives, and naphthalene derivatives.
  • a pyrene derivative is preferable because of its high emission quantum yield.
  • pyrene derivative examples include N, N′-bis (3-methylphenyl) -N, N′-bis [3- (9-phenyl-9H-fluoren-9-yl) phenyl] pyrene-1,6. -Diamine (abbreviation: 1,6 mM emFLPAPrn), N, N'-diphenyl-N, N'-bis [4- (9-phenyl-9H-fluoren-9-yl) phenyl] pyrene-1,6-diamine (abbreviation) : 1,6FLPAPrn), N, N′-bis (dibenzofuran-2-yl) -N, N′-diphenylpyrene-1,6-diamine (abbreviation: 1,6FrAPrn), N, N′-bis (dibenzothiophene) -2-yl) -N, N′-diphenylpyrene-1,6-diamine (abbreviation: 1,
  • Examples of the light-emitting substance that changes triplet excitation energy into light emission include phosphorescent substances (phosphorescent materials) and thermally activated delayed fluorescence (TADF) materials that exhibit thermally activated delayed fluorescence. .
  • phosphorescent substances phosphorescent materials
  • TADF thermally activated delayed fluorescence
  • phosphorescent materials include organometallic complexes, metal complexes (platinum complexes), and rare earth metal complexes. Since these exhibit different emission colors (emission peaks) for each substance, they are appropriately selected and used as necessary.
  • Examples of phosphorescent materials that exhibit blue or green color and whose emission spectrum peak wavelength is 450 nm or more and 570 nm or less include the following substances.
  • Examples of the phosphorescent material which exhibits green or yellow and has an emission spectrum peak wavelength of 495 nm or more and 590 nm or less include the following substances.
  • tris (4-methyl-6-phenylpyrimidinato) iridium (III) (abbreviation: [Ir (mppm) 3 ]
  • tris (4-t-butyl-6-phenylpyrimidinato) iridium (III) (Abbreviation: [Ir (tBupppm) 3 ])
  • (acetylacetonato) bis (6-methyl-4-phenylpyrimidinato) iridium (III) abbreviation: [Ir (mppm) 2 (acac)]
  • Acetylacetonato bis (6-tert-butyl-4-phenylpyrimidinato) iridium (III) (abbreviation: [Ir (tBupppm) 2 (acac)]
  • Acetylacetonato) bis [6- (2- Norbornyl) -4-phenylpyrimidinato] iridium (III) (abbreviation: [Ir (nbpppm
  • Examples of the phosphorescent material which exhibits yellow or red and has an emission spectrum peak wavelength of 570 nm or more and 750 nm or less include the following substances.
  • organic compound (host material, assist material) used for the light emitting layer (113, 113a, 113b) a substance having an energy gap larger than the energy gap of the light emitting substance (guest material) may be selected and used. Good.
  • a positive hole transport material mentioned above and the material mentioned as an electron transport material mentioned later can also be used as such an organic compound (host material, assist material).
  • the light-emitting substance is a fluorescent material
  • a bipolar material can be used as the host material; however, a substance that satisfies the above conditions is more preferable.
  • anthracene derivatives and tetracene derivatives are also suitable.
  • the light-emitting substance is a phosphorescent material
  • an organic compound having a triplet excitation energy larger than the triplet excitation energy (energy difference between the ground state and the triplet excited state) of the light-emitting substance may be selected as the host material.
  • a bipolar material can be used as the host material; however, a substance that satisfies the above conditions is more preferable.
  • condensed polycyclic aromatic compounds such as anthracene derivatives, phenanthrene derivatives, pyrene derivatives, chrysene derivatives and dibenzo [g, p] chrysene derivatives are also suitable.
  • a host material combined with a phosphorescent light-emitting substance for example, 9,10-diphenylanthracene (abbreviation: DPAnth), N, N-diphenyl-9- [4- (10-phenyl-9-anthryl) phenyl] -9H-carbazol-3-amine (abbreviation: CzA1PA), 4- (10-phenyl-9-anthryl) triphenylamine (abbreviation: DPhPA), YGAPA, PCAPA, 9- (4- ⁇ 4 '-[N- Phenyl-N- (N-phenyl-3-carbazolyl)] amino ⁇ phenyl) phenyl-10-phenylanthracene (abbreviation: PCAPBA), N- (9,10-diphenyl-2-anthryl) -N, 9-diphenyl- 9H-carbazol-3-amine (abbreviation: 2PCAPA), 6,12-dimethoxy-5,11
  • a compound that forms an exciplex mixed with a phosphorescent material In the case where a plurality of organic compounds are used for the light emitting layer (113, 113a, 113b), it is preferable to use a compound that forms an exciplex mixed with a phosphorescent material. Note that with such a structure, light emission using ExTET (Exciplex-Triple Energy Transfer), which is energy transfer from the exciplex to the light-emitting substance, can be obtained. In this case, various organic compounds can be used in appropriate combination. However, in order to efficiently form an exciplex, a compound that easily receives holes (hole transporting material) and a compound that easily receives electrons (electrons) A combination with a transportable material) is particularly preferred.
  • ExTET Exciplex-Triple Energy Transfer
  • TADF material is a material that can up-convert triplet excited state to singlet excited state with a little thermal energy (interverse crossing) and efficiently emits light (fluorescence) from singlet excited state. is there.
  • the energy difference between the triplet excited level and the singlet excited level is 0 eV or more and 0.2 eV or less, preferably 0 eV or more and 0.1 eV or less.
  • delayed fluorescence in the TADF material refers to light emission having a remarkably long lifetime while having a spectrum similar to that of normal fluorescence. The lifetime is 1 ⁇ 10 ⁇ 6 seconds or more, preferably 1 ⁇ 10 ⁇ 3 seconds or more.
  • TADF material examples include fullerene and derivatives thereof, acridine derivatives such as proflavine, and eosin.
  • metal-containing porphyrins including magnesium (Mg), zinc (Zn), cadmium (Cd), tin (Sn), platinum (Pt), indium (In), palladium (Pd), and the like can be given.
  • metal-containing porphyrin examples include a protoporphyrin-tin fluoride complex (abbreviation: SnF 2 (Proto IX)), a mesoporphyrin-tin fluoride complex (abbreviation: SnF 2 (Meso IX)), and hematoporphyrin-tin fluoride.
  • SnF 2 Proto IX
  • SnF 2 mesoporphyrin-tin fluoride complex
  • hematoporphyrin-tin fluoride examples include hematoporphyrin-tin fluoride.
  • SnF 2 Hemato IX
  • SnF 2 coproporphyrin tetramethyl ester-tin fluoride complex
  • SnF 2 Copro III-4Me
  • SnF 2 octaethylporphyrin-tin fluoride complex
  • SnF 2 (OEP) Etioporphyrin-tin fluoride complex
  • PtCl 2 OEP octaethylporphyrin-platinum chloride complex
  • TADF materials include 2- (biphenyl-4-yl) -4,6-bis (12-phenylindolo [2,3-a] carbazol-11-yl) -1,3,5-triazine ( Abbreviation: PIC-TRZ), 2- ⁇ 4- [3- (N-phenyl-9H-carbazol-3-yl) -9H-carbazol-9-yl] phenyl ⁇ -4,6-diphenyl-1,3 5-triazine (abbreviation: PCCzPTzn), 2- [4- (10H-phenoxazin-10-yl) phenyl] -4,6-diphenyl-1,3,5-triazine (abbreviation: PXZ-TRZ), 3- [4- (5-phenyl-5,10-dihydrophenazin-10-yl) phenyl] -4,5-diphenyl-1,2,4-triazole (abbreviation: PPZ-3TPT), 3- (9,
  • a substance in which a ⁇ -electron rich heteroaromatic ring and a ⁇ -electron deficient heteroaromatic ring are directly bonded increases both the donor property of the ⁇ -electron rich heteroaromatic ring and the acceptor property of the ⁇ -electron deficient heteroaromatic ring. This is particularly preferable because the energy difference between the singlet excited state and the triplet excited state becomes small.
  • TADF material when using TADF material, it can also be used in combination with another organic compound.
  • the light emitting layer (113, 113a, 113b) can be formed by appropriately using the above materials.
  • the above materials can be used for forming the light emitting layers (113, 113a, 113b) by combining with a low molecular material or a high molecular material.
  • the electron-transport layer 114a is formed over the light-emitting layer 113a of the EL layer 103a. Further, after the EL layer 103a and the charge generation layer 104 are formed, the electron transport layer 114b is formed over the light emitting layer 113b of the EL layer 103b.
  • the electron transport layer (114, 114a, 114b) is a layer that transports electrons injected from the second electrode 102 to the light emitting layer (113, 113a, 113b) by the electron injection layer (115, 115a, 115b).
  • the electron transport layers (114, 114a, 114b) are layers containing an electron transport material.
  • the electron transporting material used for the electron transporting layer (114, 114a, 114b) is preferably a substance having an electron mobility of 1 ⁇ 10 ⁇ 6 cm 2 / Vs or higher. Note that other than these substances, any substance that has a property of transporting more electrons than holes can be used.
  • an electron transporting material in addition to a metal complex having a quinoline skeleton, a metal complex having a benzoquinoline skeleton, a metal complex having an oxazole skeleton, a metal complex having a thiazole skeleton, etc., an oxadiazole derivative, a triazole derivative, an imidazole derivative, ⁇ -electron deficiency including oxazole derivatives, thiazole derivatives, phenanthroline derivatives, quinoline derivatives with quinoline ligands, benzoquinoline derivatives, quinoxaline derivatives, dibenzoquinoxaline derivatives, pyridine derivatives, bipyridine derivatives, pyrimidine derivatives, and other nitrogen-containing heteroaromatic compounds
  • a material having a high electron transporting property such as a type heteroaromatic compound can be used.
  • the electron transporting material include tris (8-quinolinolato) aluminum (III) (abbreviation: Alq 3 ), tris (4-methyl-8-quinolinolato) aluminum (III) (abbreviation: Almq 3 ), bis ( 10-hydroxybenzo [h] quinolinato) beryllium (II) (abbreviation: BeBq 2 ), bis (2-methyl-8-quinolinolato) (4-phenylphenolato) aluminum (III) (abbreviation: BAlq), bis (8 -Quinolinolato) zinc (II) (abbreviation: Znq) and other metal complexes having a quinoline skeleton or a benzoquinoline skeleton, bis [2- (2-benzoxazolyl) phenolato] zinc (II) (abbreviation: ZnPBO), bis [2- (2-Benzothiazolyl) phenolato] zinc (II) (abbreviation: ZnBTZ), bis [ [
  • 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole (abbreviation: PBD), 1,3-bis [5- ( p-tert-butylphenyl) -1,3,4-oxadiazol-2-yl] benzene (abbreviation: OXD-7), 9- [4- (5-phenyl-1,3,4-oxadiazole) Oxadiazole derivatives such as 2-yl) phenyl] -9H-carbazole (abbreviation: CO11), 3- (4′-tert-butylphenyl) -4-phenyl-5- (4 ′′ -biphenyl) -1 , 2,4-triazole (abbreviation: TAZ), 3- (4-tert-butylphenyl) -4- (4-ethylphenyl) -5- (4-biphenylyl) -1,2,4-
  • poly (2,5-pyridinediyl) (abbreviation: PPy)
  • poly [(9,9-dihexylfluorene-2,7-diyl) -co- (pyridine-3,5-diyl)] (abbreviation: PF -Py)
  • poly [(9,9-dioctylfluorene-2,7-diyl) -co- (2,2′-bipyridine-6,6′-diyl)] (abbreviation: PF-BPy)
  • PPy poly [(9,9-dioctylfluorene-2,7-diyl) -co- (2,2′-bipyridine-6,6′-diyl)]
  • PF-BPy Molecular compounds
  • the electron-transport layer (114, 114a, 114b) is not limited to a single layer, and may have a structure in which two or more layers made of the above substances are stacked.
  • an electron injection layer 115a is formed over the electron transport layer 114a of the EL layer 103a by a vacuum evaporation method. Thereafter, the EL layer 103a and the charge generation layer 104 are formed, and the electron transport layer 114b of the EL layer 103b is formed, and then the electron injection layer 115b is formed thereon by a vacuum deposition method.
  • the electron injection layers (115, 115a, 115b) are layers containing a substance having a high electron injection property.
  • the electron injection layer (115, 115a, 115b) includes an alkali metal such as lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF 2 ), lithium oxide (LiO x ), or the like. Earth metals or their compounds can be used. Alternatively, a rare earth metal compound such as erbium fluoride (ErF 3 ) can be used.
  • electride may be used for the electron injection layer (115, 115a, 115b). Examples of the electride include a substance obtained by adding a high concentration of electrons to a mixed oxide of calcium and aluminum. In addition, the substance which comprises the electron carrying layer (114, 114a, 114b) mentioned above can also be used.
  • a composite material obtained by mixing an organic compound and an electron donor (donor) may be used for the electron injection layer (115, 115a, 115b).
  • a composite material is excellent in electron injecting property and electron transporting property because electrons are generated in the organic compound by the electron donor.
  • the organic compound is preferably a material excellent in transporting the generated electrons.
  • an electron transport material metal complex used for the electron transport layer (114, 114a, 114b) described above, for example.
  • a heteroaromatic compound may be any substance that exhibits an electron donating property to the organic compound.
  • alkali metals, alkaline earth metals, and rare earth metals are preferable, and lithium, cesium, magnesium, calcium, erbium, ytterbium, and the like can be given.
  • Alkali metal oxides and alkaline earth metal oxides are preferable, and lithium oxide, calcium oxide, barium oxide, and the like can be given.
  • a Lewis base such as magnesium oxide can also be used.
  • an organic compound such as tetrathiafulvalene (abbreviation: TTF) can be used.
  • the optical distance between the second electrode 102 and the light-emitting layer 113b is equal to the light exhibited by the light-emitting layer 113b. It is preferable to form it to be less than 1 ⁇ 4 of the wavelength ⁇ . In this case, adjustment can be performed by changing the film thickness of the electron transport layer 114b or the electron injection layer 115b.
  • the charge generation layer 104 has electrons in the EL layer 103a when a voltage is applied between the first electrode (anode) 101 and the second electrode (cathode) 102. And has a function of injecting holes into the EL layer 103b.
  • the charge generation layer 104 may have a structure in which an electron acceptor is added to a hole transporting material or a structure in which an electron donor (donor) is added to an electron transporting material. Good.
  • both these structures may be laminated
  • the materials described in this embodiment can be used as the hole-transporting material.
  • the electron acceptor include 7,7,8,8-tetracyano-2,3,5,6-tetrafluoroquinodimethane (abbreviation: F 4 -TCNQ), chloranil, and the like.
  • oxides of metals belonging to Groups 4 to 8 in the periodic table can be given. Specific examples include vanadium oxide, niobium oxide, tantalum oxide, chromium oxide, molybdenum oxide, tungsten oxide, manganese oxide, and rhenium oxide.
  • the materials described in this embodiment can be used as the electron transporting material.
  • the electron donor an alkali metal, an alkaline earth metal, a rare earth metal, a metal belonging to Groups 2 and 13 of the periodic table, or an oxide or carbonate thereof can be used.
  • lithium (Li), cesium (Cs), magnesium (Mg), calcium (Ca), ytterbium (Yb), indium (In), lithium oxide, cesium carbonate, or the like is preferably used.
  • An organic compound such as tetrathianaphthacene may be used as an electron donor.
  • the light-emitting device described in this embodiment can be formed over various substrates.
  • substrate is not limited to a specific thing.
  • a semiconductor substrate for example, a single crystal substrate or a silicon substrate
  • an SOI substrate for example, a glass substrate, a quartz substrate, a plastic substrate, a metal substrate, a stainless steel substrate, a substrate having stainless steel foil, a tungsten substrate
  • Examples include a substrate having a tungsten foil, a flexible substrate, a laminated film, a paper containing a fibrous material, or a base film.
  • the glass substrate examples include barium borosilicate glass, aluminoborosilicate glass, and soda lime glass.
  • plastics such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polyethersulfone (PES), acrylic resin, etc. Synthetic resin, polypropylene, polyester, polyvinyl fluoride, polyvinyl chloride, polyamide, polyimide, aramid resin, epoxy resin, inorganic vapor deposition film, papers, and the like can be given.
  • a vacuum process such as an evaporation method or a solution process such as a spin coating method or an inkjet method can be used.
  • vapor deposition physical vapor deposition (PVD) such as sputtering, ion plating, ion beam vapor deposition, molecular beam vapor deposition, or vacuum vapor deposition, or chemical vapor deposition (CVD) is used. be able to.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • a functional layer (a hole injection layer (111, 111a, 111b), a hole transport layer (112, 112a, 112b), a light emitting layer (113, 113a, 113b), an electron transport layer ( 114, 114a, 114b), the electron injection layer (115, 115a, 115b)), and the charge generation layer 104, a vapor deposition method (vacuum vapor deposition method, etc.), a coating method (dip coating method, die coating method, bar coating method, Spin coating method, spray coating method, etc.), printing methods (inkjet method, screen (stencil printing) method, offset (lithographic printing) method, flexographic (letter printing) method, gravure method, micro contact method, nanoimprint method, etc.) It can be formed by a method.
  • each functional layer (hole injection layer (111, 111a, 111b), hole transport layer (112, 112a, 112b)) included in the EL layer (103, 103a, 103b) of the light-emitting device shown in this embodiment mode
  • the light emitting layer (113, 113a, 113b), the electron transport layer (114, 114a, 114b), the electron injection layer (115, 115a, 115b)) and the charge generation layer 104 are not limited to the materials described above. Other materials can be used in combination as long as they can satisfy the functions of the respective layers.
  • high molecular compounds oligomers, dendrimers, polymers, etc.
  • medium molecular compounds compounds in the middle region between low molecules and polymers: molecular weight 400 to 4000
  • inorganic compounds quantum dot materials, etc.
  • quantum dot material a colloidal quantum dot material, an alloy type quantum dot material, a core / shell type quantum dot material, a core type quantum dot material, or the like can be used.
  • 2A is an active matrix light-emitting device in which a transistor (FET) 202 over a first substrate 201 and a light-emitting device (203R, 203G, 203B, 203W) are electrically connected.
  • the plurality of light emitting devices (203R, 203G, 203B, 203W) have a common EL layer 204, and the optical distance between the electrodes of each light emitting device depends on the light emission color of each light emitting device. It has a tuned microcavity structure.
  • the light-emitting device is a top-emission light-emitting device in which light emission obtained from the EL layer 204 is emitted through color filters (206R, 206G, and 206B) formed over the second substrate 205.
  • the first electrode 207 is formed so as to function as a reflective electrode.
  • the second electrode 208 is formed so as to function as a semi-transmissive / semi-reflective electrode. Note that an electrode material for forming the first electrode 207 and the second electrode 208 may be used as appropriate with reference to the description of the other embodiments.
  • the light emitting device 203R is a red light emitting device
  • the light emitting device 203G is a green light emitting device
  • the light emitting device 203B is a blue light emitting device
  • the light emitting device 203W is a white light emitting device, FIG.
  • the light emitting device 203R is adjusted so that the optical distance 200R is between the first electrode 207 and the second electrode 208
  • the light emitting device 203G includes the first electrode 207 and the second electrode.
  • the light emitting device 203B is adjusted so that the optical distance 200B is between the first electrode 207 and the second electrode 208. Note that as shown in FIG.
  • the conductive layer 210R is stacked over the first electrode 207
  • the conductive layer 210G is stacked over the first electrode 207, thereby optical adjustment. It can be performed.
  • color filters (206R, 206G, 206B) are formed on the second substrate 205.
  • the color filter is a filter that passes a specific wavelength range of visible light and blocks the specific wavelength range. Therefore, as shown in FIG. 2A, red light emission can be obtained from the light emitting device 203R by providing a color filter 206R that allows only the red wavelength region to pass at a position overlapping the light emitting device 203R. Further, by providing the color filter 206G that allows only the green wavelength region to pass at a position overlapping the light emitting device 203G, green light emission can be obtained from the light emitting device 203G.
  • the color filter 206B that allows only the blue wavelength region to pass at a position overlapping with the light emitting device 203B, blue light emission can be obtained from the light emitting device 203B.
  • the light emitting device 203W can obtain white light emission without providing a color filter.
  • a black layer (black matrix) 209 may be provided at the end of each color filter.
  • the color filters (206R, 206G, 206B) and the black layer 209 may be covered with an overcoat layer using a transparent material.
  • FIG. 2A a light emitting device having a structure for extracting light emission to the second substrate 205 side (top emission type) is shown, but the first substrate on which the FET 202 is formed as shown in FIG.
  • a light emitting device having a structure for extracting light to the 201 side (bottom emission type) may be used.
  • the first electrode 207 is formed to function as a semi-transmissive / semi-reflective electrode
  • the second electrode 208 is formed to function as a reflective electrode.
  • the first substrate 201 is at least a light-transmitting substrate.
  • the color filters (206R ′, 206G ′, and 206B ′) may be provided on the first substrate 201 side than the light emitting devices (203R, 203G, and 203B) as illustrated in FIG.
  • the light-emitting device is a red light-emitting device, a green light-emitting device, a blue light-emitting device, or a white light-emitting device
  • the light-emitting device that is one embodiment of the present invention is limited to the structure.
  • a configuration having a yellow light emitting device or an orange light emitting device may be used.
  • a material used for EL layers (a light emitting layer, a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, a charge generation layer, etc.) for manufacturing these light emitting devices, other embodiments are used. May be used as appropriate with reference to the description. In this case, it is necessary to select a color filter as appropriate according to the emission color of the light emitting device.
  • a light-emitting device including a light-emitting device that exhibits a plurality of emission colors can be obtained.
  • an active matrix light-emitting device or a passive matrix light-emitting device can be manufactured.
  • an active matrix light-emitting device has a structure in which a light-emitting device and a transistor (FET) are combined. Therefore, both a passive matrix light-emitting device and an active matrix light-emitting device are included in one embodiment of the present invention.
  • FET transistor
  • the light-emitting device described in any of the other embodiments can be applied to the light-emitting device described in this embodiment.
  • an active matrix light-emitting device is described with reference to FIGS.
  • FIG. 3A is a top view showing the light-emitting device 21, and FIG. 3B is a cross-sectional view taken along the chain line A-A 'in FIG. 3A.
  • the active matrix light-emitting device includes a pixel portion 302, a driver circuit portion (source line driver circuit) 303, and driver circuit portions (gate line driver circuits) (304a and 304b) provided over the first substrate 301. .
  • the pixel portion 302 and the driver circuit portions (303, 304a, and 304b) are sealed between the first substrate 301 and the second substrate 306 by a sealant 305.
  • a lead wiring 307 is provided over the first substrate 301.
  • the lead wiring 307 is electrically connected to the FPC 308 which is an external input terminal.
  • the FPC 308 transmits signals (eg, a video signal, a clock signal, a start signal, a reset signal, and the like) and a potential from the outside to the driving circuit units (303, 304a, and 304b).
  • a printed wiring board (PWB) may be attached to the FPC 308. Note that the state in which the FPC or PWB is attached is included in the light emitting device.
  • FIG. 3B illustrates a cross-sectional structure of the light-emitting device.
  • the pixel portion 302 is formed by a plurality of pixels including a FET (switching FET) 311, a FET (current control FET) 312, and a first electrode 313 electrically connected to the FET 312.
  • a FET switching FET
  • FET current control FET
  • first electrode 313 electrically connected to the FET 312. Note that the number of FETs included in each pixel is not particularly limited, and can be appropriately provided as necessary.
  • the FETs 309, 310, 311, and 312 are not particularly limited, and for example, a staggered type transistor or an inverted staggered type transistor can be applied. Further, a transistor structure such as a top gate type or a bottom gate type may be used.
  • crystallinity of the semiconductor there is no particular limitation on the crystallinity of the semiconductor that can be used for these FETs 309, 310, 311, and 312; an amorphous semiconductor, a semiconductor having crystallinity (a microcrystalline semiconductor, a polycrystalline semiconductor, a single crystal semiconductor, Alternatively, a semiconductor having a crystal region in part) may be used. Note that it is preferable to use a crystalline semiconductor because deterioration of transistor characteristics can be suppressed.
  • Group 14 elements for example, Group 14 elements, compound semiconductors, oxide semiconductors, organic semiconductors, and the like can be used.
  • a semiconductor containing silicon, a semiconductor containing gallium arsenide, an oxide semiconductor containing indium, or the like can be used.
  • the drive circuit unit 303 includes an FET 309 and an FET 310.
  • the FET 309 and the FET 310 may be formed of a circuit including a unipolar transistor (N-type or P-type only) or a CMOS circuit including an N-type transistor and a P-type transistor. May be.
  • a configuration in which a drive circuit is provided outside may be employed.
  • an end portion of the first electrode 313 is covered with an insulator 314.
  • the insulator 314 can be formed using an organic compound such as a negative photosensitive resin or a positive photosensitive resin (acrylic resin), or an inorganic compound such as silicon oxide, silicon oxynitride, or silicon nitride. . It is preferable that an upper end portion or a lower end portion of the insulator 314 have a curved surface having a curvature. Thereby, the coverage of the film formed on the upper layer of the insulator 314 can be improved.
  • the EL layer 315 and a second electrode 316 are stacked over the first electrode 313.
  • the EL layer 315 includes a light-emitting layer, a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, a charge generation layer, and the like.
  • the structure and materials described in other embodiments can be applied to the structure of the light-emitting device 317 described in this embodiment.
  • the second electrode 316 is electrically connected to the FPC 308 which is an external input terminal.
  • 3B illustrates only one light-emitting device 317, it is assumed that a plurality of light-emitting devices are arranged in a matrix in the pixel portion 302.
  • light emitting devices capable of emitting three types of light R, G, and B
  • a light emitting device capable of full color display can be formed.
  • light emission that can emit light such as white (W), yellow (Y), magenta (M), and cyan (C).
  • a device may be formed.
  • a light emitting device capable of obtaining several types of light emission to three types (R, G, B) of light emission, effects such as improvement of color purity and reduction of power consumption can be obtained. Can do.
  • a light emitting device capable of full color display may be obtained by combining with a color filter.
  • types of color filters red (R), green (G), blue (B), cyan (C), magenta (M), yellow (Y), and the like can be used.
  • the FETs (309, 310, 311, 312) and the light emitting device 317 on the first substrate 301 are bonded to each other by bonding the second substrate 306 and the first substrate 301 with the sealant 305. 301, the second substrate 306, and a structure provided in a space 318 surrounded by the sealant 305. Note that the space 318 may be filled with an inert gas (such as nitrogen or argon) or an organic substance (including the sealant 305).
  • an inert gas such as nitrogen or argon
  • organic substance including the sealant 305
  • An epoxy resin or glass frit can be used for the sealant 305. Note that it is preferable to use a material that does not transmit moisture and oxygen as much as possible for the sealant 305.
  • a substrate that can be used for the first substrate 301 can be used as well. Therefore, various substrates described in other embodiments can be used as appropriate.
  • a plastic substrate made of FRP (Fiber-Reinforced Plastics), PVF (polyvinyl fluoride), polyester, acrylic resin, or the like can be used as the substrate.
  • the first substrate 301 and the second substrate 306 are preferably glass substrates from the viewpoint of adhesiveness.
  • an active matrix light-emitting device can be obtained.
  • the FET and the light-emitting device may be directly formed over the flexible substrate, but the FET and the light-emitting device are formed over another substrate having a release layer.
  • the FET and the light-emitting device may be peeled off by a peeling layer by applying heat, force, laser irradiation, and transferred to a flexible substrate.
  • the peeling layer for example, a laminated inorganic film of a tungsten film and a silicon oxide film, an organic resin film such as polyimide, or the like can be used.
  • flexible substrates include paper substrates, cellophane substrates, aramid film substrates, polyimide film substrates, fabric substrates (natural fibers (silk, cotton, hemp), synthetic fibers ( Nylon, polyurethane, polyester) or recycled fibers (including acetate, cupra, rayon, recycled polyester), leather substrates, rubber substrates, and the like.
  • paper substrates cellophane substrates
  • aramid film substrates polyimide film substrates
  • fabric substrates natural fibers (silk, cotton, hemp), synthetic fibers ( Nylon, polyurethane, polyester) or recycled fibers (including acetate, cupra, rayon, recycled polyester), leather substrates, rubber substrates, and the like.
  • An electronic device illustrated in FIGS. 4A to 4C includes a housing 7000, a display portion 7001, a speaker 7003, an LED lamp 7004, operation keys 7005 (including a power switch or an operation switch), a connection terminal 7006, Sensor 7007 (force, displacement, position, velocity, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity , Including a function of measuring inclination, vibration, odor, or infrared light), a microphone 7008, and the like.
  • FIG. 4A illustrates a mobile computer, which can include a switch 7009, an infrared port 7010, and the like in addition to the above objects.
  • FIG. 4B illustrates a portable image reproducing device (eg, a DVD reproducing device) provided with a recording medium, which includes a second display portion 7002, a recording medium reading portion 7011, and the like in addition to those described above. it can.
  • a portable image reproducing device eg, a DVD reproducing device
  • a recording medium which includes a second display portion 7002, a recording medium reading portion 7011, and the like in addition to those described above. it can.
  • FIG. 4C illustrates a digital camera with a television receiving function, which can include an antenna 7014, a shutter button 7015, an image receiving portion 7016, and the like in addition to the above objects.
  • FIG. 4D illustrates a portable information terminal.
  • the portable information terminal has a function of displaying information on three or more surfaces of the display portion 7001.
  • information 7052, information 7053, and information 7054 are displayed on different planes.
  • the user can check the information 7053 displayed at a position where the portable information terminal can be observed from above the portable information terminal in a state where the portable information terminal is stored in the chest pocket of the clothes. The user can confirm the display without taking out the portable information terminal from the pocket, and can determine whether to receive a call, for example.
  • FIG. 4E illustrates a portable information terminal (including a smartphone), which can include a display portion 7001, operation keys 7005, and the like in a housing 7000.
  • the portable information terminal may include a speaker, a connection terminal, a sensor, and the like.
  • the portable information terminal can display characters and image information on the plurality of surfaces.
  • an example in which three icons 7050 are displayed is shown.
  • information 7051 indicated by a broken-line rectangle can be displayed on another surface of the display portion 7001. Examples of the information 7051 include notifications of incoming calls such as e-mail, SNS, and telephone, titles of e-mail and SNS, sender name, date / time, time, remaining battery level, antenna reception strength, and the like.
  • an icon 7050 or the like may be displayed at a position where the information 7051 is displayed.
  • FIG. 4F illustrates a large television device (also referred to as a television or a television receiver) which can include a housing 7000, a display portion 7001, and the like.
  • a large television device also referred to as a television or a television receiver
  • the television device can be operated by a separate remote controller 7111 or the like.
  • the display portion 7001 may be provided with a touch sensor, and may be operated by touching the display portion 7001 with a finger or the like.
  • the remote controller 7111 may include a display unit that displays information output from the remote controller 7111. Channels and volume can be operated with an operation key or a touch panel included in the remote controller 7111, and an image displayed on the display portion 7001 can be operated.
  • the electronic devices illustrated in FIGS. 4A to 4F can have a variety of functions. For example, a function for displaying various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a function for displaying a calendar, date or time, etc., a function for controlling processing by various software (programs) , Wireless communication function, function to connect to various computer networks using wireless communication function, function to transmit or receive various data using wireless communication function, read program or data recorded in recording medium
  • a function of displaying on the display portion can be provided. Further, in an electronic device having a plurality of display units, one display unit mainly displays image information and another one display unit mainly displays character information, or the plurality of display units consider parallax.
  • a function of displaying a three-dimensional image, etc. by displaying the obtained image. Furthermore, in an electronic device having an image receiving unit, a function for capturing a still image, a function for capturing a moving image, a function for correcting a captured image automatically or manually, and a captured image on a recording medium (externally or incorporated in a camera) A function of saving, a function of displaying a photographed image on a display portion, and the like can be provided. Note that the functions of the electronic devices illustrated in FIGS. 4A to 4F are not limited to these, and the electronic devices can have various functions.
  • FIG. 4G illustrates a wristwatch-type portable information terminal, which can be used as a smart watch, for example.
  • This wristwatch-type portable information terminal includes a housing 7000, a display portion 7001, operation buttons 7022 and 7023, a connection terminal 7024, a band 7025, a microphone 7026, a sensor 7029, a speaker 7030, and the like.
  • the display portion 7001 has a curved display surface and can perform display along the curved display surface.
  • this portable information terminal can make a hands-free call by mutual communication with a headset capable of wireless communication, for example.
  • the connection terminal 7024 can perform data transmission with another information terminal or can be charged.
  • the charging operation can also be performed by wireless power feeding.
  • a display portion 7001 mounted on a housing 7000 that also serves as a bezel portion has a non-rectangular display region.
  • the display portion 7001 can display an icon 7027 representing time, other icons 7028, and the like.
  • the display unit 7001 may be a touch panel (input / output device) equipped with a touch sensor (input device).
  • the smart watch illustrated in FIG. 4G can have a variety of functions. For example, a function for displaying various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a function for displaying a calendar, date or time, etc., a function for controlling processing by various software (programs) , Wireless communication function, function to connect to various computer networks using wireless communication function, function to transmit or receive various data using wireless communication function, read program or data recorded in recording medium A function of displaying on the display portion can be provided.
  • a speaker In addition, a speaker, a sensor (force, displacement, position, velocity, acceleration, angular velocity, number of rotations, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current are included in the housing 7000. , Voltage, power, radiation, flow rate, humidity, gradient, vibration, odor or infrared measurement function), microphone, and the like.
  • the light-emitting device which is one embodiment of the present invention and the display device including the light-emitting device which is one embodiment of the present invention can be used for each display portion of the electronic device described in this embodiment and have a long lifetime. Can be realized.
  • FIG. 5A illustrates the portable information terminal 9310 in a developed state.
  • FIG. 5B illustrates the portable information terminal 9310 in a state of changing from one of the expanded state and the folded state to the other.
  • FIG. 5C illustrates the portable information terminal 9310 in a folded state.
  • the portable information terminal 9310 is excellent in portability in the folded state and excellent in display listability due to a seamless wide display area in the expanded state.
  • the display portion 9311 is supported by three housings 9315 connected by a hinge 9313.
  • the display unit 9311 may be a touch panel (input / output device) equipped with a touch sensor (input device).
  • the display portion 9311 can be reversibly deformed from the expanded state to the folded state by bending the two housings 9315 via the hinge 9313.
  • the light-emitting device of one embodiment of the present invention can be used for the display portion 9311.
  • a long-life electronic device can be realized.
  • a display region 9312 in the display portion 9311 is a display region located on a side surface of the portable information terminal 9310 in a folded state. In the display area 9312, information icons, frequently used applications, program shortcuts, and the like can be displayed, so that information can be confirmed and applications can be activated smoothly.
  • FIGS. 6A and 6B illustrate an automobile to which the light-emitting device is applied. That is, the light emitting device can be provided integrally with the automobile.
  • the present invention can be applied to a light 5101 (including a rear part of a vehicle body), a wheel 5102 of a tire, a part of or the whole of a door 5103 shown in FIG.
  • the present invention can be applied to a display portion 5104, a handle 5105, a shift lever 5106, a seat seat 5107, an inner rear view mirror 5108, and the like inside the automobile shown in FIG.
  • an electronic device or a vehicle using the light-emitting device or the display device which is one embodiment of the present invention can be obtained.
  • a long-life electronic device can be realized.
  • applicable electronic devices and automobiles are not limited to those described in this embodiment, and can be applied in any field.
  • FIG. 7A and 7B illustrate examples of cross-sectional views of the lighting device. Note that FIG. 7A illustrates a bottom emission type illumination device that extracts light to the substrate side, and FIG. 7B illustrates a top emission type illumination device that extracts light to the sealing substrate side.
  • a lighting device 4000 illustrated in FIG. 7A includes a light-emitting device 4002 over a substrate 4001.
  • a substrate 4003 having unevenness is provided outside the substrate 4001.
  • the light-emitting device 4002 includes a first electrode 4004, an EL layer 4005, and a second electrode 4006.
  • the first electrode 4004 is electrically connected to the electrode 4007, and the second electrode 4006 is electrically connected to the electrode 4008. Further, an auxiliary wiring 4009 that is electrically connected to the first electrode 4004 may be provided. Note that an insulating layer 4010 is formed over the auxiliary wiring 4009.
  • the substrate 4001 and the sealing substrate 4011 are bonded with a sealant 4012.
  • a desiccant 4013 is preferably provided between the sealing substrate 4011 and the light-emitting device 4002. Note that since the substrate 4003 has unevenness as illustrated in FIG. 7A, the light extraction efficiency of the light-emitting device 4002 can be improved.
  • a lighting device 4200 in FIG. 7B includes a light-emitting device 4202 over a substrate 4201.
  • the light-emitting device 4202 includes a first electrode 4204, an EL layer 4205, and a second electrode 4206.
  • the first electrode 4204 is electrically connected to the electrode 4207, and the second electrode 4206 is electrically connected to the electrode 4208. Further, an auxiliary wiring 4209 that is electrically connected to the second electrode 4206 may be provided. Further, an insulating layer 4210 may be provided below the auxiliary wiring 4209.
  • the substrate 4201 and the uneven sealing substrate 4211 are bonded with a sealant 4212. Further, a barrier film 4213 and a planarization film 4214 may be provided between the sealing substrate 4211 and the light-emitting device 4202. Note that since the sealing substrate 4211 has unevenness as illustrated in FIG. 7B, the light extraction efficiency of the light-emitting device 4202 can be improved.
  • Ceiling lights include a direct ceiling type and a ceiling embedded type. Note that such an illumination device is configured by combining a light emitting device with a housing or a cover.
  • the foot lamp can illuminate the floor surface and enhance the safety of the foot.
  • the foot lamp is effective for use in a bedroom, a staircase, a passage, or the like.
  • the size and shape can be appropriately changed according to the size and structure of the room.
  • a stationary illumination device configured by combining a light emitting device and a support base can be provided.
  • sheet-like illumination Since the sheet-like illumination is used by being attached to the wall surface, it can be used for a wide range of applications without taking up space. It is easy to increase the area. In addition, it can also be used for the wall surface and housing
  • a light-emitting device which is one embodiment of the present invention or a light-emitting device which is a part of the light-emitting device which is an embodiment of the present invention is applied to a part of the furniture provided in the room, whereby a lighting device having a function as furniture is provided. Can do.
  • various lighting devices to which the light-emitting device is applied can be obtained. Note that these lighting devices are included in one embodiment of the present invention.
  • Step 1 Synthesis of benzo [f] naphtho [2,1-h] quinoxaline (abbreviation: Hbnq)>
  • chrysene-5,6-dione 2.1 g, 7.7 mmol
  • ethylenediamine 0.56 g, 9.3 mmol
  • ethanol 20 mL
  • the obtained mixture was subjected to suction filtration, and the filtrate was washed with ethanol.
  • the obtained solid was purified by silica gel column chromatography. Toluene was used as the developing solvent. The obtained fraction was concentrated to obtain the desired product (white solid 0.98 g, yield 45%).
  • the synthesis scheme of Step 1 is shown in the following formula (a-1).
  • Step 2 Synthesis of [Ir (bnq) 2 (dpm)]>
  • 0.98 g (3.5 mmol) of the ligand Hbnq obtained in Step 1 above, 0.47 g (1.6 mmol) of iridium chloride hydrate, and 35 mL of dimethylformamide (DMF) are placed in a three-necked flask. Replaced with nitrogen. This mixture was heated and stirred at 160 ° C. for 5 hours. After a predetermined time, 0.67 g (6.4 mmol) of sodium carbonate and 0.88 g (4.8 mmol) of Hdpm were added to this mixture, and the mixture was heated and stirred at 140 ° C. for 9 hours. Next, this mixture was subjected to suction filtration, and the filtrate was washed with water and ethanol to obtain a red solid.
  • Step 2 The synthesis scheme of Step 2 is shown by the following formula (a-2).
  • the deep red solid proton ( 1 H) obtained in Step 2 was measured by nuclear magnetic resonance (NMR). The values obtained are shown below.
  • a 1 H-NMR chart is shown in FIG. From this, it was found that [Ir (bnq) 2 (dpm)], which is an organometallic complex of one embodiment of the present invention represented by the above structural formula (100), was obtained in this synthesis example. .
  • a proton of about 11 ppm belongs to the 14th-position proton of benzonaphthoquinoxaline (bnq) and binds to Ir, which is the central metal among nitrogen atoms of the benzonaphthoquinoxaline (bnq) skeleton coordinated to the central metal.
  • an ultraviolet-visible absorption spectrum (hereinafter, simply referred to as “absorption spectrum”) and an emission spectrum of [Ir (bnq) 2 (dpm)] in a dichloromethane solution were measured.
  • a UV-visible spectrophotometer V550 type, manufactured by JASCO Corporation
  • a dichloromethane solution 0.011 mmol / L
  • a degassed dichloromethane solution 0.011 mmol / L
  • FS920 Hamamatsu Photonics Co., Ltd.
  • the measurement results of the obtained absorption spectrum and emission spectrum are shown in FIG.
  • the horizontal axis represents wavelength
  • the vertical axis represents absorption intensity and emission intensity.
  • a thin solid line in FIG. 9 indicates an absorption spectrum
  • a thick solid line indicates an emission spectrum.
  • the absorption spectrum shown in FIG. 9 shows the result of subtracting the absorption spectrum measured by putting only dichloromethane in the quartz cell from the absorption spectrum measured by putting the dichloromethane solution (0.011 mmol / L) in the quartz cell.
  • the organometallic complex which is one embodiment of the present invention [Ir (bnq) 2 (dpm)]
  • the organometallic complex which is one embodiment of the present invention, [Ir (bnq) 2 (dpm)]
  • Comparative light-emitting device 2 using O, O ′) iridium (III) (abbreviation: [Ir (dbq) 2 (acac)]) (structural formula (200)) for the light-emitting layer was produced.
  • the element structures, manufacturing methods, and characteristics of the light-emitting device 1 and the comparative light-emitting device 2 will be described.
  • FIG. 10 shows an element structure of a light-emitting device used in this example, and Table 1 shows a specific structure.
  • chemical formulas of materials used in this example are shown below.
  • the light-emitting device described in this example includes a hole injection layer 911, a hole transport layer 912, a light-emitting layer 913, an electron transport layer 914, and a first electrode 901 formed on a substrate 900 as illustrated in FIG.
  • the electron injection layer 915 is sequentially stacked, and the second electrode 903 is stacked on the electron injection layer 915.
  • the first electrode 901 was formed over the substrate 900.
  • the electrode area was 4 mm 2 (2 mm ⁇ 2 mm).
  • a glass substrate was used as the substrate 900.
  • the first electrode 901 was formed by depositing indium tin oxide containing silicon oxide (ITSO) with a thickness of 70 nm by a sputtering method.
  • ITSO indium tin oxide containing silicon oxide
  • the surface of the substrate was washed with water and baked at 200 ° C. for 1 hour, followed by UV ozone treatment for 370 seconds. Thereafter, the substrate was introduced into a vacuum vapor deposition apparatus whose internal pressure was reduced to about 1 ⁇ 10 ⁇ 4 Pa, and after performing vacuum baking at 170 ° C. for 30 minutes in the heating chamber in the vacuum vapor deposition apparatus, the substrate was separated for 30 minutes. Allowed to cool.
  • a hole injection layer 911 was formed over the first electrode 901.
  • a hole transport layer 912 was formed over the hole injection layer 911.
  • the hole-transport layer 912 was formed by vapor deposition using 4-phenyl-4 ′-(9-phenylfluoren-9-yl) triphenylamine (abbreviation: BPAFLP) so as to have a thickness of 20 nm.
  • BPAFLP 4-phenyl-4 ′-(9-phenylfluoren-9-yl) triphenylamine
  • a light-emitting layer 913 was formed over the hole transport layer 912.
  • the film thickness was 40 nm.
  • the light-emitting layer 913 in the case of the comparative light-emitting device 2 uses 2mDBTBPDBq-II as a host material, PCBBiF as an assist material, and [Ir (dbq) 2 (acac)] as a guest material (phosphorescent material).
  • the film thickness was 40 nm.
  • the electron-transport layer 914 has a thickness of 2mDBTBPDBq-II of 30 nm and a thickness of 2,9-bis (naphthalen-2-yl) -4,7-diphenyl-1,10-phenanthroline (abbreviation: NBphen) of 15 nm. It was formed by sequentially vapor-depositing.
  • the electron injection layer 915 was formed over the electron transport layer 914.
  • the electron injection layer 915 was formed by vapor deposition using lithium fluoride (LiF) so as to have a film thickness of 1 nm.
  • a second electrode 903 was formed over the electron injection layer 915.
  • the second electrode 903 was formed by vapor deposition of aluminum so that the film thickness becomes 200 nm. Note that in this embodiment, the second electrode 903 functions as a cathode.
  • a light-emitting device in which an EL layer was sandwiched between a pair of electrodes was formed over the substrate 900.
  • the hole-injection layer 911, the hole-transport layer 912, the light-emitting layer 913, the electron-transport layer 914, and the electron-injection layer 915 described in the above steps are functional layers that constitute the EL layer in one embodiment of the present invention.
  • a vapor deposition method using a resistance heating method was used.
  • the light-emitting device manufactured as described above is sealed with another substrate (not shown).
  • another substrate (not shown) coated with a sealing agent that is solidified by ultraviolet light is placed on the substrate 900 in a glove box in a nitrogen atmosphere.
  • the substrates were bonded to each other so that the sealant adhered to the periphery of the light emitting device formed on the substrate 900.
  • 365 nm ultraviolet light was irradiated at 6 J / cm 2 to solidify the sealing agent, and the sealing agent was stabilized by heat treatment at 80 ° C. for 1 hour.
  • Table 2 below shows main initial characteristic values of the respective light emitting devices in the vicinity of 1000 cd / m 2 .
  • the light emitting device 1 exhibits good element characteristics.
  • FIG. 15 shows emission spectra when current is passed through the light-emitting device 1 and the comparative light-emitting device 2 at a current density of 2.5 mA / cm 2 .
  • the light-emitting device 1 has an emission spectrum having a peak near 650 nm derived from light emission of the organometallic complex [Ir (bnq) 2 (dpm)] included in the light-emitting layer 913.
  • the comparative light-emitting device 2 shows an emission spectrum having a peak near 630 nm due to light emission of the organometallic complex [Ir (dbq) 2 (acac)] included in the light-emitting layer 913.
  • the maximum light emission wavelength of the light emitting device 1 is shifted in the long wavelength direction as compared with the comparative light emitting device 2. This is because the light-emitting device 1 has a central metal (9) among nitrogen atoms of the benzonaphthoquinoxaline (bnq) skeleton of the ligand in the organometallic complex [Ir (bnq) 2 (dpm)] included in the light-emitting layer 913.
  • Group or group 10 conjugation of benzonaphthoquinoxaline (bnq) to dibenzoquinoxaline (dbq) rather than dibenzoquinoxaline (dbq) by forming a hydrogen bond between nitrogen that does not bond to Ir, Pt) and hydrogen of the condensed ring of the bnq skeleton Is to spread. Therefore, when it is desired to shift the maximum emission wavelength in the long wavelength direction and adjust the emission wavelength in the red emission region, it can be said that the organometallic complex which is one embodiment of the present invention is suitable.
  • the vertical axis represents the normalized luminance (%) when the initial luminance is 100%
  • the horizontal axis represents the element driving time (h).
  • the current density was set to 75 mA / cm 2 and the light emitting device was driven.
  • the light emitting device 1 showed higher reliability than the comparative light emitting device 2. This can be said to be an effect of using the organometallic complex [Ir (bnq) 2 (dpm)] (structural formula (100)) which is one embodiment of the present invention for the light-emitting layer of the light-emitting device 1.
  • [Ir (dbq) 2 (acac)] has a molecular structure in which nitrogen that does not bind to the central metal (Group 9 or Group 10: Ir, Pt) among the nitrogen atoms of the ligand dibenzoquinoxaline (dbq)
  • [Ir (bnq) 2 (dpm)] in this example is a central metal (group 9 or group 10: Ir, Pt) among nitrogen atoms of the benzonaphthoquinoxaline (bnq) skeleton of the ligand. ) And the hydrogen of the condensed ring of the bnq skeleton can form a hydrogen bond, so that the structure can be stabilized. Therefore, it can be said that the reliability of the light emitting device 1 is improved.
  • Step 1 Synthesis of dibenzo [a, i] naphtho [2,1-c] phenazine (abbreviation: Hdbnphz)>
  • chrysene-5,6-dione 1.0 g, 4.0 mmol
  • 2,3-diaminonaphthalene 0.67 g, 4.3 mmol
  • ethanol 20 mL
  • the obtained mixture was suction filtered, and the solid was washed with ethanol.
  • This solid was dissolved in heated toluene, and suction filtered through a filter medium in which celite, alumina, and celite were laminated in this order.
  • the obtained filtrate was concentrated and recrystallized with a mixed solvent of toluene and ethanol to obtain the desired product (1.1 g, yield 74%).
  • the synthesis scheme of Step 1 is shown in the following formula (b-1).
  • Step 2 Synthesis of [Ir (dbnphz) 2 (dpm)]>
  • 1.1 g (2.9 mmol) of the ligand Hdbnphz obtained in Step 2 above, 0.39 g (1.3 mmol) of iridium chloride hydrate, and 30 mL of dimethylformamide (DMF) are added to the reaction vessel.
  • the atmosphere was replaced with nitrogen, and the mixture was heated and stirred at 160 ° C. for 7.5 hours.
  • 0.55 g (5.2 mmol) of sodium carbonate and 0.72 g (3.9 mmol) of dipivaloylmethane were added, and the mixture was heated and stirred at 140 ° C. for 14 hours.
  • this mixture was subjected to suction filtration, and the obtained solid was washed with water and ethanol.
  • this solid was purified by silica gel column chromatography using dichloromethane as a developing solvent, and the obtained fraction was concentrated to obtain a solid. This solid was washed with heated toluene to obtain 133 mg of the desired product.
  • Step 2 The synthesis scheme of Step 2 is shown in the following formula (b-2).
  • an ultraviolet-visible absorption spectrum (hereinafter, simply referred to as “absorption spectrum”) and an emission spectrum of [Ir (dbnphz) 2 (dpm)] in a dichloromethane solution were measured.
  • a UV-visible spectrophotometer V550 type, manufactured by JASCO Corporation
  • a dichloromethane solution 0.013 mmol / L
  • the emission spectrum was measured using an absolute PL quantum yield measuring device (C11347-01 manufactured by Hamamatsu Photonics), and a degassed dichloromethane solution (0.013 mmol / L) was placed in a quartz cell at room temperature. Measurements were made.
  • the measurement results of the obtained absorption spectrum and emission spectrum are shown in FIG.
  • the horizontal axis represents wavelength
  • the vertical axis represents absorption intensity and emission intensity.
  • the absorption spectrum shown in FIG. 18 shows a result of subtracting an absorption spectrum measured by putting only dichloromethane in a quartz cell from an absorption spectrum measured by putting a dichloromethane solution in a quartz cell.
  • the bnq skeleton can have a structure in which conjugation is extended by a polycyclic condensed ring. Further, by condensing a naphthyl group to the pyrazine ring of the bnq skeleton, the ⁇ -conjugated system is extended, and the LUMO level is increased. Therefore, the maximum emission wavelength can be shifted in the longer wavelength direction.
  • a light-emitting device 3 using [Ir (dbnphz) 2 (dpm)] (structural formula (118)) described in Example 3 for a light-emitting layer was manufactured. The results of measuring the element characteristics will be described. Note that the element structure of the light-emitting device used in this example is the same as the element structure of the light-emitting device of FIG. 10 shown in Example 2, but the specific structure of each layer constituting the element structure is described in Table 1. As shown in FIG. In addition, chemical formulas of materials used in this example are shown below.
  • FIG. 19 shows the current density-radiant divergence characteristic of the light emitting device 3
  • FIG. 20 shows the voltage-current density characteristic
  • FIG. 21 shows the current density-radiant flux characteristic
  • FIG. 22 shows the voltage-radiant divergence characteristic
  • FIG. The quantum efficiency characteristics are shown in FIG.
  • radiant divergence, radiant flux, and external quantum efficiency were calculated using radiance, assuming that the light distribution characteristics of the device are Lambertian.
  • Table 4 shows main initial characteristic values of the light-emitting device 3 in the vicinity of 0.11 W / sr / m 2 .
  • FIG. 24 shows an emission spectrum when a current is passed through the light-emitting device 3 at a current density of 15 mA / cm 2 .
  • a near-infrared spectroradiometer (SR-NIR Topcon) was used for the measurement of the emission spectrum.
  • the light-emitting device 3 has an emission spectrum having a peak near 870 nm, derived from light emission of the organometallic complex [Ir (dbnphz) 2 (dpm)] included in the light-emitting layer 913.
  • the half width of the spectrum is 63 nm. When this half width is converted into energy, it is about 0.10 eV, and the light emission derived from the organometallic complex is quite narrow. Since this characteristic leads to effective emission of light having a wavelength of 700 nm or more, it can be said that it is useful as a light source for sensor applications.
  • the vertical axis represents normalized luminance (%) when the initial luminance is 100%, and the horizontal axis represents element driving time (h).
  • the current density was set to 75 mA / cm 2 and the light emitting device was driven.
  • the light-emitting device 3 exhibits high reliability. This can be said to be an effect of using the organometallic complex, [Ir (dbnphz) 2 (dpm)] (structural formula (108)), which is one embodiment of the present invention, for the light-emitting layer of the light-emitting device 3.
  • [Ir (dbnphz) 2 (dpm)] represents a nitrogen that does not bind to the central metal (Group 9 or Group 10: Ir, Pt) among the nitrogen atoms of the benzonaphthoquinoxaline (bnq) skeleton of the ligand in terms of the molecular structure.
  • the structure can be stabilized by forming a hydrogen bond with the hydrogen of the condensed ring of the bnq skeleton, so that it does not strongly bond to an adjacent molecule. Therefore, it can be said that the reliability of the light emitting device 3 is increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Luminescent Compositions (AREA)

Abstract

要約書 安定な分子構造を有する新規の有機金属錯体を提供する。 中心金属に、ベンゾナフトキノキサリン(bnq)骨格を有する配位子が配位し、この配位子は、b nq骨格が有する窒素のうち中心金属(9族または10族:Ir、Pt)と結合しない窒素と、bn q骨格の縮合環の水素と、 の間で水素結合が形成される、 下記一般式 (G1) で表される有機金属錯 体である。 式中、 Mは第9族元素または第10族元素を表し、 R1~R10はそれぞれ独立に、 水素、 炭素数1 ~6のアルキル基、 置換もしくは無置換の炭素数6~12のアリール基、 または置換もしくは無置換 の炭素数3~12のヘテロアリール基のいずれかを表す。また、R9およびR10は、互いに結合し、 置換もしくは無置換の炭素数3~24の飽和環もしくは不飽和環を形成してもよい。 また、 Lは、 モ ノアニオン性の配位子を表す。

Description

有機化合物、発光デバイス、発光装置、電子機器、および照明装置
本発明の一態様は、有機化合物、発光デバイス、発光装置、電子機器、および照明装置に関する。但し、本発明の一態様は、それらに限定されない。すなわち、本発明の一態様は、物、方法、製造方法、または駆動方法に関する。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関する。また、具体的には、半導体装置、表示装置、液晶表示装置などを一例として挙げることができる。
一対の電極間にEL層を挟んでなる発光デバイス(発光素子、または有機EL素子ともいう)は、薄型軽量、入力信号に対する高速な応答性、低消費電力などの特性を有することから、これを適用したディスプレイは、次世代のフラットパネルディスプレイとして注目されている。
発光デバイスは、一対の電極間に電圧を印加することにより、各電極から注入された電子およびホールがEL層において再結合し、EL層に含まれる発光物質(有機化合物)が励起状態となり、その励起状態が基底状態に戻る際に発光する。なお、励起状態の種類としては、一重項励起状態(S)と三重項励起状態(T)とがあり、一重項励起状態からの発光が蛍光、三重項励起状態からの発光が燐光と呼ばれている。また、発光デバイスにおけるそれらの統計的な生成比率は、S:T=1:3であると考えられている。
また、上記発光物質のうち、一重項励起状態におけるエネルギーを発光に変換することが可能な化合物は蛍光性化合物(蛍光材料)と呼ばれ、三重項励起状態におけるエネルギーを発光に変換することが可能な化合物は燐光性化合物(燐光材料)と呼ばれる。
従って、上記の生成比率を根拠にした時、上記各発光物質を用いた発光デバイスにおける内部量子効率(注入したキャリアに対して発生するフォトンの割合)の理論的限界は、蛍光材料を用いた場合は25%、燐光材料を用いた場合は75%となる。
つまり、蛍光材料を用いた発光デバイスに比べて、燐光材料を用いた発光デバイスでは、より高い効率を得ることが可能となる。そのため、近年では様々な種類の燐光材料の開発が盛んに行われている。特に、その燐光量子収率の高さゆえに、イリジウム等を中心金属とする有機金属錯体が注目されている(例えば、特許文献1。)。
特開2009−23938号公報
上述した特許文献1において報告されているように優れた特性を示す燐光材料の開発が進んでいるが、さらに良好な特性を示す新規材料の開発が望まれている。
そこで、本発明の一態様では、新規な有機化合物(有機金属錯体を含む)を提供する。また、本発明の一態様では、安定な分子構造を有する新規の有機金属錯体を提供する。また、本発明の一態様は、長波長領域(700nm以上の波長の可視領域または近赤外領域)に発光ピークを有する有機金属錯体を提供する。また、本発明の一態様では、発光デバイスに用いることができる新規な有機金属錯体を提供する。また、本発明の一態様では、発光デバイスのEL層に用いることができる、新規な有機金属錯体を提供する。また、本発明の一態様では、新規な有機金属錯体を用いた、信頼性の高い新規な発光デバイスを提供する。また、本発明の一態様は、新規な発光装置、新規な電子機器、または新規な照明装置を提供する。なお、これらの課題の記載は、他の課題の存在を妨げるものではない。また、本発明の一態様は、必ずしも、これらの課題の全てを解決する必要はない。また、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
本発明の一態様は、中心金属に、ベンゾナフトキノキサリン(bnq)骨格を有する配位子が配位し、この配位子は、bnq骨格が有する窒素のうち中心金属(9族または10族:Ir、Pt)と結合しない窒素と、bnq骨格の縮合環の水素と、の間で水素結合が形成される、下記一般式(G1)で表される有機金属錯体である。
Figure JPOXMLDOC01-appb-C000006
但し、一般式(G1)中、Mは第9族元素または第10族元素を表し、R~R10はそれぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数6~12のアリール基、または置換もしくは無置換の炭素数3~12のヘテロアリール基のいずれかを表す。また、RおよびR10は、互いに結合し、置換もしくは無置換の炭素数3~24の飽和環もしくは不飽和環を形成してもよい。また、Lは、モノアニオン性の配位子を表す。また、前記Mが第9族元素の時、m+n=3(但し、m=0、1または2、n=1、2、または3のいずれか)であり、前記Mが第10族元素の時、m+n=2(但し、m=0または1、n=1または2のいずれか)である。
また、本発明の別の一態様は、下記一般式(G2)で表される有機金属錯体である。
Figure JPOXMLDOC01-appb-C000007
但し、一般式(G2)中、R~R10はそれぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数6~12のアリール基、または置換もしくは無置換の炭素数3~12のヘテロアリール基のいずれかを表す。また、RおよびR10は、互いに結合し、置換もしくは無置換の炭素数3~24の飽和環もしくは不飽和環を形成してもよい。また、Lは、モノアニオン性の配位子を表す。
また、上記各構成において、モノアニオン性の配位子は、β−ジケトン構造を有するモノアニオン性の二座キレート配位子、カルボキシル基を有するモノアニオン性の二座キレート配位子、フェノール性水酸基を有するモノアニオン性の二座キレート配位子、二つの配位元素がいずれも窒素であるモノアニオン性の二座キレート配位子、またはシクロメタル化によりイリジウムと金属−炭素結合を形成する二座配位子のいずれか一である。
また、上記各構成において、モノアニオン性の配位子は、下記一般式(L1)~(L7)のいずれか一である。
Figure JPOXMLDOC01-appb-C000008
但し、上記一般式(L1)~(L7)中、R51~R89は、それぞれ独立に水素、置換もしくは無置換の炭素数1~6のアルキル基、ハロゲノ基、ビニル基、置換もしくは無置換の炭素数1~6のハロアルキル基、置換もしくは無置換の炭素数1~6のアルコキシ基、置換もしくは無置換の炭素数1~6のアルキルチオ基、置換もしくは無置換の炭素数6~13のアリール基を表す。また、A~A13は、それぞれ独立に、窒素、水素と結合するsp混成炭素、または置換基を有するsp混成炭素を表し、前記置換基は炭素数1~6のアルキル基、ハロゲノ基、炭素数1~6のハロアルキル基、又はフェニル基のいずれかを表す。
また、本発明の別の一態様は、下記一般式(G3)で表される有機金属錯体である。
Figure JPOXMLDOC01-appb-C000009
但し、一般式(G3)中、R~R13はそれぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数6~12のアリール基、または置換もしくは無置換の炭素数3~12のヘテロアリール基のいずれかを表す。また、RおよびR10は、互いに結合し、置換もしくは無置換の炭素数3~24の飽和環もしくは不飽和環を形成してもよい。
また、本発明の別の一態様は、構造式(100)または構造式(118)で表される有機金属錯体である。
Figure JPOXMLDOC01-appb-C000010
本発明の別の一態様は、中心金属に配位するベンゾナフトキノキサリン(bnq)骨格が有する窒素のうち中心金属(9族または10族:Ir、Pt)と結合しない窒素と、bnq骨格の縮合環の水素と、の間で水素結合を形成する、有機金属錯体を用いた発光デバイスである。なお、上記有機金属錯体に加えて他の有機化合物を有する発光デバイスも本発明の一態様に含める。
本発明の別の一態様は、上述した本発明の一態様である有機金属錯体を用いた発光デバイスである。なお、一対の電極間に有するEL層や、EL層に含まれる発光層に本発明の一態様である有機金属錯体を用いて形成された発光デバイスも本発明の一態様に含まれることとする。また、発光デバイスに加えて、トランジスタ、基板などを有する発光装置も発明の範疇に含める。さらに、これらの発光装置に加えて、マイク、カメラ、操作用ボタン、外部接続部、筐体、カバー、支持台または、スピーカ等を有する電子機器や照明装置も発明の範疇に含める。
本発明の一態様である有機金属錯体は、他の有機化合物と組み合わせて発光デバイスの発光層に用いることができる。すなわち、発光層から三重項励起状態からの発光を得ることが可能であるため、発光デバイスの高効率化が可能となり、非常に有効である。したがって、本発明の一態様である有機金属錯体と、他の有機化合物とを組み合わせて発光層に用いた発光デバイスは、本発明の一態様に含まれるものとする。さらに上記に加えて第3の物質を発光層に加えた構成としてもよい。
また、本発明の一態様は、発光デバイスを有する発光装置を含み、さらに発光装置を有する照明装置も範疇に含めるものである。従って、本明細書中における発光装置とは、画像表示デバイス、または光源(照明装置含む)を指す。また、発光装置にコネクター、例えばFPC(Flexible printed circuit)もしくはTCP(Tape Carrier Package)が取り付けられたモジュール、TCPの先にプリント配線板が設けられたモジュール、または発光デバイスにCOG(Chip On Glass)方式によりIC(集積回路)が直接実装されたモジュールも全て発光装置に含むものとする。
本発明の一態様は、新規な有機化合物(有機金属錯体を含む)を提供することができる。また、安定な分子構造を有する新規の有機金属錯体を提供することができる。また、本発明の一態様は、長波長領域(700nm以上の波長の可視領域または近赤外領域)に発光ピークを有する有機金属錯体を提供することができる。また、本発明の一態様では、発光デバイスに用いることができる新規な有機金属錯体を提供することができる。また、本発明の一態様では、発光デバイスのEL層に用いることができる、新規な有機金属錯体を提供することができる。また、本発明の一態様である新規な有機金属錯体を用いた、信頼性の高い新規な発光デバイスを提供することができる。また、新規な発光装置、新規な電子機器、または新規な照明装置を提供することができる。なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
:(A)(C)発光デバイスの構造について説明する図。(B)(D)積層構造(タンデム構造)の発光デバイスについて説明する図。 :発光装置について説明する図。 :発光装置について説明する図。 :電子機器について説明する図。 :電子機器について説明する図。 :自動車について説明する図。 :照明装置について説明する図。 :構造式(100)に示す有機金属錯体のH−NMRチャート。 :構造式(100)に示す有機金属錯体の溶液中の紫外・可視吸収スペクトル及び発光スペクトル。 発光デバイスについて説明する図。 発光デバイス1および比較発光デバイス2の電流密度−輝度特性を示す図。 発光デバイス1および比較発光デバイス2の電圧−輝度特性を示す図。 発光デバイス1および比較発光デバイス2の輝度−電流効率特性を示す図。 発光デバイス1および比較発光デバイス2の電圧−電流特性を示す図。 発光デバイス1および比較発光デバイス2の発光スペクトルを示す図。 発光デバイス1および比較発光デバイス2の信頼性を示す図。 構造式(118)に示す有機金属錯体のH−NMRチャート。 構造式(118)に示す有機金属錯体の溶液中の紫外・可視吸収スペクトル及び発光スペクトル。 発光デバイス3の電流密度−放射発散度特性を示す図。 発光デバイス3の電圧−電流密度特性を示す図。 発光デバイス3の電流密度−放射束特性を示す図。 発光デバイス3の電圧−放射発散度特性を示す図。 発光デバイス3の電流密度−外部量子効率特性を示す図。 発光デバイス3の発光スペクトルを示す図。 発光デバイス3の信頼性を示す図。
以下、本発明の実施の態様について図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることが可能である。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
なお、図面等において示す各構成の、位置、大きさ、範囲などは、理解の簡単のため、実際の位置、大きさ、範囲などを表していない場合がある。このため、開示する発明は、必ずしも、図面等に開示された位置、大きさ、範囲などに限定されない。
また、本明細書等において、図面を用いて発明の構成を説明するにあたり、同じものを指す符号は異なる図面間でも共通して用いる。
(実施の形態1)
本実施の形態では、本発明の一態様である有機金属錯体について説明する。
本発明の一態様である有機金属錯体は、中心金属に、ベンゾナフトキノキサリン(bnq)骨格を有する配位子が配位し、この配位子は、bnq骨格が有する窒素のうち中心金属(9族または10族:Ir、Pt)と結合しない窒素と、bnq骨格の縮合環の水素と、の間で水素結合が形成される、下記一般式(G1)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000011
一般式(G1)において、Mは第9族元素または第10族元素を表し、R~R10はそれぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数6~12のアリール基、または置換もしくは無置換の炭素数3~12のヘテロアリール基のいずれかを表す。また、RおよびR10は、互いに結合し、置換もしくは無置換の炭素数3~24、好ましくは置換もしくは無置換の炭素数3~12の飽和環もしくは不飽和環を形成してもよい。また、Lは、モノアニオン性の配位子を表す。また、前記Mが第9族元素の時、m+n=3(但し、m=0、1または2、n=1、2、または3のいずれか)であり、前記Mが第10族元素の時、m+n=2(但し、m=0または1、n=1または2のいずれか)である。
本発明の別の一態様である有機金属錯体は、下記一般式(G2)で表される有機金属錯体である。
Figure JPOXMLDOC01-appb-C000012
一般式(G2)において、R~R10はそれぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数6~12のアリール基、または置換もしくは無置換の炭素数3~12のヘテロアリール基のいずれかを表す。また、RおよびR10は、互いに結合し、置換もしくは無置換の炭素数3~24、好ましくは置換もしくは無置換の炭素数3~12の飽和環もしくは不飽和環を形成してもよい。また、Lは、モノアニオン性の配位子を表す。
なお、上記一般式(G1)および(G2)中のモノアニオン性の配位子は、β−ジケトン構造を有するモノアニオン性の二座キレート配位子、カルボキシル基を有するモノアニオン性の二座キレート配位子、フェノール性水酸基を有するモノアニオン性の二座キレート配位子、二つの配位元素がいずれも窒素であるモノアニオン性の二座キレート配位子、またはシクロメタル化によりイリジウムと金属−炭素結合を形成する二座配位子のいずれか一である。
なお、上記一般式(G1)および(G2)中のモノアニオン性の配位子は、具体的には下記一般式(L1)~(L7)のいずれか一である。
Figure JPOXMLDOC01-appb-C000013
また、上記一般式(L1)~(L7)中、R51~R89は、それぞれ独立に水素又は置換もしくは無置換の炭素数1~6のアルキル基、ハロゲノ基、ビニル基、置換もしくは無置換の炭素数1~6のハロアルキル基、置換もしくは無置換の炭素数1~6のアルコキシ基、又は置換もしくは無置換の炭素数1~6のアルキルチオ基、置換もしくは無置換の炭素数6~13のアリール基を表す。また、A~A13は、それぞれ独立に窒素、または水素と結合するsp混成炭素、又は置換基を有するsp混成炭素を表し、前記置換基は炭素数1~6のアルキル基、ハロゲノ基、炭素数1~6のハロアルキル基、又はフェニル基のいずれかを表す。
また、本発明の別の一態様である有機金属錯体は、下記一般式(G3)で表される有機金属錯体である。
Figure JPOXMLDOC01-appb-C000014
一般式(G3)において、R~R13はそれぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数6~12のアリール基、または置換もしくは無置換の炭素数3~12のヘテロアリール基のいずれかを表す。また、RおよびR10は、互いに結合し、置換もしくは無置換の炭素数3~24、好ましくは置換もしくは無置換の炭素数3~12の飽和環もしくは不飽和環を形成してもよい。
なお、上記一般式(G1)、上記一般式(G2)、および上記一般式(G3)で表される有機金属錯体において、置換とは、好ましくは、メチル基、エチル基、n−プロピル基、イソプロピル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、n−ヘキシル基のような炭素数1~6のアルキル基や、フェニル基、o−トリル基、m−トリル基、p−トリル基、1−ナフチル基、2−ナフチル基、2−ビフェニル基、3−ビフェニル基、4−ビフェニル基のような炭素数6~12のアリール基のような置換基による置換を表す。また、これらの置換基は互いに結合し、環を形成していても良い。例えば、上記アリール基が、置換基として9位に2つのフェニル基を有する2−フルオレニル基である場合、該フェニル基が互いに結合し、スピロ−9,9’−ビフルオレン−2−イル基となっても良い。より具体的には、例えば、フェニル基、トリル基、キシリル基、ビフェニル基、インデニル基、ナフチル基、フルオレニル基などが挙げられる。
また、上記一般式(G1)、上記一般式(G2)、および上記一般式(G3)で表される有機金属錯体において、式中の、R~R13における炭素数1~6のアルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、イソペンチル基、sec−ペンチル基、tert−ペンチル基、ネオペンチル基、ヘキシル基、イソヘキシル基、sec−ヘキシル基、tert−ヘキシル基、ネオヘキシル基、3−メチルペンチル基、2−メチルペンチル基、2−エチルブチル基、1,2−ジメチルブチル基、2,3−ジメチルブチル基等が挙げられる。
また、上記一般式(G1)、上記一般式(G2)、および上記一般式(G3)で表される有機金属錯体において、式中の、R~R13における環を形成する炭素数が6~12の置換もしくは無置換のアリール基の具体例としては、フェニル基、ビフェニル基、ナフチル基、またはインデニル基等が挙げられ、好ましくはフェニル基が挙げられる。
また、上記一般式(G1)、上記一般式(G2)、および上記一般式(G3)で表される有機金属錯体において、式中の、R~R13における環を形成する炭素数が3~12の置換もしくは無置換のヘテロアリール基の具体例としては、トリアジニル基、ピラジニル基、ピリミジニル基、ピリジル基、キノリル基、イソキノリル基、ベンゾチエニル基、ベンゾフラニル基、インドリル基、ジベンゾチエニル基、ジベンゾフラニル基、またはカルバゾリル基等が挙げられる。
次に、上述した本発明の一態様である有機金属錯体の具体的な構造式を下記に示す。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
なお、上記構造式(100)~(125)で表される有機金属錯体は、上記一般式(G1)、上記一般式(G2)、および上記一般式(G3)のいずれかで表される、本発明の一態様である有機金属錯体の一例である。但し、本発明の一態様である有機金属錯体は、これに限られることはない。
次に、下記一般式(G1)で表される本発明の一態様である有機金属錯体の合成方法の一例について説明する。
Figure JPOXMLDOC01-appb-C000018
但し、一般式(G1)中、Mは第9族元素または第10族元素を表し、R~R10はそれぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数6~12のアリール基、または置換もしくは無置換の炭素数3~12のヘテロアリール基のいずれかを表す。また、RおよびR10は、互いに結合し、置換もしくは無置換の炭素数3~24の飽和環もしくは不飽和環を形成してもよい。また、Lは、モノアニオン性の配位子を表す。また、前記Mが第9族元素の時、m+n=3(但し、m=0、1または2、n=1、2、または3のいずれか)であり、前記Mが第10族元素の時、m+n=2(但し、m=0または1、n=1または2のいずれか)である。
≪一般式(G0)で表されるベンゾ[f]ナフト[2,1−h]キノキサリン誘導体の合成方法≫
まず、下記一般式(G0)で表される、ベンゾ[f]ナフト[2,1−h]キノキサリン誘導体の合成方法の一例について説明する。
Figure JPOXMLDOC01-appb-C000019
一般式(G0)において、R~R10はそれぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数6~12のアリール基、または置換もしくは無置換の炭素数3~12のヘテロアリール基のいずれかを表す。また、RおよびR10は、互いに結合し、置換もしくは無置換の炭素数3~24の飽和環もしくは不飽和環を形成してもよい。
なお、一般式(G0)で表される、ベンゾ[f]ナフト[2,1−h]キノキサリン誘導体は、下記合成スキーム(A−1)に示すように、ジケトン化合物(A1)とジアミン化合物(A2)とを反応させることにより得ることができる。
Figure JPOXMLDOC01-appb-C000020
また、下記合成スキーム(A−1’)に示すように、ジケトン化合物(B1)とジアミン化合物(B2)とを反応させても良い。
Figure JPOXMLDOC01-appb-C000021
なお、上記合成スキーム(A−1)および(A−1’)において、R~R10はそれぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数6~12のアリール基、または置換もしくは無置換の炭素数3~12のヘテロアリール基のいずれかを表す。また、RおよびR10は、互いに結合し、置換もしくは無置換の炭素数3~24の飽和環もしくは不飽和環を形成してもよい。
≪一般式(G1)で表される有機金属錯体の合成方法≫
次に、一般式(G1)で表される有機金属錯体の合成方法について説明する。
まず、下記合成スキーム(A−2)に示すように、一般式(G0)で表されるベンゾ[f]ナフト[2,1−h]キノキサリン誘導体またはモノアニオン性配位子Lと、ハロゲンを含む第9族または第10族の金属化合物とを、無溶媒、またはアルコール系溶媒(グリセロール、エチレングリコール、2−メトキシエタノール、2−エトキシエタノールなど)単独、あるいはアルコール系溶媒1種類以上と水との混合溶媒を用いて、不活性ガス雰囲気にて加熱することにより、ハロゲンで架橋された構造を有する有機金属錯体の一種である複核錯体(C1)またはモノアニオン性の配位子を含む複核錯体(C2)を得ることができる。加熱手段として特に限定はなく、オイルバス、サンドバス、又はアルミブロック等を用いることができる。また、マイクロ波を加熱手段として用いることも可能である。
Figure JPOXMLDOC01-appb-C000022
さらに、合成スキーム(A−3)に示すように、上記合成スキーム(A−2)で得られる複核錯体(C1)または(C2)と一般式(G0)で表されるベンゾ[f]ナフト[2,1−h]キノキサリン誘導体またはモノアニオン性配位子Lとを、不活性ガス雰囲気下にて反応させることにより、一般式(G1)で表される有機金属錯体を得ることができる。
Figure JPOXMLDOC01-appb-C000023
なお、上記合成スキーム(A−2)および上記合成スキーム(A−3)において、Mは第9族元素または第10族元素を表し、R~R10はそれぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数6~12のアリール基、または置換もしくは無置換の炭素数3~12のヘテロアリール基のいずれかを表す。また、RおよびR10は、互いに結合し、置換もしくは無置換の炭素数3~24の飽和環もしくは不飽和環を形成してもよい。また、Lは、モノアニオン性の配位子を表す。また、前記Mが第9族元素の時、m+n=3(但し、m=0、1または2、n=1、2、または3のいずれか)であり、前記Mが第10族元素の時、m+n=2(但し、m=0または1、n=1または2のいずれか)である。
また、一般式(G1)で表される有機金属錯体は、下記合成スキーム(A−3’)に示すように、ハロゲンを含む第9族または第10族の金属化合物と上記一般式(G0)で表されるベンゾ[f]ナフト[2,1−h]キノキサリン誘導体またはモノアニオン性配位子Lとを不活性ガス雰囲気下にて加熱した後、モノアニオン性配位子Lまたは上記一般式(G0)で表されるベンゾ[f]ナフト[2,1−h]キノキサリン誘導体を加えて加熱することにより得ることもできる。
Figure JPOXMLDOC01-appb-C000024
上記合成スキーム(A−3’)において、Mは第9族元素または第10族元素を表し、R~R10はそれぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数6~12のアリール基、または置換もしくは無置換の炭素数3~12のヘテロアリール基のいずれかを表す。また、RおよびR10は、互いに結合し、置換もしくは無置換の炭素数3~24の飽和環もしくは不飽和環を形成してもよい。また、Lは、モノアニオン性の配位子を表す。また、前記Mが第9族元素の時、m+n=3(但し、m=0、1または2、n=1、2、または3のいずれか)であり、前記Mが第10族元素の時、m+n=2(但し、m=0または1、n=1または2のいずれか)である。
≪一般式(G1’)で表される有機金属錯体の合成方法≫
次に、一般式(G1)で表される有機金属錯体のうち、Mが第9族元素でn=3もしくはMが第10族元素でn=2であり、下記一般式(G1’)で表される有機金属錯体の合成法の一例について説明する。なお、一般式(G1’)中、Mは第9族元素または第10族元素を表し、R~R10はそれぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数6~12のアリール基、または置換もしくは無置換の炭素数3~12のヘテロアリール基のいずれかを表す。また、RおよびR10は、互いに結合し、置換もしくは無置換の炭素数3~24の飽和環もしくは不飽和環を形成してもよい。また、Lは、モノアニオン性の配位子を表す。
Figure JPOXMLDOC01-appb-C000025
下記スキーム(A−3’’)に示すように、一般式(G0)で表されるベンゾ[f]ナフト[2,1−h]キノキサリン誘導体と、ハロゲンを含む第9族または第10族の金属化合物、または第9族または第10族の有機化合物とを混合した後、不活性ガス雰囲気下にて加熱することにより、一般式(G1’)で表される構造を有する有機金属錯体を得ることができる。
Figure JPOXMLDOC01-appb-C000026
上記合成スキーム(A−3’’)において、Mは第9族元素または第10族元素を表し、R~R10はそれぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数6~12のアリール基、または置換もしくは無置換の炭素数3~12のヘテロアリール基のいずれかを表す。また、RおよびR10は、互いに結合し、置換もしくは無置換の炭素数3~24の飽和環もしくは不飽和環を形成してもよい。また、Lは、モノアニオン性の配位子を表す。
以上、本発明の一態様である有機金属錯体の合成方法の一例について説明したが、本発明はこれに限定されることはなく、他のどのような合成方法によって合成されても良い。
以上、本発明の一態様である有機金属錯体として、一般式(G1)および一般式(G1’)で表される有機金属錯体の合成方法について説明したが、本発明はこれに限定されることはなく、他の合成方法によって合成してもよい。
なお、本発明の一態様である有機金属錯体は、中心金属に、ベンゾナフトキノキサリン(bnq)骨格を有する配位子が配位し、この配位子は、bnq骨格が有する窒素のうち中心金属(9族または10族:Ir、Pt)と結合しない窒素と、bnq骨格の縮合環の水素と、の間で水素結合が形成される。このような構造を有することにより、縮合環の水素と、の間で水素結合を形成しにくいジベンゾキノキサリン(dbq)骨格の場合よりも共役が広がるため、本発明の一態様である有機金属錯体の極大発光波長を長波長方向にシフトさせることが可能となる。さらにbnq骨格のピラジン環にナフチル基を縮合させることにより、π共役系を伸長させ、LUMO準位を安定化することができるため、極大発光波長をより長波長方向にシフトさせることが可能となる。従って、長波長領域(700nm以上の波長の可視領域または近赤外領域)に発光ピークを有する有機金属錯体を提供することができる。また、上記の水素結合の形成により有機金属錯体の構造の安定化を図ることができる。従って、この有機金属錯体を用いた発光デバイスの信頼性を向上させることができる。
また、本発明の一態様である有機金属錯体を用いることで、信頼性の高い発光デバイス、発光装置、電子機器、または照明装置を実現することができる。
なお、本実施の形態において、本発明の一態様である有機金属錯体について説明したが、本発明の一態様は、これに限定されない。すなわち、他の実施の形態に示される様々な発明の態様と組み合わせることが可能である。
(実施の形態2)
本実施の形態では、本発明の一態様である発光デバイスについて説明する。なお、本実施の形態で説明する発光デバイスには、本発明の一態様である有機金属錯体を用いることができる。
≪発光デバイスの基本的な構造≫
図1(A)には、一対の電極間にEL層を挟んでなる発光デバイスを示す。具体的には、第1の電極101と第2の電極102との間に発光層を含むEL層103が挟まれた構造を有する。
図1(B)には、一対の電極間に複数(図1(B)では、2層)のEL層(103a、103b)を有し、EL層の間に電荷発生層104を挟んでなる積層構造(タンデム構造)の発光デバイスを示す。このようなタンデム構造の発光デバイスは、低電圧駆動が可能で消費電力が低い発光装置を実現することができる。
なお、電荷発生層104は、第1の電極101と第2の電極102に電圧を印加したときに、一方のEL層(103aまたは103b)に電子を注入し、他方のEL層(103bまたは103a)に正孔を注入する機能を有する。従って、図1(B)において、第1の電極101に第2の電極102よりも電位が高くなるように電圧を印加すると、電荷発生層104からEL層103aに電子が注入され、EL層103bに正孔が注入される。
電荷発生層104は、光の取り出し効率の点から、可視光に対して透光性を有する(具体的には、電荷発生層104に対する可視光の透過率が、40%以上)ことが好ましい。また、電荷発生層104は、第1の電極101や第2の電極102よりも低い導電率であっても機能する。
図1(C)には、EL層103の積層構造について示す。図1(C)において、第1の電極101が陽極として機能する場合、EL層103は、第1の電極101上に、正孔(ホール)注入層111、正孔(ホール)輸送層112、発光層113、電子輸送層114、電子注入層115が順次積層された構造を有する。図1(B)に示すタンデム構造のように複数のEL層を有する場合も、各EL層が、陽極側から上記のように順次積層される構造とする。なお、第1の電極101が陰極で、第2の電極102が陽極の場合は、積層順は逆になる。
EL層(103、103a、103b)に含まれる発光層113は、それぞれ発光物質や複数の物質を適宜組み合わせて有しており、所望の発光色を呈する蛍光発光や燐光発光が得られる構成とすることができる。また、発光層113を発光色の異なる積層構造としてもよい。なお、この場合、積層された各発光層に用いる発光物質やその他の物質は、それぞれ異なる材料を用いればよい。また、図1(B)に示す複数のEL層(103a、103b)から、それぞれ異なる発光色が得られる構成としても良い。この場合も各発光層に用いる発光物質やその他の物質を異なる材料とすればよい。
また、本発明の一態様である発光デバイスにおいて、EL層(103、103a、103b)で得られた発光を両電極間で共振させることにより、得られる発光を強める構成としても良い。例えば、図1(C)において、第1の電極101を反射電極とし、第2の電極102を半透過・半反射電極とすることにより微小光共振器(マイクロキャビティ)構造を形成し、EL層103から得られる発光を強めることができる。
なお、発光デバイスの第1の電極101が、反射性を有する導電性材料と透光性を有する導電性材料(透明導電膜)との積層構造からなる反射電極である場合、透明導電膜の膜厚を制御することにより光学調整を行うことができる。具体的には、発光層113から得られる光の波長λに対して、第1の電極101と、第2の電極102との電極間距離がmλ/2(ただし、mは自然数)近傍となるように調整するのが好ましい。
また、発光層113から得られる所望の光(波長:λ)を増幅させるために、第1の電極101から発光層113の所望の光が得られる領域(発光領域)までの光学距離と、第2の電極102から発光層113の所望の光が得られる領域(発光領域)までの光学距離と、をそれぞれ(2m’+1)λ/4(ただし、m’は自然数)近傍となるように調節するのが好ましい。なお、ここでいう発光領域とは、発光層113における正孔(ホール)と電子との再結合領域を示す。
このような光学調整を行うことにより、発光層113から得られる特定の単色光のスペクトルを狭線化させ、色純度の良い発光を得ることができる。
但し、上記の場合、第1の電極101と第2の電極102との光学距離は、厳密には第1の電極101における反射領域から第2の電極102における反射領域までの総厚ということができる。しかし、第1の電極101や第2の電極102における反射領域を厳密に決定することは困難であるため、第1の電極101と第2の電極102の任意の位置を反射領域と仮定することで充分に上述の効果を得ることができるものとする。また、第1の電極101と、所望の光が得られる発光層との光学距離は、厳密には第1の電極101における反射領域と、所望の光が得られる発光層における発光領域との光学距離であるということができる。しかし、第1の電極101における反射領域や、所望の光が得られる発光層における発光領域を厳密に決定することは困難であるため、第1の電極101の任意の位置を反射領域、所望の光が得られる発光層の任意の位置を発光領域と仮定することで充分に上述の効果を得ることができるものとする。
図1(C)に示す発光デバイスが、マイクロキャビティ構造を有する場合、EL層が共通であっても異なる波長の光(単色光)を取り出すことができる。従って、異なる発光色を得るための塗り分け(例えば、RGB)が不要となり、高精細化が可能となる。また、着色層(カラーフィルタ)との組み合わせも可能である。また、特定波長の正面方向の発光強度を強めることが可能なため、低消費電力化を図ることができる。
なお、上述した本発明の一態様である発光デバイスにおいて、第1の電極101と第2の電極102の少なくとも一方は、透光性を有する電極(透明電極、半透過・半反射電極など)とする。透光性を有する電極が透明電極の場合、透明電極の可視光の透過率は、40%以上とする。また、半透過・半反射電極の場合、半透過・半反射電極の可視光の反射率は、20%以上80%以下、好ましくは40%以上70%以下とする。また、これらの電極は、抵抗率が1×10−2Ωcm以下とするのが好ましい。
また、上述した本発明の一態様である発光デバイスにおいて、第1の電極101と第2の電極102の一方が、反射性を有する電極(反射電極)である場合、反射性を有する電極の可視光の反射率は、40%以上100%以下、好ましくは70%以上100%以下とする。また、この電極は、抵抗率が1×10−2Ωcm以下とするのが好ましい。
≪発光デバイスの具体的な構造および作製方法≫
次に、本発明の一態様である発光デバイスの具体的な構造および作製方法について説明する。なお、図1(A)~図1(D)において、符号が共通である場合は説明も共通とする。
<第1の電極および第2の電極>
第1の電極101および第2の電極102を形成する材料としては、上述した素子構造における両電極の機能が満たせるのであれば、以下に示す材料を適宜組み合わせて用いることができる。例えば、金属、合金、電気伝導性化合物、およびこれらの混合物などを適宜用いることができる。具体的には、In−Sn酸化物(ITOともいう)、In−Si−Sn酸化物(ITSOともいう)、In−Zn酸化物、In−W−Zn酸化物が挙げられる。その他、アルミニウム(Al)、チタン(Ti)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、ガリウム(Ga)、亜鉛(Zn)、インジウム(In)、スズ(Sn)、モリブデン(Mo)、タンタル(Ta)、タングステン(W)、パラジウム(Pd)、金(Au)、白金(Pt)、銀(Ag)、イットリウム(Y)、ネオジム(Nd)などの金属、およびこれらを適宜組み合わせて含む合金を用いることもできる。その他、上記例示のない元素周期表の第1族または第2族に属する元素(例えば、リチウム(Li)、セシウム(Cs)、カルシウム(Ca)、ストロンチウム(Sr))、ユウロピウム(Eu)、イッテルビウム(Yb)などの希土類金属およびこれらを適宜組み合わせて含む合金、その他グラフェン等を用いることができる。
図1に示す発光デバイスにおいて、図1(C)のように積層構造を有するEL層103を有し、第1の電極101が陽極である場合、第1の電極101上にEL層103の正孔注入層111、正孔輸送層112が真空蒸着法により順次積層形成される。また、図1(D)のように、積層構造を有する複数のEL層(103a、103b)が電荷発生層104を挟んで積層され、第1の電極101が陽極である場合、第1の電極101上にEL層103aの正孔注入層111a、正孔輸送層112aが真空蒸着法により順次積層形成されるだけでなく、EL層103a、電荷発生層104が順次積層形成された後、電荷発生層104上にEL層103bの正孔注入層111b、正孔輸送層112bが同様に順次積層形成される。
<正孔注入層および正孔輸送層>
正孔注入層(111、111a、111b)は、陽極である第1の電極101や電荷発生層(104)からEL層(103、103a、103b)に正孔(ホール)を注入する層であり、正孔注入性の高い材料を含む層である。
正孔注入性の高い材料としては、モリブデン酸化物やバナジウム酸化物、ルテニウム酸化物、タングステン酸化物、マンガン酸化物等の遷移金属酸化物が挙げられる。この他、フタロシアニン(略称:HPc)や銅フタロシアニン(略称:CuPc)等のフタロシアニン系の化合物、等を用いることができる。
また、低分子化合物である、4,4’,4’’−トリス(N,N−ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’−トリス[N−(3−メチルフェニル)−N−フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,4’−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ビフェニル(略称:DPAB)、4,4’−ビス(N−{4−[N’−(3−メチルフェニル)−N’−フェニルアミノ]フェニル}−N−フェニルアミノ)ビフェニル(略称:DNTPD)、1,3,5−トリス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ベンゼン(略称:DPA3B)、3−[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA1)、3,6−ビス[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA2)、3−[N−(1−ナフチル)−N−(9−フェニルカルバゾール−3−イル)アミノ]−9−フェニルカルバゾール(略称:PCzPCN1)等の芳香族アミン化合物、等を用いることができる。
また、高分子化合物(オリゴマー、デンドリマー、ポリマー等)である、ポリ(N−ビニルカルバゾール)(略称:PVK)、ポリ(4−ビニルトリフェニルアミン)(略称:PVTPA)、ポリ[N−(4−{N’−[4−(4−ジフェニルアミノ)フェニル]フェニル−N’−フェニルアミノ}フェニル)メタクリルアミド](略称:PTPDMA)、ポリ[N,N’−ビス(4−ブチルフェニル)−N,N’−ビス(フェニル)ベンジジン](略称:Poly−TPD)等を用いることができる。または、ポリ(3,4−エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(略称:PEDOT/PSS)、ポリアニリン/ポリ(スチレンスルホン酸)(略称:PAni/PSS)等の酸を添加した高分子系化合物、等を用いることもできる。
また、正孔注入性の高い材料としては、正孔輸送性材料とアクセプター性材料(電子受容性材料)を含む複合材料を用いることもできる。この場合、アクセプター性材料により正孔輸送性材料から電子が引き抜かれて正孔注入層(111、111a、111b)で正孔が発生し、正孔輸送層(112、112a、112b)を介して発光層(113、113a、113b)に正孔が注入される。なお、正孔注入層(111、111a、111b)は、正孔輸送性材料とアクセプター性材料(電子受容性材料)を含む複合材料からなる単層で形成しても良いが、正孔輸送性材料とアクセプター性材料(電子受容性材料)とをそれぞれ別の層で積層して形成しても良い。
正孔輸送層(112、112a、112b)は、正孔注入層(111、111a、111b)によって、第1の電極101や電荷発生層104から注入された正孔を発光層(113、113a、113b)に輸送する層である。なお、正孔輸送層(112、112a、112b)は、正孔輸送性材料を含む層である。正孔輸送層(112、112a、112b)に用いる正孔輸送性材料は、特に正孔注入層(111、111a、111b)のHOMO準位と同じ、あるいは近いHOMO準位を有するものを用いることが好ましい。
正孔注入層(111、111a、111b)に用いるアクセプター性材料としては、元素周期表における第4族乃至第8族に属する金属の酸化物を用いることができる。具体的には、酸化モリブデン、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化タングステン、酸化マンガン、酸化レニウムが挙げられる。中でも特に、酸化モリブデンは大気中でも安定であり、吸湿性が低く、扱いやすいため好ましい。その他、キノジメタン誘導体やクロラニル誘導体、ヘキサアザトリフェニレン誘導体などの有機アクセプターを用いることができる。具体的には、7,7,8,8−テトラシアノ−2,3,5,6−テトラフルオロキノジメタン(略称:F−TCNQ)、クロラニル、2,3,6,7,10,11−ヘキサシアノ−1,4,5,8,9,12−ヘキサアザトリフェニレン(略称:HAT−CN)等を用いることができる。特に、HAT−CNのように複素原子を複数有する縮合芳香環に電子吸引基が結合している化合物が、熱的に安定であり好ましい。また、電子吸引基(特にフルオロ基のようなハロゲン基やシアノ基)を有する[3]ラジアレン誘導体は、電子受容性が非常に高いため好ましく、具体的にはα,α’,α’’−1,2,3−シクロプロパントリイリデントリス[4−シアノ−2,3,5,6−テトラフルオロベンゼンアセトニトリル]、α,α’,α’’−1,2,3−シクロプロパントリイリデントリス[2,6−ジクロロ−3,5−ジフルオロ−4−(トリフルオロメチル)ベンゼンアセトニトリル]、α,α’,α’’−1,2,3−シクロプロパントリイリデントリス[2,3,4,5,6−ペンタフルオロベンゼンアセトニトリル]などが挙げられる。
正孔注入層(111、111a、111b)および正孔輸送層(112、112a、112b)に用いる正孔輸送性材料としては、1×10−6cm/Vs以上の正孔移動度を有する物質が好ましい。なお、電子よりも正孔の輸送性の高い物質であれば、これら以外のものを用いることができる。
正孔輸送性材料としては、π電子過剰型複素芳香族化合物(例えばカルバゾール骨格を有する化合物やフラン骨格を有する化合物)や芳香族アミン骨格を有する化合物等の正孔輸送性の高い材料が好ましい。
正孔輸送性材料の具体例としては、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称:NPBまたはα−NPD)、N,N’−ビス(3−メチルフェニル)−N,N’−ジフェニル−[1,1’−ビフェニル]−4,4’−ジアミン(略称:TPD)、4,4’−ビス[N−(スピロ−9,9’−ビフルオレン−2−イル)−N−フェニルアミノ]ビフェニル(略称:BSPB)、4−フェニル−4’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:BPAFLP)、4−フェニル−3’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:mBPAFLP)、N−(9,9−ジメチル−9H−フルオレン−2−イル)−N−{9,9−ジメチル−2−[N’−フェニル−N’−(9,9−ジメチル−9H−フルオレン−2−イル)アミノ]−9H−フルオレン−7−イル}フェニルアミン(略称:DFLADFL)、N−(9,9−ジメチル−2−ジフェニルアミノ−9H−フルオレン−7−イル)ジフェニルアミン(略称:DPNF)、2−[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]スピロ−9,9’−ビフルオレン(略称:DPASF)、4−フェニル−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBA1BP)、3−[4−(9−フェナントリル)−フェニル]−9−フェニル−9H−カルバゾール(略称:PCPPn)、N−(4−ビフェニル)−N−(9,9−ジメチル−9H−フルオレン−2−イル)−9−フェニル−9H−カルバゾール−3−アミン(略称:PCBiF)、N−(1,1’−ビフェニル−4−イル)−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]−9,9−ジメチル−9H−フルオレン−2−アミン(略称:PCBBiF)、4,4’−ジフェニル−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBBi1BP)、4−(1−ナフチル)−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBANB)、4,4’−ジ(1−ナフチル)−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBNBB)、4−フェニルジフェニル−(9−フェニル−9H−カルバゾール−3−イル)アミン(略称:PCA1BP)、N,N’−ビス(9−フェニルカルバゾール−3−イル)−N,N’−ジフェニルベンゼン−1,3−ジアミン(略称:PCA2B)、N,N’,N’’−トリフェニル−N,N’,N’’−トリス(9−フェニルカルバゾール−3−イル)ベンゼン−1,3,5−トリアミン(略称:PCA3B)、9,9−ジメチル−N−フェニル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]フルオレン−2−アミン(略称:PCBAF)、N−フェニル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]スピロ−9,9’−ビフルオレン−2−アミン(略称:PCBASF)、2−[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]スピロ−9,9’−ビフルオレン(略称:PCASF)、2,7−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]−スピロ−9,9’−ビフルオレン(略称:DPA2SF)、N−[4−(9H−カルバゾール−9−イル)フェニル]−N−(4−フェニル)フェニルアニリン(略称:YGA1BP)、N,N’−ビス[4−(カルバゾール−9−イル)フェニル]−N,N’−ジフェニル−9,9−ジメチルフルオレン−2,7−ジアミン(略称:YGA2F)などの芳香族アミン化合物等を用いることができる。また、3−[4−(1−ナフチル)−フェニル]−9−フェニル−9H−カルバゾール(略称:PCPN)、4,4’,4’’−トリス(カルバゾール−9−イル)トリフェニルアミン(略称:TCTA)、4,4’,4’’−トリス[N−(1−ナフチル)−N−フェニルアミノ]トリフェニルアミン(略称:1’−TNATA)、4,4’,4’’−トリス(N,N−ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’−トリス[N−(3−メチルフェニル)−N−フェニルアミノ]トリフェニルアミン(略称:m−MTDATA)、N,N’−ジ(p−トリル)−N,N’−ジフェニル−p−フェニレンジアミン(略称:DTDPPA)、4,4’−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ビフェニル(略称:DPAB)、N,N’−ビス{4−[ビス(3−メチルフェニル)アミノ]フェニル}−N,N’−ジフェニル−(1,1’−ビフェニル)−4,4’−ジアミン(略称:DNTPD)、1,3,5−トリス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ベンゼン(略称:DPA3B)等の芳香族アミン骨格を有する化合物、1,3−ビス(N−カルバゾリル)ベンゼン(略称:mCP)、4,4’−ジ(N−カルバゾリル)ビフェニル(略称:CBP)、3,6−ビス(3,5−ジフェニルフェニル)−9−フェニルカルバゾール(略称:CzTP)、3,3’−ビス(9−フェニル−9H−カルバゾール)(略称:PCCP)、3−[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzDPA1)、3,6−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzDPA2)、3,6−ビス[N−(4−ジフェニルアミノフェニル)−N−(1−ナフチル)アミノ]−9−フェニルカルバゾール(略称:PCzTPN2)、3−[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA1)、3,6−ビス[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA2)、3−[N−(1−ナフチル)−N−(9−フェニルカルバゾール−3−イル)アミノ]−9−フェニルカルバゾール(略称:PCzPCN1)、1,3,5−トリス[4−(N−カルバゾリル)フェニル]ベンゼン(略称:TCPB)、9−[4−(10−フェニル−9−アントラセニル)フェニル]−9H−カルバゾール(略称:CzPA)等のカルバゾール骨格を有する化合物、1,3,5−トリ(ジベンゾチオフェン−4−イル)ベンゼン(略称:DBT3P−II)、2,8−ジフェニル−4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]ジベンゾチオフェン(略称:DBTFLP−III)、4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]−6−フェニルジベンゾチオフェン(略称:DBTFLP−IV)などのチオフェン骨格を有する化合物、4,4’,4’’−(ベンゼン−1,3,5−トリイル)トリ(ジベンゾフラン)(略称:DBF3P−II)、4−{3−[3−(9−フェニル−9H−フルオレン−9−イル)フェニル]フェニル}ジベンゾフラン(略称:mmDBFFLBi−II)等のフラン骨格を有する化合物が挙げられる。
さらに、ポリ(N−ビニルカルバゾール)(略称:PVK)、ポリ(4−ビニルトリフェニルアミン)(略称:PVTPA)、ポリ[N−(4−{N’−[4−(4−ジフェニルアミノ)フェニル]フェニル−N’−フェニルアミノ}フェニル)メタクリルアミド](略称:PTPDMA)、ポリ[N,N’−ビス(4−ブチルフェニル)−N,N’−ビス(フェニル)ベンジジン](略称:Poly−TPD)などの高分子化合物を用いることもできる。
但し、正孔輸送性材料は、上記に限られることなく公知の様々な材料を1種または複数種組み合わせて正孔輸送性材料として正孔注入層(111、111a、111b)および正孔輸送層(112、112a、112b)に用いることができる。なお、正孔輸送層(112、112a、112b)は、各々複数の層から形成されていても良い。すなわち、例えば第1の正孔輸送層と第2の正孔輸送層とが積層されていても良い。
図1(D)に示す発光デバイスにおいて、EL層103aの正孔輸送層112a上に発光層113aが真空蒸着法により形成される。また、EL層103aおよび電荷発生層104が形成された後、EL層103bの正孔輸送層112b上に発光層113bが真空蒸着法により形成される。
<発光層>
発光層(113、113a、113b)は、発光物質を含む層である。なお、発光物質としては、青色、紫色、青紫色、緑色、黄緑色、黄色、橙色、赤色などの発光色を呈する物質を適宜用いる。また、複数の発光層(113a、113b)に異なる発光物質を用いることにより異なる発光色を呈する構成(例えば、補色の関係にある発光色を組み合わせて得られる白色発光)とすることができる。さらに、一つの発光層が異なる発光物質を有する積層構造であっても良い。
また、発光層(113、113a、113b)は、発光物質(ゲスト材料)に加えて、1種または複数種の有機化合物(ホスト材料、アシスト材料)を有していても良い。また、1種または複数種の有機化合物としては、本実施の形態で説明する正孔輸送性材料や電子輸送性材料の一方または両方を用いることができる。
発光層(113、113a、113b)に用いることができる発光物質としては、特に限定は無く、一重項励起エネルギーを可視光領域の発光に変える発光物質、または三重項励起エネルギーを可視光領域の発光に変える発光物質を用いることができる。なお、上記発光物質としては、例えば、以下のようなものが挙げられる。
一重項励起エネルギーを発光に変える発光物質としては、蛍光を発する物質(蛍光材料)が挙げられ、例えば、ピレン誘導体、アントラセン誘導体、トリフェニレン誘導体、フルオレン誘導体、カルバゾール誘導体、ジベンゾチオフェン誘導体、ジベンゾフラン誘導体、ジベンゾキノキサリン誘導体、キノキサリン誘導体、ピリジン誘導体、ピリミジン誘導体、フェナントレン誘導体、ナフタレン誘導体などが挙げられる。特にピレン誘導体は発光量子収率が高いので好ましい。ピレン誘導体の具体例としては、N,N’−ビス(3−メチルフェニル)−N,N’−ビス[3−(9−フェニル−9H−フルオレン−9−イル)フェニル]ピレン−1,6−ジアミン(略称:1,6mMemFLPAPrn)、N,N’−ジフェニル−N,N’−ビス[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]ピレン−1,6−ジアミン(略称:1,6FLPAPrn)、N,N’−ビス(ジベンゾフラン−2−イル)−N,N’−ジフェニルピレン−1,6−ジアミン(略称:1,6FrAPrn)、N,N’−ビス(ジベンゾチオフェン−2−イル)−N,N’−ジフェニルピレン−1,6−ジアミン(略称:1,6ThAPrn)、N,N’−(ピレン−1,6−ジイル)ビス[(N−フェニルベンゾ[b]ナフト[1,2−d]フラン)−6−アミン](略称:1,6BnfAPrn)、N,N’−(ピレン−1,6−ジイル)ビス[(N−フェニルベンゾ[b]ナフト[1,2−d]フラン)−8−アミン](略称:1,6BnfAPrn−02)、N,N’−(ピレン−1,6−ジイル)ビス[(6,N−ジフェニルベンゾ[b]ナフト[1,2−d]フラン)−8−アミン](略称:1,6BnfAPrn−03)などが挙げられる。
その他にも、5,6−ビス[4−(10−フェニル−9−アントリル)フェニル]−2,2’−ビピリジン(略称:PAP2BPy)、5,6−ビス[4’−(10−フェニル−9−アントリル)ビフェニル−4−イル]−2,2’−ビピリジン(略称:PAPP2BPy)、N,N’−ビス[4−(9H−カルバゾール−9−イル)フェニル]−N,N’−ジフェニルスチルベン−4,4’−ジアミン(略称:YGA2S)、4−(9H−カルバゾール−9−イル)−4’−(10−フェニル−9−アントリル)トリフェニルアミン(略称:YGAPA)、4−(9H−カルバゾール−9−イル)−4’−(9,10−ジフェニル−2−アントリル)トリフェニルアミン(略称:2YGAPPA)、N,9−ジフェニル−N−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール−3−アミン(略称:PCAPA)、4−(10−フェニル−9−アントリル)−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBAPA)、4−[4−(10−フェニル−9−アントリル)フェニル]−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBAPBA)、ペリレン、2,5,8,11−テトラ−(tert−ブチル)ペリレン(略称:TBP)、N,N’’−(2−tert−ブチルアントラセン−9,10−ジイルジ−4,1−フェニレン)ビス[N,N’,N’−トリフェニル−1,4−フェニレンジアミン](略称:DPABPA)、N,9−ジフェニル−N−[4−(9,10−ジフェニル−2−アントリル)フェニル]−9H−カルバゾール−3−アミン(略称:2PCAPPA)、N−[4−(9,10−ジフェニル−2−アントリル)フェニル]−N,N’,N’−トリフェニル−1,4−フェニレンジアミン(略称:2DPAPPA)等を用いることができる。
また、三重項励起エネルギーを発光に変える発光物質としては、例えば、燐光を発する物質(燐光材料)や熱活性化遅延蛍光を示す熱活性化遅延蛍光(Thermally activated delayed fluorescence:TADF)材料が挙げられる。
燐光材料としては、有機金属錯体、金属錯体(白金錯体)、希土類金属錯体等が挙げられる。これらは、物質ごとに異なる発光色(発光ピーク)を示すため、必要に応じて適宜選択して用いる。
青色または緑色を呈し、発光スペクトルのピーク波長が450nm以上570nm以下である燐光材料としては、以下のような物質が挙げられる。
例えば、トリス{2−[5−(2−メチルフェニル)−4−(2,6−ジメチルフェニル)−4H−1,2,4−トリアゾール−3−イル−κN2]フェニル−κC}イリジウム(III)(略称:[Ir(mpptz−dmp)])、トリス(5−メチル−3,4−ジフェニル−4H−1,2,4−トリアゾラト)イリジウム(III)(略称:[Ir(Mptz)])、トリス[4−(3−ビフェニル)−5−イソプロピル−3−フェニル−4H−1,2,4−トリアゾラト]イリジウム(III)(略称:[Ir(iPrptz−3b)])、トリス[3−(5−ビフェニル)−5−イソプロピル−4−フェニル−4H−1,2,4−トリアゾラト]イリジウム(III)(略称:[Ir(iPr5btz)])、のような4H−トリアゾール骨格を有する有機金属錯体、トリス[3−メチル−1−(2−メチルフェニル)−5−フェニル−1H−1,2,4−トリアゾラト]イリジウム(III)(略称:[Ir(Mptz1−mp)])、トリス(1−メチル−5−フェニル−3−プロピル−1H−1,2,4−トリアゾラト)イリジウム(III)(略称:[Ir(Prptz1−Me)])のような1H−トリアゾール骨格を有する有機金属錯体、fac−トリス[1−(2,6−ジイソプロピルフェニル)−2−フェニル−1H−イミダゾール]イリジウム(III)(略称:[Ir(iPrpmi)])、トリス[3−(2,6−ジメチルフェニル)−7−メチルイミダゾ[1,2−f]フェナントリジナト]イリジウム(III)(略称:[Ir(dmpimpt−Me)])のようなイミダゾール骨格を有する有機金属錯体、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(III)テトラキス(1−ピラゾリル)ボラート(略称:FIr6)、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(III)ピコリナート(略称:Firpic)、ビス{2−[3’,5’−ビス(トリフルオロメチル)フェニル]ピリジナト−N,C2’}イリジウム(III)ピコリナート(略称:[Ir(CFppy)(pic)])、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(III)アセチルアセトナート(略称:FIr(acac))のように電子吸引基を有するフェニルピリジン誘導体を配位子とする有機金属錯体等が挙げられる。
緑色または黄色を呈し、発光スペクトルのピーク波長が495nm以上590nm以下である燐光材料としては、以下のような物質が挙げられる。
例えば、トリス(4−メチル−6−フェニルピリミジナト)イリジウム(III)(略称:[Ir(mppm)])、トリス(4−t−ブチル−6−フェニルピリミジナト)イリジウム(III)(略称:[Ir(tBuppm)])、(アセチルアセトナト)ビス(6−メチル−4−フェニルピリミジナト)イリジウム(III)(略称:[Ir(mppm)(acac)])、(アセチルアセトナト)ビス(6−tert−ブチル−4−フェニルピリミジナト)イリジウム(III)(略称:[Ir(tBuppm)(acac)])、(アセチルアセトナト)ビス[6−(2−ノルボルニル)−4−フェニルピリミジナト]イリジウム(III)(略称:[Ir(nbppm)(acac)])、(アセチルアセトナト)ビス[5−メチル−6−(2−メチルフェニル)−4−フェニルピリミジナト]イリジウム(III)(略称:[Ir(mpmppm)(acac)])、(アセチルアセトナト)ビス{4,6−ジメチル−2−[6−(2,6−ジメチルフェニル)−4−ピリミジニル−κN]フェニル−κC}イリジウム(III)(略称:[Ir(dmppm−dmp)(acac)])、(アセチルアセトナト)ビス(4,6−ジフェニルピリミジナト)イリジウム(III)(略称:[Ir(dppm)(acac)])のようなピリミジン骨格を有する有機金属錯体、(アセチルアセトナト)ビス(3,5−ジメチル−2−フェニルピラジナト)イリジウム(III)(略称:[Ir(mppr−Me)(acac)])、(アセチルアセトナト)ビス(5−イソプロピル−3−メチル−2−フェニルピラジナト)イリジウム(III)(略称:[Ir(mppr−iPr)(acac)])のようなピラジン骨格を有する有機金属錯体、トリス(2−フェニルピリジナト−N,C2’)イリジウム(III)(略称:[Ir(ppy)])、ビス(2−フェニルピリジナト−N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(ppy)(acac)])、ビス(ベンゾ[h]キノリナト)イリジウム(III)アセチルアセトナート(略称:[Ir(bzq)(acac)])、トリス(ベンゾ[h]キノリナト)イリジウム(III)(略称:[Ir(bzq)])、トリス(2−フェニルキノリナト−N,C2’)イリジウム(III)(略称:[Ir(pq)])、ビス(2−フェニルキノリナト−N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(pq)(acac)])のようなピリジン骨格を有する有機金属錯体、ビス(2,4−ジフェニル−1,3−オキサゾラト−N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(dpo)(acac)])、ビス{2−[4’−(パーフルオロフェニル)フェニル]ピリジナト−N,C2’}イリジウム(III)アセチルアセトナート(略称:[Ir(p−PF−ph)(acac)])、ビス(2−フェニルベンゾチアゾラト−N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(bt)(acac)])などの有機金属錯体の他、トリス(アセチルアセトナト)(モノフェナントロリン)テルビウム(III)(略称:[Tb(acac)(Phen)])のような希土類金属錯体が挙げられる。
黄色または赤色を呈し、発光スペクトルのピーク波長が570nm以上750nm以下である燐光材料としては、以下のような物質が挙げられる。
例えば、(ジイソブチリルメタナト)ビス[4,6−ビス(3−メチルフェニル)ピリミジナト]イリジウム(III)(略称:[Ir(5mdppm)(dibm)])、ビス[4,6−ビス(3−メチルフェニル)ピリミジナト](ジピバロイルメタナト)イリジウム(III)(略称:[Ir(5mdppm)(dpm)])、(ジピバロイルメタナト)ビス[4,6−ジ(ナフタレン−1−イル)ピリミジナト]イリジウム(III)(略称:[Ir(d1npm)(dpm)])のようなピリミジン骨格を有する有機金属錯体、(アセチルアセトナト)ビス(2,3,5−トリフェニルピラジナト)イリジウム(III)(略称:[Ir(tppr)(acac)])、ビス(2,3,5−トリフェニルピラジナト)(ジピバロイルメタナト)イリジウム(III)(略称:[Ir(tppr)(dpm)])、(アセチルアセトナト)ビス[2,3−ビス(4−フルオロフェニル)キノキサリナト]イリジウム(III)(略称:[Ir(Fdpq)(acac)])のようなピラジン骨格を有する有機金属錯体や、トリス(1−フェニルイソキノリナト−N,C2’)イリジウム(III)(略称:[Ir(piq)])、ビス(1−フェニルイソキノリナト−N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(piq)(acac)])のようなピリジン骨格を有する有機金属錯体、2,3,7,8,12,13,17,18−オクタエチル−21H,23H−ポルフィリン白金(II)(略称:[PtOEP])のような白金錯体、トリス(1,3−ジフェニル−1,3−プロパンジオナト)(モノフェナントロリン)ユーロピウム(III)(略称:[Eu(DBM)(Phen)])、トリス[1−(2−テノイル)−3,3,3−トリフルオロアセトナト](モノフェナントロリン)ユーロピウム(III)(略称:[Eu(TTA)(Phen)])のような希土類金属錯体が挙げられる。
発光層(113、113a、113b)に用いる有機化合物(ホスト材料、アシスト材料)としては、発光物質(ゲスト材料)のエネルギーギャップより大きなエネルギーギャップを有する物質を、一種もしくは複数種選択して用いればよい。なお、上述した正孔輸送性材料として挙げたものや、後述する電子輸送性材料として挙げられる材料をこのような有機化合物(ホスト材料、アシスト材料)として用いることもできる。
発光物質が蛍光材料である場合、ホスト材料としては一重項励起状態のエネルギー準位が大きく、三重項励起状態のエネルギー準位が小さい有機化合物を用いるのが好ましい。なお、本実施の形態で示す正孔輸送性の材料や電子輸送性の材料の他、バイポーラ性の材料をホスト材料として用いることができるが、上記の条件を満たす物質であれば、より好ましい。例えば、アントラセン誘導体やテトラセン誘導体なども好適である。
従って、蛍光性の発光物質と組み合わせるホスト材料としては、例えば、9−フェニル−3−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール(略称:PCzPA)、PCPN、CzPA、7−[4−(10−フェニル−9−アントリル)フェニル]−7H−ジベンゾ[c,g]カルバゾール(略称:cgDBCzPA)、6−[3−(9,10−ジフェニル−2−アントリル)フェニル]−ベンゾ[b]ナフト[1,2−d]フラン(略称:2mBnfPPA)、9−フェニル−10−{4−(9−フェニル−9H−フルオレン−9−イル)ビフェニル−4’−イル}アントラセン(略称:FLPPA)、5,12−ジフェニルテトラセン、5,12−ビス(ビフェニル−2−イル)テトラセンなどが挙げられる。
発光物質が燐光材料である場合、ホスト材料としては発光物質の三重項励起エネルギー(基底状態と三重項励起状態とのエネルギー差)よりも三重項励起エネルギーの大きい有機化合物を選択すれば良い。なお、本実施の形態で示す正孔輸送性の材料や電子輸送性の材料の他、バイポーラ性の材料をホスト材料として用いることができるが、上記の条件を満たす物質であれば、より好ましい。例えば、アントラセン誘導体、フェナントレン誘導体、ピレン誘導体、クリセン誘導体、ジベンゾ[g,p]クリセン誘導体等の縮合多環芳香族化合物なども好適である。
従って、燐光性の発光物質と組み合わせるホスト材料としては、例えば、9,10−ジフェニルアントラセン(略称:DPAnth)、N,N−ジフェニル−9−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール−3−アミン(略称:CzA1PA)、4−(10−フェニル−9−アントリル)トリフェニルアミン(略称:DPhPA)、YGAPA、PCAPA、9−(4−{4’−[N−フェニル−N−(N−フェニル−3−カルバゾリル)]アミノ}フェニル)フェニル−10−フェニルアントラセン(略称:PCAPBA)、N−(9,10−ジフェニル−2−アントリル)−N,9−ジフェニル−9H−カルバゾール−3−アミン(略称:2PCAPA)、6,12−ジメトキシ−5,11−ジフェニルクリセン、N,N,N’,N’,N’’,N’’,N’’’,N’’’−オクタフェニルジベンゾ[g,p]クリセン−2,7,10,15−テトラアミン(略称:DBC1)、CzPA、3,6−ジフェニル−9−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール(略称:DPCzPA)、9,10−ビス(3,5−ジフェニルフェニル)アントラセン(略称:DPPA)、9,10−ジ(2−ナフチル)アントラセン(略称:DNA)、2−tert−ブチル−9,10−ジ(2−ナフチル)アントラセン(略称:t−BuDNA)、9,9’−ビアントリル(略称:BANT)、9,9’−(スチルベン−3,3’−ジイル)ジフェナントレン(略称:DPNS)、9,9’−(スチルベン−4,4’−ジイル)ジフェナントレン(略称:DPNS2)、1,3,5−トリ(1−ピレニル)ベンゼン(略称:TPB3)等が挙げられる。
また、発光層(113、113a、113b)に複数の有機化合物を用いる場合、励起錯体を形成する化合物を燐光発光物質と混合して用いることが好ましい。なお、このような構成とすることにより、励起錯体から発光物質へのエネルギー移動であるExTET(Exciplex−Triplet Energy Transfer)を用いた発光を得ることができる。この場合、様々な有機化合物を適宜組み合わせて用いることができるが、効率よく励起錯体を形成するためには、正孔を受け取りやすい化合物(正孔輸送性材料)と、電子を受け取りやすい化合物(電子輸送性材料)とを組み合わせることが特に好ましい。
TADF材料とは、三重項励起状態をわずかな熱エネルギーによって一重項励起状態にアップコンバート(逆項間交差)が可能で、一重項励起状態からの発光(蛍光)を効率よく呈する材料のことである。また、熱活性化遅延蛍光が効率良く得られる条件としては、三重項励起準位と一重項励起準位のエネルギー差が0eV以上0.2eV以下、好ましくは0eV以上0.1eV以下であることが挙げられる。また、TADF材料における遅延蛍光とは、通常の蛍光と同様のスペクトルを持ちながら、寿命が著しく長い発光をいう。その寿命は、1×10−6秒以上、好ましくは1×10−3秒以上である。
TADF材料としては、例えば、フラーレンやその誘導体、プロフラビン等のアクリジン誘導体、エオシン等が挙げられる。また、マグネシウム(Mg)、亜鉛(Zn)、カドミウム(Cd)、スズ(Sn)、白金(Pt)、インジウム(In)、もしくはパラジウム(Pd)等を含む金属含有ポルフィリンが挙げられる。金属含有ポルフィリンとしては、例えば、プロトポルフィリン−フッ化スズ錯体(略称:SnF(Proto IX))、メソポルフィリン−フッ化スズ錯体(略称:SnF(Meso IX))、ヘマトポルフィリン−フッ化スズ錯体(略称:SnF(Hemato IX))、コプロポルフィリンテトラメチルエステル−フッ化スズ錯体(略称:SnF(Copro III−4Me))、オクタエチルポルフィリン−フッ化スズ錯体(略称:SnF(OEP))、エチオポルフィリン−フッ化スズ錯体(略称:SnF(Etio I))、オクタエチルポルフィリン−塩化白金錯体(略称:PtClOEP)等が挙げられる。
その他のTADF材料としては、2−(ビフェニル−4−イル)−4,6−ビス(12−フェニルインドロ[2,3−a]カルバゾール−11−イル)−1,3,5−トリアジン(略称:PIC−TRZ)、2−{4−[3−(N−フェニル−9H−カルバゾール−3−イル)−9H−カルバゾール−9−イル]フェニル}−4,6−ジフェニル−1,3,5−トリアジン(略称:PCCzPTzn)、2−[4−(10H−フェノキサジン−10−イル)フェニル]−4,6−ジフェニル−1,3,5−トリアジン(略称:PXZ−TRZ)、3−[4−(5−フェニル−5,10−ジヒドロフェナジン−10−イル)フェニル]−4,5−ジフェニル−1,2,4−トリアゾール(略称:PPZ−3TPT)、3−(9,9−ジメチル−9H−アクリジン−10−イル)−9H−キサンテン−9−オン(略称:ACRXTN)、ビス[4−(9,9−ジメチル−9,10−ジヒドロアクリジン)フェニル]スルホン(略称:DMAC−DPS)、10−フェニル−10H,10’H−スピロ[アクリジン−9,9’−アントラセン]−10’−オン(略称:ACRSA)等のπ電子過剰型複素芳香環及びπ電子不足型複素芳香環を有する複素環化合物を用いることができる。なお、π電子過剰型複素芳香環とπ電子不足型複素芳香環とが直接結合した物質は、π電子過剰型複素芳香環のドナー性とπ電子不足型複素芳香環のアクセプター性が共に強くなり、一重項励起状態と三重項励起状態のエネルギー差が小さくなるため、特に好ましい。
なお、TADF材料を用いる場合、他の有機化合物と組み合わせて用いることもできる。
上記の材料を適宜用いることにより、発光層(113、113a、113b)を形成することができる。また、上記の材料は、低分子材料や高分子材料と組み合わせることにより発光層(113、113a、113b)の形成に用いることができる。
図1(D)に示す発光デバイスにおいては、EL層103aの発光層113a上に電子輸送層114aが形成される。また、EL層103aおよび電荷発生層104が形成された後、EL層103bの発光層113b上に電子輸送層114bが形成される。
<電子輸送層>
電子輸送層(114、114a、114b)は、電子注入層(115、115a、115b)によって、第2の電極102から注入された電子を発光層(113、113a、113b)に輸送する層である。なお、電子輸送層(114、114a、114b)は、電子輸送性材料を含む層である。電子輸送層(114、114a、114b)に用いる電子輸送性材料は、1×10−6cm/Vs以上の電子移動度を有する物質が好ましい。なお、正孔よりも電子の輸送性の高い物質であれば、これら以外のものを用いることができる。
電子輸送性材料としては、キノリン骨格を有する金属錯体、ベンゾキノリン骨格を有する金属錯体、オキサゾール骨格を有する金属錯体、チアゾール骨格を有する金属錯体等の他、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、オキサゾール誘導体、チアゾール誘導体、フェナントロリン誘導体、キノリン配位子を有するキノリン誘導体、ベンゾキノリン誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体、ピリジン誘導体、ビピリジン誘導体、ピリミジン誘導体、その他含窒素複素芳香族化合物を含むπ電子不足型複素芳香族化合物等の電子輸送性の高い材料を用いることができる。
電子輸送性材料の具体例としては、トリス(8−キノリノラト)アルミニウム(III)(略称:Alq)、トリス(4−メチル−8−キノリノラト)アルミニウム(III)(略称:Almq)、ビス(10−ヒドロキシベンゾ[h]キノリナト)ベリリウム(II)(略称:BeBq)、ビス(2−メチル−8−キノリノラト)(4−フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8−キノリノラト)亜鉛(II)(略称:Znq)等のキノリン骨格またはベンゾキノリン骨格を有する金属錯体、ビス[2−(2−ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2−(2−ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)、ビス[2−(2−ヒドロキシフェニル)ベンゾチアゾラト]亜鉛(II)(略称:Zn(BTZ))等のオキサゾール骨格またはチアゾール骨格を有する金属錯体等が挙げられる。
また、金属錯体以外にも2−(4−ビフェニリル)−5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾール(略称:PBD)、1,3−ビス[5−(p−tert−ブチルフェニル)−1,3,4−オキサジアゾール−2−イル]ベンゼン(略称:OXD−7)、9−[4−(5−フェニル−1,3,4−オキサジアゾール−2−イル)フェニル]−9H−カルバゾール(略称:CO11)等のオキサジアゾール誘導体、3−(4’−tert−ブチルフェニル)−4−フェニル−5−(4’’−ビフェニル)−1,2,4−トリアゾール(略称:TAZ)、3−(4−tert−ブチルフェニル)−4−(4−エチルフェニル)−5−(4−ビフェニリル)−1,2,4−トリアゾール(略称:p−EtTAZ)等のトリアゾール誘導体、2,2’,2’’−(1,3,5−ベンゼントリイル)トリス(1−フェニル−1H−ベンゾイミダゾール)(略称:TPBI)、2−[3−(ジベンゾチオフェン−4−イル)フェニル]−1−フェニル−1H−ベンゾイミダゾール(略称:mDBTBIm−II)等のイミダゾール誘導体(ベンゾイミダゾール誘導体を含む)や、4,4’−ビス(5−メチルベンゾオキサゾール−2−イル)スチルベン(略称:BzOS)などのオキサゾール誘導体、バソフェナントロリン(略称:Bphen)、バソキュプロイン(略称:BCP)、2,9−ビス(ナフタレン−2−イル)−4,7−ジフェニル−1,10−フェナントロリン(略称:NBPhen)などのフェナントロリン誘導体、2−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2mDBTPDBq−II)、2−[3’−(ジベンゾチオフェン−4−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mDBTBPDBq−II)、2−[3’−(9H−カルバゾール−9−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mCzBPDBq)、2−[4−(3,6−ジフェニル−9H−カルバゾール−9−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2CzPDBq−III)、7−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:7mDBTPDBq−II)、及び、6−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:6mDBTPDBq−II)等のキノキサリン誘導体、またはジベンゾキノキサリン誘導体、3,5−ビス[3−(9H−カルバゾール−9−イル)フェニル]ピリジン(略称:35DCzPPy)、1,3,5−トリ[3−(3−ピリジル)フェニル]ベンゼン(略称:TmPyPB)等のピリジン誘導体、4,6−ビス[3−(フェナントレン−9−イル)フェニル]ピリミジン(略称:4,6mPnP2Pm)、4,6−ビス[3−(4−ジベンゾチエニル)フェニル]ピリミジン(略称:4,6mDBTP2Pm−II)、4,6−ビス[3−(9H−カルバゾール−9−イル)フェニル]ピリミジン(略称:4,6mCzP2Pm)等のピリミジン誘導体、2−{4−[3−(N−フェニル−9H−カルバゾール−3−イル)−9H−カルバゾール−9−イル]フェニル}−4,6−ジフェニル−1,3,5−トリアジン(略称:PCCzPTzn)等のトリアジン誘導体を用いることができる。
また、ポリ(2,5−ピリジンジイル)(略称:PPy)、ポリ[(9,9−ジヘキシルフルオレン−2,7−ジイル)−co−(ピリジン−3,5−ジイル)](略称:PF−Py)、ポリ[(9,9−ジオクチルフルオレン−2,7−ジイル)−co−(2,2’−ビピリジン−6,6’−ジイル)](略称:PF−BPy)のような高分子化合物を用いることもできる。
また、電子輸送層(114、114a、114b)は、単層のものだけでなく、上記物質からなる層が2層以上積層した構造であってもよい。
次に、図1(D)に示す発光デバイスにおいて、EL層103aの電子輸送層114a上に電子注入層115aが真空蒸着法により形成される。その後、EL層103aおよび電荷発生層104が形成され、EL層103bの電子輸送層114bまで形成された後、上に電子注入層115bが真空蒸着法により形成される。
<電子注入層>
電子注入層(115、115a、115b)は、電子注入性の高い物質を含む層である。電子注入層(115、115a、115b)には、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF)、リチウム酸化物(LiO)等のようなアルカリ金属、アルカリ土類金属、またはそれらの化合物を用いることができる。また、フッ化エルビウム(ErF)のような希土類金属化合物を用いることができる。また、電子注入層(115、115a、115b)にエレクトライドを用いてもよい。エレクトライドとしては、例えば、カルシウムとアルミニウムの混合酸化物に電子を高濃度添加した物質等が挙げられる。なお、上述した電子輸送層(114、114a、114b)を構成する物質を用いることもできる。
また、電子注入層(115、115a、115b)に、有機化合物と電子供与体(ドナー)とを混合してなる複合材料を用いてもよい。このような複合材料は、電子供与体によって有機化合物に電子が発生するため、電子注入性および電子輸送性に優れている。この場合、有機化合物としては、発生した電子の輸送に優れた材料であることが好ましく、具体的には、例えば上述した電子輸送層(114、114a、114b)に用いる電子輸送性材料(金属錯体や複素芳香族化合物等)を用いることができる。電子供与体としては、有機化合物に対し電子供与性を示す物質であればよい。具体的には、アルカリ金属やアルカリ土類金属や希土類金属が好ましく、リチウム、セシウム、マグネシウム、カルシウム、エルビウム、イッテルビウム等が挙げられる。また、アルカリ金属酸化物やアルカリ土類金属酸化物が好ましく、リチウム酸化物、カルシウム酸化物、バリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いることもできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることもできる。
なお、図1(D)に示す発光デバイスにおいて、発光層113bから得られる光を増幅させる場合には、第2の電極102と、発光層113bとの光学距離が、発光層113bが呈する光の波長λの1/4未満となるように形成するのが好ましい。この場合、電子輸送層114bまたは電子注入層115bの膜厚を変えることにより、調整することができる。
<電荷発生層>
図1(D)に示す発光デバイスにおいて、電荷発生層104は、第1の電極(陽極)101と第2の電極(陰極)102との間に電圧を印加したときに、EL層103aに電子を注入し、EL層103bに正孔を注入する機能を有する。なお、電荷発生層104は、正孔輸送性材料に電子受容体(アクセプター)が添加された構成であっても、電子輸送性材料に電子供与体(ドナー)が添加された構成であってもよい。また、これらの両方の構成が積層されていても良い。なお、上述した材料を用いて電荷発生層104を形成することにより、EL層が積層された場合における駆動電圧の上昇を抑制することができる。
電荷発生層104において、正孔輸送性材料に電子受容体が添加された構成とする場合、正孔輸送性材料としては、本実施の形態で示した材料を用いることができる。また、電子受容体としては、7,7,8,8−テトラシアノ−2,3,5,6−テトラフルオロキノジメタン(略称:F−TCNQ)、クロラニル等を挙げることができる。また元素周期表における第4族乃至第8族に属する金属の酸化物を挙げることができる。具体的には、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化モリブデン、酸化タングステン、酸化マンガン、酸化レニウムなどが挙げられる。
電荷発生層104において、電子輸送性材料に電子供与体が添加された構成とする場合、電子輸送性材料としては、本実施の形態で示した材料を用いることができる。また、電子供与体としては、アルカリ金属またはアルカリ土類金属または希土類金属または元素周期表における第2、第13族に属する金属およびその酸化物、炭酸塩を用いることができる。具体的には、リチウム(Li)、セシウム(Cs)、マグネシウム(Mg)、カルシウム(Ca)、イッテルビウム(Yb)、インジウム(In)、酸化リチウム、炭酸セシウムなどを用いることが好ましい。また、テトラチアナフタセンのような有機化合物を電子供与体として用いてもよい。
<基板>
本実施の形態で示した発光デバイスは、様々な基板上に形成することができる。なお、基板の種類は、特定のものに限定されることはない。基板の一例としては、半導体基板(例えば単結晶基板又はシリコン基板)、SOI基板、ガラス基板、石英基板、プラスチック基板、金属基板、ステンレス・スチル基板、ステンレス・スチル・ホイルを有する基板、タングステン基板、タングステン・ホイルを有する基板、可撓性基板、貼り合わせフィルム、繊維状の材料を含む紙、又は基材フィルムなどが挙げられる。
なお、ガラス基板の一例としては、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス、又はソーダライムガラスなどが挙げられる。また、可撓性基板、貼り合わせフィルム、基材フィルムなどの一例としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)に代表されるプラスチック、アクリル樹脂等の合成樹脂、ポリプロピレン、ポリエステル、ポリフッ化ビニル、ポリ塩化ビニル、ポリアミド、ポリイミド、アラミド樹脂、エポキシ樹脂、無機蒸着フィルム、又は紙類などが挙げられる。
なお、本実施の形態で示す発光デバイスの作製には、蒸着法などの真空プロセスや、スピンコート法やインクジェット法などの溶液プロセスを用いることができる。蒸着法を用いる場合には、スパッタ法、イオンプレーティング法、イオンビーム蒸着法、分子線蒸着法、真空蒸着法などの物理蒸着法(PVD法)や、化学蒸着法(CVD法)等を用いることができる。特に発光デバイスのEL層に含まれる機能層(正孔注入層(111、111a、111b)、正孔輸送層(112、112a、112b)、発光層(113、113a、113b)、電子輸送層(114、114a、114b)、電子注入層(115、115a、115b))、および電荷発生層104については、蒸着法(真空蒸着法等)、塗布法(ディップコート法、ダイコート法、バーコート法、スピンコート法、スプレーコート法等)、印刷法(インクジェット法、スクリーン(孔版印刷)法、オフセット(平版印刷)法、フレキソ(凸版印刷)法、グラビア法、マイクロコンタクト法、ナノインプリント法等)などの方法により形成することができる。
なお、本実施の形態で示す発光デバイスのEL層(103、103a、103b)を構成する各機能層(正孔注入層(111、111a、111b)、正孔輸送層(112、112a、112b)、発光層(113、113a、113b)、電子輸送層(114、114a、114b)、電子注入層(115、115a、115b))や電荷発生層104は、上述した材料に限られることはなく、それ以外の材料であっても各層の機能を満たせるものであれば組み合わせて用いることができる。一例としては、高分子化合物(オリゴマー、デンドリマー、ポリマー等)、中分子化合物(低分子と高分子の中間領域の化合物:分子量400~4000)、無機化合物(量子ドット材料等)等を用いることができる。また、量子ドット材料としては、コロイド状量子ドット材料、合金型量子ドット材料、コア・シェル型量子ドット材料、コア型量子ドット材料などを用いることができる。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができるものとする。
(実施の形態3)
本実施の形態では、本発明の一態様である発光装置について説明する。なお、図2(A)に示す発光装置は、第1の基板201上のトランジスタ(FET)202と発光デバイス(203R、203G、203B、203W)が電気的に接続されてなるアクティブマトリクス型の発光装置であり、複数の発光デバイス(203R、203G、203B、203W)は、共通のEL層204を有し、また、各発光デバイスの発光色に応じて、各発光デバイスの電極間の光学距離が調整されたマイクロキャビティ構造を有する。また、EL層204から得られた発光が第2の基板205に形成されたカラーフィルタ(206R、206G、206B)を介して射出されるトップエミッション型の発光装置である。
図2(A)に示す発光装置は、第1の電極207を反射電極として機能するように形成する。また、第2の電極208を半透過・半反射電極として機能するように形成する。なお、第1の電極207および第2の電極208を形成する電極材料としては、他の実施形態の記載を参照し、適宜用いればよい。
また、図2(A)において、例えば、発光デバイス203Rを赤色発光デバイス、発光デバイス203Gを緑色発光デバイス、発光デバイス203Bを青色発光デバイス、発光デバイス203Wを白色発光デバイスとする場合、図2(B)に示すように発光デバイス203Rは、第1の電極207と第2の電極208との間が光学距離200Rとなるように調整し、発光デバイス203Gは、第1の電極207と第2の電極208との間が光学距離200Gとなるように調整し、発光デバイス203Bは、第1の電極207と第2の電極208との間が光学距離200Bとなるように調整する。なお、図2(B)に示すように、発光デバイス203Rにおいて導電層210Rを第1の電極207に積層し、発光デバイス203Gにおいて導電層210Gを第1の電極207に積層することにより、光学調整を行うことができる。
第2の基板205には、カラーフィルタ(206R、206G、206B)が形成されている。なお、カラーフィルタは、可視光のうち特定の波長域を通過させ、特定の波長域を阻止するフィルタである。従って、図2(A)に示すように、発光デバイス203Rと重なる位置に赤の波長域のみを通過させるカラーフィルタ206Rを設けることにより、発光デバイス203Rから赤色発光を得ることができる。また、発光デバイス203Gと重なる位置に緑の波長域のみを通過させるカラーフィルタ206Gを設けることにより、発光デバイス203Gから緑色発光を得ることができる。また、発光デバイス203Bと重なる位置に青の波長域のみを通過させるカラーフィルタ206Bを設けることにより、発光デバイス203Bから青色発光を得ることができる。但し、発光デバイス203Wは、カラーフィルタを設けることなく白色発光を得ることができる。なお、各カラーフィルタの端部には、黒色層(ブラックマトリックス)209が設けられていてもよい。さらに、カラーフィルタ(206R、206G、206B)や黒色層209は、透明な材料を用いたオーバーコート層で覆われていても良い。
図2(A)では、第2の基板205側に発光を取り出す構造(トップエミッション型)の発光装置を示したが、図2(C)に示すようにFET202が形成されている第1の基板201側に光を取り出す構造(ボトムエミッション型)の発光装置としても良い。なお、ボトムエミッション型の発光装置の場合には、第1の電極207を半透過・半反射電極として機能するように形成し、第2の電極208を反射電極として機能するように形成する。また、第1の基板201は、少なくとも透光性の基板を用いる。また、カラーフィルタ(206R’、206G’、206B’)は、図2(C)に示すように発光デバイス(203R、203G、203B)よりも第1の基板201側に設ければよい。
また、図2(A)において、発光デバイスが、赤色発光デバイス、緑色発光デバイス、青色発光デバイス、白色発光デバイスの場合について示したが、本発明の一態様である発光デバイスはその構成に限られることはなく、黄色の発光デバイスや橙色の発光デバイスを有する構成であっても良い。なお、これらの発光デバイスを作製するためにEL層(発光層、正孔注入層、正孔輸送層、電子輸送層、電子注入層、電荷発生層など)に用いる材料としては、他の実施形態の記載を参照し、適宜用いればよい。なお、その場合には、また、発光デバイスの発光色に応じてカラーフィルタを適宜選択する必要がある。
以上のような構成とすることにより、複数の発光色を呈する発光デバイスを備えた発光装置を得ることができる。
なお、本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができるものとする。
(実施の形態4)
本実施の形態では、本発明の一態様である発光装置について説明する。
本発明の一態様である発光デバイスの素子構成を適用することで、アクティブマトリクス型の発光装置やパッシブマトリクス型の発光装置を作製することができる。なお、アクティブマトリクス型の発光装置は、発光デバイスとトランジスタ(FET)とを組み合わせた構成を有する。従って、パッシブマトリクス型の発光装置、アクティブマトリクス型の発光装置は、いずれも本発明の一態様に含まれる。なお、本実施の形態に示す発光装置には、他の実施形態で説明した発光デバイスを適用することが可能である。
本実施の形態では、アクティブマトリクス型の発光装置について図3を用いて説明する。
なお、図3(A)は発光装置21を示す上面図であり、図3(B)は図3(A)を鎖線A−A’で切断した断面図である。アクティブマトリクス型の発光装置は、第1の基板301上に設けられた画素部302、駆動回路部(ソース線駆動回路)303と、駆動回路部(ゲート線駆動回路)(304a、304b)を有する。画素部302および駆動回路部(303、304a、304b)は、シール材305によって、第1の基板301と第2の基板306との間に封止される。
また、第1の基板301上には、引き回し配線307が設けられる。引き回し配線307は、外部入力端子であるFPC308と電気的に接続される。なお、FPC308は、駆動回路部(303、304a、304b)に外部からの信号(例えば、ビデオ信号、クロック信号、スタート信号、リセット信号等)や電位を伝達する。また、FPC308にはプリント配線基板(PWB)が取り付けられていても良い。なお、これらFPCやのPWBが取り付けられた状態は、発光装置に含まれる。
次に、図3(B)に発光装置の断面構造を示す。
画素部302は、FET(スイッチング用FET)311、FET(電流制御用FET)312、およびFET312と電気的に接続された第1の電極313を有する複数の画素により形成される。なお、各画素が有するFETの数は、特に限定されることはなく、必要に応じて適宜設けることができる。
FET309、310、311、312は、特に限定されることはなく、例えば、スタガ型や逆スタガ型などのトランジスタを適用することができる。また、トップゲート型やボトムゲート型などのトランジスタ構造であってもよい。
なお、これらのFET309、310、311、312に用いることのできる半導体の結晶性については特に限定されず、非晶質半導体、結晶性を有する半導体(微結晶半導体、多結晶半導体、単結晶半導体、又は一部に結晶領域を有する半導体)のいずれを用いてもよい。なお、結晶性を有する半導体を用いることで、トランジスタ特性の劣化を抑制できるため好ましい。
また、これらの半導体としては、例えば、第14族の元素、化合物半導体、酸化物半導体、有機半導体などを用いることができる。代表的には、シリコンを含む半導体、ガリウムヒ素を含む半導体、インジウムを含む酸化物半導体などを適用することができる。
駆動回路部303は、FET309とFET310とを有する。なお、FET309とFET310は、単極性(N型またはP型のいずれか一方のみ)のトランジスタを含む回路で形成されても良いし、N型のトランジスタとP型のトランジスタを含むCMOS回路で形成されても良い。また、外部に駆動回路を有する構成としても良い。
第1の電極313の端部は、絶縁物314により覆われている。なお、絶縁物314には、ネガ型の感光性樹脂や、ポジ型の感光性樹脂(アクリル樹脂)などの有機化合物や、酸化シリコン、酸化窒化シリコン、窒化シリコン等の無機化合物を用いることができる。絶縁物314の上端部または下端部には、曲率を有する曲面を有するのが好ましい。これにより、絶縁物314の上層に形成される膜の被覆性を良好なものとすることができる。
第1の電極313上には、EL層315及び第2の電極316が積層形成される。EL層315は、発光層、正孔注入層、正孔輸送層、電子輸送層、電子注入層、電荷発生層等を有する。
なお、本実施の形態で示す発光デバイス317の構成は、他の実施の形態で説明した構成や材料を適用することができる。なお、ここでは図示しないが、第2の電極316は外部入力端子であるFPC308に電気的に接続されている。
また、図3(B)に示す断面図では発光デバイス317を1つのみ図示しているが、画素部302において、複数の発光デバイスがマトリクス状に配置されているものとする。画素部302には、3種類(R、G、B)の発光が得られる発光デバイスをそれぞれ選択的に形成し、フルカラー表示可能な発光装置を形成することができる。また、3種類(R、G、B)の発光が得られる発光デバイスの他に、例えば、ホワイト(W)、イエロー(Y)、マゼンタ(M)、シアン(C)等の発光が得られる発光デバイスを形成してもよい。例えば、3種類(R、G、B)の発光が得られる発光デバイスに上述の数種類の発光が得られる発光デバイスを追加することにより、色純度の向上、消費電力の低減等の効果が得ることができる。また、カラーフィルタと組み合わせることによってフルカラー表示可能な発光装置としてもよい。なお、カラーフィルタの種類としては、赤(R)、緑(G)、青(B)、シアン(C)、マゼンタ(M)、イエロー(Y)等を用いることができる。
第1の基板301上のFET(309、310、311、312)や、発光デバイス317は、第2の基板306と第1の基板301とをシール材305により貼り合わせることにより、第1の基板301、第2の基板306、およびシール材305で囲まれた空間318に備えられた構造を有する。なお、空間318には、不活性気体(窒素やアルゴン等)や有機物(シール材305を含む)で充填されていてもよい。
シール材305には、エポキシ樹脂やガラスフリットを用いることができる。なお、シール材305には、できるだけ水分や酸素を透過しない材料を用いることが好ましい。また、第2の基板306は、第1の基板301に用いることができるものを同様に用いることができる。従って、他の実施形態で説明した様々な基板を適宜用いることができるものとする。基板としてガラス基板や石英基板の他、FRP(Fiber−Reinforced Plastics)、PVF(ポリビニルフロライド)、ポリエステルまたはアクリル樹脂等からなるプラスチック基板を用いることができる。シール材としてガラスフリットを用いる場合には、接着性の観点から第1の基板301及び第2の基板306はガラス基板であることが好ましい。
以上のようにして、アクティブマトリクス型の発光装置を得ることができる。
また、アクティブマトリクス型の発光装置を可撓性基板に形成する場合、可撓性基板上にFETと発光デバイスとを直接形成しても良いが、剥離層を有する別の基板にFETと発光デバイスを形成した後、熱、力、レーザ照射などを与えることによりFETと発光デバイスを剥離層で剥離し、さらに可撓性基板に転載して作製しても良い。なお、剥離層としては、例えば、タングステン膜と酸化シリコン膜との無機膜の積層や、ポリイミド等の有機樹脂膜等を用いることができる。また可撓性基板としては、トランジスタを形成することが可能な基板に加え、紙基板、セロファン基板、アラミドフィルム基板、ポリイミドフィルム基板、布基板(天然繊維(絹、綿、麻)、合成繊維(ナイロン、ポリウレタン、ポリエステル)若しくは再生繊維(アセテート、キュプラ、レーヨン、再生ポリエステル)などを含む)、皮革基板、又はゴム基板などが挙げられる。これらの基板を用いることにより、耐久性や耐熱性に優れ、軽量化および薄型化を図ることができる。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成を適宜組み合わせて用いることができる。
(実施の形態5)
本実施の形態では、本発明の一態様である発光デバイス、本発明の一態様である発光デバイスを有する発光装置を適用して完成させた様々な電子機器や自動車の一例について、説明する。なお、発光装置は、本実施の形態で説明する電子機器において、主に表示部に適用することができる。
図4(A)乃至図4(C)に示す電子機器は、筐体7000、表示部7001、スピーカ7003、LEDランプ7004、操作キー7005(電源スイッチ、又は操作スイッチを含む)、接続端子7006、センサ7007(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい、又は赤外線を測定する機能を含むもの)、マイクロフォン7008、等を有することができる。
図4(A)はモバイルコンピュータであり、上述したものの他に、スイッチ7009、赤外線ポート7010、等を有することができる。
図4(B)は記録媒体を備えた携帯型の画像再生装置(たとえば、DVD再生装置)であり、上述したものの他に、第2表示部7002、記録媒体読込部7011、等を有することができる。
図4(C)はテレビ受像機能付きデジタルカメラであり、上述したものの他に、アンテナ7014、シャッターボタン7015、受像部7016、等を有することができる。
図4(D)は携帯情報端末である。携帯情報端末は、表示部7001の3面以上に情報を表示する機能を有する。ここでは、情報7052、情報7053、情報7054がそれぞれ異なる面に表示されている例を示す。例えば使用者は、洋服の胸ポケットに携帯情報端末を収納した状態で、携帯情報端末の上方から観察できる位置に表示された情報7053を確認することもできる。使用者は、携帯情報端末をポケットから取り出すことなく表示を確認し、例えば電話を受けるか否かを判断できる。
図4(E)は携帯情報端末(スマートフォンを含む)であり、筐体7000に、表示部7001、操作キー7005、等を有することができる。なお、携帯情報端末は、スピーカ、接続端子、センサ等を設けてもよい。また、携帯情報端末は、文字や画像情報をその複数の面に表示することができる。ここでは3つのアイコン7050を表示した例を示している。また、破線の矩形で示す情報7051を表示部7001の他の面に表示することもできる。情報7051の一例としては、電子メール、SNS、電話などの着信の通知、電子メールやSNSなどの題名、送信者名、日時、時刻、バッテリーの残量、アンテナ受信の強度などがある。または、情報7051が表示されている位置にはアイコン7050などを表示してもよい。
図4(F)は、大型のテレビジョン装置(テレビ、又はテレビジョン受信機ともいう)であり、筐体7000、表示部7001、等を有することができる。また、ここでは、スタンド7018により筐体7000を支持した構成を示している。また、テレビジョン装置の操作は、別体のリモコン操作機7111、等により行うことができる。なお、表示部7001にタッチセンサを備えていてもよく、指等で表示部7001に触れることで操作してもよい。リモコン操作機7111は、当該リモコン操作機7111から出力する情報を表示する表示部を有していてもよい。リモコン操作機7111が備える操作キーまたはタッチパネルにより、チャンネル及び音量の操作を行うことができ、表示部7001に表示される画像を操作することができる。
図4(A)乃至図4(F)に示す電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付又は時刻などを表示する機能、様々なソフトウエア(プログラム)によって処理を制御する機能、無線通信機能、無線通信機能を用いて様々なコンピュータネットワークに接続する機能、無線通信機能を用いて様々なデータの送信又は受信を行う機能、記録媒体に記録されているプログラム又はデータを読み出して表示部に表示する機能、等を有することができる。さらに、複数の表示部を有する電子機器においては、一つの表示部を主として画像情報を表示し、別の一つの表示部を主として文字情報を表示する機能、または、複数の表示部に視差を考慮した画像を表示することで立体的な画像を表示する機能、等を有することができる。さらに、受像部を有する電子機器においては、静止画を撮影する機能、動画を撮影する機能、撮影した画像を自動または手動で補正する機能、撮影した画像を記録媒体(外部又はカメラに内蔵)に保存する機能、撮影した画像を表示部に表示する機能、等を有することができる。なお、図4(A)乃至図4(F)に示す電子機器が有することのできる機能はこれらに限定されず、様々な機能を有することができる。
図4(G)は、腕時計型の携帯情報端末であり、例えばスマートウォッチとして用いることができる。この腕時計型の携帯情報端末は、筐体7000、表示部7001、操作用ボタン7022、7023、接続端子7024、バンド7025、マイクロフォン7026、センサ7029、スピーカ7030等を有している。表示部7001は、表示面が湾曲しており、湾曲した表示面に沿って表示を行うことができる。また、この携帯情報端末は、例えば無線通信可能なヘッドセットとの相互通信によりハンズフリーでの通話が可能である。なお、接続端子7024により、他の情報端末と相互にデータ伝送を行うことや、充電を行うこともできる。充電動作は無線給電により行うこともできる。
ベゼル部分を兼ねる筐体7000に搭載された表示部7001は、非矩形状の表示領域を有している。表示部7001は、時刻を表すアイコン7027、その他のアイコン7028等を表示することができる。また、表示部7001は、タッチセンサ(入力装置)を搭載したタッチパネル(入出力装置)であってもよい。
なお、図4(G)に示すスマートウォッチは、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付又は時刻などを表示する機能、様々なソフトウエア(プログラム)によって処理を制御する機能、無線通信機能、無線通信機能を用いて様々なコンピュータネットワークに接続する機能、無線通信機能を用いて様々なデータの送信又は受信を行う機能、記録媒体に記録されているプログラム又はデータを読み出して表示部に表示する機能、等を有することができる。
また、筐体7000の内部に、スピーカ、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい又は赤外線を測定する機能を含むもの)、マイクロフォン等を有することができる。
なお、本発明の一態様である発光装置および本発明の一態様である発光デバイスを有する表示装置は、本実施の形態に示す電子機器の各表示部に用いることができ、長寿命な電子機器を実現できる。
また、発光装置を適用した電子機器として、図5(A)乃至(C)に示すような折りたたみ可能な携帯情報端末が挙げられる。図5(A)には、展開した状態の携帯情報端末9310を示す。また、図5(B)には、展開した状態又は折りたたんだ状態の一方から他方に変化する途中の状態の携帯情報端末9310を示す。さらに、図5(C)には、折りたたんだ状態の携帯情報端末9310を示す。携帯情報端末9310は、折りたたんだ状態では可搬性に優れ、展開した状態では、継ぎ目のない広い表示領域により表示の一覧性に優れる。
表示部9311はヒンジ9313によって連結された3つの筐体9315に支持されている。なお、表示部9311は、タッチセンサ(入力装置)を搭載したタッチパネル(入出力装置)であってもよい。また、表示部9311は、ヒンジ9313を介して2つの筐体9315間を屈曲させることにより、携帯情報端末9310を展開した状態から折りたたんだ状態に可逆的に変形させることができる。なお、本発明の一態様の発光装置は、表示部9311に用いることができる。また、長寿命な電子機器を実現できる。表示部9311における表示領域9312は折りたたんだ状態の携帯情報端末9310の側面に位置する表示領域である。表示領域9312には、情報アイコンや使用頻度の高いアプリやプログラムのショートカットなどを表示させることができ、情報の確認やアプリなどの起動をスムーズに行うことができる。
また、発光装置を適用した自動車について、図6(A)(B)に示す。すなわち、発光装置を、自動車と一体にして設けることができる。具体的には、図6(A)に示す自動車の外側のライト5101(車体後部も含む)、タイヤのホイール5102、ドア5103の一部または全体などに適用することができる。また、図6(B)に示す自動車の内側の表示部5104、ハンドル5105、シフトレバー5106、座席シート5107、インナーリアビューミラー5108等に適用することができる。その他、ガラス窓の一部に適用してもよい。
以上のようにして、本発明の一態様である発光装置や表示装置を適用した電子機器や自動車を得ることができる。なお、その場合には、長寿命な電子機器を実現できる。なお、適用できる電子機器や自動車は、本実施の形態に示したものに限らず、あらゆる分野において適用することが可能である。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用いることができる。
(実施の形態6)
本実施の形態では、本発明の一態様である発光装置、またはその一部である発光デバイスを適用して作製される照明装置の構成について図7を用いて説明する。
図7(A)、(B)は、照明装置の断面図の一例を示す。なお、図7(A)は基板側に光を取り出すボトムエミッション型の照明装置であり、図7(B)は、封止基板側に光を取り出すトップエミッション型の照明装置である。
図7(A)に示す照明装置4000は、基板4001上に発光デバイス4002を有する。また、基板4001の外側に凹凸を有する基板4003を有する。発光デバイス4002は、第1の電極4004と、EL層4005と、第2の電極4006を有する。
第1の電極4004は、電極4007と電気的に接続され、第2の電極4006は電極4008と電気的に接続される。また、第1の電極4004と電気的に接続される補助配線4009を設けてもよい。なお、補助配線4009上には、絶縁層4010が形成されている。
また、基板4001と封止基板4011は、シール材4012で接着されている。また、封止基板4011と発光デバイス4002の間には、乾燥剤4013が設けられていることが好ましい。なお、基板4003は、図7(A)のような凹凸を有するため、発光デバイス4002で生じた光の取り出し効率を向上させることができる。
図7(B)の照明装置4200は、基板4201上に発光デバイス4202を有する。発光デバイス4202は第1の電極4204と、EL層4205と、第2の電極4206とを有する。
第1の電極4204は、電極4207と電気的に接続され、第2の電極4206は電極4208と電気的に接続される。また第2の電極4206と電気的に接続される補助配線4209を設けてもよい。また、補助配線4209の下部に、絶縁層4210を設けてもよい。
基板4201と凹凸のある封止基板4211は、シール材4212で接着されている。また、封止基板4211と発光デバイス4202の間にバリア膜4213および平坦化膜4214を設けてもよい。なお、封止基板4211は、図7(B)のような凹凸を有するため、発光デバイス4202で生じた光の取り出し効率を向上させることができる。
また、これらの照明装置の応用例としては、室内の照明用であるシーリングライトが挙げられる。シーリングライトには、天井直付型や天井埋め込み型等がある。なお、このような照明装置は、発光装置を筐体やカバーと組み合わせることにより構成される。
その他にも床面に灯りを照射し、足元の安全性を高めることができる足元灯などへの応用も可能である。足元灯は、例えば、寝室や階段や通路などに使用するのが有効である。その場合、部屋の広さや構造に応じて適宜サイズや形状を変えることができる。また、発光装置と支持台とを組み合わせて構成される据え置き型の照明装置とすることも可能である。
また、シート状の照明装置(シート状照明)として応用することも可能である。シート状照明は、壁面に張り付けて使用するため、場所を取らず幅広い用途に用いることができる。なお、大面積化も容易である。なお、曲面を有する壁面や筐体に用いることもできる。
なお、上記以外にも室内に備えられた家具の一部に本発明の一態様である発光装置、またはその一部である発光デバイスを適用し、家具としての機能を備えた照明装置とすることができる。
以上のように、発光装置を適用した様々な照明装置が得られる。なお、これらの照明装置は本発明の一態様に含まれるものとする。
また、本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用いることができる。
≪合成例1≫
本実施例では、実施の形態1の構造式(100)で表される本発明の一態様である有機金属錯体、ビス(ベンゾ[f]ナフト[2,1−h]キノキサリン−5−イル−κC,κN)(2,2,6,6−テトラメチル−3,5−ヘプタンジオナト−κO,O’)イリジウム(III)(略称:[Ir(bnq)(dpm)])の合成方法について説明する。なお、[Ir(bnq)(dpm)]の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000027
<ステップ1:ベンゾ[f]ナフト[2,1−h]キノキサリン(略称:Hbnq)の合成>
まず、クリセン−5,6−ジオン2.1g(7.7mmol)、エチレンジアミン0.56g(9.3mmol)、エタノール20mLを100mL三口フラスコに入れ、窒素雰囲気下、80℃で12時間加熱撹拌した。得られた混合物を吸引ろ過し、ろ物をエタノールで洗浄した。得られた固体をシリカゲルカラムクロマトグラフィーにより精製した。展開溶媒には、トルエンを用いた。得られたフラクションを濃縮して目的物を得た(白色固体0.98g,収率45%)。ステップ1の合成スキームを下記式(a−1)に示す。
Figure JPOXMLDOC01-appb-C000028
<ステップ2:[Ir(bnq)(dpm)]の合成>
次に、上記ステップ1で得た配位子Hbnq0.98g(3.5mmol)、塩化イリジウム水和物0.47g(1.6mmol)、ジメチルホルムアミド(DMF)35mLを三口フラスコに入れ、フラスコ内を窒素置換した。この混合物を160℃で5時間加熱撹拌した。所定時間経過後、この混合物に炭酸ナトリウム0.67g(6.4mmol)、Hdpm0.88g(4.8mmol)を加え、140℃で9時間加熱撹拌した。次に、この混合物を吸引ろ過し、ろ物を水、エタノールで洗浄して赤色固体を得た。
次に、この赤色固体にジクロロメタンを加えて、吸引ろ過し、不溶固体を除去した。ろ液をセライト/アルミナを積層したろ過材を通して吸引ろ過し、ろ液を濃縮して目的物を得た(深赤色固体0.42g、収率28%)。ステップ2の合成スキームを下記式(a−2)に示す。
Figure JPOXMLDOC01-appb-C000029
上記ステップ2で得られた深赤色固体のプロトン(H)を核磁気共鳴法(NMR)により測定した。以下に得られた値を示す。また、H−NMRチャートを図8に示す。このことから、本合成例において、上述の構造式(100)で表される本発明の一態様の有機金属錯体である、[Ir(bnq)(dpm)]が得られたことがわかった。図8において、およそ11ppmのプロトンは、ベンゾナフトキノキサリン(bnq)の14位のプロトンと帰属され、中心金属に配位するベンゾナフトキノキサリン(bnq)骨格が有する窒素のうち中心金属であるIrと結合しない窒素と、縮合した炭化水素の水素(ベンゾナフトキノキサリン(bnq)の14位のプロトン)と、の間で強く水素結合を形成している。そのため、およそ11ppmのプロトンは、大きく低磁場シフトしていることがわかった。
H−NMR.δ(CDCl):0.89(s,18H),5.65(s,1H),6.52(d,2H),7.13(t,2H),7.70(t,2H),7.88(t,2H),8.07(d,2H),8.10(d,2H),8.20(d,2H),8.70(d,2H),8.80(d,2H),9.01(d,2H),11.03(d,2H)。
次に、[Ir(bnq)(dpm)]のジクロロメタン溶液の紫外可視吸収スペクトル(以下、単に「吸収スペクトル」という)及び発光スペクトルを測定した。
吸収スペクトルの測定には、紫外可視分光光度計((株)日本分光製 V550型)を用い、ジクロロメタン溶液(0.011mmol/L)を石英セルに入れ、室温で測定を行った。また、発光スペクトルの測定には、蛍光光度計((株)浜松ホトニクス製 FS920)を用い、脱気したジクロロメタン溶液(0.011mmol/L)を石英セルに入れ、室温で測定を行った。
得られた吸収スペクトル及び発光スペクトルの測定結果を図9に示す。横軸は波長、縦軸は吸収強度および発光強度を表す。また、図9における細い実線は吸収スペクトルを示し、太い実線は発光スペクトルを示す。なお、図9に示す吸収スペクトルは、ジクロロメタン溶液(0.011mmol/L)を石英セルに入れて測定した吸収スペクトルから、ジクロロメタンのみを石英セルに入れて測定した吸収スペクトルを差し引いた結果を示す。
図9の結果より、本発明の一態様である有機金属錯体、[Ir(bnq)(dpm)]は、660nmに発光ピークを示し、ジクロロメタン溶液からは赤色の発光が観測された。
本実施例では、本発明の一態様である発光デバイスとして、実施例1で説明したビス(ベンゾ[f]ナフト[2,1−h]キノキサリン−5−イル−κC,κN)(2,2,6,6−テトラメチル−3,5−ヘプタンジオナト−κO,O’)イリジウム(III)(略称:[Ir(bnq)(dpm)])(構造式(100))を発光層に用いた発光デバイス1を作成し、比較のための発光デバイスとして、ビス(ジベンゾ[f,h]キノキサリン−5−イル−κC,κN)(2,4−ペンタンジオナト−κO,O’)イリジウム(III)(略称:[Ir(dbq)(acac)])(構造式(200))を発光層に用いた比較発光デバイス2を作成した。発光デバイス1及び比較発光デバイス2の素子構造、作製方法およびその特性について説明する。なお、本実施例で用いる発光デバイスの素子構造を図10に示し、具体的な構成について表1に示す。また、本実施例で用いる材料の化学式を以下に示す。
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-C000031
≪発光デバイスの作製≫
本実施例で示す発光デバイスは、図10に示すように基板900上に形成された第1の電極901上に正孔注入層911、正孔輸送層912、発光層913、電子輸送層914、電子注入層915が順次積層され、電子注入層915上に第2の電極903が積層された構造を有する。
まず、基板900上に第1の電極901を形成した。電極面積は、4mm(2mm×2mm)とした。また、基板900には、ガラス基板を用いた。また、第1の電極901は、酸化珪素を含むインジウム錫酸化物(ITSO)をスパッタリング法により、70nmの膜厚で成膜して形成した。
ここで、前処理として、基板の表面を水で洗浄し、200℃で1時間焼成した後、UVオゾン処理を370秒行った。その後、1×10−4Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において、170℃で30分間の真空焼成を行った後、基板を30分程度放冷した。
次に、第1の電極901上に正孔注入層911を形成した。正孔注入層911は、真空蒸着装置内を1×10−4Paに減圧した後、1,3,5−トリ(ジベンゾチオフェン−4−イル)ベンゼン(略称:DBT3P−II)と酸化モリブデンとを、DBT3P−II:酸化モリブデン=2:1(質量比)とし、膜厚が75nmとなるように共蒸着して形成した。
次に、正孔注入層911上に正孔輸送層912を形成した。正孔輸送層912は、4−フェニル−4’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:BPAFLP)を用い、膜厚が20nmになるように蒸着して形成した。
次に、正孔輸送層912上に発光層913を形成した。
発光デバイス1の場合の発光層913は、ホスト材料として、2mDBTBPDBq−IIを用い、アシスト材料としてPCBBiF、ゲスト材料(燐光材料)として、本発明の一態様である有機金属錯体、[Ir(bnq)(dpm)]を用い、重量比が2mDBTBPDBq−II:PCBBiF:[Ir(bnq)(dpm)]=0.75:0.25:0.10となるように共蒸着した。なお、膜厚は、40nmとした。
比較発光デバイス2の場合の発光層913は、ホスト材料として、2mDBTBPDBq−IIを用い、アシスト材料としてPCBBiF、ゲスト材料(燐光材料)として、[Ir(dbq)(acac)]を用い、重量比が2mDBTBPDBq−II:PCBBiF:[Ir(dbq)(acac)]=0.75:0.25:0.075となるように共蒸着した。なお、膜厚は、40nmとした。
次に、発光層913上に電子輸送層914を形成した。電子輸送層914は、2mDBTBPDBq−IIの膜厚が30nm、2,9−ビス(ナフタレン−2−イル)−4,7−ジフェニル−1,10−フェナントロリン(略称:NBphen)の膜厚が15nmとなるように順次蒸着して形成した。
次に、電子輸送層914上に電子注入層915を形成した。電子注入層915は、フッ化リチウム(LiF)を用い、膜厚が1nmになるように蒸着して形成した。
次に、電子注入層915上に第2の電極903を形成した。第2の電極903は、アルミニウムを蒸着法により、膜厚が200nmとなるように形成した。なお、本実施例において、第2の電極903は、陰極として機能する。
以上の工程により、基板900上に一対の電極間にEL層を挟んでなる発光デバイスを形成した。なお、上記工程で説明した正孔注入層911、正孔輸送層912、発光層913、電子輸送層914、電子注入層915は、本発明の一態様におけるEL層を構成する機能層である。また、上述した作製方法における蒸着工程では、全て抵抗加熱法による蒸着法を用いた。
また、上記に示すように作製した発光デバイスは、別の基板(図示せず)により封止される。なお、別の基板(図示せず)を用いた封止の際は、窒素雰囲気のグローブボックス内において、紫外光により固化するシール剤を塗布した別の基板(図示せず)を基板900上に固定し、基板900上に形成された発光デバイスの周囲にシール剤が付着するよう基板同士を接着させた。封止時には365nmの紫外光を6J/cm照射しシール剤を固化し、80℃にて1時間熱処理することによりシール剤を安定化させた。
≪発光デバイスの動作特性≫
作製した各発光デバイスの動作特性について測定した。なお、測定は室温(25℃に保たれた雰囲気)で行った。また、結果を図11~図14に示す。
以下の表2に1000cd/m付近における各発光デバイスの主な初期特性値を示す。
Figure JPOXMLDOC01-appb-T000032
上記結果から、発光デバイス1は、良好な素子特性を示すことがわかる。
また、発光デバイス1および比較発光デバイス2に2.5mA/cmの電流密度で電流を流した際の発光スペクトルを、図15に示す。図15において、発光デバイス1は、発光層913に含まれる有機金属錯体、[Ir(bnq)(dpm)]の発光に由来して、650nm付近にピークを有する発光スペクトルを示す。また、比較発光デバイス2は、発光層913に含まれる有機金属錯体、[Ir(dbq)(acac)]の発光に由来して、630nm付近にピークを有する発光スペクトルを示す。なお、発光デバイス1は比較発光デバイス2に比べて極大発光波長が長波長方向にシフトしている。これは、発光デバイス1は、発光層913に含まれる有機金属錯体、[Ir(bnq)(dpm)]において、配位子のベンゾナフトキノキサリン(bnq)骨格が有する窒素のうち中心金属(9族または10族:Ir、Pt)と結合しない窒素と、bnq骨格の縮合環の水素と、の間で水素結合を形成させることにより、ジベンゾキノキサリン(dbq)よりもベンゾナフトキノキサリン(bnq)の共役が広がるためである。従って、極大発光波長を長波長方向にシフトさせ、赤色発光域に発光波長を調整したい場合に、本発明の一態様である有機金属錯体は好適であるといえる。
次に、発光デバイス1および比較発光デバイス2に対する信頼性試験を行った。信頼性試験の結果を図16に示す。図16において、縦軸は初期輝度を100%とした時の規格化輝度(%)を示し、横軸は素子の駆動時間(h)を示す。なお、信頼性試験は、電流密度を75mA/cmに設定し、発光デバイスを駆動させた。
信頼性試験の結果より、発光デバイス1は、比較発光デバイス2に比べて、高い信頼性を示すことが分かった。これは、本発明の一態様である有機金属錯体、[Ir(bnq)(dpm)](構造式(100))を発光デバイス1の発光層に用いたことによる効果といえる。[Ir(dbq)(acac)]は、分子構造上、配位子のジベンゾキノキサリン(dbq)骨格が有する窒素のうち中心金属(9族または10族:Ir、Pt)と結合しない窒素が、隣接するホスト分子等の有する縮合した炭化水素の水素と、の間で水素結合を形成する可能性があり、励起状態の形成過程や励起エネルギーの移動過程で分子間でのプロトン移動を引き起こし、分子の劣化要因となる可能性が考えられる。一方、本実施例の[Ir(bnq)(dpm)]は、分子構造上、配位子のベンゾナフトキノキサリン(bnq)骨格が有する窒素のうち中心金属(9族または10族:Ir、Pt)と結合しない窒素と、bnq骨格の縮合環の水素と、の間で水素結合を形成することができるため構造の安定化を図ることができる。したがって発光デバイス1の信頼性が向上したと言える。
≪合成例2≫
本実施例では、実施の形態1の構造式(118)で表される本発明の一態様である有機金属錯体、ビス(ベンゾ[a,i]ナフト[2,1−c]フェナジン−10−イル−κC10,κN11)(2,2,6,6−テトラメチル−3,5−ヘプタンジオナト−κO,O’)イリジウム(III)(略称:[Ir(dbnphz)(dpm)])の合成方法について説明する。なお、[Ir(dbnphz)(dpm)]の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000033
<ステップ1:ジベンゾ[a,i]ナフト[2,1−c]フェナジン(略称:Hdbnphz)の合成>
まず、クリセン−5,6−ジオン1.0g(4.0mmol)、2,3−ジアミノナフタレン0.67g(4.3mmol)、エタノール20mLを反応容器に入れ、5時間加熱還流した。所定時間経過後、得られた混合物を吸引ろ過し、固体をエタノールで洗浄した。この固体を加熱トルエンに溶解し、セライト・アルミナ・セライトの順に積層したろ過材を通して吸引ろ過した。得られたろ液を濃縮し、トルエンとエタノールの混合溶媒にて再結晶して目的物を得た(1.1g、収率74%)。ステップ1の合成スキームを下記式(b−1)に示す。
Figure JPOXMLDOC01-appb-C000034
<ステップ2:[Ir(dbnphz)(dpm)]の合成>
次に、上記ステップ2で得た配位子Hdbnphz1.1g(2.9mmol)、塩化イリジウム水和物0.39g(1.3mmol)、ジメチルホルムアミド(DMF)30mLを反応容器に加え、容器内を窒素置換し、160℃で7.5時間加熱撹拌した。所定時間経過後、炭酸ナトリウム0.55g(5.2mmol)とジピバロイルメタン0.72g(3.9mmol)を加えて140℃で14時間加熱撹拌した。次に、この混合物を吸引ろ過し、得られた固体を水、エタノールで洗浄した。
次に、ジクロロメタンを展開溶媒としたシリカゲルカラムクロマトグラフィーによりこの固体を精製し、得られたフラクションを濃縮して固体を得た。この固体を加熱トルエンで洗浄し、目的物を133mg得た。
次に、得られたろ液を濃縮し、トルエンを展開溶媒としたシリカゲルカラムクロマトグラフィーにより精製した。次に、得られたフラクションを濃縮して得た固体をトルエンとエタノールの混合溶媒を用いて再結晶し、目的物(80mg)を得た(総収量213mg、収率14%)。ステップ2の合成スキームを下記式(b−2)に示す。
Figure JPOXMLDOC01-appb-C000035
上記ステップ2で得られた黒色固体のプロトン(H)を核磁気共鳴法(NMR)により測定した。以下に得られた値を示す。また、H−NMRチャートを図17に示す。このことから、本合成例2において、上述の構造式(118)で表される本発明の一態様の有機金属錯体である、[Ir(dbnphz)(dpm)])が得られたことがわかった。
H−NMR δ(CDCl):0.52(s,18H),5.04(s,1H),6.80(d,2H),6.97(t,2H),7.48(d,2H),7.59(t,2H),7.74(t,2H),7.88(d,2H),7.98(t,2H),8.06(d,2H),8.10(d,2H),8.26(d,4H),8.64(d,2H),9.13(s,2H),9.19(s,2H),11.21(d,2H)。
次に、[Ir(dbnphz)(dpm)]のジクロロメタン溶液の紫外可視吸収スペクトル(以下、単に「吸収スペクトル」という)及び発光スペクトルを測定した。
吸収スペクトルの測定には、紫外可視分光光度計((株)日本分光製 V550型)を用い、ジクロロメタン溶液(0.013mmol/L)を石英セルに入れ、室温で測定を行った。また、発光スペクトルの測定には、絶対PL量子収率測定装置((株)浜松ホトニクス製 C11347−01)を用い、脱気したジクロロメタン溶液(0.013mmol/L)を石英セルに入れ、室温で測定を行った。
得られた吸収スペクトル及び発光スペクトルの測定結果を図18に示す。横軸は波長、縦軸は吸収強度および発光強度を表す。なお、図18に示す吸収スペクトルは、ジクロロメタン溶液を石英セルに入れて測定した吸収スペクトルから、ジクロロメタンのみを石英セルに入れて測定した吸収スペクトルを差し引いた結果を示している。
図18に示す通り、[Ir(dbnphz)(dpm)]のジクロロメタン溶液からは、865nmに発光ピークを有する近赤外の発光が観測された。なお、図18の結果において、[Ir(dbnphz)(dpm)]におけるストークスシフトが大きいことが確認される。ストークスシフトが大きいことで極大発光波長をより長波長方向にシフトさせることが可能となる。
また、bnq骨格は、多環の縮合環により、共役が広がる構造とすることができるが、さらにbnq骨格のピラジン環にナフチル基を縮環させることにより、π共役系を伸長させ、LUMO準位を安定化することができるため、極大発光波長をより長波長方向にシフトさせることが可能となる。
本実施例では、本発明の一態様である発光デバイスとして、実施例3で説明した[Ir(dbnphz)(dpm)](構造式(118))を発光層に用いた発光デバイス3を作製し、素子特性について測定した結果を説明する。なお、本実施例で用いる発光デバイスの素子構造は、実施例2で示した図10の発光デバイスの素子構造と同様の構造であるが、素子構造を構成する各層の具体的な構成については表3に示す通りである。また、本実施例で用いる材料の化学式を以下に示す。
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-C000037
≪発光デバイス3の動作特性≫
作製した発光デバイス3の動作特性について測定した。なお、測定は室温(25℃に保たれた雰囲気)で行った。また、発光デバイス3の電流密度−放射発散度特性を図19、電圧−電流密度特性を図20、電流密度−放射束特性を図21、電圧−放射発散度特性を図22、電流密度−外部量子効率特性を図23にそれぞれ示す。なお、ここでは放射発散度、放射束、外部量子効率は、デバイスの配光特性がランバーシアン型と仮定し、放射輝度を用いて算出した。
以下の表4に0.11W/sr/m付近における発光デバイス3の主な初期特性値を示す。
Figure JPOXMLDOC01-appb-T000038
また、発光デバイス3に15mA/cmの電流密度で電流を流した際の発光スペクトルを、図24に示す。発光スペクトルの測定には、近赤外分光放射計(SR−NIR トプコン社製)を用いた。図24において、発光デバイス3は、発光層913に含まれる有機金属錯体、[Ir(dbnphz)(dpm)]の発光に由来して、870nm付近にピークを有する発光スペクトルを示す。なお、スペクトルの半値幅は63nmである。この半値幅をエネルギーに換算するとおよそ0.10eVであり、有機金属錯体由来の発光としてはかなり狭い。この特性は、700nm以上の波長の光を効果的に発することにつながるため、センサ用途などの光源として有用であると言える。
次に、発光デバイス3に対する信頼性試験を行った。信頼性試験の結果を図25に示す。図25において、縦軸は初期輝度を100%とした時の規格化輝度(%)を示し、横軸は素子の駆動時間(h)を示す。なお、信頼性試験は、電流密度を75mA/cmに設定し、発光デバイスを駆動させた。
信頼性試験の結果より、発光デバイス3は、高い信頼性を示すことが分かった。これは、本発明の一態様である有機金属錯体、[Ir(dbnphz)(dpm)](構造式(108))を発光デバイス3の発光層に用いたことによる効果といえる。[Ir(dbnphz)(dpm)]は、分子構造上、配位子のベンゾナフトキノキサリン(bnq)骨格が有する窒素のうち中心金属(9族または10族:Ir、Pt)と結合しない窒素と、bnq骨格の縮合環の水素と、の間で水素結合を形成することにより、構造の安定化を図ることができるため、隣接分子と強く水素結合することはない。したがって発光デバイス3の信頼性が高くなると言える。
101:第1の電極、102:第2の電極、103:EL層、103a、103b:EL層、104:電荷発生層、111、111a、111b:正孔注入層、112、112a、112b:正孔輸送層、113、113a、113b:発光層、114、114a、114b:電子輸送層、115、115a、115b:電子注入層、200R、200G、200B:光学距離、201:第1の基板、202:トランジスタ(FET)、203R、203G、203B、203W:発光デバイス、204:EL層、205:第2の基板、206R、206G、206B:カラーフィルタ、206R’、206G’、206B’:カラーフィルタ、207:第1の電極、208:第2の電極、209:黒色層(ブラックマトリックス)、210R、210G:導電層、301:第1の基板、302:画素部、303:駆動回路部(ソース線駆動回路)、304a、304b:駆動回路部(ゲート線駆動回路)、305:シール材、306:第2の基板、307:引き回し配線、308:FPC、309:FET、310:FET、311:FET、312:FET、313:第1の電極、314:絶縁物、315:EL層、316:第2の電極、317:発光デバイス、318:空間、900:基板、901:第1の電極、902:EL層、903:第2の電極、911:正孔注入層、912:正孔輸送層、913:発光層、914:電子輸送層、915:電子注入層、4000:照明装置、4001:基板、4002:発光デバイス、4003:基板、4004:第1の電極、4005:EL層、4006:第2の電極、4007:電極、4008:電極、4009:補助配線、4010:絶縁層、4011:封止基板、4012:シール材、4013:乾燥剤、4200:照明装置、4201:基板、4202:発光デバイス、4204:第1の電極、4205:EL層、4206:第2の電極、4207:電極、4208:電極、4209:補助配線、4210:絶縁層、4211:封止基板、4212:シール材、4213:バリア膜、4214:平坦化膜、5101:ライト、5102:ホイール、5103:ドア、5104:表示部、5105:ハンドル、5106:シフトレバー、5107:座席シート、5108:インナーリアビューミラー、7000:筐体、7001:表示部、7002:第2表示部、7003:スピーカ、7004:LEDランプ、7005:操作キー、7006:接続端子、7007:センサ、7008:マイクロフォン、7009:スイッチ、7010:赤外線ポート、7011:記録媒体読込部、7014:アンテナ、7015:シャッターボタン、7016:受像部、7018:スタンド、7022、7023:操作用ボタン、7024:接続端子、7025:バンド、7026:マイクロフォン、7027:時刻を表すアイコン、7028:その他のアイコン、7029:センサ、7030:スピーカ、7052、7053、7054:情報、9310:携帯情報端末、9311:表示部、9312:表示領域、9313:ヒンジ、9315:筐体

Claims (12)

  1.  一般式(G1)で表される有機金属錯体。
    Figure JPOXMLDOC01-appb-C000001
     (式中、Mは第9族元素または第10族元素を表し、R~R10はそれぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数6~12のアリール基、または置換もしくは無置換の炭素数3~12のヘテロアリール基のいずれかを表す。また、RおよびR10は、互いに結合し、置換もしくは無置換の炭素数3~24の飽和環もしくは不飽和環を形成してもよい。また、Lは、モノアニオン性の配位子を表す。また、前記Mが第9族元素の時、m+n=3(但し、m=0、1または2、n=1、2、または3のいずれか)であり、前記Mが第10族元素の時、m+n=2(但し、m=0または1、n=1または2のいずれか)である。)
  2.  一般式(G2)で表される有機金属錯体。
    Figure JPOXMLDOC01-appb-C000002
     (式中、R~R10はそれぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数6~12のアリール基、または置換もしくは無置換の炭素数3~12のヘテロアリール基のいずれかを表す。また、RおよびR10は、互いに結合し、置換もしくは無置換の炭素数3~24の飽和環もしくは不飽和環を形成してもよい。また、Lは、モノアニオン性の配位子を表す。)
  3.  請求項1または請求項2において、
     前記モノアニオン性の配位子は、β−ジケトン構造を有するモノアニオン性の二座キレート配位子、カルボキシル基を有するモノアニオン性の二座キレート配位子、フェノール性水酸基を有するモノアニオン性の二座キレート配位子、又は二つの配位元素がいずれも窒素であるモノアニオン性の二座キレート配位子、又はシクロメタル化によりイリジウムと金属−炭素結合を形成する二座配位子である有機金属錯体。
  4.  請求項1乃至請求項3のいずれか一において、
     前記モノアニオン性の配位子は、下記一般式(L1)~(L7)のいずれか一である有機金属錯体。
    Figure JPOXMLDOC01-appb-C000003
     (式中、R51~R89は、それぞれ独立に水素、置換もしくは無置換の炭素数1~6のアルキル基、ハロゲノ基、ビニル基、置換もしくは無置換の炭素数1~6のハロアルキル基、置換もしくは無置換の炭素数1~6のアルコキシ基、置換もしくは無置換の炭素数1~6のアルキルチオ基、置換もしくは無置換の炭素数6~13のアリール基を表す。また、A~A13は、それぞれ独立に、窒素、水素と結合するsp混成炭素、または置換基を有するsp混成炭素を表し、前記置換基は炭素数1~6のアルキル基、ハロゲノ基、炭素数1~6のハロアルキル基、又はフェニル基のいずれかを表す。)
  5.  一般式(G3)で表される有機金属錯体。
    Figure JPOXMLDOC01-appb-C000004
     (式中、R~R13はそれぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数6~12のアリール基、または置換もしくは無置換の炭素数3~12のヘテロアリール基のいずれかを表す。また、RおよびR10は、互いに結合し、置換もしくは無置換の炭素数3~24の飽和環もしくは不飽和環を形成してもよい。)
  6.  構造式(100)または構造式(118)で表される有機金属錯体。
    Figure JPOXMLDOC01-appb-C000005
  7.  請求項1乃至請求項6のいずれか一に記載の有機金属錯体を用いた発光デバイス。
  8.  一対の電極間にEL層を有し、
     前記EL層は、請求項1乃至請求項6のいずれか一に記載の有機金属錯体を有する発光デバイス。
  9.  一対の電極間にEL層を有し、
     前記EL層は、発光層を有し、
     前記発光層は、請求項1乃至請求項6のいずれか一に記載の有機金属錯体を有する発光デバイス。
  10.  請求項7乃至請求項9のいずれか一に記載の発光デバイスと、
     トランジスタ、または基板のいずれか一と、
     を有する発光装置。
  11.  請求項10に記載の発光装置と、
     マイク、カメラ、操作用ボタン、外部接続部、または、スピーカのいずれか一と、
     を有する電子機器。
  12.  請求項10に記載の発光装置と、
     筐体、カバー、または、支持台のいずれか一と、
     を有する照明装置。
PCT/IB2019/053093 2018-04-27 2019-04-16 有機化合物、発光デバイス、発光装置、電子機器、および照明装置 WO2019207409A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020515310A JP7287953B2 (ja) 2018-04-27 2019-04-16 有機金属錯体、発光デバイス、発光装置、電子機器、および照明装置
CN201980028782.0A CN112041326A (zh) 2018-04-27 2019-04-16 有机化合物、发光器件、发光装置、电子设备、及照明装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-086380 2018-04-27
JP2018086380 2018-04-27
JP2018-182680 2018-09-27
JP2018182680 2018-09-27

Publications (1)

Publication Number Publication Date
WO2019207409A1 true WO2019207409A1 (ja) 2019-10-31

Family

ID=68293788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/053093 WO2019207409A1 (ja) 2018-04-27 2019-04-16 有機化合物、発光デバイス、発光装置、電子機器、および照明装置

Country Status (4)

Country Link
JP (1) JP7287953B2 (ja)
CN (1) CN112041326A (ja)
TW (1) TWI810283B (ja)
WO (1) WO2019207409A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179607A (ja) * 2006-12-27 2008-08-07 Semiconductor Energy Lab Co Ltd 有機金属錯体および有機金属錯体を用いた発光素子、発光装置、並びに電子機器
JP2009152578A (ja) * 2007-11-30 2009-07-09 Semiconductor Energy Lab Co Ltd 発光素子、発光装置および電子機器
JP2010030996A (ja) * 2008-06-25 2010-02-12 Semiconductor Energy Lab Co Ltd 有機金属錯体、有機金属錯体を用いた発光素子、発光装置および電子機器
JP2011511821A (ja) * 2008-02-12 2011-04-14 ビーエーエスエフ ソシエタス・ヨーロピア ジベンゾ[f,h]キノキサリンを用いたエレクトロルミネッセンス金属錯体
JP2014131973A (ja) * 2012-12-06 2014-07-17 Mitsubishi Chemicals Corp イリジウム錯体化合物、有機電界発光素子、表示装置ならびに照明装置
JP2015509094A (ja) * 2012-01-12 2015-03-26 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ジベンゾ[f,h]キノキサリンを有する金属錯体
WO2017104839A1 (ja) * 2015-12-18 2017-06-22 国立研究開発法人産業技術総合研究所 赤色発光性イリジウム錯体ならびに該化合物を用いた発光材料および有機発光素子
US20180334459A1 (en) * 2017-05-19 2018-11-22 Arizona Board Of Regents On Behalf Of Arizona State University Thermally assisted delayed fluorescent materials with triad-type materials

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107710441B (zh) * 2015-06-17 2020-10-16 株式会社半导体能源研究所 铱配合物、发光元件、显示装置、电子设备以及照明装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179607A (ja) * 2006-12-27 2008-08-07 Semiconductor Energy Lab Co Ltd 有機金属錯体および有機金属錯体を用いた発光素子、発光装置、並びに電子機器
JP2009152578A (ja) * 2007-11-30 2009-07-09 Semiconductor Energy Lab Co Ltd 発光素子、発光装置および電子機器
JP2011511821A (ja) * 2008-02-12 2011-04-14 ビーエーエスエフ ソシエタス・ヨーロピア ジベンゾ[f,h]キノキサリンを用いたエレクトロルミネッセンス金属錯体
JP2010030996A (ja) * 2008-06-25 2010-02-12 Semiconductor Energy Lab Co Ltd 有機金属錯体、有機金属錯体を用いた発光素子、発光装置および電子機器
JP2015509094A (ja) * 2012-01-12 2015-03-26 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ジベンゾ[f,h]キノキサリンを有する金属錯体
JP2014131973A (ja) * 2012-12-06 2014-07-17 Mitsubishi Chemicals Corp イリジウム錯体化合物、有機電界発光素子、表示装置ならびに照明装置
WO2017104839A1 (ja) * 2015-12-18 2017-06-22 国立研究開発法人産業技術総合研究所 赤色発光性イリジウム錯体ならびに該化合物を用いた発光材料および有機発光素子
US20180334459A1 (en) * 2017-05-19 2018-11-22 Arizona Board Of Regents On Behalf Of Arizona State University Thermally assisted delayed fluorescent materials with triad-type materials

Also Published As

Publication number Publication date
TW201945380A (zh) 2019-12-01
TWI810283B (zh) 2023-08-01
JPWO2019207409A1 (ja) 2021-06-17
JP7287953B2 (ja) 2023-06-06
CN112041326A (zh) 2020-12-04

Similar Documents

Publication Publication Date Title
JP6487103B1 (ja) 有機化合物、発光素子、発光装置、電子機器、および照明装置
JP7143310B2 (ja) 有機化合物、発光素子、発光装置、電子機器、および照明装置
JP7144161B2 (ja) 有機化合物、発光素子、発光装置、電子機器、および照明装置
WO2019229584A1 (ja) 有機化合物、発光素子、発光装置、電子機器、および照明装置
JP2018100267A (ja) 有機金属錯体、発光素子、発光装置、電子機器、および照明装置
WO2019229583A1 (ja) 有機化合物、発光素子、発光装置、電子機器、および照明装置
JP7170930B1 (ja) 発光デバイス、発光装置、電子機器、および照明装置
JP2019189540A (ja) 有機化合物、発光素子、発光装置、電子機器、および照明装置
JP2023025011A (ja) 発光素子
JP2022166086A (ja) 化合物
JP2024102133A (ja) 発光素子
WO2020121097A1 (ja) 発光デバイス、発光装置、電子機器、および照明装置
WO2020109922A1 (ja) 発光デバイス用組成物
WO2018178818A1 (ja) 有機化合物、発光素子、発光装置、電子機器、および照明装置
JP7287953B2 (ja) 有機金属錯体、発光デバイス、発光装置、電子機器、および照明装置
JP2019127483A (ja) 有機化合物、発光素子、発光装置、電子機器、および照明装置
JP7498113B2 (ja) 有機化合物、発光デバイス、発光装置、電子機器、および照明装置
JP7275042B2 (ja) 有機金属錯体、発光素子、発光装置、電子機器および照明装置
KR102671111B1 (ko) 유기 화합물, 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
WO2018189623A1 (ja) 有機金属錯体、発光素子、発光装置、電子機器、および照明装置
JPWO2019097361A6 (ja) 有機化合物、発光素子、発光装置、電子機器、および照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793081

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020515310

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19793081

Country of ref document: EP

Kind code of ref document: A1