WO2019203318A1 - フルオロオレフィンの製造方法 - Google Patents
フルオロオレフィンの製造方法 Download PDFInfo
- Publication number
- WO2019203318A1 WO2019203318A1 PCT/JP2019/016677 JP2019016677W WO2019203318A1 WO 2019203318 A1 WO2019203318 A1 WO 2019203318A1 JP 2019016677 W JP2019016677 W JP 2019016677W WO 2019203318 A1 WO2019203318 A1 WO 2019203318A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- production method
- reaction
- hydrofluorocarbon
- hydrochlorofluorocarbon
- water
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/25—Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C21/00—Acyclic unsaturated compounds containing halogen atoms
- C07C21/02—Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
- C07C21/18—Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B61/00—Other general methods
Definitions
- the present invention relates to a method for efficiently producing a fluoroolefin, specifically, a hydrofluoroolefin, a perfluoroolefin, a hydrochlorofluoroolefin or a chlorofluoroolefin in a liquid phase.
- hydrofluorocarbons and hydrochlorofluorocarbons have been used for cleaning agents, refrigerants, foaming agents, solvents, aerosols and the like.
- these compounds may cause global warming. Therefore, halogenated olefins are attracting attention as compounds having a small global warming potential.
- hydrofluorocarbons or hydrochlorofluorocarbons having a structure in which hydrogen atoms, fluorine atoms or chlorine atoms are bonded to two adjacent carbon atoms in the molecule are dehydrochlorinated.
- a reaction for dehydrofluorination is known.
- Patent Document 1 discloses a reaction in which XCF 2 CF 2 CHClY is dehydrofluorinated to obtain XCF 2 CF ⁇ CClY (X and Y are fluorine atoms or chlorine atoms), and 1,1 1,2,2,3,3-hexafluoro-3-chloropropane is dehydrochlorinated to give hexafluoropropene.
- Patent Document 2 describes a method for producing 1-chloro-2,3,3-trifluoropropene by dehydrofluorinating 1-chloro-2,2,3,3-tetrafluoropropane.
- Patent Document 3 1,1-dichloro-2,2,3,3,3-pentafluoropropane is subjected to dehydrofluorination to produce 1,1-dichloro-2,3,3,3-tetra
- a method for obtaining fluoropropene is described.
- the present invention has been made from the above viewpoint, and is an efficient fluoroolefin in a liquid phase from hydrofluorocarbon or hydrochlorofluorocarbon, specifically, hydrofluoroolefin, perfluoroolefin, hydrochlorofluoroolefin or chlorofluoroolefin. It aims at providing the method of manufacturing.
- HFC Hydrofluorocarbon
- hydrochloro having 3 to 7 carbon atoms and having a structure in which a hydrogen atom and a fluorine atom or a chlorine atom are bonded to two adjacent carbon atoms, respectively.
- Fluorocarbon (HCFC) is brought into contact with an alkaline aqueous solution in the liquid phase in the presence of a phase transfer catalyst and a water-soluble organic solvent capable of dissolving HFC or HCFC (hereinafter also referred to as water-soluble organic solvent (S)).
- S water-soluble organic solvent
- the HFC or HCFC is dehydrochlorinated or dehydrofluorinated to at least one selected from hydrofluoroolefin (HFO), perfluoroolefin (PFO), hydrochlorofluoroolefin (HCFO) and chlorofluoroolefin (CFO)
- HFO hydrofluoroolefin
- PFO perfluoroolefin
- HCFO hydrochlorofluoroolefin
- CFO chlorofluoroolefin
- Ra [4 ⁇ ( ⁇ D 1 - ⁇ D 2) 2 + ( ⁇ P 1 - ⁇ P 2) 2 + ( ⁇ H 1 - ⁇ H 2) 2] 0.5
- ⁇ D 1, ⁇ P 1 and delta] H 1 respectively, in the Hansen solubility parameters of the water-soluble organic solvent, shows the dispersion term, polarity term and hydrogen bond
- [delta] D 2 [delta] P 2 and delta] H 2 represents a dispersion term, a polar term and a hydrogen bond term in the Hansen solubility parameter of the hydrofluorocarbon or hydrochlorofluorocarbon, respectively, and the unit is (MPa) 1/2 .
- phase transfer catalyst is tetra-n-butylammonium chloride, tetra-n-butylammonium bromide, or methyltri-n-octylammonium chloride.
- Method [10] The production method according to any one of [1] to [9], wherein the hydrofluorocarbon or hydrochlorofluorocarbon is monochlorotetrafluoropropane, and the fluoroolefin is tetrafluoropropene.
- the monochlorotetrafluoropropane is 2-chloro-1,1,1,2-tetrafluoropropane and / or 3-chloro-1,1,1,2-tetrafluoropropane, and the tetrafluoropropene is The production method according to [10], which is 2,3,3,3-tetrafluoropropene.
- the dichlorotetrafluoropropane is 2,3-dichloro-1,1,1,2-tetrafluoropropane and / or 3,3-dichloro-1,1,1,2-tetrafluoropropane,
- a fluoroolefin specifically, a hydrofluoroolefin, a perfluoroolefin, a hydrochlorofluoroolefin, or a chlorofluoroolefin can be efficiently produced in a liquid phase from hydrofluorocarbon or hydrochlorofluorocarbon.
- a reactor smaller than a gas phase reaction can be employed, which is industrially advantageous.
- halogenated hydrocarbon an abbreviation of the compound is described in parentheses after the compound name, and the abbreviation is used instead of the compound name as necessary.
- abbreviations only numbers after the hyphen (-) and lower-case alphabetic characters (for example, "1224yd” in “HCFO-1224yd") may be used.
- E) attached to the names of compounds having geometric isomers and their abbreviations indicate E form (trans form), and (Z) indicates Z form (cis form).
- the names and abbreviations are generic names including E-form, Z-form, and a mixture of E-form and Z-form.
- reaction represented by reaction formula (1) is referred to as reaction (1).
- reaction (1) The same applies to reactions represented by other formulas.
- the compound represented by formula (A) is referred to as compound (A).
- compound (A) The same applies to compounds represented by other formulas.
- Each of “ ⁇ ” representing a numerical range includes an upper limit value and a lower limit value.
- HSP The “Hansen solubility parameter of a compound” is composed of a dispersion term, a polar term and a hydrogen bond term.
- HSP is a literature value or a value estimated by computer software (Hansen Solubility Parameters in Practice (HSPiP) version 4) from the chemical structure of a compound.
- HSP of a mixture containing two or more compounds is calculated as a vector sum of values obtained by multiplying the HSP of each compound by the volume ratio of each compound to the entire mixture.
- Pressure represents “gauge pressure” unless otherwise specified.
- reaction to which the production method of the present invention can be applied is specifically a reaction shown in the following reaction formula (1).
- the above-mentioned HFC or HCFC which is a starting material (raw material) is represented by the formula (A)
- the target product which is HFO, PFO, HCFO or CFO is represented by the formula (B).
- Formula (C) is hydrogen chloride or hydrogen fluoride.
- X 1 and X 2 are each independently a hydrogen atom, and the other is a fluorine atom or a chlorine atom.
- Y 1 and Y 2 are each independently a hydrogen atom, a fluorine atom or a chlorine atom.
- R 1 and R 2 are each independently a hydrogen atom, a fluorine atom, a chlorine atom or an aliphatic saturated hydrocarbon group having 1 to 5 carbon atoms (however, part or all of the hydrogen atoms are chlorine atoms or fluorine atoms) And the total number of carbon atoms of R 1 and R 2 is 1-5. At least one of Y 1 , Y 2 , R 1 and R 2 is a fluorine atom.
- reaction (1) when compound (A) is brought into contact with an alkaline aqueous solution in the liquid phase, as shown in reaction (1), hydrogen chloride or hydrogen fluoride is eliminated from compound (A) to obtain compound (B).
- This reaction is performed in a two-phase state of an organic phase mainly composed of the compound (A) and an aqueous phase mainly composed of an alkaline aqueous solution.
- the stirring conditions and the device are devised, and the phase transfer catalyst is used to promote the reaction.
- increasing the reaction speed and improving the productivity It was not easy.
- the present inventors perform contact between the compound (A) and the aqueous alkali solution in the presence of a phase transfer catalyst and the water-soluble organic solvent (S), thereby providing the water-soluble organic solvent (S).
- the compound (B) can be produced more efficiently by promoting the action of the phase transfer catalyst, and has led to the completion of the present invention.
- Formula (1-1) is a compound represented by 3,3-dichloro-1,1,1,2,2-pentafluoropropane (HCFC-225ca) and / or 1,1-dichloro-1,2,3,3,3
- Formula (1-2) is 2,3,3-trichloro-1,1,1,2-tetrafluoropropane (HCFC-224ba) and / or 1,1,1-trichloro-2,3,3,3 A reaction formula for obtaining CFO-1214ya from tetrafluoropropane (HCFC-224eb) by deHCl.
- Formula (2-1) represents 1,1,1,2,2,3,3-heptafluoropropane (HFC-227ca) and / or 1,1,1,2,3,3,3-heptafluoropropane.
- This is a reaction formula for obtaining hexafluoropropene (PFO-1216) from (HFC-227ea) by deHF.
- Formula (2-2) is 2-chloro-1,1,1,2,3,3-hexafluoropropane (HCFC-226ba) and / or 1-chloro-1,1,2,3,3,3
- Formula (3-1) represents 3-chloro-1,1,1,2,2-pentafluoropropane (HCFC-235cb) and / or 3-chloro-1,1,1,2,3-pentafluoropropane
- deHF from (HCFC-235ea) (Z) -1-chloro-2,3,3,3-tetrafluoropropene (HCFO-1224yd (Z)) and / or (E) -1-chloro-2,3 , 3,3-tetrafluoropropene (HCFO-1224yd (E)).
- Formula (3-2) represents 2,3-dichloro-1,1,1,2-tetrafluoropropane (HCFC-234bb) and / or 3,3-dichloro-1,1,1,2-tetrafluoropropane This is a reaction formula for obtaining HCFO-1224yd (Z) and / or HCFO-1224yd (E) from (HCFC-234ea) by removing HCl.
- Formula (4-1) is a compound represented by 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) and / or 2-chloro-1,1,1,3-tetrafluoropropane (HCFC-244db).
- HCFC-244bb 2-chloro-1,1,1,3-tetrafluoropropane
- HCFC-244db 2-chloro-3,3,3-trifluoropropene
- Formula (4-2) is a compound represented by 2,2-dichloro-1,1,1-trifluoropropane (HCFC-243xb) and / or 2,3-dichloro-1,1,1-trifluoropropane (HCFC-243db). Is a reaction formula for obtaining HCFO-1233xf from HCl by dehydrochlorination.
- Formula (5-1) is a compound represented by the following formula: 3-chloro-1,1,2,2-tetrafluoropropane (HCFC-244ca) and / or 1-chloro-1,2,3,3-tetrafluoropropane (HCFC-244ea) ) To (Z) -1-chloro-2,3,3-trifluoropropene (HCFO-1233yd (Z)) and / or (E) -1-chloro-2,3,3-trifluoropropene This is a reaction formula for obtaining (HCFO-1233yd (E)).
- Formula (5-2) is a compound represented by 2,3-dichloro-1,1,2-trifluoropropane (HCFC-243ba) and / or 1,1-dichloro-2,3,3-trifluoropropane (HCFC-243eb).
- Formula (6-1) is a compound represented by the following formula: 3-chloro-1,1,1,2-tetrafluoropropane (HCFC-244eb) and / or 3-chloro-1,1,1,3-tetrafluoropropane (HCFC-244fa).
- HCFC-244eb 3-chloro-1,1,1,2-tetrafluoropropane
- HCFC-244fa 3-chloro-1,1,1,3-tetrafluoropropane
- Formula (6-2) is a compound represented by 2,3-dichloro-1,1,1-trifluoropropane (HCFC-243db) and / or 3,3-dichloro-1,1,1-trifluoropropane (HCFC-243fa).
- Formula (7-1) is obtained by removing HF from 1,1,1,2,2-pentafluoropropane (HFC-245cb) and / or 1,1,1,2,3-pentafluoropropane (HFC-245eb). Is a reaction formula for obtaining 2,3,3,3-tetrafluoropropene (HFO-1234yf).
- Formula (7-2) is a compound represented by 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) and / or 3-chloro-1,1,1,2-tetrafluoropropane (HCFC-244eb). ) From HCI-1234yf by deHCl.
- Formula (8-1) is obtained by removing HF from 1,1,1,2,3-pentafluoropropane (HFC-245eb) and / or 1,1,1,3,3-pentafluoropropane (HFC-245fa).
- Is a reaction formula to obtain Formula (8-2) is a compound represented by 2-chloro-1,1,1,3-tetrafluoropropane (HCFC-244db) and / or 3-chloro-1,1,1,3-tetrafluoropropane (HCFC-244fa).
- Formula (9-1) represents 2,3-dichloro-1,1,1,2-tetrafluoropropane (HCFC-234bb) and / or 2,3-dichloro-1,1,1,3-tetrafluoropropane (HC) -234da) to (Z) -1,2-dichloro-3,3,3-trifluoropropene (HCFO-1223xd (Z)) and / or (E) -1,2-dichloro-3 , 3,3-trifluoropropene (HCFO-1223xd (E)).
- Formula (9-2) represents 2,2,3-trichloro-1,1,1-trifluoropropane (HCFC-233ab) and / or 2,3,3-trichloro-1,1,1-trifluoropropane This is a reaction formula for obtaining HCFO-1223xd (Z) and / or HCFO-1223xd (E) from (HCFC-233da) by de-HCl.
- Formula (10-1) is represented by 1,1,1,2,2,3-hexafluoropropane (HFC-236cb) and / or 1,1,1,2,3,3-hexafluoropropane (HFC-236eb).
- HFC-236cb 1,1,1,2,3,3-hexafluoropropane
- HFC-236eb 1,1,1,2,3,3-hexafluoropropane
- Formula (10-2) is 2-chloro-1,1,1,2,3-pentafluoropropane (HCFC-235bb) and / or 3-chloro-1,1,1,2,3-pentafluoropropane This is a reaction formula for obtaining HFO-1225ye (Z) and / or HFO-1225ye (E) by removing HCl from (HCFC-235ea).
- Formula (11-1) can be obtained by removing HF from 1,1,1,2-tetrafluoropropane (HFC-254eb) and / or 1,1,1,3-tetrafluoropropane (HFC-254fb) to form 3,3 , 3-trifluoropropene (HFO-1243zf) is obtained.
- Formula (11-2) is obtained by removing HCl from 2-chloro-1,1,1-trifluoropropane (HCFC-253db) and / or 3-chloro-1,1,1-trifluoropropane (HCFC-244eb). Is a reaction formula for obtaining HFO-1243zf.
- Formula (12-1) is obtained by removing 3,1,3-difluoropropene (HFC-263eb) and / or 1,1,3-trifluoropropane (HFC-263fa) by deHF. This is a reaction formula to obtain HFO-1252zf).
- Formula (12-2) yields HFO-1252zf from 2-chloro-1,1-difluoropropane (HCFC-262db) and / or 3-chloro-1,1-difluoropropane (HCFC-262fa) by de-HCl It is a reaction formula.
- Formula (13-1) is obtained by removing HF from 1,1,1,2,4,4-heptafluorobutane (HFC-347mef) and (Z) -1,1,1,4,4,4- Reaction to obtain hexafluoro-2-butene (HFO-1336mzz (Z)) and / or (E) -1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz (E)) It is a formula.
- Formula (13-2) is obtained by removing HFO-1336mzz (Z) or HFO-1336mzz (E) from 2-chloro-1,1,1,4,4,4-hexafluorobutane (HCFC-346mdf) by removing HCl. It is the reaction formula to be obtained.
- Formula (14-1) is a compound represented by the following formula: 5-chloro-1,1,2,2,3,3,4,4-octafluoropentane (HCFC-448occc) and / or 5-chloro-1,1,2,2 (Z) -1-chloro-2,3,3,4,4,5,5-heptafluoro-1-pentene (HC), 3,4,5-octafluoropentane (HCFC-448 pcce) by deHF Reaction formula to obtain HCFO-1437 dycc (Z)) and / or (E) -1-chloro-2,3,3,4,4,5,5-heptafluoro-1-pentene (HCFO-1437 dycc (E)) It is.
- Formula (14-2) is a compound represented by 4,5-dichloro-1,1,2,2,3,3,4-heptafluoropentane (HCFC-447 obscc) and / or 5,5-dichloro-1,1,2, , 2,3,3,4-heptafluoropentane (HCFC-447necc) to remove HCFO-1437 dycc (Z) and / or HCFO-1437 dycc (E) by removing HCl.
- HCFC-447 obscc 4,5-dichloro-1,1,2,2,3,3,4-heptafluoropentane
- HCFC-447necc 5,5-dichloro-1,1,2, , 2,3,3,4-heptafluoropentane
- Formula (15-1) is a compound represented by the following formula: 3-chloro-1,1,1,2,2,3-hexafluoropropane (HCFC-226ca) and / or 1-chloro-1,1,2,3,3,3 By deHF from hexafluoropropane (HCFC-226ea) (Z) -1-chloro-1,2,3,3,3-pentafluoropropene (CFO-1215yb (Z)) and / or (E) -1 This is a reaction formula for obtaining -chloro-1,2,3,3,3-pentafluoropropene (CFO-1215yb (E)).
- Formula (15-2) is a compound represented by 2,3-dichloro-1,1,1,2,3-pentafluoropropane (HCFC-225ba) and / or 1,1-dichloro-1,2,3,3,3.
- the reaction in which the production method of the present invention is suitably used is a reaction in which tetrafluoropropene is obtained from monochlorotetrafluoropropane by deHCl from the point that the reaction rate can be improved and the reaction can be carried out efficiently
- a reaction for obtaining monochlorotetrafluoropropene from dichlorotetrafluoropropane by dehydrochlorination is mentioned.
- Examples of the reaction for obtaining tetrafluoropropene from monochlorotetrafluoropropane by removing HCl include 244bb and / or 244eb of formula (7-2) to obtain 1234yf by removing HCl, 244db and / or 244fa of formula (8-2)
- the reaction to obtain 1234ze (Z) and / or 1234ze (E) by dehydrochlorination from H More preferred is a reaction of obtaining 1234yf from 244bb and / or 244eb of the formula (7-2) by deHCl.
- the effect of the present invention is great particularly when the raw material includes a compound having a CH 3 group such as 244bb and the elimination of H from the CH 3 group of the compound is required. Therefore, a high effect can be expected in the reaction of obtaining 1234yf from 244bb by deHCl.
- the compound (A) is in a liquid phase as an organic phase and is in physical contact with an alkaline aqueous solution, more specifically, by contacting with a base in the alkaline aqueous solution.
- DeHF or deHCl reaction occurs to produce compound (B).
- the contact between the compound (A) and the alkaline aqueous solution is carried out in the liquid phase in the presence of a phase transfer catalyst and a water-soluble organic solvent (S).
- the contact according to the production method of the present invention is usually performed in a reactor.
- the method for obtaining the compound (A) is not particularly limited. You may manufacture by a well-known method and may use a commercial item.
- 244bb and / or 244eb in the reaction (7-2) to which the present invention is preferably applied can be produced, for example, by a chlorination reaction in which 254eb is reacted with chlorine.
- 234bb and / or 234ea in the reaction (3-2) can be produced, for example, by further chlorinating 244bb and / or 244eb obtained in the chlorination reaction of 254eb.
- the compound (A) may be introduced into the reactor in the form of a mixture containing the compound (A) and impurities.
- the amount of impurities in the mixture is preferably set so as not to affect the effect of the production method of the present invention.
- the compound (A) may be used together with by-products and unreacted raw materials that are by-produced during the production of the compound (A).
- the composition of the compound (A) having a purity of 85% by mass or more, preferably 90% by mass or more, particularly preferably 95% by mass or more can be used in the production method of the present invention.
- the alkaline aqueous solution used in the production method of the present invention refers to an aqueous solution in which a base is dissolved in water.
- the base is not particularly limited as long as the above reaction (1) can be performed.
- the base preferably contains at least one selected from the group consisting of metal hydroxides, metal oxides and metal carbonates.
- examples include alkaline earth metal hydroxides and alkali metal hydroxides.
- examples of the alkaline earth metal hydroxide include magnesium hydroxide, calcium hydroxide, strontium hydroxide, and barium hydroxide.
- examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, and potassium hydroxide.
- examples of the metal constituting the metal oxide include an alkali metal element, an alkaline earth metal element, a transition metal element, a Group 12 metal element, and a Group 13 metal element.
- alkali metal elements, alkaline earth metal elements, Group 6 metal elements, Group 8 metal elements, Group 10 metal elements, Group 12 metal elements, or Group 13 metal elements are preferable, and sodium, calcium, chromium More preferred are iron, zinc, or aluminum.
- the metal oxide may be an oxide containing one kind of metal or a composite oxide of two or more kinds of metals.
- the metal oxide sodium oxide, calcium oxide, chromium oxide (chromia), aluminum oxide (alumina), zinc oxide, or the like is preferable from the viewpoint of reaction time and reaction yield, and alumina or chromia is more preferable.
- examples include alkaline earth metal carbonates and alkali metal carbonates.
- alkaline earth metal carbonate include carbonates of metals such as beryllium, magnesium, calcium, strontium, barium, and radium.
- alkali metal carbonate include metal carbonates such as lithium, sodium, potassium, rubidium, cesium, and francium.
- the base used in the production method of the present invention is preferably a metal hydroxide from the viewpoint of reaction time and reaction yield, and particularly preferably at least one selected from the group consisting of potassium hydroxide and sodium hydroxide.
- a metal hydroxide may be used individually by 1 type and may use 2 or more types together.
- the content of the base in the alkaline aqueous solution is preferably such that the ratio (unit%) of the mass of the base to the total amount (mass) of the alkaline aqueous solution is 0.5 to 48% by mass from the viewpoint of the reaction rate, and 20 to 45% by mass. % Is more preferable, and 30 to 40% by mass is further preferable. If the amount of base is less than the above range, a sufficient reaction rate may not be obtained. On the other hand, when the amount of the base exceeds the above range, the amount of by-products generated increases, and the selectivity for the target substance (compound (B)) may decrease.
- the amount of base used in the production method of the present invention depends on the type of reaction (1).
- the amount of base relative to 1 mol of 244bb and / or 244eb is from the viewpoint of improving the conversion of 244bb and / or 244eb and the selectivity of 1234yf. 0.2 to 3.0 mol is preferable, and 0.5 to 2.5 mol is more preferable.
- the conversion rate of 234bb and / or 234ea and 1224yd (Z) and / or 1224yd (E) from 234bb and / or 234ea by deHCl the conversion rate of 234bb and / or 234ea and 1224yd (Z) and / or 1224yd (E)
- the amount of the base relative to 1 mol of 234bb and / or 234ea is preferably 0.2 to 3.0 mol, and more preferably 0.5 to 2.5 mol.
- the reaction solution is composed of an organic phase mainly composed of the compound (A) and an aqueous phase composed of an alkaline aqueous solution.
- the phase transfer catalyst is present both in the organic phase and in the alkaline aqueous solution, and promotes the dehalogenation reaction by contact of the compound (A) with the alkaline aqueous solution.
- phase transfer catalyst examples include quaternary ammonium salts, quaternary phosphonium salts, quaternary arsonium salts, sulfonium salts, crown ethers, etc., and are quaternary from the viewpoint of industrial availability, price, and ease of handling. Ammonium salts are preferred.
- TBAC tetra-n-butylammonium chloride
- TBAB tetra-n-butylammonium bromide
- TOMAC methyltri-n-octylammonium chloride
- TBAB tetra-n-butylammonium bromide
- TOMAC methyltri-n-octylammonium chloride
- TBAB tetra-n-butylammonium chloride
- TBAC tetra-n-butylammonium bromide
- TBAB tetra-n-butylammonium bromide
- the amount of the phase transfer catalyst used in the production method of the present invention is preferably 0.001 to 10 parts by weight, more preferably 0.01 to 5 parts by weight, more preferably 0.01 to 100 parts by weight of the compound (A). More preferred is 3 parts by mass. If the amount of the phase transfer catalyst is too small, a sufficient reaction rate may not be obtained. Even if it is used in a large amount, the reaction promoting effect according to the amount used cannot be obtained, which is disadvantageous in terms of cost.
- the water-soluble organic solvent (S) is water-soluble and can dissolve the compound (A).
- the water-solubility in the water-soluble organic solvent (S) means that the water-soluble organic solvent (S) and pure water are mixed at an arbitrary mixing ratio at 25 ° C. without causing phase separation or turbidity. A property that dissolves uniformly.
- the water-soluble organic solvent (S) can dissolve the compound (A) at 25 ° C. with respect to the compound (A) in such an amount that the water-soluble organic solvent (S) is 20% by mass. When A) and a water-soluble organic solvent (S) are mixed, they are dissolved uniformly without causing phase separation or turbidity.
- the water-soluble organic solvent (S) is present both in the organic phase and in the alkaline aqueous solution as in the phase transfer catalyst, and has a function of further enhancing the action of promoting the dehalogenation reaction of the compound (A) in the phase transfer catalyst.
- water-soluble organic solvent (S) for example, a compound capable of dissolving the compound (A) from a water-soluble alcohol, ketone, ether, ester or the like is appropriately selected and used depending on the type of the compound (A). .
- water-soluble alcohol examples include methanol, ethanol, propan-1-ol, butan-1-ol, propan-2-ol, butan-2-ol, 2-methylpropan-2-ol, and 2-methylbutane-
- water-soluble ketones such as 2-ol include acetone, methyl ethyl ketone, diethyl ketone, methyl propyl ketone, methyl isobutyl ketone, methyl amyl ketone, and cyclohexanone.
- water-soluble ethers examples include tetraethylene glycol dimethyl ether (hereinafter also referred to as “tetraglyme”), chain ethers such as dimethyl ether, ethyl methyl ether, diethyl ether, and ethylene oxide, and cyclic ethers such as tetrahydrofuran, furan, and crown ethers.
- tetraglyme tetraethylene glycol dimethyl ether
- chain ethers such as dimethyl ether, ethyl methyl ether, diethyl ether, and ethylene oxide
- cyclic ethers such as tetrahydrofuran, furan, and crown ethers.
- water-soluble esters examples include methyl acetate and methyl formate.
- the water-soluble organic solvent (S) has a property of dissolving the compound (A) in addition to water solubility.
- the water-soluble organic solvent (S) is a water-soluble organic solvent (S) represented by the following formula (I) based on the Hansen solubility parameter from the viewpoint of further enhancing the action of the phase transfer catalyst in the dehalogenation reaction of the compound (A).
- the compound (A) are preferably 25.0 or less, more preferably 23.0 or less, and particularly preferably 22.0 or less.
- Ra [4 ⁇ ( ⁇ D 1 - ⁇ D 2) 2 + ( ⁇ P 1 - ⁇ P 2) 2 + ( ⁇ H 1 - ⁇ H 2) 2] 0.5 (I)
- Each formula (I), ⁇ D 1, ⁇ P 1 and delta] H 1 is the Hansen solubility parameter of the water-soluble organic solvent (S), dispersion term, the polarity term and hydrogen bond, [delta] D 2, [delta] P 2 and delta] H 2 is Each represents a dispersion term, a polar term and a hydrogen bonding term in the Hansen solubility parameter of the compound (A), and the unit is (MPa) 1/2 .
- the interaction distance (Ra) is preferably small, and the lower limit is not particularly limited.
- methanol, acetone, tetraglyme, and tetrahydrofuran have an interaction distance (Ra) of 25.0 or less for all of 244bb, 244eb, 234bb, and 234ea.
- Ra interaction distance
- It can be preferably used as the water-soluble organic solvent (S).
- a preferred combination of the compound (A) and the water-soluble organic solvent (S) other than those shown in Table 1 can be selected using the interaction distance (Ra) as an index.
- the amount of the water-soluble organic solvent (S) used in the production method of the present invention is preferably 1 to 100 parts by weight, more preferably 3 to 80 parts by weight with respect to 100 parts by weight of the compound (A). Part by mass is more preferable. If the amount of the water-soluble organic solvent (S) is too small, a sufficient reaction rate may not be obtained, and even if it is used in a large amount, a reaction promoting effect according to the amount of use cannot be obtained. It is disadvantageous in terms.
- reaction conditions other than those described above in the reaction (1) for example, temperature, pressure, etc., can be generally the same as the reaction conditions when the alkaline aqueous solution and the compound (A) are contacted in the liquid phase to cause deHF or deHCl reaction. .
- the reaction temperature that is, the temperature in the reactor is preferably 40 to 120 ° C, more preferably 50 to 110 ° C.
- the reaction temperature is preferably 60 to 120 ° C, more preferably 80 to 110 ° C.
- the reaction temperature is preferably 40 to 80 ° C., more preferably 50 to 70 ° C.
- the pressure in the reactor during the reaction is preferably 0.00 to 10.00 MPa, more preferably 0.05 to 5.00 MPa, and more preferably 0.15 to More preferred is 2.00 MPa.
- the pressure in the reactor is preferably equal to or higher than the vapor pressure of 244bb and / or 244eb at the reaction temperature.
- the reaction temperature that is, the temperature in the reactor is preferably 10 to 90 ° C., and 20 to 80 ° C. is more preferable.
- the pressure in the reactor during the reaction is preferably 0.00 to 5.00 MPa, more preferably 0.02 to 2.00 MPa, and further preferably 0.05 to 1.00 MPa.
- a stirring blade is installed in a batch type, semi-continuous type or continuous type reactor, and it is generated by stirring it. It is preferable.
- the stirring blade include a 4-paddle blade, an anchor blade, a gate blade, a 3-propeller, a ribbon blade, and a 6-turbine blade.
- the production method of the present invention is usually carried out by introducing predetermined amounts of the compound (A), the aqueous alkali solution, the phase transfer catalyst and the water-soluble organic solvent (S) into the reactor.
- the material of the reactor is not particularly limited as long as it is inert and corrosion-resistant material such as compound (A), alkaline aqueous solution, phase transfer catalyst, water-soluble organic solvent (S) and reaction liquid components including reaction products.
- glass, iron, nickel, an alloy such as stainless steel mainly containing iron, and the like can be given.
- the reaction in the present invention may be carried out batchwise, semi-continuously or continuously.
- the reaction solution is left to separate into an organic phase and an aqueous phase.
- the organic phase may contain unreacted compound (A), by-products, phase transfer catalyst, water-soluble organic solvent (S) and the like in addition to the target product compound (B).
- a separation and purification method such as general distillation.
- the compound (A) can be concentrated by distillation and recycled as the raw material of the present invention.
- the aqueous phase separated from the organic phase can be reused by taking out only this amount and adding a base so as to obtain an appropriate concentration again.
- the phase transfer catalyst and the water-soluble organic solvent (S) may be separated from the organic phase or the aqueous phase, but if they remain in the compound (A) or the aqueous phase, they can be reused while being contained. It is also possible to do.
- the purified compound (B) containing the compound (B) with high purity can be obtained by separating and purifying the compound (B) obtained by the production method of the present invention as described above. If the purified compound (B) thus obtained contains an acid content such as HF or HCl, or an impurity such as water or oxygen, the equipment will corrode during its use, and the stability of the compound (B) will decrease. There is a risk of. Therefore, it is preferable to remove these impurities by a conventionally known method to such an extent that there is no problem with corrosion and stability.
- Examples 1 to 4 are examples, and examples 5 and 6 are comparative examples.
- reaction solution was neutralized by mixing with a 20% by mass aqueous solution of potassium hydrogen carbonate, and then a liquid separation operation was performed. After standing, the reaction composition was recovered from the separated lower layer, and 244bb was obtained by distillation.
- TBAB Tetra-n-butylammonium bromide
- Example 2 1234yf was produced in the same manner except that acetone, tetraglyme, or tetrahydrofuran was used instead of methanol.
- the results of collecting the reaction composition and performing GC analysis are shown in Table 2.
- Example 5 1234yf was produced in the same manner as in Example 1 except that methanol was not used. The results of collecting the reaction composition and performing GC analysis are shown in Table 2.
- Example 6 In Example 1, 1234yf was produced in the same manner except that TBAB was not used. The results of collecting the reaction composition and performing GC analysis are shown in Table 2.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
ハイドロフルオロカーボン(HFC)またはハイドロクロロフルオロカーボン(HCFC)から液相において効率的にフルオロオレフィンを製造する方法の提供。 炭素原子数が3~7であり、隣り合う2つの炭素原子に、それぞれ水素原子と、フッ素原子または塩素原子と、が結合した構造を分子内に有するHFCまたはHCFCを液相で、相間移動触媒、およびHFCまたはHCFCを溶解し得る水溶性有機溶媒の存在下に、アルカリ水溶液と接触させ、HFCまたはHCFCを脱塩化水素または脱フッ化水素させて、ハイドロフルオロオレフィン、ペルフルオロオレフィン、ハイドロクロロフルオロオレフィンまたはクロロフルオロオレフィンを得るフルオロオレフィンの製造方法。
Description
本発明は、フルオロオレフィン、具体的には、ハイドロフルオロオレフィン、ペルフルオロオレフィン、ハイドロクロロフルオロオレフィンまたはクロロフルオロオレフィンを液相において効率的に製造する方法に関する。
近年、洗浄剤、冷媒、発泡剤、溶剤、エアゾール用途等にハイドロフルオロカーボンやハイドロクロロフルオロカーボンが用いられている。しかしながら、これらの化合物は、地球温暖化の原因となる可能性が指摘されている。そこで、地球温暖化係数の小さい化合物としてハロゲン化オレフィンが注目されている。
ハロゲン化オレフィンの製造方法の一つとして、隣り合う2つの炭素原子に、それぞれ水素原子と、フッ素原子または塩素原子と、が結合した構造を分子内に有するハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンを脱塩化水素または脱フッ化水素させる反応が知られている。
例えば、特許文献1には、XCF2CF2CHClYを脱フッ化水素させて、XCF2CF=CClY(X、Yは、フッ素原子または塩素原子である。)を得る反応、および、1,1,1,2,3,3-ヘキサフルオロ-3-クロロプロパンを脱塩化水素させ、ヘキサフルオロプロペンを得る反応が記載されている。
特許文献2には、1-クロロ-2,2,3,3-テトラフルオロプロパンを脱フッ化水素反応させて1-クロロ-2,3,3-トリフルオロプロペンを製造する方法が記載されており、特許文献3には、1,1-ジクロロ-2,2,3,3,3-ペンタフルオロプロパンを脱フッ化水素反応させて1,1-ジクロロ-2,3,3,3-テトラフルオロプロペンを得る方法が記載されている。
これらの特許文献1~3のいずれにおいても、ハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンの脱塩化水素または脱フッ化水素反応は、液相反応でアルカリ水溶液を用いて行う例が記載されている。これらの反応においては、反応時間が長く、そのため、相間移動触媒を使用する等の改良がなされているものの、より効率的に生産できる方法が求められていた。
本発明は、上記観点からなされたものであって、ハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンから液相において効率的にフルオロオレフィン、具体的には、ハイドロフルオロオレフィン、ペルフルオロオレフィン、ハイドロクロロフルオロオレフィンまたはクロロフルオロオレフィンを製造する方法の提供を目的とする。
本発明は、上記目的を達成するものであり、下記の態様を有する。
[1]炭素原子数が3~7であり、隣り合う2つの炭素原子に、それぞれ水素原子と、フッ素原子または塩素原子と、が結合した構造を分子内に有するハイドロフルオロカーボン(HFC)またはハイドロクロロフルオロカーボン(HCFC)を液相で、相間移動触媒、および前記HFCまたはHCFCを溶解し得る水溶性有機溶媒(以下、水溶性有機溶媒(S)ともいう。)の存在下に、アルカリ水溶液と接触させ、前記HFCまたはHCFCを脱塩化水素または脱フッ化水素させて、ハイドロフルオロオレフィン(HFO)、ペルフルオロオレフィン(PFO)、ハイドロクロロフルオロオレフィン(HCFO)およびクロロフルオロオレフィン(CFO)から選ばれる少なくとも1種のフルオロオレフィンを得る、フルオロオレフィンの製造方法である。
[1]炭素原子数が3~7であり、隣り合う2つの炭素原子に、それぞれ水素原子と、フッ素原子または塩素原子と、が結合した構造を分子内に有するハイドロフルオロカーボン(HFC)またはハイドロクロロフルオロカーボン(HCFC)を液相で、相間移動触媒、および前記HFCまたはHCFCを溶解し得る水溶性有機溶媒(以下、水溶性有機溶媒(S)ともいう。)の存在下に、アルカリ水溶液と接触させ、前記HFCまたはHCFCを脱塩化水素または脱フッ化水素させて、ハイドロフルオロオレフィン(HFO)、ペルフルオロオレフィン(PFO)、ハイドロクロロフルオロオレフィン(HCFO)およびクロロフルオロオレフィン(CFO)から選ばれる少なくとも1種のフルオロオレフィンを得る、フルオロオレフィンの製造方法である。
[2]ハンセン溶解度パラメータに基づき下記式(I)で示される、前記水溶性有機溶媒と前記ハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンとの、相互作用距離(Ra)が25.0以下である、[1]に記載の製造方法。
Ra=[4×(δD1-δD2)2+(δP1-δP2)2+(δH1-δH2)2]0.5 (I)
但し、式(I)中、δD1、δP1およびδH1は、それぞれ、前記水溶性有機溶媒のハンセン溶解度パラメータにおける、分散項、極性項および水素結合項を示し、δD2、δP2およびδH2は、それぞれ、前記ハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンのハンセン溶解度パラメータにおける、分散項、極性項および水素結合項を示し、単位はいずれも(MPa)1/2である。
Ra=[4×(δD1-δD2)2+(δP1-δP2)2+(δH1-δH2)2]0.5 (I)
但し、式(I)中、δD1、δP1およびδH1は、それぞれ、前記水溶性有機溶媒のハンセン溶解度パラメータにおける、分散項、極性項および水素結合項を示し、δD2、δP2およびδH2は、それぞれ、前記ハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンのハンセン溶解度パラメータにおける、分散項、極性項および水素結合項を示し、単位はいずれも(MPa)1/2である。
[3]前記水溶性有機溶媒を、前記ハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンの100質量部に対して、1~100質量部の割合で存在させる[1]または[2]に記載の製造方法。
[4]前記水溶性有機溶媒が、メタノール、アセトン、テトラエチレングリコールジメチルエーテルおよびテトラヒドロフランから選ばれる少なくとも1種である、[1]~[3]のいずれかに記載の製造方法。
[5]前記アルカリ水溶液が、金属水酸化物、金属酸化物および金属炭酸塩からなる群より選ばれる少なくとも1種の塩基を水に溶解せしめた水溶液である、[1]~[4]のいずれかに記載の製造方法。
[6]前記アルカリ水溶液における、アルカリ水溶液全質量に対する塩基の質量の割合が、0.5~48質量%である、[5]に記載の製造方法。
[7]前記相間移動触媒を、前記ハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンの100質量部に対して、0.001~10質量部の割合で存在させる[1]~[6]のいずれかに記載の製造方法。
[8]前記相間移動触媒が第4級アンモニウム塩である、[1]~[7]のいずれかに記載の製造方法。
[9]前記相間移動触媒が、テトラ-n-ブチルアンモニウムクロリド、テトラ-n-ブチルアンモニウムブロミド、またはメチルトリ-n-オクチルアンモニウムクロリドである、[1]~[8]のいずれかに記載の製造方法。
[10]前記ハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンがモノクロロテトラフルオロプロパンであり、前記フルオロオレフィンがテトラフルオロプロペンである、[1]~[9]のいずれかに記載の製造方法。
[4]前記水溶性有機溶媒が、メタノール、アセトン、テトラエチレングリコールジメチルエーテルおよびテトラヒドロフランから選ばれる少なくとも1種である、[1]~[3]のいずれかに記載の製造方法。
[5]前記アルカリ水溶液が、金属水酸化物、金属酸化物および金属炭酸塩からなる群より選ばれる少なくとも1種の塩基を水に溶解せしめた水溶液である、[1]~[4]のいずれかに記載の製造方法。
[6]前記アルカリ水溶液における、アルカリ水溶液全質量に対する塩基の質量の割合が、0.5~48質量%である、[5]に記載の製造方法。
[7]前記相間移動触媒を、前記ハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンの100質量部に対して、0.001~10質量部の割合で存在させる[1]~[6]のいずれかに記載の製造方法。
[8]前記相間移動触媒が第4級アンモニウム塩である、[1]~[7]のいずれかに記載の製造方法。
[9]前記相間移動触媒が、テトラ-n-ブチルアンモニウムクロリド、テトラ-n-ブチルアンモニウムブロミド、またはメチルトリ-n-オクチルアンモニウムクロリドである、[1]~[8]のいずれかに記載の製造方法。
[10]前記ハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンがモノクロロテトラフルオロプロパンであり、前記フルオロオレフィンがテトラフルオロプロペンである、[1]~[9]のいずれかに記載の製造方法。
[11]前記モノクロロテトラフルオロプロパンが2-クロロ-1,1,1,2-テトラフルオロプロパンおよび/または3-クロロ-1,1,1,2-テトラフルオロプロパンであり、前記テトラフルオロプロペンが2,3,3,3-テトラフルオロプロペンである、[10]に記載の製造方法。
[12]前記ハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンがジクロロテトラフルオロプロパンであり、前記フルオロオレフィンがモノクロロテトラフルオロプロペンである、[1]~[11]のいずれかに記載の製造方法。
[13]前記ジクロロテトラフルオロプロパンが2,3-ジクロロ-1,1,1,2-テトラフルオロプロパンおよび/または3,3-ジクロロ-1,1,1,2-テトラフルオロプロパンであり、前記モノクロロテトラフルオロプロペンが1-クロロ-2,3,3,3-テトラフルオロプロペンである、[12]に記載の製造方法。
[12]前記ハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンがジクロロテトラフルオロプロパンであり、前記フルオロオレフィンがモノクロロテトラフルオロプロペンである、[1]~[11]のいずれかに記載の製造方法。
[13]前記ジクロロテトラフルオロプロパンが2,3-ジクロロ-1,1,1,2-テトラフルオロプロパンおよび/または3,3-ジクロロ-1,1,1,2-テトラフルオロプロパンであり、前記モノクロロテトラフルオロプロペンが1-クロロ-2,3,3,3-テトラフルオロプロペンである、[12]に記載の製造方法。
本発明によれば、ハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンから液相において、フルオロオレフィン、具体的には、ハイドロフルオロオレフィン、ペルフルオロオレフィン、ハイドロクロロフルオロオレフィンまたはクロロフルオロオレフィンを効率的に製造できる。
また、本発明の製造方法は液相反応で実施することから、気相反応に比して小さな反応器を採用でき、工業上有利である。
また、本発明の製造方法は液相反応で実施することから、気相反応に比して小さな反応器を採用でき、工業上有利である。
本明細書における用語の意味、及び記載の仕方は下記のとおりである。
「ハロゲン化炭化水素」については、化合物名の後の括弧内にその化合物の略称を記すが、必要に応じて化合物名に代えてその略称を用いる。また、略称として、ハイフン(-)より後ろの数字およびアルファベット小文字部分だけ(例えば、「HCFO-1224yd」においては「1224yd」)を用いることがある。さらに、幾何異性体を有する化合物の名称およびその略称に付けられた(E)は、E体(トランス体)を示し、(Z)はZ体(シス体)を示す。該化合物の名称、略称において、E体、Z体の明記がない場合、該名称、略称は、E体、Z体、およびE体とZ体の混合物を含む総称を意味する。
「ハロゲン化炭化水素」については、化合物名の後の括弧内にその化合物の略称を記すが、必要に応じて化合物名に代えてその略称を用いる。また、略称として、ハイフン(-)より後ろの数字およびアルファベット小文字部分だけ(例えば、「HCFO-1224yd」においては「1224yd」)を用いることがある。さらに、幾何異性体を有する化合物の名称およびその略称に付けられた(E)は、E体(トランス体)を示し、(Z)はZ体(シス体)を示す。該化合物の名称、略称において、E体、Z体の明記がない場合、該名称、略称は、E体、Z体、およびE体とZ体の混合物を含む総称を意味する。
「反応式(1)で示される反応」を、反応(1)という。他の式で表される反応も同様である。式(A)で示される化合物を化合物(A)という。他の式で表される化合物も同様である。数値範囲を表す「~」では、いずれも、上限値および下限値を含む。
「化合物のハンセン溶解度パラメータ(以下、「HSP」ともいう。)」は、分散項、極性項および水素結合項からなる。HSPは、文献値または、化合物の化学構造からコンピュータソフトウエア(Hansen Solubility Parameters in Practice(HSPiP)バージョン4)によって推算した値である。2種以上の化合物を含む混合物のHSPは、各化合物のHSPに、混合物全体に対する各化合物の体積比を乗じた値のベクトル和として算出される。
「圧力」は、特に断りのない限り、「ゲージ圧」を表す。
「圧力」は、特に断りのない限り、「ゲージ圧」を表す。
(本発明の製造方法が適用可能な反応)
本発明の製造方法が適用される反応は、具体的には、下記反応式(1)に示す反応である。式(1)中、出発物質(原料)である上記HFCまたはHCFCは式(A)で示され、HFO、PFO、HCFOまたはCFOである目的生成物は式(B)で示される。式(C)は塩化水素またはフッ化水素である。
本発明の製造方法が適用される反応は、具体的には、下記反応式(1)に示す反応である。式(1)中、出発物質(原料)である上記HFCまたはHCFCは式(A)で示され、HFO、PFO、HCFOまたはCFOである目的生成物は式(B)で示される。式(C)は塩化水素またはフッ化水素である。
ただし、式(1)中の記号は以下のとおりである。
X1、X2は、一方が水素原子であり、他方がフッ素原子または塩素原子である。
Y1、Y2は、それぞれ独立して、水素原子、フッ素原子または塩素原子である。
R1、R2は、それぞれ独立して、水素原子、フッ素原子、塩素原子または炭素原子数1~5の脂肪族飽和炭化水素基(ただし、水素原子の一部または全部が塩素原子またはフッ素原子で置換されてもよい。)であり、R1とR2の合計の炭素原子数は1~5である。Y1、Y2、R1およびR2の少なくとも1つはフッ素原子である。
X1、X2は、一方が水素原子であり、他方がフッ素原子または塩素原子である。
Y1、Y2は、それぞれ独立して、水素原子、フッ素原子または塩素原子である。
R1、R2は、それぞれ独立して、水素原子、フッ素原子、塩素原子または炭素原子数1~5の脂肪族飽和炭化水素基(ただし、水素原子の一部または全部が塩素原子またはフッ素原子で置換されてもよい。)であり、R1とR2の合計の炭素原子数は1~5である。Y1、Y2、R1およびR2の少なくとも1つはフッ素原子である。
従来から、化合物(A)を液相でアルカリ水溶液と接触させると、反応(1)に示すように化合物(A)から塩化水素またはフッ化水素が脱離して化合物(B)が得られることが知られている。この反応は、化合物(A)を主体とする有機相とアルカリ水溶液を主体とする水相の2相状態で行われる。2相の接触を効率よく行うために撹拌条件や装置を工夫する、相間移動触媒を用いて反応の促進を図ることが行われているが、反応速度を上げて、生産性を向上させることは容易でなかった。
本発明者らは、上記反応(1)において、化合物(A)とアルカリ水溶液の接触を、相間移動触媒および水溶性有機溶媒(S)の存在下で行うことで、水溶性有機溶媒(S)が相間移動触媒の働きを促進させ、より効率的に化合物(B)が製造できることを見出し、本発明を完成させるに至った。
本発明の製造方法が適用可能な反応の具体例を以下に説明する。炭素原子数3の場合の例として、以下の式(1-1)~式(12-2)、式(15-1)、式(15-2)の反応に示される、フルオロプロペンの製造例が挙げられる。炭素原子数4の場合の例として、以下の式(13-1)および式(13-2)の反応に示される、フルオロブテンの製造例が挙げられる。炭素原子数5の場合の例として、以下の式(14-1)および式(14-2)の反応に示される、フルオロペンテンの製造例が挙げられる。
式(1-1)は、3,3-ジクロロ-1,1,1,2,2-ペンタフルオロプロパン(HCFC-225ca)および/または1,1-ジクロロ-1,2,3,3,3-ペンタフルオロプロパン(HCFC-225ea)から脱HFにより1,1-ジクロロ-2,3,3,3-テトラフルオロプロペン(CFO-1214ya)を得る反応式である。式(1-2)は、2,3,3-トリクロロ-1,1,1,2-テトラフルオロプロパン(HCFC-224ba)および/または1,1,1-トリクロロ-2,3,3,3-テトラフルオロプロパン(HCFC-224eb)から脱HClによりCFO-1214yaを得る反応式である。
式(2-1)は、1,1,1,2,2,3,3-ヘプタフルオロプロパン(HFC-227ca)および/または1,1,1,2,3,3,3-ヘプタフルオロプロパン(HFC-227ea)から脱HFによりヘキサフルオロプロペン(PFO-1216)を得る反応式である。式(2-2)は、2-クロロ-1,1,1,2,3,3-ヘキサフルオロプロパン(HCFC-226ba)および/または1-クロロ-1,1,2,3,3,3-ヘキサフルオロプロパン(HCFC-226ea)から脱HClによりPFO-1216を得る反応式である。
式(3-1)は、3-クロロ-1,1,1,2,2-ペンタフルオロプロパン(HCFC-235cb)および/または3-クロロ-1,1,1,2,3-ペンタフルオロプロパン(HCFC-235ea)から脱HFにより(Z)-1-クロロ-2,3,3,3-テトラフルオロプロペン(HCFO-1224yd(Z))および/または(E)-1-クロロ-2,3,3,3-テトラフルオロプロペン(HCFO-1224yd(E))を得る反応式である。式(3-2)は、2,3-ジクロロ-1,1,1,2-テトラフルオロプロパン(HCFC-234bb)および/または3,3-ジクロロ-1,1,1,2-テトラフルオロプロパン(HCFC-234ea)から脱HClによりHCFO-1224yd(Z)および/またはHCFO-1224yd(E)を得る反応式である。
式(4-1)は、2-クロロ-1,1,1,2-テトラフルオロプロパン(HCFC-244bb)および/または2-クロロ-1,1,1,3-テトラフルオロプロパン(HCFC-244db)から脱HFにより2-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233xf)を得る反応式である。式(4-2)は、2,2-ジクロロ-1,1,1-トリフルオロプロパン(HCFC-243xb)および/または2,3-ジクロロ-1,1,1-トリフルオロプロパン(HCFC-243db)から脱HClによりHCFO-1233xfを得る反応式である。
式(5-1)は、3-クロロ-1,1,2,2-テトラフルオロプロパン(HCFC-244ca)および/または1-クロロ-1,2,3,3-テトラフルオロプロパン(HCFC-244ea)から脱HFにより(Z)-1-クロロ-2,3,3-トリフルオロプロペン(HCFO-1233yd(Z))および/または(E)-1-クロロ-2,3,3-トリフルオロプロペン(HCFO-1233yd(E))を得る反応式である。式(5-2)は、2,3-ジクロロ-1,1,2-トリフルオロプロパン(HCFC-243ba)および/または1,1-ジクロロ-2,3,3-トリフルオロプロパン(HCFC-243eb)から脱HClによりHCFO-1233yd(Z)および/またはHCFO-1233yd(E)を得る反応式である。
式(6-1)は、3-クロロ-1,1,1,2-テトラフルオロプロパン(HCFC-244eb)および/または3-クロロ-1,1,1,3-テトラフルオロプロパン(HCFC-244fa)から脱HFにより(Z)-1-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233zd(Z))および/または(E)-1-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233zd(E))を得る反応式である。式(6-2)は、2,3-ジクロロ-1,1,1-トリフルオロプロパン(HCFC-243db)および/または3,3-ジクロロ-1,1,1-トリフルオロプロパン(HCFC-243fa)から脱HClによりHCFO-1233zd(Z)および/またはHCFO-1233zd(E)を得る反応式である。
式(7-1)は、1,1,1,2,2-ペンタフルオロプロパン(HFC-245cb)および/または1,1,1,2,3-ペンタフルオロプロパン(HFC-245eb)から脱HFにより2,3,3,3-テトラフルオロプロペン(HFO-1234yf)を得る反応式である。式(7-2)は、2-クロロ-1,1,1,2-テトラフルオロプロパン(HCFC-244bb)および/または3-クロロ-1,1,1,2-テトラフルオロプロパン(HCFC-244eb)から脱HClによりHFO-1234yfを得る反応式である。
式(8-1)は、1,1,1,2,3-ペンタフルオロプロパン(HFC-245eb)および/または1,1,1,3,3-ペンタフルオロプロパン(HFC-245fa)から脱HFにより(Z)-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(Z))および/または(E)-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(E))を得る反応式である。式(8-2)は、2-クロロ-1,1,1,3-テトラフルオロプロパン(HCFC-244db)および/または3-クロロ-1,1,1,3-テトラフルオロプロパン(HCFC-244fa)から脱HClによりHFO-1234ze(Z)および/またはHFO-1234ze(E)を得る反応式である。
式(9-1)は、2,3-ジクロロ-1,1,1,2-テトラフルオロプロパン(HCFC-234bb)および/または2,3-ジクロロ-1,1,1,3-テトラフルオロプロパン(HCFC-234da)から脱HFにより(Z)-1,2-ジクロロ-3,3,3-トリフルオロプロペン(HCFO-1223xd(Z))および/または(E)-1,2-ジクロロ-3,3,3-トリフルオロプロペン(HCFO-1223xd(E))を得る反応式である。式(9-2)は、2,2,3-トリクロロ-1,1,1-トリフルオロプロパン(HCFC-233ab)および/または2,3,3-トリクロロ-1,1,1-トリフルオロプロパン(HCFC-233da)から脱HClによりHCFO-1223xd(Z)および/またはHCFO-1223xd(E)を得る反応式である。
式(10-1)は、1,1,1,2,2,3-ヘキサフルオロプロパン(HFC-236cb)および/または1,1,1,2,3,3-ヘキサフルオロプロパン(HFC-236eb)から脱HFにより(Z)-1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye(Z))および/または(E)-1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye(E))を得る反応式である。式(10-2)は、2-クロロ-1,1,1,2,3-ペンタフルオロプロパン(HCFC-235bb)および/または3-クロロ-1,1,1,2,3-ペンタフルオロプロパン(HCFC-235ea)から脱HClによりHFO-1225ye(Z)および/またはHFO-1225ye(E)を得る反応式である。
式(11-1)は、1,1,1,2-テトラフルオロプロパン(HFC-254eb)および/または1,1,1,3-テトラフルオロプロパン(HFC-254fb)から脱HFにより3,3,3-トリフルオロプロペン(HFO-1243zf)を得る反応式である。式(11-2)は、2-クロロ-1,1,1-トリフルオロプロパン(HCFC-253db)および/または3-クロロ-1,1,1-トリフルオロプロパン(HCFC-244eb)から脱HClによりHFO-1243zfを得る反応式である。
式(12-1)は、1,1,2-トリフルオロプロパン(HFC-263eb)および/または1,1,3-トリフルオロプロパン(HFC-263fa)から脱HFにより3,3-ジフルオロプロペン(HFO-1252zf)を得る反応式である。式(12-2)は、2-クロロ-1,1-ジフルオロプロパン(HCFC-262db)および/または3-クロロ-1,1-ジフルオロプロパン(HCFC-262fa)から脱HClによりHFO-1252zfを得る反応式である。
式(13-1)は、1,1,1,2,4,4,4-ヘプタフルオロブタン(HFC-347mef)から脱HFにより(Z)-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(HFO-1336mzz(Z))および/または(E)-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(HFO-1336mzz(E))を得る反応式である。式(13-2)は、2-クロロ-1,1,1,4,4,4-ヘキサフルオロブタン(HCFC-346mdf)から脱HClによりHFO-1336mzz(Z)またはHFO-1336mzz(E)を得る反応式である。
式(14-1)は、5-クロロ-1,1,2,2,3,3,4,4-オクタフルオロペンタン(HCFC-448occc)および/または5-クロロ-1,1,2,2,3,3,4,5-オクタフルオロペンタン(HCFC-448pcce)から脱HFにより(Z)-1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロ-1-ペンテン(HCFO-1437dycc(Z))および/または(E)-1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロ-1-ペンテン(HCFO-1437dycc(E))を得る反応式である。式(14-2)は、4,5-ジクロロ-1,1,2,2,3,3,4-ヘプタフルオロペンタン(HCFC-447obcc)および/または5,5-ジクロロ-1,1,2,2,3,3,4-ヘプタフルオロペンタン(HCFC-447necc)から脱HClによりHCFO-1437dycc(Z)および/またはHCFO-1437dycc(E)を得る反応式である。
式(15-1)は、3-クロロ-1,1,1,2,2,3-ヘキサフルオロプロパン(HCFC-226ca)および/または1-クロロ-1,1,2,3,3,3-ヘキサフルオロプロパン(HCFC-226ea)から脱HFにより(Z)-1-クロロ-1,2,3,3,3-ペンタフルオロプロペン(CFO-1215yb(Z))および/または(E)-1-クロロ-1,2,3,3,3-ペンタフルオロプロペン(CFO-1215yb(E))を得る反応式である。式(15-2)は、2,3-ジクロロ-1,1,1,2,3-ペンタフルオロプロパン(HCFC-225ba)および/または1,1-ジクロロ-1,2,3,3,3-ペンタフルオロプロパン(HCFC-225eb)から脱HClによりCFO-1215yb(Z)および/またはCFO-1215yb(E)を得る反応式である。
上記各反応において、特に本発明の製造方法が好適に用いられる反応として、反応速度を向上させて反応を効率的に実施できる点から、モノクロロテトラフルオロプロパンから脱HClによりテトラフルオロプロペンを得る反応、ジクロロテトラフルオロプロパンから脱HClによりモノクロロテトラフルオロプロペンを得る反応が挙げられる。
モノクロロテトラフルオロプロパンから脱HClによりテトラフルオロプロペンを得る反応としては、式(7-2)の244bbおよび/または244ebから脱HClにより1234yfを得る反応、式(8-2)の244dbおよび/または244faから脱HClにより1234ze(Z)および/または1234ze(E)を得る反応が挙げられる。式(7-2)の244bbおよび/または244ebから脱HClにより1234yfを得る反応がより好適に挙げられる。
ジクロロテトラフルオロプロパンから脱HClによりモノクロロテトラフルオロプロペンを得る反応としては、式(3-2)の234bbおよび/または234eaから脱HClにより1224yd(Z)および/または1224yd(E)を得る反応が挙げられる。
なお、上記反応においては、特に原料に244bb等のCH3基を有する化合物が含まれ、該化合物のCH3基からHの脱離が必要とされる場合に、本発明による効果が大きい。したがって、244bbから脱HClにより1234yfを得る反応において高い効果が期待できる。
本発明の製造方法に係る反応(1)において、化合物(A)は有機相として液相で、アルカリ水溶液と物理的に接触する、より具体的には、アルカリ水溶液中の塩基と接触することで、脱HFまたは脱HCl反応が生起し化合物(B)が生成する。
本発明においては、化合物(A)およびアルカリ水溶液の接触を、液相で、相間移動触媒と水溶性有機溶媒(S)の存在下に行う。本発明の製造方法に係る該接触は、通常、反応器内で行われる。
化合物(A)の入手方法は特に制限されない。公知の方法で製造してもよく、市販品を用いてもよい。例えば、本発明が好ましく適用される(7-2)の反応における244bbおよび/または244ebは、例えば、254ebと塩素を反応させる塩素化反応により製造できる。また、(3-2)の反応における234bbおよび/または234eaは、例えば、上記254ebの塩素化反応において、得られる244bbおよび/または244ebをさらに塩素化することで製造できる。
なお、本発明の製造方法に際して、化合物(A)は、化合物(A)と不純物を含む混合物の形で反応器内に導入されてもよい。混合物における不純物量は、本発明の製造方法の効果に影響を及ぼさない程度とするのが好ましい。具体的には、化合物(A)は、化合物(A)の製造時において副生する副生物や未反応原料と共に用いられてもよい。例えば、純度が85質量%以上、好ましくは90質量%以上、特に好ましくは95質量%以上の化合物(A)の組成物として、本発明の製造方法に用いることができる。
本発明の製造方法に用いるアルカリ水溶液とは、塩基を水に溶解させた水溶液をいう。塩基は、上記反応(1)が実行可能な塩基であれば特に限定されない。塩基は、金属水酸化物、金属酸化物および金属炭酸塩からなる群より選ばれる少なくとも1種を含むことが好ましい。
塩基が金属水酸化物である場合、アルカリ土類金属水酸化物、アルカリ金属水酸化物などが挙げられる。アルカリ土類金属水酸化物としては、例えば、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウムが挙げられる。アルカリ金属水酸化物としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウムが挙げられる。
塩基が金属酸化物である場合、該金属酸化物を構成する金属としては、アルカリ金属元素、アルカリ土類金属元素、遷移金属元素、第12族金属元素、第13族金属元素が挙げられる。中でも、アルカリ金属元素、アルカリ土類金属元素、第6族金属元素、第8族金属元素、第10族金属元素、第12族金属元素、または第13族金属元素が好ましく、ナトリウム、カルシウム、クロム、鉄、亜鉛、またはアルミニウムがさらに好ましい。
金属酸化物は、金属の1種を含む酸化物であってもよく、2種以上の金属の複合酸化物であってもよい。金属酸化物としては、反応時間および反応収率の点から、酸化ナトリウム、酸化カルシウム、酸化クロム(クロミア)、酸化アルミニウム(アルミナ)、または酸化亜鉛等が好ましく、アルミナまたはクロミアがより好ましい。
塩基が金属炭酸塩である場合、アルカリ土類金属炭酸塩、アルカリ金属炭酸塩などが挙げられる。アルカリ土類金属炭酸塩としては、例えば、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウム等の金属の炭酸塩が挙げられる。アルカリ金属炭酸塩としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウム等の金属の炭酸塩が挙げられる。
本発明の製造方法に用いる塩基としては、反応時間および反応収率の点から、金属水酸化物が好ましく、水酸化カリウムおよび水酸化ナトリウムからなる群より選ばれる少なくとも1種が特に好ましい。金属水酸化物は、1種を単独に用いてもよく、2種以上を併用してもよい。
アルカリ水溶液における塩基の含有量は、反応速度の点から、アルカリ水溶液全量(質量)に対する塩基の質量の割合(単位%)が、0.5~48質量%となる量が好ましく、20~45質量%がより好ましく、30~40質量%がさらに好ましい。塩基量が上記範囲未満であると、十分な反応速度が得られないことがある。一方、塩基量が上記範囲を超えると、副生物の生成量が増え、目的物質(化合物(B))の選択率が減少する可能性がある。
本発明の製造方法に用いる塩基の使用量は、反応(1)の種類による。例えば、244bbおよび/または244ebから脱HClにより1234yfを得る反応においては、244bbおよび/または244ebの転化率および1234yfの選択率を向上させる観点から、244bbおよび/または244ebの1モルに対する塩基の量は、0.2~3.0モルが好ましく、0.5~2.5モルがより好ましい。
また、例えば、234bbおよび/または234eaから脱HClにより1224yd(Z)および/または1224yd(E)を得る反応においては、234bbおよび/または234eaの転化率および1224yd(Z)および/または1224yd(E)の選択率を向上させる観点から、234bbおよび/または234eaの1モルに対する塩基の量は、0.2~3.0モルが好ましく、0.5~2.5モルがより好ましい。
本発明の製造方法において、反応液は化合物(A)を主体とする有機相とアルカリ水溶液からなる水相で構成される。相間移動触媒は有機相中およびアルカリ水溶液中の両方に存在し、化合物(A)のアルカリ水溶液との接触による脱ハロゲン化反応を促進する。
相間移動触媒としては、第4級アンモニウム塩、第4級ホスホニウム塩、第4級アルソニウム塩、スルホニウム塩、クラウンエーテルなどが挙げられ、工業的入手容易さや価格、扱いやすさの点から第4級アンモニウム塩が好ましい。
4級アンモニウム塩として、具体的には、テトラ-n-ブチルアンモニウムクロリド(TBAC)、テトラ-n-ブチルアンモニウムブロミド(TBAB)、メチルトリ-n-オクチルアンモニウムクロリド(TOMAC)等が好ましい。なかでも、反応をより促進できる点から、テトラ-n-ブチルアンモニウムクロリド(TBAC)、またはテトラ-n-ブチルアンモニウムブロミド(TBAB)が好ましく、入手性の点からはテトラ-n-ブチルアンモニウムブロミド(TBAB)がより好ましく、反応性の点からはテトラ-n-ブチルアンモニウムクロリド(TBAC)がより好ましい。
本発明の製造方法に用いる相間移動触媒の量は、化合物(A)の100質量部に対して、0.001~10質量部が好ましく、0.01~5質量部がより好ましく、0.01~3質量部がさらに好ましい。相間移動触媒の量が少なすぎると、十分な反応速度が得られないことがあり、多く用いても、使用量に応じた反応促進効果は得られず、コスト面で不利である。
水溶性有機溶媒(S)は、水溶性であるとともに化合物(A)を溶解し得る。本明細書において、水溶性有機溶媒(S)における水溶性とは、25℃において、水溶性有機溶媒(S)と純水を任意の混合割合で混合した際に相分離や濁りを起こさずに均一に溶解する性質をいう。また、水溶性有機溶媒(S)が、化合物(A)を溶解し得るとは、25℃において、化合物(A)に対し、水溶性有機溶媒(S)が20質量%となる量で化合物(A)と水溶性有機溶媒(S)を混合した際に相分離や濁りを起こさずに均一に溶解する性質をいう。
水溶性有機溶媒(S)は、相間移動触媒と同様に有機相中およびアルカリ水溶液中の両方に存在し、相間移動触媒における化合物(A)の脱ハロゲン化反応を促進する作用をより高める機能を有する。
水溶性有機溶媒(S)としては、例えば、水溶性のアルコール、ケトン、エーテル、エステル等から化合物(A)の種類に応じて該化合物(A)を溶解し得る化合物が適宜選択されて用いられる。
水溶性のアルコールとしては、例えば、メタノール、エタノール、プロパン-1-オール、ブタン-1-オール、プロパン-2-オール、ブタン-2-オール、2-メチルプロパン-2-オール、2-メチルブタン-2-オール等が挙げられる、水溶性のケトンとしては、アセトン、メチルエチルケトン、ジエチルケトン、メチルプロピルケトン、メチルイソブチルケトン、メチルアミルケトン、シクロヘキサノン等が挙げられる。水溶性のエーテルとしては、テトラエチレングリコールジメチルエーテル(以下、「テトラグライム」ともいう。)、ジメチルエーテル、エチルメチルエーテル、ジエチルエーテル、エチレンオキシド等の鎖状エーテル、テトラヒドロフラン、フラン、クラウンエーテル類等の環状エーテル等が挙げられる、水溶性のエステルとしては、酢酸メチル、ギ酸メチル等が挙げられる。
水溶性有機溶媒(S)は、水溶性に加えて、化合物(A)を溶解する性質を有する。水溶性有機溶媒(S)は、化合物(A)の脱ハロゲン化反応における相間移動触媒の作用をより高める観点から、ハンセン溶解度パラメータに基づき下記式(I)で示される、水溶性有機溶媒(S)と化合物(A)との、相互作用距離(Ra)が25.0以下であるのが好ましく、23.0以下がより好ましく、22.0以下が特に好ましい。
Ra=[4×(δD1-δD2)2+(δP1-δP2)2+(δH1-δH2)2]0.5 (I)
Ra=[4×(δD1-δD2)2+(δP1-δP2)2+(δH1-δH2)2]0.5 (I)
式(I)中、δD1、δP1およびδH1は各々、水溶性有機溶媒(S)のハンセン溶解度パラメータにおける、分散項、極性項および水素結合項を、δD2、δP2およびδH2は各々、化合物(A)のハンセン溶解度パラメータにおける、分散項、極性項および水素結合項をそれぞれ示し、単位はいずれも(MPa)1/2である。
本発明において、相互作用距離(Ra)は小さい方が好ましく、その下限は、特に制限されない。
本発明において、相互作用距離(Ra)は小さい方が好ましく、その下限は、特に制限されない。
具体的に、例えば、化合物(A)として244bb、244eb、234bb、234eaを用いた場合に、これらの化合物(A)に対して水溶性有機溶媒(S)として好ましい各化合物の相互作用距離(Ra)を表1に示す。
表1に示すように、メタノール、アセトン、テトラグライムおよびテトラヒドロフランは、244bb、244eb、234bb、234eaのいずれとも、相互作用距離(Ra)が25.0以下であり、これらの脱ハロゲン化反応に、水溶性有機溶媒(S)として好ましく用いることができる。
なお、同様にして、相互作用距離(Ra)を指標として、表1に示す以外の化合物(A)と水溶性有機溶媒(S)の好ましい組み合わせが選択できる。
なお、同様にして、相互作用距離(Ra)を指標として、表1に示す以外の化合物(A)と水溶性有機溶媒(S)の好ましい組み合わせが選択できる。
本発明の製造方法に用いる水溶性有機溶媒(S)の量は、化合物(A)の100質量部に対して、1~100質量部が好ましく、3~80質量部がより好ましく、5~60質量部がさらに好ましい。水溶性有機溶媒(S)の量が少なすぎると、十分な反応速度が得られないことがあり、多く用いても、使用量に応じた反応促進効果は得られず、コスト面および容積効率の面で不利である。
反応(1)における上記以外の反応条件、例えば、温度、圧力等は、通常、アルカリ水溶液と化合物(A)を液相で接触させ脱HFや脱HCl反応させる際の、反応条件と同様にできる。
例えば、244bbおよび/または244ebから脱HClにより1234yfを得る反応において、反応温度、すなわち反応器内の温度は、40~120℃が好ましく、50~110℃がより好ましい。反応温度を上記範囲にすることにより、反応速度および反応率が向上し、副生成物を抑制しやすい。なお、244bbにおいては、反応温度は60~120℃が好ましく、80~110℃がより好ましい。244ebにおいては、反応温度は40~80℃が好ましく、50~70℃がより好ましい。
244bbおよび/または244ebから脱HClにより1234yfを得る反応において、反応中の反応器内の圧力は、0.00~10.00MPaが好ましく、0.05~5.00MPaがより好ましく、0.15~2.00MPaがさらに好ましい。反応器内の圧力は、反応温度における244bbおよび/または244ebの蒸気圧以上であることが好ましい。
また、例えば、234bbおよび/または234eaから脱HClにより1224yd(Z)および/または1224yd(E)を得る反応においては、反応温度、すなわち反応器内の温度は、10~90℃が好ましく、20~80℃がより好ましい。反応中の反応器内の圧力は、0.00~5.00MPaが好ましく、0.02~2.00MPaがより好ましく、0.05~1.00MPaがさらに好ましい。
本発明の製造方法においては、工業的に目的のフルオロオレフィンを大量に生産する観点から、バッチ式、半連続式または連続式の反応器に撹拌翼を設置し、それを撹拌させることにより生成させることが好ましい。撹拌翼としては、4枚パドル翼、アンカー翼、ゲート翼、3枚プロペラ、リボン翼、6枚タービン翼等が挙げられる。
本発明の製造方法は、通常、反応器内に化合物(A)、アルカリ水溶液、相間移動触媒および水溶性有機溶媒(S)の所定量を導入して行われる。反応器の材質としては、化合物(A)、アルカリ水溶液、相間移動触媒、水溶性有機溶媒(S)ならびに反応生成物を含む反応液成分等に不活性で、耐蝕性の材質であれば特に制限されない。例えば、ガラス、鉄、ニッケル、および鉄等を主成分とするステンレス鋼等の合金などが挙げられる。
本発明における反応は、バッチ式で行ってもよいし、半連続式、連続流通式で行ってもよい。本発明の製造方法において、反応終了後に反応液を放置して、有機相と水相に分離させる。有機相中には、目的生成物である化合物(B)以外に、未反応の化合物(A)や副生物、相間移動触媒および水溶性有機溶媒(S)等が含まれうる。これらを含む有機相中から化合物(B)を回収する際には、一般的な蒸留等による分離精製方法を採用するのが好ましい。
なお、反応液中に未反応の化合物(A)が残っている場合、蒸留によって化合物(A)を濃縮し、本発明の原料としてリサイクルすることも可能である。
なお、反応液中に未反応の化合物(A)が残っている場合、蒸留によって化合物(A)を濃縮し、本発明の原料としてリサイクルすることも可能である。
一方、上記有機相と分離した水相は、これだけ取り出して再度適当な濃度となるように塩基を加えれば、再利用が可能である。
また、相間移動触媒および水溶性有機溶媒(S)は有機相または水相から分離してもよいが、化合物(A)や水相中に残っている場合であれば、含有させたまま再利用することも可能である。
また、相間移動触媒および水溶性有機溶媒(S)は有機相または水相から分離してもよいが、化合物(A)や水相中に残っている場合であれば、含有させたまま再利用することも可能である。
本発明の製造方法により得られる化合物(B)を上記のように分離精製して回収することで、化合物(B)を高純度に含有する精製化合物(B)が得られる。このようにして得られる精製化合物(B)に、HFやHCl等の酸分や水、酸素等の不純物が含まれると、その使用に際して設備が腐食する、化合物(B)の安定性が低下する等のおそれがある。したがって、従来公知の方法で、これら不純物を腐食や安定性に関し問題がない程度まで除去することが好ましい。
以下に、本発明を実施例によって具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、例1~4が実施例であり、例5、6が比較例である。
[ガスクロマトグラフィーの条件]
以下の各種化合物の製造において、得られた反応組成物の組成分析はガスクロマトグラフィー(GC)を用いて行った。カラムはDB-1301(商品名、アジレント・テクノロジー社製、長さ60m×内径250μm×厚み1μm)を用いた。
以下の各種化合物の製造において、得られた反応組成物の組成分析はガスクロマトグラフィー(GC)を用いて行った。カラムはDB-1301(商品名、アジレント・テクノロジー社製、長さ60m×内径250μm×厚み1μm)を用いた。
[244bbの製造例]
254ebを、次のとおり、塩素化して244bbおよび244ebを製造した。まず、光源からの光を透過する石英管およびジャケットを取り付けたステンンレス製オートクレーブ(内容積6.9リットル)を、20℃に冷却した。このオートクレーブ(以下、反応器と示す。)内に、四塩化炭素(CCl4)を2336gと254ebを103g入れた後、LEDランプ(三菱電機社製LHT42N-G-E39、定格消費電力42.4W)からの可視光を照射しながら、塩素ガスを毎分3.2gの流量で反応器内に導入した。反応の進行に伴い、反応熱が生じるとともに、反応器内の温度は23.8℃に上昇した。上記流量塩素ガスを2分間導入し、すなわち、254ebの1モルに対して0.10モルの割合の塩素を導入し、反応器内の温度が20℃で一定になるまで光照射を継続した。反応器内の圧力は、塩素供給前の圧力が0.045MPa、塩素供給後の圧力、すなわち反応圧力が0.045MPaであった。
254ebを、次のとおり、塩素化して244bbおよび244ebを製造した。まず、光源からの光を透過する石英管およびジャケットを取り付けたステンンレス製オートクレーブ(内容積6.9リットル)を、20℃に冷却した。このオートクレーブ(以下、反応器と示す。)内に、四塩化炭素(CCl4)を2336gと254ebを103g入れた後、LEDランプ(三菱電機社製LHT42N-G-E39、定格消費電力42.4W)からの可視光を照射しながら、塩素ガスを毎分3.2gの流量で反応器内に導入した。反応の進行に伴い、反応熱が生じるとともに、反応器内の温度は23.8℃に上昇した。上記流量塩素ガスを2分間導入し、すなわち、254ebの1モルに対して0.10モルの割合の塩素を導入し、反応器内の温度が20℃で一定になるまで光照射を継続した。反応器内の圧力は、塩素供給前の圧力が0.045MPa、塩素供給後の圧力、すなわち反応圧力が0.045MPaであった。
反応終了後、得られた反応液を炭酸水素カリウムの20質量%水溶液と混合して中和し、次いで分液操作を行った。静置後、分離した下層から反応組成物を回収し、蒸留により244bbを得た。
[例1]
熱電対および撹拌翼を取り付けた0.1Lの反応器(オートクレーブ)を恒温槽内に設置し、80℃に保った。この反応器に、30質量%KOH水溶液を61.1g、上記で得られた244bbを24.6g(KOHと244bbのモル比は、KOH:244bb=2:1である。)、相間移動触媒としてのテトラ-n-ブチルアンモニウムブロミド(TBAB)を0.25
g、水溶性有機溶媒(S)としてのメタノールを2.46g加え、反応器を閉止し、圧力試験を行った。
熱電対および撹拌翼を取り付けた0.1Lの反応器(オートクレーブ)を恒温槽内に設置し、80℃に保った。この反応器に、30質量%KOH水溶液を61.1g、上記で得られた244bbを24.6g(KOHと244bbのモル比は、KOH:244bb=2:1である。)、相間移動触媒としてのテトラ-n-ブチルアンモニウムブロミド(TBAB)を0.25
g、水溶性有機溶媒(S)としてのメタノールを2.46g加え、反応器を閉止し、圧力試験を行った。
600rpmで撹拌翼を回転させ、2時間反応を行った後に、恒温槽から反応器を取り出して氷水により0℃に冷却して反応を停止させ、反応組成物を回収した。回収した反応組成物のGC分析を行った結果、244bbの転化率は33.2%であり、1234yfの収率は33.2%であり、選択率は100%であった。結果を表2に示す。
[例2~4]
例1において、メタノールの代わりに、アセトン、テトラグライム、またはテトラヒドロフランを用いた以外は同様にして、1234yfを製造した。反応組成物を回収してGC分析を行った結果を表2に示す。
例1において、メタノールの代わりに、アセトン、テトラグライム、またはテトラヒドロフランを用いた以外は同様にして、1234yfを製造した。反応組成物を回収してGC分析を行った結果を表2に示す。
[例5]
例1において、メタノールを用いなかった以外は同様にして、1234yfを製造した。反応組成物を回収してGC分析を行った結果を表2に示す。
例1において、メタノールを用いなかった以外は同様にして、1234yfを製造した。反応組成物を回収してGC分析を行った結果を表2に示す。
[例6]
例1において、TBABを用いなかった以外は同様にして、1234yfを製造した。反応組成物を回収してGC分析を行った結果を表2に示す。
例1において、TBABを用いなかった以外は同様にして、1234yfを製造した。反応組成物を回収してGC分析を行った結果を表2に示す。
なお、2018年4月19日に出願された日本特許出願2018-080599号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
Claims (13)
- 炭素原子数が3~7であり、隣り合う2つの炭素原子に、それぞれ水素原子と、フッ素原子または塩素原子と、が結合した構造を分子内に有するハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンを液相で、相間移動触媒、および前記ハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンを溶解し得る水溶性有機溶媒の存在下に、アルカリ水溶液と接触させ、前記ハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンを脱塩化水素または脱フッ化水素させて、ハイドロフルオロオレフィン、ペルフルオロオレフィン、ハイドロクロロフルオロオレフィンおよびクロロフルオロオレフィンから選ばれる少なくとも1種のフルオロオレフィンを得る、フルオロオレフィンの製造方法。
- 下記式(I)で示される、前記水溶性有機溶媒と前記ハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンとの、相互作用距離(Ra)が25.0以下である、請求項1に記載の製造方法。
Ra=[4×(δD1-δD2)2+(δP1-δP2)2+(δH1-δH2)2]0.5 (I)
但し、式(I)中、δD1、δP1およびδH1は、それぞれ、前記水溶性有機溶媒のハンセン溶解度パラメータにおける、分散項、極性項および水素結合項を示し、δD2、δP2およびδH2は、それぞれ、前記ハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンのハンセン溶解度パラメータにおける、分散項、極性項および水素結合項を示し、単位はいずれも(MPa)1/2である。 - 前記水溶性有機溶媒を、前記ハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンの100質量部に対して、1~100質量部の割合で存在させる、請求項1または2に記載の製造方法。
- 前記水溶性有機溶媒が、メタノール、アセトン、テトラエチレングリコールジメチルエーテルおよびテトラヒドロフランから選ばれる少なくとも1種である、請求項1~3のいずれか1項に記載の製造方法。
- 前記アルカリ水溶液が、金属水酸化物、金属酸化物および金属炭酸塩からなる群より選ばれる少なくとも1種の塩基を水に溶解せしめた水溶液である、請求項1~4のいずれか1項に記載の製造方法。
- 前記アルカリ水溶液における、アルカリ水溶液全質量に対する塩基の質量の割合が、0.5~48質量%である、請求項5に記載の製造方法。
- 前記相間移動触媒を、前記ハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンの100質量部に対して、0.001~10質量部の割合で存在させる、請求項1~6のいずれか1項に記載の製造方法。
- 前記相間移動触媒が第4級アンモニウム塩である、請求項1~7のいずれか1項に記載の製造方法。
- 前記相間移動触媒が、テトラ-n-ブチルアンモニウムクロリド、テトラ-n-ブチルアンモニウムブロミド、またはメチルトリ-n-オクチルアンモニウムクロリドである、請求項1~8のいずれか1項に記載の製造方法。
- 前記ハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンがモノクロロテトラフルオロプロパンであり、前記フルオロオレフィンがテトラフルオロプロペンである、請求項1~9のいずれか1項に記載の製造方法。
- 前記モノクロロテトラフルオロプロパンが2-クロロ-1,1,1,2-テトラフルオロプロパンおよび/または3-クロロ-1,1,1,2-テトラフルオロプロパンであり、前記テトラフルオロプロペンが2,3,3,3-テトラフルオロプロペンである、請求項10に記載の製造方法。
- 前記ハイドロフルオロカーボンまたはハイドロクロロフルオロカーボンがジクロロテトラフルオロプロパンであり、前記フルオロオレフィンがモノクロロテトラフルオロプロペンである、請求項1~11のいずれか1項に記載の製造方法。
- 前記ジクロロテトラフルオロプロパンが2,3-ジクロロ-1,1,1,2-テトラフルオロプロパンおよび/または3,3-ジクロロ-1,1,1,2-テトラフルオロプロパンであり、前記モノクロロテトラフルオロプロペンが1-クロロ-2,3,3,3-テトラフルオロプロペンである、請求項12に記載の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018080599A JP2021120351A (ja) | 2018-04-19 | 2018-04-19 | フルオロオレフィンの製造方法 |
JP2018-080599 | 2018-04-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019203318A1 true WO2019203318A1 (ja) | 2019-10-24 |
Family
ID=68238929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/016677 WO2019203318A1 (ja) | 2018-04-19 | 2019-04-18 | フルオロオレフィンの製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2021120351A (ja) |
WO (1) | WO2019203318A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020247423A1 (en) | 2019-06-04 | 2020-12-10 | The Chemours Company Fc, Llc | 2-chloro-3,3,3-trifluoropropene (1233xf) compositions and methods for making and using the compositions |
WO2021132390A1 (ja) * | 2019-12-26 | 2021-07-01 | Agc株式会社 | 1-クロロ-2,3,3-トリフルオロプロペンの製造方法 |
CN115557827A (zh) * | 2022-08-29 | 2023-01-03 | 西安近代化学研究所 | 一种3-氯-3,3-二氟丙烯的制备方法 |
TWI798875B (zh) * | 2020-10-15 | 2023-04-11 | 日商昭和電工股份有限公司 | 蝕刻氣體及其製造方法、以及、蝕刻方法、半導體元件之製造方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010513437A (ja) * | 2006-12-19 | 2010-04-30 | イネオス、フラウアー、ホールディングス、リミテッド | プロセス |
JP2012526146A (ja) * | 2009-05-08 | 2012-10-25 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | ヒドロフルオロオレフィン生成においてモノフルオロ酢酸塩の量を低減する方法 |
JP2013528585A (ja) * | 2010-04-29 | 2013-07-11 | ハネウェル・インターナショナル・インコーポレーテッド | テトラフルオロプロペンの製造方法 |
WO2017018412A1 (ja) * | 2015-07-27 | 2017-02-02 | 旭硝子株式会社 | 1-クロロ-2,3,3-トリフルオロプロペンの製造方法 |
WO2017110851A1 (ja) * | 2015-12-25 | 2017-06-29 | 旭硝子株式会社 | 1-クロロ-2,3,3,3-テトラフルオロプロペンの製造方法 |
-
2018
- 2018-04-19 JP JP2018080599A patent/JP2021120351A/ja active Pending
-
2019
- 2019-04-18 WO PCT/JP2019/016677 patent/WO2019203318A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010513437A (ja) * | 2006-12-19 | 2010-04-30 | イネオス、フラウアー、ホールディングス、リミテッド | プロセス |
JP2012526146A (ja) * | 2009-05-08 | 2012-10-25 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | ヒドロフルオロオレフィン生成においてモノフルオロ酢酸塩の量を低減する方法 |
JP2013528585A (ja) * | 2010-04-29 | 2013-07-11 | ハネウェル・インターナショナル・インコーポレーテッド | テトラフルオロプロペンの製造方法 |
WO2017018412A1 (ja) * | 2015-07-27 | 2017-02-02 | 旭硝子株式会社 | 1-クロロ-2,3,3-トリフルオロプロペンの製造方法 |
WO2017110851A1 (ja) * | 2015-12-25 | 2017-06-29 | 旭硝子株式会社 | 1-クロロ-2,3,3,3-テトラフルオロプロペンの製造方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020247423A1 (en) | 2019-06-04 | 2020-12-10 | The Chemours Company Fc, Llc | 2-chloro-3,3,3-trifluoropropene (1233xf) compositions and methods for making and using the compositions |
WO2021132390A1 (ja) * | 2019-12-26 | 2021-07-01 | Agc株式会社 | 1-クロロ-2,3,3-トリフルオロプロペンの製造方法 |
CN114845982A (zh) * | 2019-12-26 | 2022-08-02 | Agc株式会社 | 1-氯-2,3,3-三氟丙烯的制造方法 |
TWI798875B (zh) * | 2020-10-15 | 2023-04-11 | 日商昭和電工股份有限公司 | 蝕刻氣體及其製造方法、以及、蝕刻方法、半導體元件之製造方法 |
CN115557827A (zh) * | 2022-08-29 | 2023-01-03 | 西安近代化学研究所 | 一种3-氯-3,3-二氟丙烯的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2021120351A (ja) | 2021-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6620815B2 (ja) | 1−クロロ−2,3,3−トリフルオロプロペンの製造方法 | |
JP5576586B2 (ja) | 統合hfcトランス−1234ze製造方法 | |
CN107382657B (zh) | 制备四氟丙烯的方法 | |
KR101702450B1 (ko) | 1,1,3,3-테트라플루오로프로펜의 이성질체화 | |
WO2019203318A1 (ja) | フルオロオレフィンの製造方法 | |
JPWO2019003896A1 (ja) | 2−クロロ−1,1,1,2−テトラフルオロプロパンおよび/または3−クロロ−1,1,1,2−テトラフルオロプロパンの製造方法、ならびに2,3,3,3−テトラフルオロプロペンの製造方法 | |
WO2019189024A1 (ja) | 1-クロロ-2,3,3-トリフルオロプロペンの製造方法 | |
US8710282B2 (en) | Integrated process for the manufacture of fluorinated olefins | |
JP5805812B2 (ja) | 統合hfcトランス−1234ze製造方法 | |
WO2019203319A1 (ja) | フルオロオレフィンの製造方法 | |
US10364201B2 (en) | Process for the manufacture of fluorinated olefins | |
WO2019230456A1 (ja) | 含フッ素プロペンの製造方法 | |
JP7310803B2 (ja) | 含フッ素不飽和炭化水素の製造方法 | |
JP7371738B2 (ja) | 2-クロロ-1,3,3,3-テトラフルオロプロペンの除去方法及び1-クロロ-2,3,3,3-テトラフルオロプロペンの製造方法 | |
JP6043415B2 (ja) | 2,3,3,3−テトラフルオロプロペンの製造方法 | |
JP2010215622A (ja) | 1,1,1,3,3−ペンタフルオロプロパンを含む含フッ素化合物の製造方法 | |
JP2016079101A (ja) | 1,1−ジクロロ−3,3,3−トリフルオロプロペンの製造方法 | |
JP2015224236A (ja) | (e)−1−クロロ−3,3,3−トリフルオロプロペンの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19787987 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19787987 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |