[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019230456A1 - 含フッ素プロペンの製造方法 - Google Patents

含フッ素プロペンの製造方法 Download PDF

Info

Publication number
WO2019230456A1
WO2019230456A1 PCT/JP2019/019762 JP2019019762W WO2019230456A1 WO 2019230456 A1 WO2019230456 A1 WO 2019230456A1 JP 2019019762 W JP2019019762 W JP 2019019762W WO 2019230456 A1 WO2019230456 A1 WO 2019230456A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
reaction
reducing agent
compound
production method
Prior art date
Application number
PCT/JP2019/019762
Other languages
English (en)
French (fr)
Inventor
敏史 仁平
慎哉 民辻
優 竹内
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2020522101A priority Critical patent/JP7287391B2/ja
Publication of WO2019230456A1 publication Critical patent/WO2019230456A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/23Preparation of halogenated hydrocarbons by dehalogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine

Definitions

  • the present invention relates to a method for efficiently producing a fluorine-containing propene.
  • HFCs hydrofluorocarbons
  • HCFCs hydrochlorofluorocarbons
  • fluorine-containing olefins such as hydrofluoroolefin (HFO) and hydrochlorofluoroolefin (HCFO) are attracting attention as compounds having a low global warming potential.
  • HFO and HCFO are known to have both low ozone depletion potential (ODP) and global warming potential (GWP). ing.
  • a C3 unsaturated compound (hereinafter also referred to as fluorine-containing propene) that is HFO or HCFO and has three carbons in its structure is preferable.
  • fluorine-containing propene a C3 unsaturated compound that is HFO or HCFO and has three carbons in its structure.
  • the fluorinated propene having a structure represented by —CF ⁇ in the molecule has low toxicity and is particularly suitable for refrigerants and solvents.
  • the fluorine-containing propene having a structure represented by —CF ⁇ CX 2 (in the molecule, two X's are each independently F, Cl or H, and both X are H) is Compared with fluorine-containing propene having a structure represented by —CF ⁇ CH 2 in the molecule, it has high nonflammability and excellent detergency, and is more suitable for refrigerants and solvents. Examples include 1-chloro-2,3,3,3-tetrafluoropropene (CF 3 —CF ⁇ CClH, HCFO-1224yd), 1-chloro-2,3,3 trifluoropropene (CF 2 H—CF ⁇ CClH) and the like.
  • a fluorinated propene having —CF ⁇ is produced, for example, by dechlorinating a fluorinated propane having —CFCl— as a precursor.
  • fluorinated propane having —CFCl— as a precursor is energetically unstable, it is difficult to obtain a fluorinated propene having —CF ⁇ in a high yield.
  • fluorine-containing propane starting from tetrafluoroethylene (TFE), which is a key raw material in the fluorine chemical industry, a compound having —CF 2 — is easily synthesized.
  • Patent Document 2 discloses a method of directly synthesizing a fluorinated propene having —CF ⁇ by using a fluorinated propane having —CF 2 — as a raw material and defluorinating and dechlorinating in an H 2 reducing atmosphere. It is being considered. However, in the method of Patent Document 2, the target fluorine-containing propene having —CF ⁇ is not obtained in high yield.
  • Non-Patent Document 1 a method of defluorinating and dechlorinating in the presence of metallic zinc has been attempted in the same manner as in Patent Document 2, but the same reaction system contains a substrate on which dechlorination proceeds, and the same. Since there are two defluorination and dechlorination routes in the substrate, the target fluorine-containing propene having —CF ⁇ cannot be obtained in high yield.
  • An object of the present invention is to provide a production method for efficiently obtaining a fluorine-containing propene having a —CF ⁇ structure in a high yield by using a fluorine-containing propane having a —CF 2 — structure as a raw material.
  • a fluorine-containing propene having a structure represented by —CF ⁇ CX 2 (X is independently F, Cl or H, except when both X are H) in the molecule It aims at providing the manufacturing method obtained efficiently and with a high yield.
  • a fluorine-containing chlorine-containing propane represented by the following formula (A) is defluorinated and dechlorinated in the presence of at least one reducing agent selected from alkaline earth metals and transition metals, and the following formula ( A method for producing a fluorinated propene, which obtains the fluorinated propene represented by B).
  • CY 3 -CF CX Formula 2 (B)
  • two Xs are each independently F, Cl or H
  • three Ys are each independently F or H. However, the case where both X are H is excluded.
  • X and Y in the formula (B) are the same as X and Y in the formula (A).
  • the fluorine-containing chlorine-containing propane is 3,3-dichloro-1,1,1,2,2-pentafluoropropane
  • the fluorine-containing propene is 1-chloro-2,3,3,3-tetra
  • the production method of [1] which is fluoropropene.
  • the production method of [1], wherein the fluorine-containing chlorine-containing propane is 1-chloro-1,1,2,2-tetrafluoropropane
  • the fluorine-containing propene is 1,1,2-trifluoropropene .
  • the fluorine-containing chlorine-containing propane is 1-chloro-1,1,2,2,3-pentafluoropropane
  • the fluorine-containing propene is 1,1,2,3-tetrafluoropropene
  • the manufacturing method of description [5] The method according to any one of [1] to [4], wherein the reducing agent includes at least one selected from the group consisting of zinc, magnesium, copper, and nickel.
  • the reducing agent contains zinc.
  • the reducing agent is a reducing agent activated with an activating agent.
  • the reducing agent has a particle size D 50 is a powder of 0.05 ⁇ 1000 .mu.m [1] one of the production method to [7]. [9] The production method of any one of [1] to [8], wherein the fluorine-containing chlorine-containing propane is defluorinated and dechlorinated in a liquid phase. [10] The method according to [9], wherein the liquid phase contains a solvent that dissolves the fluorine-containing chlorine-containing propane.
  • the solvent is methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, t-butyl alcohol, 1-pentanol, 1-hexanol, N, N-dimethylformamide, acetonitrile, [10]
  • a process for producing [10] comprising at least one selected from the group consisting of acetone, methyl ethyl ketone, diethyl ketone, and tetrahydrofuran.
  • the production method according to any one of [1] to [11], wherein the reducing agent is used in a ratio of 0.6 to 3.0 mol with respect to 1.0 mol of the fluorine-containing chlorine-containing propane.
  • fluorine-containing propane having a —CF 2 — structure in the molecule is used as a raw material, —CF ⁇ structure, in particular, —CF ⁇ CX 2 (wherein X is independently F, Cl Or a fluorine-containing propene having a structure represented by the formula (except for the case where both X and H are both H), can be produced efficiently and in high yield under mild conditions.
  • Halogenated hydrocarbon is an abbreviation of the compound in parentheses after the compound name, and the abbreviation is used instead of the compound name as necessary.
  • the abbreviation only the number after the hyphen (-) and the lowercase alphabet part (for example, HCFO-1224yd may be represented by 1224yd.
  • (E) represents E form (trans form), and (Z) represents Z form (cis form) . If the E form or Z form is not specified in the name or abbreviation of the compound, the name or abbreviation is used. Means a generic name including E-form, Z-form, and a mixture of E-form and Z-form.
  • reaction formula (F) is referred to as reaction (F). Reactions represented by other formulas are also expressed accordingly.
  • the “compound represented by the formula (A)” is referred to as the compound (A). Compounds represented by other formulas are also represented accordingly.
  • “ ⁇ ” representing a numerical range includes the upper limit value and the lower limit value thereof. When the lower limit value and the upper limit value of the numerical range are the same unit, one of the descriptions may be omitted for the sake of brevity.
  • the particle size D 50 represents the particle size when the cumulative amount occupies 50% on the volume basis in the cumulative particle size curve of the particle size distribution measured using a laser diffraction / scattering type particle size distribution measuring apparatus.
  • the fluorine-containing chlorine-containing propane represented by the formula (A) is a reducing agent composed of at least one selected from alkaline earth metals and transition metals (hereinafter also referred to as a reducing agent (M)).
  • a reducing agent (M) a reducing agent
  • F reaction The defluorination dechlorination reaction (hereinafter also referred to as deClF reaction) according to the present invention is represented by the following reaction formula (F).
  • two Xs in the compound (A) are each independently F, Cl or H, and three Ys are each independently F or H.
  • the compound (A) does not include the case where both X are H.
  • X and Y in the compound (B) are the same as X and Y in the compound (A).
  • the present inventors obtain a fluorine-containing propene having a —CF ⁇ structure in the molecule in the presence of a reducing agent from a fluorine-containing chlorine-containing propane having a —CF 2 — structure in the molecule. It was found that the compound (B) as a product can be obtained in high yield by limiting the raw material to the compound (A) and combining the reducing agent with the reducing agent (M).
  • the de-ClF reaction has hitherto been recognized as being a simple method with a small number of reaction steps, but is not suitable as a method for producing a fluorinated propene with a very low yield.
  • compound (A) is subjected to deClF reaction using hydrogen as a reducing agent to obtain compound (B), but the yield is less than 50%.
  • Non-Patent Document 1 for example, CClF 2 —CF 2 —CCl 2 H having a structure different from that of the compound (A) is used as a raw material, and the compound (B) is subjected to a deClF reaction using a reducing agent (M). Although several types are obtained, the yield of the compound (B) is several percent or less in total. Thus, it has been said that the compound (B) cannot be obtained in a high yield by the deClF reaction proposed so far.
  • the present inventors first focused on the raw material of the deClF reaction using a reducing agent, and limited the structure of the raw material to the structure of the compound (A), that is, in CY 3 —CF 2 —CClX 2 , It was thought that by using a raw material limited to F, Cl or H and Y limited to F or H, side reactions were suppressed as follows.
  • F is extracted from —CF 2 — by the reducing agent, and at the same time, out of carbon atoms at both ends. Cl bonded to one of the carbon atoms is extracted.
  • the raw material compound (A) has a configuration in which Cl is bonded to only one of the terminal carbon atoms so that unnecessary side reactions do not occur.
  • the compound (B) in the deClF reaction (F) according to the production method of the present invention, can be produced in a high yield of 60% or more. Furthermore, in the deClF reaction (F) according to the production method of the present invention, the compound (B) can be obtained in a higher yield under milder conditions such as lowering the reaction temperature.
  • reaction to which the production method of the present invention can be applied Specific examples of the reaction to which the present invention is applied include deClF reactions represented by the following formulas (1) to (20).
  • the present invention is suitable.
  • it is particularly suitable for deClF reactions (8), (17) and (18).
  • the deClF reaction (8) is performed from 3,3-dichloro-1,1,1,2,2-pentafluoropropane (CF 3 —CF 2 —CCl 2 H, HCFC-225ca; hereinafter also referred to as 225ca). , 1-chloro-2,3,3,3-tetrafluoropropene (CF 3 —CF ⁇ CClH, HCFO-1224yd; hereinafter also referred to as 1224yd).
  • 1224yd is a compound that is expected to be used particularly for refrigerants and solvents.
  • Patent Document 1 also proposes a production route from 225ca.
  • dehydrofluorination, H 2 reduction, chlorination and dehydrochlorination are necessary, and there are problems that the number of steps is large and the production cost is high.
  • M 225ca reducing agent
  • the deClF reaction (17) is carried out from 1-chloro-1,1,2,2-tetrafluoropropane (CH 3 —CF 2 —CCIF 2 , HCFC-244cc, hereinafter also referred to as 244 cc) to 1,1,1,
  • This is a reaction for obtaining 2-trifluoropropene (CH 3 —CF ⁇ CF 2 , HFO-1243yc, hereinafter also referred to as 1243yc).
  • 1243yc is a compound that has not been described in the literature regarding production so far, but according to the production method of the present invention, it is possible to carry out in one step by deClF reaction using 244 cc of reducing agent (M), which is an easily available raw material. In addition, it can be produced in a high yield. 1243yc is useful for applications such as refrigerants, foaming agents, aerosol propellants, resin raw materials for car air conditioners and vending machines, for example.
  • the deClF reaction (18) is carried out from 1-chloro-1,1,2,2,3-pentafluoropropane (CH 2 F—CF 2 —CClF 2 , HCFC-235 cc, hereinafter also referred to as 235 cc) to 1 , 1,2,3-tetrafluoropropene (CH 2 F—CF ⁇ CF 2 , HFO-1234yc, hereinafter also referred to as 1234yc).
  • 1234yc is a compound that has not been described in the literature with respect to production so far, but according to the production method of the present invention, it can be obtained in one step by deClF reaction using 235 cc of a reducing agent (M), which is an easily available raw material. In addition, it can be produced in a high yield. 1234yc is useful, for example, for applications such as refrigerants, foaming agents, aerosol propellants, resin raw materials for car air conditioners and vending machines.
  • M reducing agent
  • the deClF reaction for obtaining the compound (B) from the compound (A) represented by the deClF reaction formulas (1) to (20) is performed at least selected from alkaline earth metals and transition metals. It is characterized in that it is carried out in the presence of one reducing agent (M).
  • 225ca is, for example, a reaction between tetrafluoroethylene (TFE) and dichlorofluoromethane (CCl 2 FH) in the presence of a Lewis acid catalyst such as aluminum chloride. Can be manufactured.
  • 225ca is 1,3-dichloro-1,1,2,2,3-pentafluoropropane (CClF 2 -CF 2 -CClFH, HCFC-225cb), 2,2-dichloro-1,1,3 , 3,3-pentafluoropropane (CHF 2 —CCl 2 —CF 3 , HCFC-225aa), 2,3-dichloro-1,1,2,3,3-pentafluoropropane (CHF 2 —CClF—CClF 2) , HCFC-225bb) and the like in a dichloropentafluoropropane (HCFC-225) isomer mixture. Therefore, 225ca is separated from the HCFC-225 isomer mixture by a known method such as distillation and used as the compound (A).
  • 225ca is distilled from a commercially available HCFC-225 isomer mixture containing 225ca, such as Asahiklin AK225 (AGC brand name, a mixture of 48 mol% of 225ca and 52 mol% of HCFC-225cb), etc.
  • the compound (A) may be used after being separated by the above method.
  • 244 cc in the reaction of the formula (17) to which the present invention is preferably applied can be produced, for example, by the following method (A) or method (B).
  • 244 cc is obtained as a reaction product containing unreacted raw materials, by-products and the like together with 244 cc. Therefore, 244 cc is separated and used as the compound (A) by a known purification process such as distillation, extractive distillation, azeotropic distillation, membrane separation, two-layer separation, and adsorption.
  • 235 cc in the reaction of the formula (18) to which the present invention is preferably applied can be produced by, for example, the method described in US Pat. No. 5,756,869. That is, it can be produced by hydrogenating 225cb by reacting with hydrogen in the presence of a bismuth-palladium catalyst supported on activated carbon.
  • the reaction product contains an isomer such as 225ca and HCFC in which the isomer is hydrogenated
  • 235 cc is separated and used as the compound (A) by a known purification step such as distillation.
  • compound (A) may be used for deClF reaction (F) in the form of a mixture containing compound (A) and impurities.
  • the amount of impurities in the mixture is preferably set so as not to affect the effect of the production method of the present invention.
  • the compound (A) may be used together with by-products and unreacted raw materials that are by-produced during the production of the compound (A).
  • the composition containing the compound (A) having a purity of 85% by mass or more, preferably 90% by mass or more, and particularly preferably 95% by mass or more can be used in the present invention.
  • the reducing agent (M) used in the present invention is at least one selected from alkaline earth metals and transition metals.
  • the alkaline earth metal is beryllium, magnesium, calcium, strontium, barium, or radium.
  • the transition metal is a Group 3 element to a Group 12 element.
  • the reducing agent (M) is preferably zinc, magnesium, copper, or nickel from the viewpoint of reactivity, more preferably zinc or magnesium, and particularly preferably zinc from the viewpoint of handling properties.
  • a reducing agent (M) may consist of 1 type of the said metal, and may consist of 2 or more types. In the case of 2 or more types, it may be a mixture or an alloy.
  • the form of a reducing agent (M) is not specifically limited, From a viewpoint of contact efficiency with a compound (A), it is preferable that it is a powder form, and the more nearly spherical powder form is preferable.
  • the particle size is selected from the contact efficiency with the compound (A) and the ease of handling.
  • the particle size D 50 is preferably 0.05 to 1000 ⁇ m. The smaller the particle size, the better the contact efficiency between the compound (A) and the reducing agent (M), and the reaction proceeds, preferably 500 ⁇ m or less, more preferably 200 ⁇ m or less.
  • the handling at the time of manufacture becomes easy so that a particle size is large, 0.1 micrometer or more is more preferable, and 0.5 micrometer or more is further more preferable.
  • the surface of the metal constituting the reducing agent (M) is easily oxidized by exposure to oxygen in the air. Therefore, the reducing agent (M) usually has a constituent metal oxide film on its surface. When it has an oxide film, the reducing ability of a reducing agent (M) may fall and reaction rate may fall. Therefore, the reducing agent (M) is preferably subjected to a pretreatment for removing the oxide film before being used in the present invention.
  • an activator In order to remove the oxide film from the reducing agent (M), an activator is usually used.
  • an activator As the activator, an activator generally used for removing the oxide film on the metal surface can be used without particular limitation, and zinc chloride is suitable industrially. This is because, for example, when the deClF reaction according to the present invention is carried out in the liquid phase, the solubility of zinc chloride in a polar solvent is high, and particularly when zinc is used as the reducing agent (M), Since zinc chloride is produced as a by-product, there is no need to newly add an activator.
  • zinc chloride functions as an activator is that hydrogen chloride generated due to moisture contained in a trace amount in the reaction system removes the oxide film on the metal surface.
  • dibromoethane can also be used as an activator.
  • the amount of the activator is preferably 1 to 100 mol%, more preferably 10 to 50 mol%, and further preferably 20 to 50 mol% from the viewpoints of economy and reactivity with respect to the reducing agent (M). preferable.
  • the reducing agent (M) decreases during the reaction.
  • the amount is preferably from 1 to 100 mol%, more preferably from 10 to 50 mol% from the viewpoint of economy and reactivity, with respect to the maximum molar amount of the reducing agent (M) during the reaction.
  • the amount of the reducing agent (M) used in the present invention is preferably 0.6 to 3.0 mol with respect to 1.0 mol of the compound (A).
  • a compound (B) can be manufactured with a sufficiently high yield.
  • the amount used is more preferably 0.6 to 1.5 mol, particularly preferably 0.8 to 1.2 mol, and 1.0 to 1.2 mol, relative to 1.0 mol of compound (A). Is most preferred.
  • the reaction rate of the deClF reaction is low, and the production efficiency of the compound (B) may be low.
  • the reaction rate can be increased by increasing the reaction temperature, but the reaction rate can be increased by using a catalyst to improve the production efficiency of the compound (B).
  • the reaction rate is lower than the deClF reaction using 225ca according to the above formula (8). High temperature is required. Therefore, by using a catalyst, deClF reaction proceeds under milder conditions, and it is possible to obtain 1243yc as compound (B).
  • copper halide is preferred.
  • copper (I) chloride, copper (I) bromide, or copper (I) iodide is preferable, and copper bromide (I) is more preferable.
  • a catalyst obtained by complexing copper halide, particularly copper (I) bromide, with triphenylphosphine or the like is more preferable. By using the catalyst thus complexed, it becomes possible to obtain the compound (B) which is a deClF form with higher yield.
  • the amount used is preferably 1 mol% to 50 mol%, more preferably 5 mol% to 20 mol%, relative to compound (A).
  • the deClF reaction in the present invention may be performed in the liquid phase or in the gas phase.
  • the deClF reaction (F) is preferably carried out in a liquid phase from the viewpoint that it is easy to remove the halide of the reducing agent (M) by-produced in the deClF reaction represented by the above reaction formula (F).
  • the reaction formula (F) is shown as follows.
  • Y and X are the same as in reaction formula (F).
  • CY 3 —CF 2 —CClX 2 + Zn ⁇ CY 3 -CF CX 2 + 0.5ZnF 2 + 0.5ZnCl 2 Zinc, which is the reducing agent (M) in the above reaction formula, reacts with F and Cl generated by the deClF reaction of the compound (A), respectively, to generate zinc fluoride and zinc chloride. Therefore, the product after the reaction is compound (B), zinc fluoride and zinc chloride.
  • the liquid phase preferably contains a solvent.
  • the solvent is preferably a solvent that is non-reactive with the compound (A) and the resulting compound (B) and that dissolves the compound (A).
  • dissolves a compound (A) means that when a solvent and a compound (A) are mixed in arbitrary mixing ratios at 25 degreeC, it will melt
  • the solvent further dissolves the chloride and fluoride of the reducing agent (M) by-produced in the deClF reaction (F).
  • the solvent used for the deClF reaction (F) is preferably a polar solvent.
  • the polar solvent is preferably at least one selected from the group consisting of alcohols, ethers, ketones, amide compounds, and nitrile compounds.
  • Examples of the alcohol include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, isobutyl alcohol, 2-butanol, t-butyl alcohol, 1-pentanol, 1-hexanol and the like.
  • Examples of the ketone include acetone, methyl ethyl ketone, diethyl ketone, methyl propyl ketone, methyl isobutyl ketone, methyl amyl ketone, and cyclohexanone.
  • ether examples include chain ethers such as tetraethylene glycol dimethyl ether, dimethyl ether, ethyl methyl ether, diethyl ether, and ethylene oxide, and cyclic ethers such as tetrahydrofuran, furan, and crown ethers.
  • chain ethers such as tetraethylene glycol dimethyl ether, dimethyl ether, ethyl methyl ether, diethyl ether, and ethylene oxide
  • cyclic ethers such as tetrahydrofuran, furan, and crown ethers.
  • amide compound examples include N, N-dimethylformamide
  • nitrile compound examples include acetonitrile.
  • methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, t-butyl alcohol, 1-pentanol, 1-hexanol, N, N-dimethylformamide, acetonitrile, Acetone, methyl ethyl ketone, diethyl ketone, or tetrahydrofuran is preferred.
  • methanol, ethanol, tetrahydrofuran, acetone, N, N-dimethylformamide, or acetonitrile is used from the viewpoint of promoting the deClF reaction (F), availability, and ease of separation from the compound (B) after the deClF reaction.
  • an appropriate solvent can be selected from these in consideration of the reaction temperature and the degree of progress of side reactions.
  • These solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the amount of the solvent used is preferably 10 to 2000 parts by mass, more preferably 20 to 1500 parts by mass with respect to 100 parts by mass of the compound (A), and 50 More preferred is ⁇ 500 parts by mass.
  • the reaction temperature of the deClF reaction (F) in the present invention depends on the type of the compound (A), but it is 0 to 250 ° C. from the viewpoint of increasing the reaction rate and the yield of the compound (B) regardless of the liquid phase or the gas phase. Is preferred. If the reaction temperature is too low, the reaction rate decreases and productivity decreases. Moreover, since decomposition
  • the reaction temperature is preferably 20 to 150 ° C, more preferably 50 to 100 ° C.
  • the reaction pressure is the pressure in the reactor for carrying out the reaction, and the gauge pressure is preferably 0 to 1 MPa, more preferably 0 to 0.5 MPa.
  • the reaction temperature is preferably 50 to 250 ° C., more preferably 100 to 200 ° C.
  • the reaction pressure is the pressure in the reactor for carrying out the reaction, and the gauge pressure is preferably 0 to 1 MPa, more preferably 0 to 0.5 MPa.
  • the reaction temperature is preferably 50 to 250 ° C, more preferably 100 to 200 ° C.
  • the reaction pressure is the pressure in the reactor for carrying out the reaction, and the gauge pressure is preferably 0 to 1 MPa, more preferably 0 to 0.5 MPa.
  • the reaction time for the deClF reaction (F) in the present invention is selected from the viewpoint of the yield of the compound (B) and the reaction rate, and the time with the highest productivity is selected. 10 hours is more preferable, and 2 to 5 hours is particularly preferable.
  • the production method of the present invention may be carried out by any of batch, semi-continuous or continuous methods.
  • the semi-continuous type can be exemplified by a fixed bed flow reactor type in which the compound (A) is continuously passed through the reactor filled with the reducing agent (M).
  • a de-ClF reaction (F) is carried out by installing a stirring blade in a batch, semi-continuous or continuous reactor and stirring it. It is preferable.
  • the reactor is not particularly limited as long as it can withstand the temperature and pressure in the reactor described above. For example, a flask, an autoclave, or a cylindrical vertical reactor can be used.
  • stirring blade examples include a 2-paddle blade, a 4-paddle blade, an anchor blade, a gate blade, a 3-propeller, a ribbon blade, and a 6-turbine blade.
  • the reactor may be provided with an electric heater for heating the inside of the reactor.
  • the production method of the present invention is carried out in the liquid phase, it is usually carried out by introducing a predetermined amount of the compound (A), the solvent, the reducing agent (M) and, if necessary, the activator and catalyst into the reactor.
  • the material of the reactor is a material that is inert to the reaction liquid component containing the compound (A), the solvent, the reducing agent (M), the catalyst, the compound (B), and the halide of the reducing agent (M), and is corrosion resistant. If it is, it will not be restrict
  • glass or an alloy such as stainless steel mainly containing iron, nickel, iron, or the like can be given.
  • the reaction product obtained by performing the deClF reaction (F) in the reactor includes, in addition to the target product compound (B), unreacted compound (A), by-product, solvent, reduction Agent (M), activator, catalyst may be included.
  • a separation and purification method such as filtration or distillation.
  • a reactive distillation format in which distillation is performed simultaneously with the deClF reaction can also be employed.
  • 1224yd obtained by deClF reaction from 225ca is obtained as a mixture of 1224yd (E) and 1224yd (Z). If necessary, 1224yd (E) and 1224yd (Z) may be separated and used by a general method such as distillation.
  • Example 1 Production of 1224yd by DeClF Reaction of 225ca [Production of 225ca]
  • TFE tetrafluoroethylene
  • CCl 2 FH dichlorofluoromethane
  • AlCl 3 Lewis acid aluminum chloride
  • a / C was installed in the water bath, and it heated up to 75 degreeC which is reaction temperature.
  • the temperature was raised in less than 1 hour, and the stirring blade was rotated at 300 rpm during the temperature rise and during the reaction.
  • the stirring blades used were two paddle blades.
  • the temperature was controlled at ⁇ 1 ° C., and the mixture was stirred for 4 hours.
  • the deClF form is a low-boiling compound (boiling point of about 15 ° C.), so the reaction pressure gradually increases, but the reaction was carried out in a sealed state without purging.
  • Example 2 Production of 1243yc by 244cc deClF [production of 244cc] Tetrafluoroethylene (TFE) and chloroform (CHCl 3 ) are reacted in the presence of a Lewis acid, and 1,1,3-trichloro-2,2,3,3-tetrafluoropropane ( HCFC-224ca (hereinafter also referred to as 224ca) was produced, and 244 cc was produced from the obtained 224ca by the second step.
  • TFE Tetrafluoroethylene
  • CHCl 3 chloroform
  • 224ca was produced by the following procedure.
  • CHCl 3 + TFE ⁇ 224ca anhydrous aluminum chloride (25 g, 0.19 mol), CHCl 3 (500 g, 4.19 mol) and 224ca (100 g, 0.45 mol) were put into 500 mL stainless steel A / C and degassed under reduced pressure while stirring.
  • TFE was supplied until the inside of A / C reached 0.05 MPa, and the inside of A / C was heated to 80 ° C. Thereafter, TFE was further supplied while maintaining the pressure in A / C at 0.8 MPa.
  • the total amount of TFE supplied to A / C was 0.17 kg (1.65 mol).
  • 244cc was obtained by the following method.
  • a gas phase reactor made of SUS316, diameter 25 mm, length 30 cm
  • activated carbon pellets 15 g supporting palladium at a ratio of 2.0 mass%
  • the temperature was raised to 130 ° C. while flowing nitrogen (N 2 ) gas (500 NmL / min).
  • N 2 nitrogen
  • the catalyst was dried until the moisture in the gas obtained from the outlet of the reaction tube became 20 ppm or less.
  • the supply of nitrogen was stopped, the reaction tube was heated to 200 ° C. while supplying hydrogen (180 mL / min), and then 224ca (0.44 g / min) was supplied.
  • the crude gas obtained from the outlet of the reaction tube was washed with water, acid and moisture were removed through an alkali washing tower and molecular sieve 5A, and then collected in a cold trap.
  • the conversion of 224ca was 98%, and 1,3-dichloro-1,1,2,2-tetrafluoropropane (HCFC-234cc) had a selectivity of 24%.
  • 244 cc was obtained with a selectivity of 70%.
  • a total of 500 g (2.27 mol) of 224ca was reacted above to give 298 g of crude product.
  • the obtained crude product was subjected to normal pressure rectification in a 25-stage rectification column to obtain a total of 200 g of 244 cc.
  • a / C was placed in an oil bath and the temperature was raised to 180 ° C., which is the reaction temperature.
  • the temperature was raised for just over 1 hour, and the stirring blade was rotated at 300 rpm during the temperature rise and during the reaction.
  • the stirring blades used were two paddle blades.
  • the temperature of the oil bath was lowered and cooled to room temperature. During the reaction, the reaction was carried out in a sealed state without purging.
  • reaction solution was sampled from the insertion tube into a high pressure syringe and analyzed by GC.
  • the composition analysis of 244cc and 1243yc which is a de-ClF form was performed by GC analysis, and the conversion and selectivity were calculated.
  • the conversion rate of 244 cc was 79.2%
  • the selectivity of 1243yc was 98.6%
  • 1243yc could be obtained in a very high yield of 78.1%.
  • the reaction tube was installed in a water bath, and the temperature was raised to 75 ° C., which is the reaction temperature. The temperature was raised in less than 10 minutes. After raising the temperature to 75 ° C., the temperature was controlled at ⁇ 1 ° C. and mixed for 4 hours. During the reaction, since the deClF form is a low boiling point compound, the reaction pressure gradually increases, but the reaction was carried out in a sealed state without purging. After completion of the reaction, the temperature of the water bath was lowered and cooled to room temperature. After the temperature dropped to room temperature, the reaction solution was sampled from the insertion tube into a high pressure syringe and analyzed by GC.
  • the composition analysis of 224cb and 1224ye which is a de-ClF form was performed by GC analysis, and the conversion and selectivity were calculated.
  • the conversion rate of 225cb was 19.2%
  • the selectivity of 1224ye was 1.70%
  • the yield was as low as 0.33%. It is considered that the conversion rate did not increase because it was a reaction tube test without a stirring mechanism.
  • the selectivity was very low, there were two or more deClF routes, and in the reaction test, solvent-derived desorption as a reaction byproduct.
  • a large amount of Cl—H substitution product such as 1-chloro-1,2,2,3,3-pentafluoropropane (CF 2 H—CF 2 —CClFH, HCFC-235ca) was produced.
  • a / C was installed in the water bath, and it heated up to 75 degreeC which is reaction temperature.
  • the temperature was raised in less than 1 hour, and the stirring blade was rotated at 300 rpm during the temperature rise and during the reaction.
  • the stirring blades used were two paddle blades.
  • the temperature was controlled at ⁇ 1 ° C. and stirred for 5 hours.
  • the deClF form is a low-boiling compound (boiling point of about 15 ° C.), so the reaction pressure gradually increases, but the reaction was carried out in a sealed state without purging.
  • the composition of 225cb and 1224ye which is a de-ClF form was analyzed by GC analysis, and the conversion and selectivity were calculated. As a result, the conversion rate of 225cb was 3.6%, the selectivity of 1224ye was 30.8%, and the yield was 1.1%, which was a very low yield.
  • Examples 3 to 9 1224yd was produced in the same manner as in Example 1 except that the conditions described in Tables 1 and 2 below were changed.
  • Example 10 Production of 1234yc (1,1,2,3-tetrafluoropropene) by de-ClF of 235 cc (1-chloro-1,1,2,2,3-pentafluoropropane) [Production of 235 cc ]
  • 235 cc (1-chloro-1,1,2,2,3-pentafluoropropane)
  • 1550 g of a crude product containing 16.4% by mass of 235 cc was obtained.
  • the obtained crude product was subjected to normal pressure rectification in a 25-stage rectification column to obtain a total of 200 g of 235 cc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

分子内に-CF2-構造を有する含フッ素プロパンを原料として用いて、-CF=構造を有する含フッ素プロペンを、効率よくかつ高収率で得る製造方法の提供。 下記式(A)で示される含フッ素含塩素プロパンを、アルカリ土類金属および遷移金属から選ばれる少なくとも1種からなる還元剤の存在下に脱フッ素脱塩素反応させて、下記式(B)で示される含フッ素プロペンを得る、含フッ素プロペンの製造方法。 CY3-CF2-CClX2 式(A) CY3-CF=CX2 式(B) 式(A)中、2つのXはそれぞれ独立して、F、ClまたはHであり、3つのYはそれぞれ独立して、FまたはHである。ただし、Xが2つともHの場合は除く。式(B)中のXおよびYは、式(A)におけるXおよびYと同じである。

Description

含フッ素プロペンの製造方法
 本発明は、含フッ素プロペンを効率よく製造する方法に関する。
 近年、洗浄剤、冷媒、発泡剤、溶剤、エアゾール用途等にハイドロフルオロカーボン(HFC)やハイドロクロロフルオロカーボン(HCFC)が用いられている。しかしながら、これらの化合物は、地球温暖化の原因となる可能性が指摘されている。そこで、地球温暖化係数の小さい化合物としてハイドロフルオロオレフィン(HFO)やハイドロクロロフルオロオレフィン(HCFO)などの含フッ素オレフィンが注目されている。
 HFOやHCFOはオゾン破壊係数(ODP)、地球温暖化係数(GWP)のいずれも低く、環境負荷が小さい上に、冷凍能力、洗浄性、不燃性、低毒性などの物性に優れることが知られている。
 特に、冷媒や溶剤の用途では、HFOやHCFOであって構造中に炭素を3つ有するC3不飽和化合物(以下、含フッ素プロペンともいう。)が好適である。さらに、含フッ素プロペンのうちでも、分子内に-CF=で示される構造を有する含フッ素プロペンは毒性が低く、冷媒、溶剤向けに特に好適である。加えて、分子内に-CF=CX(2つのXはそれぞれ独立して、F、ClまたはHであり、Xが2つともHの場合を除く)で示される構造を有する含フッ素プロペンは、分子内に-CF=CHで示される構造を有する含フッ素プロペンと比較して、不燃性が高く、洗浄性が優れており、冷媒、溶剤向けにさらに好適である。例として、1-クロロ-2,3,3,3-テトラフルオロプロペン(CF-CF=CClH、HCFO-1224yd)、1-クロロ-2,3,3トリフルオロプロペン(CFH-CF=CClH)などが挙げられる。
 一方、-CF=を有する含フッ素プロペンは、例えば、前駆体として-CFCl-を有する含フッ素プロパンを脱塩素反応することで製造される。しかしながら、前駆体として-CFCl-を有する含フッ素プロパンはエネルギー的に不安定であるため、-CF=を有する含フッ素プロペンを高収率で得ることが困難である。また、フッ素化学産業の基幹原料であるテトラフルオロエチレン(TFE)を出発物質とした含フッ素プロパンの合成では、-CF-を有する化合物が合成されやすい。
 これらの理由から、現在、-CF=を有する含フッ素プロペンの製法として、脱ハロゲン化水素で合成されることが一般的である(例えば、特許文献1を参照)。しかし、脱ハロゲン化水素の前駆体を得るためには必要に応じてH還元やハロゲン化などの複数工程が必要となりプロセスの効率性が課題となっている。
 これに対して、特許文献2では、-CF-を有する含フッ素プロパンを原料として、H還元雰囲気で脱フッ素脱塩素することで、直接-CF=を有する含フッ素プロペンを合成する方法が検討されている。しかしながら、特許文献2の方法では、目的とする-CF=を有する含フッ素プロペンを高収率で得られていない。
 また、非特許文献1では金属亜鉛存在下で、特許文献2と同様に脱フッ素脱塩素する方法が試みられているが、同一反応系中に脱塩素が進行する基質が含まれること、および同一基質の中で2通りの脱フッ素脱塩素ルートが存在することから、目的とする-CF=を有する含フッ素プロペンを高収率で得られていない。
国際公開第2017/110851号 国際公開第1994/005611号
Bulletin de la Societe Chimiquw,[6]. 920-4; 1986
 本発明は、分子内に-CF-構造を有する含フッ素プロパンを原料として用いて、-CF=構造、を有する含フッ素プロペンを、効率よくかつ高収率で得る製造方法の提供を目的とする。さら特には、分子内に-CF=CX(Xはそれぞれ独立して、F、ClまたはHであり、Xが2つともHの場合を除く)で示される構造を有する含フッ素プロペンを、効率よくかつ高収率で得る製造方法の提供を目的とする。
 本発明は、以下の態様を有する。
[1]下記式(A)で示される含フッ素含塩素プロパンを、アルカリ土類金属および遷移金属から選ばれる少なくとも1種からなる還元剤の存在下に脱フッ素脱塩素反応させて、下記式(B)で示される含フッ素プロペンを得る、含フッ素プロペンの製造方法。
 CY-CF-CClX  式(A)
 CY-CF=CX     式(B)
 式(A)中、2つのXはそれぞれ独立して、F、ClまたはHであり、3つのYはそれぞれ独立して、FまたはHである。ただし、Xが2つともHの場合は除く。式(B)中のXおよびYは、式(A)におけるXおよびYと同じである。
[2]前記含フッ素含塩素プロパンは3,3-ジクロロ-1,1,1,2,2-ペンタフルオロプロパンであり、前記含フッ素プロペンは1-クロロ-2,3,3,3-テトラフルオロプロペンである[1]の製造方法。
[3]前記含フッ素含塩素プロパンは1-クロロ-1,1,2,2-テトラフルオロプロパンであり、前記含フッ素プロペンは1,1,2-トリフルオロプロペンである[1]の製造方法。
[4]前記含フッ素含塩素プロパンは1-クロロ-1,1,2,2,3-ペンタフルオロプロパンであり、前記含フッ素プロペンは1,1,2,3-テトラフルオロプロペンである[1]に記載の製造方法。
[5]前記還元剤は、亜鉛、マグネシウム、銅、およびニッケルからなる群から選ばれる少なくとも1種を含む[1]~[4]のいずれかの製造方法。
[6]前記還元剤は、亜鉛を含む[1]~[5]のいずれかの製造方法。
[7]前記還元剤は、活性化剤で活性化された還元剤である[1]~[6]のいずれかの製造方法。
[8]前記還元剤は、粒径D50が0.05~1000μmの粉末である[1]~[7]のいずれかの製造方法。
[9]前記含フッ素含塩素プロパンを液相中で脱フッ素脱塩素反応させる[1]~[8]のいずれかの製造方法。
[10]前記液相は、前記含フッ素含塩素プロパンを溶解する溶媒を含む[9]の製造方法。
[11]前記溶媒は、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、t-ブチルアルコール、1-ペンタノール、1-ヘキサノール、N,N-ジメチルホルムアミド、アセトニトリル、アセトン、メチルエチルケトン、ジエチルケトン、およびテトラヒドロフランからなる群から選ばれる少なくとも1種を含む[10]]の製造方法。
[12]前記還元剤を、前記含フッ素含塩素プロパン1.0モルに対して0.6~3.0モルの割合で用いる[1]~[11]のいずれかの製造方法。
[13]前記脱フッ素脱塩素反応を、ハロゲン化銅を含む触媒の存在下に行う[1]~[12]のいずれかの製造方法。
[14]前記ハロゲン化銅を含む触媒を、前記含フッ素含塩素プロパン1モルに対して1~50モル用いる[13]に記載の製造方法。
[15]前記脱フッ素脱塩素反応の反応温度は0℃以上250℃以下である[1]~[14]のいずれかの製造方法。
 本発明によれば、分子内に-CF-構造を有する含フッ素プロパンを原料として、-CF=構造、特には、分子内に-CF=CX(Xはそれぞれ独立して、F、ClまたはHであり、Xが2つともHの場合を除く)で示される構造を有する含フッ素プロペンを温和な条件で効率良くかつ高収率で製造できる。
 本明細書における用語の定義、記載の仕方等は下記のとおりである。
 「ハロゲン化炭化水素」は、化合物名の後の括弧内にその化合物の略称を記すが、必要に応じて化合物名に代えてその略称を用いる。また、略称として、ハイフン(-)より後ろの数字およびアルファベット小文字部分だけ(例えば、HCFO-1224ydは、1224ydで表すことがある。さらに、幾何異性体を有する化合物の名称およびその略称に付けられた(E)は、E体(トランス体)を示し、(Z)はZ体(シス体)を示す。該化合物の名称、略称において、E体、Z体の明記がない場合、該名称、略称は、E体、Z体、およびE体とZ体の混合物を含む総称を意味する。
 「反応式(F)で示される反応」を、反応(F)という。他の式で表される反応もこれに準じて表す。また、「式(A)で示される化合物」を化合物(A)という。他の式で表される化合物もこれに準じて表す。
 数値範囲を表す「~」では、その上限値およびその下限値を含む。また、数値範囲の下限値および上限値が同じ単位の場合、簡潔化のために片方の記載を省略することがある。
 粒径D50は、レーザー回折/散乱式粒度分布測定装置を用いて測定した粒径分布の累積粒度曲線において、その積算量が体積基準で50%を占めるときの粒径を表す。
(本発明の製造方法)
 本発明の製造方法は、式(A)で示される含フッ素含塩素プロパンを、アルカリ土類金属および遷移金属から選ばれる少なくとも1種からなる還元剤(以下、還元剤(M)ともいう。)の存在下に脱フッ素脱塩素反応させて、式(B)で示される含フッ素プロペンを得るものである。本発明による脱フッ素脱塩素反応(以下、脱ClF反応ともいう。)は、下記反応式(F)で表される。
Figure JPOXMLDOC01-appb-C000001
 反応式(F)において、化合物(A)中の2つのXはそれぞれ独立して、F、ClまたはHであり、3つのYはそれぞれ独立して、FまたはHである。ただし、化合物(A)は、Xが2つともHである場合を含まない。化合物(B)中のXおよびYは、化合物(A)におけるXおよびYと同じである。
 本発明者らは、分子内に-CF-構造を有する含フッ素含塩素プロパンから、還元剤の存在下に、分子内に-CF=構造を有する含フッ素プロペンを得る、脱ClF反応において、原料を化合物(A)に限定し、還元剤を還元剤(M)に限定して組み合わせることで、生成物である化合物(B)が高収率で得られることを見出した。
 上記のとおり、従来、脱ClF反応は、反応の工程数が少なく簡便な方法であるが、極めて収率が低く含フッ素プロペンの製法として好適ではないと認識されていた。例えば、特許文献2では化合物(A)を、水素を還元剤として脱ClF反応させて化合物(B)を得ているが、収率は50%未満である。また、非特許文献1では、化合物(A)と異なる構造の、例えば、CClF-CF-CClHを原料とし、還元剤(M)を用いて脱ClF反応させて化合物(B)を複数種得ているが、化合物(B)の収率は合計でも数%以下である。このように、これまでに提案されている脱ClF反応では、高収率で化合物(B)は得られないとされていた。
 本発明者らは、まず、還元剤を用いた脱ClF反応の原料に着目し、原料の構造を化合物(A)の構造に限定する、すなわち、CY-CF-CClXにおいて、XをF、ClまたはHに限定し、かつ、YをFまたはHに限定した原料を用いることにより、以下のようにして副反応が抑制されると考えた。
 分子内に-CF-構造を有する含フッ素含塩素プロパンからの還元剤を用いた脱ClF反応においては、還元剤により-CF-からFが引き抜かれると同時に、両末端の炭素原子のうちいずれか一方の炭素原子に結合するClが引き抜かれる。ここで、末端の炭素原子の両方にClが存在すると、反応ルートが2通りとなり、結果として高収率で-CF=構造を有する含フッ素プロペンが得られないと考えられる。したがって、本発明においては、不要な副反応が生起しないように、原料の化合物(A)を、末端の炭素原子のいずれか一方のみにClが結合した構成とした。
 CY-CF-CClX(化合物(A))からの脱ハロゲンルートとしては、-CF-CClXからの脱ClFルートしか実質的に存在しない。化合物(A)においてYのうち一つ以上がFであった場合、脱ハロゲンルートとして、CY-CF-からの脱Fも原理的には考えられる。しかしながら、C-F結合エネルギーが極めて大きいため、反応速度が極めて小さく、その場合においても現実的には脱F体はほとんど得られない。したがって、原料として化合物(A)を選択することで、化合物(B)を高収率で得られるものと想定できる。
 なお、原料として化合物(A)を選択したとしても、特許文献1のように、一般的に用いられる水素を還元剤とした場合では、-CF=構造を有する含フッ素プロペンは高収率では得られない。その理由は定かではないが、水素の還元能力が低く、還元にはより高い温度が必要となることから、生成するオレフィンが重合もしくは分解するためと考えられる。そこで、アルカリ土類金属および遷移金属から選ばれる少なくとも1種からなる還元剤である還元剤(M)を選択して、化合物(A)と組み合わせて用いることで、化合物(B)を高収率で得られる本発明を完成するに至った。
 具体的には、本発明の製造方法に係る脱ClF反応(F)においては、化合物(B)を60%以上の高収率で製造できる。さらに、本発明の製造方法に係る脱ClF反応(F)においては、反応温度を低くする等、より温和な条件において、より高収率で化合物(B)を得ることができる。
(本発明の製造方法が適用可能な反応)
 本発明が適用される反応として、具体的には以下の式(1)~式(20)で示される脱ClF反応がある。
CH-CF-CCl  →  CH-CF=CCl    …(1)
CFH-CF-CCl  →  CFH-CF=CCl  …(2)
CFH-CF-CCl  →  CFH-CF=CCl  …(3)
CF-CF-CCl  →  CF-CF=CCl    …(4)
CH-CF-CClH  →  CH-CF=CClH   …(5)
CFH-CF-CClH  →  CFH-CF=CClH …(6)
CFH-CF-CClH  →  CFH-CF=CClH …(7)
CF-CF-CClH  →  CF-CF=CClH   …(8)
CH-CF-CClF  →  CH-CF=CClF   …(9)
CFH-CF-CClF  →  CFH-CF=CClF …(10)
CFH-CF-CClF  →  CFH-CF=CClF …(11)
CF-CF-CClF  →  CF-CF=CClF   …(12)
CH-CF-CClFH  →  CH-CF=CFH    …(13)
CFH-CF-CClFH  →  CFH-CF=CFH  …(14)
CFH-CF-CClFH  →  CFH-CF=CFH  …(15)
CF-CF-CClFH  →  CF-CF=CFH    …(16)
CH-CF-CClF  →  CH-CF=CF    …(17)
CFH-CF-CClF  →  CFH-CF=CF  …(18)
CFH-CF-CClF  →  CFH-CF=CF  …(19)
CF-CF-CClF  →  CF-CF=CF    …(20)
 上記式(1)~(20)で示される脱ClF反応において、原料である化合物(A)の入手容易性や生成物である化合物(B)の有用性等を勘案すると、本発明が好適に用いられる反応として、化合物(A)に含まれるフッ素原子の総数が4~6である脱ClF反応(3)、(4)、(7)、(8)、(10)、(11)、(12)、(14)~(19)が挙げられる。これらのうちでも、脱ClF反応(8)、(17)および(18)に特に好適である。
 脱ClF反応(8)は、3,3-ジクロロ-1,1,1,2,2-ペンタフルオロプロパン(CF-CF-CClH、HCFC-225ca。以下、225caともいう。)から、1-クロロ-2,3,3,3-テトラフルオロプロペン(CF-CF=CClH、HCFO-1224yd。以下、1224ydともいう。)を得る反応である。
 1224ydは、特に冷媒や溶剤への使用が期待されている化合物であり、例えば、上記特許文献1にも、225caからの製造ルートが提案されている。しかしながら、特許文献1に記載された方法では、脱フッ化水素、H還元、塩素化および脱塩化水素が必要であり工程が多く製造コストが高いという課題があった。しかし、本発明の製造方法を適用することで、225caの還元剤(M)を用いた脱ClF反応により、1工程でかつ高収率で1224ydを製造することが可能となるため、本発明の効果はより顕著である。
 脱ClF反応(17)は、1-クロロ-1,1,2,2-テトラフルオロプロパン(CH-CF-CClF、HCFC-244cc、以下、244ccともいう。)から、1,1,2-トリフルオロプロペン(CH-CF=CF、HFO-1243yc、以下、1243ycともいう。)を得る反応である。
 1243ycは、これまでに製造に関して文献に記載のない化合物であるが、本発明の製造方法によれば、入手容易な原料である244ccの還元剤(M)を用いた脱ClF反応により1工程でかつ高収率での製造が可能である。1243ycは、例えば、カーエアコンや自動販売機用の冷媒、発泡剤、エアゾール噴射剤、樹脂原料などの用途として有用である。
 脱ClF反応(18)は、1-クロロ-1,1,2,2,3-ペンタフルオロプロパン(CHF-CF-CClF、HCFC-235cc、以下、235ccともいう。)から、1,1,2,3-テトラフルオロプロペン(CHF-CF=CF、HFO-1234yc、以下、1234ycともいう。)を得る反応である。
 1234ycは、これまでに製造に関して文献に記載のない化合物であるが、本発明の製造方法によれば、入手容易な原料である235ccの還元剤(M)を用いた脱ClF反応により1工程でかつ高収率での製造が可能である。1234ycは、例えば、カーエアコンや自動販売機用の冷媒、発泡剤、エアゾール噴射剤、樹脂原料などの用途として有用である。
(脱ClF反応)
 本発明の製造方法は、上記脱ClF反応式(1)~(20)で示される、化合物(A)から化合物(B)を得る脱ClF反応を、アルカリ土類金属および遷移金属から選ばれる少なくとも1種からなる還元剤(M)の存在下に行うことを特徴とする。
<化合物(A)>
 化合物(A)の入手方法は特に制限されない。公知の方法で製造してもよく、市販品を用いてもよい。本発明が好ましく適用される式(8)の反応における225caは、例えば、テトラフルオロエチレン(TFE)とジクロロフルオロメタン(CClFH)を、塩化アルミニウム等のルイス酸触媒の存在下で反応させることにより製造できる。
 この場合、225caは、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン(CClF-CF-CClFH、HCFC-225cb)、2,2-ジクロロ-1,1,3,3,3-ペンタフルオロプロパン(CHF-CCl-CF、HCFC-225aa)、2,3-ジクロロ-1,1,2,3,3-ペンタフルオロプロパン(CHF-CClF-CClF、HCFC-225bb)等とのジクロロペンタフルオロプロパン(HCFC-225)異性体混合物の状態で得られる。したがって、HCFC-225異性体混合物から225caを蒸留等の公知の方法で分離して化合物(A)として用いる。
 また、225caを含むHCFC-225異性体混合物の市販品、例えば、アサヒクリンAK225(AGC社商品名、225caの48モル%と、HCFC-225cbの52モル%の混合物)等から、225caを蒸留等の方法で分離して化合物(A)として用いてもよい。
 また、本発明が好ましく適用される式(17)の反応における244ccは、例えば、以下の方法(A)または方法(B)によって製造できる。
 方法(A):TFEと、CCl、CHClおよびCHClから選ばれる少なくとも1種を、塩化アルミニウム等のルイス酸触媒の存在下で反応させて、CFCl-CF-CClAB(式中、AとBは互いに独立してHまたはClである。)で表される化合物を得、得られた化合物をパラジウム触媒等の存在下で水素と反応させることで水素化させて244ccを得る方法。
 方法(B):TFEとCHClを、塩化アルミニウム等のルイス酸触媒の存在下で反応させて、244ccを得る方法。
 方法(A)または方法(B)では、244ccは、244ccとともに未反応原料、副生物等を含む反応生成物として得られる。したがって、蒸留、抽出蒸留、共沸蒸留、膜分離、二層分離、吸着等の公知の精製工程により244ccを分離して化合物(A)として用いる。
 また、本発明が好ましく適用される式(18)の反応における235ccは、例えば、米国特許第5756869号の記載の方法等により製造できる。すなわち、225cbを活性炭に担持されたビスマス-パラジウム触媒等の存在下で水素と反応させることで水素化させることにより製造できる。反応生成物中に225caなどの異性体および異性体が水素化されたHCFC等が含まれる場合には、蒸留等の公知の精製工程により235ccを分離して化合物(A)として用いる。
 なお、本発明の製造方法において、化合物(A)は、化合物(A)と不純物を含む混合物の形態で脱ClF反応(F)に用いてもよい。混合物における不純物量は、本発明の製造方法の効果に影響を及ぼさない程度とするのが好ましい。具体的には、化合物(A)は、化合物(A)の製造時において副生する副生物や未反応原料と共に用いられてもよい。例えば、純度が85質量%以上、好ましくは90質量%以上、特に好ましくは95質量%以上の化合物(A)を含む組成物として、本発明に用いることができる。
<還元剤(M)>
 本発明に用いる還元剤(M)は、アルカリ土類金属および遷移金属から選ばれる少なくとも1種である。アルカリ土類金属は、具体的には、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウムである。遷移金属は、具体的には、第3族元素から第12族元素である。還元剤(M)としては、反応性の観点から亜鉛、マグネシウム、銅、またはニッケルが好ましく、亜鉛またはマグネシウムがより好ましく、ハンドリング性の観点から亜鉛が特に好ましい。
 還元剤(M)は上記金属の1種からなってもよく、2種以上からなってもよい。2種以上の場合は混合物であってよく、合金であってもよい。
 還元剤(M)の形態は特に限定されないが、化合物(A)との接触効率の観点から粉末状であることが好ましく、より球状に近い粉末状が好ましい。粒子径は化合物(A)との接触効率と、ハンドリングのしやすさから選定される。還元剤(M)が粉末状である場合、粒径D50は0.05~1000μmが好ましい。粒径が小さいほど化合物(A)と還元剤(M)との接触効率は良くなり、反応が進行するため好ましく、500μm以下がより好ましく、200μm以下がさらに好ましい。また、粒径が大きいほど製造時のハンドリングは容易となるため好ましく、0.1μm以上がより好ましく、0.5μm以上がさらに好ましい。
 また、還元剤(M)を構成する金属の表面は空気中で酸素に暴露されることで酸化されやすい。したがって、通常、還元剤(M)は、その表面に構成金属の酸化被膜を有する。酸化被膜を有すると、還元剤(M)の還元能が低下し反応速度が低下することがある。そのため還元剤(M)は、本発明に用いる前に、酸化被膜を除去する前処理を受けることが好ましい。
 還元剤(M)における酸化被膜の除去には、通常、活性化剤を用いる。活性化剤としては、金属表面の酸化被膜除去に一般的に用いられる活性化剤が特に制限なく使用可能であり、工業的には塩化亜鉛が適している。その理由は、例えば、本発明に係る脱ClF反応を液相で行った場合、塩化亜鉛の極性溶媒への溶解性が高いことと、特に亜鉛を還元剤(M)として用いた場合に反応の副生物として塩化亜鉛が生成することから、新規に活性化剤を添加する必要がない点にある。
 塩化亜鉛が活性化剤として機能する理由として反応系中に微量に含まれる水分が原因で生成する塩化水素が金属表面の酸化被膜を除去していると考えられている。なお、塩化亜鉛以外にもジブロモエタンなども活性化剤として使用できる。
 なお、活性化剤による還元剤(M)の処理は、後述のとおり、化合物(A)の脱ClF反応(F)が行われる反応器内で行ってもよい。さらに、反応器に化合物(A)、還元剤(M)および脱ClF反応(F)に用いられるその他の成分と活性化剤を投入し、活性化剤による還元剤(M)の処理を行いながら脱ClF反応(F)を行ってもよい。なお、活性化剤の量は、還元剤(M)に対して、1~100モル%が好ましく、経済性と反応性の観点から10~50モル%がより好ましく、20~50モル%がさらに好ましい。還元剤(M)を初期に一括投入する形式のバッチ反応の場合は、反応中に還元剤(M)が減少していくことになる。その場合は反応中の還元剤(M)の最大モル量に対して、1~100モル%が好ましく、経済性と反応性の観点から10~50モル%がより好ましい。液相反応の場合は、ハンドリングのしやすさから、活性化剤が溶媒に溶解している状態で使用するのが好ましく、溶媒への飽和溶解度以下が好ましい。
 本発明に用いる還元剤(M)の使用量は、化合物(A)1.0モルに対して0.6~3.0モルが好ましい。還元剤(M)の使用量を上記範囲とすることで、十分な反応速度が得られるとともに、化合物(B)を十分に高い収率で製造できる。ただし、還元剤(M)の使用量が多くなると生産コストが高くなってしまう。そのため、その使用量は、化合物(A)1.0モルに対して0.6~1.5モルがより好ましく、0.8~1.2モルが特に好ましく、1.0~1.2モルが最も好ましい。また、還元剤(M)を充填した反応器に、連続的に化合物(A)を流通させる固定層フローリアクター形式の場合でも、化合物(A)の延べ使用量1.0モルに対して、還元剤(M)の使用量を上記範囲に設定することで、十分な反応速度が得られるとともに、化合物(B)を十分に高い収率で製造できる。
 本発明では、化合物(A)の種類によっては、脱ClF反応の反応速度が小さく、化合物(B)の製造効率が低い場合がある。その場合、反応温度をより高温にすることで反応速度を大きくすることが可能であるが、触媒を用いることで反応速度を大きくして化合物(B)の製造効率を向上させることもできる。
 例えば、上記式(17)の脱ClF反応により化合物(A)として244ccを用いて1243ycを得る場合、上記式(8)による225caを用いた脱ClF反応に比べて、反応速度が小さく反応には高温を要する。そのため、触媒を用いることで、より温和な条件で、脱ClF反応が進行し、化合物(B)である1243ycを得ることが可能となる。
 触媒としては、ハロゲン化銅が好適である。ハロゲン化銅としては、塩化銅(I)、臭化銅(I)、またはヨウ化銅(I)が好ましく、特に臭化銅(I)がより好ましい。さらに、ハロゲン化銅、特に臭化銅(I)をトリフェニルホスフィン等と錯形成させた触媒がより好ましい。このように錯形成された触媒を用いることでより高収率で脱ClF体である化合物(B)を得ることが可能となる。
 触媒を用いる場合、その使用量は、化合物(A)に対して1モル%~50モル%の割合が好ましく、5モル%~20モル%の割合がより好ましい。
 本発明における脱ClF反応は、液相で行ってもよいし、気相で行ってもよい。上記反応式(F)で示される脱ClF反応に伴い副生する還元剤(M)のハロゲン化物を除去しやすい点から、脱ClF反応(F)は液相で行うのが好ましい。
 例えば、脱ClF反応(F)において、還元剤(M)として亜鉛(Zn)を用いた場合、反応式(F)は、以下のように示される。ここで、YとXは反応式(F)におけるのと同様である。
 CY-CF-CClX+Zn→
      CY-CF=CX+0.5ZnF+0.5ZnCl
 上記反応式において還元剤(M)である亜鉛は、化合物(A)の脱ClF反応により生じたFおよびClとそれぞれ反応して、フッ化亜鉛および塩化亜鉛を生成する。したがって、反応後の生成物は、化合物(B)、フッ化亜鉛および塩化亜鉛となる。
 本発明の製造方法を液相で行う場合、液相は溶媒を含むことが好ましい。溶媒は、化合物(A)および得られる化合物(B)に非反応性であってかつ、化合物(A)を溶解する溶媒が好ましい。なお、溶媒が化合物(A)を溶解するとは、25℃において、溶媒と化合物(A)を任意の混合割合で混合した際に相分離や濁りを起こさずに均一に溶解することをいう。
 溶媒は、さらに、脱ClF反応(F)で副生する還元剤(M)の塩化物およびフッ化物を溶解することが好ましい。該観点から脱ClF反応(F)に用いる溶媒は極性溶媒が好ましい。極性溶媒としては、アルコール類、エーテル類、ケトン類、アミド化合物、ニトリル化合物からなる群から選ばれる少なくとも1種が好ましい。
 アルコールとしては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、イソブチルアルコール、2-ブタノール、t-ブチルアルコール、1-ペンタノール、1-ヘキサノール等が挙げられる。ケトンとしては、アセトン、メチルエチルケトン、ジエチルケトン、メチルプロピルケトン、メチルイソブチルケトン、メチルアミルケトン、シクロヘキサノン等が挙げられる。エーテルとしては、テトラエチレングリコールジメチルエーテル、ジメチルエーテル、エチルメチルエーテル、ジエチルエーテル、エチレンオキシド等の鎖状エーテル、テトラヒドロフラン、フラン、クラウンエーテル類等の環状エーテル等が挙げられる。アミド化合物としてはN,N-ジメチルホルムアミド等が、ニトリル化合物としては、アセトニトリル等が挙げられる。
 これらの中でも溶媒としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、t-ブチルアルコール、1-ペンタノール、1-ヘキサノール、N,N-ジメチルホルムアミド、アセトニトリル、アセトン、メチルエチルケトン、ジエチルケトン、またはテトラヒドロフランが好ましい。さらに、メタノール、エタノール、テトラヒドロフラン、アセトン、N,N-ジメチルホルムアミド、またはアセトニトリルが脱ClF反応(F)の促進性、入手性、脱ClF反応後の化合物(B)との分離容易性の観点で特に好ましく、これらの中から反応温度や副反応の進行度合いを勘案し、適切な溶媒を選定することができる。これらの溶媒は、1種を単独で用いてもよく、2種以上を組み合せて用いてもよい。
 本発明の製造方法を、溶媒を含む液相で行う場合、溶媒の使用量は、化合物(A)100質量部に対して10~2000質量部が好ましく、20~1500質量部がより好ましく、50~500質量部がさらに好ましい。
 本発明における脱ClF反応(F)の反応温度は、化合物(A)の種類によるが、液相、気相を問わず、反応速度と化合物(B)の収率を高める観点から0~250℃が好ましい。反応温度が低すぎると反応速度が低下し生産性が落ちる。また反応温度が高すぎると化合物(A)の分解や副反応の進行が進むため、収率が低下する懸念がある。また選択できる溶媒が限られるという難点やエネルギーコストがかかるという問題もある。これらの理由から、反応温度は、より好ましくは20~220℃であり、50~180℃が特に好ましい。
 より具体的には、225caから1224ydを得る脱ClF反応(F)を行う場合、反応温度は、20~150℃が好ましく、50~100℃がより好ましい。また、反応圧力は、反応を行う反応器内の圧力であり、ゲージ圧で0~1MPaが好ましく、0~0.5MPaがより好ましい。
 また、244ccから1243ycを得る脱ClF反応(F)を行う場合、反応温度は、50~250℃が好ましく、100~200℃がより好ましい。また、反応圧力は、反応を行う反応器内の圧力であり、ゲージ圧で0~1MPaが好ましく、0~0.5MPaがより好ましい。
 また、235ccから1234ycを得る脱ClF反応(F)を行う場合、反応温度は、50~250℃が好ましく、100~200℃がより好ましい。また、反応圧力は、反応を行う反応器内の圧力であり、ゲージ圧で0~1MPaが好ましく、0~0.5MPaがより好ましい。
 本発明における脱ClF反応(F)の反応時間は、化合物(B)の収率と反応速度の観点で生産性の最も高い時間が選定されるが、0.5~20時間が好ましく、1~10時間がより好ましく、2~5時間が特に好ましい。
 本発明の製造方法は、バッチ式、半連続式または連続式のいずれの方法で行ってもよい。半連続式は、還元剤(M)を充填した反応器に、連続的に化合物(A)を流通させる固定層フローリアクター形式などが例示できる。工業的に目的の化合物(B)を大量に生産する観点から、バッチ式、半連続式または連続式の反応器に撹拌翼を設置し、それを撹拌させることにより脱ClF反応(F)を行うことが好ましい。反応器としては、上記した反応器内の温度および圧力に耐えるものであれば、特に限定されず、例えば、フラスコやオートクレーブ、円筒状の縦型反応器を用いることができる。撹拌翼としては、2枚パドル翼、4枚パドル翼、アンカー翼、ゲート翼、3枚プロペラ、リボン翼、6枚タービン翼等が挙げられる。また、反応器は、反応器内を加熱する電気ヒータ等を備えていてもよい。
 本発明の製造方法を液相で行う場合、通常、反応器内に化合物(A)、溶媒、還元剤(M)、必要に応じて、活性化剤、触媒の所定量を導入して行われる。反応器の材質としては、化合物(A)、溶媒、還元剤(M)、触媒ならびに化合物(B)、還元剤(M)のハロゲン化物を含む反応液成分等に不活性で、耐蝕性の材質であれば特に制限されない。例えば、ガラス、または、鉄、ニッケルおよび鉄等を主成分とするステンレス鋼等の合金などが挙げられる。
 本発明において反応器内で脱ClF反応(F)を行い得られた反応生成物には、目的生成物である化合物(B)以外に、未反応の化合物(A)や副生物、溶媒、還元剤(M)、活性化剤、触媒が含まれ得る。これらを含む反応生成物から化合物(B)を回収する際には、濾過、蒸留等による分離精製方法を採用するのが好ましい。また脱ClF反応と同時に蒸留する反応蒸留形式を採用することもできる。
 例えば、225caから脱ClF反応により得られる1224ydは、1224yd(E)と1224yd(Z)の混合物として得られる。1224yd(E)と1224yd(Z)は必要に応じて、蒸留等の一般的な方法で分離して用いてもよい。
 以下に、本発明を実施例によって具体的に説明するが、本発明はこれらの記載によって限定されるものではない。
(実施例1)225caの脱ClF反応による1224ydの製造
[225caの製造]
 テトラフルオロエチレン(TFE)とジクロロフルオロメタン(CClFH)を、ルイス酸である塩化アルミニウム(AlCl)の存在下で反応させることで得られる主に225caおよび225cbからなる生成物を蒸留分離することで純度99%以上の225caを得た。
[1224ydの製造]
 0.5Lのオートクレーブ(以下、A/Cという。)内に、溶媒としてメタノール(脱水品:関東化学社製)を238g、還元剤(M)として亜鉛の粉末(D50;6~9μm、有機合成用:富士フィルム和光純薬社製)を47g(0.72mol)、活性化剤として塩化亜鉛を9.8g(0.072mol)、および化合物(A)として225caを122g(0.60mol)仕込んで、密閉した。
 次いで、A/Cをウォーターバスに設置し、反応温度である75℃まで昇温させた。昇温は1時間弱で行い、昇温中および反応中は撹拌翼を300rpmで回転させた。尚、撹拌翼は2枚パドル翼を用いた。
 75℃まで昇温後は、該温度の±1℃で制御し4時間撹拌混合させた。反応中は脱ClF体が低沸点化合物(沸点15℃程度)であるため、反応圧力は徐々に上昇するが、パージはせずに密閉状態で反応させた。
 反応終了後は、ウォーターバスの温度を下げ、室温まで冷却した。室温まで下がった後に、反応液を差込管からハイプレッシャーシリンジにサンプリングし、ガスクロマトグラフィー(島津製作所社製、以下、GCという。)にて分析を行った。
 GC分析により225caおよび脱ClF体である1224ydの組成分析を行い転化率、選択率を算出した。その結果、225caの転化率は99.6%であり、1224ydの選択率は88.5%であり、収率88.2%と非常に高収率で1224ydを得ることができた。
(実施例2)244ccの脱ClFによる1243ycの製造
[244ccの製造]
 テトラフルオロエチレン(TFE)とクロロホルム(CHCl)をルイス酸の存在下で反応させ、以下のとおり第1の工程で1,1,3-トリクロロ-2,2,3,3-テトラフルオロプロパン(HCFC-224ca、以下、224caともいう。)を製造し、得られた224caから第2の工程により244ccを製造した。
(1)224caの製造(第1の工程)
 下記反応式にしたがって、次の手順で、224caを製造した。
 CHCl + TFE → 224ca
 まず、500mLステンレス製A/Cに、無水塩化アルミニウム(25g、0.19mol)、CHCl(500g、4.19mol)および224ca(100g、0.45mol)を入れて撹拌しながら減圧脱気した後、TFEをA/C内が0.05MPaとなるまで供給し、A/C内を80℃に昇温した。その後、A/C内の圧力を0.8MPaで維持しながら、TFEをさらに供給した。A/Cに供給されたTFEは総量で0.17kg(1.65mol)であった。
 さらに1時間撹拌した後、室温まで冷却して、反応液をGCで分析したところ、CHClの転化率は33%であり、224caの選択率は84%であった。反応後の液を濾別し得られた粗液に、モレキュラーシーブ4Aを102g加え一晩撹拌して、脱水した。撹拌後の粗液を濾別し、得られた粗生成物を蒸留精製することにより224ca(230g、1.05mol)を製造した。
(2)244ccの製造(第2の工程)
 上記した方法で得られた224caを原料として、下記の方法で244ccを得た。
 まず、電気炉を備えた円筒形反応管からなる気相反応装置(SUS316製、直径25mm、長さ30cm)に2.0質量%の割合でパラジウムを担持した活性炭ペレット(15g)を充填し、窒素(N)ガス(500NmL/min)を流しながら130℃まで昇温した。反応管を大気圧(1気圧)に維持しながら、反応管の出口から得られるガス中の水分が20ppm以下になるまで触媒を乾燥した。触媒の乾燥終了後、窒素の供給を停止し、水素(180mL/min)を供給しながら反応管を200℃に加熱した後、224ca(0.44g/min)を供給した。
 反応管の出口から得られた粗ガスは水洗後、アルカリ洗浄塔およびモレキュラーシーブ5Aを通して酸分と水分とを除去した後、コールドトラップに捕集した。捕集した粗生成物をGCで分析したところ、224caの転化率は98%であり、1,3-ジクロロ-1,1,2,2-テトラフルオロプロパン(HCFC-234cc)が選択率24%、244ccが選択率70%で得られた。合計500g(2.27mol)の224caを上記で反応させて、298gの粗生成物を得た。
 得られた粗生成物を25段精留塔で常圧精留して、合計200gの244ccを得た。
[1243ycの製造]
 0.2LのA/Cに溶媒としてN,N-ジメチルホルムアミド(脱水品:純正化学社製)を47g、還元剤(M)として亜鉛粉末(D50;6~9μm、有機合成用:富士フィルム和光純薬社製)11g(0.17mol)、活性化剤として塩化亜鉛(純正化学製)を2.3g(0.017mol)、および化合物(A)として244ccを21g(0.14mol)仕込んで、密閉した。
 次いでA/Cをオイルバスに設置し反応温度である180℃まで昇温させた。昇温は1時間強で行い、昇温中および反応中は撹拌翼を300rpmで回転させた。なお、撹拌翼は2枚パドル翼を用いた。
 180℃で数時間保持後、オイルバスの温度を下げ、室温まで冷却した。なお、反応中はパージはせずに密閉状態で反応させた。
 室温まで下がった後に、反応液を差込管からハイプレッシャーシリンジにサンプリングし、GCにて分析を行った。
 GC分析により244ccおよび脱ClF体である1243ycの組成分析を行い転化率、選択率を算出した。その結果、244ccの転化率は79.2%であり、1243ycの選択率は98.6%であり、収率78.1%と非常に高収率で1243ycを得ることができた。
(比較例1)225cbの脱ClF反応による3-クロロ-1,2,3,3-テトラフルオロプロペン(CClF-CF=CFH、HCFO-1224ye、以下、「1224ye」という。)の製造
 下記のようにして、化合物(A)に該当しない225cbを還元剤(M)の存在下、脱ClF反応させて、1224yeを製造した。
[225cbの製造]
 225cbを99%以上含む市販品、アサヒクリンAK225G(AGC社製)を化合物(A)として用いた。
[1224yeの製造]
 20ccの反応管に溶媒としてN,N-ジメチルホルムアミド(脱水品:純正化学社製)を1.4g、還元剤(M)として亜鉛粉末(D50;6~9μm、有機合成用:富士フィルム和光純薬社製)0.3g(4.5mmol)、活性化剤として塩化亜鉛を0.06g(0.45mmol)、および化合物(A)に該当しない225cbを0.6g(3.0mmol)仕込んで、密閉した。
 反応管をウォーターバスに設置し、反応温度である75℃まで昇温させた。昇温は10分弱で行った。
 75℃まで昇温後は±1℃で制御し4時間混合させた。反応中は脱ClF体が低沸点化合物であるため、反応圧力は徐々に上昇するが、パージはせずに密閉状態で反応させた。
 反応終了後は、ウォーターバスの温度を下げ、室温まで冷却した。室温まで下がった後に、反応液を差込管からハイプレッシャーシリンジにサンプリングし、GCにて分析を行った。
 GC分析により225cbおよび脱ClF体である1224yeの組成分析を行い転化率、選択率を算出した。その結果、225cbの転化率は19.2%であり、1224yeの選択率は1.70%であり、収率0.33%と非常に低収率であった。撹拌機構のない反応管の試験であるため、転化率が上がらなかったと考えられるが、選択率が非常に低く、脱ClFルートが2つ以上あり、さらに反応試験では反応副生物として溶媒由来の脱Cl-H置換体、例えば、1-クロロ-1,2,2,3,3-ペンタフルオロプロパン(CFH-CF-CClFH、HCFC-235ca)が多く生成する結果となった。
(比較例2)
 1224yeの製造方法を下記に変更した以外は比較例1と同様にして1224yeの製造を行った。
[1224yeの製造]
 0.2LのA/Cに溶媒としてメタノール(脱水品:関東化学社製)を79.2g、還元剤(M)として亜鉛粉末(D50;6~9μm、有機合成用:富士フィルム和光純薬社製)15.7g(0.24mol)、活性化剤として塩化亜鉛(純正化学製)を32.7g(0.24mol)、および化合物(A)として225cbを40.5g(0.20mol)仕込んで、密閉した。
 次いで、A/Cをウォーターバスに設置し、反応温度である75℃まで昇温させた。昇温は1時間弱で行い、昇温中および反応中は撹拌翼を300rpmで回転させた。尚、撹拌翼は2枚パドル翼を用いた。
 75℃まで昇温後は±1℃で制御し5時間撹拌混合させた。反応中は脱ClF体が低沸点化合物(沸点15℃程度)であるため、反応圧力は徐々に上昇するが、パージはせずに密閉状態で反応させた。
 GC分析により225cbおよび脱ClF体である1224yeの組成分析を行い転化率、選択率を算出した。その結果、225cbの転化率は3.6%であり、1224yeの選択率は30.8%であり、収率1.1%と非常に低収率であった。
(実施例3~9)
 実施例3~9では、下記の表1および表2に記載される条件に変更した以外は実施例1と同様に実施することにより1224ydを製造した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
(実施例10):235cc(1-クロロ-1,1,2,2,3-ペンタフルオロプロパン)の脱ClFによる1234yc(1,1,2,3-テトラフルオロプロペン)の製造
[235ccの製造]
 米国特許第5756869号の記載の方法に従って、235ccを16.4質量%含む粗生成物を1550g得た。得られた粗生成物を25段精留塔で常圧精留して、合計200gの235ccを得た。
[1234ycの製造]
 0.2LのA/Cに、溶媒としてN,N-ジメチルホルムアミド(脱水品:純正化学社製)を55g、還元剤(M)として亜鉛粉末(D50;6~9μm、有機合成用:富士フィルム和光純薬社製)12g(0.18mol)、活性化剤として塩化亜鉛(純正化学製)を8.3g(0.061mol)、および化合物(A)として235ccを20g(0.12mol)仕込んで、密閉した。
 次いでA/Cをオイルバスに設置し反応温度である170℃まで昇温させた。昇温は1時間強で行い、昇温中および反応中は撹拌翼を300rpmで回転させた。なお、撹拌翼は2枚パドル翼を用いた。
 170℃で2時間保持後、オイルバスの温度を下げ、室温まで冷却した。なお、反応中はパージはせずに密閉状態で反応させた。
 室温まで下がった後に、反応液を差込管からハイプレッシャーシリンジにサンプリングし、GCにて分析を行った。
 GC分析により235ccおよび脱ClF体である1234ycの組成分析を行い転化率、選択率を算出した。その結果、235ccの転化率は78.2%であり、1234ycの選択率は89.3%であり、収率69.8%と高収率で1234ycを得ることができた。
 実施例1、3~9より、1224ydを高選択率、高選択率で得られることがわかった。また、実施例1と実施例7との比較から、活性化剤である塩化亜鉛の使用量を増やすことにより、より225caの選択率が高くなる傾向であることがわかった。また、実施例4と実施例9との比較から、還元剤である亜鉛の使用量を増やすことにより、225caの転化率が高くなる傾向であることがわかった。
 実施例2より、1243ycを高選択率、高選択率で得られることがわかった。実施例10より、本発明の製造方法によれば1234ycを高選択率、高選択率で得られることがわかった。
 なお、2018年5月28日に出願された日本特許出願2018-101495号および2018年9月20日に出願された日本特許出願2018-175771号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (15)

  1.  下記式(A)で示される含フッ素含塩素プロパンを、アルカリ土類金属および遷移金属から選ばれる少なくとも1種からなる還元剤の存在下に脱フッ素脱塩素反応させて、下記式(B)で示される含フッ素プロペンを得る、含フッ素プロペンの製造方法。
     CY-CF-CClX  式(A)
     CY-CF=CX     式(B)
     但し、式(A)中、2つのXはそれぞれ独立して、F、ClまたはHであり、3つのYはそれぞれ独立して、FまたはHである。ただし、Xが2つともHの場合は除く。式(B)中のXおよびYは、式(A)におけるXおよびYと同じである。
  2.  前記含フッ素含塩素プロパンは3,3-ジクロロ-1,1,1,2,2-ペンタフルオロプロパンであり、前記含フッ素プロペンは1-クロロ-2,3,3,3-テトラフルオロプロペンである請求項1に記載の製造方法。
  3.  前記含フッ素含塩素プロパンは1-クロロ-1,1,2,2-テトラフルオロプロパンであり、前記含フッ素プロペンは1,1,2-トリフルオロプロペンである請求項1に記載の製造方法。
  4.  前記含フッ素含塩素プロパンは1-クロロ-1,1,2,2,3-ペンタフルオロプロパンであり、前記含フッ素プロペンは1,1,2,3-テトラフルオロプロペンである請求項1に記載の製造方法。
  5.  前記還元剤は、亜鉛、マグネシウム、銅、およびニッケルからなる群から選ばれる少なくとも1種を含む請求項1~4のいずれか1項に記載の製造方法。
  6.  前記還元剤は、亜鉛を含む請求項1~5のいずれか1項に記載の製造方法。
  7.  前記還元剤は、活性化剤で活性化された還元剤である請求項1~6のいずれか1項に記載の製造方法。
  8.  前記還元剤は、粒径D50が0.05~1000μmの粉末である、請求項1~7のいずれか1項に記載の製造方法。
  9.  前記含フッ素含塩素プロパンを液相中で脱フッ素脱塩素反応させる請求項1~8のいずれか1項に記載の製造方法。
  10.  前記液相は、前記含フッ素含塩素プロパンを溶解する溶媒を含む請求項9に記載の製造方法。
  11.  前記溶媒は、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、t-ブチルアルコール、1-ペンタノール、1-ヘキサノール、N,N-ジメチルホルムアミド、アセトニトリル、アセトン、メチルエチルケトン、ジエチルケトン、およびテトラヒドロフランからなる群から選ばれる少なくとも1種を含む、請求項10に記載の製造方法。
  12.  前記還元剤を、前記含フッ素含塩素プロパン1.0モルに対して0.6~3.0モルの割合で用いる請求項1~11のいずれか1項に記載の製造方法。
  13.  前記脱フッ素脱塩素反応を、ハロゲン化銅を含む触媒の存在下に行う請求項1~12のいずれか1項に記載の製造方法。
  14.  前記ハロゲン化銅を含む触媒を、前記含フッ素含塩素プロパン1モルに対して1~50モル用いる、請求項13に記載の製造方法。
  15.  前記脱フッ素脱塩素反応の反応温度は0~250℃である請求項1~14のいずれか1項に記載の製造方法。
PCT/JP2019/019762 2018-05-28 2019-05-17 含フッ素プロペンの製造方法 WO2019230456A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020522101A JP7287391B2 (ja) 2018-05-28 2019-05-17 含フッ素プロペンの製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-101495 2018-05-28
JP2018101495 2018-05-28
JP2018175771 2018-09-20
JP2018-175771 2018-09-20

Publications (1)

Publication Number Publication Date
WO2019230456A1 true WO2019230456A1 (ja) 2019-12-05

Family

ID=68697522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019762 WO2019230456A1 (ja) 2018-05-28 2019-05-17 含フッ素プロペンの製造方法

Country Status (2)

Country Link
JP (1) JP7287391B2 (ja)
WO (1) WO2019230456A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021176936A (ja) * 2020-05-08 2021-11-11 Agc株式会社 含フッ素重合体および含フッ素重合体の製造方法
WO2022107020A1 (en) * 2020-11-23 2022-05-27 3M Innovative Properties Company Coating composition comprising a curable fluoropolymer and a hydrofluorochloropropene and fluoroelastomers therefrom

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162633A (ja) * 1986-12-26 1988-07-06 Mitsui Petrochem Ind Ltd 含フツ素オレフインの製造方法
JPH01207249A (ja) * 1988-02-12 1989-08-21 Daikin Ind Ltd 含フツ素オレフインの製造方法
JPH04117335A (ja) * 1989-12-19 1992-04-17 E I Du Pont De Nemours & Co ヘキサフルオロプロピレンの多段階合成
JPH04145033A (ja) * 1989-12-19 1992-05-19 E I Du Pont De Nemours & Co ヘキサフルオロプロピレンの多段階合成
JPH11335309A (ja) * 1998-05-20 1999-12-07 Agency Of Ind Science & Technol フッ素化不飽和炭化水素の製造方法
WO2005023734A1 (ja) * 2003-09-02 2005-03-17 Asahi Glass Company, Limited 含塩素含フッ素化合物の製造方法
JP2005525419A (ja) * 2002-05-13 2005-08-25 バイエル・クロツプサイエンス・アクチエンゲゼルシヤフト 置換トリフルオロエチレンの製造方法
WO2008053811A1 (fr) * 2006-11-01 2008-05-08 Daikin Industries, Ltd. Procédé destiné à produire une oléfine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106573857B (zh) * 2014-04-16 2020-06-09 科慕埃弗西有限公司 将氯氟丙烷和氯氟丙烯转化成更需要的氟丙烷和氟丙烯
JP2016160229A (ja) * 2015-03-03 2016-09-05 旭硝子株式会社 テトラフルオロプロペンの製造方法
CN105111038B (zh) * 2015-08-18 2017-11-21 巨化集团技术中心 一种用甲基氯化镁制备2,3,3,3‑四氟丙烯的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162633A (ja) * 1986-12-26 1988-07-06 Mitsui Petrochem Ind Ltd 含フツ素オレフインの製造方法
JPH01207249A (ja) * 1988-02-12 1989-08-21 Daikin Ind Ltd 含フツ素オレフインの製造方法
JPH04117335A (ja) * 1989-12-19 1992-04-17 E I Du Pont De Nemours & Co ヘキサフルオロプロピレンの多段階合成
JPH04145033A (ja) * 1989-12-19 1992-05-19 E I Du Pont De Nemours & Co ヘキサフルオロプロピレンの多段階合成
JPH11335309A (ja) * 1998-05-20 1999-12-07 Agency Of Ind Science & Technol フッ素化不飽和炭化水素の製造方法
JP2005525419A (ja) * 2002-05-13 2005-08-25 バイエル・クロツプサイエンス・アクチエンゲゼルシヤフト 置換トリフルオロエチレンの製造方法
WO2005023734A1 (ja) * 2003-09-02 2005-03-17 Asahi Glass Company, Limited 含塩素含フッ素化合物の製造方法
WO2008053811A1 (fr) * 2006-11-01 2008-05-08 Daikin Industries, Ltd. Procédé destiné à produire une oléfine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHI, GUO-QIANG ET AL.: "delta, epsilon -Unsaturated beta , beta -Difluoro- a -keto Esters: Novel Synthesis and Utility as Precursors of beta , beta -Difluoro- a -amino Acids", J. ORG. CHEM., vol. 60, no. 20, 1995, pages 6289 - 6295, XP055647659, DOI: 10.1021/jo00125a013 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021176936A (ja) * 2020-05-08 2021-11-11 Agc株式会社 含フッ素重合体および含フッ素重合体の製造方法
JP7415778B2 (ja) 2020-05-08 2024-01-17 Agc株式会社 含フッ素重合体および含フッ素重合体の製造方法
WO2022107020A1 (en) * 2020-11-23 2022-05-27 3M Innovative Properties Company Coating composition comprising a curable fluoropolymer and a hydrofluorochloropropene and fluoroelastomers therefrom

Also Published As

Publication number Publication date
JP7287391B2 (ja) 2023-06-06
JPWO2019230456A1 (ja) 2021-06-17

Similar Documents

Publication Publication Date Title
JP6620815B2 (ja) 1−クロロ−2,3,3−トリフルオロプロペンの製造方法
JP5615179B2 (ja) フッ素化されたオレフィンの合成のための方法
JP5884130B2 (ja) 2−クロロ−3,3,3−トリフルオロプロペンの液相フッ素化で2−クロロ−1,1,1,2−テトラフルオロプロペンを製造する方法
US8395001B2 (en) Processes for producing 2-chloro-1,1,1,2-tetrafluoropropane and 2,3,3,3-tetrafluoropropene
JP2024088804A (ja) (ヒドロ)ハロカーボン組成物からハロアルキン不純物を除去するための方法
JP2021120351A (ja) フルオロオレフィンの製造方法
JP5612581B2 (ja) フルオロオレフィン化合物の製造方法
JP7287391B2 (ja) 含フッ素プロペンの製造方法
US9359274B2 (en) Method for producing 1,3,3,3-tetrafluoropropene
JPWO2011162335A1 (ja) 1,1−ジクロロ−2,2,3,3,3−ペンタフルオロプロパンの製造方法
WO2018079726A1 (ja) テトラフルオロプロペンの製造方法
JP5338240B2 (ja) フッ化水素の分離方法
JP2019151629A (ja) 化合物の製造方法
JPWO2019151267A1 (ja) 1,3−ジオキソラン化合物及びペルフルオロ(2,2−ジメチル−1,3−ジオキソール)の製造方法
CN111511708B (zh) 2-氯-1,3,3,3-四氟丙烯的去除方法及1-氯-2,3,3,3-四氟丙烯的制造方法
WO2020218336A1 (ja) ハイドロクロロフルオロカーボンの製造方法、1-クロロ-2,3,3-トリフルオロプロペンの製造方法、1-クロロ-2,3,3,4,4,5,5-ヘプタフルオロ-1-ペンテンの製造方法
JP6360084B2 (ja) 2−クロロ−3,3,3−トリフルオロプロペンの液相フッ素化で2−クロロ−1,1,1,2−テトラフルオロプロペンを製造する方法
CN115803308A (zh) 1-氯-2,3,3-三氟丙烯的制造方法
JP2016079101A (ja) 1,1−ジクロロ−3,3,3−トリフルオロプロペンの製造方法
JP2006306726A (ja) フッ素化エーテルの製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810475

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020522101

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19810475

Country of ref document: EP

Kind code of ref document: A1