[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019203167A1 - ガラスを曲面形状に成形する装置及びその方法 - Google Patents

ガラスを曲面形状に成形する装置及びその方法 Download PDF

Info

Publication number
WO2019203167A1
WO2019203167A1 PCT/JP2019/016070 JP2019016070W WO2019203167A1 WO 2019203167 A1 WO2019203167 A1 WO 2019203167A1 JP 2019016070 W JP2019016070 W JP 2019016070W WO 2019203167 A1 WO2019203167 A1 WO 2019203167A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
curved surface
glass plate
lower mold
pressing rollers
Prior art date
Application number
PCT/JP2019/016070
Other languages
English (en)
French (fr)
Inventor
俊之 辻井
隆哲 武内
亮輔 武内
Original Assignee
株式会社武内製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018213505A external-priority patent/JP2019189512A/ja
Application filed by 株式会社武内製作所 filed Critical 株式会社武内製作所
Publication of WO2019203167A1 publication Critical patent/WO2019203167A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/03Re-forming glass sheets by bending by press-bending between shaping moulds

Definitions

  • the present invention relates to an apparatus and a method for molding glass into a curved shape, and more particularly to an apparatus and a method for molding glass into a curved shape for realizing a complicated curved shape.
  • an information display device for satisfying an HMI Human Machine Interface
  • an in-vehicle navigation system, an audio device, and the like are remarkably widespread, and images and images provided by these devices are remarkable.
  • an in-vehicle display device that displays
  • a so-called head-up display (HUD) device configured to transmit and illuminate a liquid crystal display element with a backlight.
  • HUD itself is evolving as a screen display body having a multifunctional role.
  • a more complicated curved surface is required.
  • an optical mirror surface after molding is required.
  • a method of forming glass for automobiles there are methods such as heating the glass to a temperature higher than the softening point and bending it by its own weight or pressing, or by its own weight bending or press bending.
  • press molding is used for molding deeply curved glass or horseshoe-shaped glass.
  • the invention according to Patent Document 1 calculates the stress generated in the glass plate by press bending in the press bending method using press molding, and the stress obtained by the stress calculation is in-plane compressive stress.
  • a method of press bending a glass plate under a press bending condition in which the in-plane compressive stress is equal to or less than an allowable value calculated by buckling theory is proposed.
  • the invention according to Patent Document 2 proposes a method of bending a glass plate by conveying the glass plate heated to near the softening point in a heating furnace with a roller conveyor composed of a plurality of curved rollers. According to this method, since the softened glass plate hangs down by its own weight, the glass plate is bent so as to follow the curvature of the roller. In this case, the glass plate is bent and formed in a direction orthogonal to the conveying direction.
  • the invention according to Patent Literature 3 proposes that the roller assembly according to Patent Literature 2 bends the glass plate by pressing the conveyance roller while moving the conveyance roller up and down as the glass is conveyed.
  • an object of the present invention is to propose a glass curved surface forming apparatus and a method for realizing an optical mirror surface after forming, as well as realizing a complicated curved surface of glass.
  • the present invention provides a lower mold having a plurality of cavities for placing a glass plate on which a desired curved surface is formed and evacuating, and pressurizing the glass plate in a desired bending direction.
  • a glass curved surface forming apparatus comprising a plurality of pressing rollers, wherein the one or more pressing rollers have a desired curved surface of the lower mold in a state where the glass plate heated to the bending temperature is placed on the lower mold.
  • the glass plate is formed to have a predetermined curvature by evacuating the cavity immediately after one or more pressing rollers roll in the lower die while rolling along .
  • the lower mold includes a first evacuation region for fixing the glass plate and a second evacuation region in which one or a plurality of pressing rollers roll on the surface of the glass plate, and the glass plate is a first vacuum. While being fixed to the pulling area, one or more pressing rollers pressurize while rolling the surface of the glass plate along the curved surface of the lower mold, and immediately after one or more pressing rollers roll in the lower mold It is preferable that the second evacuation region is formed into a predetermined curvature by evacuation. Further, the one or more pressing rollers may press the curvature of the plurality of curved surfaces of the glass plate while rolling a plurality of times toward the bending center of the plurality of curved surfaces.
  • the lower die moves, and the rolling direction of the one or more pressing rollers is preferably opposite to the moving direction of the lower die.
  • the one or more pressing rollers may be designed to move up and down via a hydraulic telescopic member or a link member.
  • the pressing roller is supported by a support member via a roller shaft, and the levelness of the pressing roller can be finely adjusted by raising and lowering the left and right rods included in the roller shaft.
  • the glass curved surface forming method includes a lower mold having a plurality of cavities on which a desired curved surface is formed and a glass plate is placed and vacuumed, and the glass plate provided above the lower die.
  • a glass curved surface forming apparatus comprising one or a plurality of pressing rollers that pressurize in a desired bending direction, a step of placing the glass plate on the lower mold, and a molding in which the glass plate is vacuumed and fixed to the lower mold and heated.
  • the preheating step and the glass plate that has been transported after heating are subjected to pressure applied to the curved surface while one or more pressing rollers roll along the curved surface of the lower mold, Alternatively, it is characterized by comprising a molding step of forming a predetermined curvature by evacuating the cavity immediately after the plurality of pressing rollers roll.
  • the lower mold includes a first evacuation region for fixing the glass plate, and a second evacuation region in which one or more pressing rollers roll on the surface of the glass plate, and the glass plate is a first vacuum.
  • one or more pressing rollers pressurize while rolling the surface of the glass plate along the curved surface of the lower mold, and immediately after one or more pressing rollers roll in the lower mold
  • the second evacuation region is formed into a predetermined curvature by evacuation.
  • the one or more pressing rollers pressurize the curvature of the plurality of curved surfaces of the glass while rolling a plurality of times toward the bending center of the plurality of curved surfaces.
  • an analysis step for performing curved surface analysis of the shape of the mold, a place where one or a plurality of pressing rollers roll based on the result of the curved surface analysis, a rolling order It is preferable that a determination step for determining the adjustment of the level of the one or more pressing rollers is provided in advance. Furthermore, it is preferable that the determination step described above can adjust the linkage with the moving speed of the lower mold.
  • the glass curved surface forming method and apparatus according to the present invention can realize a slightly complicated curved surface of glass and an optical mirror surface after molding. Further, since the thickness of the glass plate and the bending shape of the glass plate are various, the bending by the pressing roller is flexible, and more advantageous in cost than the press forming by the upper die and the lower die.
  • FIG. 5 is a diagram simply showing rolling and pressing of a pressing roller 21 subsequent to FIG. 4 in glass curved surface forming according to Example 1 of the present invention.
  • FIG. 6 is a front view showing the shape of a mold used in an experiment according to Example 3.
  • FIG. It is a flowchart of the curved surface shaping
  • FIG. It is a figure which shows the mode of the curved surface shaping
  • FIG. 1 is a schematic configuration diagram illustrating a glass curved surface forming apparatus 100 according to a first embodiment of the present invention. This will be described in detail with reference to FIG.
  • the glass curved surface forming apparatus 100 is configured by connecting a heating unit 1 and a forming unit 2 to each other, and is divided by side walls that can be freely opened and closed. Since the side wall S is openable and closable, the inside of each part is appropriately chambered, and has a role of preventing a rapid temperature drop due to outside air. Note that the side wall S may be eliminated, and the heating unit 1 and the molding unit 2 may be made into one space.
  • the heating part 1 and the molding part 2 are made into one space, it is necessary to consider that it becomes difficult to keep the temperature in the heating part 1 at a predetermined temperature because the space becomes wide.
  • the heating unit 1 includes a heater 11 and a heater support member 12.
  • the heater 11 is supported by a heater support member 12 and may be configured to be driven up and down by a hydraulic cylinder and servo control.
  • the molding unit 2 may be configured such that the roller device 20 is installed on the base 29 and is driven up and down by a hydraulic cylinder and servo control.
  • type 31 which mounts the glass plate G can be mounted on the lower mold
  • the material of the lower mold 31 is preferably metal or ceramics. However, in the case of ceramics, there is fire resistance, excellent specularity after processing, high temperature and good releasability from glass. preferable.
  • FIG. 2 is a diagram illustrating a part of the roller device 20 according to the first embodiment of the present invention.
  • the roller device 20 will be described in detail with reference to FIGS.
  • the roller device 20 generally includes a pressing roller 21, a roller shaft 22, an arm 23, and a robot housing base 24.
  • the pressing roller 21 is rotatably supported by a roller shaft 22 and is attached to an arm 23.
  • the arm 23 is housed and mounted in a robot housing base 24 and moves up and down by a sliding cylinder.
  • Servo motor controls important pressure, speed and alignment as molding conditions.
  • the robot housing base 24 is attached to a base 29 provided on the ceiling of the molding part 2, and the glass placed on a lower mold 31 described later while the pressing roller 21 rolls as the arm 23 moves up and down. Press the plate G.
  • the attachment is fixed, but the robot housing base 24 may be designed so that the lower surface of the base 29 can move freely. Further, the level of the pressing roller 21 may be finely adjusted by raising and lowering the left and right rods of the roller shaft 22 attached to the arm 23.
  • the arm 23 may be operated by a link member.
  • the material of the pressure roller 21 may be heat resistant metal or ceramic.
  • the pressing roller 21 is a cylindrical body, but may be a spherical body or a conical body.
  • FIG. 3A is a perspective view of the glass Gf1 formed in Example 1 of the present invention
  • FIG. 3B is a side view
  • FIG. 3C is a plan view showing a bending direction.
  • the molded glass Gf1 according to the first embodiment of the present invention has a downward bent shape in the length direction toward one end of the glass plate.
  • FIG. 3C is a plan view
  • A1 is an arrow indicating a bending direction
  • the above-described pressing roller 21 rolls in the bending direction A1 while the glass plate G placed on the lower mold 31 is predetermined. Press the part.
  • the lower mold 31 has a shape designed by the bending direction of the molded glass Gf1.
  • FIG. 4 and FIG. 4 and 5 are diagrams simply showing rolling and pressing of the pressing roller 21 in the curved surface forming of the glass according to the first embodiment of the present invention, and (a) to (c) are shown in time series.
  • FIG. 5 (a) should be understood as a diagram showing a state performed after FIG. 4 (c).
  • FIG. 4A shows a state in which the glass plate G is heated by the heater 11 while being placed on the lower mold 31 in the heating unit 1.
  • a near infrared heater is used as the heater 11 so that the temperature is gradually raised to the vicinity of the glass softening point in about 4 minutes.
  • the heater 11 is raised and the shutter S is opened. If it does so, the lower mold
  • the lower mold transfer wheel 32 starts to move to the molding unit 2, the arm 23 of the roller device 20 descends, the pressing roller 21 stands by slightly above the glass plate G, and the lower mold is detected when the sensor detects the molding start location.
  • the transfer vehicle 32 stops and the pressing roller 21 is pressed against the glass plate G (FIG. 4C).
  • the lower mold transfer vehicle 32 moves again in the same direction, and the pressing roller 21 rolls in a direction opposite to the moving direction of the lower mold transfer vehicle 32, and a predetermined
  • the glass plate G is pressed with pressure (FIGS. 5A and 5B).
  • the sensor detects the molding end point
  • molding is inadequate, the lower mold
  • FIG. 6 is a flowchart of the glass curved surface forming method according to the first embodiment of the present invention.
  • FIGS. 7 and 8 are diagrams showing in detail the curved surface molding of the glass along the flowchart shown in FIG.
  • the lower mold 31 includes a cavity region (first evacuation region # 1, # 3, second evacuation region # 4, # 5, # 6), and a vacuum is applied to the glass plate G through the cavity.
  • the glass plate G can be pulled into the cavity and brought into contact with the molding surface to apply and position and fix the glass plate G.
  • the base 29 is provided with an end vacuum support part # 2 capable of evacuating one end of the glass plate G.
  • the end vacuum support part # 2 is movable.
  • the glass plate G is placed on a predetermined position of the lower mold 31 (S11). And cavity area
  • the heater support part 12 descends to bring the heater 11 closer to the glass plate G and mainly heat the # 1 area and the # 3 area (S13).
  • region and edge part vacuum support part # 2 are evacuated, the glass plate G is fixed, and # 4 area
  • the lower mold transfer wheel 32 on which the heated glass plate G and the lower mold 31 are placed moves to the molding unit 2. At this time, evacuation to the # 1 region and the # 3 region is suppressed, and the heat retaining state is maintained.
  • the lower mold transfer wheel 32 starts to move to the molding unit 2
  • the arm 23 of the roller device 20 descends, the pressing roller 21 stands by slightly above the glass plate G, and the lower mold is detected when the sensor detects the molding start location.
  • the pressing roller 21 starts rolling and pressing (S15).
  • one roller device 20 includes one pressing roller 21, but a plurality of roller devices may be designed to include a plurality of pressing rollers.
  • FIG. 9 is a diagram illustrating glass Gf2 (a) and Gf3 (b) formed with a plurality of bending directions.
  • the bending directions are two of A2 and A3, and in the case of FIG. 9B, the bending directions are four directions of A4, A5, A6, and A7.
  • the pressing roller 51 employs a cylindrical body, but a spherical body or a conical body may be employed.
  • the material of the pressing roller 51 may be a heat resistant metal or ceramic.
  • FIG. 10A is a perspective view of the glass Gf3 formed in Example 2 of the present invention
  • FIG. 10B is a side view
  • FIG. 10C is a plan view showing a bending direction.
  • the shaped glass Gf3 according to Example 2 of the present invention has a shape that is bent downward in the length direction from the center of the glass plate toward one end, and the upper and lower ends of one end in the plan view are also bent in the direction of the arrow. Is bent downward in the direction of the arrow.
  • FIG. 10 (c) is a plan view, and A4, A5, A6, and A7 are arrows indicating the bending direction, and the pressing roller 41 described above is rolling toward the bending directions A4, A5, A6, and A7, respectively. Then, a predetermined portion of the glass plate G placed on the lower mold 61 is pressed. Naturally, the lower mold 61 has a shape designed by the bending direction of the molded glass Gf3.
  • FIG. 11 is a schematic configuration diagram showing a glass curved surface forming apparatus 200 according to Embodiment 2 of the present invention.
  • the glass curved surface forming apparatus 200 includes a heating unit 4 and a forming unit 5 connected to each other, and is divided by an openable / closable side wall S. Since the side wall S is openable and closable, the inside of each part is appropriately chambered, and has a role of preventing a rapid temperature drop due to outside air.
  • main devices included in each unit will be described.
  • the heating unit 4 includes a heater 41 and a heater support member 42.
  • the heater 41 is supported by a heater support member 42 and may be configured to be driven up and down by a hydraulic cylinder and servo control.
  • the molding unit 5 may be configured such that the roller device 50 is installed on the base 59 and is driven up and down by a hydraulic cylinder and servo control. And in order to shape
  • the material of the lower mold 61 is preferably metal or ceramic.
  • the roller device 50 generally includes a pressing roller 51, a roller shaft 52, an arm 53, and a robot housing base 54.
  • the pressing roller 51 is rotatably supported by a roller shaft 52 and is attached to an arm 53.
  • the arm 53 is housed and mounted in a robot housing base 54 and moves up and down by a sliding cylinder.
  • the arm 53 is preferably provided with a hinge 55 so that the pressing roller 51 can freely roll on a double curved surface.
  • important control of pressure, speed, and alignment is performed by a servo motor.
  • the shape data of the curved surface of the lower mold 61 is analyzed in advance by a computer.
  • the robot housing base 54 is attached to a base 59 provided on the ceiling of the molding unit 5, and the arm 53 moves up and down to press the glass plate G placed on the lower mold 61 while the pressing roller 51 rolls. To do.
  • this attachment is fixed, but it may be designed so that the robot housing base 54 can freely move on the lower surface of the base 59.
  • FIG. 12 is a diagram illustrating the rotation of the pressing roller 51 according to the second embodiment of the present invention.
  • the arm 53 can be rotated 360 degrees by a hinge 55, so that the pressing roller 51 can move not only to the left and right but also to adjust the level.
  • FIG.12 (b) it is possible to change direction to the bending center of a some curved surface.
  • FIG. 13 is a flowchart of the curved glass surface forming method according to the second embodiment of the present invention.
  • the curved surface forming method for glass according to the second embodiment of the present invention includes an analysis step (S21) for analyzing the shape of the mold in a curved surface prior to the heating step (S24) and the curved surface forming step (S25), and the curved surface analysis. Based on the result, a determination step (S22) for determining a place where the pressing roller rolls, a rolling order, and adjustment of the level of the pressing roller is provided in advance.
  • the shape of the curved surface of the lower mold 61 in advance, it is preferable to grasp the shape of the curved surface from the Gaussian curvature and the average curvature.
  • the Gaussian curvature is determined by the product of the vertical and horizontal curvatures of the curved surface
  • the average curvature is determined by the average of the vertical and horizontal curvatures of the curved surface.
  • the curved surface analysis may be calculated using CAD data when the lower mold is manufactured.
  • one roller device 50 includes one pressing roller 51, but a plurality of roller devices may be designed to include a plurality of pressing rollers.
  • a plurality of roller devices may be designed to include a plurality of pressing rollers.
  • FIG. 14 is a front view showing the shape of the mold used in the experiment according to Example 3.
  • FIG. 15 is a flowchart of the curved glass surface forming method according to the third embodiment of the present invention. Further, FIGS. 16 and 17 are diagrams showing in detail the curved surface molding of the glass according to Example 3.
  • FIG. 16 and 17 are diagrams showing in detail the curved surface molding of the glass according to Example 3.
  • the glass forming method according to Example 3 was conducted in the applicant's headquarters factory (1-6-14 Hasesehoncho, Amagasaki City, Hyogo Pref., Takeuchi Seisakusho Co., Ltd.) with employees present.
  • the molding method of the present invention used an S-shaped lower die 91 made of SUS shown in FIG. 14 and experimented with three types of molding methods, that is, only the dead weight, vacuum drawing, roller and vacuum drawing.
  • the glass forming method according to Example 3 is almost the same as the procedure shown in Example 1.
  • the measurement results of the experiment will be described in detail. For the experiment, the following basic conditions were the same, and only the roller was changed in pressure and the change was observed.
  • Mold S-shaped lower mold made of SUS Temperature: 520 degrees Celsius Glass thickness: Blue plate 1.1 mm Preheating (batch furnace) time: 1 minute heating at 400 ° C (IR) time: 100 seconds Vacuum pressure: -80 kPa (Experimental equipment) Thin glass curved surface molding machine / CSGM-III (Molding process) Preheating (batch furnace) ⁇ Input ⁇ Move to heating position ⁇ Heating (IR) ⁇ Roller molding ⁇ Move to extraction position ⁇ Extraction
  • FIG. The lower die 91 includes cavity regions (first vacuuming regions # 71, # 73, second vacuuming regions # 74, # 75, # 76), and the glass plate G is vacuumed via the cavity C.
  • the glass plate G can be pulled into the cavity C and brought into contact with the molding surface so that the glass plate G is positioned and fixed.
  • an end vacuum support part # 72 capable of evacuating one end of the glass plate G is provided in the base.
  • the end vacuum support portion # 72 is movable.
  • the glass plate G is placed on a predetermined position of the lower mold 91 (S31). And cavity area
  • the heater support part 12 descends to bring the heater 11 closer to the glass plate G and mainly heat the # 71 region and the # 73 region (S33).
  • the # 71 area and the # 73 area are slightly gentle areas of the lower mold 91, the glass plate G is landed on the lower mold 91 by its own weight, and the landed # 73 area and the end vacuum support section # 72 are connected to each other. Vacuum is applied to fix the glass plate G.
  • the # 74 area, # 75 area, and # 76 area are gradually heated (S34). Thereafter, the heater is left as it is, and the evacuation to the # 71 region and the # 73 region is suppressed, and the heat insulation state is maintained.
  • the arm of the roller device descends, the pressing roller 81 stands by a little above the glass plate G, and when the sensor detects the molding start position, the lower mold transfer vehicle is The pressing roller 81 is pressed against the # 74 area of the glass plate G, and then the pressure roller 81 is moved in accordance with the movement of the lower transfer vehicle while the vacuuming of the # 74 area is fixed. Rolling and pressing are started (S35).
  • the glass curved surface forming method and apparatus according to the present invention realizes a curved surface having a high quality surface property and an optical mirror surface, so that the resulting molded glass is widely used for in-vehicle display devices and the like. Can do.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

【課題】本発明は、ガラスの複雑な曲面化の実現とともに、成形後の光学鏡面を実現するガラスの曲面成形装置とその方法を提案することを課題とする。 【解決手段】本発明は、所望の湾曲面が形成されガラス板を戴置し、真空引きする複数のキャビティを備える下型と、該ガラスを所望の曲げ方向に加圧する一又は複数の押圧ローラと、を備えるガラス曲面成形装置であって、曲げ成形温度まで加熱したガラス板を下型に戴置した状態で、一又は複数の押圧ローラは、下型の所望の湾曲面に沿って転動しながら加圧力を作用させるとともに、下型において一又は複数の押圧ローラが転動した直後のキャビティを真空引きすることでガラス板を所定の曲率に成形することを特徴とする。

Description

ガラスを曲面形状に成形する装置及びその方法
 本発明は、ガラスを曲面形状に成形する装置及びその方法に関し、特に複雑な曲面形状を実現するためのガラスを曲面形状に成形する装置及びその方法に関する。
 マルチメディアの進展により、ディスプレイ装置に使用されるガラスは様々な形状、曲率が求められている。特に、自動車にはHMI(ヒューマンマシンインターフェース)を満足するための情報表示装置が設けられているが、車載型のナビゲーションシステムやオーディオ装置等の普及はめざましく、これらの装置によって提供される映像や画像を表示する車載用ディスプレイ装置がある。また、液晶表示素子をバックライトで透過照明する構成の、いわゆるヘッドアップディスプレイ(Head-Up Display;HUD)装置と呼ばれる表示装置があるが、画面の大型化により、車載用ディスプレイのサブ画面の領域に留まらず、HUD自体が多機能な役割を持つ画面表示体として進化しつつある。このような車載用ディスプレイ装置等を薄板ガラスで実現するとなると、より複雑な曲面化が要求される。また、ガラスの複雑な曲面化の実現とともに、成形後の光学鏡面が要求される。
 一般に、自動車用のガラスを成形する方法に、ガラスを軟化点以上に加熱し、自重あるいはプレスして曲げる、自重曲げやプレス曲げといった方法がある。特に深く湾曲したガラスや馬蹄形をしたガラスの成形には、プレス成形法が用いられる。特許文献1に係る発明は、成形型を用いてプレス曲げするプレス曲げ成形方法において、プレス曲げによってガラス板に生じる応力を計算し、応力の計算で求められた応力が面内圧縮応力であって、該面内圧縮応力が座屈理論で計算される許容値以下となるプレス曲げ条件でガラス板のプレス曲げを行う方法を提案している。このような成形方法は、生産効率に優れるものの、特にガラスの複雑な曲面化の実現には難があり、高精度な光学鏡面となると技術的な課題が残る。また、上型と下型とを強くプレスすれば、ガラスの複雑な曲面化は実現できるかもしれないが、成形後のガラスが白く混濁し、ガラス周辺部にしわが生じることも多く、ガラスの表面を通常のプレス後よりもより時間をかけて研磨しなければ高精度な光学鏡面の実現はままならないという問題がある。さらに、CID(Center Information Display)やClusterと呼ばれる車載用ディスプレイ装置用のガラスを成形するための金型作成には費用が多大であり、またガラスの曲面化に対応することも困難である。
 別の方法として、ローラアッセンブリによる曲げ加工の方法が知られている。特許文献2に係る発明は、加熱炉において軟化点近くまで加熱したガラス板を、湾曲した複数のローラからなるローラコンベアで搬送することによって、ガラス板を曲げ成形する方法を提案している。この方法によれば、軟化したガラス板はその自重により垂れ下がるので、ガラス板はローラの曲率に倣うように曲げられる。この場合、ガラス板は搬送方向に直交する方向に曲げ成形される。特許文献3に係る発明は、特許文献2に係るローラアッセンブリにおいて、搬送ローラをガラスの搬送に伴い上下動させながらガラス板に押圧することでガラス板を曲げることを提案している。
特開2005-154164号公報 米国特許4,123,246号明細書 特開2000-72460号公報
 ところが、特許文献1の方法では、型式毎にその型式に対応した曲率のローラに交換する必要があり、交換に時間がかかり、型式毎に求められる曲率のローラを用意する必要があった。また、ローラのガラス板への接触による筋状のローラ歪が組付け状態における鉛直方向に形成され、ローラによる筋状の歪が目立ちやすい問題があった。また、特許文献2又は3の方法では、大型のガラス成形の場合に膨大な数の搬送ローラを上下動させる必要があり、制御が複雑になる上にガラス板への傷の発生が懸念されるという問題がある。さらに、特許文献1~3の方法では、車載用ディスプレイ装置に用いられるやや大型ガラスの複雑な曲面化に対応することは困難である。
 本発明は、このような問題に鑑み、ガラスの複雑な曲面化の実現とともに、成形後の光学鏡面を実現するガラス曲面成形装置とその方法を提案することを課題とする。
 上記問題を解決するために、本発明は、所望の湾曲面が形成されガラス板を戴置し、真空引きする複数のキャビティを備える下型と、該ガラス板を所望の曲げ方向に加圧する一又は複数の押圧ローラと、を備えるガラス曲面成形装置であって、曲げ成形温度まで加熱したガラス板を下型に戴置した状態で、一又は複数の押圧ローラは、下型の所望の湾曲面に沿って転動しながら加圧力を作用させるとともに、下型において一又は複数の押圧ローラが転動した直後のキャビティを真空引きすることでガラス板を所定の曲率に成形することを特徴とする。また、下型は、ガラス板を固定する第一の真空引き領域と、一又は複数の押圧ローラがガラス板の表面を転動する第二の真空引き領域を備え、ガラス板が第一の真空引き領域に固定したまま、一又は複数の押圧ローラが下型の湾曲面に沿ってガラス板の表面を転動しながら加圧するとともに、下型において一又は複数の押圧ローラが転動した直後の第二の真空引き領域を真空引きすることで所定の曲率に成形するようにすれば好適である。るまた、一又は複数の押圧ローラは、ガラス板の複数の曲面の曲率について、該複数の曲面の曲げ中心に向かって複数回の転動しながら加圧するようにしてもよい。
 なお、下型は移動し、一又は複数の押圧ローラの転動方向は、下型の移動方向とは反対であるようにするとよい。また、一又は複数の押圧ローラは、油圧伸縮部材又はリンク部材を介して、昇降するように設計するとよい。さらに、押圧ローラは、ローラシャフトを介して支持部材に支持され、押圧ローラの水平度は、ローラシャフトに備える左右のロッドを上げ下げすることにより微調整することができると好適である。
 また、本発明に係るガラス曲面成形方法は、所望の湾曲面が形成されガラス板を戴置し、真空引きする複数のキャビティを備える下型と、該下型の上方に設けられ前記ガラス板を所望の曲げ方向に加圧する一又は複数の押圧ローラと、を備えるガラス曲面成形装置において、ガラス板を下型に戴置する工程と、ガラス板を真空引きして下型に固定し加熱する成形前加熱工程と、加熱を終えて搬送されたガラス板を、一又は複数の押圧ローラが下型の湾曲面に沿って転動しながら湾曲面に向かう加圧力を作用させるとともに、下型において一又は複数の押圧ローラが転動した直後のキャビティを真空引きすることで所定の曲率に成形する成形工程と、から構成されることを特徴とする。
 なお、下型は、ガラス板を固定する第一の真空引き領域と、一又は複数の押圧ローラがガラス板の表面を転動する第二の真空引き領域を備え、ガラス板が第一の真空引き領域に固定したまま、一又は複数の押圧ローラが下型の湾曲面に沿ってガラス板の表面を転動しながら加圧するとともに、下型において一又は複数の押圧ローラが転動した直後の第二の真空引き領域を真空引きすることで所定の曲率に成形することを特徴とする。
 さらに、一又は複数の押圧ローラは、ガラスの複数の曲面の曲率について、該複数の曲面の曲げ中心に向かって複数回の転動しながら加圧すると好適である。
 なお、前述のガラスの曲面成形工程に先立って、成形型の形状を曲面解析する解析工程と、曲面解析の結果に基づいて、一又は複数の押圧ローラを転動する場所、転動する順序、一又は複数の押圧ローラの水平度の調整を決定する決定工程と、を予め備えると好適である。さらに、前述の決定工程は、下型の移動速度との連動を調整できるようにするとよい。
 本発明に係るガラスの曲面成形方法及びその装置によれば、ガラスのやや複雑な曲面化の実現とともに、成形後の光学鏡面を実現することが可能になる。また、ガラス板の厚みやガラス板の曲げ形状も多様にわたるため、押圧ローラによる曲げ成形は融通が効き、さらに、上型と下型とによるプレス成形よりもコスト面で優位である。
本発明の実施例1に係るガラスの曲面成形装置100を示す概略構成図である。 本発明の実施例1に係るローラ装置20の一部を示す図である。 本発明の実施例1において成形されたガラス(a)斜視図、(b)側面図、(c)曲げ方向を示す図である。 本発明の実施例1に係るガラスの曲面成形において、押圧ローラ21の転動と押圧を簡単に示す図である。 本発明の実施例1に係るガラスの曲面成形において、図4に続く押圧ローラ21の転動と押圧を簡単に示す図である。 本発明の実施例1に係るガラスの曲面成形方法のフローチャートである。 図6に示すフローチャートに沿って、ガラスの曲面成形の様子を示す図である。 図6に示すフローチャートに沿って、図7に続くガラスの曲面成形の様子を示す図である。 複数の曲げ方向のある成形されたガラスを示す図である。 本発明の実施例2において成形されたガラス(a)斜視図、(b)側面図、(c)曲げ方向を示す図である。 本発明の実施例2に係るガラスの曲面成形装置200を示す概略構成図である。 本発明の実施例2に係る押圧ローラ51の回動を示す図である。 本発明の実施例2に係るガラスの曲面成形方法のフローチャートである。 実施例3に係る実験に使用した金型の形状を示す正面図である。 本発明の実施例3に係るガラスの曲面成形方法のフローチャートである。 図15に示すフローチャートに沿って、実施例3に係る実験におけるガラスの曲面成形の様子を示す図である。 図15に示すフローチャートに沿って、図15に続くガラスの曲面成形の様子を示す図である。
 以下、本発明の実施例を図面に基づき詳細に説明する。各図において、同一部分には同一番号を付し、重複する説明は省略する。また、図面は、本発明を理解するために誇張して表現している場合もあり、必ずしも縮尺どおり精緻に表したものではないことに留意されたい。なお、本発明は下記に示される実施例に限られるものではない。
 実施例1を図面を参照して詳細に説明する。
 図1は、本発明の実施例1に係るガラスの曲面成形装置100を示す概略構成図である。図1を参照しながら詳細に説明する。ガラスの曲面成形装置100は、加熱部1、成形部2が互いに接続して構成され、開閉自在の側壁により区分されている。側壁Sは、開閉自在であるので、適宜各部内をチャンバ化し、外気による急速な温度低下を防止する役割を有している。なお、側壁Sを無くして、加熱部1と成形部2を一つの空間にしてもよい。しかし、加熱部1と成形部2とを一つの空間とした場合、空間が広くなるため、加熱部1内の温度を所定温度に保つことが難しくなることを考慮する必要があるため、加熱部1の温度の安定化のためには側壁Sを設ける方が好適である。
 次に、各部が備える主な装置を説明する。加熱部1は、ヒータ11とヒータ支持部材12とからなる。ヒータ11はヒータ支持部材12により支持され、油圧シリンダとサーボ制御により上下駆動するように構成されるとよい。また、同様に、成形部2は、ローラ装置20がベース29に設置され、油圧シリンダとサーボ制御により上下駆動するように構成されるとよい。そして、ガラスを成形するため、ガラス板Gを載置する下型31が下型移載車32に載って、加熱部1と成形部2とを移動することができる。なお、下型31の素材は、金属又はセラミックスが好適であるが、セラミックスの場合、耐火性があり、加工後の鏡面性に優れ、高温下にあってガラスとの離型性が良いものが好ましい。
 図2は、本発明の実施例1に係るローラ装置20の一部を示す図である。図1と2を参照しながらローラ装置20を詳細に説明する。ローラ装置20は、概して押圧ローラ21とローラシャフト22とアーム23とロボハウジングベース24とからなる。押圧ローラ21は、ローラシャフト22に回転自在に軸支され、アーム23に取り付けられ、さらにアーム23はロボハウジングベース24内に収容装着され、摺動シリンダで上下動する。成形条件として、重要な圧力、速度及び位置合せの制御はサーボモータにより行う。なお、ロボハウジングベース24は成形部2の天井に設けられたベース29に取り付けられ、アーム23が上下動することにより、押圧ローラ21が転動しながら、後述する下型31に載置したガラス板Gを押圧する。本発明の実施例1において、この取付けは固定であるが、ベース29の下面をロボハウジングベース24が自在に移動できるように設計してもよい。また、押圧ローラ21の水平度は、アーム23に取り付けられたローラシャフト22の左右のロッドを上げ下げすることにより微調整するようにしてもよい。なお、アーム23はリンク部材で動作するようにしてもよい。
 押圧ローラ21の素材は、耐熱性の金属又はセラミックスを採用するとよい。また、実施例1において、押圧ローラ21は、円筒体を採用しているが、球体や円錐体を採用してもよい。
 図3を参照する。図3(a)は、本発明の実施例1において成形されたガラスGf1の斜視図、(b)は側面図、(c)は平面図で曲げ方向を示す図である。本発明の実施例1に係る成形ガラスGf1は、ガラス板の一端に向かって長さ方向に下折れ形状となっている。図3(c)は平面図において、A1は曲げ方向を示す矢印であり、前述した押圧ローラ21はこの曲げ方向A1に向けて転動しながら、下型31に載置したガラス板Gの所定の箇所を押圧する。当然ながら、下型31は、当該成形ガラスGf1の当該曲げ方向に沿った設計による形状である。
 図4と図5を参照する。図4及び5は、本発明の実施例1に係るガラスの曲面成形において、押圧ローラ21の転動と押圧を簡単に示す図であり、(a)~(c)は時系列で示されており、図5(a)は図4(c)の次に行われた状態を示す図として理解されたい。
 図4(a)は、加熱部1において、下型31に載置された状態で、ガラス板Gがヒータ11により加熱された状態を示している。なお、実施例1においては、ヒータ11として、近赤外線ヒータを用いて、約4分間で段階的にガラス軟化点近傍まで昇温するように設計している。ガラス板Gが加熱されると、ヒータ11が上昇するとともに、シャッタSが開放される。そうすると、加熱されたガラス板Gと下型31とを載せた下型移載車32が成形部2に移動する(図4(b))。下型移載車32が成形部2に移動し始めると、ローラ装置20のアーム23が下降し、押圧ローラ21がガラス板Gの少し上方にスタンバイし、成形開始箇所をセンサが検知すると下型移載車32が停止し、押圧ローラ21がガラス板Gに押し付けられる(図4(c))。押圧ローラ21がガラス板Gに押し付けられると、下型移載車32が再度同じ方向に移動し、押圧ローラ21は下型移載車32の移動方向と反対方向に転動しながら、所定の圧力でガラス板Gを押圧する(図5(a)、(b))。成形終了箇所をセンサが検知すると下型移載車32が停止する(図5(c))。そして、アーム23が上昇し、押圧ローラ21は成形されたガラスから離れる。なお、成形が不十分な場合、下型移載車32は成形開始箇所まで戻り、前述の成形手順が繰り返される。
 図6は、本発明の実施例1に係るガラスの曲面成形方法のフローチャートである。図7及び8は、図6に示すフローチャートに沿って、ガラスの曲面成形の様子を詳細に示す図である。なお、下型31は、キャビティ領域(第一の真空引き領域#1、#3、第二の真空引き領域#4、#5、#6)を備え、キャビティを介してガラス板Gに真空を印加し、ガラス板Gの位置決めと固定するよう、ガラス板Gをキャビティ内へと引っ張って成形面に接触させることができる。また、成形部2において、ベース29にガラス板Gの一端を真空引きできる端部真空支持部#2を備える。端部真空支持部#2は移動自在である。
 図6、7、8を参照しながら、ガラス成形方法の詳細を説明する。まず、ガラス板Gを下型31の所定の位置に載せ置く(S11)。そして、キャビティ領域#1と端部真空支持部#2とを真空引きし、ガラス板Gを固定する(S12)。加熱部1内において、ヒータ支持部12が下降してヒータ11をガラス板Gに近づけ、主に#1領域と#3領域を加熱する(S13)。そして、#3領域と端部真空支持部#2とを真空引きし、ガラス板Gを固定し、#4領域、#5領域、#6領域を徐々に加熱する(S14)。その後、図4及び5で示したとおり、ヒータ11が上昇するとともに、シャッタSが開放される(図示しない)。そうすると、加熱されたガラス板Gと下型31とを載せた下型移載車32が成形部2に移動する。このとき、#1領域と#3領域への真空引きを抑え、保温状態を保つ。下型移載車32が成形部2に移動し始めると、ローラ装置20のアーム23が下降し、押圧ローラ21がガラス板Gの少し上方にスタンバイし、成形開始箇所をセンサが検知すると下型移載車32が停止し(図示しない)、押圧ローラ21がガラス板Gの#4領域に押し付けられ、その後、#4領域の真空引きを固定したまま、下型移載車32の移動に合わせて、押圧ローラ21は転動と押圧を開始する(S15)。下型移載車32のさらなる移動により、押圧ローラ21が#5領域付近に到着すると、端部真空支持部#2の真空引きが外れる。このとき、#5領域及び#6領域は真空引きしたままである。そして、成形終了箇所をセンサが検知すると下型移載車32が停止し、押圧ローラ21は転動と押圧を終える(S16)。なお、成形が不十分な場合、下型移載車32は成形開始箇所まで戻り、前述の成形手順が繰り返される。
 なお、実施例1において、一のローラ装置20に一の押圧ローラ21を備えているが、複数のローラ装置に複数の押圧ローラを備えるように設計してもよい。
 実施例2を図面を参照して詳細に説明する。
 図9は、複数の曲げ方向のある成形されたガラスGf2(a)、Gf3(b)を例示する図である。前述したとおり、自動車のHUD装置を薄板ガラスで実現するとなると、より複雑な曲面化が要求される。複雑な曲面となると、複数の曲げ方向への押圧ローラの転動が必要となる。図9(a)の場合は、曲げ方向はA2とA3の二つであり、図9(b)の場合、曲げ方向はA4、A5、A6、A7の4方向の四つとなる。このように、成形ガラスに曲げ方向が種々あり、2次元のみならず、3次元となれば、押圧ローラの転動方向や押圧方向も複曲面に沿った動きを自在に対応させなければならない。実施例2においても、押圧ローラ51は円筒体を採用しているが、球体や円錐体を採用してもよい。また、押圧ローラ51の素材は、耐熱性の金属又はセラミックスを採用するとよい。
 図10を参照する。図10(a)は、本発明の実施例2において成形されたガラスGf3の斜視図、(b)は側面図、(c)は平面図で曲げ方向を示す図である。本発明の実施例2に係る成形ガラスGf3は、ガラス板の中央から一端に向かって長さ方向に下折れ形状となるとともに、平面図において一端の上下も矢印方向に下折れし、さらに他端が矢印方向に下折れ形状となっている。図10(c)は平面図において、A4、A5、A6、A7は曲げ方向を示す矢印であり、前述した押圧ローラ41はこの曲げ方向A4、A5、A6、A7それぞれに向けて転動しながら、下型61に載置したガラス板Gの所定の箇所を押圧する。当然ながら、下型61は、当該成形ガラスGf3の当該曲げ方向に沿った設計による形状である。
 図11は、本発明の実施例2に係るガラスの曲面成形装置200を示す概略構成図である。ガラスの曲面成形装置200は、加熱部4、成形部5が互いに接続して構成され、開閉自在の側壁Sにより区分されている。側壁Sは、開閉自在であるので、適宜各部内をチャンバ化し、外気による急速な温度低下を防止する役割を有している。また、各部が備える主な装置を説明する。加熱部4は、ヒータ41とヒータ支持部材42とからなる。ヒータ41はヒータ支持部材42により支持され、油圧シリンダとサーボ制御により上下駆動するように構成されるとよい。また、同様に、成形部5は、ローラ装置50がベース59に設置され、油圧シリンダとサーボ制御により上下駆動するように構成されるとよい。そして、ガラスを成形するため、ガラス板Gを載置する下型61が下型移載車62に載って、加熱部4と成形部5とを移動することができる。なお、下型61の素材は、金属又はセラミックスが好適である。
 ローラ装置50は、概して押圧ローラ51とローラシャフト52とアーム53とロボハウジングベース54とからなる。押圧ローラ51は、ローラシャフト52に回転自在に軸支され、アーム53に取り付けられ、さらにアーム53はロボハウジングベース54内に収容装着され、摺動シリンダで上下動する。なお、アーム53はヒンジ55を備え、押圧ローラ51が複曲面を自在に転動できるようにするとよい。成形条件として、重要な圧力、速度及び位置合せの制御はサーボモータにより行うが、下型61の曲面の形状データをコンピュータで予め解析しておく。ロボハウジングベース54は成形部5の天井に設けられたベース59に取り付けられ、アーム53が上下動することにより、押圧ローラ51が転動しながら、下型61に載置したガラス板Gを押圧する。本発明の実施例2において、この取付けは固定であるが、ベース59の下面をロボハウジングベース54が自在に移動できるように設計してもよい。
 図12を参照する。図12は、本発明の実施例2に係る押圧ローラ51の回動を示す図である。図12(a)に示すとおり、アーム53はヒンジ55により、360度回動自在であり、押圧ローラ51が図面に向かって左右に動くのみならず、水平度も調整ができる。また、図12(b)に示すとおり、複数の曲面の曲げ中心に方向転換することが可能である。
 図13を参照する。図13は、本発明の実施例2に係るガラスの曲面成形方法のフローチャートである。本発明の実施例2に係るガラスの曲面成形方法は、加熱工程(S24)や曲面成形工程(S25)に先立って、成形型の形状を曲面解析する解析工程(S21)と、前記曲面解析の結果に基づいて、押圧ローラを転動する場所、転動する順序、押圧ローラの水平度の調整を決定する決定工程(S22)と、を予め備えることを特徴とする。なお、下型61の曲面の形状データを予め解析するため、ガウス曲率と平均曲率により、曲面の形状を把握するとよい。ここで、ガウス曲率は、曲面の縦横それぞれの曲率の積で決まるもので、平均曲率は、曲面の縦横それぞれの曲率の平均で決まる。なお、曲面解析は、下型を製作する際のCADデータを用いて算出してもよい。
 なお、実施例2において、実施例1と同様に、一のローラ装置50に一の押圧ローラ51を備えているが、複数のローラ装置に複数の押圧ローラを備えるように設計してもよい。この場合、複数の押圧ローラ51の転動・押圧を制御するために、下型61の速度制御データと、複数の押圧ローラ51の上下移動制御データとを連動させる必要があることに留意されたい。
 実施例3を図面を参照して詳細に説明する。図14は、実施例3に係る実験に使用した金型の形状を示す正面図である。図15は、本発明の実施例3に係るガラスの曲面成形方法のフローチャートである。また、図16及び17は、実施例3に係るガラスの曲面成形の様子を詳細に示す図である。
 実施例3に係るガラスの成形方法は、出願人の本社工場(兵庫県尼崎市杭瀬本町1丁目6番14号 株式会社武内製作所内)で、社員立会いの上で実験が行われた。実験結果として、本発明の成形方法は、図14に示すSUS製のS字形状の下型91を使用し、自重のみ、真空引き、ローラと真空引きの3種類の成形方法で実験した。なお、実施例3に係るガラスの成形方法は、実施例1に示した手順とほぼ同様である。
 以下、詳細に実験の測定結果を説明する。実験については、下記の基本条件を同一とし、ローラのみ押圧を変えてその変化を観察した。なお、ローラについては、PVDコーティングしたSUS製のものを用いた。そして、図14に示すイ部分(100R)に係る成形後の曲げガラスのRを輪郭形状測定器で測定し、その形状誤差により○、△、×のいずれかで評価した。なお、評価について、○を誤差3%以内、△を誤差4~5%、×を6%以上としている。
(基本条件)
型:SUS製のS字形状の下型
型温度:摂氏520度
素材ガラスの厚み:青板 1.1mm
予熱(バッチ炉)時間:400℃で1分
加熱(IR)時間:100秒
真空圧:-80kPa
(実験設備)薄板ガラス曲面成型機/CSGM-III
(成形の工程)
予熱(バッチ炉) → 投入 → 加熱位置へ移動 → 加熱(IR) → ローラ成形 → 取り出し位置へ移動 → 取り出し
Figure JPOXMLDOC01-appb-T000001
 図15、図16及び17を参照しながら、実施例3に係るガラスの曲面成形の実験の様子を詳細に説明する。なお、下型91は、キャビティ領域(第一の真空引き領域#71、#73、第二の真空引き領域#74、#75、#76)を備え、キャビティCを介してガラス板Gに真空を印加し、ガラス板Gの位置決めと固定するよう、ガラス板GをキャビティC内へと引っ張って成形面に接触させることができる。また、成形部において、ベースにガラス板Gの一端を真空引きできる端部真空支持部#72を備える。端部真空支持部#72は移動自在である。
 まず、ガラス板Gを下型91の所定の位置に載せ置く(S31)。そして、キャビティ領域#71と端部真空支持部#72とを真空引きし、ガラス板Gを固定する(S32)。加熱部1内において、ヒータ支持部12が下降してヒータ11をガラス板Gに近づけ、主に#71領域と#73領域を加熱する(S33)。そうすると、#71領域と#73領域は下型91のややなだらかな領域であるのでガラス板Gは自重で下型91に着地し、この着地した#73領域と端部真空支持部#72とを真空引きし、ガラス板Gを固定する。続けて、#74領域、#75領域、#76領域を徐々に加熱する(S34)。その後、ヒータをそのままに、#71領域と#73領域への真空引きを抑え、保温状態を保つ。下型移載車が成形部に移動し始めると、ローラ装置のアームが下降し、押圧ローラ81がガラス板Gの少し上方にスタンバイし、成形開始箇所をセンサが検知すると下型移載車が停止し(図示しない)、押圧ローラ81がガラス板Gの#74領域に押し付けられ、その後、#74領域の真空引きを固定したまま、下型移載車の移動に合わせて、押圧ローラ81は転動と押圧を開始する(S35)。下型移載車のさらなる移動により、押圧ローラ81が#75領域付近に到着すると、端部真空支持部#72の真空引きが外れる。このとき、#75領域及び#76領域は真空引きしたままである。そして、成形終了箇所をセンサが検知すると下型移載車が停止し、押圧ローラ81は転動と押圧を終える(S36)。なお、成形が不十分な場合、下型移載車は成形開始箇所まで戻り、前述の成形手順が繰り返される。
 実施例3に係る実験の結果、下記のことが確認できた。まず、自重のみの場合、ガラスが曲がっていく際に何らアシストがなければ、所望の形状を成形できない。また、真空引きの場合、一定の形状を成形できるものの、真空引きが始まるまでは自重だけで曲がっており、軟化していびつに曲がっているガラスを真空で引くだけでは完全に下型に沿わせることは難しい。そして、ある程度、自重で軟化しガラスが曲がっていく際にローラでアシストすることで下型に沿わせ、さらにその状態を保持するため真空引きを行うと所望の成形が可能となることがわかった。
 以上、本発明に係るガラスの曲面成形装置及びその方法における好ましい実施形態を図示して説明してきたが、本発明の技術的範囲を逸脱することなく種々の変更が可能であることは理解されるであろう。
 本発明に係るガラスの曲面成形方法及びその装置は、ガラス板を高品位な面性状を持つ曲面と光学鏡面を実現するので、結果物としての成形ガラスは車載用ディスプレイ装置等に広く利用することができる。
        100 200 ガラスの曲面成形装置
            1 4 加熱部
          11 41 ヒータ
          12 42 ヒータ支持アーム
            2 5 成形部
          20 50 ローラ装置
       21 51 81 押圧ローラ
          22 52 ローラシャフト
          23 53 アーム
          24 54 ロボハウジングベース
             55 ヒンジ
          29 59 基板
       31 61 91 下型
         3 2 62 下型移載車
          #1 #3 第一の真空引き領域
       #4 #5 #6 第二の真空引き領域
        #71 #73 第一の真空引き領域
    #74 #75 #76 第二の真空引き領域
              G ガラス板
              C キャビティ
Gf1 Gf2 Gf3 Gf4 成形ガラス

Claims (11)

  1.  所望の湾曲面が形成されガラス板を戴置し、真空引きする複数のキャビティを備える下型と、該ガラス板を所望の曲げ方向に加圧する一又は複数の押圧ローラと、を備えるガラス曲面成形装置であって、
     曲げ成形温度まで加熱した前記ガラス板を前記下型に戴置した状態で、前記一又は複数の押圧ローラは、前記下型の前記所望の湾曲面に沿って転動しながら加圧力を作用させるとともに、前記下型において前記一又は複数の押圧ローラが転動した直後の前記キャビティを真空引きすることで前記ガラス板を所定の曲率に成形することを特徴とするガラス曲面成形装置。
  2.  前記下型は、前記ガラス板を固定する第一の真空引き領域と、前記一又は複数の押圧ローラが前記ガラス板の表面を転動する第二の真空引き領域を備え、
     前記ガラス板が前記第一の真空引き領域に固定したまま、前記一又は複数の押圧ローラが前記下型の前記湾曲面に沿って前記ガラス板の表面を転動しながら加圧するとともに、前記下型において前記一又は複数の押圧ローラが転動した直後の前記第二の真空引き領域を真空引きすることで所定の曲率に成形することを特徴とする請求項1に記載のガラス曲面成形装置。
  3.  前記一又は複数の押圧ローラは、前記ガラス板の複数の曲面の曲率について、該複数の曲面の曲げ中心に向かって複数回転動しながら加圧することを特徴とする請求項1又は2に記載のガラス曲面成形装置。
  4.  前記下型は移動し、前記一又は複数の押圧ローラの転動方向は、前記下型の移動方向とは反対であることを特徴とする請求項1ないし3のいずれか1項に記載のガラス曲面成形装置。
  5.  前記一又は複数の押圧ローラは、油圧伸縮部材又はリンク部材を介して、昇降することを特徴とする請求項1ないし4のいずれか1項に記載のガラス曲面成形装置。
  6.  前記押圧ローラは、ローラシャフトを介して支持部材に支持され、前記押圧ローラの水平度は、前記ローラシャフトの左右のロッドを上げ下げすることにより微調整することを特徴とする請求項1ないし5のいずれか1項に記載のガラス曲面成形装置。
  7.  所望の湾曲面が形成されガラス板を戴置し、真空引きする複数のキャビティを備える下型と、該下型の上方に設けられ前記ガラス板を所望の曲げ方向に加圧する一又は複数の押圧ローラと、を備えるガラス曲面成形装置において、
     前記ガラス板を前記下型に戴置する工程と、
     前記ガラス板を真空引きして前記下型に固定し加熱する成形前加熱工程と、
     前記加熱を終えて搬送された前記ガラス板を、前記一又は複数の押圧ローラが前記下型の前記湾曲面に沿って転動しながらそれに向かう加圧力を作用させるとともに、前記下型において前記一又は複数の押圧ローラが転動した直後の前記キャビティを真空引きすることで所定の曲率に成形する成形工程と、
    から構成されることを特徴とするガラス曲面成形方法。
  8.  前記下型は、前記ガラス板を固定する第一の真空引き領域と、前記一又は複数の押圧ローラが前記ガラス板の表面を転動する第二の真空引き領域を備え、
     前記ガラス板が前記第一の真空引き領域に固定したまま、前記一又は複数の押圧ローラが前記下型の前記湾曲面に沿って前記ガラス板の表面を転動しながら加圧するとともに、前記下型において前記一又は複数の押圧ローラが転動した直後の前記第二の真空引き領域を真空引きすることで所定の曲率に成形することを特徴とする請求項7に記載のガラス曲面成形方法。
  9.  さらに、前記一又は複数の押圧ローラは、前記ガラスの複数の曲面の曲率について、該複数の曲面の曲げ中心に向かって複数回の転動しながら加圧することを特徴とする請求項7又は8に記載のガラス曲面成形方法。
  10.  前記ガラスの曲面成形工程に先立って、成形型の形状を曲面解析する解析工程と、前記曲面解析の結果に基づいて、前記一又は複数の押圧ローラを転動する場所、転動する順序、押圧ローラの水平度の調整を決定する決定工程と、を予め備えたことを特徴とする請求項7ないし9のいずれか1項に記載のガラス曲面成形方法。
  11. さらに、前記決定工程は、前記下型の移動速度との連動を調整することを特徴とする請求項10に記載のガラス曲面成形方法。
PCT/JP2019/016070 2018-04-18 2019-04-13 ガラスを曲面形状に成形する装置及びその方法 WO2019203167A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018079589 2018-04-18
JP2018-079589 2018-04-18
JP2018-213505 2018-11-14
JP2018213505A JP2019189512A (ja) 2018-04-18 2018-11-14 ガラスを曲面形状に成形する装置及びその方法

Publications (1)

Publication Number Publication Date
WO2019203167A1 true WO2019203167A1 (ja) 2019-10-24

Family

ID=68239621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016070 WO2019203167A1 (ja) 2018-04-18 2019-04-13 ガラスを曲面形状に成形する装置及びその方法

Country Status (1)

Country Link
WO (1) WO2019203167A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154164A (ja) * 2003-11-21 2005-06-16 Central Glass Co Ltd ガラス板のプレス曲げ成形方法
JP2008100914A (ja) * 2002-06-17 2008-05-01 Nippon Sheet Glass Co Ltd 曲げガラス板の製造方法及び装置
KR20110096455A (ko) * 2010-02-22 2011-08-30 우명성 일측 또는 양측에 곡면부를 갖는 핸드폰용 커버글래스 성형장치
JP2017537048A (ja) * 2014-10-29 2017-12-14 コーニング インコーポレイテッド 加熱されたガラスシートを成形または形成する装置および方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008100914A (ja) * 2002-06-17 2008-05-01 Nippon Sheet Glass Co Ltd 曲げガラス板の製造方法及び装置
JP2005154164A (ja) * 2003-11-21 2005-06-16 Central Glass Co Ltd ガラス板のプレス曲げ成形方法
KR20110096455A (ko) * 2010-02-22 2011-08-30 우명성 일측 또는 양측에 곡면부를 갖는 핸드폰용 커버글래스 성형장치
JP2017537048A (ja) * 2014-10-29 2017-12-14 コーニング インコーポレイテッド 加熱されたガラスシートを成形または形成する装置および方法

Similar Documents

Publication Publication Date Title
EP2128099B1 (en) Method and apparatus for forming curved glass plate
JP5431317B2 (ja) ガラスの曲げ成形方法
US9902640B2 (en) Process and system tuning precision glass sheet bending
JP2019189512A (ja) ガラスを曲面形状に成形する装置及びその方法
JP5620369B2 (ja) ガラス板の重力曲げ
JPH0140773B2 (ja)
JP7082128B2 (ja) ガラス板を成形する方法、およびそこで利用される曲げ工具
JP2783713B2 (ja) 光学素子のプレス成形法およびその装置
WO2002064519A8 (fr) Procede et dispositif pour cintrer des vitres par paires
KR20180074780A (ko) 3d 성형된 유리-기반 제품과, 그를 성형하기 위한 방법 및 장치
US5695537A (en) Apparatus for and method of bending glass sheets
PL1611062T3 (pl) Sposób i urządzenie do gięcia szyb
JP7541519B2 (ja) ガラス成形装置
WO2019203167A1 (ja) ガラスを曲面形状に成形する装置及びその方法
CN113135650A (zh) 一种汽车玻璃二次加热成形方法
JPH09110449A (ja) 熱軟化板材料を成形する方法と装置
JP2001508386A (ja) ガラス板曲げ方法
TW201720766A (zh) 玻璃片材塑模設備及方法
JP2021533071A (ja) シートを曲げるための方法及び装置
JP2807318B2 (ja) ガラス板の曲げ成形方法の選定方法及びガラス板の曲げ成形方法
JP4386461B2 (ja) ガラス板曲げ装置および方法
JP3887163B2 (ja) 曲面ミラー用ガラス素材の曲げ成形装置
JP2008156175A (ja) ガラス板の曲げ成形方法および曲げ成形装置
CN115215535A (zh) 将玻璃成形为曲面形状的装置及其方法
KR102035606B1 (ko) 자동차 사이드 뷰 미러용 발수필름 및 이의 성형장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19787596

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19787596

Country of ref document: EP

Kind code of ref document: A1